WorldWideScience

Sample records for geological mapping mineral

  1. Geology and mineral potential of Ethiopia: a note on geology and mineral map of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Tadesse, S.; Milesi, J.P.; Deschamps, Y. [University of Addis Ababa, Addis Ababa (Ethiopia). Dept. for Geology & Geophysics

    2003-05-01

    This work presents a geoscientific map and database for geology, mineral and energy resources of Ethiopia in a digital form at a scale of 1 : 2,000,000, compiled from several sources. The final result of the work has been recorded on CD-ROM in GIS format. Metallic resources (precious, rare, base and ferrous-ferroalloy metals) are widely related to the metamorphic meta-volcano-sedimentary belts and associated intrusives belonging to various terranes of the Arabian-Nubian Shield, accreted during the East and West Gondwana collision (Neoproterozoic, 900-500 Ma). Industrial minerals and rock resources occur in more diversified geological environments, including the Proterozoic basement rocks, the Late Paleozoic to Mesozoic sediments and recent (Cenozoic) volcanics and associated sediments. Energy resources (oil, coal, geothermal resources) are restricted to Phanerozoic basin sediments and Cenozoic volcanism and rifting areas.

  2. Geologic Maps as the Foundation of Mineral-Hazards Maps in California

    Science.gov (United States)

    Higgins, C. T.; Churchill, R. K.; Downey, C. I.; Clinkenbeard, J. P.; Fonseca, M. C.

    2010-12-01

    The basic geologic map is essential to the development of products that help planners, engineers, government officials, and the general public make decisions concerning natural hazards. Such maps are the primary foundation that the California Geological Survey (CGS) uses to prepare maps that show potential for mineral-hazards. Examples of clients that request these maps are the California Department of Transportation (Caltrans) and California Department of Public Health (CDPH). Largely because of their non-catastrophic nature, mineral hazards have received much less public attention compared to earthquakes, landslides, volcanic eruptions, and floods. Nonetheless, mineral hazards can be a major concern locally when considering human health and safety and potential contamination of the environment by human activities such as disposal of earth materials. To address some of these concerns, the CGS has focused its mineral-hazards maps on naturally occurring asbestos (NOA), radon, and various potentially toxic metals as well as certain artificial features such as mines and oil and gas wells. The maps range in scope from statewide to counties and Caltrans districts to segments of selected highways. To develop the hazard maps, the CGS begins with traditional paper and digital versions of basic geologic maps, which are obtained from many sources such as its own files, the USGS, USDA Forest Service, California Department of Water Resources, and counties. For each study area, these maps present many challenges of compilation related to vintage, scale, definition of units, and edge-matching across map boundaries. The result of each CGS compilation is a digital geologic layer that is subsequently reinterpreted and transformed into new digital layers (e.g., lithologic) that focus on the geochemical and mineralogical properties of the area’s earth materials and structures. These intermediate layers are then integrated with other technical data to derive final digital layers

  3. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems : An example from the Rodalquilar epithermal system

    NARCIS (Netherlands)

    van der Meer, F.D.; Kopačková, Veronika; Koucká, Lucie; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Bakker, W.H.

    2018-01-01

    The final product of a geologic remote sensing data analysis using multi spectral and hyperspectral images is a mineral (abundance) map. Multispectral data, such as ASTER, Landsat, SPOT, Sentinel-2, typically allow to determine qualitative estimates of what minerals are in a pixel, while

  4. The Alaskan mineral resource assessment program; background information to accompany folio of geologic and mineral resource maps of the Ambler River Quadrangle, Alaska

    Science.gov (United States)

    Mayfield, Charles F.; Tailleur, I.L.; Albert, N.R.; Ellersieck, Inyo; Grybeck, Donald; Hackett, S.W.

    1983-01-01

    The Ambler River quadrangle, consisting of 14,290 km2 (5,520 mi2) in northwest Alaska, was investigated by an interdisciplinary research team for the purpose of assessing the mineral resource potential of the quadrangle. This report provides background information for a folio of maps on the geology, reconnaissance geochemistry, aeromagnetics, Landsat imagery, and mineral resource evaluation of the quadrangle. A summary of the geologic history, radiometric dates, and fossil localities and a comprehensive bibliography are also included. The quadrangle contains jade reserves, now being mined, and potentially significant resources of copper, zinc, lead, and silver.

  5. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system

    Science.gov (United States)

    van der Meer, Freek; Kopačková, Veronika; Koucká, Lucie; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Bakker, Wim H.

    2018-02-01

    The final product of a geologic remote sensing data analysis using multi spectral and hyperspectral images is a mineral (abundance) map. Multispectral data, such as ASTER, Landsat, SPOT, Sentinel-2, typically allow to determine qualitative estimates of what minerals are in a pixel, while hyperspectral data allow to quantify this. As input to most image classification or spectral processing approach, endmembers are required. An alternative approach to classification is to derive absorption feature characteristics such as the wavelength position of the deepest absorption, depth of the absorption and symmetry of the absorption feature from hyperspectral data. Two approaches are presented, tested and compared in this paper: the 'Wavelength Mapper' and the 'QuanTools'. Although these algorithms use a different mathematical solution to derive absorption feature wavelength and depth, and use different image post-processing, the results are consistent, comparable and reproducible. The wavelength images can be directly linked to mineral type and abundance, but more importantly also to mineral chemical composition and subtle changes thereof. This in turn allows to interpret hyperspectral data in terms of mineral chemistry changes which is a proxy to pressure-temperature of formation of minerals. We show the case of the Rodalquilar epithermal system of the southern Spanish Gabo de Gata volcanic area using HyMAP airborne hyperspectral images.

  6. Geologic map of metallic and nonmetallic mineral deposits, Badakhshan Province, Afghanistan, modified from the 1967 original map compilation of G.G. Semenov and others

    Science.gov (United States)

    Peters, Stephen G.; Stettner, Will R.; Mathieux, Donald P.; Masonic, Linda M.; Moran, Thomas W.

    2014-01-01

    This geologic map of central Badakhshan Province, Afghanistan, is a combined, redrafted, and modified version of the Geological map of central Badakhshan, scale 1:200,000 (sheet 217), and Map of minerals of central Badakhshan, scale 1:200,000 (also sheet 217) from Semenov and others (1967) (Soviet report no. R0815). That unpublished Soviet report contains the original maps and cross sections, which were prepared in cooperation with the Ministry of Mines and Industries of the Republic of Afghanistan in 1967 under contract no. 1378 (Technoexport, USSR). This USGS publication also includes the gold metallogeny summarized in Abdullah and others (1977) and Peters and others (2007, 2011), and additional compilations from Guguev and others (1967).

  7. Geologic Mapping in Nogal Peak Quadrangle: Geochemistry, Intrusive Relations and Mineralization in the Sierra Blanca Igneous Complex, New Mexico

    Science.gov (United States)

    Goff, F.; Kelley, S. A.; Lawrence, J. R.; Cikowski, C. T.; Krier, D. J.; Goff, C. J.; McLemore, V. T.

    2011-12-01

    Nogal Peak quadrangle is located in the northern Sierra Blanca Igneous Complex (SBIC) and contains most of the White Mountain Wilderness (geologic map is available at http://geoinfo.nmt.edu/publications/maps/geologic/ofgm/details.cfml?Volume=134). The geology of the quad consists of a late Eocene to Oligocene volcanic pile (Sierra Blanca Volcanics, mostly alkali basalt to trachyte) intruded by a multitude of dikes, plugs and three stocks: Rialto, 31.4 Ma (mostly syenite), Three Rivers, ca. 29 to 27 Ma (quartz syenite intruded by subordinate alkali granite), and Bonito Lake, 26.6 Ma (mostly monzonite). Three Rivers stock is partially surrounded by alkali rhyolites that geochemically resemble the alkali granites. The circular shape of the stock and surrounding rhyolites suggests they form the root of a probable caldera. SBIC rocks have compositions typical of those found within the Rocky Mountain alkaline belt and those associated with continental rift zone magmatism. Because the volcanic host rocks are deeply eroded, intrusive relations with the stocks are well exposed. Most contacts at stock margins are near vertical. Roof pendants are common near some contacts and stoped blocks up to 700 m long are found within the Three Rivers stock. Contacts, pendants and stoped blocks generally display some combination of hornfelsing, brecciation, fracturing, faulting and mineralization. Sierra Blanca Volcanics display hydrothermal alteration increasing from argillic in the NW sector of the quad to high-temperature porpylitic near stock margins. Retrograde phyllic alteration occurs within breccia pipes and portions of the stocks. Mineral deposits consist of four types: Placer Au, fissure veins (mostly Ag-Pb-Zn±Au), breccia pipes (Au-Mo-Cu), and porphyry Mo-Cu. A singular pipe on the SW margin of Bonito Lake stock contains sapphire-lazulite-alunite. Although Au has been intermittently mined in the quad since 1865, best production of Au originated around the turn of the last

  8. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  9. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Tonopah 1 by 2 degree Quadrangle, Nevada

    Science.gov (United States)

    John, David A.; Nash, J.T.; Plouff, Donald; Whitebread, D.H.

    1991-01-01

    The Tonopah 1 ? by 2 ? quadrangle in south-central Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists references to the geology, geochemistry, geophysics, and mineral deposits of the Tonopah 1 ? by 2 ? quadrangle.

  10. County digital geologic mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  11. County digital geologic mapping. Final report

    International Nuclear Information System (INIS)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-01-01

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included

  12. Mineral resources, geologic structure, and landform surveys

    Science.gov (United States)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  13. The Europa Global Geologic Map

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D. A.; Collins, G. C.

    2018-06-01

    The Europa Global Geologic Map reveals three periods in Europa's surface history as well as an interesting distribution of microchaos. We will discuss the mapping and the interesting implications of our analysis of Europa's surface.

  14. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  15. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  16. Statistical treatment of geochemical data and its application in the geologic mapping and in the definition of the geochemical anomalies in the Alvo 2-Corpo 4 -Provincia Mineral de Carajas

    International Nuclear Information System (INIS)

    Moura, C.A.V.

    1982-01-01

    It was given a statistical treatment for the geochemical data about soil in the are named Alvo2 - Corpo4- in the Provincia Mineral de Carajas, Para, Brazil, for application of the geological mapping and definition of geochemical anomalies. (A.B.) [pt

  17. The geological map of Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.; Ferrando, L.; Fernandez, A.; Elizalde, G.; Morales, H.; Ledesma, J.; Carballo, E.; Medina, E.; Ford, I.; Montana, J.

    1975-01-01

    The geological map of Uruguay is about the morphological characteristics of the soil such as rocks, sediments and granites belong to different periods. These periods are the proterozoic, paleozoic, permian, mesozoic, jurassic, cretaceous, cenozoic and holocene.

  18. Minerals, lands, and geology for the common defence and general welfare, Volume 4, 1939-1961: A history of geology in relation to the development of public-land, federal science, and mapping policies and the development of mineral resources in the United States from the 60th to the 82d year of the U.S. Geological Survey

    Science.gov (United States)

    Rabbitt, Mary C.; Nelson, Clifford M.

    2015-01-01

    The fourth volume of the comprehensive history of the U.S. Geological Survey (USGS) is titled “Minerals, Lands, and Geology for the Common Defence and General Welfare—Volume 4, 1939‒1961.” The title is based on a passage in the preamble of the U.S. Constitution.

  19. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  20. USGS National Geologic Map Database Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. According to...

  1. 939 Department of Geology and Mineral Science

    African Journals Online (AJOL)

    USER

    2015-11-12

    Nov 12, 2015 ... Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria P.M.B. 1515, Ilorin, Nigeria. 2. Department of Petroleum Engineering and Geosciences, Petroleum Training Institute, P.M.B.. 20, Effurun, Delta State, Nigeria. Abstract. Hydrochemical investigation of thirty groundwater samples ...

  2. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  3. Airborne Geophysical/Geological Mineral Inventory CIP Program

    National Research Council Canada - National Science Library

    1999-01-01

    The Airborne-Geophysical/Geological Mineral Inventory project is a special multi-year investment to expand the knowledge base of Alaska's mineral resources and catalyze private-sector mineral development...

  4. Geologic mapping using LANDSAT data

    Science.gov (United States)

    Siegal, B. S.; Abrams, M. J.

    1976-01-01

    The feasibility of automated classification for lithologic mapping with LANDSAT digital data was evaluated using three classification algorithms. The two supervised algorithms analyzed, a linear discriminant analysis algorithm and a hybrid algorithm which incorporated the Parallelepiped algorithm and the Bayesian maximum likelihood function, were comparable in terms of accuracy; however, classification was only 50 per cent accurate. The linear discriminant analysis algorithm was three times as efficient as the hybrid approach. The unsupervised classification technique, which incorporated the CLUS algorithm, delineated the major lithologic boundaries and, in general, correctly classified the most prominent geologic units. The unsupervised algorithm was not as efficient nor as accurate as the supervised algorithms. Analysis of spectral data for the lithologic units in the 0.4 to 2.5 microns region indicated that a greater separability of the spectral signatures could be obtained using wavelength bands outside the region sensed by LANDSAT.

  5. Bedrock Geologic Map of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG06-4 Thompson, P. J., 2006, Bedrock Geologic Map of Woodstock, Vermont: VGS Open-File Report VG06-4, scale 1:24,000. The bedrock geologic map...

  6. Digital Geologic Map of New Mexico - Formations

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  7. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  8. Brazil Geological Basic Survey Program: special project of mineral resources, soils and vegetation maps for the region of Grande Carajas Program - Mineral resources sub project - Serra dos Carajas - Sheet SB.22-Z-A - Para State

    International Nuclear Information System (INIS)

    Araujo, O.J.B. de; Maia, R.G.N.

    1991-01-01

    The geologic landscape at Serra dos Carajas Sheet encloses portions of Southern Para granite-greenstone terrain, Itacaiunas and Araguaia Belts as well as Proterozoic litho-structural components. It shows medium magnetic relief and low radiometric levels due to meta mafic-ultramafic sequences and the high Na granitoids intrusions. The Proterozoic components are represented by a series of anorogenic granitic intrusions shown by distinctive aero gamaspectrometric anomalies. The well known metallogenetic characteristics includes gold, iron, manganese, nickel and aluminium mines and/or deposits and several mineral occurrences mainly chromium, tin, copper, and zinc. (author)

  9. Use of ERS-2 Sar and Landsat TM Images for Geological Mapping and Mineral Exploration Of Sol Hamid Area, South Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ramadan, T.M.

    2003-01-01

    Sol hamid area is chiefy occupied by neo proterozoic rocks, partly covered by miocene sediments and recent sand sheets and dunes. The neo proterozoic rocks include ophiolitic ultramafic to mafic rocks, meta volcano-sedimentary rocks, meta volcanics, gabbros-diorite rocks, granodiorites, biotite granites and alkali granites. Magnesite, chromite, iron ores, manganese and barite ore deposits are hosted in different at the study area. ERS-2 SAR data enabled to obtain an image that reveals some buried fluvial features beneath the surface cover of desert sand. These features are not observable in Landsat TM image of similar resolution. In this work, Principal Component Analysis (PCA) technique was used for merging ERS-2 SAR and Landsat TM images to make use of the potential of data fusion technique of image processing in the interpretation of geological features. This procedure has resulted in enhancing subsurface structure such as faults that control distribution of several deposits in the study area. This study represents an example to demonstrate the utility of merging various remote sensing data for exploring mineral deposits in arid region

  10. A SKOS-based multilingual thesaurus of geological time scale for interopability of online geological maps

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.

    2011-01-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a

  11. Geologic Mapping Investigations of Alba Mons, Mars

    Science.gov (United States)

    Crown, D. A.; Berman, D. C.; Scheidt, S. P.; Hauber, E.

    2018-06-01

    Geologic mapping of the summit region and western flank of Alba Mons at 1:1M-scale is revealing sequences of volcanic, tectonic, impact, and degradation processes that have formed and modified the northernmost of the Tharsis volcanoes.

  12. Airborne radiometric data - A tool for reconnaissance geological mapping using a GIS

    International Nuclear Information System (INIS)

    Graham, D.F.; Bonham-Carter, G.F.

    1993-01-01

    A clustering technique is applied to radioelement data, and the resulting cluster map is compared with a digitized geological map within a GIS software package. The cross tabulation clearly identifies those geological units that have a distinctive radioelement response. By reclassifying the map overlay and imposing a color coding scheme that enhances bedrock geology classes, the relationship between the bedrock geology and radioelement response is enhanced. The degree of correlation between the two cartographic images is site dependent, rather than global. Areas where the two maps differ indicate zones of possible interest for field verification of published field maps for the purposes of mineral exploration. 13 refs

  13. Geologic mapping as a prerequisite to hazardous waste facility siting

    International Nuclear Information System (INIS)

    LaMoreaux, P.E.

    1993-01-01

    The nation's welfare is based on its capability to develop the mineral, water, and energy resources of the land. In addition, these resources must be developed with adequate consideration of environmental impact and the future welfare of the country. Geologic maps are an absolute necessity in the discovery and development of natural resources; for managing radioactive, toxic, and hazardous wastes; and for the assessment of hazards and risks such as those associated with volcanic action, earthquakes, landslides, and subsidence. Geologic maps are the basis for depicting rocks and rock materials, minerals, coal, oil, and water at or near the earth's surface. Hazardous waste facility projects require the preparation of detailed geologic maps. Throughout most of the USA, this type of mapping detail is not available. If these maps were available, it is estimated that the duration of an individual project could be reduced by at least one-fourth (1/4). Therefore, adequate site-specific mapping is required if one is to eliminate environmental problems associated with hazardous, toxic, radioactive, and municipal waste sites

  14. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  15. Geological mapping of the moon

    Science.gov (United States)

    Markov, M. S.; Sukhanov, A. L.; Trifonov, V. G.; Florenskiy, P. V.; Shkerin, L. M.

    1974-01-01

    Compilation and labelling of geological and morphological charts on a scale of 1:1,000,000 are discussed with emphasis on the regions of Maria Tranquilitatis, Crisium, Fecunditatis, Humorum and Nukium as well as certain prominent craters.

  16. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    Science.gov (United States)

    Knepper, D. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.

  17. Bedrock Geologic Map of Vermont - Dikes

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  18. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  19. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    In this work the use of fractal scaling exponents for geological mapping was first investigated using theoretical models, and results from the analysis showed that the scaling exponents mapped isolated bodies but did not properly resolve bodies close to each other. However application on real data (the Mamfe basin, the ...

  20. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26

  1. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    . Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.

  2. An Opportunity on Exploiting of Geology and Mineral Resource Data for Regional Development

    International Nuclear Information System (INIS)

    Agus-Hendratno

    2004-01-01

    Indonesia archipelago have the very complex geo diversity. The complexity of geo diversity gives a lot of opportunity on exploiting of earth resources for society prosperity. In other side, the complexity of geology also gives a lot of resistance and various limitation at one particular region to expand. Hence, various data of geology as well as data of result of mapping of minerals resources (mapping at macro scale and also have detail scale) require to be managed and exploited maximally. Effort the exploiting also require various infrastructure which is concerning regulatory, technological, human resources being, market-drive of an economic geo material, social environment and culture which grow around geology data, and also availability and readiness of geology and mineral resources data. This study is expected can give a few description of how the geology and minerals resources data can be as reference in regional development planning. This paper was writed by assessment of description qualitative and comparative inter-region case study in various regency area, where writer have been involved to conduct the activity of geological mapping and mineral resources data and also involved by a discussion with a few officers of local government in so many opportunity. Some of the case study region for example : in Kampar Regency (Riau), Tanjung Jabung Timur Regency (Jambi), Biak Numfor Regency (Papua), Gunung Kidul Regency (Yogyakarta), Pacitan Regency (East Java), and also Klaten Regency (Central Java). (author)

  3. Geological structure and mineral resources of Algeria

    Directory of Open Access Journals (Sweden)

    Eduard Dobra

    2007-12-01

    Full Text Available The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basins in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000 m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field produced from the Cambrian sands. The western part is limited by Hassi R`mel which is one of the biggest gas field in the world, it is produced from the triassic sands. The Mesozoic section lays on the lower Devonian and in the eastern part, on the Cambrian. The main source rock is Silurian shale with an average thickness of 50 m and a total organic matter of 6 % (14 % in some cases. Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposit with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column.This paper describe the main geological structure and mineral resources of Algeria.

  4. Study on the remote sensing geological information of uranium mineralization in Western Liaoning and Northern Hebei

    International Nuclear Information System (INIS)

    Yu Baoshan; Wang Dianbai; Jin Shihua; Qiao Rui

    1996-01-01

    Based on the whole areal geological map joint application rd exploitation, composite forming map, generalization analysis and field examination in detail of key region that mainly depend on remote sensing information and generalize the data of geology, geophysical and geochemical prospecting, and geohydrology, this paper reveals the structure framework, regional geological background, uranium metallogenic condition and space time distribution rule of orustal evolution and its result, and set up the interpretation marks of arc-shaped structure in different of rock area and discusses its geological genesis. The author also interprets volcanic apparatus, small type closed sedimentary basin, magmatic rock body which relate closely to uranium deposit, ore control structure and occurrence and type of mineralization alteration envelope. The thermal halo point of satellite image is emphatically interpreted and its geological meaning and its relation to uranium deposit is discussed. Remote sensing geological prospecting ore model and synthetic provision model is determined lastly

  5. Application of ASTER SWIR bands in mapping anomaly pixels for Antarctic geological mapping

    International Nuclear Information System (INIS)

    Beiranvand Pour, Amin; Hashim, Mazlan; Park, Yongcheol

    2017-01-01

    Independent component analysis (ICA) was applied to shortwave infrared (SWIR) bands of ASTER satellite data for detailed mapping of alteration mineral zones in the context of polar environments, where little prior information is available. The Oscar II coast area north-eastern Graham Land, Antarctic Peninsula (AP) was selected to conduct a remote sensing satellite-based mapping approach to detect alteration mineral assemblages. Anomaly pixels in the ICA image maps related to spectral features of Al-O-H, Fe, Mg-O-H and CO3 groups were detected using SWIR datasets of ASTER. ICA method provided image maps of alteration mineral assemblages and discriminate lithological units with little available geological data for poorly mapped regions and/or without prior geological information for unmapped regions in northern and southern sectors of Oscar II coast area, Graham Land. The results of this investigation demonstrated the applicability of ASTER spectral data for lithological and alteration mineral mapping in poorly exposed lithologies and inaccessible regions, particularly using the image processing algorithm that are capable to detect anomaly pixels targets in the remotely sensed images, where no prior information is available. (paper)

  6. Minerals, lands, and geology for the common defence and general welfare, Volume 3, 1904-1939 : A history of geology in relation to the development of public-land, federal-science, and mapping policies and the development of mineral resources in the United States from the 25th to the 60th year of the U.S. Geological Survey

    Science.gov (United States)

    Rabbitt, Mary C.

