WorldWideScience

Sample records for geological nuclear waste

  1. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  2. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  3. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  4. Alternate nuclear waste forms and interactions in geologic media

    International Nuclear Information System (INIS)

    Boatner, L.A.; Battle, G.C. Jr.

    1981-04-01

    The primary purposes of the conference on Alternate Nuclear Waste Forms and Interactions in Geologic Media were: First, to provide an opportunity for a review of the status of the research on some of the candidate alternative waste forms; second, to provide an opportunity for comparing the characteristics of alternate waste forms to those of glasses; and third, to stimulate increased interactions between those research groups that were engaged in a more basic approach to characterizing waste forms and those who were concerned with more applied aspects such as the processing of these materials. The motivating philosophy behind this third purpose of the conference was based on the idea that by operating from the soundest possible fundamental base for any of the candidate waste forms, hopefully any future unpleasant surprise - such as that alluded to earlier in the case of glass waste forms - could be avoided. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base

  5. Predictive geology in nuclear waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1980-07-01

    The present situation at a specific site in the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes, of the minimum average spacing of conductive zones in subsurface rocks of low hydraulic conductivity is based on a combination of the binomial and Poisson distribution, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attenetion is given to the preservation of tectonic blocks of large rock-volumes with very low hydraulic conductivity throughout the present cratonic stage, during which intermittent movement took place in marked fault-zones bordering the Shield, and three different orogenies affected the surrounding regions. Rock-mechanical, stochastic and deterministic approaches are utilized to predict future effects from this basis. (Author)

  6. Predictive geology in nuclear-waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1982-01-01

    The present situation at a specific site on the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes of the minimum average spacing of conductive zones in subsurface rocks of low-hydraulic conductivity, is based on a combination of the binomial and Poisson distributions, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attention is given to the preservation of tectonic blocks of large rock volumes with low-hydraulic conductivity throughout the present cratonic stage, whereas intermittent movement can be traced in marked fault zones bordering the Shield and three different orogenies affected the surrounding regions. Rock mechanical, stochastic, and deterministic approaches are utilized to predict future effects from this basis. (author)

  7. Nuclear waste and a deep geological disposal facility

    International Nuclear Information System (INIS)

    Vokal, A.; Laciok, A.; Vasa, I.

    2005-01-01

    The paper presents a systematic analysis of the individual areas of research into nuclear waste and deep geological disposal with emphasis on the contribution of Nuclear Research Institute Rez plc to such efforts within international projects, specifically the EURATOM 6th Framework Programme. Research in the area of new advanced fuel cycles with focus on waste minimisation is based on EU's REDIMPACT project. The individual fuel cycles, which are currently studied within the EU, are briefly described. Special attention is paid to fast breeders and accelerator-driven reactor concepts associated with new spent fuel reprocessing technologies. Results obtained so far show that none even of the most advanced fuel cycles, currently under consideration, would eliminate the necessity to have a deep geological repository for a safe storage of residual radioactive waste. As regards deep geological repository barriers, the fact is highlighted that the safety of a repository is assured by complementary engineered and natural barriers. In order to demonstrate the safety of a repository, a deep insight must be gained into any and all of the individual processes that occur inside the repository and thus may affect radioactivity releases beyond the repository boundaries. The final section of the paper describes methods of radioactive waste conditioning for its disposal in a repository. Research into waste matrices used for radionuclide immobilisation is also highlighted. (author)

  8. Solving the geologic issues in nuclear waste disposal

    International Nuclear Information System (INIS)

    Towse, D.

    1979-01-01

    Technical problems with nuclear waste disposal are largely geological. If these are not solved, curtailment of nuclear power development may follow, resulting in loss of an important element in the national energy supply. Present knowledge and credible advances are capable of solving these problems provided a systems view is preserved and a national development plan is followed. This requires identification of the critical controllable elements and a systematic underground test program to prove those critical elements. Waste migration can be understood and controlled by considering the key elements in the system: the system geometry, the hydrology, and the waste-rock-water chemistry. The waste program should: (1) identify and attack the critical problems first; (2) provide tests and demonstration at real disposal sites; and (3) schedule elements with long lead-times for early start and timely completion

  9. Geological safety aspects of nuclear waste disposalin in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, L.; Hakkarainen, V.; Kaija, J.; Kuivamaki, A.; Lindberg, A.; Paananen, M.; Paulamaki, S.; Ruskeeniemi, T., e-mail: lasse.ahonen@gtk.fi

    2011-07-01

    The management of nuclear waste from Finnish power companies is based on the final geological disposal of encapsulated spent fuel at a depth of several hundreds of metres in the crystalline bedrock. Permission for the licence requires that the safety of disposal is demonstrated in a safety case showing that processes, events and future scenarios possibly affecting the performance of the deep repository are appropriately understood. Many of the safety-related issues are geological in nature. The Precambrian bedrock of Finland has a long history, even if compared with the time span considered for nuclear waste disposal, but the northern location calls for a detailed study of the processes related to Quaternary glaciations. This was manifested in an extensive international permafrost study in northern Canada, coordinated by GTK. Hydrogeology and the common existence of saline waters deep in the bedrock have also been targets of extensive studies, because water chemistry affects the chemical stability of the repository near-field, as well as radionuclide transport. The Palmottu natural analogue study was one of the international high-priority natural analogue studies in which transport phenomena were explored in a natural geological system. Currently, deep biosphere processes are being investigated in support of the safety of nuclear waste disposal. (orig.)

  10. The application of nuclear geophysics method to evaluate the geological environment of nuclear waste repository

    International Nuclear Information System (INIS)

    Fang, Fang; Xiaoqin, Wang; Kuanliang, Li; Xinsheng, Hou; Jingliang, Zhu; Binxin, Hu

    2002-01-01

    'Cleanly land should be given back ground.' This is a task while nuclear engineering have to be retired. We applied the nuclear geophysics methods and combined with geology, hydrology, geochemistry, and other methods, to evaluate the environment of nuclear waste repository. It is the important work to renovate environment and prepare technology before ex-service of the nuclear engineering

  11. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-26

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included in the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.

  12. New guidelines for geological disposal of nuclear waste in Sweden

    International Nuclear Information System (INIS)

    Dverstorp, B.; Wiebert, A.; Jensen, M.

    2008-01-01

    In its recently issued guidance on geological disposal of spent nuclear fuel and nuclear waste the Swedish Radiation Protection Authority (SSI) develops the concepts of the regulatory risk target, best available technique (BAT) and optimisation, and gives recommendations on how to demonstrate compliance with SSI's regulations for different time periods after closure of a geological repository. Because a post-closure risk analysis will always be associated with inescapable uncertainties, the application of BAT is seen as an important complementary requirement to risk calculations. The guidance states that the implementer should be able to motivate all important choices and decisions during the development of a repository, including siting, design, construction and operation, in relation to the repository's long-term protective capability. Although the risk target is in principle independent of time, i.e. the basic premise is that future generations should be given the same protection as today generation, the guidance acknowledges the increasing difficulty of making meaningful assessments of risk in the distant future. This is reflected in a differentiated expectation in the reporting of compliance arguments: for long-time periods after closure (beyond 100 000 years) more emphasis is given on robust measures of repository performance than on calculated risks that are based on speculative assumptions on, e.g. future climate and human society. (authors)

  13. Geological storage of nuclear wastes: Insights following the Fukushima crisis

    International Nuclear Information System (INIS)

    Gallardo, Adrián H.; Matsuzaki, Tomose; Aoki, Hisashi

    2014-01-01

    The geological storage of high-level nuclear wastes (HLW) has been in the agenda of Japan for several years. Nevertheless, all the research can become meaningless without understanding the public feelings about the disposal. The events at Fukushima in 2011 altered the perception towards nuclear-waste storage in the country. This work investigates the attitude of young Japanese towards the construction of a repository following the Fukushima crisis, and examines how public perception changed after the event. A survey among 545 university students from different regions of Japan addressed three main variables: dread, trust and acceptance. The results suggest that the economy of the country is still the most concerning issue, but there was a dramatic increase of attention towards everything n uclear . Radiation leakage and food contamination are major concerns as well. The distrust towards the government deepened after Fukushima, although more than half of the respondents would accept the repository. In a clear phenomenon of NIMBY (not in my back yard), the acceptance drops to less than 20% if the repository is to be installed near the respondents' residency. Financial incentives would increase the acceptability of the siting, although only a substantial compensation might minimise the NIMBY in potential host communities. - Highlights: • Major factors influencing the attitude towards nuclear waste disposal were examined. • The opinion of the Japanese youth before and after the Fukushima events was compared. • Unemployment and earthquakes are now at the upper end of the thought of dread. • The government and scientists are highly distrusted by the Japanese youth. • People might still accept the repository though the NIMBY phenomenon remains high

  14. Geotechnical support and topical studies for nuclear waste geologic repositories

    International Nuclear Information System (INIS)

    1989-01-01

    The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technical and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled ''Geoscience Technical Support for Nuclear Waste Geologic Repositories.''

  15. Geotechnical support and topical studies for nuclear waste geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The present report lists the technical reviews and comments made during the fiscal year 1988 and summarizes the technical progress of the topical studies. In the area of technical assistance, there were numerous activities detailed in the next section. These included 24 geotechnical support activities, including reviews of 6 Study Plans (SP) and participation in 6 SP Review Workshops, review of one whole document Site Characterization Plan (SCP) and participation in the Assembled Document SCP Review Workshops by 6 LBL reviewers; the hosting of a DOE program review, the rewriting of the project statement of work, 2 trips to technical and planning meetings; preparation of proposed work statements for two new topics for DOE, and 5 instances of technical assistance to DOE. These activities are described in a Table in the following section entitled Geoscience Technical Support for Nuclear Waste Geologic Repositories.''

  16. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Murphy, W.M.; Kovach, L.A.

    1995-01-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW

  17. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-01-01

    The age of nuclear waste - the length of time between its removal from the reactor cores and its emplacement in a repository - is a significant factor in determining the thermal loading of a repository. The surface cooling period as well as the density and sequence of waste emplacement affects both the near-field repository structure and the far-field geologic environment. To investigate these issues, a comprehensive review was made of the available literature pertaining to thermal effects and thermal properties of mined geologic repositories. This included a careful evaluation of the effects of different surface cooling periods of the wastes, which is important for understanding the optimal thermal loading of a repository. The results led to a clearer understanding of the importance of surface cooling in evaluating the overall thermal effects of a radioactive waste repository. The principal findings from these investigations are summarized in this paper

  18. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-05-13

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations.

  19. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    International Nuclear Information System (INIS)

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-01-01

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations

  20. Nuclear waste management and implication for geological disposals in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Chang, Kyung Bae [The Cyber Univ. of Korea, Seoul (Korea, Republic of). Dept. of Mechanical and Control Engineering

    2017-10-15

    The master plan of permanent nuclear waste repository had been published in South Korea. The high-level nuclear waste repository should be available in 2053. In this study, six possible nuclear waste forms are simulated by Helium ions. The geological repository is comparative easy and cheap considering the international nuclear act of the nuclear nonproliferation treaty (NPT). How ever, there could be some new technologies of the nuclear waste treatment like the pyroprocessing. Transmutation is another option, which is very expensive with current technology.

  1. Geologic disposal of nuclear wastes: salt's lead is challenged

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1979-01-01

    The types of radioactive waste disposal sites available are outlined. The use of salt deposits and their advantages are discussed. The reasons for the selection of the present site for the Waste Isolation Pilot Plant are presented. The possibilities of using salt domes along the Gulf Coast and not-salt rocks as nuclear waste repositories are also discussed. The sea bed characteristics are described and advantages of this type of site selection are presented

  2. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  3. Transport properties of nuclear wastes in geologic media

    International Nuclear Information System (INIS)

    Seitz, M.G.; Rickert, P.; Fried, S.; Friedman, A.M.; Steindler, M.

    1977-01-01

    Laboratory experiments were performed with Cs, Pu, Np, and Am to examine the migratory characteristics of long-lived radionuclides that could be mobilized by groundwaters infiltrating a nuclear waste repository and the surrounding geologic body. In column infiltration experiments, the positions of peak concentrations of Cs in chalk or shale columns, Pu and Am in limestone, sandstone, or tuff and neptunium in a limestone column did not move when the columns were infiltrated with water. However, fractions of all of the nuclides were seen downstream from the peaks, indicating a large dispersion in the relative migration rates of the trace elements in the lithic materials studied. Static absorption experiments showed that plutonium and americium are strongly absorbed from solution by common rocks and that their migration relative to groundwater flow is thereby retarded. Reaction rates of these dissolved elements with rocks were found to vary considerably in different rock-element systems. Following a sorption step in batch experiments with granulated basalt and Am bearing water, Pu and Am were desorbed from rock and repartitioned between rock and solution to an extent comparable to their distribution during absorption. In contrast, when tablets of various rocks were allowed to dry between absorption and desorption tests, Pu and Am were not generally desorbed from the tablets.In batch experiments with Pu and Am-bearing water and granulated basalt of several different particle sizes, the partitioning of Am and Pu did not correlate with the calculated area of the fracture surfaces nor did the partitioning remain constant (as did the measured surface area). Partitioning is concluded to be a bulk phenomenon with complete penetration of 30 to 40 mesh and smaller particles. 9 tables, 4 figs

  4. Safety assessment of geologic repositories for nuclear waste

    International Nuclear Information System (INIS)

    Bartlett, J.W.; Burkholder, H.C.; Winegardner, W.K.

    1977-01-01

    Consideration of geologic isolation for final disposition of radioactive wastes has led to the need for evaluation of the safety of the concept. Such evaluations require consideration of factors not encountered in conventional risk analysis: consequences at times and places far removed from the repository site; indirect, complex, and alternative pathways between the waste and the point of potential consequences; a highly limited data base; and limited opportunity for experimental verification of results. R and D programs to provide technical safety evaluations are under way. Three methods are being considered for the probabilistic aspects of the evaluations: fault tree analysis, repository simulation analysis, and system stability analysis. Nuclide transport models, currently in a relatively advanced state of development, are used to evaluate consequences of postulated loss of geologic isolation. This paper outlines the safety assessment methods, unique features of the assessment problem that affect selection of methods and reliability of results, and available results. It also discusses potential directions for future work

  5. Predictive geology: with emphasis on nuclear-waste disposal

    International Nuclear Information System (INIS)

    De Marsily, G.; Merriam, D.F.

    1982-01-01

    Reviews book which primarily discusses applications of earth science to the disposal of high-level radioactive wastes. Points out that very little is said regarding practical experience with, or the epistemological foundation of, prediction in the earth and geotechnical sciences. Suggests that an in-depth examination of the difficulties of retrodiction in the earth sciences might have provided the philosophical overview missing in a volume whose title stresses predictive geology

  6. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    International Nuclear Information System (INIS)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste

  7. Geological investigations for the South African nuclear waste repository facility

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Andersen, N.J.B.; Brynard, H.J.; Toens, P.D.

    1984-02-01

    The selection of the Vaalputs site on the arid Bushmanland Plateau in the northwestern Cape of the Republic of South Africa for the disposal of low-level radioactive waste was based on a national screening phase program involving socio-economic and geological criteria. Regional geohydrological studies over an area of 27,000 km 2 and a detailed study over 1,300 km 2 indicated that in general the groundwater is saline and that Vaalputs and environs was the most favourable area. The groundwater table lies between 30 and 45 m below the surface, with 14 C ages between 2,500 and 9,000 years old in the immediate vicinity. The geology of Vaalputs consists of Proterozoic granites, gneisses, metasediments, and noritoids of the 1,050 Ma Namaqualand Metamorphic Complex. Upper cretaceous kimberlitic and basaltic intrusions occur locally. Overlying these basement rocks surficial upper Tertiary to Recent argillaceous sediments occur in the Vaalputs basin. The sediments consist of aeolian sand, calcrete, fluvial sandy to gritty clay, white kaolinised clay and very weathered basement rocks. It is in these rocks that the low-level waste trenches will be located. Extensive airborne geophysical surveys, such as aeromagnetics, INPUT, and infrared thermal line scanning, were undertaken to assist in the evaluation of the regional and local subsurface geology. Ground geophysical surveys included refraction seismics, electromagnetics, magnetics, borehole radiometrics and resistivity. Geohydrological modelling of the unsaturated and saturated zones is in progress

  8. Geotechnical support and topical studies for nuclear waste geologic repositories

    International Nuclear Information System (INIS)

    1990-12-01

    This multidisciplinary project was initiated in fiscal year 1986. It comprises two major interrelated tasks, technical assistance and topical studies. The present report lists the technical reviews and comments made during the fiscal year 1989 and summarizes the technical progress of the topical studies. The major task was a study of the mechanical, hydraulic, geophysical and geochemical properties of fractures in geologic rock masses. In the area of technical assistance, there were a total of 30 geotechnical support activities, including reviews of 15 study plans (SP) and participation in 5 SP Review Workshops; in-depth multidisciplinary review of 5 Exploratory Shaft Facility (ESF) Study Plans and presentation of results to DOE; preparation and revision of a white paper and proposed work statement on preclosure monitoring and performance confirmation as an outgrowth of a request made by DOE to LBL; the hosting of a DOE program review; with DOE's encouragement, preparation of 8 papers for the International High-Level Radioactive Waste Management Conference to be held in April, 1990 in Las Vegas, Nevada; and 5 instances of general technical assistance to DOE

  9. The influence of geological loading on the structural integrity of an underground nuclear waste repository

    International Nuclear Information System (INIS)

    Jakeman, N.

    1985-08-01

    Stresses are developed in underground nuclear waste repositories as a result of applied loads from geological movements caused by the encroachment of ice sheets or seismic activity for example. These stresses may induce fracturing of the waste matrix, repository vault and nearfield host geology. This fracturing will enhance the advective flow and allow more-rapid transfer of radionuclides from their encapsulation through the repository barriers and nearfield host rock. Geological loads may be applied either gradually as in crustal folding or encroachment of ice sheets, or rapidly as in the case of seismic movements. The analysis outlined in this report is conducted with a view to including the effects of geological loading in a probabilistic repository site assessment computer code such as SYVAC. (author)

  10. Systems engineering programs for geologic nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

    1980-06-01

    The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

  11. Use of comparative assessment framework for comparison of geological nuclear waste and CO2 disposal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia

    2010-09-15

    Comparative assessment of few future energy and climate change mitigation options for Lithuania in 2020 performed indicated that nuclear and combined cycle gas turbine technologies are very similar energy options in terms of costs taking into account GHG emission reduction costs. Comparative assessment of these energy options requires evaluation of the potentials and costs for geological CO2 and nuclear waste storage as the main uncertainties in comparative assessment of electricity generation technologies are related with these back-end technologies. The paper analyses the main characteristics of possible geological storage of CO2 and NW options in Lithuania.

  12. Evaluation of salt beds in New Mexico as a geologic repository for nuclear waste

    International Nuclear Information System (INIS)

    Weart, W.D.

    1978-10-01

    The Department of Energy is proposing to demonstrate the acceptability of geologic disposal of radioactive waste by locating a Waste Isolation Pilot Plant (WIPP) in the salt beds 26 miles east of Carlsbad, New Mexico. The WIPP will serve as a permanent repository for defense generated transuranic contaminated waste and will also be used as a facility in which experiments and demonstrations with all radioactive waste types can be conducted. Rock salt has been the leading candidate for geologic disposal of nuclear waste since the National Academy of Science recommended in 1957 that salt for repositories receive further evaluation. Subsequent studies have failed to reveal any phenoomena which would disqualify salt beds as a repository medium. The present area being proposed for the WIPP is the second such location in the Delaware Basin for which new site data have been devloped; the first site proved geologically unacceptable. Ecologic and socioeconomic aspects have been investigated and extensive geophysical, geologic and hydrologic studies have been conducted to allow an evaluation of site acceptability. This paper will deal principally with the geotechnical aspects of site characterization. These studies are now sufficiently complete that the site can be recommended for further development of the WIPP. 10 figures

  13. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Persoff, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-01

    An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the future of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature

  14. Bridging nuclear safety, security and safeguards at geological disposal of high-level radioactive waste and spent nuclear fuel

    OpenAIRE

    Niemeyer, Irmgard; Deissmann, Guido; Bosbach, Dirk

    2016-01-01

    In order to consider geological disposal of high-level radioactive waste and spent nuclear fuel in all its complexity, related nuclear safety, security and safeguards issues have to be taken into account. By identifying both synergies in overlapping methods or techniques and differences in the requirements with respect to safety, security and safeguards, advantage of inherent synergies and conflicting requirements can be taken at the same time. While there is a general understanding of the po...

  15. Nuclear wastes management. 1. round table - geologic disposal as questioned by the public in concern

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the debates of the last round table held at Paris. This meeting gathers representatives of the different actors of the nuclear industry, ministers, public authorities, non governmental organizations who argue the questions asked by peoples from the audience. The topics concern various aspects of waste management, like the quantity of wastes in concern, the reversibility of storages, the monitoring of waste facilities once closed down, the related costs, and the general safety questions about the suitability of the clay formation near the Bure site for the disposal of high-level and long-lived radioactive wastes. A second part of the meeting addresses some remarks about the information of the general public and the decision making process. Finally, five presentations (slides) are attached to these proceedings and treat of: the safety of the disposal in deep geologic formation; the management of spent fuels in Canada; the nuclear wastes R and D in Sweden; the researches and projects in Belgium for the geologic disposal of long-lived radioactive wastes; the results

  16. Accommodating ground water velocity uncertainties in the advection-dispersion approach to geologic nuclear waste migration

    International Nuclear Information System (INIS)

    Thomas, G.F.

    1994-01-01

    This note shows how uncertainties in nearfield and farfield ground water velocities affect the inventory that migrates from a geologic nuclear waste repository within the classical advection-dispersion approach and manifest themselves through both the finite variances and covariances in the activities of transported nuclides and in the apparent scale dependence of the host rock's dispersivity. Included is a demonstration of these effects for an actinide chain released from used CANDU fuel buried in a hypothetical repository. (Author)

  17. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  18. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  19. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  20. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Persoff, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    The goal of the Fifth Worldwide Review is to document evolution in the state-of-the-art of approaches for nuclear waste disposal in geological formations since the Fourth Worldwide Review that was released in 2006. The last ten years since the previous Worldwide Review has seen major developments in a number of nations throughout the world pursuing geological disposal programs, both in preparing and reviewing safety cases for the operational and long-term safety of proposed and operating repositories. The countries that are approaching implementation of geological disposal will increasingly focus on the feasibility of safely constructing and operating their repositories in short- and long terms on the basis existing regulations. The WWR-5 will also address a number of specific technical issues in safety case development along with the interplay among stakeholder concerns, technical feasibility, engineering design issues, and operational and post-closure safety. Preparation and publication of the Fifth Worldwide Review on nuclear waste disposal facilitates assessing the lessons learned and developing future cooperation between the countries. The Report provides scientific and technical experiences on preparing for and developing scientific and technical bases for nuclear waste disposal in deep geologic repositories in terms of requirements, societal expectations and the adequacy of cases for long-term repository safety. The Chapters include potential issues that may arise as repository programs mature, and identify techniques that demonstrate the safety cases and aid in promoting and gaining societal confidence. The report will also be used to exchange experience with other fields of industry and technology, in which concepts similar to the design and safety cases are applied, as well to facilitate the public perception and understanding of the safety of the disposal approaches relative to risks that may increase over long times frames in the absence of a successful

  1. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    Science.gov (United States)

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Bridging nuclear safety, security and safeguards at geological disposl of high level radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Niemeyer, Irmgard; Deissmann, Guido; Bosbach, Dirk

    2016-01-01

    Findings and recommendations: • Further R&D needed to identify concepts, methods and technologies that would be best suited for the holistic consideration of safety, security and safeguards provisions of geological disposal. • 3S ‘toolbox’, including concepts, methods and technologies for: ■ material accountancy, ■ measurement techniques for spent fuel verification, ■ containment and surveillance, ■ analysis of open source information, ■ environmental sampling and monitoring, ■ continuity of knowledge, ■ design implications. •: Bridging safety, security and safeguards in research funding and research activities related to geological disposal of high-level radioactive waste and spent nuclear fuel.

  3. Geologic isolation of nuclear waste at high latitudes: the role of ice sheets

    Science.gov (United States)

    Person, M.; McIntosh, J.; Iverson, N.; Neuzil, C.E.; Bense, V.

    2012-01-01

    Geologic isolation of high-level nuclear waste from the biosphere requires special consideration in countries at high latitudes (>40°N) owing to the possibility of future episodes of continental glaciation (Talbot 1999). It is now widely recognized that Pleistocene continental glaciations have had a profound effect on rates of sediment erosion (Cuffey & Paterson 2010) and deformation including tectonic thrusting (Pedersen 2005) as well as groundwater flow (Person et al. 2007; Lemieux et al. 2008a,b,c). In addition, glacial mechanical loads may have generated anomalous, or fossil, pore pressures within certain clay-rich confining units (e.g. Vinard et al. 2001). Because high-level nuclear wastes must be isolated from the biosphere as long as 1 million years (McMurry et al. 2003), the likelihood of one or more continental ice sheets overrunning high-latitude sites must be considered.

  4. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    Science.gov (United States)

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  5. Development of performance assessment methodology for nuclear waste isolation in geologic media

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Cranwell, R.M.; Davis, P.A.

    1985-01-01

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are gound-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the US Nuclear Regulatory Commission. The approach followed consists of a description of the overall system (waste, facility, and site), scenario selection and screening, consequence modeling (source term, ground-water flow, radionuclide transport, biosphere transport, and health effects), and uncertainty and sensitivity analysis

  6. Studies of nuclear-waste migration in geologic media. Annual report, November 1976--October 1977

    International Nuclear Information System (INIS)

    Seitz, M.G.; Rickert, P.G.; Fried, S.M.; Friedman, A.M.; Steindler, M.J.

    1978-03-01

    The confinement of nuclear wastes in geologic formations is being considered as a method of permanently disposing of the waste. Laboratory experiments (column infiltration, static absorption, and batch partitioning experiments) were performed with nuclides of Cs, Pu, Np, and Am to examine the migratory characteristics of long-lived radionuclides that could be mobilized by groundwaters infiltrating a nuclear waste repository and the surrounding geologic body. In column infiltration experiments, the positions of peak concentrations of Cs in chalk or shale columns; Pu in limestone; Am in limestone, sandstone, or tuff; and Np in a limestone column did not move when the columns were infiltrated with water. However, fractions of each of the nuclides were seen downstream from the peaks, indicating that there was a large dispersion in the relative migration rates of each of the trace elements in the lithic materials studied. The results of static absorption experiments indicate that Pu and Am are strongly absorbed from solution by the common rocks studied and that their migration relative to ground-water flow is thereby retarded. In addition, the reaction rates of dissolved nuclides with rocks were found to vary considerably in different rock-element systems. Batch partitioning experiments were performed to test whether absorption processes are reversible. After granulated basalt and americium-bearing water were contacted in an absorption step, part of the water was replaced with water free of Am and the Am repartitioned between rock and solution. The distribution of Am after desorption was comparable to its distribution after absorption. In cntrast, when tablets of various rocks were allowed to dry between absorption and desorption tests, Pu and Am were not generally desorbed from the tablets. This suggests that reversible reactions of nuclides, between waters and rocks may be upset by treatments such as drying

  7. Geotechnical support and topical studies for nuclear waste geologic repositories: Annual report, fiscal year 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This multidisciplinary project was initiated in fiscal year 1986. It comprises 11 reports in two major interrelated tasks: The technical assistance part of the project includes reviewing the progress of the major projects in the DOE Office of Civilian Radioactive waste Management (OCRWM) Program and advising the Engineering and Geotechnology Division on significant technical issues facing each project; analyzing geotechnical data, reports, tests, surveys and plans for the different projects; reviewing and commenting on major technical reports and other program documents such as Site Characterization Plans (SCP) and Study Plans; and providing scientific and technical input at technical meetings. The topical studies activity comprises studies on scientific and technical ions and issues of significance to in-situ testing, test analysis methods, and site characterization of nuclear waste geologic repositories. The subjects of study were selected based on discussions with DOE staff. One minor topic is a preliminary consideration and planning exercise for postclosure monitoring studies. The major task, with subtasks involving various geoscience disciplines, is a study of the mechanical, hydraulic, geophysical and geochemical properties of fractures in geologic rock masses

  8. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  9. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    International Nuclear Information System (INIS)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States

  10. Reversed mining and reversed-reversed mining: the irrational context of geological disposal of nuclear waste

    Science.gov (United States)

    van Loon, A. J.

    2000-06-01

    Man does not only extract material from the Earth but increasingly uses the underground for storage and disposal purposes. One of the materials that might be disposed of this way is high-level nuclear waste. The development of safe disposal procedures, the choice of suitable host rocks, and the design of underground facilities have taken much time and money, but commissions in several countries have presented reports showing that — and how — safe geological disposal will be possible in such a way that definite isolation from the biosphere is achieved. Political views have changed in the past few years, however, and there is a strong tendency now to require that the high-level waste disposed of will be retrievable. Considering the underlying arguments for isolation from the biosphere, and also considering waste policy in general, this provides an irrational context. The development of new procedures and the design of new disposal facilities that allow retrieval will take much time again. A consequence may be that the high-active, heat-generating nuclear waste will be stored temporarily for a much longer time than objectively desirable. The delay in disposal and the counterproductive requirement of retrievability are partly due to the fact that earth-science organisations have failed to communicate in the way they should, possibly fearing public (and financial) reactions if taking a position that is (was?) considered as politically incorrect. Such an attitude should not be maintained in modern society, which has the right to be informed reliably by the scientific community.

  11. Paleocorrosion studies in deep sea sediments and the geological disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fehrenbach, L.; Maurette, M.; Guichard, F.; Havette, A.; Monaco, A.

    1984-01-01

    Uncertainties still surround assessment of the safety of disposal of nuclear wastes incorporated into 'radwaste' matrices. This is mostly due to the long time required for radioactive decay of 237 Np. The present work explores the usefulness of an experimental approach in 'paleocorrosion', which should help in minimizing such uncertainties. In this approach, polished sections of sediments containing high concentrations of natural analogues of radwaste matrices are subjected to element micromapping. Thus it is possible to characterize the long-term interactions of such analogues in their geological repositories, and to identify which generate reaction aureoles and protective and/or unprotective coatings. These analogues include grains incorporated in deep sea sediments (uraninite and quartz from the Oklo uranium ore deposit; volcanic ash particles; magnetic cosmic spherules). The present results indicate that uraninite should be a much more durable radwaste matrix than any type of glass in deep sea sediments. (orig./TWO)

  12. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs

    1997-12-31

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs.

  13. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H.

    1997-01-01

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs

  14. Effects of annular air gaps surrounding an emplaced nuclear waste canister in deep geologic storage

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, W.E.; Davis, B.W.; Cheung, H.

    1980-06-05

    Annular air spaces surrounding an emplaced nuclear waste canister in deep geologic storage will have significant effects on the long-term performance of the waste form. Addressed specifically in this analysis is the influence of a gap on the thermal response of the waste package. Three dimensional numerical modeling predicts temperature effects for a series of parameter variations, including the influence of gap size, surface emissivities, initial thermal power generation of the canister, and the presence/absence of a sleeve. Particular emphasis is placed on determining the effects these variables have on the canister surface temperature. We have identified critical gap sizes at which the peak transient temperature occurs when gap widths are varied for a range of power levels. It is also shown that high emissivities for the heat exchanging surfaces are desirable, while that of the canister surface has the greatest influence. Gap effects are more pronounced, and therefore more effort should be devoted to optimal design, in situations where the absolute temperature of the near field medium is high. This occurs for higher power level emplacements and in geomedia with low thermal conductivities. Finally, loosely inserting a sleeve in the borehole effectively creates two gaps and drastically raises the canister peak temperature. It is possible to use these results in the design of an optimum package configuration which will maintain the canister at acceptable temperature levels. A discussion is provided which relates these findings to NRC regulatory considerations.

  15. Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal

    International Nuclear Information System (INIS)

    Foct, F.; Gras, J.M.

    2003-01-01

    In France and other countries, carbon and low alloy steels have been proposed as suitable materials for nuclear waste containers for long term geological disposal since, for such types of steels, general and localised corrosion can be fairly well predicted in geological environments (mainly argillaceous and granitic conditions) during the initial oxic and the following anoxic stages. This paper presents a model developed for the long term estimation of general and localised corrosion of carbon steel in argillaceous and granitic environments. In the case of localised corrosion, the model assumes that pitting and crevice corrosion propagation rates are similar. The estimations are based on numerous data coming from various experimental programmes conducted by the following laboratories: UKAEA (United Kingdom); NAGRA (Switzerland); SCK-CEN (Belgium); JNC (Japan) and ANDRA-CEA-EDF (France). From these data, the corrosion rates measured over long periods (from six months to several years) and derived from mass loss measurements have been selected to construct the proposed models. For general corrosion, the model takes into account an activation energy deduced from the experimental results (Arrhenius law) and proposes three equations for the corrosion rate: one for the oxic conditions, one for the early stage of the anoxic conditions and one for the long term anoxic corrosion. Concerning localised corrosion, a semi-empirical model, based on the evolution of the pitting factor (ratio between the maximum pit depth and the average general corrosion depth) as a function of the general corrosion depth, is proposed. This model is compared to other approaches where the maximum pit depth is directly calculated as a function of time, temperature and oxic or anoxic conditions. Finally, the presented semi-empirical models for long term corrosion estimation are applied to the case of nuclear waste storage. The results obtained by the different methods are then discussed and compared

  16. Predictability of the evolution of hydrogeological and hydrogeochemical systems; geological disposal of nuclear waste in crystalline rocks

    International Nuclear Information System (INIS)

    Murphy, W.M.; Diodato, D.M.

    2009-01-01

    Confidence in long-term geologic isolation of high-level nuclear waste and spent nuclear fuel requires confidence in predictions of the evolution of hydrogeological and hydrogeochemical systems. Prediction of the evolution of hydrogeological and hydrogeochemical systems is based on scientific understanding of those systems in the present - an understanding that can be tested with data from the past. Crystalline rock settings that have been geologically stable for millions of years and longer offer the potential of predictable, long-term waste isolation. Confidence in predictions of geologic isolation of radioactive waste can measured by evaluating the extent to which those predictions and their underlying analyses are consistent with multiple independent lines of evidence identified in the geologic system being analysed, as well as with evidence identified in analogs to that geologic system. The proposed nuclear waste repository at Yucca Mountain, Nevada, United States, differs in significant ways from potential repository sites being considered by other nations. Nonetheless, observations of hydrogeological and hydrogeochemical systems of Yucca Mountain and Yucca Mountain analogs present multiple independent lines of evidence that can be used in evaluating long-term predictions of the evolution of hydrogeological and hydrogeochemical systems at Yucca Mountain. (authors)

  17. The role of long-term geologic changes in the regulation of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Flavelle, P.