    1986-01-01

    Mrs. Rabbitt's third volume covers the years 1904 to 1939, from the beginning of the conservation movement under Theodore Roosevelt to the beginning of World War II. From a national perspective, these were years of great development and change in the use of energy, trouble in the coal industry, and a great expansion in the oil industry. They were also years in which the public perceived for the first time that the Nation's mineral resources are not infinite, and the mineral industry realized its dependence on international trade. In these years, water became an increasingly valuable commodity, and the need for a national mapping program became abundantly evident. These were also the years when the Federal Government for the most part practiced stringent economy in funding science, but State and municipal agencies increasingly sought the services of the Survey's topographic and water specialists to aid in the solution of local problems. The balance maintained between fundamental and practical research during the first 25 years was more than once upset during the next 25 years, but the successful struggle to maintain a significant level of research laid the groundwork for the tremendous expansion in the Survey in the subsequent years.

  7. geological mapping of the Onkalo open cut

    Energy Technology Data Exchange (ETDEWEB)

    Talikka, M. [Geological Survey of Finland, Espoo (Finland)

    2005-11-15

    Posiva Oy and Geological Survey of Finland carried out geological mapping of the ONKALO open cut in the latter half of the year 2004. The study area is located on the Olkiluoto Island in Eurajoki, SW Finland. The study included geological mapping, stereo-photography, and interpretation of 3D images. Fieldwork was carried out during the construction work. The main rock types are vein migmatite and grey gneiss with variation to granitic grey gneiss. The contacts of the rock types are gradual. The vein migmatite consists of fine- to medium-grained mica gneiss paleosome and granite or granite pegmatite neosome. The proportion of the neosome material varies between 15 and 35 percent and the neosome occurs as veins and bands up to ten centimetres in thickness. The granite I granite pegmatite is medium- to coarse-grained and not orientated. Main minerals in the mica gneiss are plagioclase, biotite, quartz, and in the granite / granite pegmatite potassium feldspar, plagioclase, and quartz. The grey gneiss is medium grained and fairly homogenous comprising mainly plagioclase, biotite, and quartz. The granitic grey gneiss contains also potassium feldspar crystals up to five cm in length. The rocks within the study area are generally well preserved. There is, however, a zone of strongly weathered rocks east of the ONKALO open cut. The main structural feature in the study area is S{sub 2} foliation, which is seen in the orientation of biotite grains. The degree of the foliation is weak to medium in the vein migmatite and weak to non-existence in the grey gneiss. The foliation (S{sub 2}) dips 20-70 deg to southeast with an average direction of 150/45 deg. The migmatisation took place during the second deformation phase and possibly proceeded along the lithologic layers. The neosome veins bend irregularly and folding is present in places. The fold axis of the small scale, isoclinal folds dip 50-70 deg to northeast. In fracture mapping a total of 231 fractures were measured

  8. geological mapping of the Onkalo open cut

    International Nuclear Information System (INIS)

    Talikka, M.

    2005-11-01

    Posiva Oy and Geological Survey of Finland carried out geological mapping of the ONKALO open cut in the latter half of the year 2004. The study area is located on the Olkiluoto Island in Eurajoki, SW Finland. The study included geological mapping, stereo-photography, and interpretation of 3D images. Fieldwork was carried out during the construction work. The main rock types are vein migmatite and grey gneiss with variation to granitic grey gneiss. The contacts of the rock types are gradual. The vein migmatite consists of fine- to medium-grained mica gneiss paleosome and granite or granite pegmatite neosome. The proportion of the neosome material varies between 15 and 35 percent and the neosome occurs as veins and bands up to ten centimetres in thickness. The granite I granite pegmatite is medium- to coarse-grained and not orientated. Main minerals in the mica gneiss are plagioclase, biotite, quartz, and in the granite / granite pegmatite potassium feldspar, plagioclase, and quartz. The grey gneiss is medium grained and fairly homogenous comprising mainly plagioclase, biotite, and quartz. The granitic grey gneiss contains also potassium feldspar crystals up to five cm in length. The rocks within the study area are generally well preserved. There is, however, a zone of strongly weathered rocks east of the ONKALO open cut. The main structural feature in the study area is S 2 foliation, which is seen in the orientation of biotite grains. The degree of the foliation is weak to medium in the vein migmatite and weak to non-existence in the grey gneiss. The foliation (S 2 ) dips 20-70 deg to southeast with an average direction of 150/45 deg. The migmatisation took place during the second deformation phase and possibly proceeded along the lithologic layers. The neosome veins bend irregularly and folding is present in places. The fold axis of the small scale, isoclinal folds dip 50-70 deg to northeast. In fracture mapping a total of 231 fractures were measured. Field

  9. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    ... in Nigeria) showed good correlation with the geological maps of the areas. The results also indicated that basement rocks can generally be represented by scaling exponents with values ranging between -3.0 and -2.0. Keywords: Fractal, dimension, susceptibility, spectra, scaling exponent. Nigerian Journal of Physics Vol.

  10. Geology and mineral occurences of braquiantidinal do Lontra - GO

    International Nuclear Information System (INIS)

    Macambira, J.B.

    1983-01-01

    This work involved the geological mapping (in the scale 1:60.000) of an area of 800 square kilometers in the nortwestern part of the state of Goias, near and east of the Araguaia river. Based on the stratigraphy, metamorphism, geochronology, magmatism and mineral deposits hypotheses on the geological evolution of the region are discussed. The area studied belongs to the Precambrian Araguaia Fold Belt. The oldest rocks identified are trondhjemitic gneisses and on these rocks was deposited a sedimentary sequence with minor volcanics of a geosynclinal type. The stratigraphic column of Abreu (1978) was adopted with minor modifications. The basement, of transamazonic age (2000 Ma), consists mostly of gneiss, migmatite, granite gneiss and amphibolite. The metasediments belongs to the lower unit (Estrondo Group) of the Supergroup Baixo Araguaia. The Estrondo Group, of brasilian age (600 Ma), consists in the area of the lowermost Morro do Campo Formation, mainly quartzite and amphibolite, which give the high relief of the brachyanticlines of Lontra and Ramal do Lontra.(author)

  11. Reconnaissance geologic map of the northern Kawich and southern Reveille ranges, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gardner, J.N.; Eddy, A.C.; Goff, F.E.; Grafft, K.S.

    1980-06-01

    A geological survey was performed in Nye County, Nevada. Results of that survey are summarized in the maps included. The general geology of the area is discussed. Major structures are described. The economics resulting from the mineral exploitation in the area are discussed. The hydrogeology and water chemistry of the area are also discussed

  12. Reconnaissance geologic map of the northern Kawich and southern Reveille ranges, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.N.; Eddy, A.C.; Goff, F.E.; Grafft, K.S.

    1980-06-01

    A geological survey was performed in Nye County, Nevada. Results of that survey are summarized in the maps included. The general geology of the area is discussed. Major structures are described. The economics resulting from the mineral exploitation in the area are discussed. The hydrogeology and water chemistry of the area are also discussed.

  13. Multi-scale interactions of geological processes during mineralization: cascade dynamics model and multifractal simulation

    Directory of Open Access Journals (Sweden)

    L. Yao

    2011-03-01

    Full Text Available Relations between mineralization and certain geological processes are established mostly by geologist's knowledge of field observations. However, these relations are descriptive and a quantitative model of how certain geological processes strengthen or hinder mineralization is not clear, that is to say, the mechanism of the interactions between mineralization and the geological framework has not been thoroughly studied. The dynamics behind these interactions are key in the understanding of fractal or multifractal formations caused by mineralization, among which singularities arise due to anomalous concentration of metals in narrow space. From a statistical point of view, we think that cascade dynamics play an important role in mineralization and studying them can reveal the nature of the various interactions throughout the process. We have constructed a multiplicative cascade model to simulate these dynamics. The probabilities of mineral deposit occurrences are used to represent direct results of mineralization. Multifractal simulation of probabilities of mineral potential based on our model is exemplified by a case study dealing with hydrothermal gold deposits in southern Nova Scotia, Canada. The extent of the impacts of certain geological processes on gold mineralization is related to the scale of the cascade process, especially to the maximum cascade division number nmax. Our research helps to understand how the singularity occurs during mineralization, which remains unanswered up to now, and the simulation may provide a more accurate distribution of mineral deposit occurrences that can be used to improve the results of the weights of evidence model in mapping mineral potential.

  14. Digital geologic map in the scale 1:50 000

    International Nuclear Information System (INIS)

    Kacer, S.; Antalik, M.

    2005-01-01

    In this presentation authors present preparation of new digital geologic map of the Slovak Republic. This map is prepared by the State Geological Institute of Dionyz Stur as a part of the project Geological information system GeoIS. One of the basic information geologic layers, which will be accessible on the web-site will be digital geologic map of the Slovak Republic in the scale 1: 50 000

  15. Late Miocene Debris-Avalanche Deposit At The Gutai Shield Volcano, NW Romania. Re- Evaluation Of Geological Mapping And Mineral Deposits

    Science.gov (United States)

    Seghedi, I.; Fülöp, A.

    2009-05-01

    The recent identification of debris avalanche deposits (DADs) originating from the southern edge of the Ignis peak (1306m, highest of the Gutai Mts.) has important implications for understanding its genesis in the geological context of the broader area, rich in hydrothermal intrusive-related base metal and gold-silver deposits closely connected to the Dragos Voda - Bogdan Voda strike-slip fault system. Pyroxene andesite lavas are exposed below the Ignis peak followed by hornblende and pyroxene andesites the only ones found in the DAD. The flank failure event has left an E-W-oriented horseshoe shaped scar with an estimated volume of material removed of at least 0.35 km3 and an estimated area covered by DADs of 4,345 km2 as a minimum. The deposit is a mega breccia with a variable amount of coarse matrix with jigsaw-fractured blocks, large boulders, and several southward-elongated hummocks up to 1.8 km distance from the scar. Between 720-850 m altitude the DADs contain megablocks of 5-12 m thick and up to 100 m long of layered fine-grained poorly consolidated pyroclastic materials of interlayered ash and lapillistone of fallout origin, and clay beds rich in vegetation remnants(known as the 'Chiuzbaia flora' of similar age as the surrounding lava flows, i.e. ca. 10-7 Ma) and diatoms. These megablocks found in various positions, suggest a lithological discontinuity likely representing the detachment surface of the gravity-driven instability phenomenon and the deep excavation of the volcano flank by the sector collapse event. The clayey material of these blocks acted probably as an efficient barrier to water infiltration and helped destabilization of the overlying rock mass. Since no explosive products have been observed to follow the DAD, it is possible that the sliding was triggered by pressure release of hydrothermal system along an E-W fault parallel to the Dragos Voda-Bogdan Voda fault system, with related high-grade ore deposits. This suggests the possible presence

  16. Digital Geological Mapping for Earth Science Students

    Science.gov (United States)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  17. Geologic mapping in Greenland with polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Brooks, C. K.

    1995-01-01

    The application of synthetic aperture radar (SAR) for geologic mapping in Greenland is investigated by the Danish Center for Remote Sensing (DCRS) in co-operation with the Danish Lithosphere Centre (DLC). In 1994 a pilot project was conducted in East Greenland. The Danish airborne SAR, EMISAR...... mapping is complicated by an extreme topography leading to massive shadowing, foreshortening and layover. An artifact characterised by high cross-polarisation is observed behind many sharp mountain ridges. A multi-reflection hypothesis has been investigated without finding the ultimate proof...

  18. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    Science.gov (United States)

    House, P. K.

    2008-12-01

    The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an

  19. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  20. Geological hazards investigation - relative slope stability map

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Suk; Kim, Won Young; Yu, Il Hyon; Kim, Kyeong Su; Lee, Sa Ro; Choi, Young Sup [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainside. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps. For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996. The selected area encompasses about 5,900 km{sup 2} including the topographic maps of Ulsan, Yongchon, Kyongju, Pulguksa, and Kampo, all at a scale of 1:50,000. Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite. Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area. Produced for the study area were six different maps consisting of slope classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base. Using the first four maps and GIS, two sheets of relative slope-stability maps were constructed, each at a scale of 1

  1. Geologic map of Saint Lawrence Island, Alaska

    Science.gov (United States)

    Patton, William W.; Wilson, Frederic H.; Taylor, Theresa A.

    2011-01-01

    north to near Boxer Bay on the south. Headlands having rugged cliffs or narrow, boulder-strewn beaches characterize the southwest coastline. The geologic map of Saint Lawrence Island was prepared from published and unpublished field investigations carried out between 1966 and 1971 by W.W. Patton, Jr., Bela Csejtey, Jr., T.P. Miller, J.T. Dutro, Jr., J.M. Hoare, and W.H. Condon (Patton and Csejtey, 1971, 1980) and data from Ormiston and Fehlmann (1969). Fossils collected during these investigations are reported in the Alaska Paleontological Database (www.alaskafossil.org), and mineral resource information is summarized in the online Alaska Resource Data File (Hudson, 1998).

  2. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  3. Rates of CO2 Mineralization in Geological Carbon Storage.

    Science.gov (United States)

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of

  4. Mineral mapping in the western Kunlun Mountains using Tiangong-1 hyperspectral imagery

    Science.gov (United States)

    Ge, W.; Cheng, Q.; Jing, L.; Chen, Y.; Guo, X.; Ding, H.; Liu, Q.

    2016-04-01

    The unmanned Chinese space module Tiangong-1 was launched in September 2011 with a hyperspectral sensor on board. The sensor combines high spatial and spectral resolution suitable for mineral mapping. In this study, Tiangong-1 hyperspectral data were employed for mineral mapping in the western Kunlun Mountains, an important metallogenic belt in China. A Spectral Hourglass Wizard method was applied to detect common minerals from the Tiangong- 1 shortwave infrared data with reference to a set of spectral libraries. Spectral information on minerals, such as zoisite, mica, quartz, sodalite, dolomite, and actinolite, was extracted from the data. The resulting mineral interpretation maps were highly correlated with the reference geological maps and information from ASTER satellite imagery, suggesting that the hyperspectral data are suitable for mineral mapping.

  5. Geology of the central Mineral Mountains, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  6. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  7. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  8. Surficial Geologic Map of the Town of Randolph, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG10-2 Wright, S., Larsen, F., and Springston, G., 2010,�Surficial Geologic Map of the Town of Randolph, Vermont: Vermont Geological Survey...

  9. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  10. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  11. Bedrock geologic map of the town of Williston, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG07-4, Kim, J., Gale, M., Thompson, P.J. and Derman, K., 2007, Bedrock geologic map of the town of Williston, Vermont: Vermont Geological Survey...

  12. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  13. Neutron activation analysis of minerals from Cuddapah basin geological formations

    International Nuclear Information System (INIS)

    Nagendra Kumar, P.V.; Suresh Kumar, N.; Acharya, R.; Reddy, A.V.R.; Krishna Reddy, L.

    2014-01-01

    Green and yellow serpentines along with two associated minerals namely dolomite and intrusive rock dolerite obtained from the asbestos mines of Cuddapah basin, Andhra Pradesh, India were analyzed by k 0 -based neutron activation analysis (k 0 -NAA) method. Gold ( 197 Au) was used as the single comparator. Two reference materials namely USGS W-1 (geological) and IAEA Soil-7 (environmental) were analyzed as control samples to evaluate the accuracy of the method. A total of 21 elements present at major, minor and trace concentrations were determined in serpentines as well as associated minerals. The elemental concentrations were used for distinguishing and characterizing these minerals, and also to understand the extent of segregation of elements from the associated or host mineral rocks to serpentines. (author)

  14. Regional Geological Mapping in the Graham Land of Antarctic Peninsula Using LANDSAT-8 Remote Sensing Data

    Science.gov (United States)

    Pour, A. B.; Hashim, M.; Park, Y.

    2017-10-01

    Geological investigations in Antarctica confront many difficulties due to its remoteness and extreme environmental conditions. In this study, the applications of Landsat-8 data were investigated to extract geological information for lithological and alteration mineral mapping in poorly exposed lithologies in inaccessible domains such in Antarctica. The north-eastern Graham Land, Antarctic Peninsula (AP) was selected in this study to conduct a satellite-based remote sensing mapping technique. Continuum Removal (CR) spectral mapping tool and Independent Components Analysis (ICA) were applied to Landsat-8 spectral bands to map poorly exposed lithologies at regional scale. Pixels composed of distinctive absorption features of alteration mineral assemblages associated with poorly exposed lithological units were detected by applying CR mapping tool to VNIR and SWIR bands of Landsat-8.Pixels related to Si-O bond emission minima features were identified using CR mapping tool to TIR bands in poorly mapped andunmapped zones in north-eastern Graham Land at regional scale. Anomaly pixels in the ICA image maps related to spectral featuresof Al-O-H, Fe, Mg-O-H and CO3 groups and well-constrained lithological attributions from felsic to mafic rocks were detectedusing VNIR, SWIR and TIR datasets of Landsat-8. The approach used in this study performed very well for lithological andalteration mineral mapping with little available geological data or without prior information of the study region.

  15. Topographic and hydrographic GIS dataset for the Afghanistan Geological Survey and U.S. Geological Survey 2010 Minerals Project

    Science.gov (United States)

    Chirico, P.G.; Moran, T.W.

    2011-01-01

    This dataset contains a collection of 24 folders, each representing a specific U.S. Geological Survey area of interest (AOI; fig. 1), as well as datasets for AOI subsets. Each folder includes the extent, contours, Digital Elevation Model (DEM), and hydrography of the corresponding AOI, which are organized into feature vector and raster datasets. The dataset comprises a geographic information system (GIS), which is available upon request from the USGS Afghanistan programs Web site (http://afghanistan.cr.usgs.gov/minerals.php), and the maps of the 24 areas of interest of the USGS AOIs.

  16. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    Science.gov (United States)

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  17. Minerals, lands, and geology for the common defence and general welfare, Volume 2, 1879-1904 : A history of geology in relation to the development of public-land, federal-science, and mapping policies and the development of mineral resources in the United States during the first 25 years of the U.S. Geological Survey

    Science.gov (United States)

    Rabbitt, Mary C.

    1980-01-01

    In the traditional view of the Survey's first 25 years, which are the subject of much of this volume, John Wesley Powell, with his broad view of science and advanced ideas of land and water in the West, is the heroic figure. Clarence King is dismissed as brilliant but with a limited view of science as mining geology, and Charles D. Walcott is regarded primarily as a brilliant paleontologist chosen by Powell to succeed him. The Survey's first quarter century, however, spanned a watershed in American history that separated a primarily rural and agrarian nation and a primarily urban and industrial nation, a nation intent on conquering the continent and isolated from the Old World and a nation involved in world politics, a nation that believed in the virtues of competition and limited government and a nation that saw the virtue of cooperation and insisted on reform and regulation to ensure equal opportunities to all. Science itself changed during this period. The age of instruments was just beginning when the Survey was established; by the turn of the century, instruments had almost revolutionized science and the era of the lone investigator had to give way to an era of organized effort in the solution of problems.

  18. Geology, mineralization and geochemistry of the Aqkand Cu occurrence (north of Zanjan, Tarom-Hashtjin zone

    Directory of Open Access Journals (Sweden)

    Maryam Feyzi

    2017-02-01

    Full Text Available Introduction The Aqkand Cu occurrence, 48 km north of Zanjan, is located in the Tarom subzone of the Western Alborz-Azerbaijan structural zone. Apart from small scale geological maps of the area, i.e., 1:250,000 geological maps of Bandar-e-Anzali (Davies, 1977 and 1:100,000 geological maps of Hashtjin (Faridi and Anvari, 2000 and a number of unpublished perlite exploration reports, prior to this research no work has been done on Cu mineralization at Aqkand. The present paper provides an overview of the geological framework, the mineralization characteristics, and the results of geochemistry study of the Aqkand Cu occurrence with an application to the ore genesis. Identification of these characteristics can be used as a model for exploration of this type of copper mineralization in the Tarom area and elsewhere. Materials and methods Detailed field work has been carried out at different scales in the Aqkand area. About 35 polished thin and thin sections from host rocks and mineralized and altered zones were studied by conventional petrographic and mineralogic methods at the University of Zanjan. In addition, a total of 6 samples from ore zones at the Aqkand occurrence were analyzed by ICP-MS for trace elements and REE compositions at Kimia Pazhuh Alborz Co., Isfahan, Iran. Results and Discussion The oldest units exposed in the Aqkand area are Eocene volcanic rocks which are overlain unconformably by Oligocene acidic rocks. The Eocene units consist of lithic and vitric tuff with intercalations of andesitic basalt lavas (equal to Karaj Formation, Hirayama et al., 1966. The andesitic basalt lavas show porphyritic texture consisting of plagioclase and altered ferromagnesian minerals set in a fine-grained groundmass. The Oligocene acidic rocks consist of rhyolite-rhyodacite, perlite, pitchstone and ignimbrite. These rocks are exposed as domes and lava flows. The rhyolite-rhyodacite lavas usually show onion-skin weathering and locally display flow bands

  19. Integrating Geological map of the Plata Basin and adjacent areas: release Bulletin

    International Nuclear Information System (INIS)

    Preciozzi, F.; Spoturno Pioppo, J.; Medina, E.

    2001-01-01

    During the 1st Meeting of the Geological Surveys of the Southern Cone Countries, held in the city of Porto Alegre (Rio Grande do Sul - Brazil) in November 1995, it was born the idea of ​​a set of activities that it had aimed at developing integration , technical cooperation and scientific exchange between these institutions, resulting in a concrete proposal in order to develop a map of geological, metallogenic and hydrogeological basins of the Parana and Plata integration; which provide the basic information needed for the further development of mineral resources maps approach to groundwater, gold, ornamental stones, industrial minerals and precious stones; the development of exchange activities in the area of ​​the environment and the creation of a data bank of geological and mining of the countries involved in the program. This intention of working together was presented to SGT2, Theme of Geology and Mineral Resources MERCOSUR Commission, at its first meeting, held in Buenos Aires - Argentina, in April 1996, with the aim of transforming it into an official activity of this Commission, time that the delegations of the four States-Party endorsed the proposal. These opportunities were discussed and established parameters and standards for the execution of the works to be developed in the area between the parallel of 14oS and 38oS and meridians 44oW and 68oW (Figure 1), covering approximately 5,800,000 Km2 continental area, scale 1: 2,500,000, covering the entire basin of the River Plate. geological one, one and one hydrogeological mineral resources, plus a database of mineral resources, which serve as a source of information for the map of mineral resources: the generation of three maps was established as a goal. The official name for this project was established Maps

  20. Some geological effects of the search for radioactive minerals in the Canadian shield

    International Nuclear Information System (INIS)

    Lang, A.H.; Ruzicka, V.

    1979-01-01

    Priorities for funds and personnel to provide field and laboratory work related to finding and evaluating radioactive deposits, mainly those of uranium, also led directly and indirectly to greatly increased knowledge of the general geology of the Canadian Shield. The paper outlines some of the main advances made in these ways, as well as some minor ones. Main examples are: the acceleration of geological mapping and special studies of stratigraphy, structure and other aspects of several parts of the Shield, including the Archaean-Proterozoic boundary; the acquisition of modern equipment capable of making large numbers of isotope age determinations, which was soon applied to general problems in the Shield, including revision of its regional provinces and sub-provinces and the subdivision of Proterozoic time; the obtaining of modern equipment for X-ray identification of minerals and for several kinds of rock and mineral analyses, which soon allowed more advanced and more extensive mineral, petrological and trace element studies of various parts of the Shield and a general study of metallogenic provinces, illustrated by metallogenic maps, which stemmed from a metallogenic map for uranium. The development of Geiger counters and other detectors is outlined because of their relation to the map for uranium and so to aeroradiometric surveys. By 1960, 26 producing uranium mines had been developed from an estimated 12 000 occurrences carrying more than 0.05% U 3 O 8 equivalent. Current activities of the Geological Survey of Canada for radioactive minerals are summarized for whatever hints this may provide regarding further indirect effects

  1. Engineering geological mapping of Dar es Salaam city, Tanzania ...

    African Journals Online (AJOL)

    Two basic maps were prepared, namely, geomorphological and geological map depicts the spatial extent of the Neogene geological formations. Three distinct sandstone terraces could be distinguished in Dar es Salaam region at 0-15 m and 30 – 40 m above sea level. The terraces comprised sandstones fringed by coral ...

  2. Digital Geologic Map of New Mexico - Volcanic Vents

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  3. Standardization of mapping practices in the British Geological Survey

    Science.gov (United States)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  4. Geology and evaluation of the uranium mineral occurrence at Igdlorssuit, South Greenland

    International Nuclear Information System (INIS)

    Armour-Brown, A.

    1986-05-01

    Geological and radiometric mapping, and petrological and mineralogical investigations were made of a uranium mineral occurrence at Igdlorssuit, South Greenland during 1984 and 1985. The results have been evaluated in terms of the uranium potential and genesis the showing. The work was part of the South Greenland Exploration Programme (Sydex) carried out by the Geological Survey of Greenland (GGU) in cooperation with Risoe National Laboratory (Risoe). It was financed by the Danish Ministry of Energy. Igdlorssuit is located at the northerly limit of the fjord system about 60 km north of Kap Farvel (60 deg. 23 min.; 46 deg. 06 min.). The main uranium mineral showing is on a small alp on the eastern side, 500 m vertically above the fjord. Detailed plane table mapping (1:1000), and radiometric measurements with a lead collimated scintillometer calibrated for uranium delineated this occurrence: Regional mapping (1:10 000), however, showed that it was only one of many similar uranium occurrences in the area albeit the largest and richest. Over 35 uranium mineral occurences have been found scattered over the hillside. Textural and paragenetic relationships, and isotopic data show that the uranium was present in the supracrustal units before the folding, metamorphism and intrusion of the granite. The largest, highest grade uranium mineralised zone is about 50m long and up to 5m wide with an average grade of 0.31% with highs up to 7%. The results of the mapping and sampling has established that this type of mineral occurence can reach economic grades, and its surface expression suggests a size which could approach economic proportions. 3 maps, 30 refs. (EG)

  5. Spatial Digital Database for the Geologic Map of Oregon

    Science.gov (United States)

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  6. Geology and mineral resources of the Johnson City, Phenix City, and Rome 10 x 20 NTMS quadrangles

    International Nuclear Information System (INIS)

    Karfunkel, B.S.

    1981-11-01

    This document provides geologic and mineral resources data for the Savannah River Laboratory-National Uranium Resource Evaluation hydrogeochemical and stream-sediment reports for the Johnson City, Phenix City, and Rome 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States

  7. Preliminary geologic map of the Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Harrington, C.; McFadden, L.; Perry, F.; Wells, S.; Turrin, B.; Champion, D.

    1988-12-01

    A preliminary geologic map has been compiled for the bedrock geology of the Lathrop Wells volcanic center. The map was completed through use of a combination of stereo photographic interpretation and field mapping on color aerial photographs. These photographs (scale 1:4000) were obtained from American Aerial Surveys, Inc. They were flown on August 18, 1987, at the request of the Yucca Mountain Project (then Nevada Nuclear Waste Storage Investigations). The photographs are the Lathrop Wells VC-Area 25 series, numbers 1--32. The original negatives for these photographs are on file with American Aerial Surveys, Inc. Copies of the negatives have been archived at the Los Alamos National Laboratory, Group N-5. The preliminary geologic map is a bedrock geologic map. It does not show alluvial deposits, eolian sands, or scoria fall deposits from the youngest eruptive events. The units will be compiled on separate maps when the geomorphic and soils studies are more advanced

  8. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hardenby, Carljohan (Vattenfall Power Consultant AB (Sweden)); Sigurdsson, Oskar (HAskGeokonsult AB (Sweden))

    2010-12-15

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m2. As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories (&apos

  9. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    International Nuclear Information System (INIS)

    Hardenby, Carljohan; Sigurdsson, Oskar

    2010-12-01

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m 2 . As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories ('increased fracturing' and

  10. The Role of Geologic Mapping in NASA PDSI Planning

    Science.gov (United States)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  11. Creating Geologically Based Radon Potential Maps for Kentucky

    Science.gov (United States)

    Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.

    2017-12-01

    Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.

  12. Geological Mapping of the Debussy Quadrangle (H-14) Preliminary Results

    Science.gov (United States)

    Pegg, D. L.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-05-01

    We present the current status of geological mapping of the Debussy quadrangle. Mapping underway as part of a program to map the entire planet at a scale of 1:3M using MESSENGER data in preparation for the BepiColombo mission.

  13. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica

    Science.gov (United States)

    Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman

    2018-06-01

    Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.

  14. Geologic Mapping Results for Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.

  15. Geologic and topographic maps of the Kabul South 30' x 60' quadrangle, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2010-01-01

    This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with three highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in Geospatial PDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts

  16. Geologic and Topographic Maps of the Kabul North 30' x 60' Quadrangle, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2010-01-01

    This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with two highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in GeoPDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts to rebuild

  17. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  18. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  19. Geologic map of the Nepenthes Planum Region, Mars

    Science.gov (United States)

    Skinner, James A.; Tanaka, Kenneth L.

    2018-03-26

    This map product contains a map sheet at 1:1,506,000 scale that shows the geology of the Nepenthes Planum region of Mars, which is located between the cratered highlands that dominate the southern hemisphere and the less-cratered sedimentary plains that dominate the northern hemisphere.  The map region contains cone- and mound-shaped landforms as well as lobate materials that are morphologically similar to terrestrial igneous or mud vents and flows. This map is part of an informal series of small-scale (large-area) maps aimed at refining current understanding of the geologic units and structures that make up the highland-to-lowland transition zone. The map base consists of a controlled Thermal Emission Imaging System (THEMIS) daytime infrared image mosaic (100 meters per pixel resolution) supplemented by a Mars Orbiter Laser Altimeter (MOLA) digital elevation model (463 meters per pixel resolution). The map includes a Description of Map Units and a Correlation of Map Units that describes and correlates units identified across the entire map region. The geologic map was assembled using ArcGIS software by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS project, geodatabase, base map, and all map components are included online as supplemental data.

  20. Digital compilation bedrock geologic map of the Warren quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-4A Walsh, GJ, Haydock, S, Prewitt, J, Kraus, J, Lapp, E, O'Loughlin, S, and Stanley, RS, 1995, Digital compilation bedrock geologic map of the...

  1. Geologic Map of the Shakespeare Quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2018-05-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the MESSENGER images. The most prominent geomorphological feature is the Caloris basin, the largest impact crater on Mercury.

  2. Bedrock Geologic Map of the Underhill quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG03-4B Doolan, B., Cherchetti, L., Holt, J., Ryan, J., Hengstenburg, C., and Rosencrantz, E., 2003,�Bedrock Geologic Map of the Underhill...

  3. Digital bedrock geologic map of the Saxtons River quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-52A Ratcliffe, NM�and Armstrong, TR, 1996, Digital bedrock geologic map of the Saxtons River quadrangle, Vermont, USGS Open-File Report...

  4. Digital bedrock geologic map of the Cavendish quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-203A Ratcliffe, NM, 1995,�Digital bedrock geologic map of the Cavendish quadrangle, Vermont: USGS Open-File Report 95-203, 2 plates, scale...

  5. Digital compilation bedrock geologic map of the Milton quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-8A Dorsey, R, Doolan, B, Agnew, PC, Carter, CM, Rosencrantz, EJ, and Stanley, RS, 1995, Digital compilation bedrock geologic map of the Milton...

  6. Digital compilation bedrock geologic map of the Lincoln quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-5A Stanley, R, DelloRusso, V, Haydock, S, Lapp, E, O'Loughlin, S, Prewitt, J,and Tauvers, PR, 1995, Digital compilation bedrock geologic map...

  7. Bedrock Geologic Map of Charlotte,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-5 Gale, M., Kim, J., Earle, H., Clark, A., Smith, T., and Petersen, K., 2009, Bedrock Geologic Map of Charlotte, Vermont: VGS Open-File Report...

  8. Bedrock Geologic Map of the Jay Peak, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG99-1 Compilation bedrock geologic map of the Jay Peak quadrangle, Compiled by B. Doolan, 1999: VGS Open-File Report VG99-1, 1 plate, scale...

  9. One perspective on spatial variability in geologic mapping

    Science.gov (United States)

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  10. Geology, mineralization, mineral chemistry, and ore-fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour

    2017-11-01

    Full Text Available Introduction The Irankuh mining district area located at the southern part of the Malayer-Isfahan metallogenic belt, south of Isfahan, consists of several Zn-Pb deposits and occurrences such as Tappehsorkh, Rowmarmar 5, Kolahdarvazeh, Blind ore, and Gushfil deposits as well as Rowmarmar 1-4 and Gushfil 1 prospects. Based on geology, alteration, form and texture of mineralization, and paragenesis assemblages, Pb-Zn mineralization is Mississippi-type deposit (Rastad, 1981; Ghazban et al., 1994; Ghasemi, 1995; Reichert, 2007; Timoori-Asl (2010; Ayati et al., 2013; Hosseini-Dinani et al., 2015. Geology of the area consists of Jurassic siltstone and shale and different types of Cretaceous dolostone and limestone. The aim of this research is new geological studies such as revision of old geologic map, study of different types of textures and mineral assemblages within carbonate and clastic host rocks, and chemistry of galena, sphalerite, and dolomite. Finally, we combined these results with isotopic and fluid inclusion data and discussed on ore-fluid conditions. Materials and Methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, 200 thin and 70 polished thin sections were prepared. Some of the samples were selected for microprobe analysis and galena and sphalerite minerals were analyzed by using JEOL- JAX-8230 analyzer at Colorado University, USA. The chemistry of dolomite and fluid inclusion data are used after Boveiri Konari and Rastad (2016 and stable isotope is used after Ghazban et al. (1994. Discussion The Irankuh mineralization is hosted by carbonate rocks (dolostone and limestone and minor clastic rocks as epigenetic. Mineralization has occurred as breccia, veinlet, open space filling, spoted, dessiminated, and replacement (carbonate hosted rock. The mineral assemblages are Fe-rich sphalerite, galena, minor pyrite, Fe- and Mn-rich dolomite, bituminous, ankrite, calcite ± quartz ± barite

  11. INTEGRATION OF PALSAR AND ASTER SATELLITE DATA FOR GEOLOGICAL MAPPING IN TROPICS

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This research investigates the integration of the Phased Array type L-band Synthetic Aperture Radar (PALSAR and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER satellite data for geological mapping applications in tropical environments. The eastern part of the central belt of peninsular Malaysia has been investigated to identify structural features and mineral mapping using PALSAR and ASTER data. Adaptive local sigma and directional filters were applied to PALSAR data for detecting geological structure elements in the study area. The vegetation, mineralogic and lithologic indices for ASTER bands were tested in tropical climate. Lineaments (fault and fractures and curvilinear (anticline or syncline were detected using PALSAR fused image of directional filters (N-S, NE-SW, and NW-SE.Vegetation index image map show vegetation cover by fusing ASTER VNIR bands. High concentration of clay minerals zone was detected using fused image map derived from ASTER SWIR bands. Fusion of ASTER TIR bands produced image map of the lithological units. Results indicate that data integration and data fusion from PALSAR and ASTER sources enhanced information extraction for geological mapping in tropical environments.

  12. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially

  13. Geological characterization in urban areas based on geophysical mapping: A case study from Horsens, Denmark

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    2018-01-01

    Geophysical mapping in urban areas. Detailed 3D geological model of the area. Mapping contaminant plume......Geophysical mapping in urban areas. Detailed 3D geological model of the area. Mapping contaminant plume...

  14. A case study for the integration of predictive mineral potential maps

    Science.gov (United States)

    Lee, Saro; Oh, Hyun-Joo; Heo, Chul-Ho; Park, Inhye

    2014-09-01

    This study aims to elaborate on the mineral potential maps using various models and verify the accuracy for the epithermal gold (Au) — silver (Ag) deposits in a Geographic Information System (GIS) environment assuming that all deposits shared a common genesis. The maps of potential Au and Ag deposits were produced by geological data in Taebaeksan mineralized area, Korea. The methodological framework consists of three main steps: 1) identification of spatial relationships 2) quantification of such relationships and 3) combination of multiple quantified relationships. A spatial database containing 46 Au-Ag deposits was constructed using GIS. The spatial association between training deposits and 26 related factors were identified and quantified by probabilistic and statistical modelling. The mineral potential maps were generated by integrating all factors using the overlay method and recombined afterwards using the likelihood ratio model. They were verified by comparison with test mineral deposit locations. The verification revealed that the combined mineral potential map had the greatest accuracy (83.97%), whereas it was 72.24%, 65.85%, 72.23% and 71.02% for the likelihood ratio, weight of evidence, logistic regression and artificial neural network models, respectively. The mineral potential map can provide useful information for the mineral resource development.

  15. Geology and mineral deposits of Churchill County, Nevada

    Science.gov (United States)

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  16. Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada

    Directory of Open Access Journals (Sweden)

    Rasim Latifovic

    2018-02-01

    Full Text Available Mapping of surficial geology is an important requirement for broadening the geoscience database of northern Canada. Surficial geology maps are an integral data source for mineral and energy exploration. Moreover, they provide information such as the location of gravels and sands, which are important for infrastructure development. Currently, surficial geology maps are produced through expert interpretation of aerial photography and field data. However, interpretation is known to be subjective, labour-intensive and difficult to repeat. The expert knowledge required for interpretation can be challenging to maintain and transfer. In this research, we seek to assess the potential of deep neural networks to aid surficial geology mapping by providing an objective surficial materials initial layer that experts can modify to speed map development and improve consistency between mapped areas. Such an approach may also harness expert knowledge in a way that is transferable to unmapped areas. For this purpose, we assess the ability of convolution neural networks (CNN to predict surficial geology classes under two sampling scenarios. In the first scenario, a CNN uses samples collected over the area to be mapped. In the second, a CNN trained over one area is then applied to locations where the available samples were not used in training the network. The latter case is important, as a collection of in situ training data can be costly. The evaluation of the CNN was carried out using aerial photos, Landsat reflectance, and high-resolution digital elevation data over five areas within the South Rae geological region of Northwest Territories, Canada. The results are encouraging, with the CNN generating average accuracy of 76% when locally trained. For independent test areas (i.e., trained over one area and applied over other, accuracy dropped to 59–70% depending on the classes selected for mapping. In the South Rae region, significant confusion was found

  17. Geologic Map of the State of Hawai`i

    Science.gov (United States)

    Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.

    2007-01-01

    About This Map The State's geology is presented on eight full-color map sheets, one for each of the major islands. These map sheets, the illustrative meat of the publication, can be downloaded in pdf format, ready to print. Map scale is 1:100,000 for most of the islands, so that each map is about 27 inches by 36 inches. The Island of Hawai`i, largest of the islands, is depicted at a smaller scale, 1:250,000, so that it, too, can be shown on 36-inch-wide paper. The new publication isn't limited strictly to its map depictions. Twenty years have passed since David Clague and Brent Dalrymple published a comprehensive report that summarized the geology of all the islands, and it has been even longer since the last edition of Gordon Macdonald's book, Islands in the Sea, was revised. Therefore the new statewide geologic map includes an 83-page explanatory pamphlet that revisits many of the concepts that have evolved in our geologic understanding of the eight main islands. The pamphlet includes simplified page-size geologic maps for each island, summaries of all the radiometric ages that have been gathered since about 1960, generalized depictions of geochemical analyses for each volcano's eruptive stages, and discussion of some outstanding topics that remain controversial or deserving of additional research. The pamphlet also contains a complete description of map units, which enumerates the characteristics for each of the state's many stratigraphic formations shown on the map sheets. Since the late 1980s, the audience for geologic maps has grown as desktop computers and map-based software have become increasingly powerful. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) can also feast on this publication. An electronic database, suitable for most GIS software applications, is available for downloading. The GIS database is in an Earth projection widely employed throughout the State of Hawai`i, using the North American datum of

  18. Geologic map of the eastern quarter of the Flagstaff 30’ x 60’ quadrangle, Coconino County, northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Block, Debra L.; Hiza-Redsteer, Margaret

    2014-01-01

    The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.

  19. GEOLOGICAL ANDGEOMORPHOLOGICAL MAPPING ARCHAEOLOGICAL MONUMENTS OF MOUNTAIN ALTAI

    Directory of Open Access Journals (Sweden)

    G. Y. Baryshnikov

    2015-01-01

    Full Text Available The article discusses the results of geological and geomorphological mapping of archaeological monument, mainly Paleolithic age, the location of which is confined to low-mountain spaces of the Mountain Altai. Using this mapping would greatly clarify the sequence of relief habitat of ancient people and more objectively determine the age characteristics of archaeological monument. 

  20. Bedrock Geologic Map of Vermont - Faults and Contacts

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  1. Bedrock Geologic Map of Vermont - Geochronology Sample Locations

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  2. High-Resolution Geologic Mapping of Martian Terraced Fan Deposits

    Science.gov (United States)

    Wolak, J. M.; Patterson, A. B.; Smith, S. D.; Robbins, N. N.

    2018-06-01

    This abstract documents our initial progress (year 1) mapping terraced fan features on Mars. Our objective is to investigate the role of fluids during fan formation and produce the first high-resolution geologic map (1:18k) of a terraced fan.

  3. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia

    Science.gov (United States)

    De Boissieu, Florian; Sevin, Brice; Cudahy, Thomas; Mangeas, Morgan; Chevrel, Stéphane; Ong, Cindy; Rodger, Andrew; Maurizot, Pierre; Laukamp, Carsten; Lau, Ian; Touraivane, Touraivane; Cluzel, Dominique; Despinoy, Marc

    2018-02-01

    Accurate maps of Earth's geology, especially its regolith, are required for managing the sustainable exploration and development of mineral resources. This paper shows how airborne imaging hyperspectral data collected over weathered peridotite rocks in vegetated, mountainous terrane in New Caledonia were processed using a combination of methods to generate a regolith-geology map that could be used for more efficiently targeting Ni exploration. The image processing combined two usual methods, which are spectral feature extraction and support vector machine (SVM). This rationale being the spectral features extraction can rapidly reduce data complexity by both targeting only the diagnostic mineral absorptions and masking those pixels complicated by vegetation, cloud and deep shade. SVM is a supervised classification method able to generate an optimal non-linear classifier with these features that generalises well even with limited training data. Key minerals targeted are serpentine, which is considered as an indicator for hydrolysed peridotitic rock, and iron oxy-hydroxides (hematite and goethite), which are considered as diagnostic of laterite development. The final classified regolith map was assessed against interpreted regolith field sites, which yielded approximately 70% similarity for all unit types, as well as against a regolith-geology map interpreted using traditional datasets (not hyperspectral imagery). Importantly, the hyperspectral derived mineral map provided much greater detail enabling a more precise understanding of the regolith-geological architecture where there are exposed soils and rocks.

  4. Geology and neotectonism in the epicentral area of the 2011 M5.8 Mineral, Virginia, earthquake

    Science.gov (United States)

    Burton, William C.; Spears, David B.; Harrison, Richard W.; Evans, Nicholas H.; Schindler, J. Stephen; Counts, Ronald C.

    2015-01-01

    This fi eld guide covers a two-day west-to-east transect across the epicentral region of the 2011 M5.8 Mineral, Virginia, earthquake, the largest ever recorded in the Central Virginia seismic zone. The fi eld trip highlights results of recent bedrock and surficial geologic mapping in two adjoining 7.5-min quadrangles, the Ferncliff and the Pendleton, which together encompass the epicenter and most of the 2011–2012 aftershocks.

  5. Geologic map of the Frisco quadrangle, Summit County, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Bartos, Paul J.; Williams, Cindy L.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift?partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation ?C??Part five?Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt

  6. Geologic map of the Lada Terra quadrangle (V-56), Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  7. Geology of the Nine Canyon Map Area

    International Nuclear Information System (INIS)

    Jones, M.G.; Landon, R.D.