    1996-01-01

    It is recognized that the geosphere is a dynamic system over the long time frames of nuclear fuel waste disposal. This paper describes how consideration of a dynamic geosphere has impacted upon the evolving regulatory environment in Canada, and how the approach taken to comply with the regulatory requirements can affect the evaluation of long-term geologic changes. AECB staff opinion is that if the maximum possible effect of geologic changes can be demonstrated to have negligible impact on the safety of a nuclear fuel waste repository, then further consideration of a dynamic geosphere is unnecessary for the current review of the Canadian Nuclear Fuel Waste Management Program. (authors). 7 refs., 4 figs

  18. Retrievability of high-level nuclear waste from geologic repositories - Regulatory and rock mechanics/design considerations

    International Nuclear Information System (INIS)

    Tanious, N.S.; Nataraja, M.S.; Daemen, J.J.K.

    1987-01-01

    Retrievability of nuclear waste from high-level geologic repositories is one of the performance objectives identified in 10CFR60 (Code of Federal Regulations, 1985). 10CFR60.111 states that the geologic repository operations area shall be designed to preserve the option of waste retrieval. In designing the repository operations area, rock mechanics considerations play a major role especially in evaluating the feasibility of retrieval operations. This paper discusses generic considerations affecting retrievability as they relate to repository design, construction, and operation, with emphasis on regulatory and rock mechanics aspects

  19. Risk analysis and prospective geology in matters of underground storage of the nuclear industrial wastes

    International Nuclear Information System (INIS)

    Marsily, G. de; Ledoux, E.; Masure, P.

    1983-01-01

    The principal choice concerning the radioactive waste management is to bury it in geological formations. To substantiate the validity of this choice and to persuade the public opinion of it, we must assess the risks the future populations may run. It is, therefore, necessary to foresee the behaviour and the interactions of three types of surroundings: 1. the wastes, their packaging and wrappings; 2. the geological system of confinements; 3. the external environment. A review is given of the hypothesis and methods of forecasting used or considered in this field, with a special emphasis on the prospective geology and the probabilistic approaches. (AF)

  20. Interfaces between transport and geological disposal systems for high level radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    1994-09-01

    This document is an IAEA publication which identifies and discusses the interfaces and the interface requirements between high level waste, the waste transport system used for carriage of the waste to the disposal facility, and the high level waste disposal facility. The development of this document was prompted in part by the initiatives in various Member States to select, characterize and design the facilities for potential high level waste geological repositories. These initiatives have progressed to the point where an international document would be useful in calling attention to the need for establishing, in a systematic way, interfaces and interface requirements between the transport systems to be used and the waste disposal packages and geological repository. Refs, figs and tabs

  1. YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste

    Science.gov (United States)

    Long, Jane C. S.

    2004-05-01

    The nation has over 40,000 metric tonnes (MT) of nuclear waste destined for disposal in a geologic repository at Yucca Mountain. In this review, we highlight some of the important geoscience issues associated with the project and place them in the context of the process by which a final decision on Yucca Mountain will be made. The issues include understanding how water could infiltrate the repository, corrode the canisters, dissolve the waste, and transport it to the biosphere during a 10,000-year compliance period in a region, the Basin and Range province, that is known for seismic and volcanic activity. Although the site is considered to be "dry," a considerable amount of water is present as pore waters and as structural water in zeolites. The geochemical environment is oxidizing, and the present repository design will maintain temperatures at greater than 100°C for thousands of years. Geoscientists in this project are challenged to make unprecedented predictions about coupled thermal, hydrologic, mechanical, and geochemical processes governing the future behavior of the repository and to conduct research in a regulatory and legal environment that requires a quantitative analysis of repository performance.

  2. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad

    2015-11-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since the dawn of nuclear era. Albeit the relatively large number of research works that have been conducted to investigate temperature distribution surrounding waste canisters, they all abide to consider the host formations as homogeneous and isotropic. While this could be the case in some subsurface settings, in most cases, this is not true. In other words, subsurface formations are, in most cases, inherently anisotropic and heterogeneous. In this research, we show that even a slight difference in anisotropy of thermal conductivity of host rock with direction could have interesting effects on temperature fields. We investigate the effect of anisotropy angle (the angle the principal direction of anisotropy is making with the coordinate system) on the temperature field as well as on the maximum temperature attained in different barrier systems. This includes 0°, 30°, 45°, 60°, and 90°in addition to the isotropic case as a reference. We also consider the effect of anisotropy ratio (the ratio between the principal direction anisotropies) on the temperature fields and maximum temperature history. This includes ratios ranging between 1.5 and 4. Interesting patterns of temperature fields and profiles are obtained. It is found that the temperature contours are aligned more towards the principal direction of anisotropy. Furthermore the peak temperature in the buffer zone is found to be larger the smaller the anisotropy angle and vice versa. © 2015 Elsevier Ltd. All rights reserved.

  3. Three-dimensional Geological and Geo-mechanical Modelling of Repositories for Nuclear Waste Disposal in Deep Geological Structures

    International Nuclear Information System (INIS)

    Fahland, Sandra; Hofmann, Michael; Bornemann, Otto; Heusermann, Stefan

    2008-01-01

    To prove the suitability and safety of underground structures for the disposal of radioactive waste extensive geo-scientific research and development has been carried out by BGR over the last decades. Basic steps of the safety analysis are the geological modelling of the entire structure including the host rock, the overburden and the repository geometry as well as the geo-mechanical modelling taking into account the 3-D modelling of the underground structure. The geological models are generated using the special-construction openGEO TM code to improve the visualisation an d interpretation of the geological data basis, e.g. borehole, mine, and geophysical data. For the geo-mechanical analysis the new JIFE finite-element code has been used to consider large 3-D structures with complex inelastic material behaviour. To establish the finite-element models needed for stability and integrity calculations, the geological models are simplified with respect to homogenous rock layers with uniform material behaviour. The modelling results are basic values for the evaluation of the stability of the repository mine and the long-term integrity of the geological barrier. As an example of application, the results of geological and geo-mechanical investigations of the Morsleben repository based on 3-D modelling are presented. (authors)

  4. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  5. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    International Nuclear Information System (INIS)

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules

  6. Burying uncertainty: Risk and the case against geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.S.

    1996-01-01

    The author of this book asserts that moral and ethical issues must be considered in the development of nuclear waste disposal policies. The book develops this theme showing that to date no technology has provided a fool-proof method of isolating high-level nuclear wastes and that technological advances alone will not increase public acceptance. She supports a plan for the federal government to negotiate construction of MRS facilities that would safely house high-level nuclear waste for about 100 years, providing a temporary solution and a moral and ethical alternative to permanent storage

  7. Long-term safety of geological waste disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Verkerk, B.

    1981-01-01

    The results of recent studies on long-term risks of fission product and radioactive waste disposal in salt vaults are surveyed. Medium-term risks, life span of the salt vault, possible radionuclide migration, consequences of human intervention and the effect of the changes in the ICRP recommendations are discussed. (G.H.)

  8. Validation of TEMP: A finite line heat transfer code for geologic repositories for nuclear waste

    International Nuclear Information System (INIS)

    Atterbury, W.G.; Hetteburg, J.R.; Wurm, K.J.

    1987-09-01

    TEMP is a FORTRAN computer code for calculating temperatures in a geologic repository for nuclear waste. A previous report discusses the structure, usage, verification, and benchmarking of TEMP V1.0 (Wurm et al., 1987). This report discusses modifications to the program in the development of TEMP V1.1 and documents the validation of TEMP. The development of TEMP V1.1 from TEMP V1.0 consisted of two major efforts. The first was to recode several of the subroutines to improve logic flow and to allow for geometry-independent temperature calculation routines which, in turn, allowed for the addition of the geometry-independent validation option. The validation option provides TEMP with the ability to model any geometry of temperature sources with any step-wise heat release rate. This capability allows TEMP to model the geometry and heat release characteristics of the validation problems. The validation of TEMP V1.1 consists of the comparison of TEMP to three in-ground heater tests. The three tests chosen were Avery Island, Louisiana, Site A; Avery Island, Louisiana, Site C; and Asse Mine, Federal Republic of Germany, Site 2. TEMP shows marginal comparison with the two Avery Island sites and good comparison with the Asse Mine Site. 8 refs., 25 figs., 14 tabs

  9. The geology of some United Kingdom nuclear sites related to the disposal of low and medium level radioactive wastes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1980-06-01

    The geological sequences beneath a further twelve nuclear sites in Britain are predicted from available data. Formations that are potentially suitable hosts for low and medium-level radioactive waste are identified and their relative merits assessed. Of the sites investigated, formations beneath six afford little or no potential, formations beneath a further 4 offer only moderate potential and sites underlain by the most favourable formations are Dungeness and Hinkley Point. (author)

  10. The geology of some United Kingdom nuclear sites related to the disposal of low and medium level radioactive wastes

    International Nuclear Information System (INIS)

    Robins, N.S.

    1980-04-01

    The geological sequences beneath ten British nuclear sites are extrapolated from the available data. Formations that are potentially suitable hosts for low and medium level radioactive waste are identified and their relative merits assessed. Of the sites investigated, formations beneath five afford little or no potential, formations beneath a further three offer only moderate potential and sites underlain by the most favourable formations are at Dounreay and Harwell. (author)

  11. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This report provides a summary of progress for the project ''Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)'' for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion

  12. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1995-01-01

    This report provides a summary of progress for the project open-quotes Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).close quotes A similar report was previously provided for the period of 1 October 1993 to 30 September 1994. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks which are listed below. Task 1: Quaternary Tectonics Task 3: Mineral Deposits, Volcanic Geology Task 4: Seismology Task 5: Tectonics Task 8: Basinal Studies

  13. Geological disposal of nuclear waste: II. From laboratory data to the safety analysis – Addressing societal concerns

    International Nuclear Information System (INIS)

    Grambow, Bernd; Bretesché, Sophie

    2014-01-01

    Highlights: • Models for repository safety can only partly be validated. • Long term risks need to be translated in the context of societal temporalities. • Social sciences need to be more strongly involved into safety assessment. - Abstract: After more than 30 years of international research and development, there is a broad technical consensus that geologic disposal of highly-radioactive waste will provide for the safety of humankind and the environment, now, and far into the future. Safety analyses have demonstrated that the risk, as measured by exposure to radiation, will be of little consequence. Still, there is not yet an operating geologic repository for highly-radioactive waste, and there remains substantial public concern about the long-term safety of geologic disposal. In these two linked papers, we argue for a stronger connection between the scientific data (paper I, Grambow et al., 2014) and the safety analysis, particularly in the context of societal expectations (paper II). In this paper (II), we assess the meaning of the technical results and derived models (paper I) for the determination of the long-term safety of a repository. We consider issues of model validity and their credibility in the context of a much broader historical, epistemological and societal context. Safety analysis is treated in its social and temporal dimensions. This perspective provides new insights into the societal dimension of scenarios and risk analysis. Surprisingly, there is certainly no direct link between increased scientific understanding and a public position for or against different strategies of nuclear waste disposal. This is not due to the public being poorly informed, but rather due to cultural cognition of expertise and historical and cultural perception of hazards to regions selected to host a geologic repository. The societal and cultural dimension does not diminish the role of science, as scientific results become even more important in distinguishing

  14. Flow modeling in heterogeneous media in the context of geologic nuclear waste repositories

    International Nuclear Information System (INIS)

    Sagar, B.

    1995-01-01

    Assessment of long term-performance of geologic repositories requires simulation of flow through heterogeneous geologic formations. Effect on flow field of discontinuities such as fracture zones, in such media is of interest to not only waste management but also in petroleum engineering and water resources development. In this paper, a technique of deriving mass balance equations in the presence of fractures is discussed. Compared to full representation of fractures, the proposed technique provides coarser resolution of the flow field but it is relatively computationally efficient. Two examples of its application are also provided

  15. Use of ceramic materials in waste-package systems for geologic disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1980-12-01

    A study to investigate the potential use of ceramic materials as components in the waste package systems was conducted. The initial objective of the study was to screen and compare a large number of ceramic materials and identify the best materials for the proposed application. The principal method used to screen the candidates was to subject samples of each material to a series of leaching tests and to determine their relative resistance to attack by the leach solutions. A total of 14 ceramic materials, plus graphite and basalt were evaluated using three different leach solutions: demineralized water, a synthetic Hanford ground water, and a synthetic WIPP brine solution. The ceramic materials screened were Al 2 O 3 (99%), Al 2 O 3 (99.8%), mullite (2Al 2 O 3 .SiO 2 ), vitreous silica (SiO 2 ), BaTiO 3 , CaTiO 3 , CaTiSiO 5 , TiO 2 , ZrO 2 , ZrSiO 4 , Pyroceram 9617, and Marcor Code 9658 machinable glass-ceramic. Average leach rates for the materials tested were determined from analyses of the leach solutions and/or sample weight loss measurements. Because of the limited scope of the present study, evaluation of the specimens was limited to ceramographic examination. Based on an overall evaluation of the leach rate data, five of the materials tested, namely graphite, TiO 2 , ZrO 2 , and the two grades of alumina, exhibited much greater resistance to leaching than did the other materials tested. Based on all the experimental data obtained, and considering other factors such as cost, availability, fabrication technology, and mechanical and physical properties, graphite and alumina are the preferred candidates for the barrier application. The secondary choices are TiO 2 and ZrO 2

  16. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    International Nuclear Information System (INIS)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories

  17. Redox reactions induced by hydrogen in deep geological nuclear waste disposal

    International Nuclear Information System (INIS)

    Truche, L.

    2009-10-01

    The aim of this study is to evaluate the abiotic hydrogen reactivity in deep geological nuclear waste storage. One crucial research interest concerns the role of H 2 as a reducing agent for the aqueous/mineral oxidised species present in the site. Preliminary batch experiments carried out with Callovo-Oxfordian argillite, synthetic pore water and H 2 gas lead to an important H 2 S production, in only few hours at 250 C to few months at 90 C. In order to explore whether H 2 S can originate from sulphate or pyrite (few percents of the argillite) reduction we performed dedicated experiments. Sulphate reduction experimented in di-phasic systems (water+gas) at 250-300 C and under 4 to 16 bar H 2 partial pressure exhibits a high activation energy (131 kJ/mol) and requires H 2 S initiation and low pH condition as already observed in other published TSR experiments. The corresponding half-life is 210,000 yr at 90 C (thermal peak of the site). On the contrary, pyrite reduction into pyrrhotite by H 2 occurs in few days at temperature as low as 90 C at pH buffered by calcite. The rate of the reaction could be described by a diffusion-like rate law in the 90-180 C temperature interval. The obtained results suggest that pyrite reduction is a process controlled both by the H 2 diffusion across the pyrrhotite pits increasing during reaction progress and the reductive dissolution of pyrite. These new kinetics data can be applied in computation modelling, to evaluate the degree and extent of gas pressure buildup by taking into account the H 2 reactive geochemistry. (author)

  18. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    Science.gov (United States)

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.

  19. Status report on the Nuclear Regulatory Commission regulations for land disposal of low-level radioactive wastes and geologic repository disposal of high-level wastes

    International Nuclear Information System (INIS)

    Browning, R.E.; Bell, M.J.; Dragonette, K.S.; Johnson, T.C.; Roles, G.W.; Lohaus, P.H.; Regnier, E.P.

    1984-01-01

    On 27 December 1982, the United States Nuclear Regulatory Commission (NRC) amended its regulations to provide specific requirements for licensing the land disposal of low-level radioactive wastes. The regulations establish performance objectives for land disposal of waste; technical requirements for the siting, design, operations, and closure activities for a near-surface disposal facility; technical requirements concerning waste form and classification that waste generators must meet for the land disposal of waste; institutional requirements; financial assurance requirements; and administrative and procedural requirements for licensing a disposal facility. Waste generators must comply with the waste form and classification provisions of the new rule, on 27 December 1983, one year later. During this implementation period, licensees must develop programmes to ensure compliance with the new waste form and classification provisions. The NRC is also promulgating regulations specifying the technical criteria for disposal of high-level radioactive wastes in geological repositories. The proposed rule was published for public comment in July 1981. Public comments have been received and considered by the Commission staff. The Commission will soon approve and publish a revised final rule. While the final rule being considered by the Commission is fundamentally the same as the proposed rule, provisions have been added to permit flexibility in the application of numerical criteria, some detailed design requirements have been deleted, and other changes have been made in response to comments. The rule is consistent with the recently enacted Nuclear Waste Policy Act of 1982. (author)

  20. Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs

    Energy Technology Data Exchange (ETDEWEB)

    Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

    1987-09-01

    This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

  1. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    International Nuclear Information System (INIS)

    Kovach, L.A.; Murphy, W.M.

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papers also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately

  2. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, L.A. [ed.] [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Murphy, W.M. [ed.] [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papers also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.

  3. Heat conduction through geological mattresses from cells storing mean activity and long life nuclear wastes

    International Nuclear Information System (INIS)

    Lajoie, D.; Raffourt, C.; Wendling, J.

    2010-01-01

    Document available in extended abstract form only. ANDRA ordered in 2008 a campaign of numerical simulations to assess the efficiency of the ventilation system designed for cells storing mean activity and long life nuclear wastes. Numerical models were performed by ACRIIN as research engineering office. The main objectives were to assess the risks of atmospheric explosions due to high rate of hydrogen and to determine the efficiency of the system to evacuate released heat from storage packages. Further calculations have been carried out to evaluate temperature gradients in the surrounding geological medium. Three-dimensional numerical models of a reference cell were built to simulate the air flow injected at the cell entrance and retrieved and the other extremity. The reference case is based on a cell full of storage packages, with rows and columns of packages methodically ordered. Analytic and numerical calculations have been performed introducing progressively each complex physical phenomenon in order to dissociate origins of transport of released mass or heat. Three kinds of flows have been physically distinguished: 1) Ventilation in a cell with storage package that are thermally inert, i.e. no heat release, but with hydrogen release. 2) Flow in a cell with storage packages that emit heat and warm the injected air, supposing that no heat were lost towards the surrounding concrete walls of the cell. 3) Air Flow warmed by the storage packages with heat losses towards concrete walls and geological medium. Simulations with absence of thermal effects allowed the knowledge of main topics of the ventilation air flows that may be synthesized as follows: - Flows infiltrate clearances between piles and rows of storage packages. Such apertures are a few centimetres wide. The flow is disorganised between the first rows, with distribution in both transversal and longitudinal directions. After a few tens of rows, the flow reaches its hydraulic equilibrium, with a nearly pure

  4. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 22. Nuclear considerations for repository design

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/22, ''Nuclear Considerations for Repository Design,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. Included in this volume are baseline design considerations such as characteristics of canisters, drums, casks, overpacks, and shipping containers; maximum allowable and actual decay-heat levels; and canister radiation levels. Other topics include safeguard and protection considerations; occupational radiation exposure including ALARA programs; shielding of canisters, transporters and forklift trucks; monitoring considerations; mine water treatment; canister integrity; and criticality calculations

  5. Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area

    International Nuclear Information System (INIS)

    Mattson, S.R.; Broxton, D.E.; Buono, A.; Crowe, B.M.; Orkild, P.P.

    1989-01-01

    In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation's first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab

  6. Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, S.R.; Broxton, D.E.; Crowe, B.M.; Buono, A.; Orkild, P.P.

    1989-07-01

    In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation`s first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab.

  7. Nuclear waste: good news

    International Nuclear Information System (INIS)

    Gay, Michel

    2014-01-01

    The author states that the problem of nuclear wastes is solved. He states that 90 per cent of radioactive wastes are now permanently managed and that technical solutions for deep geological storage and for transmutation will soon solve the problem for the remaining 10 pc. He states that geological storage will be funded (it is included in electricity price). He denounces why these facts which he consider as good news, do not prevail. He proposes several documents in appendix: a text explaining the nuclear fuel cycle in France, and an extract of a report made by the national inventory of radioactive materials and wastes

  8. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  9. Deep geological disposal of nuclear waste in the Swedish crystalline bedrock

    International Nuclear Information System (INIS)

    Thegerstroem, Claes; Laarouchi Engstroem, Saida

    2013-01-01

    Nuclear power companies in Sweden jointly established the Swedish Nuclear Fuel and Waste Management Company (SKB) in the 1970s. SKB's assignment is to manage and dispose of all radioactive waste from Swedish nuclear power plants in such a way as to secure maximum safety for human beings and the environment. Since 1992 a stepwise process has been under way, aiming at finding a site for a final repository for spent nuclear fuel. This process was based on our view that a successful work requires that the safety of the site finally selected is met and that the municipality is in favour of the siting. SKB's record of communication related activities includes a wide variety of experiences, and we have learned from all of them. Over time we have identified a number of basic conditions, which are fundamental for a stable and successful siting process. - The siting process shall be transparent and based on voluntary participation. - It's important to maintain a constant dialogue and to express it in comprehensible terms. - A clear division of responsibilities between stakeholders is a key question. - Give the process the time that is needed - try to avoid being in too much of a hurry. - A step-wise and adaptive approach to the implementation of the disposal system. - Despite all non-technical aspects of communication, the continued good performances of operating facilities and of R and D work to guarantee top-quality technical systems are a must. (orig.)

  10. Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)

    International Nuclear Information System (INIS)

    Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

    1980-01-01

    The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin

  11. Report of the second meeting of the consultants on coupled processes associated with geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu; Mangold, D.C.

    1985-09-01

    The second meeting of the Consultants on Coupled Processes Associated with Geological Disposal of Nuclear Waste occurred on January 15-16, 1985 at Lawrence Berkeley Laboratory (LBL). All the consultants were present except Dr. K. Kovari, who presented comments in writing afterward. This report contains a brief summary of the presentations and discussions from the meeting. The main points of the speakers' topics are briefly summarized in the report. Some points that emerged during the discussions of the presentations are included in the text related to the respective talks. These comments are grouped under the headings: Comments on Coupled Processes in Unsaturated Fractured Porous Media, Comments on Overview of Coupled Processes, Presentations by Consultants on Selected Topics of Current Interest in Coupled Processes, and Recommendations for Underground Field Tests with Applications to Three Geologic Environments

  12. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    International Nuclear Information System (INIS)

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-01-01

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described

  13. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide timely and concise information on radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc)

  14. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  15. Measurement and modeling of flow through unsaturated heterogeneous rock in the context of geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sagar, B.; Bagtzoglou, A.C.; Green, R.T.; Stothoff, S.A.

    1995-01-01

    Deep geologic disposal of high-level and transuranic waste is currently being pursued vigorously. Assessing long-term performance of such repositories involves laboratory and field measurements, and numerical modeling. There exist two primary characteristics, associated with assessing repository performance, that define problems of modeling and measurement of non-isothermal flow through geologic media exposed to variable boundary conditions (e.g., climatic changes). These are: (1) the large time scale (tens of thousands of years) and highly variable space scale (from one meter to 10 5 meters); and (2) the hierarchy of heterogeneities and discontinuities characterizing the medium. This paper provides an overview of recent work, conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA), related to laboratory experiments, consideration of similitude, and numerical modeling of flow through heterogeneous media under non-homogeneous boundary conditions. As discussed, there exist neither good methods of measuring flows at these scales nor are there adequate similitude analyses that would allow reasonable scaling up of laboratory-scale experiments. Reliable assessment of long-term geologic repositories will require sophisticated geostatistical models capable of addressing variables scales of heterogeneities conditioned with observed results from adequately sized field-scale experiments conducted for sufficiently long durations

  16. Uranium, thorium and trace elements in geologic occurrences as analogues of nuclear waste repository conditions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Brookins, D.G.; Cohen, L.H.; Flexser, S.; Abashian, M.; Murphy, M.; Williams, A.E.

    1984-01-01

    Contact zones between intrusive rocks and tuff, basalt, salt and granitic rock were investigated as possible analogues of nuclear waste repository conditions. Results of detailed studies of contacts between quartz monzonite of Laramide age, intrusive into Precambrian gneiss, and a Tertiary monzonite-tuff contact zone indicate that uranium, thorium and other trace elements have not migrated significantly from the more radioactive instrusives into the country rock. Similar observations resulted from preliminary investigations of a rhyodacite dike cutting basalt of the Columbia River plateau and a kimberlitic dike cutting bedded salt of the Salina basin. This lack of radionuclide migration occurred in hydrologic and thermal conditions comparable to, or more severe than those expected in nuclear waste repository environments and over time periods of the order of concern for waste repositories. Attention is now directed to investigation of active hydrothermal systems in candidate repository rock types, and in this regard a preliminary set of samples has been obtained from a core hole intersecting basalt underlying the Newberry caldera, Oregon, where temperatures presently range from 100 to 265 0 C. Results of mineralogical and geochemical investigations of this core should indicate the alteration mineralogy and behavior of radioelements in conditions analogous to those in the near field of a repository in basalt

  17. Assessment of effectiveness of geologic isolation systems. Geologic factors in the isolation of nuclear waste: evaluation of long-term geomorphic processes and catastrophic events

    International Nuclear Information System (INIS)

    Mara, S.J.

    1980-03-01

    SRI International has projected the rate, duration, and magnitude of geomorphic processes and events in the Southwest and Gulf Coast over the next million years. This information will be used by the Department of Energy's Pacific Northwest Laboratory (PNL) as input to a computer model, which will be used to simulate possible release scenarios and the consequences of the release of nuclear waste from geologic containment. The estimates in this report, although based on best scientific judgment, are subject to considerable uncertainty. An evaluation of the Quaternary history of the two study areas revealed that each had undergone geomorphic change in the last one million years. Catastrophic events were evaluated in order to determine their significance to the simulation model. Given available data, catastrophic floods are not expected to occur in the two study areas. Catastrophic landslides may occur in the Southwest, but because the duration of the event is brief and the amount of material moved is small in comparison to regional denudation, such events need not be included in the simulation model. Ashfalls, however, could result in removal of vegetation from the landscape, thereby causing significant increases in erosion rates. Because the estimates developed during this study may not be applicable to specific sites, general equations were presented as a first step in refining the analysis. These equations identify the general relationships among the important variables and suggest those areas of concern for which further data are required. If the current model indicates that geomorphic processes (taken together with other geologic changes) may ultimately affect the geologic containment of nuclear waste, further research may be necessary to refine this analysis for application to specific sites

  18. Nuclear waste issue

    International Nuclear Information System (INIS)

    Ryhanen, V.

    2000-01-01

    A prerequisite for future use of nuclear energy in electricity production is safe management of the radioactive wastes generated by nuclear power industry. A number of facilities have been constructed for different stages of nuclear waste management around the world, for example for conditioning of different kind of process wastes and for intermediate storage of spent nuclear fuel. Difficulties have often been encountered particularly when trying to advance plans for final stage of waste management, which is permanent disposal in stable geological formations. The main problems have not been technical, but poor public acceptance and lack of necessary political decisions have delayed the progress in many countries. However, final disposal facilities are already in operation for low- and medium-level nuclear wastes. The most challenging task is the development of final disposal solutions for long-lived high-level wastes (spent fuel or high-level reprocessing waste). The implementation of deep geological repositories for these wastes requires persistent programmes for technology development, siting and safety assessments, as well as for building public confidence in long-term safety of the planned repositories. Now, a few countries are proceeding towards siting of these facilities, and the first high-level waste repositories are expected to be commissioned in the years 2010 - 2020. (author)

  19. Ecological risk assessment of deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Hart, D.R.; Lush, D.L.; Acton, D.W.

    1993-01-01

    Contaminant fate and transport models, radiological dosimetry models, chemical dose-response models and population dynamic models were used to estimate ecological risks to moose and brook trout populations arising from a proposed high-level nuclear waste repository. Risks from potential contaminant releases were compared with risks from physical habitat alteration in constructing a repository and service community, and with risks from increased hunting and fish pressure in the area. For a reference environment typical of a proposed location somewhere in the Canadian Shield, preliminary results suggest that the population consequences of contaminant release will be minor relative to those of habitat alteration and natural resource use

  20. Ten questions on nuclear wastes

    International Nuclear Information System (INIS)

    Guillaumont, R.; Bacher, P.

    2004-01-01

    The authors give explanations and answers to ten issues related to nuclear wastes: when a radioactive material becomes a waste, how radioactive wastes are classified and particularly nuclear wastes in France, what are the risks associated with radioactive wastes, whether the present management of radioactive wastes is well controlled in France, which wastes are raising actual problems and what are the solutions, whether amounts and radio-toxicity of wastes can be reduced, whether all long life radionuclides or part of them can be transmuted, whether geologic storage of final wastes is inescapable, whether radioactive material can be warehoused over long durations, and how the information on radioactive waste management is organised

  1. AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Dove, F.H.; Cole, C.R.; Foley, M.G.

    1982-09-01

    A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere.

  2. AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Foley, M.G.

    1982-09-01

    A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere

  3. Nuclear waste

    International Nuclear Information System (INIS)

    1990-01-01

    Each year, nuclear power plants, businesses, hospitals, and universities generate more than 1 million cubic feet of hardware, rags, paper, liquid waste, and protective clothing that have been contaminated with radioactivity. While most of this waste has been disposed of in facilities in Nevada, South Carolina, and Washington state, recent legislation made the states responsible - either individually, or through groups of states called compacts - for developing new disposal facilities. This paper discusses the states' progress and problems in meeting facility development milestones in the law, federal and state efforts to resolve issues related to mixed waste (low-level waste that also contains hazardous chemicals) and waste with very low levels of radioactivity, and the Department of Energy's progress in discharging the federal government's responsibility under the law to manage the most hazardous low-level waste

  4. 3D numerical modelling of the thermal state of deep geological nuclear waste repositories

    Science.gov (United States)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, Yu. N.

    2017-09-01

    One of the important aspects of the high-level radioactive waste (HLW) disposal in deep geological repositories is ensuring the integrity of the engineered barriers which is, among other phenomena, considerably influenced by the thermal loads. As the HLW produce significant amount of heat, the design of the repository should maintain the balance between the cost-effectiveness of the construction and the sufficiency of the safety margins, including those imposed on the thermal conditions of the barriers. The 3D finite-element computer code FENIA was developed as a tool for simulation of thermal processes in deep geological repositories. Further the models for mechanical phenomena and groundwater hydraulics will be added resulting in a fully coupled thermo-hydro-mechanical (THM) solution. The long-term simulations of the thermal state were performed for two possible layouts of the repository. One was based on the proposed project of Russian repository, and another features larger HLW amount within the same space. The obtained results describe the spatial and temporal evolution of the temperature filed inside the repository and in the surrounding rock for 3500 years. These results show that practically all generated heat was ultimately absorbed by the host rock without any significant temperature increase. Still in the short time span even in case of smaller amount of the HLW the temperature maximum exceeds 100 °C, and for larger amount of the HLW the local temperature remains above 100 °C for considerable time. Thus, the substantiation of the long-term stability of the repository would require an extensive study of the materials properties and behaviour in order to remove the excessive conservatism from the simulations and to reduce the uncertainty of the input data.

  5. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  6. Materials in Nuclear Waste Disposition

    Science.gov (United States)

    Rebak, Raul B.

    2014-03-01

    Commercial nuclear energy has been used for over 6 decades; however, to date, none of the 30+ countries with nuclear power has opened a repository for high-level waste (HLW). All countries with nuclear waste plan to dispose of it in metallic containers located in underground geologically stable repositories. Some countries also have liquid nuclear waste that needs to be reduced and vitrified before disposition. The five articles included in this topic offer a cross section of the importance of alloy selection to handle nuclear waste at the different stages of waste processing and disposal.

  7. Natural analogue of nuclear waste glass in a geologic formation. Study on long-term behavior of volcanic glass shards collected from drill cores

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Yui, Mikazu; Futakuchi, Katsuhito; Hiroki, Minenari

    2005-01-01

    Alteration of the volcanic glass in geologic formation was investigated as one of the natural analog for a glass of high-level nuclear waste in geological disposal. We analyzed some volcanic glasses included in the core sample of the bore hole and estimated the history of its burying and observed its alteration using the polarizing microscope. Some information at the piling up temperature and the piling up time was collected. (author)

  8. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  9. Nuclear waste package thermal performance

    International Nuclear Information System (INIS)

    Lundberg, W.

    1985-01-01

    Given the geology, the corrosion of deep geologic nuclear waste packages depends largely on the package temperature history. Factors affecting package temperature are described, and predictions of package temperatures and resulting corrosion vs time relationships are presented and discussed for candidate geologies

  10. Nuclear waste

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews the Department of Energy's management of underground single-shell waste storage tanks at its Hanford, Washington, site. The tanks contain highly radioactive and nonradioactive hazardous liquid and solid wastes from nuclear materials production. Hundreds of thousands of gallons of these wastes have leaked, contaminating the soil, and a small amount of leaked waste has reached the groundwater. DOE does not collect sufficient data to adequately trace the migration of the leaks through the soil, and studies predicting the eventual environmental impact of tank leaks do not provide convincing support for DOE's conclusion that the impact will be low or nonexistent. DOE can do more to minimize the environmental risks associated with leaks. To reduce the environmental impact of past leaks, DOE may be able to install better ground covering over the tanks to reduce the volume of precipitation that drains through the soil and carries contaminants toward groundwater

  11. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  12. Geological disposal of radioactive waste: national commitment, local and regional involvement - A Collective Statement of the OECD Nuclear Energy Agency Radioactive Waste Management Committee Adopted March 2012

    International Nuclear Information System (INIS)

    2012-01-01

    Disposal in engineered facilities built in stable, deep geological formations is the reference solution for permanently isolating long-lived radioactive waste from the human biosphere. This management method is designed to be intrinsically safe and final, meaning that it is not dependent on human presence or intervention in order to fulfil its safety goal. Selecting the site of a waste repository brings up a range of issues involving scientific knowledge, technical capacity, ethical values, territorial planning, community well-being and more. Bringing to fruition the multi-decade task of siting and developing a repository demands a strong national commitment and significant regional and local involvement. This collective statement by the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency recognises the advances made towards greater transparency and dialogue among the diverse stakeholders concerned and identifies the fundamental elements needed to support national commitment and to foster territorial involvement. It concludes that technical and societal partners can develop shared confidence in the safety of geological repositories and jointly carry these projects forward [fr

  13. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  14. Nuclear waste

    International Nuclear Information System (INIS)

    1990-06-01

    DOE estimates that disposing of radioactive waste from civilian nuclear power plants and its defense-related nuclear facilities could eventually end up costing $32 billion. To pay for this, DOE collects fees from utilities on electricity generated by nuclear power plants and makes payments from its defense appropriation. This report states that unless careful attention is given to its financial condition, the nuclear waste program is susceptible to future shortfalls. Without a fee increase, the civilian-waste part of the program may already be underfunded by at least $2.4 billion (in discounted 1988 dollars). Also, DOE has not paid its share of cost-about $480 million-nor has it disclosed this liability in its financial records. Indexing the civilian fee to the inflation rate would address one major cost uncertainty. However, while DOE intends to do this at an appropriate time, it does not use a realistic rate of inflation as its most probable scenario in assessing whether that time has arrived

  15. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI)

    International Nuclear Information System (INIS)

    1988-10-01

    This report provides a summary of progress for the project ''Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)'' for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987). The general Task continued to coordinate project activities to meet general deadlines and responsibilities. The central office provided general secretarial support. The activities that were started during the first project period included expansion of the central copying facilities, growth of the central reprint, map, aerial and photograph collections, and some expansion of personal computer capabilities. The research and review accomplishments are mainly under the following tasks: quaternary tectonics, geochemical, mineral deposits, volcanic geology, seismology, tectonics, neotectonics, remote sensing, geotechnical assessments, geotechnical rock mass assessment, basinal studies, and strong ground motion

  16. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  17. Results From an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  18. Mining and engineering aspects and variants for the underground construction of a deep geological repository for radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Milchev, M.; Michailov, B.; Nanovska, E.; Harizanov, A.