    1978-09-01

    The basalt stratigraphy and structure of a 175-square kilometer area (the Nine Canyon Map Area) along the southern margin of the Pasco Basin have been studied to help assess the feasibility of a nuclear waste terminal storage facility. Detailed mapping shows that uplift of the Horse Heaven Hills began prior to extrusion of the Priest Rapids Member of the Wanapum Basalt, Columbia River Basalt Group. Both the Pomoma and the Elephant Mountain members (Saddle Mountains Basalt, Columbia River Basalt Group) are wide-spread throughout the basin, but thin considerably along the Horse Heaven Hills in the vicinity of Wallula Gap. The Ice Harbor Member is present only along the northern margin of the map area and possibly occupies a paleo-channel. The Rattlesnake Hills-Wallula Gap Lineament trends north 60 degrees west and intersects the older Horse Heaven Hills anticline in Wallula Gap. Four faults of short length and small vertical displacement are located along this structure. Within the map area, the intensity of folding increases, and the style of faulting changes from normal to reverse with proximity to the Wallula Gap area. No evidence for Quaternary deformation was found

  8. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  9. Nd and Sr isotopes: implications of provenance and geological mapping

    International Nuclear Information System (INIS)

    Albuquerque, Marcio Fernando dos Santos; Horbe, Adriana Maria Coimbra; Dantas, Elton Luiz

    2015-01-01

    XRD, Nd and Sr isotopes, major, minor and traces elements quantification were applied to rocks, lateritic crusts and soils from Sumauma Supergroup and Alto Tapajos Group, in order to indicate provenance of the rocks and using lateritic products as geologic mapping tool. For the rocks, the results showed sources related to provinces Tapajos Parima, Rondonia Juruena, Sunsas, Carajas and Amazonia Central. However, the incision of Cachimbo graben allowed which the Sumauma Supergroup erosion also were source for the Alto Tapajos Group, allied to contribution of volcanics from Colider Group. Lateritic crusts and soils are correlates to bedrocks, allowing the use as geologic mapping tool. (author)

  10. Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle

    Science.gov (United States)

    Gregg, T. K. P.; Yingst, R. A.

    2009-01-01

    Since the first lunar mapping program ended in the 1970s, new topographical, multispectral, elemental and albedo imaging datasets have become available (e.g., Clementine, Lunar Prospector, Galileo). Lunar science has also advanced within the intervening time period. A new systematic lunar geologic mapping effort endeavors to build on the success of earlier mapping programs by fully integrating the many disparate datasets using GIS software and bringing to bear the most current understanding of lunar geologic history. As part of this program, we report on a 1:2,500,000-scale preliminary map of a subset of Lunar Quadrangle 10 ("LQ-10" or the "Marius Quadrangle," see Figures 1 and 2), and discuss the first-order science results. By generating a geologic map of this region, we can constrain the stratigraphic and geologic relationships between features, revealing information about the Moon s chemical and thermal evolution.

  11. Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia

    Science.gov (United States)

    Pour, Amin Beiranvand; Hashim, Mazlan

    2014-08-01

    The application of optical remote sensing data for geological mapping is difficult in the tropical environment. The persistent cloud coverage, dominated vegetation in the landscape and limited bedrock exposures are constraints imposed by the tropical climate. Structural geology investigations that are searching for epithermal or polymetallic vein-type ore deposits can be developed using Synthetic Aperture Radar (SAR) remote sensing data in tropical/sub-tropical regions. The Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo has been selected for this study. The Bau is a gold field similar to Carlin style gold deposits, but gold mineralization at Bau is much more structurally controlled. Geological analyses coupled with the Phased Array type L-band Synthetic Aperture Radar (PALSAR) remote sensing data were used to detect structural elements associated with gold mineralization. The PALSAR data were used to perform lithological-structural mapping of mineralized zones in the study area and surrounding terrain. Structural elements were detected along the SSW to NNE trend of the Tuban fault zone and Tai Parit fault that corresponds to the areas of occurrence of the gold mineralization in the Bau Limestone. Most of quartz-gold bearing veins occur in high-angle faults, fractures and joints within massive units of the Bau Limestone. The results show that four deformation events (D1-D4) in the structures of the Bau district and structurally controlled gold mineralization indicators, including faults, joints and fractures are detectable using PALSAR data at both regional and district scales. The approach used in this study can be more broadly applicable to provide preliminary information for exploration potentially interesting areas of epithermal or polymetallic vein-type mineralization using the PALSAR data in the tropical/sub-tropical regions.

  12. Geologic Map of the Hellas Region of Mars

    Science.gov (United States)

    Leonard, Gregory J.; Tanaka, Kenneth L.

    2001-01-01

    INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and deposits, and extensive channels. Geologic activity recorded in the region spans all major epochs of martian chronology, from the early formation of the impact basin to ongoing resurfacing caused by eolian activity. The Hellas region, whose name refers to the classical term for Greece, has been known from telescopic observations as a prominent bright feature on the surface of Mars for more than a century (see Blunck, 1982). More recently, spacecraft imaging has greatly improved our visual perception of Mars and made possible its geologic interpretation. Here, our mapping at 1:5,000,000 scale is based on images obtained by the Viking Orbiters, which produced higher quality images than their predecessor, Mariner 9. Previous geologic maps of the region include those of the 1:5,000,000-scale global series based on Mariner 9 images (Potter, 1976; Peterson, 1977; King, 1978); the 1:15,000,000-scale global series based on Viking images (Greeley and Guest, 1987; Tanaka and Scott, 1987); and detailed 1:500,000-scale maps of Tyrrhena Patera (Gregg and others, 1998), Dao, Harmakhis, and Reull Valles (Price, 1998; Mest and Crown, in press), Hadriaca Patera (D.A. Crown and R. Greeley, map in preparation), and western Hellas Planitia (J.M. Moore and D.E. Wilhelms, map in preparation). We incorporated some of the previous work, but our map differs markedly in the identification and organization of map units. For example, we divide the Hellas assemblage of Greeley and Guest (1987) into the Hellas Planitia and Hellas rim assemblages and change the way units within these groupings are identified

  13. Geology and Nonfuel Mineral Deposits of Africa and the Middle East

    Science.gov (United States)

    Taylor, Cliff D.; Schulz, Klaus J.; Doebrich, Jeff L.; Orris, Greta; Denning, Paul; Kirschbaum, Michael J.

    2009-01-01

    A nation's endowment of nonfuel mineral resources, relative to the world's endowment, is a fundamental consideration in decisions related to a nation's economic and environmental well being and security. Knowledge of the worldwide abundance, distribution, and general geologic setting of mineral commodities provides a framework within which a nation can make decisions about economic development of its own resources, and the economic and environmental consequences of those decisions, in a global perspective. The information in this report is part of a U.S. Geological Survey (USGS) endeavor to evaluate the global endowment of both identified and undiscovered nonfuel mineral resources. The results will delineate areas of the world that are geologically permissive for the occurrence of undiscovered selected nonfuel mineral resources together with estimates of the quantity and quality of the resources. The results will be published as a series of regional reports; this one provides basic data on the identified resources and geologic setting, together with a brief appraisal of the potential for undiscovered mineral resources in Africa and the Middle East. Additional information, such as production statistics, economic factors that affect the mineral industries of the region, and historical information, is available in U.S. Geological Survey publications such as the Minerals Yearbook and the annual Mineral Commodity Summaries (available at http://minerals.usgs.gov/minerals).

  14. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  15. Alteration mineral mapping in inaccessible regions using target detection algorithms to ASTER data

    International Nuclear Information System (INIS)

    Pour, A B; Hashim, M; Park, Y

    2017-01-01

    In this study, the applications of target detection algorithms such as Constrained Energy Minimization (CEM), Orthogonal Subspace Projection (OSP) and Adaptive Coherence Estimator (ACE) to shortwave infrared bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data was investigated to extract geological information for alteration mineral mapping in poorly exposed lithologies in inaccessible domains. The Oscar II coast area north-eastern Graham Land, Antarctic Peninsula (AP) was selected in this study to conduct a satellite-based remote sensing mapping technique. It is an inaccessible region due to the remoteness of many rock exposures and the necessity to travel over sever mountainous and glacier-cover terrains for geological field mapping and sample collection. Fractional abundance of alteration minerals such as muscovite, kaolinite, illite, montmorillonite, epidote, chlorite and biotite were identified in alteration zones using CEM, OSP and ACE algorithms in poorly mapped and unmapped zones at district scale for the Oscar II coast area. The results of this investigation demonstrated the applicability of ASTER shortwave infrared spectral data for lithological and alteration mineral mapping in poorly exposed lithologies and inaccessible regions, particularly using the image processing algorithms that are capable to detect sub-pixel targets in the remotely sensed images, where no prior information is available. (paper)

  16. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    Science.gov (United States)

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  17. Geological mapping of the Kuiper quadrangle (H06) of Mercury

    Science.gov (United States)

    Giacomini, Lorenza; Massironi, Matteo; Galluzzi, Valentina

    2017-04-01

    Kuiper quadrangle (H06) is located at the equatorial zone of Mercury and encompasses the area between longitudes 288°E - 360°E and latitudes 22.5°N - 22.5°S. The quadrangle was previously mapped for its most part by De Hon et al. (1981) that, using Mariner10 data, produced a final 1:5M scale map of the area. In this work we present the preliminary results of a more detailed geological map (1:3M scale) of the Kuiper quadrangle that we compiled using the higher resolution of MESSENGER data. The main basemap used for the mapping is the MDIS (Mercury Dual Imaging System) 166 m/pixel BDR (map-projected Basemap reduced Data Record) mosaic. Additional datasets were also taken into account, such as DLR stereo-DEM of the region (Preusker et al., 2016), global mosaics with high-incidence illumination from the east and west (Chabot et al., 2016) and MDIS global color mosaic (Denevi et al., 2016). The preliminary geological map shows that the western part of the quadrangle is characterized by a prevalence of crater materials (i.e. crater floor, crater ejecta) which were distinguished into three classes on the basis of their degradation degree (Galluzzi et al., 2016). Different plain units were also identified and classified as: (i) intercrater plains, represented by densely cratered terrains, (ii) intermediate plains, which are terrains with a moderate density of superposed craters, and (iii) smooth plains, which are poorly cratered volcanic deposits emplaced mainly on the larger crater floors. Finally, several structures were mapped all over the quadrangle. Most of these features are represented by thrusts, some of which appear to form systematic alignments. In particular, two main thrust systems have been identified: i) the "Thakur" system, a 1500 km-long system including several scarps with a NNE-SSW orientation, located at the edge between the Kuiper and Beethoven (H07) quadrangles; ii) the "Santa Maria" system, located at the centre of the quadrangle. It is a 1700 km

  18. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  19. Geologic Mapping in the Hesperia Planum Region of Mars

    Science.gov (United States)

    Gregg, Tracy K. P.; Crown, David A.

    2010-01-01

    Hesperia Planum, characterized by a high concentration of mare-type wrinkle ridges and ridge rings, encompasses > 2 million square km in the southern highlands of Mars. The most common interpretation is that the plains were emplaced as "flood" lavas with total thicknesses of geologic mapping reveal that the whole of Hesperia Planum is unlikely to be composed of the same materials, emplaced at the same geologic time. To unravel these complexities, we are generating a 1:1.5M-scale geologic map of Hesperia Planum and its surroundings. To date, we have identified 4 distinct plains units within Hesperia Planum and are attempting to determine the nature and relative ages of these materials.

  20. Digital bedrock geologic map of the Andover quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-31A Ratcliffe, N.M., 1996,�Digital bedrock geologic map of the Andover quadrangle, Vermont: USGS Open-File Report 96-31-A, 2 plates, scale...

  1. Building a Geologic Map of Neptune's Moon Triton

    Science.gov (United States)

    Martin, E. S.; Patthoff, D. A.; Bland, M. T.; Watters, T. R.; Collins, G. C.; Becker, T.

    2018-06-01

    Triton serves as a bridge between KBOs and icy satellites, and characterization of its terrains is important for advancing comparative planetological studies. We aim to create a geologic map of the Neptune-facing side of Triton at a scale of 1:5M.

  2. Geologic mapping around Mahoma mining. San Jose mining company

    International Nuclear Information System (INIS)

    Techera, J.; Arrighetii, R.

    1993-01-01

    This study has as main objective carry out a geological mapping as well as the structural analysis , in 1.5.000 scale in the zone where the gold benefit plant of San Jose mining company is settled (Mahoma Mining). From this study has been marked many drillings.

  3. Digital bedrock geologic map of the Weston quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-526A Ratcliffe, NM�and Burton, WC, 1996,�Digital bedrock geologic map of the Weston quadrangle, Vermont: USGS Open-File Report 96-526, 2...

  4. Digital bedrock geologic map of the Chester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-576A Ratcliffe, N.M., 1995,�Digital bedrock geologic map of the Chester quadrangle, Vermont: USGS Open-File Report 95-576, 2 plates, scale...

  5. Digital bedrock geologic map of the Plymouth quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG94-654A Walsh, G.J., and Ratcliffe, N.M., 1994,�Digital bedrock geologic map of the Plymouth quadrangle, Vermont: USGS Open-File Report 94-654, 2...

  6. Digital bedrock geologic map of the Johnson quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-2 Thompson, PJ�and Thompson, TB, 1998,�Digital bedrock geologic map of the Johnson quadrangle, Vermont: VGS Open-File Report VG98-2, 2 plates,...

  7. Digital bedrock geologic map of the Rochester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-33A Walsh, GJ�and Falta, CK, 1996, Digital bedrock geologic map of the Rochester quadrangle, Vermont: USGS Open-File Report 96-33-A, 2 plates,...

  8. Digital bedrock geologic map of the Eden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-3 Kim, J, Springston, G, and Gale, M, 1998,�Digital bedrock geologic map of the Eden quadrangle, Vermont: VGS Open-File Report VG98-3, 2...

  9. Surficial geologic map of the Dillingham quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2018-05-14

    The geologic map of the Dillingham quadrangle in southwestern Alaska shows surficial unconsolidated deposits, many of which are alluvial or glacial in nature. The map area, part of Alaska that was largely not glaciated during the late Wisconsin glaciation, has a long history reflecting local and more distant glaciations. Late Wisconsin glacial deposits have limited extent in the eastern part of the quadrangle, but are quite extensive in the western part of the quadrangle. This map and accompanying digital files are the result of the interpretation of black and white aerial photographs from the 1950s as well as more modern imagery. Limited new field mapping in the area was conducted as part of a bedrock mapping project in the northeastern part of the quadrangle; however, extensive aerial photographic interpretation represents the bulk of the mapping effort.

  10. The First USGS Global Geologic Map of Europa

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we

  11. Geological environment and mineralizations associated to granite from Serra Dourada (meridional edge) - Goias

    International Nuclear Information System (INIS)

    Macambira, M.J.B.

    1983-01-01

    The Serra Dourada granite is related to one of the various large tin-bearing domic structures that occur in central-eastern Goias, where rocks of Uruacu and Brasilia folded belts and of Goias median massif crop out. The present study was undertaken in the southern part of Serra Dourada as an attempt to contribute to the petrologic, metallogenetic and stratigraphic aspects of the granitic rocks present in that region. The methodological approach consisted of the preparation of a 1:45.000 geological map and included the obtention of petrographic, ore microscopic and geochronological data, as well as the determination of major element concentrations in rocks and some minerals. Trace elements were only determined for rocks. (author)

  12. Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data

    Science.gov (United States)

    Lee, K. (Principal Investigator); Prost, G. L.; Knepper, D. H.; Sawatzky, D. L.; Huntley, D.; Weimer, R. J.

    1975-01-01

    The author has identified the following significant results. Skylab photographs are superior to ERTS images for photogeologic interpretation, primarily because of improved resolution. Lithologic contacts can be detected consistently better on Skylab S190A photos than on ERTS images. Color photos are best; red and green band photos are somewhat better than color-infrared photos; infrared band photos are worst. All major geologic structures can be recognized on Skylab imagery. Large folds, even those with very gentle flexures, can be mapped accurately and with confidence. Bedding attitudes of only a few degrees are recognized; vertical exaggeration factor is about 2.5X. Mineral deposits in central Colorado may be indicated on Skylab photos by lineaments and color anomalies, but positive identification of these features is not possible. S190A stereo color photography is adequate for defining drainage divides that in turn define the boundaries and distribution of ground water recharge and discharge areas within a basin.

  13. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  14. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  15. Geologic map of the Western Grove quadrangle, northwestern Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.; Repetski, John E.

    2006-01-01

    This map summarizes the geology of the Western Grove 7.5-minute quadrangle in northern Arkansas that is located on the southern flank of the Ozark dome, a late Paleozoic regional uplift. The exposed bedrock of this map area comprises approximately 1,000 ft of Ordovician and Mississippian carbonate and clastic sedimentary rocks that have been mildly folded and broken by faults. A segment of the Buffalo River loops through the southern part of the quadrangle, and the river and adjacent lands form part of Buffalo National River, a park administered by the U.S. National Park Service. This geologic map provides information to better understand the natural resources of the Buffalo River watershed, particularly its karst hydrogeologic framework.

  16. Maps showing geology, oil and gas fields, and geological provinces of South America

    Science.gov (United States)

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  17. Maps compiled by the ESSO Minerals Company during their exploration program for uranium in South Africa

    International Nuclear Information System (INIS)

    Bertolini, A.; Pretorius, L.; Weideman, M.; Scheepers, T.

    1985-09-01

    The report is a bibliography of approximately one thousand maps. The maps contain information of ESSO Minerals Company's prospecting activities for mainly uranium in South Africa. ESSO explorated for uranium in the Karoo, Northwestern Cape and the Bushveld. The bibliography contains two indexes. The one is a list of prospects and projects as per geological province and the other is an alphabetic list of projects and prospects. Three geological provinces are distiguished, namely, the Bushveld province, Karoo province and Namaqualand province. The annotations contain information on the location and geographic area of the map, the name of the project or prospect, the title, a statement of resposibility (this includes the compiles i.e. geologists, and/or draftsmen), the statement of scale which is always expressed as a ratio, the date of compilation and/or revision and a few keywords to indicate the topical subject matter

  18. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  19. Support vector machine: a tool for mapping mineral prospectivity

    NARCIS (Netherlands)

    Zuo, R.; Carranza, E.J.M

    2011-01-01

    In this contribution, we describe an application of support vector machine (SVM), a supervised learning algorithm, to mineral prospectivity mapping. The free R package e1071 is used to construct a SVM with sigmoid kernel function to map prospectivity for Au deposits in western Meguma Terrain of Nova

  20. The role of house surveys in geological radon potential mapping

    International Nuclear Information System (INIS)

    Ball, K.

    1997-01-01

    Because radon levels vary widely between apparently identical buildings on the same geological unit, no map can predict the radon level in an individual building. Maps can, however, give the probability that a building in a particular locality is above a threshold of radon concentration such as a reference or action level. The probability may be calculated for a particular building type or for a mixture of building types. In the latter case the probability is in effect an estimate of the proportion of buildings above the threshold level. Alternatively maps can provide estimates of the mean radon levels in buildings by area. Maps showing the geographical variation in probability that new or existing building will exceed a radon reference level are used to prevent excessive exposures to radon. The information may be used in various ways, such as to target information campaigns encouraging measurement of radon levels in homes or to modify regulations for new buildings. The data which are used to provide the estimates of the proportion of buildings above a threshold may be radon measurements results from a sample of buildings, or may be indirect indicators such as ground radium concentrations, emanation coefficients and permeability measurements. Consistency in radon measurement protocols and detailed positional information are prerequisites for mapping radon prone areas based upon house data. Grouping building radon measurements by geological formation and superficial cover can produce radon potential maps which are more spatially accurate than grid square maps and more accurate in estimating numbers of homes affected than mapping based only on measuring geological and pedagogical properties

  1. Mineral and energy resource assessment maps of the Mount Katmai, Naknek, and western Afognak quadrangles, Alaska

    Science.gov (United States)

    Church, S.E.; Riehle, J.R.; Magoon, L.B.; Campbell, D.L.

    1992-01-01

    On the basis of new geologic mapping and exploration geochemical studies, we have provided a mineral and energy resource assessment of the Mount Katmai, Naknek, and western Afognak quadrangles, Alaska. We delineate four tracts of ground that have metallic mineral resources. The mineral deposit types considered in each tract are summarized in table 4. Estimates of the number of undiscovered mineral deposits have been made for porphyry copper and polymetallic vein deposits. We estimate that one undiscovered porphyry copper deposit is present in the Katmai study area at the ten percent probability level. Although the sampling density may be too low to give an accurate estimate of the number of undiscovered polymetallic vein deposits, we suggest that, at a minimum, there is a five percent probability for five or more undiscovered polymetallic vein deposits in the Katmai study area. In addition, several areas have potential for undiscovered porphyry molybdenum, massive sulfide, and epithermal gold and mercury deposits.

  2. Alteration mineral mapping using ETM+ and hyperion remote sensing data at Bau Gold Field, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Pour, A B; Hashim, M

    2014-01-01

    The area under investigation is the Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo. It has tropical climate with limited bedrock exposures. Bau is a gold field similar to Carlin style gold deposits. Geological analyses coupled with remote sensing data were used to detect hydrothermally altered rocks associated with gold mineralization. The Landsat Enhanced Thematic Mapper + (ETM + ) and Hyperion data were used to carry out mineral mapping of mineralized zones in the study area and surrounding terrain. Directed Principal Components Analysis (DPCA) transformation of four appropriate ETM+ band ratios were applied to produce DPC images, allowing the removal of the effects of vegetation from ETM+ data and the detection of separate mineral images at a regional scale. Linear Spectral Unmixing (LSU) was used to produce image maps of hydroxyl-bearing minerals using Hyperion data at a district scale. Results derived from the visible and near infrared and shortwave infrared bands of Hyperion represented iron oxide/hydroxide and clay minerals rich zones associated with the known gold prospects in the Bau district. The results show that the known gold prospects and potentially interesting areas are recognizable by the methods used, despite limited bedrock exposure in this region and the constraints imposed by the tropical environment. The approach used in this study can be more broadly applicable to provide an opportunity for detecting potentially interesting areas of gold mineralization using the ETM + and Hyperion data in the tropical/sub-tropical regions

  3. Alteration mineral mapping using ETM+ and hyperion remote sensing data at Bau Gold Field, Sarawak, Malaysia

    Science.gov (United States)

    Pour, A. B.; Hashim, M.

    2014-02-01

    The area under investigation is the Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo. It has tropical climate with limited bedrock exposures. Bau is a gold field similar to Carlin style gold deposits. Geological analyses coupled with remote sensing data were used to detect hydrothermally altered rocks associated with gold mineralization. The Landsat Enhanced Thematic Mapper+ (ETM+) and Hyperion data were used to carry out mineral mapping of mineralized zones in the study area and surrounding terrain. Directed Principal Components Analysis (DPCA) transformation of four appropriate ETM+ band ratios were applied to produce DPC images, allowing the removal of the effects of vegetation from ETM+ data and the detection of separate mineral images at a regional scale. Linear Spectral Unmixing (LSU) was used to produce image maps of hydroxyl-bearing minerals using Hyperion data at a district scale. Results derived from the visible and near infrared and shortwave infrared bands of Hyperion represented iron oxide/hydroxide and clay minerals rich zones associated with the known gold prospects in the Bau district. The results show that the known gold prospects and potentially interesting areas are recognizable by the methods used, despite limited bedrock exposure in this region and the constraints imposed by the tropical environment. The approach used in this study can be more broadly applicable to provide an opportunity for detecting potentially interesting areas of gold mineralization using the ETM+ and Hyperion data in the tropical/sub-tropical regions.