    2003-01-01

    The aim of the present report is to investigate and to describe systematically the foreign experience, scientific and technical achievements and stages of development concerning the mining and engineering aspects and variants for underground construction of a deep geological repository for radioactive waste (RAW) and spent nuclear fuel (SNF). The ideal solution in managing the problems with harmful wastes seems to be either to remove them permanently from Earth (which is related with high risks and high costs) or to transform long-lived radionuclides to short-lived radionuclides using nuclear transmutation processes in a reactor or a particle accelerator. The latter is also a complex and immensely costly process and it can only reduce the quantities of some long-lived radionuclides, which can be then disposed in a geological repository. At present, the deep geological disposal remains the only solution for solving the problem with the hazard of storing radioactive wastes. The report submits a brief description and systematization of the performed investigations, accompanied by analysis of the scientific and technical level on world scale. The analysis is related with the particular geological conditions and the existing scientific studies available so far in Bulgaria. The main conclusions are that the complex scientific-technical and engineering problems related with the construction of a deep geological repository for RAW and SNF require long-term scientific investigations and preliminary complex works and it is high time to launch them in Bulgaria. (authors)

  19. Nuclear waste

    International Nuclear Information System (INIS)

    1991-01-01

    The Privacy Act of 1974 restricts both the type of information on private individuals that federal agencies may maintain in their records and the conditions under which such information may be disclosed. The Nuclear Regulatory Commission, which must approve DOE plans to build a nuclear waste repository at the Yucca Mountain site in Nevada, requires a quality assurance program to guarantee that studies of the site are done by qualified employees. Under such a program, the training and qualifications of DOE and contractor employees would be verified. This report reviews DOE's efforts to identify and resolve the implications of the Privacy Act for DOE's quality assurance program and how the delay in resolving Privacy Act issues may have affected preliminary work on the Yucca Mountain project

  20. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Jenks, G.H.; Claiborne, H.C.

    1981-12-01

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references.

  1. Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Proposed Action addressed in this EIS is to construct, operate and monitor, and eventually close a geologic repository at Yucca Mountain in southern Nevada for the disposal of spent nuclear fuel and high-level radioactive waste currently in storage at 72 commercial and 5 DOE sites across the United States. The EIS evaluates (1) projected impacts on the Yucca Mountain environment of the construction, operation and monitoring, and eventual closure of the geologic repository; (2) the potential long-term impacts of repository disposal of spent nuclear fuel and high-level radioactive waste; (3) the potential impacts of transporting these materials nationally and in the State of Nevada; and (4) the potential impacts of not proceeding with the Proposed Action

  2. Nuclear waste

    International Nuclear Information System (INIS)

    1989-10-01

    The Department of Energy is awarding grants to the state of Nevada for the state's participation in DOE's program to investigate Yucca Mountain as a possible site for the disposal of civilian nuclear waste. This report has found that DOE's financial assistance budget request of $15 million for Nevada's fiscal year 1990 was not based on the amount the state requested but rather was derived by increasing Nevada's grant funds from the previous year in proportion to the increase that DOE requested for its own activities at the Nevada site. DOE's evaluations of Nevada's requests are performed too late to be used in DOE's budget formulation process because Nevada has been applying for financial assistance at about the same time that DOE submits its budget request to Congress

  3. Environmental and health impacts of February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository.

    Science.gov (United States)

    Thakur, P; Lemons, B G; Ballard, S; Hardy, R

    2015-08-01

    The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the

  4. Crevice corrosion of passive materials in long term geological nuclear waste disposal

    International Nuclear Information System (INIS)

    Combrade, P.

    2003-01-01

    The use of passive materials for High Level Waste (HLW) containers is dependent on their resistance to crevice corrosion. Using the re-passivation potential as a criterion to guarantee the resistance of passive material to crevice corrosion, susceptibility diagrams can be built up to define the safe domain of use of these alloys for a given corrosion potential. These show that, in the clay water of the French repository site, 316 L stainless steel can be used only in deaerated conditions. In oxidising conditions. Alloy C22 must be used at temperatures above 80 to 90 deg. C, but may not be safe if severe solute concentration occurs. However, a better understanding of the meaning of the re-passivation potential is still required to validate fully its use in oxidising environments. (author)

  5. Evaluation of engineering aspects of backfill placement for high level nuclear waste (HLW) deep geologic repositories

    International Nuclear Information System (INIS)

    Roberds, W.; Kleppe, J.; Gonano, L.

    1984-04-01

    This report includes the identification and subjective evaluation of alternative schemes for backfilling around waste packages and within emplacement rooms. The aspects of backfilling specifically considered in this study include construction and testing; costs have not been considered. However, because construction and testing are simply implementation and verification of design, a design basis for backfill is required. A generic basis has been developed for this study by first identifying qualitative performance objectives for backfill and then weighting each with respect to its potential influence on achieving the repository system performance objectives. Alternative backfill materials and additives have been identified and evaluated with respect to the perceived extent to which each combination can be expected to achieve the backfill design basis. Several distinctly different combinations of materials and additives which are perceived to have the highest potential for achieving the backfill design basis have been selected for further study. These combinations include zeolite/clinoptilolite, bentonite, muck, and muck mixed with bentonite. Feasible alternative construction and testing procedures for each selected combination have been discussed. Recommendations have been made regarding appropriate backfill schemes for hard rock (i.e., basalt at Hanford, Washington, tuff at Nevada Test Site, and generic granite) and salt (i.e., domal salt on the Gulf Coast and generic bedded salt). 27 references, 8 figures, 31 tables

  6. Studies of nuclear waste migration in geologic media. Annual report, October 1978-September 1979

    International Nuclear Information System (INIS)

    Seitz, M.G.; Rickert, P.G.; Couture, R.A.; Williams, J.; Meldgin, N.; Fried, S.M.; Friedman, A.M.; Steindler, M.J.

    1980-01-01

    Experimental results obtained this year confirm the results obtained in previous years - that nuclides migrating by fluid flow in rock often exhibit complex behavior not predicted by simple chromatographic-type models. A phenomenon found previously to lead to complex behavior for leached radionuclides is that the amount of adsorbed nuclide was not proportional to the nuclide concentration in solution (nonlinear adsorption isotherm). For cesium adsorption on limestone and on basalt, nonlinear isotherms were found this year to occur in the range of cesium concentrations in the groundwater of about 10 -3 to 10 -9 M. Because cesium concentrations in this range can readily be attained by the leaching of solid waste by groundwater, the effects of nonlinear isotherms are germane to nuclide migration. This dependence of cesium migration on the leached concentration of cesium emphasizes the importance of treating the leaching and migration processes simultaneously such as is done in the leach-migration experiments performed in this work. The existence of nonlinear isotherms precludes the use of a single partition coefficient (K/sub d/) to describe cesium migration at an arbitrary cesium concentration above 10 -9 M. Nonetheless, nonlinear isotherms can be studied experimentally (e.g., to give K/sub d/ as a function of concentration) and effects of nonlinear adsorption can be predicted quantitatively. Comparison of results from column and batch tests indicate that, in addition to nonlinear adsorption, kinetic effects need to be considered in predicting nuclide migration from the partition coefficients measured in batch tests. Results of batch experiments of 2 weeks or longer duration pertained to migration expected only at the very lowest (< 50 m/y) groundwater flow rates of interest

  7. Swedish nuclear waste efforts

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  8. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area Nevada Nuclear Waste site investigation (NNWSI). Progress report, October 1, 1992--September 30, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This report provides a summary of progress for the project open-quotes Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).close quotes A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. A slingram survey on the Nevada Test Site: part of an integrated geologic geophysical study of site evaluation for nuclear waste disposal

    Science.gov (United States)

    Flanigan, Vincent J.

    1979-01-01

    A slingram geophysical survey was made in early 1978 as part of the integrated geologlcal-geophysical study aimed at evaluating the Eleana Formation as a possible repository for nuclear waste. The slingram data were taken over an alluvial fan and pediments along the eastern flank of Syncline Ridge about 45 km north of Mercury, Nevada, on the Nevada Test Site. The data show that the more conductive argillaceous Eleana Formation varies in depth from 40 to 85 m from west to east along traverse lines. Northeast-trending linear anomalies suggest rather abrupt changes in subsurface geology that may be associated with faults and fractures. The results of the slingram survey will, when interpreted in the light of other geologic and geophysical evidence, assist in understanding the shallow parts of the geologic setting of the Eleana Formation.

  10. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigations (NNWSI). Progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-30

    This report dated 30 September 1992 provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI){close_quotes}. This progress report was preceded by the progress report for the year from 1 October 1990 to 30 September 1991. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area Nevada Nuclear Waste site investigation (NNWSI). Progress report, October 1, 1992--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-30

    This report provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI).{close_quotes} A similar report was previously provided for the period of 1 October 1991 to 30 September 1992. The report initially covers the activities of the General Task and is followed by sections that describe the progress of the other ongoing Tasks. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain Area Nevada Nuclear Waste Site Investigation (NNWSI). Progress report, 30 September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report dated 30 September 1994 provides a summary of progress for the project {open_quotes}Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI){close_quotes}. This progress report was preceded by the progress report for the year from 1 October 1992 to 30 September 1993. This report summarizes the geologic and seismotectonic studies conducted at Yucca Mountain during the contract period including Quaternary tectonics, an evaluation of mineral resource potential of the area, caldera geology, and volcano-tectonic activity at and near the site. A report of basinal studies conducted during the contract period is also included. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Nuclear wastes

    International Nuclear Information System (INIS)

    2004-01-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  14. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  15. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  16. The experimental testing of the long-term behaviour of cemented radioactive waste from nuclear research reactors in the geological disposal conditions of the boom clay

    Energy Technology Data Exchange (ETDEWEB)

    Sneyers, A.; Marivoet, J.; Iseghem, P. van [SCK-CEN, B-2400 Mol (Belgium)

    1998-07-01

    Liquid wastes, resulting from the reprocessing of spent nuclear fuel from the BR-2 Materials Testing Reactor, will be conditioned in a cement matrix at the dedicated cementation facility of UKAEA at Dounreay. In Belgium, the Boom clay formation is studied as a potential host rock for the final geological disposal of cemented research reactor waste. In view of evaluating the safety of disposal, laboratory leach experiments and in situ tests have been performed. Leach experiments in synthetic clay water indicate that the leach rates of calcium and silicium are relatively low compared to those of sodium and potassium. In situ experiments on inactive samples are performed in order to obtain information on the microchemical and mineralogical changes of the cemented waste in contact with the Boom clay. Finally, results from a preliminary performance assessment calculation suggest a non-negligible maximum dose rate of 5 10{sup -9} Sv/a for {sup 129}I. (author)

  17. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  18. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  19. Geological problems in radioactive waste isolation

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, ''Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately

  20. Geological problems in radioactive waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. (ed.)

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  1. NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-04-01

    At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories.

  2. NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria

    International Nuclear Information System (INIS)

    1981-04-01

    At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories

  3. Spent fuel, plutonium and nuclear waste: long-term management

    International Nuclear Information System (INIS)

    Collard, G.

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation

  4. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H.

    1997-12-01

    The siting, design, construction, operation, decommissioning, and closure of a geological facility for the disposal of nuclear fuel waste is a complex undertaking that will span many decades. Both technical and social issues must be taken into account simultaneously and many factors must be considered. Based on studies carried out in Canada and elsewhere, it appears that these factors can be accommodated and that geological disposal is both technically and socially feasible. But throughout the different stages of implementing disposal, technical and social issues will continue to arise and these will have to be dealt with successfully if progress is to continue. This paper discusses these issues and a proposed approach for dealing with them. (author)

  5. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables

  6. Geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Tassoni, E.; Giulianelli, G.; Testa, L.; Bocola, W.; Girolimetti, G.; Giacani, G.

    1983-01-01

    The heat dissipation arising from the radioactive decay constitutes an important problem of the geological disposal of high level radioactive waste. A heating experiment was carried out in a clay quarry near Monterotondo (Rome), at 6.4 M in depth by means of a heater whose thermal power ranged from 250 to 500 watt. The experimental results fit well the theoretical values and show that the clay is a homogeneous and isotropic medium. The clay thermal conductivity, which was deducted by means of the ''curve fitting'' method, ranges from 0.015 to 0.017 watt/C

  7. Probabilistic modelling of the damage of geological barriers of the nuclear waste deep storage - ENDOSTON project, final report

    International Nuclear Information System (INIS)

    2010-01-01

    As the corrosion of metallic casings of radioactive waste storage packages releases hydrogen under pressure, and as the overpressure disturbs the stress fields, the authors report the development of methodologies and numerical simulation tools aimed at a better understanding of the mechanisms of development and propagation of crack networks in the geological barrier due to this overpressure. They present a probabilistic model of the formation of crack networks in rocks, with the probabilistic post-processing of a finite element calculation. They describe the modelling of crack propagation and damage in quasi-brittle materials. They present the ENDO-HETEROGENE model for the formation and propagation of cracks in heterogeneous media, describe the integration of the model into the Aster code, and report the model validation (calculation of the stress intensity factor, grid dependence). They finally report a test case of the ENDO-HETEROGENE model

  8. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  9. Geologic disposal of spent nuclear fuel and nuclear waste: Ethical and technical bases for standards and criteria to protect public health

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1999-01-01

    The proposed geologic repositories being designed in the US and in other countries that have nuclear power plants need well-defined goals and criteria to protect public health. The criteria must be stringent enough to build confidence in the adequacy of public health protection in the face of legal and political challenges. Yet, there are emerging pressures for relaxation of traditional approaches to protect public health when applied to buried radioactive waste. To build acceptance by the scientific community and the public, both the benefits and consequences of proposed relaxed standards must be dealt with openly and understandably. Arguments over safety standards center on six key issues. (1) For how long must public health protection be assured? Should protection be based on calculated radiation doses to people living for many tens of thousands of years in the future, until peak values of calculated radiation have appeared, or should the protection period be limited to a few thousand years? (2) Whom to protect? Should protection be based on protecting the critical group of future people who unknowingly eat food and drink water contaminated by released radioactivity or should it be based on limiting the average exposure, averaged over all persons projected to live within 'the vicinity' of the repository site? (3) How much radiation exposure should be allowed? Should future people be protected to the same level of radiation exposure as now required for licensed nuclear facilities, or should greater exposures be allowed because future people might be better protected by medical breakthroughs or by their taking remedial action to detect and clean up radioactivity that reaches the environment? (4) Can future people be excluded from using contaminated water drawn from near the site? Should protection of future people be based on doses calculated for ground water extracted from present farming wells, where distance and dilution resulted in lower calculated contaminant

  10. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  11. Multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.; Backstrom, A.; Chijimatsu, M.; Feng, X.-T.; Pan, P.-Z.; Hudson, J.; Jing, L.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Huang, X.-H.; Rinne, M.; Shen, B.

    2008-10-23

    This simulation study shows how widely different model approaches can be adapted to model the evolution of the excavation disturbed zone (EDZ) around a heated nuclear waste emplacement drift in fractured rock. The study includes modeling of coupled thermal-hydrological-mechanical (THM) processes, with simplified consideration of chemical coupling in terms of time-dependent strength degradation or subcritical crack growth. The different model approaches applied in this study include boundary element, finite element, finite difference, particle mechanics, and elastoplastic cellular automata methods. The simulation results indicate that thermally induced differential stresses near the top of the emplacement drift may cause progressive failure and permeability changes during the first 100 years (i.e., after emplacement and drift closure). Moreover, the results indicate that time-dependent mechanical changes may play only a small role during the first 100 years of increasing temperature and thermal stress, whereas such time-dependency is insignificant after peak temperature, because decreasing thermal stress.

  12. Japanese Nuclear Waste Avatars

    International Nuclear Information System (INIS)

    Wynn Kirby, Peter; Stier, Daniel

    2016-01-01

    Japan's cataclysmic 2011 tsunami has become a vast, unwanted experiment in waste management. The seismic event and resulting Fukushima Daiichi radiation crisis created an awkwardly fortuitous rupture in Japanese nuclear practice that exposed the lax and problematic management of nuclear waste in this country to broader scrutiny, as well as distortions in its very conception. This article looks at the full spectrum of nuclear waste in post-tsunami Japan, from spent fuel rods to contorted reactor containment, and the ways that nuclear waste mirrors or diverges from more quotidian waste practices in Japanese culture. Significantly, the Fukushima Daiichi plant itself and its erstwhile banal surroundings have themselves transmuted into an unwieldy form of nuclear waste. The immense challenges of the Fukushima Daiichi site have stimulated a series of on-the-fly innovations that furnish perspective on more everyday nuclear waste practices in the industry. While some HLW can be reprocessed for limited use in today's reactors, it cannot be ignored that much of Japan's nuclear waste is simply converted into other forms of waste. In a society that has long been fixated on segregating filth, maintaining (imagined) purity, and managing proximity to pollution, the specter of nuclear waste looms over contemporary Japan and its ongoing debates over resources, risk, and Japanese nuclear identity itself

  13. Geological and geophysical investigations in the selection and characterization of the disposal site for high-level nuclear waste in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaki, S.; Paananen, M.; Kuivamaki, A. [Geological Survey of Finland, Espoo (Finland); Wikstrom, L. [Posiva Oy, Olkiluoto (Finland)], e-mail: seppo.paulamaki@gtk.fi

    2011-07-01

    Two power companies, Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy, are preparing for the final disposal of spent nuclear fuel deep in the Finnish bedrock. In the initial phase of the site selection process in the late 1970s and early 1980s, the Geological Survey of Finland (GTK) examined the general bedrock factors that would have to be taken into account in connection with final disposal with reference to the international guidelines adapted to Finnish conditions. On the basis of extensive basic research data, it was concluded that it is possible to find a potential disposal site that fulfils the geological safety criteria. In the subsequent site selection survey covering the whole of Finland, carried out by GTK in 1983-1985, 101 potential investigation areas were discovered. Eventually, five areas were selected by TVO for preliminary site investigations: Romuvaara and Veitsivaara in the Archaean basement complex, Kivetty and Syyry in the Proterozoic granitoid area, and Olkiluoto (TVO's NPP site) in the Proterozoic migmatite area. The preliminary site investigations at the selected sites in 1987-1992 comprised deep drillings together with geological, geophysical, hydrogeological and hydrogeochemical investigations. A conceptual geological bedrock model was constructed for each site, including lithology, fracturing, fracture zones and hydrogeological conditions. On the basis of preliminary site investigations, TVO selected Romuvaara, Kivetty and Olkiluoto for detailed site investigations to be carried out during 1993-2000. After the feasibility studies, the island of Haestholmen, where Fortum's Loviisa nuclear power plant is located, was added to the list of potential disposal sites. In the detailed site investigations, additional data on bedrock were gathered, the previous conceptual geological, hydrogeological and hydrogeochemical models were complemented, the rock mechanical properties of the bedrock were examined, and the constructability

  14. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  15. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  16. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    Science.gov (United States)

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Arisings and management of nuclear wastes

    International Nuclear Information System (INIS)

    Dejonghe, P.; Heremans, R.; Proost, J.; Voorde, N. van de

    1978-01-01

    The paper contains a brief description of volumes and composition of radioactive wastes expected to occur in Belgium, taking into account the present nuclear program. Various conditioning and management techniques are described and discussed. Some discussion is paid to disposal of conditioned radioactive wastes either into the ocean (low level) or in geologic formations (long lived or high level wastes). Some ideas are given as to the structure optimization in radioactive waste management and the associated R and D. (author)

  18. Thermal-hydraulic-geochemical coupled processes around disposed high level nuclear waste in deep granite hosted geological repositories: frontier areas of advanced groundwater research in India

    International Nuclear Information System (INIS)

    Bajpai, R.K.

    2012-01-01

    Indian policy for permanent disposal of high level nuclear wastes with radionuclide having very long half lives include their immobilization in a stable matrix i.e. glasses of suitable composition, its storage in high integrity steel canisters and subsequent disposal in suitable host rock like granites at a depth of 400-500m in stable geological set up. The site for such disposal facilities are selected after vigorous assessment of their stability implying an exhaustive site selection methodology based on a large number of criteria and attributes. In India, an area of about 70000 square kilometers occupied by granites has been subjected to such evaluation for generating comprehensive database on host rock parameters. The sites selected after such intensive analysis are expected to remain immune to processes like seismicity, volcanism, faulting, uplift, erosion, flooding etc. even in distant future spanning over tens of thousands of years. Nevertheless, groundwater has emerged as the only credible pathway through which disposed waste can eventually find its way to accessible biosphere. Hence groundwater research constitutes one of the most important aspects in demonstration of safety of such disposal. The disposed waste due to continuous emission of decay heat creates high temperature field around them with resultant increase in groundwater temperature in the vicinity. Hot groundwater on reacting with steel canisters, backfill clays and cement used around the disposed canister, produces geochemical environment characterized by altered Ph, Eh and groundwater compositions. Acceleration in geochemical interaction among waste-groundwater-clay-cement-granite often results in dissolution or precipitation reactions along the groundwater flow paths i.e. fractures with resultant increase or decrease in their permeability. Thus thermal, hydraulic and geochemical processes work interdependently around the disposed waste. These coupled processes also control the release and

  19. Nuclear wastes: overview

    International Nuclear Information System (INIS)

    Billard, Isabelle

    2006-01-01

    Nuclear wastes are a major concern for all countries dealing with civil nuclear energy, whatever these countries have decided yet about reprocessing/storage options. In this chapter, a (exact) definition of a (radioactive) waste is given, together with definitions of waste classes and their characteristics (volumes, types etc.). The various options that are currently experienced in the world will be presented but focus will be put on the French case. Envision evolutions will be briefly presented. (author)

  20. Development of a system model for the postclosure assessment of a concept for geological disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Goodwin, B.

    1995-01-01

    Atomic Energy of Canada has recently submitted for regulatory and public review an Environmental Impact Statement (EIS) on a concept for disposal of Canada's nuclear fuel waste. The EIS is supported by nine primary references that summarize major aspects of the concept, including a postclosure environmental and safety assessment. The scope of the postclosure assessment is largely determined by the requirements of the Atomic Energy Control Board (AECB) of Canada. These requirements include a quantitative estimate of the annual effective dose equivalent to an individual in the most exposed group of people (the critical group) for 10,000 years following closure of the disposal facility, and a radiological risk criterion with an associated dose rate limit of 0.05 mSv/a. Over this long time frame, a quantitative assessment cannot be based on actual observations, and thus we use scientific arguments and simulations with mathematical models to infer long-term behavior and to estimate potential impacts. Most of the quantitative results described in the postclosure assessment have been produced using SYVAC3 (SYstems Variability Analysis Code, generation 3) and the CC3 model. CC3 designates the system model that represents a hypothetical disposal system. The assessment code, SYVAC3-CC3, is used for both deterministic and probabilistic analyses. For the probabilistic analyses, thousands of simulations are performed in which values for each parameter in the system model are randomly sampled from a probability density function (PDF) that encompasses all possible values of that parameter. PDFs are specified by appropriate experts to account for the effects of uncertainty in the parameters (including temporal and spatial variability) over the long time scale of the assessment

  1. The present situation of nuclear wastes

    International Nuclear Information System (INIS)

    Courtois, Charles

    2012-01-01

    This Power Point presentation contains graphs, tables and comments on different aspects of nuclear wastes: origin in France (fuel composition, long-life and short life wastes), definition of the different types of wastes (with respect to their life and their activity level), fuel cycle (processing of the different wastes, actors in France, waste management), waste characterization (controls, tests), laws on wastes published in 1991 (objectives with respect to separation and transmutation technologies, to storage possibilities, to conditioning and long term storage) and in 2006 (which defines a national plan for radioactive material and waste management, and a research program), the French national inventory, low activity wastes (production and storage), the transmutation technology (notably the Astrid project), the geological storage (the Cigeo project for a geological storage), and the situation in other countries

  2. On the Durability of Nuclear Waste Forms from the Perspective of Long-Term Geologic Repository Performance

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2013-12-01

    Full Text Available High solid/water ratios and slow water percolation cause the water in a repository to quickly (on a repository time scale reach radionuclide solubility controlled by the equilibrium with alteration products; the total release of radionuclides then becomes insensitive to the dissolution rates of primary waste forms. It is therefore suggested that future waste form development be focused on conditioning waste forms or repository environments to minimize radionuclide solubility, rather than on marginally improving the durability of primary waste forms.

  3. Microbial activity in argillite waste storage cells for the deep geological disposal of French bituminous medium activity long lived nuclear waste: Impact on redox reaction kinetics and potential

    Science.gov (United States)

    Albrecht, A.; Leone, L.; Charlet, L.

    2009-04-01

    Micro-organisms are ubiquitous and display remarkable capabilities to adapt and survive in the most extreme environmental conditions. It has been recognized that microorganisms can survive in nuclear waste disposal facilities if the required major (P, N, K) and trace elements, a carbon and energy source as well as water are present. The space constraint is of particular interest as it has been shown that bacteria do not prosper in compacted clay. An evaluation of the different types of French medium and high level waste, in a clay-rich host rock storage environment at a depth between 500 and 600 m, has shown that the bituminous waste is the most likely candidate to accommodate significant microbial activity. The waste consists of a mixture of bitumen (source of bio-available organic matter and H2 as a consequence of its degradation and radiolysis) and nitrates and sulphates kept in a stainless steel container. The assumption, that microbes only have an impact on reaction kinetics needs to be reassessed in the case where nitrates and sulphates are present since both are known not to react at low temperatures without bacterial catalysis. The additional impact of both oxy-anions and their reduced species on redox conditions, radionuclide speciation and mobility gives this evaluation their particular relevance. Storage architecture proposes four primary waste containers positioned into armoured cement over packs and placed with others into the waste storage cell itself composed of a cement mantle enforcing the argillite host rock, the latter being characterized by an excavation damaged zone constricted both in space and in time and a pristine part of 60 m thickness. Bacterial activity within the waste and within the pristine argillite is disregarded because of the low water activity (colonies is the high pH controlled by the cement solution. Archea are able to survive at high pH, when hydrogen gas is available as an energy sources; they are therefore likely candidates

  4. Geological disposal of radioactive wastes: national commitment, local and regional involvement. A Collective Statement of the OECD Nuclear Energy Agency 'Radioactive Waste Management Committee', adopted March 2011

    International Nuclear Information System (INIS)

    2012-01-01

    Disposal in engineered facilities built in stable, deep geological formations is the reference solution for permanently isolating long-lived radioactive waste from the human biosphere. This management method is designed to be intrinsically safe and final, i.e. not dependent on human presence and intervention in order to fulfil its safety goal. Siting waste repositories brings up a range of issues that touch on scientific knowledge, technical capacity, ethical values, territorial planning, community well-being, and more. Bringing to fruition the multi-decades task of siting and developing a repository demands a strong national commitment and a significant regional and local involvement. This Collective Statement by the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency recognizes the advances made toward greater transparency and dialogue among the diverse relevant stakeholders and identifies the fundamental ingredients needed to support national commitment and foster territorial involvement. It concludes that technical and societal partners can develop shared confidence in the safety of geological repositories and jointly carry these projects forward

  5. Treatment and final disposal of nuclear waste. Programme for encapsulation, deep geological disposal, and research, development and demonstration

    International Nuclear Information System (INIS)

    1995-09-01

    Programs for RD and D concerning disposal of radioactive waste are presented. Main topics include: Design, testing and manufacture of canisters for the spent fuels; Design of equipment for deposition of waste canisters; Material and process for backfilling rock caverns; Evaluation of accuracy and validation of methods for safety analyses; Development of methods for defining scenarios for the safety analyses. 471 refs, 67 figs, 21 tabs

  6. Treatment and final disposal of nuclear waste. Programme for encapsulation, deep geological disposal, and research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Programs for RD and D concerning disposal of radioactive waste are presented. Main topics include: Design, testing and manufacture of canisters for the spent fuels; Design of equipment for deposition of waste canisters; Material and process for backfilling rock caverns; Evaluation of accuracy and validation of methods for safety analyses; Development of methods for defining scenarios for the safety analyses. 471 refs, 67 figs, 21 tabs.

  7. Alternative solidified forms for nuclear wastes

    International Nuclear Information System (INIS)

    McElroy, J.L.; Ross, W.A.

    1976-01-01

    Radioactive wastes will occur in various parts of the nuclear fuel cycle. These wastes have been classified in this paper as high-level waste, intermediate and low-level waste, cladding hulls, and residues. Solidification methods for each type of waste are discussed in a multiple barrier context of primary waste form, applicable coatings or films, matrix encapsulation, canister, engineered structures, and geological storage. The four major primary forms which have been most highly developed are glass for HLW, cement for ILW, organics for LLW, and metals for hulls

  8. Politics of nuclear waste

    International Nuclear Information System (INIS)

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments

  9. Nuclear waste packaging facility

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Paladino, J.B.; Razor, J.E.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.

    1987-01-01

    A nuclear waste packaging facility comprising: (a) a first section substantially surrounded by radiation shielding, including means for remotely handling waste delivered to the first section and for placing the waste into a disposal module; (b) a second section substantially surrounded by radiation shielding, including means for handling a deformable container bearing waste delivered to the second section, the handling means including a compactor and means for placing the waste bearing deformable container into the compactor, the compactor capable of applying a compacting force to the waste bearing containers sufficient to inelastically deform the waste and container, and means for delivering the deformed waste bearing containers to a disposal module; (c) a module transportation and loading section disposed between the first and second sections including a means for handling empty modules delivered to the facility and for loading the empty modules on the transport means; the transport means moving empty disposal modules to the first section and empty disposal modules to the second section for locating empty modules in a position for loading with nuclear waste, and (d) a grouting station comprising means for pouring grout into the waste bearing disposal module, and a capping station comprising means for placing a lid onto the waste bearing grout-filled disposal module to completely encapsulate the waste

  10. The nuclear wastes in France

    International Nuclear Information System (INIS)

    2003-01-01

    This document aims to give succinctly information on the nuclear wastes by the answer to four questions: what are the different types of nuclear wastes?; what happened to nuclear wastes?; who is responsible of the nuclear wastes management in France?; what about the spent fuels processing and recycling?. (A.L.B.)

  11. Transmuting nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With the problems of disposing of nuclear waste material increasingly the cause for widespread concern, attention is turning to possible new techniques for handling discarded radioactive material and even putting it to good use

  12. Nuclear Waste and Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Damveld, Herman [Groningen (Netherlands)

    2003-10-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible.

  13. Nuclear Waste and Ethics

    International Nuclear Information System (INIS)

    Damveld, Herman

    2003-01-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible

  14. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  15. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  16. Nuclear waste solutions

    Science.gov (United States)

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  17. Nuclear waste for NT

    International Nuclear Information System (INIS)

    Nelson, Brendan

    2005-01-01

    The Northern Territory may be powerless to block the dumping of low-level nuclear waste in the Territory under legislation introduced into Parliament by Minister for Education Science and Training, Dr Brendan Nelson, in October. Despite strong opposition to the dumping of nuclear waste in the NT, the Australian Government will be able to send waste to one of the three nominated Commonwealth-owned Defence sites within the NT under the Commonwealth Radioactive Waste Management Bill 2005 and the Commonwealth Radioactive Waste Management (Related Amendment) Bill 2005. The Bills veto recently drafted NT legislation designed to scuttle the plans. Low-level nuclear waste is stored at more than 100 sites around Australia, including hospitals, factories, universities and defence facilities. Medical isotopes produced at Lucas Heights and provided for medical procedures are the source of much of this waste, including some 16 cubic metres currently held at Darwin Hospital. Dr Nelson stressed that the Government would take all die necessary steps to comply with safety and regulatory precautions, including handling waste in line with relevant environmental, nuclear safety and proliferation safeguards

  18. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1975-08-01

    The report describes the wide-ranging program of engineering developments and applications to provide the Canadian nuclear industry with the knowledge and expertise it needs to conduct its waste management program. The need for interim dry storage of spent fuel, and the storage and ultimate disposal of waste from fuel reprocessing are examined. The role of geologic storage in AECL's current waste management program is also considered. (R.A.)

  19. Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clay-rock in the context of a nuclear waste geological disposal

    International Nuclear Information System (INIS)

    Lassin, A.; Dymitrowska, M.; Azaroual, M.

    2011-01-01

    In nuclear waste geological disposals, large amounts of hydrogen (H 2 ) are expected to be produced by different (bio-)geochemical processes. Depending on the pressure generated by such a process, H 2 could be produced as a gas phase and displace the neighbouring pore water. As a consequence, a water-unsaturated zone could be created around the waste and possibly affect the physical and physic-chemical properties of the disposal and the excavation disturbed zone around it. The present study is the first part of an ongoing research program aimed at evaluating the possible chemical evolution of the pore water-minerals-gas system in such a context. The goal of this study was to evaluate, in terms of thermodynamic equilibrium conditions, the geochemical disturbance of the pore water due to variations in hydrogen pressure, temperature and relative humidity. No heterogeneous reactions involving mineral phases of the clay-rock or reactive surface sites were taken into account in the thermodynamic analysis. In the case sulphate reduction reaction is allowed, geochemical modelling results indicate that the main disturbance is the increase in pH (from around 7 up to more than 10) and an important decrease in the redox potential (Eh) related to hydrogen dissolution. This occurs from relatively low H 2 partial pressures (∼1 bar and above). Then, temperature and relative humidity (expressed in terms of capillary pressure) further displace the thermodynamic equilibrium conditions, namely the pH and the aqueous speciation as well as saturation indices of mineral phases. Finally, the results suggest that the generation of hydrogen, combined with an increase in temperature (between 30 deg. C and 80 deg. C) and a decrease in relative humidity (from 100% to 30%), should increase the chemical reactivity of the pore water-rock-gas system. (authors)

  20. Waste as an argument against nuclear energy

    International Nuclear Information System (INIS)

    Kowalski, E.

    1996-01-01

    Compared with conventional thermal power stations, production of electricity in nuclear power plants has distinct ecological advantages. The entire chain of events, from nuclear fission through waste treatment to waste disposal, can easily be isolated from the human environment. Added to this is the fact that the waste volumes arising are small relative to the amount of electricity produced and the toxicity of these wastes decreases with time. In contrast with incineration processes in conventional thermal power stations, which release a certain volume of waste products into the atmosphere (dilution strategy), the production and disposal of radioactive waste strictly follows a containment strategy. Repositories represent the final link in the waste management chain. Switzerland adheres to the concept of geological disposal which relies on a system of engineered barriers to ensure the safety of waste disposal without any need for supervision measures. (author) 3 figs., 1 ref

  1. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  2. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  3. Nuclear waste in Seibersdorf

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Forschungszentrum Seibersdorf (short: Seibersdorf) is the company operating the research reactor ASTRA. A controversy arose, initied by the Greens and some newspapers on the fact that the waste conditioning plant in Seibersdorf treated not only Austrian waste (from hospitals etc.) but also a large quantity of ion exchange resins from the Caorso nuclear power station, against payment. The author argues that it is untenable that an Austrian institution (peaceful use of nuclear energy in Austria being abandoned by a referendum) should support nuclear power abroad. There is also a short survey on nuclear waste conditioning and an account of an exchange of letters, between the Seibersdorf and the Ecology Institute on the claim of being an 'independent measuring institution' of food, soil, etc. samples. The author argues that the Ecology Institute is the sole independent institution in Austria because it is part of the ecology- and antinuclear movement, whereas Seibersdorf is dependent on the state. (qui)

  4. Evaluation of the geologic relations and seismotectonic stability of the Yucca Mountain area, Nevada Nuclear Waste Site Investigation (NNWSI); Final report, January 1, 1987--June 30, 1988: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-10-01

    This report provides a summary of progress for the project ``Evaluation of the Geologic Relations and Seismotectonic Stability of the Yucca Mountain Area, Nevada Nuclear Waste Site Investigation (NNWSI)`` for the eighteen month period of January 1, 1987 to June 10, 1988. This final report was preceded by the final report for the initial six month period, July 1, 1986 to December 31, 1986 (submitted on January 25, 1987, and revised in June 1987.) Quaternary Tectonics, Geochemical, Mineral Deposits, Vulcanic Geology, Seismology, Tectonics, Neotectonics, Remote Sensing, Geotechnical Assessments, Geotechnical Rock Mass Assessments, Basinal Studies, and Strong Ground Motion.

  5. Nuclear waste management. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  6. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  7. Environmental Hazards of Nuclear Wastes

    Science.gov (United States)

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  8. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  9. Study on high-level waste geological disposal metadata model

    International Nuclear Information System (INIS)

    Ding Xiaobin; Wang Changhong; Zhu Hehua; Li Xiaojun

    2008-01-01

    This paper expatiated the concept of metadata and its researches within china and abroad, then explain why start the study on the metadata model of high-level nuclear waste deep geological disposal project. As reference to GML, the author first set up DML under the framework of digital underground space engineering. Based on DML, a standardized metadata employed in high-level nuclear waste deep geological disposal project is presented. Then, a Metadata Model with the utilization of internet is put forward. With the standardized data and CSW services, this model may solve the problem in the data sharing and exchanging of different data form A metadata editor is build up in order to search and maintain metadata based on this model. (authors)

  10. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  11. Attitudes to nuclear waste

    International Nuclear Information System (INIS)

    Sjoeberg, L.; Drottz-Sjoeberg, B.M.

    1993-08-01

    This is a study of risk perception and attitudes with regard to nuclear waste. Two data sets are reported. In the first set, data were obtained from a survey of the general population, using an extensive questionnaire. The second set constituted a follow-up 7 years later, with a limited number of questions. The data showed that people considered the topic of nuclear waste risks to be very important and that they were not convinced that the technological problems had been solved. Experts associated with government agencies were moderately trusted, while those employed by the nuclear industry were much distrusted by some respondents, and very much trusted by others. Moral obligations to future generations were stressed. A large portion (more than 50 per cent) of the variances in risk perception could be explained by attitude to nuclear power, general risk sensitivity and trust in expertise. Most background variables, except gender, had little influence on risk perception and attitudes. The follow-up study showed that the attitude to nuclear power had become more positive over time, but that people still doubted that the problems of nuclear waste disposal had been solved. 49 refs

  12. Geological problems in radioactive waste isolation - second worldwide review

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. [ed.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  13. Geological problems in radioactive waste isolation - second worldwide review

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996

  14. Investigating α-particle radiation damage in phyllosilicates using synchrotron microfocus-XRD/XAS: implications for geological disposal of nuclear waste

    Science.gov (United States)

    Bower, W. R.; Pearce, C. I.; Pimblott, S. M.; Haigh, S. J.; Mosselmans, J. F. W.; Pattrick, R. A. D.

    2014-12-01

    The response of mineral phases to the radiation fields that will be experienced in a geological disposal facility (GDF) for nuclear waste is poorly understood. Phyllosilicates are critical phases in a GDF with bentonite clay as the backfill of choice surrounding high level wastes in the engineered barrier, and clays and micas forming the most important reactive component of potential host rocks. It is essential that we understand changes in mineral properties and behaviour as a result of damage from both α and γ radiation over long timescales. Radiation damage has been demonstrated to affect the physical integrity and oxidation state1 of minerals which will also influence their ability to react with radionuclides. Using the University of Manchester's newly commissioned particle accelerator at the Dalton Cumbrian Facility, UK, model phyllosilicate minerals (e.g. biotite, chlorite) were irradiated with high energy (5MeV) alpha particles at controlled dose rates. This has been compared alongside radiation damage found in naturally formed 'radiohalos' - spherical areas of discolouration in minerals surrounding radioactive inclusions, resulting from alpha particle penetration, providing a natural analogue to study lattice damage under long term bombardment1,2. Both natural and artificially irradiated samples have been analysed using microfocus X-ray absorption spectroscopy and high resolution X-ray diffraction mapping on Beamline I18 at Diamond Light Source; samples were probed for redox changes and long/short range disorder. This was combined with lattice scale imaging of damage using HR-TEM (TitanTM Transmission Electron Microscope). The results show aberrations in lattice parameters as a result of irradiation, with multiple damage-induced 'domains' surrounded by amorphous regions. In the naturally damaged samples, neo-formed phyllosilicate phases are shown to be breakdown products of highly damaged regions. A clear reduction of the Fe(III) component has been

  15. Impacts of new developments in partitioning and transmutation on the disposal of high-level nuclear waste in a mined geologic repository

    International Nuclear Information System (INIS)

    Ramspott, L.D.; Jor-Shan Choi; Halsey, W.; Pasternak, A.; Cotton, T.; Burns, J.; McCabe, A.; Colglazier, W.; Lee, W.W.L.

    1992-03-01

    During the 1970s, the United States and other countries thoroughly evaluated the options for the safe and final disposal of high-level radioactive wastes (HLW). The worldwide scientific community concluded that deep geologic disposal was clearly the most technically feasible alternative. They also ranked the partitioning and transmutation (P-T) of radionuclides among the least favored options. A 1982 report by the International Atomic Energy Agency summarized the key reasons for that ranking: ''Since the long-term hazards are already low, there is little incentive to reduce them further by P-T. Indeed the incremental costs of introducing P-T appear to be unduly high in relation to the prospective benefits.'' Recently, the delays encountered by the US geologic disposal program for HLW, along with advanced in the development of P-T concepts, have led some to propose P-T as a means of reducing the long-term risks from the radioactive wastes that require disposal and thus making it easier to site, license, and build a geologic repository. This study examines and evaluates the effects that introducing P-T would have on the US geologic disposal program

  16. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  17. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  18. Nuclear Waste Education Project

    International Nuclear Information System (INIS)

    1989-01-01

    In summary, both the Atlanta and Albuquerque pilot seminars achieved the Nuclear Waste Education Project's goal of informing citizens on both the substance and the process of nuclear waste policy so that they can better participate in future nuclear waste decisions. Nuclear waste issues are controversial, and the seminars exposed the nature of the controversy, and utilized the policy debates to create lively and provocative sessions. The format and content of any citizen education curriculum must be made to fit the particular goal that has been chosen. If the Department of Energy and the LWVEF decide to continue to foster an informed dialogue among presenters and participants, the principles of controversial issues education would serve this goal well. If, however, the Department of Energy and/or the LWVEF decide to go beyond imparting information and promoting a lively discussion of the issues, towards some kind of consensus-building process, it would be appropriate to integrate more interactive sessions into the format. As one evaluator wrote, ''In-depth participation in finding solutions or establishing policy -- small group discussion'' would have been preferable to the plenary sessions that mostly were in the form of lectures and expert panel discussion. The evaluator continued by saying, ''Since these [small group discussions] would require more time commitment, they might be part of follow-up workshops focused on particular topics.''

  19. Nuclear waste - perceptions and realities

    International Nuclear Information System (INIS)

    Wilkinson, D.

    1984-01-01

    This paper discusses the complex scientific, sociological, political and emotive aspects of nuclear waste. The public perception of the hazards and risks, to present and future generations, in the management of nuclear wastes are highlighted. The cost of nuclear waste management to socially acceptable and technically achievable standards is discussed. (UK)

  20. The storage of nuclear wastes; General problematic of radioactive waste management; The currently operated ANDRA's storage centres in France; The Aube storage centre (CSA) and the industrial centre for gathering, warehousing and storage (Cires); The Cigeo project - Industrial centre of radioactive waste storage in deep geological layers; From R and D to innovation within the ANDRA

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Tallec, Michele; Legee, Frederic; Krieguer, Jean-Marie; Plas, Frederic

    2016-01-01

    This publication proposes a set of four articles which address various aspects related to the storage of nuclear wastes. The authors respectively propose an overview of the general problematic of nuclear waste management, a detailed description of existing storage sites which are currently operated by the ANDRA with a focus on the Aube storage centre or CSA, and on the industrial centre for gathering, warehousing and storage or Cires (The currently operated ANDRA's storage centres in France - The Aube Storage Centre or CSA, and the Industrial Centre for Regrouping, Warehousing and Storage or CIRES), a comprehensive overview of the current status of the Cigeo project which could become one of the most important technological works in France (The Cigeo project - Industrial centre of radioactive waste storage in deep geological layers), and a presentation showing how the ANDRA is involved in R and D activities and innovation (From R and D to innovation within the ANDRA)

  1. Nuclear waste. Last stop Siberia?

    International Nuclear Information System (INIS)

    Popova, L.

    2006-01-01

    Safe and environmentally sound management of nuclear waste and spent fuel is an unresolved problem of nuclear power. But unlike other nuclear nations, Russia has much more problems with nuclear waste. Russia inherited these problems from the military programs and decades of nuclear fuel cycle development. Nuclear waste continue to mount, while the government does not pay serious enough attention to the solution of the waste problem and considers to increase the capacity of nuclear power plants (NPPs). There are more than 1000 nuclear waste storages in Russia.1 More than 70 million tons of the solid waste has been accumulated by the year 2005, including 14 million tons of tails of the decommissioned uranium mine in the North Caucasus. President Putin said that ''infrastructure of the waste processing is extremely insufficient''. (orig.)

  2. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  3. Geologic disposal of radioactive waste, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T.H.

    1983-10-01

    Geologic repositories for radioactive waste are evolving from conceptualization to the development of specific designs. Estimates of long-term hazards must be based upon quantitative predictions of environmental releases over time periods of hundreds of thousands of years and longer. This paper summarizes new techniques for predicting the long-term performance of repositories, it presents estimates of future environmental releases and radiation doses that may result for conceptual repositories in various geologic media, and it compares these predictions with an individual dose criterion of 10{sup -4} Sv/y. 50 references, 11 figures, 6 tables.

  4. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  5. Nuclear waste vs. democracy

    Energy Technology Data Exchange (ETDEWEB)

    Treichel, J. [Nevada Nuclear Waste Task Force, Las Vegas (United States)

    1999-04-01

    In the United States the storage and disposal of high-level nuclear waste is a highly contentious issue because under current plans the public is subjected to unaccepted, involuntary risks. The proposed federal policy includes the forced siting of a repository and interim storage facilities in Nevada, and the transport of waste across the entire nation through large cities and within 2 mile of over 50 million people. At its destination in Nevada, the residents would face coexistence with a facility housing highly radioactive wastes that remain dangerous for many thousands of years. Scientific predictions about the performance and safety of these facilities is highly uncertain and the people foresee possibly catastrophic threats to their health, safety and economic well-being for generations to come. The public sees this currently proposed plan as one that seeks to maximise the profits of the commercial nuclear industry through imposing risk and sacrifice to communities who reap no benefit. And there is no evidence that this plan is actually a solution to the problem. The American public has never had the opportunity to participate in the nuclear waste debate and government plans are presented to people as being necessary and inevitable. To allow democracy into the decisions could be costly to the nuclear industry and it might thwart the government program, but that is the nature of democracy. If the utilities are established to provide a public service, and the government is founded on the principle of public representation, then the nuclear waste debate must conform to those requirements. What we see in this case is a continuing change of rule and law to accommodate a corporate power and the subrogation of national principle. The result of this situation has been that the public exercises its only option - which is obstructing the federal plan. Because the odds are so heavily stacked in favour of government and industry and average citizens have so little access

  6. Nuclear waste vs. democracy

    International Nuclear Information System (INIS)

    Treichel, J.

    1999-01-01

    In the United States the storage and disposal of high-level nuclear waste is a highly contentious issue because under current plans the public is subjected to unaccepted, involuntary risks. The proposed federal policy includes the forced siting of a repository and interim storage facilities in Nevada, and the transport of waste across the entire nation through large cities and within 2 mile of over 50 million people. At its destination in Nevada, the residents would face coexistence with a facility housing highly radioactive wastes that remain dangerous for many thousands of years. Scientific predictions about the performance and safety of these facilities is highly uncertain and the people foresee possibly catastrophic threats to their health, safety and economic well-being for generations to come. The public sees this currently proposed plan as one that seeks to maximise the profits of the commercial nuclear industry through imposing risk and sacrifice to communities who reap no benefit. And there is no evidence that this plan is actually a solution to the problem. The American public has never had the opportunity to participate in the nuclear waste debate and government plans are presented to people as being necessary and inevitable. To allow democracy into the decisions could be costly to the nuclear industry and it might thwart the government program, but that is the nature of democracy. If the utilities are established to provide a public service, and the government is founded on the principle of public representation, then the nuclear waste debate must conform to those requirements. What we see in this case is a continuing change of rule and law to accommodate a corporate power and the subrogation of national principle. The result of this situation has been that the public exercises its only option - which is obstructing the federal plan. Because the odds are so heavily stacked in favour of government and industry and average citizens have so little access

  7. Answers to your questions on high-level nuclear waste

    International Nuclear Information System (INIS)

    1987-11-01

    This booklet contains answers to frequently asked questions about high-level nuclear wastes. Written for the layperson, the document contains basic information on the hazards of radiation, the Nuclear Waste Management Program, the proposed geologic repository, the proposed monitored retrievable storage facility, risk assessment, and public participation in the program

  8. Systems study of the feasibility of high-level nuclear waste fractionation for thermal stress control in a geologic repository: appendices

    International Nuclear Information System (INIS)

    McKee, R.W.; Elder, H.K.; McCallum, R.F.; Silviera, D.J.; Swanson, J.L.; Wiles, L.E.

    1983-06-01

    This study assesses the benefits and costs of fractionating the cesium and strontium (Cs/Sr) components in commercial high-level waste (HLW) to a separate waste stream for the purpose of reducing geologic-repository thermal stresses in the region of the HLW. The major conclusion is that the Cs/Sr fractionation concept offers the prospect of a substantial total system cost advantage for HLW disposal if reduced HLW package temperatures in a basalt repository are desired. However there is no cost advantage if currently designated maximum design temperatures are acceptable. Aging the HLW for 50 to 100 years can accomplish similar results at equivalent or lower costs. Volume II contains appendices for: (1) thermal analysis supplement; (2) fractionation process experimental results supplement; (3) cost analysis supplement; and (4) radiological risk analysis supplement

  9. Geopolitics of nuclear waste

    International Nuclear Information System (INIS)

    Marshall, E.

    1991-01-01

    More debate has begun over questions related to the safety of high-level waste disposal at the Yucca Mountain site in the Nevada desert. An engineering geologists, Jerry Szymanski, one of the Department of Energy's (DOE) own staffers in Las Vegas, has proposed that the $15-billion repository would sit on top of an intensely active structure that, if altered by an earthquake, would send a slug of ground water up from deep within the mountain into the waste storage area. This theory has already been slammed in two formal reviews and has virtually no support among geologists. However, enough doubt has been raised that much more geological testing will be necessary to prove or disprove Szymanski's theory. Nevada state officials are also using all methods to thwart or block the project. The question of the origin of a series of calcium carbonate and opal veins exposed in an exploratory pit, trench 14, near the top of the mountain is also far from answered. The DOE and US Geological Survey may have to collect much more information on the quantity, size, and location of carbonate sites in the area at a high financial outlay to the US government before a complete case on the origin of the material in trench 14 can be made

  10. Risks from nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Liljenzin, J.O.; Rydberg, J. [Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs.

  11. Risks from nuclear waste

    International Nuclear Information System (INIS)

    Liljenzin, J.O.; Rydberg, J.

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs

  12. Nuclear wastes management. 1. round table - geologic disposal as questioned by the public in concern; Gestion des dechets nucleaires. 1. table ronde le stockage geologique - la mise en question par les publics concernes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the debates of the last round table held at Paris. This meeting gathers representatives of the different actors of the nuclear industry, ministers, public authorities, non governmental organizations who argue the questions asked by peoples from the audience. The topics concern various aspects of waste management, like the quantity of wastes in concern, the reversibility of storages, the monitoring of waste facilities once closed down, the related costs, and the general safety questions about the suitability of the clay formation near the Bure site for the disposal of high-level and long-lived radioactive wastes. A second part of the meeting addresses some remarks about the information of the general public and the decision making process. Finally, five presentations (slides) are attached to these proceedings and treat of: the safety of the disposal in deep geologic formation; the management of spent fuels in Canada; the nuclear wastes R and D in Sweden; the researches and projects in Belgium for the geologic disposal of long-lived radioactive wastes; the results

  13. Nuclear waste: the political realities

    International Nuclear Information System (INIS)

    Arnott, D.

    1983-01-01

    The land dumping of nuclear waste has again come to the attention of anti-nuclear groups, environmentalists and the media, following the announcement of the proposed sites for intermediate-level nuclear waste at Billingham and Bedford. Opposition has already surfaced on a large scale, with public meetings in both areas and a revitalisation of the waste dumping network. This article explains some of the political realities in the nuclear debate, and suggests how we can tackle the issue of waste dumping, remembering that, even if the industry closes tomorrow, there are vast quantities of waste which must be safely and democratically dealt with. (author)

  14. The international politics of nuclear waste

    International Nuclear Information System (INIS)

    Blowers, A.; Lowry, D.; Solomon, B.D.

    1993-01-01

    This book depicts the wide diversity and the striking similarities in the international politics of nuclear waste management, using good organization and well defined terminology. The authors provide a background of geography, geology and demographics, and provide informed and common-sensical observations and conclusions. They question the ethics of leaving nuclear wastes where they are and waiting for better solutions, and they put forward a rational set of siting options, including coupling repository plans with environmental enhancement programs such as protection of coastal access, landscape improvements, and erosion control

  15. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  16. Nuclear waste repository simulation experiments

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1986-12-01

    This document is the third joint annual report on the Cooperative German-American 'Brine Migration Tests' that are in progress at the Asse salt mine in the Federal Republic of Germany (FRG). This Government supported mine serves as an underground test facility for research and development (R and D)-work in the field of nuclear waste repository research and simulation experiments. The tests are designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. This document covers the following sections: Issues and test objectives: This section presents issues that are investigated by the Brine Migration Test, and the test objectives derived from these issues; test site: This section describes the test site location and geology in the Asse mine; test description: A description of the test configuration, procedures, equipment, and instrumentation is given in this section; actual test chronology: The actual history of the test, in terms of the dates at which major activities occured, is presented in this section. Test results: This section presents the test results observed to data and the planned future work that is needed to complete the test; conclusions and recommendations: This section summarizes the conclusions derived to date regarding the Brine Migration Test. Additional work that would be useful to resolve the issues is discussed. (orig.)

  17. Risk methodology for geologic disposal of radioactive waste: interim report

    International Nuclear Information System (INIS)

    Campbell, J.E.; Dillon, R.T.; Tierney, M.S.; Davis, H.T.; McGrath, P.E.; Pearson, F.J. Jr.; Shaw, H.R.; Helton, J.C.; Donath, F.A.

    1978-10-01

    The Fuel Cycle Risk Analysis Division of Sandia Laboratories is funded by the Nuclear Regulatory Commission (NRC) to develop a methodology for assessment of the long-term risks from radioactive waste disposal in deep, geologic media. The first phase of this work, which is documented in this report, involves the following: (1) development of analytical models to represent the processes by which radioactive waste might leave the waste repository, enter the surface environment and eventually reach humans and (2) definition of a hypothetical ''reference system'' to provide a realistic setting for exercise of the models in a risk or safety assessment. The second phase of this work, which will be documented in a later report, will involve use of the analytical models in a demonstration risk or safety assessment of the reference system. The analytical methods and data developed in this study are expected to form the basis for a portion of the NRC repository licensing methodology

  18. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Hobart, L.

    1984-01-01

    The Nuclear Waste Fund involves a number of features which make it a unique federal program. Its primary purpose is to finance one of the largest and most controversial public works programs in the history of the United States. Despite the program's indicated size and advance publicity, no one knows exactly where the anticipated projects will be built, who will construct them, what they will look like when they are done or how they will be operated and by whom. Implimentation of this effort, if statutory targets are actually met, covers a 16-year period. To cover the costs of the program, the Federal Government will tax nuclear power at the rate of 1 mil per kilowatt hour generated. This makes it one of the biggest and longest-lived examples of advance collections for construction work in progress in the history of the United States. While the Department of Energy is authorized to collect funds for the program the Nuclear Regulatory Commission has the authority to cut off this revenue stream by the shutdown of particular reactors or particular reactor types. If all goes well, the Federal Government will begin receiving spent nuclear fuel by 1998, continuing to assess a fee which will cover operating and maintenance costs. If all does not go well, the Federal Government and/or utilities will have to take other steps to solve the problem of permanent disposal. Should the latter circumstance prevail, presumably not only used to date but the $7.5 billion would be spent. The Nuclear Waste Policy Act of 1982, contains no clear provision for utility refunds in that case

  19. Transmutation of long-lived nuclear waste

    International Nuclear Information System (INIS)

    Abrahams, K.

    1992-10-01

    Nuclear waste disposal in geologically stable repositories is considered to be safe and effective, and the assumptions, which lead to very long term predictions seem to be satisfied. As possibilities to perturb repositories, can never be entirely excluded, it could be an attractive option to reduce the toxicity of waste by supplementing the uranium-plutonium cycle with minor actinide burning cycles. In this option the amount of mining waste is limited at the same time because uranium is used economically. If requests for reduction of long-lived actinide waste would result in much higher costs for nuclear energy, the innovative thorium-uranium cycle might become competitive. It is of vital interest that efforts are now being internationalized in networks to make proper use of experience from past civil and military programs. Visions for almost pollution-free energy production could arise if well prepared minds are concentrated on this issue. (author). 5 refs., 2 figs., 1 tab

  20. Nuclear waste package fabricated from concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400 0 C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs

  1. Summary of Geophysical Field Investigations to Constrain the Geologic Structure and Hydrologic Characteristics of Fortymile Wash Essential for Assessing the Performance of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, Nevada

    Science.gov (United States)

    Farrell, D. A.; La Femina, P.; Winterle, J.; Hill, M.; Sims, D.; Smith, M.; Green, R.; Illman, W.; Sandberg, S.; Rogers, N.

    2001-12-01

    The U.S. Department of Energy (DOE) is currently evaluating Yucca Mountain, located in southwestern Nevada, as a possible geologic high-level nuclear waste repository with a performance period of 10,000 years. Groundwater flow and possible radionuclide transport from Yucca Mountain within the saturated zone will be influenced by the geologic structure and the hydrogeologic characteristics of the subsurface in the vicinity of the site. An understanding of these characteristics is essential to evaluating the performance of the repository. South of Yucca Mountain, along the anticipated radionuclide transport pathway, uncertainties in structural geology, hydrogeologic models, and supporting data (for example, the location of the watertable transition from tuff to valley-fill, and the architecture of the basin) impact site performance assessment calculations. Some of these uncertainties will be reduced by the point information provided by the well drilling program currently being carried out by Nye County, Nevada. However, geologic and hydrologic uncertainties remain within inter-well regions which extend over several tens of square kilometers. In recognition of the uncertainties inherent in analyses based upon relatively sparse point data available for Fortymile Wash, the Center for Nuclear Waste Regulatory Analyses and the Nuclear Regulatory Commission have developed a surface geophysics program that targets the inter-well regions utilizing gravity, magnetic, electrical resistivity, and electromagnetic measurements to support confirmatory analyses and performance assessment calculations. This presentation describes various aspects of these surveys and their results. In particular, the presentation presents new models for the structure of the Fortymile Wash (including an improved mapping of the tuff valley-fill interface) based on the integrated geophysical approach and provides an independent basis for the watertable configuration over the region. By combining the

  2. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1978

    International Nuclear Information System (INIS)

    Dutton, S.P.; Finley, R.J.; Galloway, W.E.; Gustavson, T.C.; Handford, C.R.; Presley, M.W.

    1979-01-01

    Early in 1977 the Bureau of Economic Geology was invited to assemble and evaluate geologic data on several salt-bearing basins within the State of Texas as a contribution to the national nuclear repository program. In response to this request, the Bureau, acting as a technical research unit of the University of Texas at Austin and the State of Texas, initiated a long-term program to assemble and interpret all geologic and hydrologic information necessary for delineation, description, and evaluation of salt-bearing strata in the Panhandle area. The technical program can be subdivided into three broad research tasks, which are addressed by a basin analysis group, a surface studies group, and a basin geohydrology group. The basin analysis group has assembled the regional stratigraphic and structural framework of the total basin fill, initiated evaluation of natural resources, and selected stratigraphic core sites for sampling the salt and associated beds. Two drilling sites have provided nearly 8000 feet (2400 m) of core material for analysis and testing of the various lithologies overlying and interbedded with salt units. Concurrently, the surface studies group has collected ground and remotely-sensed data to describe surficial processes, including carbonate and evaporate solution, geomorphic evolution, and fracture system development. The newly formed basin geohydrology group will evaluate both shallow and deep circulation of fluids within the basins. This paper, a summary report of progress, reviews principal conclusions and illustrates the methodologies used and the types of data and displays generated

  3. Nuclear Waste Disposal Program 2016

    International Nuclear Information System (INIS)

    2016-12-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the many important steps in the management of radioactive waste that have already been implemented in Switzerland. The handling and packaging of waste, its characterisation and inventorying, as well as its interim storage and transport are examined. The many important steps in Swiss management of radioactive waste already implemented and wide experience gained in carrying out the associated activities are discussed. The legal framework and organisational measures that will allow the selection of repository sites are looked at. The various aspects examined include the origin, type and volume of radioactive wastes, along with concepts and designs for deep geological repositories and the types of waste to be stored therein. Also, an implementation plan for the deep geological repositories, the required capacities and the financing of waste management activities are discussed as is NAGRA’s information concept. Several diagrams and tables illustrate the program

  4. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  5. Nuclear Waste Fund fee adequacy: An assessment

    International Nuclear Information System (INIS)

    1990-11-01

    The purpose of this report is to present the Department of Energy's (the Department) analysis of the adequacy of the 1.00 mill per kilowatt-hour (kWh) fee being paid by the utilities generating nuclear power for the permanent disposal of their spent nuclear fuel (SNF). In accordance with the Nuclear Waste Policy Act (NWPA), the SNF would be disposed of in a geologic repository to be developed by the Department. An annual analysis of the fee's adequacy is required by the NWPA

  6. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  7. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  8. Does geology help in the final disposal of radioactive wastes?

    International Nuclear Information System (INIS)

    Schaer, U.

    1987-01-01

    High-level radioactive wastes have to be stored safely for thousands of years in deep geological formations. The question discussed is whether or not a geological prognosis over this span of time is possible. The main problem is groundwater

  9. Geological Disposal of Radioactive Waste: Technological Implications for Retrievability

    International Nuclear Information System (INIS)

    2009-01-01

    Various IAEA Member States are discussing whether and to what degree reversibility (including retrievability) might be built into management strategies for radioactive waste. This is particularly the case in relation to the disposal of long lived and/or high level waste and spent nuclear fuel (SNF) in geological repositories. It is generally accepted that such repositories should be designed to be passively safe with no intention of retrieving the waste. Nevertheless, various reasons have been advanced for including the concept of reversibility and the ability to retrieve the emplaced wastes in the disposal strategy. The intention is to increase the level of flexibility and to provide the ability to cope with, or to benefit from, new technical advances in waste management and materials technologies, and to respond to changing social, economic and political opinion. The technological implications of retrievability in geological disposal concepts are explored in this report. Scenarios for retrieving emplaced waste packages are considered and the report aims to identify and describe any related technological provisions that should be incorporated into the design, construction, operational and closure phases of the repository. This is based on a number of reference concepts for the geological disposal of radioactive waste (including SNF) which are currently being developed in Member States with advanced development programmes. The report begins with a brief overview of various repository concepts, starting with a summary of the types of radioactive waste that are typically considered for deep geological disposal. The main host rocks considered are igneous crystalline and volcanic rocks, argillaceous clay rocks and salts. The typical design features of repositories are provided with a description of repository layouts, an overview of the key features of the major repository components, comprising the waste package, the emplacement cells and repository access facilities

  10. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  11. An overview of nuclear waste managment

    International Nuclear Information System (INIS)

    Shemilt, L.W.; Sheng, G.

    1982-01-01

    A very large amount of scientific and engineering work on nuclear waste managment is being done primarily, but not exclusively, in countries with a nuclear power program. There are basically no technical problems with regard to the safe, temporary storage of either used fuel or reprocessed high-level waste from civilian power programs. Deep terrestrial geologic disposal is the concept that has gained the widest acceptance and for which the technology is best known. Sub-seabed disposal has strong potential in the longer term, but further technological development is required. No clear evidence yet exists for the superiority of any type of host geologic medium over any other for a repository. Salt and granite have been studied most, and each has advantages and disadvantages with respect to the other

  12. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  13. Global nuclear waste repository proposal highlights Australia's nuclear energy vacuum

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  14. Science, society, and America's nuclear waste: Unit 1, Nuclear waste

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 1 in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  15. Nuclear waste - where to go?; Atommuell - wohin?

    Energy Technology Data Exchange (ETDEWEB)

    Dornsiepen, Ulrich

    2015-07-01

    The question of the final di9sposal of nuclear waste is a problem of international importance. The solution of the problem is of increasing urgency; the discussion is controversial and implies a lot of emotions. In Germany there is consensus that the nuclear wastes have to be disposed within the country in deep geological formations. This kind of final disposal is predominantly a geological problem and has to be solved from the geological point of view. The geologist Ulrich Dornsiepen presents the problems of the final disposal in an objective way without ideology and generally understandable. Such a presentation is necessary since the public information and participation is demanded but the open geological questions and their scientific solutions are never explained for the public. [German] Die Frage der endgueltigen Lagerung von Atommuell ist ein Problem von nationaler Tragweite, dessen Loesung immer dringender wird, bisher aber sehr kontrovers diskutiert wird und mit vielen Emotionen verknuepft ist. Es besteht in Deutschland ein Konsens, diese Abfaelle innerhalb der Landesgrenzen dauerhaft in tief liegenden Gesteinsschichten abzulagern. Diese Art der Endlagerung ist aber in erster Linie ein geologisches Problem und so auch nur von geologischer Seite her zu loesen. Daher stellt der Geologe Ulrich Dornsiepen die Problematik der Endlagerung objektiv, ideologiefrei und allgemein verstaendlich dar. Ein solches Hoerbuch ist dringend noetig, da zwar die Information und Beteiligung breiter, betroffener Bevoelkerungsteile eingefordert, aber niemals versucht wird, die offenen geologischen Fragen und ihre wissenschaftliche Loesung verstaendlich zu machen.

  16. Calculated compositions of porewater affected by a nuclear waste repository in a tuff geologic environment from 0 to 10,000 years

    International Nuclear Information System (INIS)

    Criscenti, L.C.; Arthur, R.C.

    1994-01-01

    Porewater compositions were estimated for an environment assuming that high-level radioactive waste has been stored for 10,000 years under geologic conditions analogous to those at the Yucca Mountain site in Nevada. The porewater compositions calculated with the EQ3/EQ6 geochemical code are intended for use in preliminary performance assessments of borosilicate glass waste packages. The porewater compositions were calculated using water-rock interaction models that are loosely coupled with two time-temperature periods in the host rocks: a cooling period between 900 years and 3,000 years after repository closure and an isothermal period from 3,000 years to 10,000 years. Significant changes in water composition are predicted to occur during the initial period of water-rock interaction; for example, the pH of the porewater increases from 6.4 to 9.1. Constant porewater compositions are predicted during the isothermal period. The results suggest that major changes in porewater composition will occur over a relatively short time frame and that these changes will persevere throughout the repository lifetime. (author) 5 figs., 3 tabs., 28 refs

  17. Micro-organisms and nuclear waste: a neglected problem

    International Nuclear Information System (INIS)

    Arnott, Don.

    1989-01-01

    The paper addresses the problem of bacteria in nuclear waste disposal. A description is given of how bacteria colonised the Three Mile Island Nuclear Reactor soon after meltdown, demonstrating the ability of some bacteria to operate under extreme conditions. Work is also described indicating that microbial corrosion of metal canisters can occur. Thus the author recommends that studies of nuclear waste disposal should take into account the interrelations between geology, geochemistry and microbiology. (U.K.)

  18. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  19. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  20. The problematic of nuclear wastes

    International Nuclear Information System (INIS)

    Rozon, D.