  4. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Klamath Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  5. 2012 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI has collected Light Detection and Ranging (LiDAR) data of the Oregon Central Coast Study Area for the Oregon Department of Geology and Mineral Industries...

  6. 2012 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Tillamook Yamhill

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI has collected Light Detection and Ranging (LiDAR) data of the Oregon Tillamook-Yamhill Study Area for the Oregon Department of Geology and Mineral Industries...

  7. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Crater Lake Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  8. 2012 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Rogue River Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI has collected Light Detection and Ranging (LiDAR) data of the Rogue River Study Area for the Oregon Department of Geology and Mineral Industries (DOGAMI),...

  9. 2009 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Willamette Valley

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  10. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Mt. Shasta Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  11. 2008 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Lake Billy Chinook, Oregon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  12. 2008 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic lidar data for...

  13. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Burns Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  14. 2010 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  15. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    Science.gov (United States)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  16. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    Science.gov (United States)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the

  17. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  18. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  19. Development of a specific geological mapping software under MAPGIS

    International Nuclear Information System (INIS)

    Zhang Wenkai

    2010-01-01

    The most often used mapping software in geological exploration is MAPGIS system, and related standard is established based on it. The software has more agile functions, except for the following shortages: more parameters to select, difficult to master, different parameters to use for each one, low efficiency. As a result, a specific software is developed for geological mapping by using VC++ on the platform of MAPGIS. According to the standards, toolbars are built for strata, rock, geographic information and materials, etc. By pushing on the buttons, the parameters are selected, and menus of toolbars can be modified to select parameters for each working areas, legends can be sorted automatically. So, the speed can be improved greatly, and the parameters can be identical. The software can complete the transition between Gauss coordinate and longitude-latitude coordinate, drawing points, frames by longitude-latitude, responsible form, plain diagram and profile, etc. The software also improves the way of clipping, topologizing, node catching methods. The application of the software indicates that it can improve the speed of geological mapping greatly, and can improve the standardized level of the final maps. (authors)

  20. Geologic mapping of the Amirani-Gish Bar region of Io: Implications for the global geologic mapping of Io

    Science.gov (United States)

    Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Jaeger, W.L.; Schenk, P.M.

    2007-01-01

    We produced the first geologic map of the Amirani-Gish Bar region of Io, the last of four regional maps generated from Galileo mission data. The Amirani-Gish Bar region has five primary types of geologic materials: plains, mountains, patera floors, flows, and diffuse deposits. The flows and patera floors are thought to be compositionally similar, but are subdivided based on interpretations regarding their emplacement environments and mechanisms. Our mapping shows that volcanic activity in the Amirani-Gish Bar region is dominated by the Amirani Eruptive Center (AEC), now recognized to be part of an extensive, combined Amirani-Maui flow field. A mappable flow connects Amirani and Maui, suggesting that Maui is fed from Amirani, such that the post-Voyager designation "Maui Eruptive Center" should be revised. Amirani contains at least four hot spots detected by Galileo, and is the source of widespread bright (sulfur?) flows and active dark (silicate?) flows being emplaced in the Promethean style (slowly emplaced, compound flow fields). The floor of Gish Bar Patera has been partially resurfaced by dark lava flows, although other parts of its floor are bright and appeared unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a lava lake as proposed for other ionian paterae. There are several other hot spots in the region that are the sources of both active dark flows (confined within paterae), and SO2- and S2-rich diffuse deposits. Mapped diffuse deposits around fractures on mountains and in the plains appear to serve as the source for gas venting without the release of magma, an association previously unrecognized in this region. The six mountains mapped in this region exhibit various states of degradation. In addition to gaining insight into this region of Io, all four maps are studied to assess the best methodology to use to produce a new global geologic map of Io based on the newly released, combined Galileo

  1. Digital Field Mapping with the British Geological Survey

    Science.gov (United States)

    Leslie, Graham; Smith, Nichola; Jordan, Colm

    2014-05-01

    The BGS•SIGMA project was initiated in 2001 in response to a major stakeholder review of onshore mapping within the British Geological Survey (BGS). That review proposed a significant change for BGS with the recommendation that digital methods should be implemented for field mapping and data compilation. The BGS•SIGMA project (System for Integrated Geoscience MApping) is an integrated workflow for geoscientific surveying and visualisation using digital methods for geological data visualisation, recording and interpretation, in both 2D and 3D. The project has defined and documented an underpinning framework of best practice for survey and information management, best practice that has then informed the design brief and specification for a toolkit to support this new methodology. The project has now delivered BGS•SIGMA2012. BGS•SIGMA2012 is a integrated toolkit which enables assembly and interrogation/visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of 3D digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system which runs on ruggedized tablet PCs with integrated GPS units, the system has evolved into a complete digital mapping and compilation system. BGS•SIGMA2012 uses a highly customised version of ESRI's ArcGIS 10 and 10.1 with a fully relational Access 2007/2010 geodatabase. BGS•SIGMA2012 is the third external release of our award-winning digital field mapping toolkit. The first free external release of the award-winning digital field mapping toolkit was in 2009, with the third version (BGS-SIGMAmobile2012 v1.01) released on our website (http://www.bgs.ac.uk/research/sigma/home.html) in 2013. The BGS•SIGMAmobile toolkit formed the major part of the first two releases but this new version integrates the BGS•SIGMAdesktop functionality that BGS routinely uses to transform our field

  2. Geologic map of the Shaida deposit and Misgaran prospect, Herat Province, Afghanistan, modified from the 1973 original map compilation of V.I. Tarasenko and others

    Science.gov (United States)

    Tucker, Robert D.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2014-01-01

    This map is a modified version of Geological map and map of useful minerals, Shaida area, scale 1:50,000, which was compiled by V.I. Tarasenko, N.I. Borozenets, and others in 1973. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original document and related reports and also visited the field area in August 2010.This modified map illustrates the geological structure of the Shaida copper-lead-zinc deposit and Misgaran copper-lead-zinc prospect in western Afghanistan and includes cross sections of the same area. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of these documents and on observations made during our field visit. Elevations on the cross sections are derived from the original Soviet topography and might not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map.The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  3. U.S. Geological Survey Mineral Resources Program—Mineral resource science supporting informed decisionmaking

    Science.gov (United States)

    Wilkins, Aleeza M.; Doebrich, Jeff L.

    2016-09-19

    The USGS Mineral Resources Program (MRP) delivers unbiased science and information to increase understanding of mineral resource potential, production, and consumption, and how mineral resources interact with the environment. The MRP is the Federal Government’s sole source for this mineral resource science and information. Program goals are to (1) increase understanding of mineral resource formation, (2) provide mineral resource inventories and assessments, (3) broaden knowledge of the effects of mineral resources on the environment and society, and (4) provide analysis on the availability and reliability of mineral supplies.

  4. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    Science.gov (United States)

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  5. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  6. Geology and mineral technology of the grants uranium region 1979

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1980-01-01

    Forty six papers which were presented at the 1979 Symposium on the Geology of the Grants Uranium Region plus three more are included in this Proceedings. The papers cover the geology of the Grants region with discussions of exploration history and methods, individual deposits, petrographic investigations, field studies mining and experimental studies. Other topics such as ground water hydrology and severence taxes are also included. All papers have been abstracted and all but four have been indexed

  7. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  8. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Science.gov (United States)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  9. Remote Sensing, Geology and Geochemistry on the GVIII Uranium Mineralization, Gabal Gattar, North Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Elkholy, D.M.; Elhusseiny, M.O.; Saleh, W.H.; Elzalaky, M.A.

    2012-01-01

    GVIII- uranium occurrence of Gabal Gattar is located at the intersection of Lat. 27° 05' 56 a nd Long. 33° 16' 33 t o the south of GH-uranium occurrence. This occurrence is hosted in the alkali feldspar granite of Gabal Gattar. It is dissected by NNE-SSW, ENE-WSW and NW-SE faults and fractures. The granite is strongly altered in the zones of these faults and fractures. This granite is composed of K-feldspars, quartz, plagioclase and biotite as essential minerals and zircon, apatite, fluorite as accessories. The secondary minerals are chlorite, sericite, muscovite and iron oxides. The main alterations along the fault and fracture zones are hematitization, silicification, kaolintiization, chloritization and fluoritization that increase at the zones of intersection.The Advanced Spacebome Thermal Emission and Reflection Radiometer (ASTER) discriminated and mapped the hematitized zones in the studied granitic rocks predicting iron oxides as pathfinder minerals that be helpful in localizing high uranium concentration. The compilated and integrated data as alteration zones, geological and structural features using Geographic Information System (GIS) played an important role in correlating, manipulating, visualizing and extracting the information getting a better result for interpretation and evaluation of this occurrence. The study granite is geochemically, alkali- feldspar granite to syenogranite originated from weakly peraluminous magma of alkaline affinity and of within plate tectonic setting due to crustal relaxation. This granite shows many geochemical characterestics similar to the A-type granite, high contents of SiO 2 , (Na 2 O + K 2 O), Rb, Nb, Y, low contents of MgO, CaO and Sr and apparently F-rich granite.Radiometric measurements of GVIII U-occurrence show that the study granite records uranium values between 15 and 28 ppm, while the anomalies record uranium values range from 400 to more than 30000 ppm. Surfacial yellow secondary uranium

  10. Gemstones and geosciences in space and time. Digital maps to the "Chessboard classification scheme of mineral deposits"

    Science.gov (United States)

    Dill, Harald G.; Weber, Berthold

    2013-12-01

    The gemstones, covering the spectrum from jeweler's to showcase quality, have been presented in a tripartite subdivision, by country, geology and geomorphology realized in 99 digital maps with more than 2600 mineralized sites. The various maps were designed based on the "Chessboard classification scheme of mineral deposits" proposed by Dill (2010a, 2010b) to reveal the interrelations between gemstone deposits and mineral deposits of other commodities and direct our thoughts to potential new target areas for exploration. A number of 33 categories were used for these digital maps: chromium, nickel, titanium, iron, manganese, copper, tin-tungsten, beryllium, lithium, zinc, calcium, boron, fluorine, strontium, phosphorus, zirconium, silica, feldspar, feldspathoids, zeolite, amphibole (tiger's eye), olivine, pyroxenoid, garnet, epidote, sillimanite-andalusite, corundum-spinel - diaspore, diamond, vermiculite-pagodite, prehnite, sepiolite, jet, and amber. Besides the political base map (gems by country) the mineral deposit is drawn on a geological map, illustrating the main lithologies, stratigraphic units and tectonic structure to unravel the evolution of primary gemstone deposits in time and space. The geomorphological map is to show the control of climate and subaerial and submarine hydrography on the deposition of secondary gemstone deposits. The digital maps are designed so as to be plotted as a paper version of different scale and to upgrade them for an interactive use and link them to gemological databases.

  11. Evaluation of LANDSAT-2 (ERTS) images applied to geologic structures and mineral resources of South America

    Science.gov (United States)

    Carter, W. D. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Work with the Image 100 clearly demonstrates that radiance values of LANDSAT data can be used for correlation of geologic formations across international boundaries. The Totora Formation of the Corocoro Group of Tertiary age was traced from known outcrops near Tiahuanaco, Bolivia, along the south side of Lake Titicaca westward into Peru where the same rocks are considered to be Cretaceous in age. This inconsistency suggests: (1) that a review of this formation is needed by joint geological surveys of both countries to determine similarities, differences, and the true age; (2) that recognition of the extension of the copper-bearing Totora Formation of Bolivia into Peru may provide Peru with a new target for exploration. Equal radiance maps made by use of the Image 100 system show as many as eight different units within salar deposits (salt flats) of the Bolivian Altiplano. Standard film processed images show them as nearly uniform areas of white because of lack of dynamic range in film products. The Image 100 system, therefore, appears to be of great assistance in subdividing the salt flats on the basis of moisture distribution, surface roughness, and distribution of windblown materials. Field work is needed to determine these relationships to mineral composition and distribution. Images representing seasonal changes should also improve the accuracy of such maps. Radiance values of alteration zones related to the occurrence of porphyry copper ores were measured at the San Juan del Abra deposit of northern Chile using the Image 100 system. The extent to which these same values may be used to detect similar alteration zones in other areas has not yet been tested.

  12. Geological map of the Kaiwan Fluctus Quadrangle (V-44), Venus

    Science.gov (United States)

    Bridges, Nathan T.; McGill, George E.

    2002-01-01

    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphereon October 12, 1994. Magellan had the objectives of: (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September of 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  13. Geologic Map of the Mylitta Fluctus Quadrangle (V-61), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2006-01-01

    INTRODUCTION The Magellan Mission The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included: (1) improving knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology, and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three data sets: (1) synthetic aperture radar (SAR) images of the surface, (2) passive microwave thermal emission observations, and (3) measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging, altimetric, and radiometric mapping of the Venusian surface was done in mission cycles 1, 2, and 3 from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution on the order of 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution, and these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied between about 20? and 45?. High resolution Doppler tracking of the spacecraft took place from September 1992 through October 1994 (mission cycles 4, 5, 6). Approximately 950 orbits of high-resolution gravity observations were obtained between September 1992 and May 1993 while Magellan was in an elliptical orbit with a periapsis near 175 km and an apoapsis near 8,000 km. An additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  14. Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus

    Science.gov (United States)

    Rosenberg, Elizabeth; McGill, George E.

    2001-01-01

    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  15. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.

    2008-01-01

    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  16. BGS·SIGMA - Digital mapping at the British Geological Survey

    Science.gov (United States)

    Smith, Nichola; Lawrie, Ken

    2017-04-01

    Geological mapping methods have evolved significantly over recent decades and this has included the transition to digital field data capture. BGS has been developing methodologies and technologies for this since 2001, and has now reached a stage where our custom built data capture and map compilation system (BGS·SIGMAv2015) is the default toolkit, within BGS, for bedrock and superficial mapping across the UK and overseas. In addition, BGS scientists also use the system for other data acquisition projects, such as landslide assessment, geodiversity audits and building stone studies. BGS·SIGMAv2015 is an integrated toolkit which enables assembly, interrogation and visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system, developed using ESRI's ArcGIS built on top of a bespoke relational data model, running on ruggedized tablet PCs with integrated GPS units, the system has evolved into a comprehensive system for digital geological data capture, mapping and compilation. The benefits, for BGS, of digital data capture are huge. Not only are the data being gathered in a standardised format, with the use of dictionaries to ensure consistency, but project teams can start building their digital geological map in the field by merging data collected by colleagues, building line-work and polygons, and subsequently identifying areas for further investigation. This digital data can then be easily incorporated into corporate databases and used in 3D modelling and visualisation software once back in the office. BGS is now at a stage where the free external release of our digital mapping system is in demand across the world, with 3000 licences being issued to date, and is successfully being used by other geological surveys, universities and exploration companies

  17. Mineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared Imagery

    Directory of Open Access Journals (Sweden)

    Sandra L. Perry

    2013-05-01

    Full Text Available WorldView commercial imaging satellites comprise a constellation developed by DigitalGlobe Inc. (Longmont, CO, USA. Worldview-3 (WV-3, currently planned for launch in 2014, will have 8 spectral bands in the Visible and Near-Infrared (VNIR, and an additional 8 bands in the Short-Wave-Infrared (SWIR; the approximately 1.0–2.5 μm spectral range. WV-3 will be the first commercial system with both high spatial resolution and multispectral SWIR capability. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS data collected at 3 m spatial resolution with 86 SWIR bands having 10 nm spectral resolution were used to simulate the new WV-3 SWIR data. AVIRIS data were converted to reflectance, geographically registered, and resized to the proposed 3.7 and 7.5 m spatial resolutions. WV-3 SWIR band pass functions were used to spectrally resample the data to the proposed 8 SWIR bands. Characteristic reflectance signatures extracted from the data for known mineral locations (endmembers were used to map spatial locations of specific minerals. The WV-3 results, when compared to spectral mapping using the full AVIRIS SWIR dataset, illustrate that the WV-3 spectral bands should permit identification and mapping of some key minerals, however, minerals with similar spectral features may be confused and will not be mapped with the same detail as using hyperspectral systems. The high spatial resolution should provide detailed mapping of complex alteration mineral patterns not achievable by current multispectral systems. The WV-3 simulation results are promising and indicate that this sensor will be a significant tool for geologic remote sensing.

  18. Study geology and uranium mineralization of ririt-amir engkala - tiga dara sector West Kalimantan

    International Nuclear Information System (INIS)

    Bambang Soetopo

    2009-01-01

    The results of previous research from Ririt, Amir Engkala, Tiga Dara sector which consist of geology, geophysics and drilling data show that all of the areas has similar in geology and Uranium mineralization. The purpose of this study is to know the relationship between geological condition and Uranium mineralization in Ririt, Amir Engkala and Tiga Dara sector. In general the geology of Ririt and Amir Engkala is similar with Tiga Dara sector. Those areas consist of tourmaline quartzite, muscovite quartzite, meta ignimbrite, biotite quartz schist, muscovite quartz schist, and micro diorite. The direction of the stratification is NE - SW and dipping to SE and the direction of the stochasticity is W - E and dipping to N. The dextral faults have WNW-ESE and NNE - SSW trends, while the sinistral one is WSW - ENE direction. There are also a thrust fault and a normal fault with WSW-ESE and NW-SE striking respectively. Uranium mineralization as a uraninite fill in the stochasticity and fracture N2600-30° E37°-59° in orientation which associated with magnetite, chalcopyrite, pyrite, arsenopyrite,. rutile, ilmenite, tourmaline and quartz. Radiometric value of Uranium mineralization is in the range of 500-15.000 c/s. The mineral association and the present of calcite, gypsum and quartz veins suggest that Uranium mineralization was resulted by hydrothermal magmatic processes. (author)

  19. Santos Basin Geological Structures Mapped by Cross-gradient Method

    Science.gov (United States)

    Jilinski, P.; Fontes, S. L.

    2011-12-01

    Introduction We mapped regional-scale geological structures localized in offshore zone Santos Basin, South-East Brazilian Coast. The region is dominated by transition zone from oceanic to continental crust. Our objective was to determine the imprint of deeper crustal structures from correlation between bathymetric, gravity and magnetic anomaly maps. The region is extensively studied for oil and gas deposits including large tectonic sub-salt traps. Our method is based on gradient directions and their magnitudes product. We calculate angular differences and cross-product and access correlation between properties and map structures. Theory and Method We used angular differences and cross-product to determine correlated region between bathymetric, free-air gravity and magnetic anomaly maps. This gradient based method focuses on borders of anomalies and uses its morphological properties to access correlation between their sources. We generated maps of angles and cross-product distribution to locate correlated regions. Regional scale potential fields maps of FA and MA are a reflection of the overlaying and overlapping effects of the adjacent structures. Our interest was in quantifying and characterizing the relation between shapes of magnetic anomalies and gravity anomalies. Results Resulting maps show strong correlation between bathymetry and gravity anomaly and bathymetry and magnetic anomaly for large strictures including Serra do Mar, shelf, continental slope and rise. All maps display the regional dominance of NE-SW geological structures alignment parallel to the shore. Special interest is presented by structures transgressing this tendency. Magnetic, gravity anomaly and bathymetry angles map show large correlated region over the shelf zone and smaller scale NE-SW banded structures over abyssal plane. From our interpretation the large band of inverse correlation adjacent to the shore is generated by the gravity effect of Serra do Mar. Disrupting structures including

  20. Testing geoscience data visualization systems for geological mapping and training

    Science.gov (United States)

    Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.

    2008-09-01

    Traditional methods of planetary geological mapping have relied on photographic hard copy and light-table tracing and mapping. In the last several decades this has given way to the availability and analysis of multiple digital data sets, and programs and platforms that permit the viewing and manipulation of multiple annotated layers of relevant information. This has revolutionized the ability to incorporate important new data into the planetary mapping process at all scales. Information on these developments and approaches can be obtained at http://astrogeology.usgs. gov/ Technology/. The processes is aided by Geographic Information Systems (GIS) (see http://astrogeology. usgs.gov/Technology/) and excellent analysis packages (such as ArcGIS) that permit co-registration, rapid viewing, and analysis of multiple data sets on desktop displays (see http://astrogeology.usgs.gov/Projects/ webgis/). We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional

  1. Geologic mapping of Northern Atla Regio on Venus: Preliminary data

    Science.gov (United States)

    Nikishin, A. M.; Burba, G. A.

    1993-01-01

    The Northern part of Atla Regio within the frame of C1-formate Magellan photo map 15N197 was mapped geologically at scale 1:8,000,000. This is a part of Russia's contribution into C1 geologic mapping efforts. The map is reproduced here being reduced about twice. The map shows that the Northern Atla area is predominantly a volcanic plain with numerous volcanic features: shield volcanoes, domes and hills with various morphology, corona-like constructions, radar bright and dark spots often with flow-like outlines. Relatively small areas of tessera occurred in the area are mainly semi-flooded with the plain material. Tesserae are considered to be the oldest terrains within the map sheet. There are many lineated terrains in the region. They are interpreted as the old, almost-buried tesserae (those with crossed lineaments) or partly buried ridge belts (those with parallel lineaments). These lineated terrains have an intermediate age between the young volcanic plains and the old tessera areas. Two prominent high volcanic shields are located within the region - Ozza Mons and Sapas Mona. The most prominent structure in Northern Atla is Ganis Chasma rift. The rift cuts volcanic plain and is considered to be under formation during approximately the same time with Ozza Mons shield. Ganis Chasma rift valley is highly fractured and bounded with fault scarps. Rift shoulder uplifts are typical for Ganis Chasma. There are few relatively young volcanic features inside the rift valley. The analysis of fracturing and rift valley geometry shows the rift originated due to 5-10 percent crustal extention followed by the crustal subsidence. The age sequence summary for the main terrain types in the region is (from older to younger ones): tesserae; lineated terrains with crossed lineaments; lineated terrains with parallel lineaments; volcanic plains; and prominent volcanic shields and Ganis Chasma rift valley. The geologic structure of Atla Regio as it appeared now with the Magellan high

  2. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  3. Geology and mineral resources of central Antioquia Department (Zone IIA), Colombia

    Science.gov (United States)

    Hall, R.B.; Alvarez A., Jairo; Rico H., Hector

    1973-01-01

    This report summarizes the geology of an area of some 6000 square kilometers in the northern part of the Central Cordillera of the Colombian Andes. The area, in north-central Department of Antioquia, was mapped between 1964 and 1968 as part of the Inventario Minero Nacional (IMN) project. Mineral resources are summarized within a larger area, designated as subzone ILK of IMN Zone If, which comprises almost 22,000 sq. kin, including the area mapped geologically by IMN and additional areas mapped by other agencies. The oldest formation is a micaceous paragneiss of early Paleozoic or possibly late Precambrian age. A thick geosynclinal sedimentary series accumulated during the Paleozoic Era and became regionally metamorphosed to greenschist (locally amphibolite) facies during the Permian or early Triassic; these schists and gneisses are designated collectively as the Valdivia Group. The Permian(?) orogenic episode included intrusion of concordant syntectonic plutons, mostly of tonalitic composition. Rocks of unequivocal Triassic or Jurassic age are not recognized. The Cretaceous is well represented by both igneous and sedimentary assemblages. Eugeosynclinal alpine ophiolites comprising submarine basalt flows and numerous intrusions of gabbro and serpentinite are prominent in the Lower Cretaceous, together with flysch composed of marine shale and lesser sandstone and conglomerate. The Upper Cretaceous is represented along the west border of the mapped area by submarine basalt flows and pyroclastic rocks, locally Interbedded with fine-grained clastic sedimentary beds, and lenses of dark laminated chert, at least part of which is radiolarian. The Late Cretaceous was marked by an orogenic event that profoundly folded and faulted all rocks and in the Central Cordillera caused low-grade metamorphism, the overprint of which is hardly observable in pre-Cretaceous rocks elsewhere. The Late Cretaceous orogeny culminated with discordant intrusion of the epizonal tonalitic

  4. Stress field modelling from digital geological map data

    Science.gov (United States)

    Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián

    2016-04-01

    To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is

  5. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the

  6. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  7. Explicative memory of the geologic map of Uruguay. Esc. 1.500.000

    International Nuclear Information System (INIS)

    Preciozzi Porta, F.; Spoturno, J.; Rossi, P.; Heinzen, W.

    1985-01-01

    The Geological Map of Uruguay Esc. 1.500.000 is part of the Geological Map Programme developed by the Institute Geologic during the years 1977 - 1980. Its memory describe the geography, the lit ho stratigraphy and the crystalline area in the soil of Uruguay.

  8. Study on Geology and Uranium Mineralization at Mentawa Area The Central Kalimantan

    International Nuclear Information System (INIS)

    Bambang-Soetopo

    2004-01-01

    In Mentawa Area, It was found that mineralization of U is associated with tourmaline, quartz, sulfide filling in opened fracture that parallel with schistocity WNW-ESE in direction, mm to cm in thickness, the value of radiometric is in the range of 500-11.000 e/s SPP 2 NF and maximum grade of U is 9.759,25 ppm. Goal of the study mineralogy and geology is to know about character, genesis and para genesis of the U mineralization. The method of this study is microscopic observation and microscopic study from the result of obtained by previous researchers. U mineralization is uraninite associated with molybdenite, pyrite, pyrrhotite, chalcopyrite, rutile, ilmenite and tourmaline. Based on mineral association, it was indicated that U mineralization occurred as pegmatitic pneumatholitic process. Based on those relation and mineral association it was found that Mentawa Area has occurred 4 period para genesis phase. (author)

  9. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    Science.gov (United States)

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  10. Evaluation of geological structure and uranium mineralization model in West Lemajung Sector, Kalan Basin, West Kalimantan

    International Nuclear Information System (INIS)

    Ngadenin; Sularto, P.

    2000-01-01

    The fieldwork is based on the data of strike (S0) and schistosity (S1) of cores that could not penetrate the geological structure model and result of observation on some cores has shown that U mineralization veins are not always parallel to S1. The problems were encountered in core drill data to improve the estimation of U resources from indication category to measured category. The purpose of the evaluation is to establish the advisability of geological structure model and U mineralization model which was applied by this time. The research used remapping of geological structure with surface method in the scale of 1:1000. The result of remapping shows the difference of the dipping between new geological structure model and the old model. The dipping of the new model is to South East until vertical and the old model is to North West until vertical and to South East until vertical. Despite the difference between both of them, the substantive of folding system is identical so that the new and old models can be applied in drilling in West Lemajung sector. U mineralization model of remapping result consists of 3 types : type 1 U mineralization lens form with West-East direction and vertical dipping which is associated with tourmaline, type 2 U mineralization filling in the open fractures with West-East direction and 70 o to North dipping and parallel with S1, and type 3 U mineralization fill in opening fractures with N 110 o - 130 o E the direction and 60 o to North East until subvertical dipping while the old model is only one type. It is U mineralization filling in the open fractures with West-East the direction and 70 o to North the dipping and parallel with S1. Because of this significant difference, data collection of drill core must follow the new mineralization model. (author)

  11. Geologic map of Kundelan ore deposits and prospects, Zabul Province, Afghanistan; modified from the 1971 original map compilations of K.I. Litvinenko and others

    Science.gov (United States)

    Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2015-10-26

    This map and cross sections are redrafted modified versions of the Geological map of the Kundelan ore deposit area, scale 1:10,000 (graphical supplement no. 18) and the Geological map of the Kundelan deposits, scale 1:2,000 (graphical supplement no. 3) both contained in an unpublished Soviet report by Litvinenko and others (1971) (report no. 0540). The unpublished Soviet report was prepared in cooperation with the Ministry of Mines and Industries of the Royal Government of Afghanistan in Kabul during 1971. This redrafted map and cross sections illustrate the geology of the main Kundelan copper-gold skarn deposit, located within the Kundelan copper and gold area of interest (AOI), Zabul Province, Afghanistan. Areas of interest (AOIs) of non-fuel mineral resources within Afghanistan were first described and defined by Peters and others (2007) and later by the work of Peters and others (2011a). The location of the main Kundelan copper-gold skarn deposit (area of this map) and the Kundelan copper and gold AOI is shown on the index map provided on this map sheet.

  12. Spatial Databases of Geological, Geophysical, and Mineral Resource Data Relevant to Sandstone-Hosted Copper Deposits in Central Kazakhstan

    Science.gov (United States)

    Syusyura, Boris; Box, Stephen E.; Wallis, John C.

    2010-01-01

    Central Kazakhstan is host to one of the world's giant sandstone-hosted copper deposits, the Dzhezkazgan deposit, and several similar, smaller deposits. The United Stated Geological Survey (USGS) is assessing the potential for other, undiscovered deposits of this type in the surrounding region of central Kazakhstan. As part of this effort, Syusyura compiled and partially translated an array of mostly unpublished geologic, geophysical, and mineral resource data for this region in digital format from the archives of the former Union of Soviet Socialists Republics (of which Kazakhstan was one of the member republics until its dissolution in 1991), as well as from later archives of the Republic of Kazakhstan or of the Kazakhstan consulting firm Mining Economic Consulting (MEC). These digital data are primarily map-based displays of information that were transmitted either in ESRI ArcGIS, georeferenced format, or non-georeferenced map image files. Box and Wallis reviewed all the data, translated Cyrillic text where necessary, inspected the maps for consistency, georeferenced the unprojected map images, and reorganized the data into the filename and folder structure of this publication.

  13. Geologic Map of the Shenandoah National Park Region, Virginia

    Science.gov (United States)

    Southworth, Scott; Aleinikoff, John N.; Bailey, Christopher M.; Burton, William C.; Crider, E.A.; Hackley, Paul C.; Smoot, Joseph P.; Tollo, Richard P.

    2009-01-01

    The geology of the Shenandoah National Park region of Virginia was studied from 1995 to 2008. The focus of the study was the park and surrounding areas to provide the National Park Service with modern geologic data for resource management. Additional geologic data of the adjacent areas are included to provide regional context. The geologic map can be used to support activities such as ecosystem delineation, land-use planning, soil mapping, groundwater availability and quality studies, aggregate resources assessment, and engineering and environmental studies. The study area is centered on the Shenandoah National Park, which is mostly situated in the western part of the Blue Ridge province. The map covers the central section and western limb of the Blue Ridge-South Mountain anticlinorium. The Skyline Drive and Appalachian National Scenic Trail straddle the drainage divide of the Blue Ridge highlands. Water drains northwestward to the South Fork of the Shenandoah River and southeastward to the James and Rappahannock Rivers. East of the park, the Blue Ridge is an area of low relief similar to the physiography of the Piedmont province. The Great Valley section of the Valley and Ridge province is west of Blue Ridge and consists of Page Valley and Massanutten Mountain. The distribution and types of surficial deposits and landforms closely correspond to the different physiographic provinces and their respective bedrock. The Shenandoah National Park is underlain by three general groups of rock units: (1) Mesoproterozoic granitic gneisses and granitoids, (2) Neoproterozoic metasedimentary rocks of the Swift Run Formation and metabasalt of the Catoctin Formation, and (3) siliciclastic rocks of the Lower Cambrian Chilhowee Group. The gneisses and granitoids mostly underlie the lowlands east of Blue Ridge but also rugged peaks like Old Rag Mountain (996 meter). Metabasalt underlies much of the highlands, like Stony Man (1,200 meters). The siliciclastic rocks underlie linear

  14. The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle

    Science.gov (United States)

    Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.

    2010-01-01

    The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).

  15. Geologic Map of the Diana Chasma Quadrangle (V-37), Venus

    Science.gov (United States)

    Hansen, V.L.; DeShon, H.R.

    2002-01-01

    Introduction The Diana Chasma quadrangle (V-37), an equatorial region between 0° to 25° S. and 150° to 180° E. that encompasses ~8,400,000 km2, is broadly divided into southern Rusalka Planitia in the north, eastern Aphrodite Terra in the central region, and unnamed regions to the south. Geologic mapping constrains the temporal and spatial relations of the major features, which include a tessera inlier, Markham crater, six large coronae (300-675 km diameter), four smaller coronae (150-225 km diameter), Diana and Dali chasmata, a large fracture zone, and southern Rusalka Planitia. Eastern Aphrodite Terra, marked here by large coronae, deep chasmata, and an extensive northeast-trending fracture zone, extends from Atla Regio to Thetis Regio. The large coronae are part of a chain of such features that includes Inari Corona to the west-southwest and Zemina Corona to the northeast. V-37 quadrangle is bounded on the north by Rusalka Planitia and on the south by Zhibek Planitia. International Astronomical Union (IAU) approved and provisional nomenclature and positions for geographic features within Diana Chasma quadrangle are shown on the geologic map. [Note: Atahensik Corona was referred to as Latona Corona in much previously published literature.

  16. Geologic map of the Themis Regio quadrangle (V-53), Venus

    Science.gov (United States)

    Stofan, Ellen R.; Brian, Antony W.

    2012-01-01

    The Themis Regio quadrangle (V-53), Venus, has been geologically mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. The quadrangle extends from lat 25° to 50° S. and from long 270° to 300° E. and encompasses the Themis Regio highland, the surrounding plains, and the southernmost extension of Parga Chasmata. Themis Regio is a broad regional topographic high with a diameter of about 2,000 km and a height of about 0.5 km that has been interpreted previously as a hotspot underlain by a mantle plume. The Themis rise is dominated by coronae and lies at the terminus of the Parga Chasmata corona chain. Themis Regio is the only one of the three corona-dominated rises that contains significant extensional deformation. Fractures and grabens are much less common than along the rest of Parga Chasmata and are embayed by corona-related flows in places. Rift and corona formation has overlapped in time at Themis Regio.

  17. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Drake, R.M. II

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited

  18. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  19. Geological map of Uruguay Esc 1,100,000. Guayabos Sheet N-15

    International Nuclear Information System (INIS)

    Gancio, F.; Ford, I.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Guayabos) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils of Arapey, Guichon, Mercedes and Asencio formations in the Cretaceous period

  20. Geological map of Uruguay Esc 1,100,000. Cololo Sheet 0-19

    International Nuclear Information System (INIS)

    Morales, H.; Ford, I.; Montana, J.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Cololo) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils of Holocene, Oligocene and upper Cretaceous in Asencio and Fray Bentos formations

  1. Geology, alteration, mineralization and geochemistry at south of Arghash (Neyshabour

    Directory of Open Access Journals (Sweden)

    Zahra Karimi Saeid Abadi

    2010-11-01

    Full Text Available The Arghash area is located 45 km to southwest of Neyshabour. The subvolcanic rocks in the area consist of biotite hornblende quartz monzodiorite porphyry, hornblende biotite quartz monzodiorite porphyry, hornblende monzonite porphyry, biotite hornblende monzonite porphyry, monzodiorite porphyry and biotite quartz monzodiorite porphyry units. The volcanic rocks consist of hornblende biotite dacite, biotite hornblende dacite, and andesite and pillow lava. The plutonic rocks consist of hornblende monzodiorite, hornblende monzonite, quartz monzonite, hornblende quartz monzodiorite, biotite granodiorite, hornblende granodiorite, biotite hornblende granodiorite, biotite quartz diorite and pyroxene dolerite units. Five types of alteration including propylitic, carbonate, argillic, silicification and sericitic were recognized. Those are subdivided into twelve sub-zones based on the mineral abundances and intensity of alteration. Primary pyrite, 3-4%, is found mainly as disseminated. Secondary mineralization includes limonite, hematite and jarosite. Twenty rock chip and 8 stream sediment samples were collected for geochemical exploration. The samples were analysed for Cu, Zn, Pb, Ag and Sb using Atomic Absorbtion Spectrophotometric (AAS method. In stream sediment samples, Cu abundance is 34-58 ppm, Zn 45-422 ppm, Pb 28-42 ppm and Ag 2-12 ppm; whereas in rock chip samples, Cu abundance is 8-1137 ppm, Zn 13-411 ppm, Pb 15-97 ppm and Ag 3-32 ppm.

  2. Calderas and mineralization: volcanic geology and mineralization in the Chianti caldera complex, Trans-Pecos Texas

    Energy Technology Data Exchange (ETDEWEB)

    Duex, T.W.; Henry, C.D.

    1981-01-01

    This report describes preliminary results of an ongoing study of the volcanic stratigraphy, caldera activity, and known and potential mineralization of the Chinati Mountains area of Trans-Pecos Texas. Many ore deposits are spatially associated with calderas and other volcanic centers. A genetic relationship between calderas and base and precious metal mineralization has been proposed by some and denied by others. Steven and others have demonstrated that calderas provide an important setting for mineralization in the San Juan volcanic field of Colorado. Mineralization is not found in all calderas but is apparently restricted to calderas that had complex, postsubsidence igneous activity. A comparison of volcanic setting, volcanic history, caldera evolution, and evidence of mineralization in Trans-Pecos to those of the San Juan volcanic field, a major mineral producer, indicates that Trans-Pecos Texas also could be an important mineralized region. The Chianti caldera complex in Trans-Pecos Texas contains at least two calderas that have had considerable postsubsidence activity and that display large areas of hydrothermal alteration and mineralization. Abundant prospects in Trans-Pecos and numerous producing mines immediately south of the Trans-Pecos volcanic field in Mexico are additional evidence that ore-grade deposits could occur in Texas.

  3. History of geological mapping of the Holocene Rhine-Meuse delta, the Netherlands

    NARCIS (Netherlands)

    Berendsen, H.J.A.

    2007-01-01

    A brief overview is given of the history of geological mapping of the Holocene Rhine-Meuse delta. The first accurate map of the delta, based on field observations, was made by Vink (1926). The geological map of the Netherlands, scale 1 : 50,000, made by the ‘Geologische Stichting’ (1927 - 1938)

  4. Geological Map of the Fredegonde (V-57) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The area of V-57, the Fredegonde quadrangle (50-75degS, 60-120degE, Fig.1), is located within the eastern portion of Lada Terra within the topographic province of midlands (0-2 km above MPR [1,2]). Midlands form the most abundant portion of the surface of Venus and are characterized by diverse sets of units and structures [3-11]. The area of the Fredegonde quadrangle is in contact with the elevated portion of Lada Terra to the W and with the lowland of Aino Planitia to the NE. The transitions of the mid-lands to the lowlands and highlands are, thus, one of the main themes of the geology within the V-57 quadrangle. The character of the transitions and distribution and sequence of units/structures in the midlands are crucially important in understanding the time and modes of formation of this topographic province. The most prominent features in the map area are linear deformational zones consisting of swarms of grooves and graben and large coronae. The zones characterize the central and NW portions of the map area and represent regionally important, broad (up to 100s km wide) ridges that are 100s m high. Relatively small (100s km across, 100s m deep) equidimensional basins occur between the corona-groove-chains in the west and border the central chain from the east. Here we describe units that make up the surface within the V-57 quadrangle and present a summary of our geological map that shows the areal distribution of the major groups of units.

  5. Ontology-aided annotation, visualization and generalization of geological time-scale information from online geological map services

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a RDF (Resource Description Framework) model to represent

  6. Ontology-aided annotation, visualization and generalization of geological time scale information from online geological map services

    NARCIS (Netherlands)

    Ma, Marshal; Ma, X.; Carranza, E.J.M; Wu, C.; van der Meer, F.D.

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a Resource Description Framework model to represent the

  7. Geology and Uranium Mineralization of Tanah Merah and Dendang Arai Sectors, West Kalimantan

    International Nuclear Information System (INIS)

    Bambang-Soetopo

    2004-01-01

    Tanah Merah and Dendang Arai sectors are one of the mineralized sectors at Kalan. Goal of this study is to understand the relationship between geology and uranium mineralization character of Tanah Merah and Dendang Arai sectors. In general geology of Tanah Merah is similar with Dendang Arai which consist of biotite quartzite, leopard quartzite, muscovite quartzite, biotite muscovite quartzite, metasilt, metapelite, and granite. The folding is anticline with axel N45F in direction. The prominent fault is NE-SW sinistral fault, NW-SE dextral fault and N-S normal faults. U mineralization fills in the area space between minerals and also as the vein that fill in the fracture system W-E to WNW-ESE in direction. The thickness of mineralization is milimetric to centrimetric. Uranium minerals are uraninite, monazite, autunite and gummite associated with feldspar, tourmaline, zircon, biotite, quartz, pyrite, pyrhotite, hematite, rutile, chalcopyrite, magnenite ilmenite and molybdenite. Radiometric value is in the range of 1.000 to 15.000 c/s and the total grade of U are 12.6 to 2661.25 ppm. U mineralization process connected with intrusion of granite and in the secondary phase. (author)

  8. 76 FR 34656 - Taking and Importing Marine Mammals; Geological and Geophysical Exploration of Mineral and Energy...

    Science.gov (United States)

    2011-06-14

    ... Importing Marine Mammals; Geological and Geophysical Exploration of Mineral and Energy Resources on the Outer Continental Shelf in the Gulf of Mexico AGENCY: National Marine Fisheries Service (NMFS), National... revised application from the U.S. Department of the Interior (DOI), Bureau of Ocean Energy Management...

  9. Geologic framework and evidence for neotectonism in the epicentral area of the 2011 Mineral, Virginia, earthquake

    Science.gov (United States)

    Burton, William C.; Harrison, Richard W.; Spears, David B.; Evans, Nicholas H.; Mahan, Shannon

    2015-01-01

    The epicenters of the main shock and associated aftershocks of the 2011 moment magnitude, Mw 5.8 Mineral, Virginia (USA), earthquake, and the updip projection of the possible fault plane that triggered the quakes, are contained in the areas of 2 adjoining 7.5′ quadrangles in the central Virginia Piedmont. These quadrangles have therefore been the focus of concentrated geologic study in the form of bedrock and surficial mapping and near-surface trenching in order to identify potential seismogenic structures. Bedrock mapping has outlined a series of northeast-southwest–trending lithologic belts that include the Ordovician Chopawamsic and Quantico Formations, the narrow neck of the Late Ordovician Ellisville pluton, and mélange zone III of the Mine Run Complex. The region was affected by at least two ductile deformational events, one in the early Paleozoic that was broadly synchronous with the intrusion of the pluton, and one later in the Paleozoic. The earlier deformation produced the Quantico synclinorium and other regional folds, and the later deformation produced faults with associated high-strain zones. Two of these faults have been trenched at their intersection along the east-dipping eastern contact of the Ellisville neck, near where the causative fault for the earthquake projects to the surface. The trenches have exposed abundant evidence of post-Paleozoic fracturing and faulting, including brecciated quartz-tourmaline veins, slickensided thrust and strike-slip faults, and clay-filled fractures. Fluvial and colluvial gravels that overlie these brittle structures have yielded optically stimulated luminescence ages ranging from ca. 27 to 10 ka. These structures are likely representative of surface features associated with Quaternary earthquakes in the Central Virginia seismic zone.

  10. Geologic Mapping of the Olympus Mons Volcano, Mars

    Science.gov (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  11. Development of District-Based Mineral-Hazards Maps for Highways in California

    Science.gov (United States)

    Higgins, C. T.; Churchill, R. K.; Fonseca, M. C.

    2011-12-01

    The California Geological Survey (CGS) currently is developing a series of unpublished maps for the California Department of Transportation (Caltrans) that shows potential for mineral hazards within each of the twelve highway districts administered by that agency. Where present along or near highway corridors, such hazards may pose problems for human health and safety or the environment. Prepared at a scale of 1:250,000, the maps are designed as initial screening tools for Caltrans staff to use to improve planning of activities that involve new construction projects, routine maintenance of highways, and emergency removal of debris deposited on roads by natural processes. Although the basic presentation of each type of thematic map in the series is the same, some customization and focus are allowed for each district because each has unique issues concerning potential for mineral hazards. The maps display many natural and man-made features that may be potential sources of mineral hazards within each district. Features compiled and evaluated under our definition of "mineral hazards" are: 1) naturally-occurring asbestos (NOA); 2) natural occurrences of various regulated metals (Ag, Ba, Be, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Tl, V, Zn) and metalloids (As, Sb, Se) as well as other pertinent metals, such as Mn and U; 3) faults, which can be sites of increased potential for certain types of mineralization, such as NOA; 4) mines and prospects, which can be sources of anomalous concentrations of metals as well as ore-processing chemicals; 5) natural petroleum features, such as oil and natural-gas seeps; 6) natural geothermal features, such as thermal springs and fumaroles; and 7) oil, natural-gas, and geothermal wells. Because of their greater potential as sources of mineral hazards, localities designated on the maps as "areas of potential mineralogical concern" are of particular interest to Caltrans. Examples include significant mining districts, such as New Almaden (Hg) near

  12. Geologic map of the Yacolt quadrangle, Clark County, Washington

    Science.gov (United States)

    Evarts, R.C.

    2006-01-01

    . The largest glacier(s) covered the entire map area north of the East Fork Lewis River except for the summit of Yacolt Mountain. As the ice receded, it left behind a sculpted bedrock topography thickly mantled by drift, and deposited outwash in the fault-bounded valley at Yacolt and along the East Fork Lewis River valley. This map is a contribution to a program designed to improve geologic knowledge of the Portland Basin region of the Pacific Northwest urban corridor, the densely populated Cascadia forearc region of western Washington and Oregon. More detailed information on the bedrock and surficial geology of the basin and its surrounding area is necessary to refine assessments of seismic risk, ground-failure hazards and resource availability in this rapidly growing region.