    2004-01-01

    Within the frame of a project of modification of radioactive waste storage installations, and of refurbishing the Gentilly-2 nuclear plant (Quebec, Canada), the author first gives an overview and comments assessments of the volume and nature of nuclear wastes produced by Canadian nuclear power plants. He presents the Canadian program of nuclear waste management (history, Seaborn assessment Commission, mission of the SGDN-NWMO). He discusses the relationship between risk and dose, the risk duration, and the case of non radioactive wastes. He discusses energy challenges in terms of CO 2 emissions and with respect to climate change, proposes an alternative scenario on a long term, compares nuclear energy and wind energy, and discusses the nuclear technology evolution

  1. Nuclear waste management and disposal

    International Nuclear Information System (INIS)

    Czibolya, L.

    1983-01-01

    The general demands for radioactive waste management, the key problem of nuclear fuel cycle are discussed. Various processes have been developed to solidify highly radioactive, long-lived wastes of the reprocessing plants in the form of borosilicate or phosphate glasses. Wastes of medium and low activity are generally solidified using either cement or bitumen or polyethylene as matrices. The alternatives of final waste disposal are reviewed according to French, Soviet, American, British, Swedish, Indian and Japanese experiences. (V.N.)

  2. RD and D Programme 98. Treatment and final disposal of nuclear waste. Programme for research, development and demonstration of encapsulation and geological disposal

    International Nuclear Information System (INIS)

    1998-09-01

    RD and D-Programme 98 is intended to provide an overview of SKBs activities and plans. The detailed research programme is presented in a separate background report. In parallel with RDD-Programme 98, SKB is publishing a number of reports that provide a more thorough background and a more detailed account, particularly on those issues that the Government mentioned in its decision regarding RD and D-Programme 95. The programme is divided into two parts: Background and Execution. The background part begins with a chapter on the basic premises. It deals with general principles, laws and the properties of the waste. The facilities that exist today for dealing with the nuclear waste are also described in the introductory chapter. The two following chapters have to do with the choice between different methods for disposing of nuclear waste and with the KBS-3 method, which SKB has chosen as its main alternative. These two chapters provide a broader account of both the KBS-3 method and different alternative methods than previous RD and D-programmes. The background part concludes with a chapter about the long-term safety of the deep repository. The second part, Execution, begins with an overview of SKBs strategy and the main features of the programme, both for the next few years and further in the future. The plans for siting, technology and safety assessment are then presented in greater detail. This is followed by an overview of our plans for supportive research and development, including continued R and D on other methods than the KBS-3 method. The programme concludes with a chapter on decommissioning of nuclear facilities. An important part of the ongoing and planned work is consultation on environmental impact assessments. A first draft of the contents of future environmental impact statements is therefore provided. By attaching it to RD and D-Programme 98, SKB wishes to give all reviewing bodies an opportunity to offer their viewpoints at an early stage on what future

  3. RD and D Programme 98. Treatment and final disposal of nuclear waste. Programme for research, development and demonstration of encapsulation and geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    RD and D-Programme 98 is intended to provide an overview of SKBs activities and plans. The detailed research programme is presented in a separate background report. In parallel with RDD-Programme 98, SKB is publishing a number of reports that provide a more thorough background and a more detailed account, particularly on those issues that the Government mentioned in its decision regarding RD and D-Programme 95. The programme is divided into two parts: Background and Execution. The background part begins with a chapter on the basic premises. It deals with general principles, laws and the properties of the waste. The facilities that exist today for dealing with the nuclear waste are also described in the introductory chapter. The two following chapters have to do with the choice between different methods for disposing of nuclear waste and with the KBS-3 method, which SKB has chosen as its main alternative. These two chapters provide a broader account of both the KBS-3 method and different alternative methods than previous RD and D-programmes. The background part concludes with a chapter about the long-term safety of the deep repository. The second part, Execution, begins with an overview of SKBs strategy and the main features of the programme, both for the next few years and further in the future. The plans for siting, technology and safety assessment are then presented in greater detail. This is followed by an overview of our plans for supportive research and development, including continued R and D on other methods than the KBS-3 method. The programme concludes with a chapter on decommissioning of nuclear facilities. An important part of the ongoing and planned work is consultation on environmental impact assessments. A first draft of the contents of future environmental impact statements is therefore provided. By attaching it to RD and D-Programme 98, SKB wishes to give all reviewing bodies an opportunity to offer their viewpoints at an early stage on what future

  4. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  5. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    International Nuclear Information System (INIS)

    Gustavson, T.C.; Presley, M.W.; Handford, C.R.; Finley, R.J.; Dutton, S.P.; Baumgardner, R.W. Jr.; McGillis, K.A.; Simpkins, W.W.

    1980-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated

  6. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  7. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  8. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    International Nuclear Information System (INIS)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. The 1 000-year prediction. A state-of-the-art review on the research activity for the structural integrity of geological disposal packages of high-level nuclear waste

    International Nuclear Information System (INIS)

    Akashi, Masatsune

    1996-01-01

    The geological disposal package for high-level nuclear waste to be buried deep underground must be assured of structural integrity for ultra-long services of 1 000 years or even longer. The greatest and essentially the sole adversary to those packages in such a service is corrosion by ground water. Therefore, quantitative assessment of the corrosion form, the corrosion rate, and the corrosion lifetime is indispensable. This paper reviews the research activities to clarify what has been known, and discusses the future items to be studied. The largest detriment to the integrity of the package is not the uniform corrosion but the localized corrosion. The critical potential concept can quantify the safety usage domain for the material concerned. (author)

  10. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E. [and others

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  12. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  13. Thermal-Hydraulic-Mechanical (THM) Coupled Simulation of a Generic Site for Disposal of High Level Nuclear Waste in Claystone in Germany: Exemplary Proof of the Integrity of the Geological Barrier

    Science.gov (United States)

    Massmann, J.; Ziefle, G.; Jobmann, M.

    2016-12-01

    Claystone is investigated as a potential host rock for the disposal of high level nuclear waste (HLW). In Germany, DBE TECHNOLOGY GmbH, the BGR and the "Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)" are developing an integrated methodology for safety assessment within the R&D project "ANSICHT". One part herein is the demonstration of integrity of the geological barrier to ensure safe containment of radionuclides over 1 million years. The mechanical excavation of an underground repository, the ex­po­si­tion of claystone to at­mos­pheric air, the insertion of backfill, buffer, sealing and supporting material as well as the deposition of heat producing waste constitute a sig­nif­i­cant disturbance of the underground system. A complex interacting scheme of thermal, hydraulic and mechanical (THM) processes can be expected. In this work, the finite element software OpenGeoSys, main­ly de­vel­oped at the "Helmholtz Centre for Environmental Research GmbH (UFZ)", is used to simulate and evaluate several THM coupled effects in the repository surroundings up to the surface over a time span of 1 million years. The numerical setup is based on two generic geological models inspired by the representative geology of potentially suitable regions in North- and South Germany. The results give an insight into the evolution of temperature, pore pressure, stresses as well as deformation and enables statements concerning the extent of the significantly influenced area. One important effect among others is the temperature driven change in the densities of the solid and liquid phase and its influence on the stress field. In a further step, integrity criteria have been quantified, based on specifications of the German federal ministry of the environment. The exemplary numerical evaluation of these criteria demonstrates, how numerical simulations can be used to prove the integrity of the geological barrier and detect potential vulnerabilities. Fig.: Calculated zone of

  14. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  15. Nuclear waste management in Korea

    International Nuclear Information System (INIS)

    Kim, O.-K.

    2006-01-01

    The presentation covers overall status of nuclear waste management in Korea from low level radioactive waste to spent nuclear fuel, especially the construction of LILW repository of which site had been selected in November 2005. The expansion of on-site spent fuel storage capacity, transshipment between neighboring plants, construction of space-efficient dry storage system for CANDU spent fuel and application of vitrification technology for the treatment of LILW will be included in the discussion. (author)

  16. Nuclear wastes; Dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  17. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden.

    Science.gov (United States)

    Gómez, Javier B; Gimeno, María J; Auqué, Luis F; Acero, Patricia

    2014-01-15

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water-rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. © 2013 Elsevier B.V. All rights reserved.

  18. Natural Analogues - One Way to Help Build Public Confidence in the Predicted Performance of a Mined Geologic Repository for Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Stuckless, J. S.

    2002-02-26

    The general public needs to have a way to judge the predicted long-term performance of the potential high-level nuclear waste repository at Yucca Mountain. The applicability and reliability of mathematical models used to make this prediction are neither easily understood nor accepted by the public. Natural analogues can provide the average person with a tool to assess the predicted performance and other scientific conclusions. For example, hydrologists with the Yucca Mountain Project have predicted that most of the water moving through the unsaturated zone at Yucca Mountain, Nevada will move through the host rock and around tunnels. Thus, seepage into tunnels is predicted to be a small percentage of available infiltration. This hypothesis can be tested experimentally and with some quantitative analogues. It can also be tested qualitatively using a variety of analogues such as (1) well-preserved Paleolithic to Neolithic paintings in caves and rock shelters, (2) biological remains preserved in caves and rock shelters, and (3) artifacts and paintings preserved in man-made underground openings. These examples can be found in materials that are generally available to the non-scientific public and can demonstrate the surprising degree of preservation of fragile and easily destroyed materials for very long periods of time within the unsaturated zone.

  19. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Salvatores, M.; Girard, C.; Delpech, M.; Slessarev, I.; Tommasi, J.

    1994-01-01

    Waste management strategies foresee the use of a deep geological repository either for final disposal of irradiated fuel or, after reprocessing and reuse of U and Pu for final disposal of long-lived radio-active materials. In the second case, partitioning and transmutation of these materials can be considered to reduce the impact of radiation on man due to the storage. On the basis of the SPIN programme developed by CEA in this field, the main features of transmutation is presented. The goal to achieve and the criteria to use are quite difficult to establish. The rights para-meters to characterize the risk are the potential radiotoxicity in the the repository and the residual radiotoxicity at the outlet. Transmutation studies in CEA used the potential radiotoxicity which is based on well-known parameters and less precise hazardous factors. The second point to appreciate the trans- mutation interest is to dispose of a criteria for the radio-radiotoxicity reduction. As there is no general agreement, we try to have a toxicity as low as possible within reasonable technical limits. To reduce the long term radio- toxicity, Pu, minor actinides and some long-lived fission products have to be transmuted. To assess the feasibility of such trans-mutation in reactors or advanced systems, one has to consider constraints on neutronic balance, safety, fuel cycle, technology , economy. Taking in account the main conclusions of this analysis, parametric studies of homogeneous and heterogenous transmutation permit a choice of promising solutions. Goals are to use every long-lived element with a minimized production of other long- lived elements in order to obtain an appreciable radiotoxicity reduction. It implies multi recycling of Pu which favours fast neutron reactors and different strategies of multi recycling for Np, Am, Cm. Multi recycling makes the results strongly dependant of losses. Researches to obtain the high partitioning efficiency needed are in progress. Calculations

  20. Nuclear waste in the EC

    International Nuclear Information System (INIS)

    Riihonen, M.

    1993-01-01

    The relationship between EC membership and the free movement of radioactive wastes from one Member State to another is considered in the article. France, Germany and the UK currently apply a fairly uniform policy banning the importation of radioactive waste for disposal in their territories. Sweden has also recently amended its nuclear energy legislation to the same effect. The current Nuclear Energy Act allows Finland to decide independently what radioactive waste may be disposed in Finland. According to the policy guidelines of the leading EC countries, Finland would retain its power of decision also after joining the EC

  1. Scientific Solutions to Nuclear Waste Environmental Challenges

    International Nuclear Information System (INIS)

    Johnson, Bradley R.

    2014-01-01

    of time it takes for one-half of the material to undergo radioactive decay.) In general, the ideal material would need to be durable for approximately 10 half-lives to allow the activity to decay to negligible levels. However, the potential health effects of each radionuclide vary depending on what type of radiation is emitted, the energy of that emission, and the susceptibility for the human body to accumulate and concentrate that particular element. Consequently, actual standards tend to be based on limiting the dose (energy deposited per unit mass) that is introduced into the environment. The Environmental Protection Agency (EPA) has the responsibility to establish standards for nuclear waste disposal to protect the health and safety of the public. For example, the Energy Policy Act of 1992 directed the EPA to establish radiation protection standards for the Yucca Mountain geologic repository for nuclear wastes. The standards for Yucca Mountain were promulgated in 2008, and limit the dose to 15 millirem per year for the first 10,000 years, and 100 milirem per year between 10,000 years and 1 million years (40 CFR Part 197; http://www.epa.gov/radiation/yucca/2008factsheet.html). So, the challenge is two-fold: (1) develop a material (a waste form) that is capable of immobilizing the waste over geologic time scales, and (2) develop a process to convert the radioactive sludge in the tanks into this durable waste form material. Glass: Hard, durable, inert, and with infinite chemical versatility Molten glass is a powerful solvent liquid, which can be designed to dissolve almost anything. When solidified, it can be one of the most chemically inert substances known to man. Nature's most famous analogue to glass is obsidian, a vitreous product of volcanic activity; formations over 17 million years old have been found. Archaeologists have found man-made glass specimens that are five thousand years old

  2. Vitrification chemistry and nuclear waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting

  3. Public and nuclear waste management

    International Nuclear Information System (INIS)

    Zinberg, D.

    1979-01-01

    Public concern on nuclear power is centered on the waste disposal problem. Some of the environmentalist and anti-nuclear movements are discussed, both in USA and abroad. The public is skeptical in part because of the secrecy legacy, although scientists are still largely trusted. However, the scientists are far from united in their viewpoints on the nuclear issue. The task for scientists are to put into perspective the limits to scientific knowledge and to interpret this knowledge to the public

  4. Radioactive wastes. The management of nuclear wastes. Waste workshop, first half-year - Year 2013-2014

    International Nuclear Information System (INIS)

    Esteoulle, Lucie; Rozwadowski, Elodie; Duverger, Clara

    2014-01-01

    The first part of this report first presents radioactive wastes with their definition, and their classification (radioactivity level, radioactive half-life). It addresses the issue of waste storage by presenting the different types of storage used since the 1950's (offshore storage, surface warehousing, storage in deep geological layer), and by discussing the multi-barrier approach used for storage safety. The authors then present the French strategy which is defined in the PNGMDR to develop new management modes on the long term, to improve existing management modes, and to take important events which occurred between 2010 and 2012 into account. They also briefly present the Cigeo project (industrial centre of geological storage), and evoke controversies related to the decision to locate this project in Bure (existence of geological cracks and defects, stability and tightness of the clay layer, geothermal potential of the region, economic cost). The second part proposes an overview of the issue of nuclear waste management. The author recalls the definition of a radioactive waste, indicates the origins of these wastes and their classification. She proposes a history of the radioactive waste: discovery of radioactivity, military industrialisation and awareness of the dangerousness of radioactive wastes, nuclear wastes and recent incidents (West Valley, La Hague, Windscale). An overview of policies of nuclear waste management is given: immersion of radioactive wastes, major accidental releases, solutions on the short term and on the medium term

  5. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Javier B., E-mail: jgomez@unizar.es; Gimeno, María J., E-mail: mjgimeno@unizar.es; Auqué, Luis F., E-mail: lauque@unizar.es; Acero, Patricia, E-mail: patriace@unizar.es

    2014-01-01

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result

  6. Can shale safely host US nuclear waste?

    Science.gov (United States)

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  7. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Vaniman, D.; Crowe, B.

    1981-06-01

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  8. Storage - Nuclear wastes are overflowing

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2016-01-01

    This article highlights that the dismantling of French nuclear installations will generate huge volumes of radioactive wastes and that France may lack space to store them. The Cigeo project (underground storage) only concerns 0.2 per cent of the nuclear waste volume produced by France in 50 years. If storage solutions exist for less active wastes, they will soon be insufficient, notably because of the quantity of wastes produced by the dismantling of existing reactors and fuel processing plants. Different assessments of these volumes are evoked. In order to store them, the ANDRA made a second call for innovating projects which would enable a reduction of this volume by 20 to 30 per cent. The article also evokes projects selected after the first call for projects. They mainly focus on nuclear waste characterization which will result in a finer management of wastes regarding their storage destination. Cost issues and the opposition of anti-nuclear NGOs are still obstacles to the development of new sites

  9. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  10. Nuclear waste management. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  11. Nuclear waste management. Quarterly progress report, October through December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  12. Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings

    Science.gov (United States)

    Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    This report contains papers presented at the "Joint U.S. Geological Survey (USGS) and U.S. Nuclear Regulatory Commission (NRC) Technical Workshop on Research Related to Low-Level Radioactive Waste (LLW) Disposal" that was held at the USGS National Center Auditorium, Reston, Virginia, May 4-6, 1993. The objective of the workshop was to provide a forum for exchange of information, ideas, and technology in the geosciences dealing with LLW disposal. This workshop was the first joint activity under the Memorandum of Understanding between the USGS and NRC's Office of Nuclear Regulatory Research signed in April 1992.Participants included invited speakers from the USGS, NRC technical contractors (U.S. Department of Energy (DOE) National Laboratories and universities) and NRC staff for presentation of research study results related to LLW disposal. Also in attendance were scientists from the DOE, DOE National Laboratories, the U.S. Environmental Protection Agency, State developmental and regulatory agencies involved in LLW disposal facility siting and licensing, Atomic Energy Canada Limited (AECL), private industry, Agricultural Research Service, universities, USGS and NRC.

  13. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  14. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  15. Nuclear waste and nimby

    International Nuclear Information System (INIS)

    Marshall, W.

    1986-01-01

    A report of the Tizard lecture by Lord Marshall, chairman of the UK CEGB, on the health risks associated with the disposal of radioactive wastes is given. The risks from inhalation and ingestion of various types of radioactive waste disposal are compared to the risks from radioactive material occurring naturally in the average garden soil in the UK occupying one tenth of an acre. The relative potential health risk from inhalation of coal ash is also contrasted. (UK)

  16. French people and nuclear wastes

    International Nuclear Information System (INIS)

    D'Iribarne, Ph.

    2005-01-01

    On March 21, 2005, the French minister of industry gave to the author of this document, the mission to shade a sociological light on the radioactive wastes perception by French people. The objective of this study was to supply an additional information before the laying down in 2006 of the decisions about the management of high-level and long-lived radioactive wastes. This inquiry, carried out between April 2004 and March 2005, stresses on the knowledge and doubts of the questioned people, on the vision they have of radioactive wastes and of their hazards, and on their opinion about the actors in concern (experts, nuclear companies, government, anti-nuclear groups, public). The last two parts of the report consider the different ways of waste management under study today, and the differences between the opinion of people living close to the Bure site and the opinion of people living in other regions. (J.S.)

  17. Ethical aspects on Nuclear Waste

    International Nuclear Information System (INIS)

    Persson, Lars

    1989-01-01

    In an ethical assessment of how we shall deal with nuclear waste, one of the chief questions that arises is how to initiate action while at the same time taking into consideration uncertainties which are unavoidable seen from a long-term perspective. By means of different formulation and by proceeding from various starting-points, a two edged objective is established vis-a-vis repository facilities: safety in operation combined with reparability, with controls not necessary, but not impossible. Prerequisites for the realization of this objective are the continued advancement of knowledge and refinement of the qualifications required to deal with nuclear waste. The ethical considerations above could be the bases for the future legislation in the field of nuclear energy waste. (author)

  18. Spent fuel, plutonium and nuclear waste: long-term management; Le combustible use et le plutonium en tant que dechets nucleaires: gestion a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation.

  19. NUCLEAR WASTE state-of-the-art reports 2004

    International Nuclear Information System (INIS)

    2004-01-01

    The report is organized in three parts. First part: 'The nuclear waste question in international and Swedish perspective' takes up questions about how the handling of nuclear waste is organized. This part starts with an international overview of nuclear waste handling in several countries. The overview gives a hint about how countries look for solutions that are judged to be appropriate in the own country. The overview shows clearly that the responsibility for the nuclear waste includes both private and public operators, in varying degrees from country to country. A detailed review is presented of the Swedish process in the chapter 'The municipalities - major stakeholders in the nuclear waste issue'. In the light of the the international overview it is shown that great efforts are spent in order to reach mutual understanding and agreement at the local basis in the Swedish consultation procedure. Part two 'To handle nuclear waste risks: An overview over methods, problems and possibilities' contains an overview of our knowledge in estimating and handling risks and about methods to produce data for assessments associated with the disposal of nuclear waste from a scientific perspective. This part first presents two geoscientific methods that are used to calculate stability and hydraulic conductivity of the bedrock. In the chapter 'Fractioning of different isotopes' the possibility to consider properties of different isotopes for estimation of transport velocities of radioactive substances is discussed, for a repository for spent nuclear fuel or other radioactive wastes. In the chapter 'Copper canisters - production, sealing, durability' an overview is given of the methods used for manufacture and control of those copper canisters that constitute one of the protective barriers around the waste at geologic disposal according to the KBS-3-method. In the last chapter, an experiment to compare classification of radioactive wastes and chemical wastes, is discussed. 'The

  20. A Nuclear Waste Management Cost Model for Policy Analysis

    Science.gov (United States)

    Barron, R. W.; Hill, M. C.

    2017-12-01

    Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost

  1. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  2. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  3. Treatment and disposal of radioactive wastes from nuclear power plants. Program for encapsulation, deep geologic deposition and research, development and demonstration

    International Nuclear Information System (INIS)

    1995-09-01

    Programs for RD and D concerning disposal of radioactive waste are presented. Main topics include: Design, testing and manufacture of canisters for the spent fuels; Design of equipment for deposition of waste canisters; Material and process for backfilling rock caverns; Evaluation of accuracy and validation of methods for safety analyses; Development of methods for defining scenarios for the safety analyses. 471 refs, 67 figs, 21 tabs

  4. Annotated bibliography: hazard assessments for the geologic isolation of nuclear wastes. Final report. Center for Resource and Environmental Systems Studies report No. 41

    Energy Technology Data Exchange (ETDEWEB)

    Suta, B.E.; Mara, S.J.; Radding, S.B.; Weisbecker, L.W.

    1977-11-01

    This report presents an annotated bibliography of risk assessments that are pertinent to constructing, operating, and decommissioning a federal repository for the underground storage of radioactive waste. This might be considered as a first phase in an assessment of the risks associated with radioactive waste storage. Only those documents judged to be the more pertinent are abstracted. The abstracts are grouped under 13 classifications. A subject and author index is provided.

  5. Scoping study of salt domes, basalts and crystalline rock as related to long term risk modeling for deep geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    1978-11-01

    Purpose is to provide a preliminary geotechnical data base sufficient to initiate the development of Long-Term Risk Models for salt domes, basalt, and crystalline rock. Geology, hydrology, specific sites, and potential release pathways are considered for each type. A summary table of site suitability characteristics is presented

  6. Performance assessment of geological isolation systems for radioactive waste. Summary

    International Nuclear Information System (INIS)

    Cadelli, N.; Cottone, G.; Orlowski, S.; Bertozzi, G.; Girardi, F.; Saltelli, A.

    1988-01-01

    The report summarizes the studies undertaken in the framework of the project PAGIS of the CEC Research Programme on radioactive waste. It concerns the analysis of the safety performances on the deep disposal of vitrified high level waste in four geological options: clay, granite, salt and the sub-seabed. The report describes the selection of sites and scenarios with the corresponding data base. It outlines the methodology adopted for determining the safety level which can be achieved with an underground disposal system for HLW. Two complementary approaches have been implemented: 1) a set of deterministic calculations for evaluating the dose rates as a function of time and for analysing local sensitivity on single parameters or components of the disposal system, 2) stochastic calculations for both uncertainty and global sensitivity analyses. For each option, the report presents the most significant results, obtained from the calculations at specific sites-from both the approaches. Apart the dose rates and their expectation values, the predominant radionuclides and pathways to man are identified as well as the most sensitive parameters and phenomena. The final chapter concludes stating the feasibility of safe disposal of HLW in underground repositories. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  7. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  8. Regulating nuclear fuel waste

    International Nuclear Information System (INIS)

    1995-01-01

    When Parliament passed the Atomic Energy Control Act in 1946, it erected the framework for nuclear safety in Canada. Under the Act, the government created the Atomic Energy Control Board and gave it the authority to make and enforce regulations governing every aspect of nuclear power production and use in this country. The Act gives the Control Board the flexibility to amend its regulations to adapt to changes in technology, health and safety standards, co-operative agreements with provincial agencies and policy regarding trade in nuclear materials. This flexibility has allowed the Control Board to successfully regulate the nuclear industry for more than 40 years. Its mission statement 'to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment' concisely states the Control Board's primary objective. The Atomic Energy Control Board regulates all aspects of nuclear energy in Canada to ensure there is no undue risk to health, safety, security or the environment. It does this through a multi-stage licensing process

  9. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  10. 21st century challenges and opportunities for nuclear waste management

    International Nuclear Information System (INIS)

    McKinley, I.G.

    2009-01-01

    The technical arguments for massive expansion of nuclear power generation are convincing, but such a renaissance requires public acceptance. For diehard nuclear opponents, criticism now focuses on its Achilles heel - the unsolved (and often claimed to be insoluble) problem of disposal of the resultant long-lived waste. In fact, the geological disposal of nuclear waste can be managed safely with existing technology and should really be touted as one of the advantages of this option. Clearly, there is a major challenge in communicating disposal safety to key stakeholders in order to realise this benefit. Nevertheless, the growth of environmental concern about global warming and the present economic climate may present opportunities to initiate dialogue with relevant communities, allowing the attractions of hosting future disposal facilities to be seen. Rather than being the archetypal focus for NIMBY reactions, maybe within a few years we can look forward to growing competition to host geological repositories for radioactive waste.(Author)

  11. Nuclear imperatives and public trust: Dealing with radioactive waste

    International Nuclear Information System (INIS)

    Carter, L.J.

    1987-01-01

    What should be done with the radioactive wastes that are accumulating from nuclear power plants throughout the world? Should spent nuclear fuel be reprocessed despite complications surrounding the containment of radioactivity despite complications surrounding the containment of radioactivity and the safeguarding of explosive plutonium from terrorists? Or is there another solution to this pressing problem? The author advocates treating spent nuclear fuel as waste -- rather than as recyclable material -- and burying it in deep geologic repositories. Moreover, he contends that because of its size, geologic diversity, and technical sophistication, the United States should be able to establish a system of nuclear waste isolation that is technically and politically robust enough to be a model for the rest of the world. The key to a successful repository siting effort is to select a relatively small number of carefully screened deep geologic repositories for intensive investigation, the author maintains. Potential risk can be further minimized by harnessing technology to develop engineered barriers that complement natural geologic barriers. Emphasizing that geology and technology are not the only factors that stand in the way of success, the author calls for a carefully mapped strategy. Policies should incorporate means to avoid environmental conflict, the locality eventually chosen should receive meaningful benefits, and the door should be kept open for eventual retrieval of spent fuel if the reprocessing of plutonium ever becomes safe enough to make economic and political sense

  12. Searching for acceptable solutions to nuclear-waste disposal

    International Nuclear Information System (INIS)

    Bernero, R.M.

    1995-01-01

    Three lettes are presented here, all addressing the problem of nuclear waste disposal. Robert M. Bernero (former director of the Office of Nuclear Material Safety and Safeguards, US NRC) points out there are only 4 options for managing toxic and nuclear waste (recycling, outer space disposal; deep-ocean disposal, geologic disposal) and that the stragegy should prevent people from inadvertently stumbling onto the waste site. Robert Holden (director nuclear Waste Program, National Congress of American Indians) uses Yucca Mountain to illustrate problems and solutions that must be implemented if tribal people's concerns are to be respected. George E. Dials (Manager, Carlsbad Area Office, US DOE) focuses on a positive assessment of WIPP as part of the solution

  13. The Geopolitics of Nuclear Waste.

    Science.gov (United States)

    Marshall, Eliot

    1991-01-01

    The controversy surrounding the potential storage of nuclear waste at Yucca Mountain, Nevada, is discussed. Arguments about the stability of the site and the groundwater situation are summarized. The role of the U.S. Department of Energy and other political considerations are described. (CW)

  14. Defence nuclear waste disposal in Russia. International perspective

    International Nuclear Information System (INIS)

    Stenhouse, M.J.; Kirko, V.I.

    1998-01-01

    Significant amounts of liquid and solid radioactive waste have been generated in Russia during the production of nuclear weapons, and there is an urgent need to find suitable ways to manage these wastes in a way that protects both the current population and future generations. This book contains contributions from pure and applied scientists and other representatives from Europe, North America, and Russia, who are, or have been, actively involved in the field of radioactive waste management and disposal. First-hand experience of specific problems associated with defence-related wastes in the USA and the Russian Federation is presented, and current plans are described for the disposal of solid wastes arising from civilian nuclear power production programmes in other countries, including Belgium, Bulgaria, Canada, Germany and the UK. The book provides a good insight into ongoing research at local and national level within Russia, devoted to the safe disposal of defence-related radioactive waste. It also demonstrates how existing expertise and technology from civilian nuclear waste management programmes can be applied to solving the problems created by nuclear defence programmes. Contributions address methods of immobilisation, site selection methodology, site characterisation techniques and data interpretation, the key elements of safety/performance assessments of planned deep (geological) repositories for radioactive waste, and radionuclide transport modelling. Concerns associated with certain specific nuclear waste disposal concepts and repository sites are also presented. refs

  15. Scientific basis for nuclear waste management XX

    International Nuclear Information System (INIS)

    Gray, W.J.; Triay, I.R.

    1997-01-01

    The proceedings are divided into the following topical sections: Glass formulations and properties; Glass/water interactions; Cements in radioactive waste management; Ceramic and crystalline waste forms; Spent nuclear fuel; Waste processing and treatment; Radiation effects in ceramics, glasses, and nuclear waste materials; Waste package materials; Radionuclide solubility and speciation; Radionuclide sorption; Radionuclide transport; Repository backfill; Performance assessment; Natural analogues; Excess plutonium dispositioning; and Chernobyl-related waste disposal issues. Papers within scope have been processed separately for inclusion on the data base

  16. Modeling the degradation of a metallic waste form intended for geologic disposal

    International Nuclear Information System (INIS)

    Bauer, T.H.; Morris, E.E.

    2007-01-01

    Nuclear reactors operating with metallic fuels have led to development of robust metallic waste forms intended to immobilize hazardous constituents in oxidizing environments. Release data from a wide range of tests where small waste form samples have been immersed in a variety of oxidizing solutions have been analyzed and fit to a mechanistically-derived 'logarithmic growth' form for waste form degradation. A bounding model is described which plausibly extrapolates these fits to long-term degradation in a geologic repository. The resulting empirically-fit degradation model includes dependence on solution pH, temperature, and chloride concentration as well as plausible estimates of statistical uncertainty. (authors)

  17. Basic study on behaviors of radioactive and toxic inorganic elements in environment, and environmental assessment for geological disposal of high-level radioactive wastes. Outline of the prize-winning study of the 12th Osaka Nuclear Science Corporation Prize

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Yoko; Kudo, Akira [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1999-01-01

    This study was made aiming to establish geological disposal technology for high-level radioactive wastes generated in nuclear power plant. A basic study for the technology was made using various radioactive materials containing Pu, U, Cs, Se, etc. as a tracer. First, adsorption mechanisms of various nuclides in ground water such as Cs, Co, Se, etc. onto rocks were investigated by indoor experiment. A certain correlation between the apparent adsorption rate of a nuclide onto rocks and diffusion coefficient into micropores in rocks was demonstrated both theoretically and experimentally. To estimate the radionuclide migration during more than one thousand years based on the results from indoor experiments is difficult, so that construction of a mathematical model was attempted to make numerical simulation. Thus,it was suggested that the properties of underground barrier are considerably related to the adsorption rates of nuclides and also diffusion coefficients into micropores. In addition, the effects of soil microorganisms and organic compounds on the behaviors of radioactive nuclides in soil ecosphere were investigated by extra-low level analysis of long-life radioactivities. More than 10% of Pu derived from Atomic Bomb at Nagasaki were found to be strongly bound to organic compounds in soils, showing that the element is extremely reactive with organic substances. (M.N.)

  18. Introduction - types and quantitites of nuclear waste - principles of waste management

    International Nuclear Information System (INIS)

    Krause, H.

    1982-01-01

    In all areas of the nuclear technology and the application of radioisotopes radioactive wastes are generated. The largest amounts arise in nuclear power plants. The radionuclides contained in these wastes, however, have only relatively short half-lifes as a rule. The highest activities are contained in the wastes from the reprocessing of spent nuclear fuels. Most of these wastes as well as the wastes arising from the fabrication of mixed oxide fuels contain actinides. The amounts and activities of the wastes arising from isotope application are in general small compared to those from the nuclear fuel cycle. Wastes with short-lifed radionuclides need only collection and storage until sufficient decay. Dispersion in the environment is frequently applied for noble gases and tritium. The most frequently applied principle in radioactive waste management, however, is concentration and isolation. Several methods are available for this purpose and will be outlined in the lecture. Mechanical filtration and absorption are often applied for the treatment of exhaust air and off-gases. Liquid effluents are mostly cleaning by evaporation, ion exchange of flocculation prior to re-use or discharge. The resulting residues are unmobilized. Solid wastes can be reduced in volume by incineration or baling. For the long-term isolation (disposal) of the conditioned wastes ground disposal, sea dumping and disposal into deep geological formations are available. Their application depends to some degree on the local conditions and the activity level. The radioactive wastes must meet certain criteria for being suitable to disposal. (orig./RW)

  19. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  20. Proceedings of Seminar on Nuclear Geology and Mining Resources

    International Nuclear Information System (INIS)

    Zulkarnain, Iskandar; Soeprapto; Soetarno, Djoko; H, Johan-Baratha; Effendi, Amir; Widiyanta; Arief, Erni-Rifandriah; Supriyadi; Yusron, Hari

    2004-01-01

    The proceedings contains the result research and development on nuclear geology and mining resources by the center for development of nuclear ore-National Nuclear Energy Agency, Indonesia. The proceedings consist of nuclear mining activity, exploration/exploitation mining mineral and processing, and environmental process. The proceedings consists of one article from keynote speaker and 22 articles from BATAN participants. (PPIN)

  1. Nuclear wastes and public trust

    International Nuclear Information System (INIS)

    Flynn, J.; Slovic, P.

    1993-01-01

    Citing public fear and mistrust, strong opposition to the proposed Yucca Mountain repository site, and less-than-exemplary performance by the Department of Energy (DOE), two private researchers believe present high-level radioactive waste-disposal plans may have to be scrapped. Government and the nuclear industry may have to start over. Policy makers should seek to develop new relationships with communities and states where suitable disposal sites exist. These relationships may require that citizen groups and local institutions be given unprecedented authority in locating and operating such facilities. Contrary to popular impressions, there is still time to take a new approach. The US Nuclear Regulatory Commission says present on-site storage arrangements offer a safe alternative for 100 years or more. The sense of immediate crisis and cries for immediate solutions should be calmed and a more considered strategy brought to the public debate. For starters, the researchers propose that the problems of defense waste be separated from the problems of commercial waste. They also suggest that DOE be assigned responsibility for defense waste and a new agency be created to handle high-level commercial waste

  2. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  3. Shifting strategies and precarious progress: Nuclear waste management in Canada

    International Nuclear Information System (INIS)

    Ramana, M.V.

    2013-01-01

    Canada has a lengthy history of trying to find a path for dealing with radioactive spent fuel and nuclear waste from its nuclear reactors. In the last decade, it has taken major strides towards this goal by evolving a process through which a site for a geological repository to sequester nuclear waste is to be selected. The Canadian Nuclear Waste Management Organization (NWMO) is in the early stages of the process of finding a community that is willing to host such a repository. Differences between the broad principles underlying siting and the processes for actually selecting the site have emerged as the NWMO proceeds with engaging local governments and specific communities. These differences and other conflicts, especially over new nuclear reactor construction, might pose hurdles in the path of successfully setting up a repository. - Highlights: • Canada has set up a process for siting a geological repository for nuclear waste. • The current challenge is to find a community willing to host such a repository. • Authorities are luring communities with the promise of jobs and local investment. • Potential new nuclear reactor construction might become a locus of conflict. • Success in actually setting up a repository is by no means guaranteed

  4. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  5. Long-term risk assessment of radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Girardi, F.; Bertozzi, G.; D'Alessandro, M.

    1978-01-01

    Methods for long-term safety analysis of waste from nuclear power production in the European Community are under study at the Joint Research Centre (JRC) at Ispra, Italy. Aim of the work is to develop a suitable methodology for long-term risk assessment. The methodology under study is based on the assessment of the quantitative value of a system of barriers which may be interposed between waste and man. The barriers considered are: a) quality of the segregation afforded by the geological formation, b) chemical and physical stability of conditioned waste, c) interaction with geological environments (subsoil retention), d) distribution in the biosphere. The methodology is presently being applied to idealized test cases based on the following assumptions: waste are generated during 30 years of operations in a nuclear park (reprocessing + refabrication plant) capable of treating 1000 ton/yr of LWR fuel. High activity waste is conditioned as borosilicate glass (HAW) while low- and medium-level wastes are bituminized (BIP). All waste is disposed off into a salt formation. Transport to the biosphere, following the containment failure occurs by groundwater, with no delay due to retention on adsorbing media. Distribution into the biosphere occurs according to the terrestrial model indicated. Under these assumptions, information was drawn concerning environmental contamination, its levels, contributing elements and pathways to man

  6. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  7. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  8. Geologic disposal of radioactive waste: Ethical and technical issues

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1999-01-01

    defensible doses that show that future people will be protected as well as present-day people are protected from licensed nuclear facilities? If so, the need for a geologic repository could be balanced against the desire for assuring such conservative and careful protection of public health. Relaxation of the safety standard itself, as attempted so prematurely by the House and Senate bills of the present and last Congress, should be made only after special review of that need by the scientific community and the public and approval by Congress. The desire for safeguards protection of buried spent nuclear fuel will be an additional burden on repository design and prediction of performance. Thus, the Yucca Mountain Project faces a demanding technical challenge. Similar challenges face policy makers. They must reject pressures for short-term expediency and economy lest, by enacting policies that compromise scientific validity and credibility, they further undermine public confidence and irreparably harm the programs for disposing of high-level radioactive waste

  9. Research and development of the geological disposal technology for high level radioactive waste in Japan

    International Nuclear Information System (INIS)

    Sun Xuezhi

    2012-01-01

    Safe disposal of high level radioactive waste (HLRW) has become a hot issue around the world and the people are generally concerned about it. The countries that have their own nuclear facilities regard safe disposal of HLRW as a strategic task, which can ensure sustainable industrial development and protect human health and natural environment. At present, deep geological disposal technology for HLRW is only executed and generally accepted in the world. China chose a geological disposal as the main direction for HLRW in 1985, the goal is to set up a national geological repository during 2030-2040. There are still a range of issues and challenges for safe disposal of HLRW in science, technology and engineering because the complexity of the geological disposal system and long-term potential hazards of HLRW. The United States, Finland and Japan have carried out a great deal of research and practice on geological disposal, it is worth to learn from them. This paper introduces Japan geological disposal plan, organization and implementation, fields and topics of research and development on the geological disposal in order to know experience and technology of Japan in the geological disposal, continuously improve our HLRW geologic disposal programs and technology. (authors)

  10. Nuclear waste: A cancer cure?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In a marriage of strange bedfellows, scientists at one of the country's most contaminated nuclear waste sites are collaborating with medical researchers to turn nuclear waste into an experimental therapy for cancer. Patients with Hodgkin's disease and brain, ovarian, and breast cancers may be able to receive the new radiatio-based treatments in the next five to ten years. Recently, scientists at the Hanford site found a way to chemically extract a pure form of the radioisotope yttrium-90 from strontium-90, a by-product of plutonium production. Yttrium-90 is being tested in clinical trials at medical centers around the country as a treatment for various types of cancers, and the initial results are encouraging. The advantage of yttrium-90 over other radioisotopes is its short half-life

  11. Nuclear waste immobilization. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A.E.; Sinclair, W.; McLaughlin, G.M.

    1979-11-20

    United States defense nuclear wastes are presently in tank storage, largely as sludges comprising Fe, Mn, Ni, U and Na oxides and hydroxides, together with 0.5 to 5 percent of fission products and actinides (exclusive of uranium). The relative proportions of Al, Fe, Mn, Ni, U and Na in the sludges from different tanks vary considerably, except that (Fe + Al + Mn) are by far the major components and Fe is more abundant than Mn. Typical compositions of some calcined sludges from Savannah River are given. This paper briefly describes how the SYNROC process, utilizing straightforward technology, can be readily adapted to the problem of defense waste immobilization, yielding a dense, inert, ceramic waste-form, SYNROC-D. Two classes of processes are discussed - one designed to immobilize sludges containing normal amounts of sodium and the other designed for otherwise similar sludges which are, however, strongly depleted in sodium as a result of more efficient washing procedures.

  12. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  13. Nuclear wastes and public acceptance

    International Nuclear Information System (INIS)

    Hammond, R.P.

    1979-01-01

    A new approach to the storage of nuclear wastes is described. Certain criteria for a nuclear waste storage system that is based on ideas of technical soundess and public acceptability are set forth. These criteria are 1.) the wastes must be reliably contained at all times, 2.) the containers must be retrievable and maintainable, 3.) the storage facility must also provide isolation from external events and must also permit careful control of human access, 4.) the storage facility and containers must have plausible or demonstratble likelihood of lasting for 100 years, and 5.) the storage system should be able to accept and retrieve both processed waste and spent fuel elements interchangeably. A specific storage system concept that is based on proved data and that meets the 5 criteria is described. The waste, either glassified high-level waste or spent fuel-fuel bundles from which the end structures have been removed, is stored in sealed stainless steel containers, which is sealed in a second sealed container made of a durable metal such as Ti. The space between the two containers is filled with a gas that can be detected at very low concentrations. These containers are stored in a tunnel excavated into the side of a convenient mountain. The tunnel is excavated above flood level, is accessible by rail and/or road, and is designed for self-draining. A free-standing inner lining is constructed within the tunnel. Offset vertical shafts provide for ventilation. Continuous monitoring leak detectors are maintained in the tunnel and in the stack

  14. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008

    International Nuclear Information System (INIS)

    2008-11-01

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  15. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  16. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  17. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  19. Nuclear wastes: fission

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Progress is reported on investigations of transuranics in soils and plants that have demonstrated the importance of valence state, complexation, competing elements, migration down the soil profile, and weathering cycles in governing transuranic, 129 I and 99 Tc availability to plants and, in the case of Pu, to the consuming animals. In the latter case, it was demonstrated, for the first time, that ingestion of plant tissues containing Pu may result in greater transfer across the gut compared to gavaging animals with inorganic Pu solutions, underscoring the importance of detailed studies of the soil, plant, and animal factors influencing uptake by the ingestion pathway. Further evidence of the importance of the ingestion pathway was provided in studies of foliar interception of airborne transuranic elements in which it was shown that Pu in particles in the respiratory size range were effectively intercepted and retained by plants, and significant quantities of intercepted Pu were transported to roots and seeds. Similar studies on the terrestrial ingestion pathway have been initiated with other actinides including, U, Am, Cm, and Np. Radioecological field studies were directed toward establishment of pertinent ingestion pathways and exposure levels through description of habitat types, population densities, and, in several instances, dosimetry, for major insects, reptiles, birds, and mammalian species. These studies were extended to agricultural ecosystems through definition of the uptake of long-lived nuclides and digestibility in cattle of several forage species. In studies on a pond ecosystem at the nuclear fuel reprocessing plant, Pu and Am uptake rates were studied for major biotic components including organic floc, algae, fish, and ducks. The results indicated that assimilation of transuranics by the biota and export from the pond system were low compared to the total inventory

  20. Construction of ideas and practice for 'nuclear geology featured database'

    International Nuclear Information System (INIS)

    Hu Guanglin; Feng Kai

    2010-01-01

    East China Institute of Technology is engaged in training person in areas of Nuclear Resource exploration. It is Nuclear Featured multi-Institute of Technology. At present, our library was done several collections system, which were focusing on Uranium and Geology. The library decide to be organizational force to construct Nuclear and Geology Featured database and put into use as soon as possible. 'Nuclear Geology Featured Database' put forward for construction principles of uniqueness, standardization, completeness, practicality, security and respecting knowledge property rights. The database contains 'Map and Table', 'periodical thesis', 'dissertations', 'conference papers', newspapers', 'books', ect. The types of literatures mainly includes monographs, periodicals, dissertations, conference papers, newspapers, as well as videos. The database can get information by ways of searching titles, authors and texts, and gradually become a more authoritative Nuclear Geology Database for study. (authors)

  1. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Powell, J.A.

    1984-06-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  2. Study concerning the geological storage of radioactive waste in the Netherlands

    International Nuclear Information System (INIS)

    1987-03-01

    This report presents an intermediate state of affairs in the execution of the first stage of the program of research concerning the geological storage of nuclear waste in the Netherlands (OPLA-program). This first stage consists of desk studies and laboratory investigations in view of the judgement of the desirability of continuation of this program in eventual next steps with field research. 19 refs.; 11 figs.; 1 table

  3. Sensitivity analysis concerning dose equivalents associated with the disposal of radioactive wastes in deep geological formations

    International Nuclear Information System (INIS)

    Lewi, J.; Mejon-Goula, M.J.; Cernes, A.; Brun-Yaba, C.

    1989-11-01

    Even if dose calculations may be performed for nuclear waste repositories in deep geological formations, it is unavoidable that the credibility of the obtained results might be affected by huge incertitudes in connection in particular with a lack of precise knowledge of the different components of the performed evaluations (scenarios, models, parameters). In consequence, this paper presents the approach adopted at the CEA/IPSN for performing sensitivity analysis and some obtained results [fr

  4. Organic diagenesis in commercial nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lechner-Fish, T.J.

    1988-01-01

    The nuclear industry currently faces numerous challenges. Large volumes of already existing wastes must be permanently disposed using environmentally acceptable technologies. Numerous criteria must be addressed before wastes can be permanently disposed. Waste characterization is certainly one of the key criteria for proper waste management. some wastes are complex melting pots of inorganics, radiochemicals, and, occasionally, organics. It is clear, for example, that organics have been used extensively in nuclear operations, such as waste reprocessing, and continue to be used widely as solvents, decontamination agents, etc. The authors have analyzed the organic content of many kinds of nuclear wastes, ranging from commercial to defense wastes. In this paper, the finale analyses are described of three commercial wastes: one waste from a pressurized water reactor (PWR) and two wastes from a boiling water reactor (BWR). The PWR waste is a boric acid concentrate waste. The two BWR wastes, BWR wastes Nos. 1 and 2, are evaporator concentrates of liquid wastes produced during the regeneration of ion-exchange resins used to purify reactor process water. In preliminary analyses, which were reported previously, a few know organics and myriad unknowns were detected. Recent reexamination of mass-spectral data, coupled with reanalysis of the wastes, has resulted in the firm identification of the unknowns. Most of the compounds, over thirty distinct organics, are derived from the degradation, or diagenesis, of source-term organics, revealing, for the first time, that organic diagenesis in commercial wastes is both vigorous and varied

  5. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  6. Materials aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Pohl, R.O.

    1984-01-01

    Detailed discussion of the heat flow in granitic rocks is presented because temperature is one of the most important parameters determining the containment of nuclear waste in a geologic repository. This paper focusses on a review of our present understanding of the thermal conductivity of igneous rocks. It is suggested that the low, glass-like thermal conductivity of one of the major constituents of these rocks, namely the plagioclase feldspars, is caused by a disorder intrinsic to these solids. Because of the strong phonon scattering in the plagioclases, it is their presence, and only to a lesser degree the disorder in the other constituent minerals in the igneous rocks, which determines their conductivity

  7. International safeguards relevant to geologic disposal of high-level wastes and spent fuels

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.

    1989-01-01

    Spent fuels from once-through fuel cycles placed in underground repositories have the potential to become attractive targets for diversion and/or theft because of their valuable material content and decreasing radioactivity. The first geologic repository in the US, as currently designed, will contain approximately 500 Mt of plutonium, 60,000 Mt of uranium and a host of other fissile and strategically important elements. This paper identifies some of the international safeguards issues relevant to the various proposed scenarios for disposing of the spent fuel. In the context of the US program for geologic disposal of spent fuels, this paper highlights several issues that should be addressed in the near term by US industries, the Department of Energy, and the Nuclear Regulatory Commission before the geologic repositories for spent fuels become a reality. Based on US spent fuel discharges, an example is presented to illustrate the enormity of the problem of verifying spent fuel inventories. The geologic disposal scenario for high-level wastes originating from defense facilities produced a ''practicably irrecoverable'' waste form. Therefore, safeguards issues for geologic disposal of high-level waste now in the US are less pressing. 56 refs. , 2 figs

  8. Redox reactions induced by hydrogen in deep geological nuclear waste disposal; Transformations mineralogiques et geochimiques induites par la presence d'hydrogene dans un site de stockage de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Truche, L.

    2009-10-15

    The aim of this study is to evaluate the abiotic hydrogen reactivity in deep geological nuclear waste storage. One crucial research interest concerns the role of H{sub 2} as a reducing agent for the aqueous/mineral oxidised species present in the site. Preliminary batch experiments carried out with Callovo-Oxfordian argillite, synthetic pore water and H{sub 2} gas lead to an important H{sub 2}S production, in only few hours at 250 C to few months at 90 C. In order to explore whether H{sub 2}S can originate from sulphate or pyrite (few percents of the argillite) reduction we performed dedicated experiments. Sulphate reduction experimented in di-phasic systems (water+gas) at 250-300 C and under 4 to 16 bar H{sub 2} partial pressure exhibits a high activation energy (131 kJ/mol) and requires H{sub 2}S initiation and low pH condition as already observed in other published TSR experiments. The corresponding half-life is 210,000 yr at 90 C (thermal peak of the site). On the contrary, pyrite reduction into pyrrhotite by H{sub 2} occurs in few days at temperature as low as 90 C at pH buffered by calcite. The rate of the reaction could be described by a diffusion-like rate law in the 90-180 C temperature interval. The obtained results suggest that pyrite reduction is a process controlled both by the H{sub 2} diffusion across the pyrrhotite pits increasing during reaction progress and the reductive dissolution of pyrite. These new kinetics data can be applied in computation modelling, to evaluate the degree and extent of gas pressure buildup by taking into account the H{sub 2} reactive geochemistry. (author)

  9. Preliminary risk benefit assessment for nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  10. Nuclear waste repository in basalt: preconceptual design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation.

  11. Nuclear waste repository in basalt: preconceptual design guidelines

    International Nuclear Information System (INIS)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation

  12. Uranium immobilization and nuclear waste

    International Nuclear Information System (INIS)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species

  13. Safety aspects of nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  14. Status of borehole plugging and shaft sealing for geologic isolation of radioactive waste

    International Nuclear Information System (INIS)

    1979-01-01

    Activities in programs devoted to disposal of radioactive waste in deep geologic formations are reported. Research on borehole plugging and shaft sealing is emphasized. Past and current activities related to penetration sealing were assessed through an exhaustive literature review and contacts with industrial, governmental, and research organizations. Cited references are included along with a bibliography assembled for this study. Evaluation of literature reviewed and presentation of information obtained from personal contacts are summarized. Technical considerations for penetration sealing as related to nuclear waste isolation, but which may differ from conventional technology, are presented and research needs are identified

  15. Geological disposal of high-level radioactive wastes. Historical perspective and contemporary issues

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2013-01-01

    The contemporary concept on the geological disposal of radioactive wastes, the position of Japan in the world stream of geological disposal, and the ideal aspect of the Japanese geological disposal after the Fukushima accident are described. (M.H.)

  16. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    Science.gov (United States)

    2009-02-06

    judgment fund, rather than the Nuclear Waste Fund, and require no congressional appropriations. DOE calculates that its nuclear waste liabilities to...in existing light and heavy water reactors, and subsequent recycling in high- burnup gas-cooled reactors, reactors fueled by thorium and plutonium...level nuclear waste repository was a calculated risk that the site could be developed successfully. There is no backup plan in place. Yucca Mountain

  17. Chemical risks from nuclear waste repositories

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    Studies concerning the chemical risks of nuclear waste are reviewed. The radiological toxicity of the material is of primary concern but the potential nonradiological toxicity should not be overlooked as the chemotoxic substances may reach the biosphere from a nuclear waste repository. In the report is concluded that the possible chemotoxic effects of a repository for nuclear waste should be studied as a part of the formal risk assessment of the disposal concept. (author)

  18. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  19. Nuclear power, nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    1991-01-01

    The following topics are discussed in 5 chapters: nuclear power, nuclear fuel cycle, radioactive waste management, special events, highlights of the IAEA's work. In the field of nuclear power, the status of nuclear energy generation at the end of 1990 is presented, as well as power plant performance, nuclear power costs, power plant aging and life extension, advanced reactor systems, quality management and quality assurance, automation and human action in nuclear power plant operation and finally the trends of nuclear power to 2010. The following aspects concerning nuclear fuel cycle are discussed: uranium exploration, resources, supply and demand, refining and conversion, enrichment, reactor fuel technology, spent fuel management, economics of the nuclear fuel cycle and trends for the near future. In the field of radioactive waste management, problems concerning treatment and conditioning of radioactive waste, radioactive waste disposal, decontamination and decommissioning and trends for the near future are discussed. Refs, figs and tabs

  20. Geology and geotechnic in the implantation of nuclear power plants

    International Nuclear Information System (INIS)

    Alves, P.R.R.

    1984-01-01

    It is presented a general methodology for geological and geotechnical investigations to be performed in sites selected for the construction of nucldar power plants. Items dealing with the standards applied to licensing of a nuclear power plants, the selection process of sites and identification of geological and geotechnical parameters needed for the regional and local characterization of the area being studied, were incorporated. It is also provided an aid to the writing of technical reports, which are part of the documentation an owner of a nuclear power plant needs to submit to the Comissao Nacional de Energia Nuclear, to fulfill the nuclear installation licensing requirements. (Author) [pt

  1. Research and nuclear wastes. An interdisciplinary reflection, document collective risk and crisis situation, no. 5

    International Nuclear Information System (INIS)

    Gilbert, C.

    2006-01-01

    During the year 2005, scientists discussed and exchanged their point of view on the forecast of the nuclear wastes. Then a seminar took place during summer 2005 on the ''contribution to the debate on the nuclear wastes management future''. This synthesis aims to present the exchanges of this seminar, grouped around 8 main questions: Have the spent fuel to be reprocessing? Is the geological disposal imperative? The reversibility? The transmutation? Is ''the open research'' on wastes, a necessity, an alibi or a problem? The public anxiety or the anxiety of the public? Can we debate on the nuclear wastes regardless of the nuclear program choice? (A.L.B.)

  2. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    International Nuclear Information System (INIS)

    Einziger, R.E.; Himes, D.A.

    1982-06-01

    The Office of Nuclear Waste Isolation (ONWI) is studying the possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository. One aspect of this study is an assessment of the possible spent fuel waste forms. The fuel performance portion of the Waste Form Assessment was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radionuclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3 rods vented to remove gases and resealed; (4) disassembled fuel bundles to close-pack the rods; and (5) rods chopped and fragments immobilized in a matrix material. Thirteen spent fuel waste forms, classified by generic stabilizer type, were analyzed for relative in-repository performance based on: (1) waste form/stabilizer support against lithostatic pressure; (2) long-term stability for radionuclide retention; (3) minimization of cladding degradation; (4) prevention of canister/repository breach due to pressurization; (5) stabilizer heat transfer; (6) the stabilizer as an independent barrier to radionuclide migration; and (7) prevention of criticality. The waste form candidates were ranked as follows: (1) the best waste form/stabilizer combination is the intact assembly, with or without end bells, vented (and resealed) or unvented, with a solid stabilizer; (2) a suitable alternative is the combination of bundled close-packed rods with a solid stabilizer around the outside of the bundle to resist lithostatic pressure; and (3) the other possible waste forms are of lower ranking with the worst waste form/stabilizer combination being the intact assembly with a gas stabilizer or the chopped fuel

  3. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  4. Preliminary analysis on the disposal of high-level radioactive wastes in geological formations of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Mattos, Luis Antonio Terribile de

    1981-01-01

    Several studies show that deep geological formations are the most promising solution - technical and economical - for the safe disposal of the high-level radioactive wastes produced by the nuclear industry. In order to obtain the necessary information to assess on the use of geological sites in Brazil - for the disposal of high-level radioactive waste generated by the brazilian nuclear industry - a careful survey on the basalt and granite rocks of Sao Paulo State was made. The data obtained were evaluated according to guidelines established by the International Atomic Energy Agency. The favourable and unfavourable characteristics of the basalts, granites and their respective occurrence areas in the Sao Paulo state territory - as potential waste disposal sites - were analysed. This preliminary and regional characterization is not a conclusive study whether these two rocks types are definitively the most suitable geological formations for use as nuclear waste repository or not. It is the subsidy for a more detailed analysis. Other factors such as social, political and economical aspects, ecological effects, engineering geology, heat generation rate of the waste, type of radiation emitted and corrosive nature of the waste must also be taken into account. (author)

  5. Resting in peace?- regulatory approaches to the geological storage of radioactive waste and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Langlet, David (School of Business, Economics and Law, Univ. of Goeteborg, Goeteborg (Sweden))

    2010-09-15

    An emerging and much heralded technology for fighting climate change by reducing anthropogenic greenhouse gas emissions is carbon capture and storage (CCS). The final stage of CCS is the storage (or disposal) of the carbon dioxide (CO{sub 2}) away from the atmosphere, typically in a deep geological formation. Although the risks posed by CO{sub 2} differ from those presented by nuclear waste and spent fuel, the similarities - most noticeably the vast time scales involved and the preference for concentration and containment - make a comparison of regulatory approaches to such risks relevant and informative. The intention of the current paper is to carry out such a comparison. Using Sweden as a focal point, applicable legal frameworks for the management of captured CO{sub 2} and spent nuclear fuel and nuclear waste will be juxtaposed. Two aspects in particular will be chosen for closer scrutiny: requirements pertaining to the selection of sites for disposal/storage of nuclear material and captured CO{sub 2} respectively, and the nature and allocation of economic responsibility for handling and minimizing long-term hazards associated with those substances. In the case of nuclear residues, responsibility for spent fuel will be the main focus. However, the same principles mostly apply to other radioactive waste from the nuclear industry, such as parts of decommissioned nuclear reactors

  6. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  7. Global Nuclear Energy Partnership Waste Treatment Baseline

    International Nuclear Information System (INIS)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John

    2008-01-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  8. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  9. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National

  10. Questioning nuclear waste substitution: a case study.

    Science.gov (United States)

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  11. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A study has been made of the requirements and design features for containers to isolate vitrified heat generating radioactive waste from the environment for a period of 500 to 1000 years. The requirements for handling, storing and transporting containers have been identified following a study of disposal operations, and the pressures and temperatures which may possibly be experienced in clay, granite and salt formations have been estimated. A range of possible container designs have been proposed to satisfy the requirements of each of the disposal environments. Alternative design concepts in corrosion resistant or corrosion allowance material have been suggested. Potentially suitable container shell materials have been selected following a review of corrosion studies and although metals have not been specified in detail, titanium alloys and low carbon steels are thought to be appropriate for corrosion resistant and corrosion allowance designs respectively. Performance requirements for container filler materials have been identified and candidate materials assessed. A preliminary container stress analysis has shown the importance of thermal modelling and that if lead is used as a filler it dominates the stress response of the container. Possible methods of manufacturing disposal containers have been assessed and found to be generally feasible. (author)

  12. Space disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Priest, C.C.; Nixon, R.F.; Rice, E.E.

    1980-01-01

    It is proposed that certain types of high-level nuclear wastes obtained from the Purex process be injected into space with the aid of Space Shuttles uprated with liquid rocket boosters able to deliver about 45,000 kg to low Earth orbit, a reusable cryogenic orbit-transfer vehicle (OTV) for Earth escape, and an expendable storable-propellant vehicle for the solar-orbit insertion maneuver. It appears feasible to employ the space option for disposing of Purex wastes, but the mass of waste for space disposal is still large and thus consideration needs to be given to additional processes that will selectively separate only the most hazardous radionuclides for disposal in space. Space disposal should present a lower long-term risk to human health than options calling for disposal on Earth. But short-term risks may not be lower than for terrestrial disposal. They must be acceptable for policy-makers to act on the space option. 37 refs

  13. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses

  14. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 2. Commercial waste forms, packaging and projections for preconceptual repository design studies

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/2, ''Commercial Waste Forms, Packaging and Projections for Preconceptual Repository Design Studies,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume contains the data base for waste forms, packages, and projections from the commercial waste defined by the Office of Waste Isolation in ''Nuclear Waste Projections and Source Term Data for FY 1977,'' Y/OWI/TM-34. Also, as an alternative data base for repository design and analysis, waste forms, packages, and projections for commercial waste defined by Battelle Pacific Northwest Laboratory (BPNL) have been included. This data base consists of a reference case for use in the alternative design study and a definition of combustible wastes for use in mine fire and hydrogen generation analyses.

  15. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted

  16. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

  17. The safe disposal of radioactive wastes in geologic salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.; Proske, R.

    Geologic salt formations appear to be particularly suitable for final storage. Their existance alone - the salt formations in Northern Germany are more than 200 million years old - is proof of their stability and of their isolation from biological cycles. In 1967 the storage of LAW and later, in 1972, of MAW was started in the experimental storage area Asse, south-east of Braunschweig, after the necessary technical preparations had been made. In more than ten years of operation approx. 114,000 drums of slightly active and 1,298 drums of medium-active wastes were deposited without incident. Methods have been developed for filling the available caverns with wastes and salt to ensure the security of long term disposal without supervision. Tests with electric heaters for simulation of heat-generating highly active wastes confirm the good suitability of salt formations for storing these wastes. Safety analyses for the operating time as well as for the long term phase after closure of the final storage area, which among others also comprise the improbable ''greatest expected accident'', namely break through of water, are carried out and confirm the safety of ultimate storage of radioactive wastes in geological salt formations. (orig./HP) [de

  18. Transport and nuclear waste disposal

    International Nuclear Information System (INIS)

    Wild, E.

    1999-01-01

    The author assesses both past and future of nuclear waste disposal in Germany. The failure of the disposal concept is, he believes, mainly the fault of the Federal Government. On the basis of the Nuclear Energy Act, the government is obliged to ensure that ultimate-storage sites are established and operated. Up to the present, however, the government has failed - apart from the episode in Asse and Morsleben and espite existing feasible proposals in Konrad and Gorleben - to achieve this objective. This negative development is particularly evident from the projects which have had to be prematurely abandoned. The costs of such 'investment follies' meanwhile amount to several billion DM. At least 92% of the capacity in the intermediate-storage sites are at present unused. Following the closure of the ultimate-storage site in Morsleben, action must be taken to change over to long-term intermediate-storage of operational waste. The government has extensive intermediate-storage capacity at the intermediate-storage site Nord in Greifswald. There, the wate originally planned for storage in Morsleben could be intermediately stored at ERAM-rates. Nuclear waste transportation, too, could long ago have been resumed, in the author's view. For the purpose of improving the transport organisation, a new company was founded which represents exclusively the interests of the reprocessing firms at the nuclear power stations. The author's conclusion: The EVU have done their homework properly and implemented all necessary measures in order to be able to resume transport of fuel elements as soon as possible. The generating station operators favour a solution based upon agreement with the Federal Government. The EVU have already declared their willingness - in the event of unanimous agreement - to set up intermediate-storage sites near the power stations. The ponds in the generating stations, however, are unsuitable for use as intermediate-storage areas. If intermediate-storage areas for

  19. Geological investigations at TA-54 (waste disposal Area G)

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Becker, N.M.; Maes, M.N.

    1985-01-01

    In 1956, Area G was designated for the disposal of solid radioactive waste ranging from potentially contaminated rubber gloves and glassware to parts of obsolete buildings and equipment that cannot be decontaminated. Pit 26 was constructed in Area G during 1983. Data indicate that the pit is in compliance with the guidelines issued by the US Geological Survey in 1965 and the revised guidelines reissued in 1980 by the Waste Management Group and Environmental Surveillance Group of the Los Alamos National Laboratory. 4 references, 1 figure

  20. Survey of the geological characteristics on the Japanese Islands for disposal of RI and research institute waste

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Shigeru [Chuo Kaihatsu Co., Ltd., Tokyo (Japan); Sakamoto, Yoshiaki; Takebe, Shinichi; Ogawa, Hiromichi; Nakayama, Shinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    In the disposal of radioactive wastes arising from radioisotope utilization facilities and nuclear research facilities, it is necessary to establish the disposal system in proportion to half-lives of radionuclides and radioactivity concentrations in the wastes. According to this disposal system, the radioactive waste should be buried in the underground near the surface, shallow position and deep position. Therefore, it is important to grasp the features of the earth scientific phenomena and geological structure for the disposal system of radioactive waste. Then, for the purpose of the survey of the geological characteristics around the Japanese Islands whole neighborhood, the earth scientific phenomena at present, the geological structure and geotectonic history were summarized on the basis of the existing literatures. (author)

  1. Addressing ethical considerations about nuclear fuel waste management

    International Nuclear Information System (INIS)

    Greber, M.A.

    1996-01-01

    Ethical considerations will be important in making decisions about the long-term management of nuclear fuel waste. Public discussions of nuclear fuel waste management are dominated by questions related to values, fairness, rights and responsibilities. To address public concerns, it is important to demonstrate that ethical responsibilities associated with the current management of the waste are being fulfilled. It is also important to show that our responsibilities to future generations can be met, and that ethical principles will be applied to the implementation of disposal. Canada's nuclear fuel waste disposal concept, as put forward in an Environmental Impact Statement by Atomic Energy of Canada Limited (AECL), is currently under public review by a Federal Environmental Assessment Panel. Following this review, recommendations will be made about the direction that Canada should take for the long-term management of this waste. This paper discusses the ethical principles that are seen to apply to geological disposal and illustrates how the Canadian approach to nuclear fuel waste management can meet the challenge of fulfilling these responsibilities. The author suggests that our ethical responsibilities require that adaptable technologies to site, design, construct, operate decommission and close disposal facilities should de developed. We cannot, and should not, present future generations from exercising control over what they inherit, nor control whether they modify or even reverse today's decisions if that is what they deem to be the right thing to do. (author)

  2. Nuclear waste in public acceptance

    International Nuclear Information System (INIS)

    Vastchenko, Svetlana V.

    2003-01-01

    The existing problem on a faithful acceptance of nuclear information by population is connected, to a considerable extent, with a bad nuclear 'reputation' because of a great amount of misrepresented and false information from 'the greens'. In contrast to a bare style of professionals often neglecting an emotional perception, a loud voice of 'the greens' appeals both to the head, and to the heart of the audience. People pattern their behaviour weakly on problems of safe application of different irradiation sources in industry, conditions of life, medicine and everyday life. Radiation danger of some sources is often exaggerated (computers, nuclear technologies, radiation treatment) and the danger of the others is, on the contrary, underestimated (nuclear and roentgen methods of diagnostics and medical treatment). The majority of our citizens do not know which level of radiation is normal and safe, which ways radioactive substances intake into the organism of a human being and how to diminish the dose load on the organism by simple measures. Only specialists can be orientated themselves in a great number of radiation units. Low level of knowledge of the population and false conceptions are connected with the fact that they are mainly informed about nuclear technologies from mass media, where the voice of 'Greenpeace' is loudly sounded, but they often give misrepresented and false information doing it in the very emotional form. In contrast to them, scientists-professionals often ignore a sensitive part of apprehending of information and do not attach importance to it. As a rule, the style of specialists is of a serious academician character when they meet with the public. People preconception to nuclear waste and distrust to a positive information concerning nuclear technologies are explained, to a considerable extent, by a bivalent type of thinking when people operate by two opposite conceptions only, such as 'there is' or 'there is not' (there is or there is not

  3. Organic analyses of mixed nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lucke, R.B.; Lechner-Fish, T.J.; Hendren, D.J.; Myers, R.B.

    1987-04-01

    Analytical methods are being developed for the organic analysis of nuclear wastes. Our laboratory analyzed the organic content of three commercial wastes and an organic-rich, complex concentrate waste. The commercial wastes contained a variety of hydrophobic and hydrophilic organics, at concentrations ranging from nanomolar to micromolar. Alkyl phenols, chelating and complexing agents, as well as their degradation products, and carboxylic acids were detected in the commercial wastes. The complex concentrate waste contained chelating and complexing agents, as well as numerous degradation products, at millimolar concentrations. 75.1% of the complex concentrate waste's total organic carbon content has been identified. The presence of chelator fragments in all of the wastes analyzed, occasionally at elevated concentrations, indicates that organic diagenesis, or degradation, in nuclear wastes is both widespread and quite vigorous. 23 refs., 3 tabs

  4. Risk methodology for geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R.; Guzowski, R.V.

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs

  5. Nuclear waste and nuclear ethics. Societal and ethical aspects of retrievable storage of nuclear waste

    International Nuclear Information System (INIS)

    Damveld, H.; Van den Berg, R.J.