  13. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid

  14. Geologic Mapping, Volcanic Stages and Magmatic Processes in Hawaiian Volcanoes

    Science.gov (United States)

    Sinton, J. M.

    2005-12-01

    The concept of volcanic stages arose from geologic mapping of Hawaiian volcanoes. Subaerial Hawaiian lava successions can be divided generally into three constructional phases: an early (shield) stage dominated by thin-bedded basaltic lava flows commonly associated with a caldera; a later (postshield) stage with much thicker bedded, generally lighter colored lava flows commonly containing clinopyroxene; calderas are absent in this later stage. Following periods of quiescence of a half million years or more, some Hawaiian volcanoes have experienced renewed (rejuvenated) volcanism. Geological and petrographic relations irrespective of chemical composition led to the identification of mappable units on Niihau, Kauai, Oahu, Molokai, Maui and Hawaii, which form the basis for this 3-fold division of volcanic activity. Chemical data have complicated the picture. There is a growing tendency to assign volcanic stage based on lava chemistry, principally alkalicity, into tholeiitic shield, alkalic postshield, and silica undersaturated rejuvenation, despite the evidence for interbedded tholeiitic and alkalic basalts in many shield formations, and the presence of mildly tholeiitic lavas in some postshield and rejuvenation formations. A consistent characteristic of lava compositions from most postshield formations is evidence for post-melting evolution at moderately high pressures (3-7 kb). Thus, the mapped shield to postshield transitions primarily reflect the disappearance of shallow magma chambers (and associated calderas) in Hawaiian volcanoes, not the earlier (~100 ka earlier in Waianae Volcano) decline in partial melting that leads to the formation of alkalic parental magmas. Petrological signatures of high-pressure evolution are high-temperature crystallization of clinopyroxene and delayed crystallization of plagioclase, commonly to <3 % MgO. Petrologic modeling using pMELTS and MELTS algorithms allows for quantification of the melting and fractionation conditions giving

  15. Remote sensing of geologic mineral occurrences for the Colorado mineral belt using LANDSAT data

    Science.gov (United States)

    Carpenter, R. H. (Principal Investigator); Trexler, D. W.

    1976-01-01

    The author has identified the following significant results. LANDSAT imagery was examined as a practical and productive tool for mineral exploration along the Colorado Mineral Belt. An attempt was made to identify all large, active and/or abandoned mining districts on the imagery which initially were discovered by surface manifestations. A number of strong photolinements, circular features, and color anomalies were identified. Some of these form a part of the structural and igneous volcanic framework in which mineral deposits occur. No specific mineral deposits such as veins or porphyries were identified. Promising linear and concentric features were field checked at several locations. Some proved to be fault zones and calderas; others were strictly topographic features related to stream or glacial entrenchment. The Silverton Caldera region and the Idaho Springs-Central City district were chosen and studied as case histories to evaluate the application of LANDSAT imagery to mineral exploration. Evidence of specific mineralization related to ore deposits in these two areas were observed only on low level photography.

  16. Radar, geologic, airborne gamma ray and Landsat TM digital data integration for geological mapping of the Estrela granite complex (Para State)

    International Nuclear Information System (INIS)

    Cunha, Edson Ricardo Soares Pereira da

    2002-01-01

    This work is focused on the geotectonic context of the Carajas Mineral Province, Amazon Craton, which represents the most important Brazilian Mineral Province and hosts iron, cooper, gold, manganese and nickel deposits. At the end of Archean age, during the techno-metamorphic evolution, moderated alkaline granitoids were generated, such as, Estrela Granite Complex (EGC). This work has used digital integration products with the purpose of study the granite suite, its host rock, and the surrounded area. The digital integrated data were gamma-ray and geological data with satellite images (SAR-SAREX e TM-Landsat). The geophysics data, originally in 32 bits and grid format, were interpolated and converted to 8 bits images. The geological data (facies map) was digitalized and converted to a raster format. The remote sensing images were geometrically corrected to guarantee an accuracy on the geological mapping. On the data processing phase, SAR images were digital integrated with gamma-ray data, TM-Landsat image and the raster facies map. The IHS transformation was used as the technique to integrate the multi-source data. On the photogeological interpretation, SAR data were extremely important to permit the extraction of the main tectonic lineaments which occur on the following directions: +/- N45W, +/- N70W, +/- NS, +/- N20E, +/- N45E e +/- N75E. This procedure was done both in analogic and automatic form, being the automatic process more useful to complement information in the extracting process. Among the digital products generated, SAR/GAMA products (uranium, thorium and total count) were the ones that give the most important contribution. The interpretation of the SAR/GAMA's products added to the field campaign have allowed to map the limits of units that occur in the region and four facies of the Estrela Granite Complex were detected. The origin of the granite suite might be related to a magmatic differentiation or to distinct intrusion pulses. The use of the

  17. Field Reconnaissance Geologic Mapping of the Columbia Hills, Mars: Results from MER Spirit and MRO HiRISE Observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, Kevin W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; McEwen, A.; Rice, J. W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.

  18. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    Science.gov (United States)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore

  19. Geology of eastern Smith Lake ore trend, Grants mineral belt

    International Nuclear Information System (INIS)

    Ristorcelli, S.J.

    1980-01-01

    The sandstones in the Brushy Basin Member of the Morrison Formation (Jurassic) are the ore-bearing horizons of the eastern Smith Lake area. The Brushy Basin Member in this district consists of three sandstones with interbedded mudstones. Only the lower two sandstones contain ore. The sandstones are fine to coarse grained, well rounded, and arkosic, representing continental stream sediments. The lower sandstone contains rollfront ore. The redox interface is laterally extensive and well defined, extending at least 7 mi (11 km) west of the Bluewater fault zone. The ore generally occurs at the redox boundary but occasionally will be up to 1500 ft (450 m) updip. Limonitic alteration, where present, is downdip from the hematitic zone and is 100-1,500 ft (30 to 450 m) wide. The middle sandstone contains both trend ore and roll-front ore. The trend ore occurs downdip from the redox front in unoxidized ground. The redox front in the middle sand is also laterally extensive but displays a wedge shape, rather than a C shape. The clay assemblages of the two types of ore are different: the trend ore occurs in sands with the pore spaces filled with kaolinite; the roll-front ore is associated with altered illite-montmorillonite as grain coatings. Hematitic alteration is asociated with the latter. A second stage of kaolinite coats the illite-montmorillonite. Two periods of mineralization are suggested, but no absolute dates are known. The trend ore is the oldest (Jurassic) and is similar to the ore found in unoxidized ground elsewhere in the Grants region. The rollfront ore could be Laramide or post-Laramide because of its association with local Laramide structures

  20. Venus: Preliminary geologic mapping of northern Atla Regio

    Science.gov (United States)

    Nikishin, A. M.; Burba, G. A.

    1992-01-01

    A preliminary geologic map of C1 sheet 15N197 was compiled according to Magellan data. Northern Atla Regio is dominantly a volcanic plain with numerous volcanic features: radar-bright and -dark flows and spots, shield volcanos, volcanic domes and hills with varied morphology, and coronalike constructions. Tesserae are the oldest terrains semiflooded by plain materials. There are many lineated terrains on this territory. They are interpreted as old, partly buried ridge belts. Lineated terrains have intermediate age between young plains and old tesserae. Ozza Mons and Sapas Mons are the high shield volcanos. The prominent structure of northern Atla Regio is Ganis Chasma rift. The rift dissected the volcanic plain and evolved nearly contemporaneously with Ozza Mons shield volcano. Ganis Chasma rift valley is highly fractured and bounded by fault scarps. There are a few relatively young volcanic features in the rift valley. The rift originated due to 5-10 percent crustal extension and crustal subsidence according to analysis of fracturing and rift valley geometry. Ganis Chasma is characterized by rift shoulder uplifts. Geological structures of Alta Regio and Beta Regio are very similar as assumed earlier.

  1. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    Science.gov (United States)

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  2. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    . Other lands include about 13 sections of Arizona State land, about ? of a section of private land along House Rock Wash, and about 1? sections of private land at Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. Landmark features within the map area include the Vermilion Cliffs, Paria Plateau, Marble Canyon, and House Rock Valley. Surface drainage in House Rock Valley is to the east toward the Colorado River in Marble Canyon. Large tributaries of Marble Canyon from north to south include Badger Canyon, Soap Creek, Rider Canyon, North Canyon, Bedrock Canyon, and South Canyon. Elevations range from about 2,875 ft (876 m) at the Colorado River in the southeast corner of the map to approximately 7,355 ft (2,224 m) on the east rim of Paria Plateau along the north-central edge of the map area. Three small settlements are in the map area along U.S. Highway 89A, Cliff Dwellers Lodge, Vermilion Cliffs Lodge, and Marble Canyon, Arizona. The community of Jacob Lake is about 9 mi (14.5 km) west of House Rock Valley on the Kaibab Plateau. Lees Ferry is 5 mi (8 km) north of Marble Canyon and marks the confluence of the Paria and Colorado Rivers and the beginning of Marble Canyon. U.S. Highway 89A provides access to the northern part of the map area. Dirt roads lead south into House Rock Valley from U.S. Highway 89A and are collectively maintained by the Bureau of Land Management, the U.S. National Forest Service, and the Grand Canyon Trust. House Rock Valley is one of the few remaining areas where uniform geologic mapping is needed for connectivity to the regional Grand Canyon geologic framework. This information is useful to Federal and State resource managers who direct environmental and land management programs that encompass such issues as range management, biological studies, flood control, water, and mineral-resource investigations. The geologic information will support future and ongoing geologic investigations and scientific studies

  3. Geology and uranium mineralization in Sarana sector, Kalan, West Kalimantan based on drilling data

    International Nuclear Information System (INIS)

    Sartapa; I Gde Sukadana

    2011-01-01

    Favourable zone of uranium mineralization in Sarana sector with NE-SW direction are contained in metapelite rock and some in muscovite quartzite. Mineralization of uranium is occurred fill in the fields of parallel fractures with stochasticity by ENE-WSW direction, and moderate to strong inclination to the north. Three points drilling with the depth of 126.6, 174.50, and 150.90 meter has been conducted. This study is aimed to obtain the knowledge of geology, and geometry of sub-surface uranium mineralization. Geologically, research area are consists of metapelite, muscovite quartzite and biotite quartzite with milli metric - centi metric thicknesses. Uranium mineralization are in forms of veins or tabular as uraninite and pitchblende associated with pyrite, chalcopyrite, pyrrhotite, ilmenite and molybdenite. Uranium Mineralization on the surface could be correlated with sub-surface from bore-hole data, with the result that zone of uranium mineralization in lenses or tabular form with sub-vertical dip may be identified. (author)

  4. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    Science.gov (United States)

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  5. Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2001-01-01

    variety of sources ranging from volcanoes to coronae (Magee and Head, 1995; Keddie and Head, 1995). In addition, global analysis of the distribution of volcanic features revealed that Lavinia Planitia is an area deficient in the distribution of distinctive volcanic sources and corona-like features (Head and others, 1992; Crumpler and others, 1993). Lavinia Planitia gravity and geoid data show that the lowland is characterized by a -30 mGal gravity anomaly and a -10 m geoid anomaly, centered on eastern Lavinia (Bindschadler and others, 1992b; Konopliv and Sjogren, 1994). Indeed, the characteristics and configuration of Lavinia Planitia have been cited as evidence for the region being the site of large-scale mantle down welling (Bindschadler and others, 1992b). Thus, this region is a laboratory for the study of the formation of lowlands, the emplacement of volcanic plains, the formation of associated tectonic features, and their relation to mantle processes. These questions and issues are the basis for our geologic mapping analysis. In our analysis we have focused on the geologic mapping of the Lavinia Planitia quadrangle using traditional methods of geologic unit definition and characterization for the Earth (for example, American Commission on Stratigraphic Nomenclature, 1961) and planets (for example, Wilhelms, 1990) appropriately modified for radar data (Tanaka, 1994). We defined units and mapped key relations using the full resolution Magellan synthetic aperture radar (SAR) data (mosaiced full resolution basic image data records, C1-MIDR's, F-MIDR's, and F-Maps) and transferred these results to the base map compiled at a scale of 1:5 million. In addition to the SAR image data, we incorporated into our analyses digital versions of Magellan altimetry, emissivity, Fresnel reflectivity, and roughness data (root mean square, rms, slope). The background for our unit definition and characterization is described in Tanaka (1994), Basilevsky and Head (1995a, b)

  6. The geological map of Canelones Department scale 1:1000.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Canelones Department (Uruguay), scale 1:100.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  7. The geological map of Montevideo Department scale 1:50.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Montevideo Department (Uruguay), scale 1:50.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  8. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 10 x 20 NTMS quadrangles. National Uranium Resource Evaluation program

    International Nuclear Information System (INIS)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program

  9. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 1/sup 0/ x 2/sup 0/ NTMS quadrangles. National Uranium Resource Evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1/sup 0/ x 2/sup 0/ National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program.

  10. Dynamic Digital Maps as Vehicles for Distributing Digital Geologic Maps and Embedded Analytical Data and Multimedia

    Science.gov (United States)

    Condit, C. D.; Mninch, M.

    2012-12-01

    The Dynamic Digital Map (DDM) is an ideal vehicle for the professional geologist to use to describe the geologic setting of key sites to the public in a format that integrates and presents maps and associated analytical data and multimedia without the need for an ArcGIS interface. Maps with field trip guide stops that include photographs, movies and figures and animations, showing, for example, how the features seen in the field formed, or how data might be best visualized in "time-frame" sequences are ideally included in DDMs. DDMs distribute geologic maps, images, movies, analytical data, and text such as field guides, in an integrated cross-platform, web enabled format that are intuitive to use, easily and quickly searchable, and require no additional proprietary software to operate. Maps, photos, movies and animations are stored outside the program, which acts as an organizational framework and index to present these data. Once created, the DDM can be downloaded from the web site hosting it in the flavor matching the user's operating system (e.g. Linux, Windows and Macintosh) as zip, dmg or tar files (and soon as iOS and Android tablet apps). When decompressed, the DDM can then access its associated data directly from that site with no browser needed. Alternatively, the entire package can be distributed and used from CD, DVD, or flash-memory storage. The intent of this presentation is to introduce the variety of geology that can be accessed from the over 25 DDMs created to date, concentrating on the DDM of the Springerville Volcanic Field. We will highlight selected features of some of them, introduce a simplified interface to the original DDM (that we renamed DDMC for Classic) and give a brief look at a the recently (2010-2011) completed geologic maps of the Springerville Volcanic field to see examples of each of the features discussed above, and a display of the integrated analytical data set. We will also highlight the differences between the classic or

  11. Geologic map of the Lakshmi Planum quadrangle (V-7), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2010-01-01

    contractional structures such as ridges. Corona and corona-like structures are not typical features of this zone but occur within separate branches of extensional structures oriented radial to the edge of Lakshmi. The southeastern edge of Lakshmi appears to be the source of large volcanic flows that extend to the south toward the lowland areas of Sedna Planitia. Colette and Sacajawea Paterae in the interior of Lakshmi are low volcanic centers with very deep central depressions. Lava flows sourced by Colette and Sacajawea form distinctive radial patterns around these volcanoes. Magellan gravity data show that the northern and northeastern portions of the quadrangle, which correspond to Lakshmi Planum, represent a significant geoid anomaly with the peak value of about 90 m over Maxwell Montes at the eastern edge of the map area. Maxwell is characterized also by very high vertical gravity acceleration values (as much as 268 mGal). The lowland of Sedna Planitia to the south of Lakshmi has mostly negative geoid values (down to -40 m). The key geological structure of the quadrangle is Lakshmi Planum, the mode of formation of which is still a major unresolved problem. The topographic configuration, gravity signature, and pattern of deformation inside Lakshmi and along its boundaries make this feature unique on Venus. Thus, geological mapping of this region allows addressing several important questions that should help to put some constraints on the existing models of Lakshmi formation. What is the sequence of events in the formation and evolution of such a unique morphologic and topographic feature? What are the characteristics of the marginal areas of Lakshmi: the compact mountain belts and broad zones of deformation in the transition zone between Lakshmi and surrounding lowlands? How do the units in Lakshmi Planum quadrangle compare with the units mapped in neighboring and distant regions of Venus and what information do they provide concerning models for Venus

  12. Approach of automatic 3D geological mapping: the case of the Kovdor phoscorite-carbonatite complex, NW Russia.

    Science.gov (United States)

    Kalashnikov, A O; Ivanyuk, G Yu; Mikhailova, J A; Sokharev, V A

    2017-07-31

    We have developed an approach for automatic 3D geological mapping based on conversion of chemical composition of rocks to mineral composition by logical computation. It allows to calculate mineral composition based on bulk rock chemistry, interpolate the mineral composition in the same way as chemical composition, and, finally, build a 3D geological model. The approach was developed for the Kovdor phoscorite-carbonatite complex containing the Kovdor baddeleyite-apatite-magnetite deposit. We used 4 bulk rock chemistry analyses - Fe magn , P 2 O 5 , CO 2 and SiO 2 . We used four techniques for prediction of rock types - calculation of normative mineral compositions (norms), multiple regression, artificial neural network and developed by logical evaluation. The two latter became the best. As a result, we distinguished 14 types of phoscorites (forsterite-apatite-magnetite-carbonate rock), carbonatite and host rocks. The results show good convergence with our petrographical studies of the deposit, and recent manually built maps. The proposed approach can be used as a tool of a deposit genesis reconstruction and preliminary geometallurgical modelling.

  13. Geologic map of the Dusar area, Herat Province, Afghanistan; Modified from the 1973 original map compilations of V.I. Tarasenko and others

    Science.gov (United States)

    Tucker, Robert D.; Stettner, Will R.; Masonic, Linda M.; Bogdanow, Anya K.

    2017-10-24

    The geologic maps and cross sections presented in this report are redrafted and modified versions of the Geologic map and map of useful minerals of the Dusar area (scale 1:50,000) and Geologic sketch map of the Dusar and Namak-sory ore occurrences (scale 1:10,000), located in the Herat Province, Afghanistan. The original maps and cross sections are contained in unpublished Soviet report no. 0290 (Tarasenko and others, 1973) prepared in cooperation with the Ministry of Mines and Industries of the Royal Government of Afghanistan, in Kabul during 1973 under contract no. 50728. The redrafted maps and cross sections (modified from Tarasenko and others, 1973) illustrate the geological structure and mineral occurrences of the Dusar copper-gold-silver-lead-zinc prospect area of western Afghanistan, located within the Dusar-Shaida copper and tin area of interest (AOI), Herat Province, Afghanistan.Mineralization in the Dusar area is hosted within Early Jurassic to Early Cretaceous stratified volcanic and sedimentary rocks associated with numerous diabase and gabbro-diabase intrusive bodies and is generally near a major northeast-trending system of faults and quartz veins. Host rocks consist of quartz keratophyre and quartz-feldspar porphyry, with layers of schist, phyllite, and quartz-chlorite and chlorite-sericite slate; and limestone and shale, with schist and carbonate-chlorite and chlorite slate. Known mineralization includes an extensive quartz vein system, shown on the map as the “northern occurrence,” as well as the Dusar and Namak-sory gossan zones, interpreted to have formed from remnant pyrite mineralization. The veins of the northern occurrence and their altered host rocks are known to contain anomalous to economic concentrations of precious and base metals, with concentrations locally in excess of 2 parts per million gold, 100 parts per million silver, 5 percent copper, and 1 percent lead. These veins occur in swarms, and are hosted along structures that are

  14. Geological map of Uruguay Esc 1,100,000. Zapican Sheet F-22

    International Nuclear Information System (INIS)

    Preciozzi, F

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Zapican) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils.The fotoplano Zapican is located in the north of Lavalleja town and geologically is formed by Lavalleja group and the west socket represented by granites and volcanic reefs

  15. Alteration zone mapping for detecting potential mineralized areas in Kaladawan of north altyn tagh using ASTER data

    International Nuclear Information System (INIS)

    Yong-gui, Zhou; Bai-lin, Chen; Xing-tong, Chen; Zheng-le, Chen

    2014-01-01

    The Kaladawan area has been found developing intense hydrothermal altered rocks associated with mineralized area such as Kaladaban Pb-Zn deposit, A-bei Ag-Pb depositduring earlier geological investigations.Yet the sparse vegetation cover and excellent bedrock exposure make it a suitable place for the use of remote sensing methods for lithological mapping. ASTER data has been used in this study to identify alteration zones, and then to detect potential mineralized areas. Band ratio and PCA procedures were applied based on the analysis of spectral properties of typical alteration minerals. Band 4/2 and mineralogic indices proposed by Ninomiya were designed to map the distribution of Fe-oxides and alteration zones. Selected bands combinations were transformed in a PCA procedure to map the Al-OH, Mg-OH, CO 3 2− and Fe-oxides altered minerals. The analysis focused on the spatial distribution of hydrothermal altered minerals. Band ratio result images including both Fe-oxides and mineralogic indices show high-level similarity with the PCA transform procedure. They both show intense hydrothermal alteration zone in Kaladaban,west Kaladawan and A-bei area. Hence, these areas are considered to have potential for further mineralogic exploration. The results were validated by field work in the Kaladaban and west Kaladawan area,indicating that this method can be a useful tool for detecting potential mineralization area in Kaladawan and similar areas elsewhere

  16. Geology and potential of the formation of sandstone type uranium mineralization at Hatapang region, North Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Study based on geological setting of Hatapang region, North Sumatera, identified as a favourable area to the formation of sandstone type uranium mineralization. This characterized by the occurred of anomalous radioactivity, uranium contents of the upper cretaceous granite intrusions and radioactivity anomalous of tertiary sedimentary rocks deposited in terrestrial environments. The study is objective to find out the potential formation of sandstone type-uranium mineralization within tertiary sedimentary rocks based on data’s studies of geological, geochemical, mineralogy, radioactivity of rocks. Stratigraphy of Hatapang area of the oldest to youngest are quartz units (permian-carboniferous), sandstone units (upper Triassic), granite (upper cretaceous), conglomerate units (Lower –middle Miocene) and tuff units (Pleistocene). Hatapang’s granite is S type granite which is not only potential as source of radioactive minerals, particularly placer type monazite, but also potential as source rocks of sandstone type-uranium mineralization on lighter sedimentary rocks. Sedimentary rock of conglomerate units has potential as host rock, even though uranium did not accumulated in its rocks since the lack number of carbon as precipitant material and dissolved U"+"6 in water did not reduced into U"+"4 caused the uranium mineralization did not deposited. (author)

  17. Metallogenic geologic conditions and prospecting direction of sandstone type uranium mineralizations in Yili basin of Xinjiang

    International Nuclear Information System (INIS)

    Chen Daisheng; Wang Ruiying; Li Shengxiang; Zhang Kefang

    1994-09-01

    Yili basin is a Mesozoic down-warped basin superimposed on the late Paleozoic volcanic taphrogenic basin. Uranium mineralizations are hosted in the Middle-Lower Jurassic coal-bearing series. The depositions environment in the basin is turbulent in the east and relatively stable in the west. It is characterized by coarse-grained sequence with thin thickness in the eastern part and fine-grained with thick thickness in the western part. On the analytical basis of sedimentary facies indices, it is the first time to present a sedimentary model of 'alluvial fan-braided stream-(narrow) lakeshore delta-lacustrine facies and marsh facies' for the coal-bearing series. The authors have summarized the basic geologic features of U-mineralizations in the interlayer oxidation zone, analyzed the difference and cause of U-mineralizations between the south and north, as well as the east and west. The genetic mechanism of U-mineralizations in the basin is discussed. Finally, seven items of geologic prerequisites for the formation of in-situ leachable sandstone type uranium deposits have been suggested and the potential of sandstone type U-mineralizations in the basin has been evaluated. Four promising target areas are selected

  18. Discussion on the 3D visualizing of 1:200 000 geological map

    Science.gov (United States)

    Wang, Xiaopeng

    2018-01-01

    Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.