    2000-01-01

    The aim of the literature study on the title subject is to provide information to researchers, engineers, decision makers, administrators, and the public in the Netherlands on the subject of retrievable storage of nuclear waste, mainly from nuclear power plants. Conclusions and recommendations are formulated with respect to retrievability and ethics, sustainability, risk assessment, information transfer, environmental impacts, and discussions on radioactive waste storage. 170 refs

  6. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  7. Encouraging ethical considerations - One important task for a national co-ordinator for nuclear waste disposal

    International Nuclear Information System (INIS)

    Soederberg, O.

    1999-01-01

    The paper is a brief description of the role and tasks of the Swedish National Co-ordinator for Nuclear Waste Disposal with special regard to one of his activities encouraging ethical considerations in the nuclear waste management issue. Examples are given of ethical considerations which have emerged during discussions among representatives of municipalities which are affected by the current search for a site for a deep geological repository in Sweden for spent nuclear fuel

  8. Parameters and criteria influencing the selection of waste emplacement configurations in mined geologic repositories

    International Nuclear Information System (INIS)

    Bechthold, W.; Closs, K.D.; Papp, R.

    1988-01-01

    Reference concepts for repositories in deep geological formations have been developed in several countries. For these concepts, emplacement configurations vary within a wide range that comprises drift emplacement of unshielded or self-shielded packages and horizontal or vertical borehole emplacement. This is caused by different parameters, criteria, and criteria weighting factors. Examples for parameters are the country's nuclear power program and waste management policy, its geological situation, and safety requirements, examples for criteria and repository area requirements, expenditures of mining and drilling, and efforts for emplacement and, if required, retrieval. Due to the variety of these factors and their ranking in different countries, requirements for a safe, dependable and cost-effective disposal of radioactive waste can be met in various ways

  9. Standard test for nuclear waste materials

    International Nuclear Information System (INIS)

    Nelson, R.D.; Mendel, J.E.; Turcotte, R.P.

    1981-01-01

    The function of the Materials Characterization Center (MCC) is to provide the standardized materials data base and supporting documentation to help ensure safe disposal of nuclear waste. The methods and data are being published in a Nuclear Waste Materials Handbook DOE/TIC 11400. (DG)

  10. Nuclide inventory for nuclear fuel waste management

    International Nuclear Information System (INIS)

    Mehta, K.

    1982-09-01

    To assist research projects in the Canadian Nuclear Fuel Waste Management Prgram, a compilation has been made of all the nuclides that are likely to be present in a nuclear fuel waste disposal vault and that are potentially hazardous to man during the post-closure phase. The compilation includes radiologically toxic and chemically toxic nuclides

  11. Nuclear waste: the battle for Gorleben

    International Nuclear Information System (INIS)

    Michaelis, A.R.

    1980-01-01

    Rioting and bloodshed are nothing new to oppose the progress of technology and a current example is Gorleben, the site of the proposed nuclear waste depository, near Brunswick, Federal Republic of Germany. The disposal of nuclear waste in space, and into and below the oceans as well as on to and below the ground are reviewed and critically discussed. (author)

  12. Waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Molinari, J.

    1982-01-01

    The present lecture deals with energy needs and nuclear power, the importance of waste and its relative place in the fuel cycle, the games of controversies over nuclear waste in the strategies of energy and finally with missions and functions of the IAEA for privileging the rational approach and facilitating the transfer of technology. (RW)

  13. Technical issues in the geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Weart, W.D.

    1980-01-01

    The status of technical understanding regarding radioactive waste repositories in geologic media is improving at a rapid rate. Within a few years the knowledge regarding non-salt repositories will be on a par with that which now exists for salt. To date there is no technical reason to doubt that geologic repositories in several different geologic media can be safely implemented to provide long-term isolation of radioactive wastes. Indeed, for bedded salt, there is now sufficient knowledge to allow all the identified phenomena to be bounded with satisfactory resultant consequences. It is possible to now proceed with technical confidence in an orderly development of a bedded-salt repository at a satisfactory site. This development would call for in-situ experiments, at the earliest possible stage, to confirm or validate the predictions made for the site. These in-situ experiments will be necessary for each repository in a different rock type. If, for non-technical reasons, repository development is delayed, field test facilities should be located as soon as possible in geologic settings typical of proposed repositories. Extensive testing to resolve generic issues will allow subsequent development of repositories to proceed more rapidly with only minimal in-situ testing required to resolve site-specific concerns

  14. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary.

  15. NWTS program criteria for mined geologic disposal of nuclear wasite: site performance criteria

    International Nuclear Information System (INIS)

    1981-02-01

    This report states ten criteria governing the suitability of sites for mined geologic disposal of high-level radioactive waste. The Department of Energy will use these criteria in its search for sites and will reevaluate their use when the Nuclear Regulatory Commission issues radioactive waste repository rules. These criteria encompass site geometry, geohydrology, geochemistry, geologic characteristics, tectonic environment, human intrusion, surface characteristics, environment, and potential socioeconomic impacts. The contents of this document include background discussion, site performance criteria, and appendices. The background section describes the waste disposal system, the application of the site criteria, and applicable criteria from NWTS-33(1) - Program Objectives, Functional Requirements and System Performance Criteria. Appendix A, entitled Comparison with Other Siting Criteria compares the NWTS criteria with those recommended by other agencies. Appendix B contains DOE responses to public comments received on the January 1980 draft of this document. Appendix C is a glossary

  16. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  17. Geological and geotechnical investigations for nuclear power plants sites

    International Nuclear Information System (INIS)

    Alves, P.R.R.

    1984-09-01

    This dissertation presents a general methodology for the tasks of geological and geotechnical investigations, to be performed in the proposed sites for construction of nuclear Power Plants. In this work, items dealing with the standards applied to licensing of Nuclear Power Plants, with the selection process of sites and identification of geological and geotechnical parameters needed for the regional and local characterization of the area being studied, were incorporated. This dissertation also provides an aid to the writing of Technical Reports, which are part of the documentation an owner of a Nuclear Power Plant needs to submit to the Comissao Nacional de Energia Nuclear, to fulfill the nuclear installation licensing requirements. Moreover, this work can contribute to the planning of field and laboratory studies, needed to determine the parameters of the area under investigation, for the siting of Nuclear Power Plants. (Author) [pt

  18. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  19. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  20. The political challenges of nuclear waste

    International Nuclear Information System (INIS)

    Andren, Mats; Strandberg, Urban

    2005-01-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review , 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'

  1. An introduction to nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Ojovan, M.I.; Lee, W.E.

    2005-08-01

    Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in this book cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies

  2. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  3. Topics under Debate - Transmutation of commercial waste should precede geological storage

    International Nuclear Information System (INIS)

    Bowman, C.D.; Thorson, I.M.; McDonald, J.C.

    2004-01-01

    Technology has provided solutions for many of our problems. The generation and distribution of electricity to our homes and businesses has made possible our comfortable modern lifestyle. Of course, nothing comes without a price, and one of the prices we pay for our electrically powered world is the difficulty of managing the wastes resulting from power production. The basic methods used to deal with many types of waste are generally rather primitive. Waste products may be diluted, dispersed or buried in approved places. Rather few waste products resulting from the production of electric power are biodegradable. However, when it comes to nuclear waste, transmutation may offer a solution to a problem that has existed in many countries for many years, if it proves to be technologically and economically feasible. Recently, there have been severe electric power problems in the US. These problems have stimulated renewed interest in developing additional sources of power, with nuclear power being one of those sources. The prospect of increasing the number of nuclear power reactors, while the US capabilities for long-term geological storage of spent fuel are still unclear, is daunting. Transmutation of long-lived isotopes in spent fuel to shorter-lived or more benign isotopes may be necessary, if the process can be performed economically. (author)

  4. Proceedings of the 1996 international conference on deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 September International Conference on Deep Geological Disposal of Radioactive Waste was held in Winnipeg, Canada. Speakers from many countries that have or are developing geological disposal technologies presented the current research and implementation strategies for the deep geological disposal of radioactive wastes. Special sessions focused on International Trends in Geological Disposal and Views on Confidence Building in Radioactive Waste Management; Excavation Disturbed Zone (EDZ) Workshop; Educator's Program and Workshop and a Roundtable on Social Issues in Siting

  5. Geological repositories: The last nuclear frontier. International Conference on Geological Repositories: Political and Technical Progress, 8-10 December 2003, Stockholm, Sweden

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    Few issues play so central a role in the public acceptance of nuclear technologies as the management and disposal of spent fuel and radioactive waste. In the current climate, geological repositories have come to be viewed not as one option among many for completing the nuclear fuel cycle, but as the only sustainable solution achievable in the near term. But despite a longstanding agreement among experts that geological disposal can be safe, technologically feasible and environmentally sound, a large part of the general public remains skeptical. This statement deals with the challenges that IAEA is facing to build public confidence related to spent fuel repositories

  6. Safety Aspects of Nuclear Waste Treatment

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1986-01-01

    In the nuclear fuel cycle - like in most other industrial processes - some waste is produced which can be harmful to the environment and has to be stored safely and isolated from the Biosphere. This radioactive waste can be compared with toxic chemical waste under many aspects, but it has some special features, some of which make its handling more difficult, others make it easier. The difficulties are that radioactive waste does not only affect living organisms after incorporation, but also from some distance through its radiation. Therefore this waste has not only to be encapsuled, but also shielded. At higher concentrations radioactive waste produces heat and this has to be continuously derived from the storage area. On the other hand the control of even extremely small amounts of radioactive waste is very much easier than that of toxic chemical waste due to the high sensitivity of radiation detection methods. Furthermore radioactive waste is not persistent like most of the chemical waste. Of course some components will decay only after millennia, but a high percentage of radioactive waste becomes inactive after days, weeks or years. An important feature of safety aspects related to nuclear waste is the fact that problems of its treatment and storage have been discussed from the very beginning of Nuclear Energy Technology - what has not been the case in relation to most other industrial wastes

  7. Nuclear waste management: preparing for the next century

    International Nuclear Information System (INIS)

    Vandergraaf, T.T.

    1999-01-01

    A world wide consensus has evolved among scientists that geological isolation offers the best option for permanent disposal that the engineering technology has been developed well enough to allow various geologies such as granite, clays, salt, and tuff to be considered as a host rock. A decision to reprocess spent fuel is dictated by a combination of national policies, type of reactor fuel and economics with the end result that form of the used fuel wastes can include used fuel, borosilicate-based vitrified wastes, glass ceramics and other waste forms. In preparing to enter the 21st century, during which we can expect geological disposal of high level nuclear fuel waste to take place, we will need to convince the general public of the safety of this method of disposal. To do this and to build confidence in our ability to assess the environmental impact of used fuel wastes disposal, two important tools can be used, natural analogs studies and long term demonstration experiments. Natural analog studies provide insight into the long term behaviour of radionuclides. Long term demonstration experiments, on the other hand, can be designed so that the conditions can be controlled and monitored during the course of the experiment. (J.P.N.)

  8. Nuclear Waste Policy Act of 1982; proposed general guidelines for recommendation of sites for nuclear waste repositories

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In accordance with the requirements of the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425), hereinafter referred to as the Act, the Department of Energy is proposing general guidelines for the recommendation of sites for repositories for disposal of high-level radioactive waste and spent nuclear fuel in geologic formations. These guidelines are based on the criteria that the Department has used in its National Waste Terminal Storage program, the criteria proposed by the Nuclear Regulatory Commission (NRC), and the environmental standards proposed by the Environmental Protection Agency. These guidelines establish the performance requirements for a geologic repository system, specify how the Department will implement its site-selection program, and define the technical qualifications that candidate sites must meet in the various steps of the site-selection process mandated by the Act. After considering comments from the public; consulting with the Council on Environmental Quality, the Administrator of the Environmental Protection Agency, the Director of the Geological Survey, and interested Governors; and obtaining NRC concurrence, the Department will issue these guidelines in final form as a new Part 960 to Title 10 of the Code of Federal Regulations (10 CFR Part 960)

  9. Parametric study of geohydrologic performance characteristics for geologic waste repositories

    International Nuclear Information System (INIS)

    Bailey, C.E.; Marine, I.W.

    1980-11-01

    One of the major objectives of the National Waste Terminal Storage Program is to identify potential geologic sites for storage and isolation of radioactive waste (and possibly irradiated fuel). Potential sites for the storage and isolation of radioactive waste or spent fuel in a geologic rock unit are being carefully evaluated to ensure that radionuclides from the stored waste or fuel will never appear in the biosphere in amounts that would constitute a hazard to the health and safety of the public. The objective of this report is to quantify and present in graphical form the effects of significant geohydrologic and other performance characteristics that would influence the movement of radionuclides from a storage site in a rock unit to the biosphere. The effort in this study was focused on transport by groundwater because that is the most likely method of radionuclide escape. Graphs of the major performance characteristics that influence the transport of radionuclides from a repository to the biosphere by groundwater are presented. The major characteristics addressed are radioactive decay, leach rate, hydraulic conductivity, porosity, groundwater gradient, hydrodynamic dispersion, ion exchange, and distance to the biosphere. These major performance characteristics are combind with each other and with the results of certain other combinations and presented in graphical form to provide the interrelationships of values measured during field studies. The graphical form of presentation should be useful in the screening process of site selection. An appendix illustrates the use of these graphs to assess the suitability of a site

  10. Nuclear waste problem: does new Europe need new nuclear energy?

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Subbotin, S.

    2003-01-01

    Nuclear Energy for New Europe - what does it mean? New Europe - it means in first order joined Europe. And it is quite clear that also efforts in nuclear energy must be joined. What can be proposed as a target of joint efforts. Improvement of existing plants, technologies, materials? - Certainly, but it is performed already by designers and industry themselves. There exists a problem, which each state using nuclear energy faces alone. It is nuclear waste problem. Nowadays nuclear waste problem is not completely solved in any country. It seems reasonable for joining Europe to join efforts in solving this problem. A satisfactory solution would reduce a risk connected with nuclear waste. In addition to final disposal problem solution it is necessary to reduce total amount of nuclear waste, that means: reducing the rates of accumulation of long-lived dangerous radionuclides; reducing the existing amounts of these radionuclides by transmutation. These conditions can be satisfied in reasonable time by burning of minor actinides and, if possible, by transmutation of long-lived fission products. However we can use this strategy effectively if we will design and construct nuclear energy as a system of which components are united by nuclear fuel cycle as a system-forming factor. The existing structures and approaches may become insufficient for new Europe. Therefore among the initial steps in considering nuclear waste problem must be considering possible promising fuel cycles for European nuclear energy. So, does new Europe need new nuclear energy? It seems, yes. (author)

  11. A global nuclear waste repository

    Science.gov (United States)

    Lin, Wunan

    As a concerned scientist, I think that having a global nuclear waste repository is a reachable goal for human beings. Maybe through this common goal, mankind can begin to treat each other as brothers and sisters. So far, most human activities are framed by national boundaries, which are purely arbitrary. Breaking through these national boundaries will be very beneficial to human beings.Formation of the International Geosphere-Biosphere Program in 1986 indicates a growing awareness on the part of scientists regarding Earth as a system. The Apollo missions gave us a chance to look back at Earth from space. That perspective emphasized that our Earth is just one system: our only home. It is in deed a lonely boat in the high sea of dark space. We must take good care of our “boat.”

  12. Nuclear waste disposal educational forum

    International Nuclear Information System (INIS)

    1982-01-01

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base

  13. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  14. International Nuclear Waste Management Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1994-05-01

    International Nuclear Waste Management Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs, and key personnel in 24 countries, including the US, four multinational agencies and 21 nuclear societies. This publication succeeds the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 13 years. While the title is different, there are no substantial changes in the content

  15. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Powell, J.A. (comps.)

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  16. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    International Nuclear Information System (INIS)

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs

  17. Nuclear fuel waste policy in Canada

    International Nuclear Information System (INIS)

    Brown, P.A.; Letourneau, C.

    1999-01-01

    The 1996 Policy Framework for Radioactive Waste established the approach in Canada for dealing with all radioactive waste, and defined the respective roles of Government and waste producers and owners. The Policy Framework sets the stage for the development of institutional and financial arrangements to implement long-term waste management solutions in a safe, environmentally sound, comprehensive, cost-effective and integrated manner. For nuclear fuel waste, a 10-year environmental review of the concept to bury nuclear fuel waste bundles at a depth of 500 m to 1000 m in stable rock of the Canadian Shield was completed in March 1998. The Review Panel found that while the concept was technically safe, it did not have the required level of public acceptability to be adopted at this time as Canada's approach for managing its nuclear fuel waste. The Panel recommended that a Waste Management Organization be established at arm's length from the nuclear industry, entirely funded by the waste producers and owners, and that it be subject to oversight by the Government. In its December 1998 Response to the Review Panel, the Government of Canada provided policy direction for the next steps towards developing Canada's approach for the long-term management of nuclear fuel waste. The Government chose to maintain the responsibility for long-term management of nuclear fuel waste close with the producers and owners of the waste. This is consistent with its 1996 Policy Framework for Radioactive Waste. This approach is also consistent with experience in many countries. In addition, the federal government identified the need for credible federal oversight. Cabinet directed the Minister of NRCan to consult with stakeholders, including the public, and return to ministers within 12 months with recommendations on means to implement federal oversight. (author)

  18. Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.

    Science.gov (United States)

    Hoffman, Darleane C.; Choppin, Gregory R.

    1986-01-01

    Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)

  19. Geotechnical assessment and instrumentation needs for nuclear waste isolation in crystalline and argillaceous rocks

    International Nuclear Information System (INIS)

    1979-01-01

    To evaluate the state-of-the-art, research needs, and research priorities related to waste disposal in largely impermeable rocks, scientists and engineers working on geologic aspects of nuclear waste disposal were brought together. This report and recommendations are the proceedings from that symposium. Three panels were organized on rock properties, fracture hydrology, and geochemistry. Panel discussions and recommendations are presented

  20. Quaternary geology and waste disposal in South Norfolk, England

    Science.gov (United States)

    Gray, J. M.

    South Norfolk is dominated by the till plain of the Anglian Glaciation in eastern England, and therefore there are very few disused gravel pits and quarries suitable for the landfilling of municipal waste. Consequently, in May 1991, Norfolk County Council applied for planning permission to develop an above ground or 'landraise' waste disposal site at a disused U.S. World War II Airfield at Hardwick in South Norfolk. The proposal involved excavating a pit 2-4 m deep into the Lowestoft Till and overfilling it to create a hill of waste up to 10 m above the existing till plain. In general, leachate containment was to be achieved by utilising the relatively low permeability till on the floor of the site, but with reworking of the till around the site perimeter because of sand lenses in the upper part of the till. This paper examines three aspects of the proposal and the wider issues relating to Quaternary geology and waste disposal planning in South Norfolk: (i) the suitability of the till as a natural leachate containment system; (ii) the appropriateness of the landraise landform; and (iii) alternative sites. A Public Inquiry into the proposals was held in January/February 1993 and notification of refusal of planning permission was published in August 1993. Among the grounds for refusal were an inadequate knowledge of the site's geology and hydrogeology and the availability of alternative sites. The paper concludes by stressing that a knowledge of Quaternary geology is crucial to both the planning and design of landfill sites in areas of glacial/Quaternary sediments.

  1. Nuclear waste handbook. Elements for a debate on nuclear wastes in France

    International Nuclear Information System (INIS)

    2005-01-01

    This handbook contains a set of sheets discussing the different aspects associated with the nuclear waste issue: materials and risks (nuclear material and waste characterization and associated risks), choice and indicators (the French reprocessing-recycling option, valuable and ultimate wastes, long life waste management, long life waste indicators), flows and stocks (flows in the present management, stored, conditioned, waiting and valuable wastes). It also describes the regulatory environment (its principles and gaps) and researches. Then, it proposes a prospective view in terms of electricity production strategies, energy scenarios and technological strategies, nuclear materials with respect to the different scenarios. The decision process and economical and international aspects are finally discussed

  2. Study on improvement in reliability of inventory assessment in vitrified waste for long-term safety of geological disposal

    International Nuclear Information System (INIS)

    Ishikawa, Masumi; Kaneko, Satoru; Kitayama, Kazumi; Ishiguro, Katsuhiko; Ueda, Hiroyoshi; Wakasugi, Keiichiro; Shinohara, Nobuo; Okumura, Keisuke; Chino, Masamichi; Moriya, Noriyasu

    2009-01-01

    Since quality control issues for vitrified waste are defined mainly with the focus on the transport and interim storage of the waste rather than the long-term safety of geological disposal, they do not cover inventories of long-lived nuclides that are of most interest in the safety assessment of geological disposal. Therefore, we suggest a flow chart for the assessment of inventories of long-lived nuclides in the vitrified waste focusing on the measured values. This includes an indirect assessment with indicative nuclides that have been already measured in the returned vitrified wastes from abroad. In order to apply this flow chart for commercial operation, its applicability should be examined for cases with a variation in burn-up history and with an uncertainty associated with carry-over fraction at reprocessing. We started an R and D program to examine the applicability as well as to improve the reliability of the nuclide generation/decay code and the nuclear data library using liquid waste from spent fuel with a clear irradiation history. To solve the issue of quality control for vitrified waste, a comprehensive study is needed in aspects not only of geological disposal field but also of operation of a nuclear power plant, reprocessing of spent fuel and vitrification of liquid waste. This study is a pioneering study conducted to integrate them. (author)

  3. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  4. Nuclear waste management. Quarterly progress report, January-March, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comp.)

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  5. Stakeholder Involvement in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-01-01

    The focus in this paper is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for final disposal of Sweden's spent nuclear fuel. In particular, we concentrate on how the two municipalities of Oskarshamn and Oesthammar have acted as engaged stakeholders, and have gained recognition as such, in the siting process. In general: How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? What are the issues currently subject to stakeholder involvement and how have these been decided upon? An effect of the history of nuclear activity in Oskarshamn and Oesthammar is that stakeholder involvement over a final repository can be divided into social and technical issues. Both municipalities have out of tradition, as part of their social acceptance of a new repository, been prepared to surrender extended involvement in key safety issues. They have been prepared to do this because they also see themselves being able to delegate these safety issues to the government authorities SSI and SKI. These two authorities have been acceptable to the two municipalities as their legitimate 'technological guardians'. As physical geology re-enters the siting process for a deep repository, Oskarshamn appear more prepared to break with tradition than Oesthammar. Oskarshamn are currently demanding transparency from SKB in relation to the exact technical and geological criteria they will use to choose between them and Oesthammar as a repository site. In contrast to Oesthammar, Oskarshamn are preparing with the expected help of SKI and SSI to dispute their geology and its relation to nuclear safety with SKB if they consider it necessary. If Oskarshamn act to draw safety issues in relation to alternative methods and sitings into the EIA process where might this lead? As environmental groups now enter the process (three groups were granted funding in the first round - 2005) the character of site

  6. Questions on geology in connection with final radioactive waste disposal in the Fennoscandian Shield

    International Nuclear Information System (INIS)

    Bjoerklund, A.

    1990-01-01

    The use of nuclear power involves handling and disposal of radioactive waste. A number of methods for disposal have been proposed, one of which is the construction of repositories in crystalline bedrock of old continental crust. This possibility is usually considered reliable because of the relative stability of such bedrock. The Fennoscandian area has repeatedly been glaciated during the past 3 mission years. The last glacial event terminated some 10 000 years ago. This glacial ''massage'' has maintained a dense network of fractures and faults open for circulating water and ascending gas. Blocks of relatively unfractured bedrock have been proposed as suitable sites for the disposal of nuclear waste. Such questions concern neotectonic activity, the movement, salt content and amount of water at a few hundred metres depth, the mobility of elements in the bedrock as well as the geological processes which might be active beneath any future ice cap. Deep groundwaters, dating of young fracture minerals and neotectonic movements have been studied during 1985 - 1989 in a Nordic reserach program sponsored by NKA, the Nordic Liaison Committee for Atomic Energy. Deep saline groundwaters may have a negative effect on repositories of nuclear waste and the knowledge of the location of such waters may also give a hint as to the pattern of water movement in the bedrock. Therefore the composition, origin and location of deep groundwaters were studied. The development of faults in the bedrock through a site of waste disposal before the radioactivity in the waste has decayed to a safe level is considered a serious risk factor. Neotectonic movements have mostly followed old faults and fracture zones in the bedrock, which repeatedly have been reactivated during geological time, leaving blocks between the faults tectonically undisturbed. (CLS) 80 refs

  7. The velocity dependent dissolution of spent nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Nutt, W.M.

    1990-02-01

    A model describing the dissolution of fission products and transuranic isotopes from spent nuclear fuel into flowing ground water has been developed. This model is divided into two parts. The first part of the model calculates the temperature within a consolidated spent fuel waste form at a given time and ground water velocity. This model was used to investigate whether water flowing at rates representative of a geological repository located at Yucca Mountain, Nevada, will cool a wasteform consisting of consolidated spent nuclear fuel pins. Time and velocity dependent temperature profiles were generated. These profiles were input into the second model, which calculates the dissolution rate of waste isotopes from a spent fuel pin. Two dissolution limiting processes were modeled; the processes are dissolution limited by the solubility limit of an isotopes in the ground water, and dissolution limited by the diffusion of waste isotopes from the interior of a spent fuel pin to the surface where dissolution can occur

  8. Geological evaluation of the Slovenian territory for radioactive waste disposal

    Directory of Open Access Journals (Sweden)

    Janko Urbanc

    2002-12-01

    Full Text Available Due to the growing need for a final disposal of low and intermediate level (LILW radioactive waste, the final solution for the short-lived LILW is one of the key issue of radioactive waste management in Slovenia at the moment. In the Area Survey Stage of the site selection process for the final disposal the suitability of the Slovenian territory for a surface or underground repository of LILW is examined by cabinet investigations in order to locate geologically suitable formations. The assessment of natural conditionsof the system was based on consideration of the main geological, hydro-geological and seismotectonic conditions. It was performed with ARC/INFO technology. The results are compiled in a map, showing potential areas for underground and surface disposal of LILWin Slovenia. It has been established that there is a potential suitability for both surface and underground disposal on about 10,000 km2 of the Slovenian territory, which represents almost half of the entire Slovenian territory.

  9. International symposium on technologies for the management of radioactive waste from nuclear power plants and back end nuclear fuel cycle activities. Book of extended synopses

    International Nuclear Information System (INIS)

    1999-09-01

    This document includes 79 extended synopses of presentations delivered at the symposium. The topics discussed include: radioactive waste management policies and technologies; geological disposal of radioactive wastes; spent nuclear fuel management; economic and social aspects of nuclear fuel cycle. Every paper has been indexed separately

  10. Nuclear energy's dilemma: disposing of hazardous radioactive waste safely. Report to the congress

    International Nuclear Information System (INIS)

    1977-01-01

    The unsolved problem of radioactive waste disposal threatens the future of nuclear power in the United States. Nuclear critics, the public, business leaders, and Government officials concur that a solution to the disposal problem is critical to the continued growth of nuclear energy. The Energy Research and Development Administration has begun a program to demonstrate by the mid-1980s the feasibility and safety of placing radioactive wastes in deep geological formations. GAO points out that not only has progress been negligible to date, but that future program goals are overly optimistic because the Energy Research and Development Administration faces many unsolved social, regulatory, and geological obstacles. GAO also discusses the progress and problems the Energy Research and Development Administration faces in managing its radioactive waste and how the Nuclear Regulatory Commission is handling the problem of large amounts of spent nuclear fuel now accumulating at nuclear power plants, and makes a number of recommendations for regulatory and program management changes

  11. Current safety issues in the development of geological disposal of radioactive waste in France

    International Nuclear Information System (INIS)

    Raimbault, P.

    2002-01-01

    Deep geological disposal of high level and medium level long-lived waste in France is one of the three research paths defined by the law of 30th December 1991 on radioactive waste management. Research should be undertaken on: separation and transmutation of long-lived radionuclides in these waste; reversible or non reversible disposal in deep geological layers supported by investigations in underground laboratories; processes for conditioning and long term surface storage of these waste. In 2006, a global evaluation report on this research should be established by the Government and sent to the French Parliament. On this basis the Parliament should promulgate a law providing new objectives for the research and possibly presenting a framework for a deep disposal process. The French Nuclear Safety Authority has the responsibility to license the underground laboratories foreseen in the second research path and the nuclear facilities involved in the first and third research paths and make sure that existing high level and medium level long-lived waste currently produced are properly managed. It will give its advice on the safety aspects associated to the envisaged future management options. Its main concern is that results obtained in 2006 will be conclusive enough to take decisions for future orientations. Concerning the deep disposal option, under the responsibility of ANDRA (Agence Nationale pour la gestion des Dechets RAdioactifs), the construction of an underground laboratory has been authorized on the Bure site, in eastern France, and the shafts are under construction. The main issue is the level of investigations that may be performed in the host rock in order to support the feasibility study of a disposal concept on this site. Other issues are the elaboration of new safety standards to set a framework for a safety assessment of a disposal concept, the specifications for acceptance of waste packages in a future deep disposal, and relation of safety matters with

  12. Effects of shield brine on the safe disposal of waste in deep geologic environments

    Science.gov (United States)

    Park, Y.-J.; Sudicky, E. A.; Sykes, J. F.

    2009-08-01

    The salinity of groundwater increases with depth in the Canadian Shield (up to 1.3 kg/L of density). The existence of brine can be critically important for the safe geologic disposal of radioactive wastes, as dense brine can significantly retard the upward migration of radionuclides released from repositories. Static and flushing conditions of the deep brine are analyzed using a U-tube analogy model. Velocity reduction due to the presence of dense brine is derived under flushing conditions. A set of illustrative numerical simulations in a two-dimensional cross section is presented to demonstrate that dense brine can significantly influence regional groundwater flow patterns in a shield environment. It is implied from the results that (1) the existence of Shield brine can be an indicator of a hydrogeologically stable environment, (2) activities near ground surface may not perturb the stable groundwater environment in the deep brine region, and thus, (3) the deep brine region can be considered as a candidate geologic site for the safe disposal of waste. In addition to brine, other issues associated with long-term waste disposal, such as geological, glacial and seismic events, may need to be considered for the safe storage of spent nuclear fuel in a shield environment.

  13. Draft directive on the management of radioactive wastes based on deep geological disposal

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The European Commission works on a legal framework to assure that all the member states apply the same standards in all the stages of the management of spent fuels and radioactive wastes till their definitive disposal. The draft propositions are the following. The standards to follow are those proposed by the IAEA. First, each member state has to set a national program dedicated to the management of radioactive wastes. This program will have to detail: the chosen solution, the description of the project, a time schedule, costs and financing. Secondly, the exportation of nuclear wastes for definitive disposal is not allowed unless the 2 countries have agreed to build a common nuclear waste disposal center. Thirdly, the population will have to be informed on the project and will have to take part in the decision process. Fourthly, the standards set by IAEA will be enforced by law. There is a broad consensus between scientists and international organizations like IAEA to consider that the disposal in deep geological layers of high-level radioactive wastes is the most adequate solution. (A.C.)

  14. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  15. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Amoroso, J.; Marra, J.

    2014-01-01

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear fuel. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing

  16. Nuclear, energy, environment, wastes, society - NEEDS

    International Nuclear Information System (INIS)

    2013-01-01

    This document presents the seven projects based on partnerships between several bodies, companies and agencies (CNRS, CEA, Areva, EDF, IRSN, ANDRA, BRGM) on research programmes on nuclear systems and scenarios, on resources (mines, processes, economy), on the processing and packaging of radioactive wastes, on the behaviour of materials for storage, on the impact of nuclear activities on the environment, on the relationship between nuclear, risks and society, and on materials for nuclear energy

  17. Report preceding the public debate on the Cigeo project of deep geological storage of radioactive wastes

    International Nuclear Information System (INIS)

    2013-01-01

    This report first presents and comments the inventory made by the ANDRA of materials and wastes which are to be stored in the Cigeo deep geological storage. It highlights the transparency of the decision process related to this project (public debate, investigations and expertise), and also outlines the opinions of some local representatives and associations committed in environment protection regarding the project preparation. Five recommendations are then made by the High Committee for transparency and information on nuclear safety (HCTISN). Additional information is provided in appendix about the material inventory, about the history of the decision process, and also about meetings and hearings held by the High Committee

  18. Information on scientific and technological co-operation between the CMEA member countries in radioactive waste burial in geological formations

    International Nuclear Information System (INIS)

    Tolpygo, V.K.

    1984-02-01

    Research on radioactive waste treatment and disposal constitutes an important area of cooperation between the CMEA member countries. An important part in cooperation has been assigned to the study of systems for disposing radioactive waste of all kinds in geological formations. The cooperation which was initiated in 1971 was realized within the two research programmes scheduled for subsequent periods, viz. for 1971 to 1975, and from 1976 to 1983. Programme work for 1971 to 1975 included three major fields of research: theoretical and experimental research, scientific and technological research and methodological research. As regards methodological research and results of work by the plan for 1976 to 1983, comprehensive research on the methods of disposing radioactive waste in geological formations has been practically completed and documents relating to the industrial introduction of these methods have been prepared. The results of research renders it possible to properly organize from the standpoint of methodology surveying, designing of schematic diagrams and structures of all facilities involving the burial of radioactive waste in geological formations, the evaluation of suitability of the sanitary protection zone from the standpoint of environmental protection and the rational use of natural resources. The drawing of prognostic charts and the development of recommendations on the use of interior of the earth for burying radioactive waste make it possible for the planning bodies, ministries and agencies to evaluate the possibilities for underground burial of radioactive waste in selecting a site and in designing and construction of new nuclear power plants and other nuclear facilities

  19. Credible nuclear waste management: a legislative perspective

    International Nuclear Information System (INIS)

    Jeffords, J.M.

    1978-01-01

    The past credibility of the AEC, ERDA, and NRC, along with the present credibility of DOE and NRC, are questioned. The results of voter responses to a moratorium on expansion of nuclear power are linked to the question of past credibility of these Federal agencies. It is proposed that the future of nuclear power be linked directly to the Executive Branch of the government via a new bureaucracy, a Waste Management Authority. This new bureaucracy would be completely separated from the construction or licensing phase of nuclear power, except it would have final say over any nuclear power expansion pending an acceptable solution to the waste reprocessing question

  20. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  1. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  2. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    National Research Council Canada - National Science Library

    Holt, Mark

    2009-01-01

    Congress designated Yucca Mountain, NV, as the nation's sole candidate site for a permanent high-level nuclear waste repository in 1987, following years of controversy over the site-selection process...

  3. Public policy issues in nuclear waste management

    International Nuclear Information System (INIS)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement

  4. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  5. Tergiversating the price of nuclear waste storage

    International Nuclear Information System (INIS)

    Mills, R.L.

    1984-01-01

    Tergiversation, the evasion of straightforward action of clearcut statement of position, was a characteristic of high-level nuclear waste disposal until the US Congress passed the Nuclear Waste Policy Act of 1982. How the price of waste storage is administered will affect the design requirements of monitored retrievable storage (MRS) facilities as well as repositories. Those decisions, in part, are internal to the Department of Energy. From the utility's viewpoint, the options are few but clearer. Reprocessing, as performed in Europe, is not a perfect substitute for MRS. The European reprocess-repository sequence will not yield the same nuclear resource base as the American MRS-repository scheme. For the future price of the energy resource represented by nuclear waste, the author notes that tergiversation continues. 3 references

  6. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  7. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  8. Seismic safety in nuclear-waste disposal

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Towse, D.

    1979-01-01

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures

  9. Risk decisions and nuclear waste

    International Nuclear Information System (INIS)

    Hansson, S.O.

    1987-11-01

    The risk concept is multidimensional, and much of its contents is lost in the conventional reduction to a unidimensional and quantifiable term. Eight major dimensions of the risk concept are discussed, among them the time factor and the lack-of-knowledge factor. The requirements of a rational discourse are discussed, in general and in relation to risk issues. It is concluded that no single method for the comparison and assessment of risks can be seen as the only rational method. Different methods can all be rational, although based on different values. Risk evaluations cannot be performed as expert assessments, divorced from the political decision process. Instead, risk evaluation must be seen as an essentially political process. Public participation is necessary in democratic decision-making on risks as well as on other issues. Important conclusions can be drawn for the management of nuclear waste, concerning specifications for the technical solution, the need for research on risk concepts, and the decision-making process. (orig.)

  10. Natural scientific strategy for nuclear wastes: Philosophy of Dr. Rodney C. Ewing at Stanford

    Energy Technology Data Exchange (ETDEWEB)

    Woo, T. H. [The Cyber University of Korea, Seoul (Korea, Republic of)

    2016-10-15

    In the geological study, the naturally adapted region was discovered in Oklo, a central African area of Gabon seen in Fig. 1. Currently, this naturally operated nuclear fission site has been stabilized where the artificial shielding structure was not equipped. So, it has been studied to be an exemplified high-level nuclear waste repository. This could give a lesson that one should make the nuclear repository construction. The simplified configuration of the Oklo natural nuclear reactor site is described. The important mentions of Dr. Ewing reflected his philosophy in geological repository and there is a biography. It is necessary to understand the very big difference between human’s cognitive timescale and geological timescale where it could be nearly impossible to construct the long-term or even permanent nuclear waste repository. It is important to understand the opposite opinions of the nuclear waste repository. The government made the milestone of the South Korean repository policy in which the final repository completion was decided as 2053, about 40 years later. Until the time, there is enough time to rethink for the long-term waste repository. It is certain the policy-maker of this nuclear waste policy will be out of the nuclear community before 2053. This means the politician will not take any responsibility of the result of this policy.

  11. Natural scientific strategy for nuclear wastes: Philosophy of Dr. Rodney C. Ewing at Stanford

    International Nuclear Information System (INIS)

    Woo, T. H.

    2016-01-01

    In the geological study, the naturally adapted region was discovered in Oklo, a central African area of Gabon seen in Fig. 1. Currently, this naturally operated nuclear fission site has been stabilized where the artificial shielding structure was not equipped. So, it has been studied to be an exemplified high-level nuclear waste repository. This could give a lesson that one should make the nuclear repository construction. The simplified configuration of the Oklo natural nuclear reactor site is described. The important mentions of Dr. Ewing reflected his philosophy in geological repository and there is a biography. It is necessary to understand the very big difference between human’s cognitive timescale and geological timescale where it could be nearly impossible to construct the long-term or even permanent nuclear waste repository. It is important to understand the opposite opinions of the nuclear waste repository. The government made the milestone of the South Korean repository policy in which the final repository completion was decided as 2053, about 40 years later. Until the time, there is enough time to rethink for the long-term waste repository. It is certain the policy-maker of this nuclear waste policy will be out of the nuclear community before 2053. This means the politician will not take any responsibility of the result of this policy

  12. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  13. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  14. A review and overview of nuclear waste management

    International Nuclear Information System (INIS)

    Murray, R.L.

    1984-01-01

    An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimate disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite

  15. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  16. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  17. Management of radioactive waste nuclear power plants

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Marek, J.

    1976-01-01

    The authors give a survey of the sources, types and amounts of radioactive waste in LWR nuclear power stations (1,300 MWe). The amount of solid waste produced by a Novovorenezh-type PWR reactor (2 x 400 resp. 1 x 1,000 MWe) is given in a table. Treatment, solidification and final storage of radioactive waste are shortly discussed with special reference to the problems of final storage in the CSR. (HR) [de

  18. Overview assessment of nuclear-waste management

    International Nuclear Information System (INIS)

    Burton, B.W.; Gutschick, V.P.; Perkins, B.A.

    1982-08-01

    After reviewing the environmental control technologies associated with Department of Energy nuclear waste management programs, we have identified the most urgent problems requiring further action or follow-up. They are in order of decreasing importance: (1) shallow land disposal technology development; (2) active uranium mill tailings piles; (3) uranium mine dewatering; (4) site decommissioning; (5) exhumation/treatment of transuranic waste at Idaho National Engineering Laboratory; (6) uranium mine spoils; and (7) medical/institutional wastes. 7 figures, 33 tables

  19. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  20. Nuclear Waste Primer: A Handbook for Citizens.

    Science.gov (United States)

    Weber, Isabelle P.; Wiltshire, Susan D.

    This publication was developed with the intention of offering the nonexpert a concise, balanced introduction to nuclear waste. It outlines the dimensions of the problem, discussing the types and quantities of waste. Included are the sources, types, and hazards of radiation, and some of the history, major legislation, and current status of both…

  1. A plan for Soviet nuclear waste

    International Nuclear Information System (INIS)

    Stone, R.

    1992-01-01

    If environmentalist forces are successful, the Russian government may soon establish the country's first comprehensive program for dealing with nuclear waste. Later this month the Russian parliament, back from its summer recess, is expected to begin considering a bill on this topic. A draft copy indicates that Russia is starting with the basics: It orders the government to develop a means of insulting waste from the environment, to form a national waste processing program, and to create a registry for tracking where spent atomic fuel is stored or buried. The bill comes on the heels of a November 1991 decree by Russian President Boris Yeltsin to step up efforts to deal with nuclear waste issues and to create a government registry of nuclear waste disposal sites by 1 January 1993. The former Soviet Union has come under fire from environmentalists for dumping low- and intermediate-level nuclear wastes in the Arctic Ocean and for improperly storing waste at sites in the southern Urals and Belarus. Adding to the bill's urgency is the fact that Russia is considering sites for underground repositories for high-level waste at Tomsk, Krasnoyarsk, Chelyabinsk, and on the Kola Peninsula

  2. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  3. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  4. Swedish programme for disposal of radioactive waste - geological aspects

    International Nuclear Information System (INIS)

    Baeckblom, G.; Karlsson, Fred

    1990-01-01

    Spent nuclear fuel and radioactive wastes of different types are generated in the course of electrical production. These wastes, which already exist and will continue to exist irrespective of the future for nuclear power in Sweden, are potential hazards if not properly managed. SKB in close co-operation with Swedish and international scientists and engineers have demonstrated the need to construct and operate a waste management system that will ensure very high safety for a long period of time. SKB has further demonstrated that with presently available technology it is possible to construct a final repository for long-lived wastes in Sweden that meets very high standards with respect to safety and radiation protection. SKB has also presented a programme for the research, development and other measures that are required to achieve an optimized disposal site system in Sweden. This programme is comprehensive and the strong support of national and international experts. Examples of research projects discussed in the present paper are: (a) efforts to describe the major zones in the rock mass, (b) characterization of low-conductive rock masses, (c) studies of post-glacial faulting and (d) the importance of natural analogues. The rationale for one of the most important projects in progress - the Hard Rock Laboratory - is also presented. (authors)

  5. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  6. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only

  7. Probabilistic modelling of the damage of geological barriers of the nuclear waste deep storage - ENDOSTON project, final report; Modelisation probabiliste d'endommagement des barrieres geologiques du stockage profond de dechets nucleaires - projet ENDOSTON. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    As the corrosion of metallic casings of radioactive waste storage packages releases hydrogen under pressure, and as the overpressure disturbs the stress fields, the authors report the development of methodologies and numerical simulation tools aimed at a better understanding of the mechanisms of development and propagation of crack networks in the geological barrier due to this overpressure. They present a probabilistic model of the formation of crack networks in rocks, with the probabilistic post-processing of a finite element calculation. They describe the modelling of crack propagation and damage in quasi-brittle materials. They present the ENDO-HETEROGENE model for the formation and propagation of cracks in heterogeneous media, describe the integration of the model into the Aster code, and report the model validation (calculation of the stress intensity factor, grid dependence). They finally report a test case of the ENDO-HETEROGENE model

  8. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1984-01-01

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion

  9. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias (eds.) [Forschungszentrum Juelich GmbH (Germany)

    2008-07-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides.

  10. RED-IMPACT. Impact of partitioning, transmutation and waste reduction technologies on the final nuclear waste disposal. Synthesis report

    International Nuclear Information System (INIS)

    Lensa, Werner von; Nabbi, Rahim; Rossbach, Matthias

    2008-01-01

    The impact of partitioning and transmutation (P and T) and waste reduction technologies on the nuclear waste management and particularly on the final disposal has been analysed within the EU-funded RED-IMPACT project. Five representative scenarios, ranging from direct disposal of the spent fuel to fully closed cycles (including minor actinide (MA) recycling) with fast neutron reactors or accelerator-driven systems (ADS), were chosen in the project to cover a wide range of representative waste streams, fuel cycle facilities and process performances. High and intermediate level waste streams have been evaluated for all of these scenarios with the aim of analysing the impact on geological disposal in different host formations such as granite, clay and salt. For each scenario and waste stream, specific waste package forms have been proposed and their main characteristics identified. Both equilibrium and transition analyses have been applied to those scenarios. The performed assessments have addressed parameters such as the total radioactive and radiotoxic inventory, discharges during reprocessing, thermal power and radiation emission of the waste packages, corrosion of matrices, transport of radioisotopes through the engineered and geological barriers or the resulting doses from the repository. The major conclusions of include the fact, that deep geological repository to host the remaining high level waste (HLW) and possibly the long-lived intermediate level waste (ILW) is unavoidable whatever procedure is implemented to manage waste streams from different fuel cycle scenarios including P and T of long-lived transuranic actinides

  11. ``Recycling'' Nuclear Power Plant Waste: Technical Difficulties and Proliferation Concerns

    Science.gov (United States)

    Lyman, Edwin

    2007-04-01

    One of the most vexing problems associated with nuclear energy is the inability to find a technically and politically viable solution for the disposal of long-lived radioactive waste. The U.S. plan to develop a geologic repository for spent nuclear fuel at Yucca Mountain in Nevada is in jeopardy, as a result of managerial incompetence, political opposition and regulatory standards that may be impossible to meet. As a result, there is growing interest in technologies that are claimed to have the potential to drastically reduce the amount of waste that would require geologic burial and the length of time that the waste would require containment. A scenario for such a vision was presented in the December 2005 Scientific American. While details differ, these technologies share a common approach: they require chemical processing of spent fuel to extract plutonium and other long-lived actinide elements, which would then be ``recycled'' into fresh fuel for advanced reactors and ``transmuted'' into shorter-lived fission products. Such a scheme is the basis for the ``Global Nuclear Energy Partnership,'' a major program unveiled by the Department of Energy (DOE) in early 2006. This concept is not new, but has been studied for decades. Major obstacles include fundamental safety issues, engineering feasibility and cost. Perhaps the most important consideration in the post-9/11 era is that these technologies involve the separation of plutonium and other nuclear weapon-usable materials from highly radioactive fission products, providing opportunities for terrorists seeking to obtain nuclear weapons. While DOE claims that it will only utilize processes that do not produce ``separated plutonium,'' it has offered no evidence that such technologies would effectively deter theft. It is doubtful that DOE's scheme can be implemented without an unacceptable increase in the risk of nuclear terrorism.

  12. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  13. LISA: A performance assessment code for geological repositories of radioactive waste

    International Nuclear Information System (INIS)

    Bertozzi, G.; Saltelli, A.

    1985-01-01

    LISA, developed at JRC-Ispra, is a statistical code, which calculates the radiation exposures and risks associated with radionuclide releases from geological repositories of nuclear waste. The assessment methodology is described briefly. It requires that a number of probabilistic components be quantified and introduced in the analysis; the results are thus expressed in terms of risk. The subjective judgment of experts may be necessary to quantify the probabilities of occurrence of rare geological events. Because of large uncertainties in input data, statistical treatment of the Monte Carlo type is utilized for the analysis; thus, the output from LISA is obtained in the form of distributions. A few results of an application to a probabilistic scenario for a repository mined in a clay bed are illustrated

  14. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  15. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 8. Repository preconceptual design studies: salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 8 ''Repository Preconceptual Design Studies: Salt,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/9, ''Drawings for Repository Preconceptual Design Studies: Salt.''

  16. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 10. Repository preconceptual design studies: granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 10 ''Repository Preconceptual Design Studies: Granite,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in granite. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/11, ''Drawings for Repository Preconceptual Design Studies: Granite.''

  17. Neutralization and storage of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Minczewski, J.

    1989-01-01

    Radioactive wastes from nuclear power plants are described. The methods of radioactive wastes processing are shortly presented. Their volume is compared with the quantity of wastes from fossil-fuel power plants and municipal wastes. (A.S.)

  18. A program to assess microbial impacts on nuclear waste containment

    International Nuclear Information System (INIS)

    Horn, J.; Meike, A.

    1996-01-01

    In this paper we discuss aspects of a comprehensive program to identify and bound potential effects of microorganisms on long-term nuclear waste containment, using as examples, studies conducted within the Yucca Mountain Project. A comprehensive program has been formulated which cuts across standard disciplinary lines to address the specific concerns of microbial activity in a radioactive waste repository. Collectively, this program provides bounding parameters of microbial activities that modify the ambient geochemistry and hydrology, modify corrosion rates, and transport and transform radionuclides under conditions expected to be encountered after geological waste emplacement. This program is intended to provide microbial reaction rates and bounding conditions in a form that can be integrated into existing chemical and hydrological models. The inclusion of microbial effects will allow those models to more accurately assess long term repository integrity

  19. Techno-economic Comparison of Geological Disposal of Carbon Dioxide and Radioactive Waste

    International Nuclear Information System (INIS)

    2014-12-01

    The reduction of greenhouse gas emissions is an important prerequisite for sustainable development. The energy sector is a major contributor to such emissions, which are mostly from fossil fuel fired power plants acting as point sources of carbon dioxide (CO 2 ) discharges. For the last twenty years, the new technology of carbon capture and storage, which mitigates CO 2 emissions, has been considered in many IAEA Member States. This technology involves the removal of CO 2 from the combustion process and its disposal in geological formations, such as depleted oil or gas fields, saline aquifers or unmineable coal seams. A large scale energy supply option with low CO 2 emissions is nuclear power. The high level radioactive waste produced during nuclear power plant operation and decommissioning as well as in nuclear fuel reprocessing is also planned to be disposed of in deep geological formations. To further research and development in these areas and to compare and learn from the planning, development and implementation of these two underground waste disposal concepts, the IAEA launched the coordinated research project (CRP) Techno-economic Comparison of Ultimate Disposal Facilities for Carbon Dioxide and Radioactive Waste. The project started in 2008 and was completed in 2012. The project established an international network of nine institutions from nine IAEA Member States, representing both developing and developed countries. The CRP results compared the geological disposal facilities in the following areas: geology, environmental impacts, risk and safety assessment, monitoring, cost estimation, public perception, policy, regulation and institutions. This publication documents the outcome of the CRP and is structured into thematic chapters, covering areas analysed. Each chapter was prepared under the guidance of a lead author and involved co-authors from different Member States with diverse expertise in related areas. Participants drew on the results of earlier

  20. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  1. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  2. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  3. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  4. Safety guidebook relative to the disposal of radioactive wastes in deep geologic formation

    International Nuclear Information System (INIS)

    2008-01-01

    The French nuclear safety authority (ASN) initiated in 2003 a revision process of the objectives to be considered during the research and work steps of the implementation of a radioactive waste storage facility in deep geologic formations. The purpose of this document is to define the safety objectives that have to be retained at each step of this implementation, from the site characterization to the closure of the facility. This update takes into account the works carried out by the ANDRA (French national agency of radioactive wastes) in the framework of the law from December 30, 1991, and the advices of the permanent experts group about these works. It takes also into consideration the international research works in this domain and the choices defined in the program law no 2006-739 from June 28, 2006 relative to the sustainable management of radioactive materials and wastes. The main modifications concern: the notion of reversibility, the definition of the safety functions of disposal components, the safety goals and the design principles assigned to waste packages, the control of nuclear materials and the monitoring objectives of the facility. The documents treats of the following points: 1 - the objectives of public health and environment protection; 2 - the safety principles and the safety-related design bases of the facility; and 3 - the method used for demonstrating the disposal safety. (J.S.)

  5. Deep geologic repository for low and intermediate radioactive level waste in Canada

    International Nuclear Information System (INIS)

    Liu Jianqin; Li Honghui; Sun Qinghong; Yang Zhongtian

    2012-01-01

    Ontario Power Generation (OPG) is undergoing a project for the long-term management of low and intermediate level waste (LILW)-a deep geologic repository (DGR) project for low and intermediate level waste. The waste source term disposed, geologic setting, repository layout and operation, and safety assessment are discussed. It is expected to provide reference for disposal of low and intermediate level waste that contain the higher concentration of long-lived radionuclides in China. (authors)

  6. Corrosion of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Gotic, M.; Foric, J.

    1988-01-01

    In this study the preparation and characterization of borosilicate glasses of different chemical composition were investigated. Borosilicate glasses were doped with simulated nuclear waste oxides. The chemical corrosion in water of these glasses was followed by measuring the leach rates as a function of time. It was found that a simulated nuclear waste glass with the chemical composition (weight %), 15.61% Na 2 O, 10.39% B 2 O 3 , 45.31% SiO 2 , 13.42% ZnO, 6.61% TiO 2 and 8.66% waste oxides, is characterized by low melting temperature and with good corrosion resistance in water. Influence of passive layers on the leaching behaviour of nuclear waste glasses is discussed. (author) 20 refs.; 7 figs.; 4 tabs

  7. Disposal and long-term storage in geological formations of solidified radioactive wastes

    International Nuclear Information System (INIS)

    Shischits, I.

    1996-01-01

    The special depository near Krasnoyarsk contains temporarily about 1,100 tons of spent nuclear fuel (SNF) from WWR- should be solidified and for the most part buried in geological formations. Solid wastes and SNF from RBMK reactors are assumed to be buried as well. For this purpose special technologies and underground constructions are required. They are to be created in the geological plots within the territory of Russian Federation and adjacent areas of CIS, meeting the developed list of requirements. The burial structures will vary greatly depending on the geological formation, the amount of wastes and their isotope composition. The well-known constructions such as deep wells, shafts, mines and cavities can be mentioned. There is a need to design constructions, which have no analog in the world practice. In the course of the Project fulfillment the following work will be conducted: -theoretical work followed by code creation for mathematical simulation of processes; - modelling on the base of prototypes made from equivalent materials with the help of simulators; - bench study; - experiments in real conditions; - examination of massif properties in particular plots using achievements of geophysics, including gamma-gamma density detectors and geo locators. Finally, ecological-economical model will be given for designing burial sites

  8. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  9. The disposal of nuclear waste in space

    Science.gov (United States)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  10. Nuclear waste : Is everthing under control ?

    OpenAIRE

    Giuliani, Gregory; De Bono, Andréa; Kluser, Stéphane; Peduzzi, Pascal

    2007-01-01

    50 years after the opening of the world's first civil nuclear power station, very little radioac- tive waste produced has been permanently disposed of. Moreover, the average age of today's reactors is approximately 22 years, meaning most of them will be decommissioned over the next decades. All of these wastes will have to be disposed of even if no more nuclear reactors are built. But is it wise to take further advantage of the “nuclear path”, without proven and widely-utilized solutions to t...

  11. OPG's deep geologic repository for low and intermediate level waste - recent progress

    International Nuclear Information System (INIS)

    King, F.K.

    2006-01-01

    This paper provides a status report on Canada's first project to build a permanent repository for the long-term management of radioactive waste. Ontario Power Generation has initiated a project to construct a deep geologic repository for low- and intermediate-level waste at the Bruce Nuclear Site, at a depth in the range of 600 to 800 m in an Ordovician-age argillaceous limestone formation. The project is currently undergoing an Environmental Assessment and consulting companies in the areas of environmental assessment, geoscientific site characterization, engineering and safety assessment have been hired and technical studies are underway. Seismic surveys and borehole drilling will be initiated in the fall of 2006. The next major milestone for the project is the submission of the Environmental Assessment report, currently scheduled for December 2008. (author)

  12. Swedish Nuclear Waste Management from Theory to Practice

    International Nuclear Information System (INIS)

    Holmqvist, Magnus

    2008-01-01

    The programme has evolved from a project of a few experts drawing up the outline of what today is a comprehensive programme of research, development, demonstration, design, construction and operation of facilities for radioactive waste management. The Swedish programme was greatly influenced at an early stage by political actions, which included placing the responsibility with the reactor owners to demonstrate safe disposal of spent nuclear fuel and also to fund a disposal programme. The response of the reactor owners was to immediately start the KBS project. Its third report in 1983 described the KBS-3 concept, which is still the basis for SKB's deep geological repository system. Thus, this year is the 25th anniversary of the creation of the well-known KBS-3 concept. The SKB programme for nuclear waste management is today divided in two sub programmes; LILW Programme and the Nuclear Fuel Programme. The LILW Programme is entering into a new phase with the imminent site investigations for the expansion of the SFR LILW repository, which is in operation since 1988, to accept also decommissioning waste. The expansion of SFR is driven by a government decision urging SKB to investigate when a licensing of a repository for decommissioning waste can be made

  13. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  14. Nuclear Waste--Physics and Policy

    Science.gov (United States)

    Ahearne, John H.

    1996-03-01

    Managing and disposing of radioactive waste are major policy and financial issues in the United States and many other countries. Low-level waste sites, once thought to be possible in many states, remain fixed at the few sites that have been operating for decades. High-level waste remains at former nuclear weapons facilities and at nuclear power plants, and the DOE estimates a repository is unlikely before 2010, at the earliest. Physics and chemistry issues relate to criticality, plutonium loading in glass, leach rates, and diffusion. The public policy issues concern non-proliferation, states' rights, stakeholder participation, and nuclear power. Cleaning up the legacy of cold war driven nuclear weapons production is estimated to cost at least $250 billion and take three-quarters of a century. Some possible steps towards resolution of these issues will be described.

  15. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  16. Influences of microbiology on nuclear waste disposal

    International Nuclear Information System (INIS)

    Dunk, M.

    1991-05-01

    This study was carried out to determine the effects of microbial activity on the disposal of nuclear waste. The areas chosen for study include nutrient availability (both organic and inorganic), the effect of increased pH and potential gas generation from the waste. Microbes from various soil habitats could grow on a variety of cellulose-based substrates including simulant waste. Increased pH did not appear to greatly effect the growth of these microbes. Gas generation by microbes growing on a simulant waste was determined over an extended period under a variety of nutritional conditions. The simulant waste was a good substrate for microbes and adding inorganic nutrients did not significantly affect the final yield of gas; extrapolated to about 14.6 3 gas per tonne of waste. The experiments have highlighted a number of areas for further research and they are currently being addressed. (author)

  17. On-site storage of high level nuclear waste: attitudes and perceptions of local residents.

    Science.gov (United States)

    Bassett, G W; Jenkins-Smith, H C; Silva, C

    1996-06-01

    No public policy issue has been as difficult as high-level nuclear waste. Debates continue regarding Yucca Mountain as a disposal site, and-more generally-the appropriateness of geologic disposal and the need to act quickly. Previous research has focused on possible social, political, and economic consequences of a facility in Nevada. Impacts have been predicted to be potentially large and to emanate mainly from stigmatization of the region due to increased perceptions of risk. Analogous impacts from leaving waste at power plants have been either ignored or assumed to be negligible. This paper presents survey results on attitudes of residents in three counties where nuclear waste is currently stored. Topics include perceived risk, knowledge of nuclear waste and radiation, and impacts on jobs, tourism, and housing values from leaving waste on site. Results are similar to what has been reported for Nevada; the public is concerned about possible adverse effects from on-site storage of waste.

  18. Initial studies to assess microbial impacts on nuclear waste disposal

    International Nuclear Information System (INIS)

    Horn, J.M.; Meike, A.; McCright, R.D.; Economides, B.

    1996-01-01

    The impacts of the native and introduced bacteria on the performance of geologic nuclear waste disposal facilities should be evaluated because these bacteria could promote corrosion of repository components and alteration of chemical and hydrological properties of the surrounding engineered and rock barriers. As a first step towards investigating these potentialities, native and introduced bacteria obtained from post-construction Yucca Mountain (YM) rock were isolated under varying conditions, including elevated temperature, low nutrient availability, and the absence of available oxygen. Individual isolates are being screened for activities associated with microbially induced corrosion of metals (MIC). Preliminary determination of growth rates of whole YM microbial communities under varying conditions was also undertaken

  19. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  20. Summary and evaluation of nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Ewing, R.C.

    1988-01-01

    Typically, the final comparison of waste forms (e.g., Hench et al. 1984) rested on the predicted risk to man, often calculated as a dose-to-man over long periods of time (Cheung et al. 1982). The codes (e.g., MISER) used in these predictions calculated the transport behavior of radionuclides from the repository and, not surprisingly, found that the differences in the performance between waste forms (e.g., glass versus ceramic) did not result in significant differences in the final ''dose-to-man''. Such conclusions formed the basis for the discontinuation of research programs on alternative or second generation waste forms. This was most unfortunate, because despite the seemingly quantitative results of such calculations, the codes did not take advantage of a detailed knowledge of the various process by which waste form might degrade (e.g., fracture, corrosion or radiation effects). Thus, the conclusion that the calculated ''dose-to-man'' was not sensitive to the orders of magnitude variation in the release of radionuclides from different types of waste forms was not based on any scientific understanding of waste form degradation processes. Significantly, such calculations obscured important differences in the materials properties among waste forms and the different ways in which waste forms interact with various geologic environments. In this chapter, the authors have tried to avoid an approach of this type and have instead compiled data from the contributed chapters into tables

  1. Lawrence Livermore Laboratory Nuclear Test Effects and Geologic Data Bank

    International Nuclear Information System (INIS)

    Howard, N.W.

    1976-01-01

    Data on the geology of the USERDA Nevada Test Site have been collected for the purpose of evaluating the possibility of release of radioactivity at proposed underground nuclear test sites. These data, including both the rock physical properties and the geologic structure and stratigraphy of a large number of drill-hole sites, are stored in the Lawrence Livermore Laboratory Earth Sciences Division Nuclear Test Effects and Geologic Data Bank. Retrieval programs can quickly provide a geological and geophysical comparison of a particular site with other sites where radioactivity was successfully contained. The data can be automatically sorted, compared, and averaged, and information listed according to site location, drill-hole construction, rock units, depth to key horizons and to the water table, and distance to faults. These programs also make possible ordered listings of geophysical properties (interval bulk density, overburden density, interval velocity, velocity to the surface, grain density, water content, carbonate content, porosity, and saturation of the rocks). The characteristics and capabilities of the data bank are discussed

  2. Nuclear waste disposal: perspective of a geochemist

    International Nuclear Information System (INIS)

    Sengupta, Pranesh; Dey, G.K.

    2011-01-01

    Satisfying the growing requirement in an environment friendly way is one of the most important tasks we need to accomplish these days. Considering the restricted non-renewable energy resources and limited technological progresses achieved in the renewable energy sectors in India, nuclear energy appears to be one of the most lucrative solutions towards the forthcoming energy crisis. Successful implementation of nuclear energy program however requires careful execution of high level nuclear waste management activities. One very important aspect of this process is to identify and develop suitable inert matrix(ces) for conditioning of nuclear waste(s) using natural analogue studies. And this establishes the very vital linkage between geochemical studies and nuclear waste immobilization. One good example of such an interdisciplinary approach can be seen in the methodologies adopted for immobilization of sulfate bearing high level nuclear wastes (SO 4 -HLW). It has been reported on several occasions that sulfur-rich melt get separated from silicate melt within magma chamber. Similar process has also been witnessed within vitrification furnaces whenever an attempt has been made to condition SO 4 -HLW within borosilicate glass matrices. Since such liquid-liquid phase separation leads to multiple difficulties in connection to radionuclide immobilization and plant scale vitrification processes, solutions were sought from natural analogue studies. Such as integrated approach ultimately resulted in establishing two different methodologies e.g. (i) modifying the borosilicate network through introduction of Ba 2+ cation; a process being followed in India and (ii) using phosphatic melt as a host instead of borosilicate melt; a process being followed in Russia. Detail of these two routes and the geochemical linkage in nuclear waste immobilization will be discussed.(author)

  3. Site selection for nuclear power plants and geologic seismologia influence

    International Nuclear Information System (INIS)

    Castro Feitosa, G. de.

    1985-01-01

    The site selection for nuclear power plants is analised concerning to the process, methodology and the phases in an overall project efforts. The factors affecting are analised on a general viewpoint, showing the considerations given to every one. The geologic and seismologic factors influence on the foundation design are more detailed analised, with required investigation and procedures accordingly sub-soil conditions in the site [pt

  4. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  5. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  6. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  7. Nuclear waste isolation activities report

    International Nuclear Information System (INIS)

    1980-12-01

    Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE's radwaste management programs

  8. Analysis of nuclear waste management

    International Nuclear Information System (INIS)

    Center, J.L.; Crawford, B.S.; Ross, B.; Sutherland, A.A. Jr.

    1976-01-01

    An event tree is developed, outlining ways which radioactivity can be accidentally released from high level solidified wastes. Probabilities are assigned to appropriate events in the tree and the major contributors to dose to the general population are identified. All doses are computed on a per megawatt electric-year basis. Sensitivity relations between the expected dose and key characteristics of the solidified wasted are developed

  9. Agency for Nuclear Projects/Nuclear Waste Project Office final progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) was formally established by Executive Policy in 1983 following passage of the federal Nuclear Waste Policy Act of 1982 (Act). That Act provides for the systematic siting, construction, operation, and closure of high-level radioactive defense and research by-products and other forms of high-level radioactive waste from around the country which will be stored at such repositories. In 1985 the Nevada legislature formally established the NWPO as a distinct and statutorily authorized agency to provide support to the Governor and State Legislature on matters concerning the high-level nuclear waste programs. The NWPO utilized a small, central staff supplemented by contractual services for needed technical and specialized expertise in order to provide high quality oversight and monitoring of federal activities, to conduct necessary independent studies, and to avoid unnecessary duplication of efforts. This report summarizes the results of this ongoing program to ensure that risks to the environment and to human safety are minimized. It includes findings in the areas of hydrogeology, geology, quality assurance activities, repository engineering, legislature participation, socioeconomic affects, risk assessments, monitoring programs, public information dissemination, and transportation activities. The bulk of the reporting deals with the Yucca Mountain facility

  10. Trilingual vocabulary of nuclear waste management

    International Nuclear Information System (INIS)

    Jacob, H.

    1996-01-01

    This reference document is produced in cooperation with partners in the Union Latine, an international organization dedicated to promoting the Romance languages. In 1992 acting on a request submitted by the Montreal Environment Section of the Translation Bureau, the Terminology and Standardization Directorate published an in-house glossary containing 2500 entries on nuclear waste management. The glossary was produced by scanning bilingual terms in the reports submitted to Atomic Energy of Canada Limited by the Siting Process Task Force on Low-Level Radioactive Waste Disposal. Because the scale of the nuclear waste management problem has grown considerably since then, the glossary needed to be expanded and revised. The Vocabulary contains some 1000 concepts for a total of approximately 3000 terms in each of the three languages, english, french and spanish. Special attention has been given to defining basic physical concepts, waste classifications and disposal methods

  11. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  12. Some political logistics of nuclear waste

    International Nuclear Information System (INIS)

    Pulsipher, A.G.

    1991-01-01

    The need for a centralized, federal, interim storage facility for nuclear waste, or MRS, alledgedly has become more urgent because the date for the opening of the permanent repository has been slipped from 2003 to 2010 at the earliest. However, a MRS constrained by the linkages in the Nuclear Waste Policy Act would make little sense and has no support. DOE wants to change the NWPAA linkages but unless the size of the MRS is constrained to approximately that now permitted, DOE's proposal would be so directly antithetical to the strategic vision and political aspirations of opponents of interim storage that it would seriously retard the development of the badly needed political consensus on national nuclear waste disposal policy. A new linkage, an acceptance rate limitation, is analyzed and the argument advanced that it would yield most of the benefits attributed to an MRS by DOE without aggravating the political concerns of MRS opponents

  13. The local community and the nuclear waste

    International Nuclear Information System (INIS)

    Lidskog, R.

    1998-01-01

    In this book social and political scientists discuss different aspects of the selection of a site for disposal of the Swedish nuclear waste. Special attention is given to the preliminary studies that have been performed at a few localities. The authors study the chain of events after a community is proposed for a site study. What powers are set in motion? How do different groups act in order to support or stop the study? Which is the role played by political parties, local environmentalist movements, media and experts? Why is there a forceful opposition in one community and not in another? Why does one local government invite the nuclear waste company to perform the study, while another refuses? The role of the local government has become crucial, since the nuclear waste company have chosen to perform studies only in municipalities that show a positive interest

  14. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  15. Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste

    Science.gov (United States)

    Levich, R.A.; Stuckless, J.S.

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.

  16. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  17. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  18. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    International Nuclear Information System (INIS)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer

    2013-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  19. Nuclear Waste Fund cash management procedures

    International Nuclear Information System (INIS)

    1988-04-01

    The Nuclear Waste Policy Act if 1982 (NWPA) provided for the Office of Radioactive Waste Management (OCRWM) to adopt financial and accounting methods comparable to those used by private industry, including borrowing and investing authority. This document describes the procedures OCRWM follows to meet its borrowing and investing authority under the NWPA. These procedures are a supplement to, and are, therefore, not intended to supersede, existing Departmental policies and procedures

  20. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.; Rosinger, E.L.J.

    1984-04-01

    This report, the fifth of a series of annual reports, reviews the progress that has been made in the research and development program for the safe management and disposal of Canada's nuclear fuel waste. The report summarizes activities over the past year in the following areas: public interaction; used fuel storage and transportation; immobilization of used fuel and fuel recycle waste; geoscience research related to deep underground disposal; environmental research; and environmental and safety assessment