  19. Digital Model of the Basic Geological Map of the Republic of Macedonia

    International Nuclear Information System (INIS)

    Delipetrov, Blagoj; Panovska, Sanja; Delipetrov, Marjan; Dimov, Gjorgji

    2005-01-01

    This paper presents the process of digitalisation of the Basic Geological Map of the Republic of Macedonia in software package Maplnfo professional 8.0. It shows the procedure of design and implementation of a GIS project for the Basic Geological Map of the Republic of Macedonia. Design of the database table, selecting attributes and drawing graphical objects are also given. (Author)

  20. Mapping variation in radon potential both between and within geological units

    International Nuclear Information System (INIS)

    Miles, J C H; Appleton, J D

    2005-01-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m -3 ) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430 000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock-superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface

  1. PROJECT MANAGEMENT FOR THE STATE-GOVERNED GEOLOGICAL EXPLORATION OF MINERAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. M. Lygin

    2018-03-01

    Full Text Available The relevance of the research. Creating high-efficient and innovation-oriented system of studying the subsoil and the mineral resource base is one of the priority areas of developing the geological sphere. The purpose of the present study is to substantiate the rationale for the adoption of the project management methods for the exploration work. Research methods: method of system analysis, method of comparison and analogies, and method of scientific generalization. The results and their application. This article deals with the content of the main standard legislative documents which determine the strategy and lines of the country’s geological sector development in the nearest future. The article discloses the purposes and their strategic objectives and the content of the state program of the Russian Federation called “Reproduction and use of natural resources”. The resource support of the program and its subroutines is also revealed. The structure of geological industry management in modern conditions is presented. The main activities for restructuring of the geological industry are set out. They include the following points. The transformation of the Federal state unitary enterprises of information and expert profile, the advancement of scientific organizations engaged in scientific and analytical support of performed public functions. These functions are concerned with the geological study of subsoil and reproduction of the mineral resource base, as well as improving its management. The consolidation of specialized geological organizations on the types of exploration and mining, and also the main results of reorganization of the enterprises is taken into account. All of the aforementioned is subordinated to and is conducted by the Federal Agency for subsoil management. The shortcomings of the current system of management of works on the state geological study of the subsoil were revealed at the expense of the Federal budget. The

  2. Remote sensing based geology interpretation and uranium mineralization prediction in Janchivlan, Mongolia

    International Nuclear Information System (INIS)

    Yang Guofang; Lin Ziyu

    2014-01-01

    Remote sensing technology and high resolution satellite image were used to interprete the geologic information in Janchivlan, Mongolia. Mineralization condition information related uranium such as rocks and strata, faults, hydrothermal alteration were studied. By information extraction and target recognition from ALOS and ETM image, Devonian was found to be composed of two lithological units. The double token-ring structures in the midwest of study area were closely related to uranium metalization period of magmatic activity. According to the relationship of the comprehensive information and uranium mineralization, favorable metallogenic target was predicted in the study area, which was useful to uranium prospecting in the study area. (authors)

  3. Corrosion of mineral insulated (MI) cables at MAPS-2

    International Nuclear Information System (INIS)

    Bora, J.S.; Babar, A.K.

    1989-01-01

    It has been experimentally verified that the cause of undesirable behaviour of mineral insulated (MI) cables at Madras Atomic Power Station Unit 2 (MAPS-2) is due to corrosion of termination. It is always possible to restore them to their normal condition by heating if degradation is due to absorption of moisture and by cutting and removing the affected portion in case of short or open failures. During extended shutdown, it is advisable to check other MI terminations and take appropriate corrective action in order to prevent failures in future. During installation MI Cables are to be heated before sealing and should never be heated after sealing. (author)

  4. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    Science.gov (United States)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively

  5. Geology mineralogy, structure and texture of Agh-Otagh base- precious metal mineralization (North Takab

    Directory of Open Access Journals (Sweden)

    Nahid Rahmati

    2017-07-01

    Full Text Available The Agh-Otagh mineralization area in the north of Takab, was formed within the andesistic tuffaceous rocks of the Oligo- Miocene age. Mineralization include polymetallic (Cu-Pb-Zn-Au-Ag quartz veins and silicified zones, which occurred as breccia and vein- veinlets with comb, cockade and disseminated textures. Chalcopyrite, pyrite, galena and sphalerite are common ore minerals. Alteration zones consist of silicification, sericitization, argillitic, propelitic and carbonatization. Cu-Au mineralization is associated with silicification and sericitization. Analytical results of the samples from the ore- bearing quartz veins and the silicified zones indicate that the highest grade for Au is 664 ppb (ave.181 ppb. The highest and the average grades for Ag, Cu, Pb, and Zn are 120 ppm (300 ppm, 1.3 % (0.38 %, 5.5 % (0.06 % and 4.5 % (0.28 %, respectively. The investigations indicate that the Agh-Otagh mineralization was formed in four stages. In the first stage or the pre-mineralization stage, the host rock, as a result of hydrothermal process, underwent brecciation and some quartz veins and siliceous cap were formed. In the second stage or the mineralization stage the sulfide minerals formed within the quartz veins and silicification zones developed at the third stage, some unmineralized quartz, barite and carbonate vein- veinlets crosscut the previous stages. The last stage of mineralization related to supergene processes. Based on geological, mineralogical, alteration, structural and textural evidences, the Agh-Otagh base- precious metal mineralization is similar to the medium sulfidation epithermal deposits.

  6. Geologic map of the Rusalka Planitia Quadrangle (V-25), Venus

    Science.gov (United States)

    Young, Duncan A.; Hansen, Vicki L.

    2003-01-01

    The Rusalka Planitia quadrangle (herein referred to as V-25) occupies an 8.1 million square kilometer swath of lowlands nestled within the eastern highlands of Aphrodite Terra on Venus. The region (25?-0? N., 150?-180? E.) is framed by the crustal plateau Thetis Regio to the southwest, the coronae of the Diana-Dali chasmata complex to the south, and volcanic rise Atla Regio to the west. Regions to the north, and the quadrangle itself, are part of the vast lowlands, which cover four-fifths of the surface of Venus. The often-unspectacular lowlands of Venus are typically lumped together as ridged or regional plains. However, detailed mapping reveals the mode of resurfacing in V-25's lowlands: a mix of corona-related flow fields and local edifice clusters within planitia superimposed on a background of less clearly interpretable extended flow fields, large volcanoes, probable corona fragments, and edifice-flow complexes. The history detailed within the Rusalka Planitia quadrangle is that of the extended evolution of long-wavelength topographic basins in the presence of episodes of extensive corona-related volcanism, pervasive low-intensity small-scale eruptions, and an early phase of regional circumferential shortening centered on central Aphrodite Terra. Structural reactivation both obscures and illuminates the tectonic development of the region. The data are consistent with progressive lithospheric thickening, although the critical lack of an independent temporal marker on Venus severely hampers our ability to test this claim and correlate between localities. Two broad circular basins dominate V-25 geology: northern Rusalka Planitia lies in the southern half of the quadrangle, whereas the smaller Llorona Planitia sits along the northwestern corner of V-25. Similar large topographic basins occur throughout the lowlands of Venus, and gravity data suggest that some basins may represent dynamic topography over mantle downwellings. Both planitiae include coronae and

  7. Geologic map of the Ganiki Planitia quadrangle (V-14), Venus

    Science.gov (United States)

    Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna

    2011-01-01

    Vinmara Planitia), a geologic map of the region may yield insight into a wide array of important problems in Venusian geology. The current mapping effort and analysis complements previous efforts to characterize aspects of the region’s geology, for example stratigraphy near parabolic halo crater sites, volcanic plains emplacement, wrinkle ridges, volcanic feature distribution, volcano deformation, coronae characteristics, lithospheric flexure, and various features along a 30±7.58° N. geotraverse. Our current research focuses on addressing four specific questions. Has the dominant style of volcanic expression within the quadrangle varied in a systematic fashion over time? Does the tectonic deformation within the quadrangle record significant regional patterns that vary spatially or temporally, and if so what are the scales, orientations and sources of the stress fields driving this deformation? If mantle upwelling and downwelling have played a significant role in the formation of Atla Regio and Atalanta Planitia as has been proposed, does the geology of Ganiki Planitia record evidence of northwest-directed lateral mantle flow connecting the two sites? Finally, can integration of the tectonic and volcanic histories preserved within the quadrangle help constrain competing resurfacing models for Venus?

  8. Geologic map of the Beacon Rock quadrangle, Skamania County, Washington

    Science.gov (United States)

    Evarts, Russell C.; Fleck, Robert J.

    2017-06-06

    The Beacon Rock 7.5′ quadrangle is located approximately 50 km east of Portland, Oregon, on the north side of the Columbia River Gorge, a scenic canyon carved through the axis of the Cascade Range by the Columbia River. Although approximately 75,000 people live within the gorge, much of the region remains little developed and is encompassed by the 292,500-acre Columbia River Gorge National Scenic Area, managed by a consortium of government agencies “to pro­tect and provide for the enhancement of the scenic, cultural, recreational and natural resources of the Gorge and to protect and support the economy of the Columbia River Gorge area.” As the only low-elevation corridor through the Cascade Range, the gorge is a critical regional transportation and utilities corridor (Wang and Chaker, 2004). Major state and national highways and rail lines run along both shores of the Columbia River, which also provides important water access to ports in the agricultural interior of the Pacific Northwest. Transmission lines carry power from hydroelectric facilities in the gorge and farther east to the growing urban areas of western Oregon and Washington, and natural-gas pipelines transect the corridor (Wang and Chaker, 2004). These lifelines are highly vulnerable to disruption by earthquakes, landslides, and floods. A major purpose of the work described here is to identify and map geologic hazards, such as faults and landslide-prone areas, to provide more accurate assessments of the risks associated with these features.The steep canyon walls of the map area reveal exten­sive outcrops of Miocene flood-basalt flows of the Columbia River Basalt Group capped by fluvial deposits of the ances­tral Columbia River, Pliocene lavas erupted from the axis of the Cascade arc to the east, and volcanic rocks erupted from numerous local vents. The Columbia River Basalt Group unconformably rests on a sequence of late Oligocene and early Miocene rocks of the ancestral Cascade volcanic arc

  9. Using MicroFTIR to Map Mineral Distributions in Serpentinizing Systems

    Science.gov (United States)

    Johnson, A.; Kubo, M. D.; Cardace, D.

    2016-12-01

    Serpentinization, the water-rock reaction forming serpentine mineral assemblages from ultramafic precursors, can co-occur with the production of hydrogen, methane, and diverse organic compounds (McCollom and Seewald, 2013), evolving water appropriate for carbonate precipitation, including in ophiolite groundwater flow systems and travertine-producing seeps/springs. Serpentinization is regarded as a geologic process important to the sustainability of the deep biosphere (Schrenk et al., 2013) and the origin of life (Schulte et al., 2006). In this study, we manually polished wafers of ultramafic rocks/associated minerals (serpentinite, peridotite, pyroxenite, dunite; olivine, diopside, serpentine, magnetite), and travertine/constituent minerals (carbonate crusts; calcite, dolomite), and observed mineral boundaries and interfaces using µFTIR analysis in reflection mode. We used a Thermo Nicolet iS50 FTIR spectrometer coupled with a Continuum IR microscope to map minerals/boundaries. We identify, confirm, and document FTIR wavenumber regions linked to serpentinite- and travertine-associated minerals by referencing IR spectra (RRUFF) and aligning with x-ray diffraction. The ultramafic and carbonate samples are from the following field localities: McLaughlin Natural Reserve - a UC research reserve, Lower Lake, CA; Zambales, PH; Ontario, CA; Yellow Dog, MI; Taskesti, TK; Twin Sisters Range, WA; Sharon, MA; Klamath Mountains, CA; Dun Mountain, NZ; and Sussex County, NJ. Our goals are to provide comprehensive µFTIR characterization of mineral profiles important in serpentinites and related rocks, and evaluate the resolving power of µFTIR for the detection of mineral-encapsulated, residual organic compounds from biological activity. We report on µFTIR data for naturally occurring ultramafics and travertines and also estimate the limit of detection for cell membrane components in mineral matrices, impregnating increasing mass proportions of xanthan gum in a peridotite sand

  10. Digital geologic map database of the Nevada Test Site area, Nevada

    Science.gov (United States)

    Wahl, R.R.; Sawyer, D.A.; Minor, S.A.; Carr, M.D.; Cole, J.C.; Swadley, W.C.; Laczniak, R.J.; Warren, R.G.; Green, K.S.; Engle, C.M.

    1997-01-01

    Forty years of geologic investigations at the Nevada Test Site (NTS) have been digitized. These data include all geologic information that: (1) has been collected, and (2) can be represented on a map within the map borders at the map scale is included in the map digital coverages. The following coverages are included with this dataset: Coverage Type Description geolpoly Polygon Geologic outcrops geolflts line Fault traces geolatts Point Bedding attitudes, etc. geolcald line Caldera boundaries geollins line Interpreted lineaments geolmeta line Metamorphic gradients The above coverages are attributed with numeric values and interpreted information. The entity files documented below show the data associated with each coverage.

  11. The "chessboard" classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium

    Science.gov (United States)

    Dill, Harald G.

    2010-06-01

    Economic geology is a mixtum compositum of all geoscientific disciplines focused on one goal, finding new mineral depsosits and enhancing their exploitation. The keystones of this mixtum compositum are geology and mineralogy whose studies are centered around the emplacement of the ore body and the development of its minerals and rocks. In the present study, mineralogy and geology act as x- and y-coordinates of a classification chart of mineral resources called the "chessboard" (or "spreadsheet") classification scheme. Magmatic and sedimentary lithologies together with tectonic structures (1 -D/pipes, 2 -D/veins) are plotted along the x-axis in the header of the spreadsheet diagram representing the columns in this chart diagram. 63 commodity groups, encompassing minerals and elements are plotted along the y-axis, forming the lines of the spreadsheet. These commodities are subjected to a tripartite subdivision into ore minerals, industrial minerals/rocks and gemstones/ornamental stones. Further information on the various types of mineral deposits, as to the major ore and gangue minerals, the current models and the mode of formation or when and in which geodynamic setting these deposits mainly formed throughout the geological past may be obtained from the text by simply using the code of each deposit in the chart. This code can be created by combining the commodity (lines) shown by numbers plus lower caps with the host rocks or structure (columns) given by capital letters. Each commodity has a small preface on the mineralogy and chemistry and ends up with an outlook into its final use and the supply situation of the raw material on a global basis, which may be updated by the user through a direct link to databases available on the internet. In this case the study has been linked to the commodity database of the US Geological Survey. The internal subdivision of each commodity section corresponds to the common host rock lithologies (magmatic, sedimentary, and

  12. Geologic map of the greater Denver area, Front Range urban corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.

    1979-01-01

    This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  13. Reply to the comment by B. Ghobadipour and B. Mojarradi "M. Abedi, S.A. Torabi, G.-H. Norouzi and M. Hamzeh; ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping"

    Science.gov (United States)

    Abedi, Maysam

    2015-06-01

    This reply discusses the results of two previously developed approaches in mineral prospectivity/potential mapping (MPM), i.e., ELECTRE III and PROMETHEE II as well-known methods in multi-criteria decision-making (MCDM) problems. Various geo-data sets are integrated to prepare MPM in which generated maps have acceptable matching with the drilled boreholes. Equal performance of the applied methods is indicated in the studied case. Complementary information of these methods is also provided in order to help interested readers to implement them in MPM process.

  14. Semantic Data And Visualization Techniques Applied To Geologic Field Mapping

    Science.gov (United States)

    Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.

    2015-12-01

    Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.

  15. Geology and resource assessment of Costa Rica at 1:500,000 scale; a digital representation of maps of the U.S. Geological Survey's 1987 folio I-1865

    Science.gov (United States)

    Schruben, Paul G.

    1997-01-01

    This CD-ROM contains digital versions of the geology and resource assessment maps of Costa Rica originally published in USGS Folio I-1865 (U.S. Geological Survey, the Direccion General de Geologia, Minas e Hidrocarburos, and the Universidad de Costa Rica, 1987) at a scale of 1:500,000. The following layers are available on the CD-ROM: geology and faults; favorable domains for selected deposit types; Bouguer gravity data; isostatic gravity contours; mineral deposits, prospects, and occurrences; and rock geochemistry sample points. For DOS users, the CD-ROM contains MAPPER, a user-friendly map display program. Some of the maps are also provided in the following additional formats on the CD-ROM: (1) ArcView 1 and 3, (2) ARC/INFO 6.1.2 Export, (3) Digital Line Graph (DLG) Optional, and (4) Drawing Exchange File (DXF.)

  16. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    Science.gov (United States)

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  17. Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle, United States and Canada

    Data.gov (United States)

    Department of the Interior — The Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as...

  18. From printed geological maps to web-based service oriented data products - strategies, foundations and problems.

    Science.gov (United States)

    Ebner, M.; Schiegl, M.; Stöckl, W.; Heger, H.

    2012-04-01

    The Geological Survey of Austria is legally obligated by the INSPIRE directive to provide data that fall under this directive (geology, mineral resources and natural risk zones) to the European commission in a semantically harmonized and technically interoperable way. Until recently the focus was entirely on the publication of high quality printed cartographic products. These have a complex (carto-)graphic data-model, which allows visualizing several thematic aspects, such as lithology, stratigraphy, tectonics, geologic age, mineral resources, mass movements, geomorphology etc. in a single planar map/product. Nonetheless these graphic data-models do not allow retrieving individual thematic aspects since these were coded in a complex portrayal scheme. Automatic information retrieval is thus impossible; and domain knowledge is necessary to interpret these "encrypted datasets". With INSPIRE becoming effective and a variety of conceptual models (e.g. GeoSciML), built around a semantic framework (i.e. controlled vocabularies), being available it is necessary to develop a strategy and workflow for semantic harmonization of such datasets. In this contribution we demonstrate the development of a multistage workflow which will allow us to transform our printed maps to semantically enabled datasets and services and discuss some prerequisites, foundations and problems. In a first step in our workflow we analyzed our maps and developed controlled vocabularies that describe the thematic content of our data. We then developed a physical data-model which we use to attribute our spatial data with thematic information from our controlled vocabularies to form core thematic data sets. This physical data model is geared towards use on an organizational level but builds upon existing standards (INSPIRE, GeoSciML) to allow transformation to international standards. In a final step we will develop a standardized mapping scheme to publish INSPIRE conformant services from our core datasets

  19. 2007 Oregon Department of Geology and Mineral Industries (DoGAMI) LiDAR: Northwest Oregon and Portland Metro Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data for the Oregon Department of Geology and Mineral Industries (DoGAMI) and the Oregon...

  20. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: US Forest Service (FS) Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  1. 2011 Oregon Department of Geology and Mineral Industries (DOGAMI) Lidar: Cascade Volcano Observatory (CVO) Newberry Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Geology & Mineral Industries (DOGAMI) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  2. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    Science.gov (United States)

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    Cretaceous (about 120 Ma) metamorphic age. Remnants of the Great Valley sequence of dominantly Cretaceous marine sedimentary strata, which once covered much of the southern fringe of the Klamath Mountains, are present at three places in the Dubakella Mountain quadrangle. Mineral production in the quadrangle has included small amounts of gold, chromite, and manganese. This map of the Dubakella Mountain 15' quadrangle is a digital rendition of U.S. Geological Survey Miscellaneous Field Studies Map MF-1808, with various improvements and additions.

  3. Preliminary geologic map of the Fontana 7.5' quadrangle, Riverside and San Bernardino Counties, California

    Science.gov (United States)

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.

    2003-01-01

    Open-File Report 03-418 is a digital geologic data set that maps and describes the geology of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California. The Fontana quadrangle database is one of several 7.5’ quadrangle databases that are being produced by the Southern California Areal Mapping Project (SCAMP). These maps and databases are, in turn, part of the nation-wide digital geologic map coverage being developed by the National Cooperative Geologic Map Program of the U.S. Geological Survey (USGS). General Open-File Report 03-418 contains a digital geologic map database of the Fontana 7.5’ quadrangle, Riverside and San Bernardino Counties, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A Postscript file (fon_map.ps) to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram (CMU), a Description of Map Units (DMU), and an index map. 3. An Encapsulated PostScript (EPS) file (fon_grey.eps) created in Adobe Illustrator 10.0 to plot the geologic map on a grey topographic base, and containing a Correlation of Map Units (CMU), a Description of Map Units (DMU), and an index map. 4. Portable Document Format (.pdf) files of: a. the Readme file; includes in Appendix I, data contained in fon_met.txt b. The same graphics as plotted in 2 and 3 above.Test plots have not produced precise 1:24,000-scale map sheets. Adobe Acrobat page size setting influences map scale. The Correlation of Map Units and Description of Map Units is in the editorial format of USGS Geologic Investigations Series (I-series) maps but has not been edited to comply with I-map standards. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Where known, grain size is indicated on the map by a subscripted letter or letters following

  4. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    Science.gov (United States)

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  5. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco

    2016-04-01

    Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the

  6. Competitive platinum-group-metal (PGM) supply from the Eastern Limb, Bushveld Complex: Geological, mining and mineral economic aspects

    CSIR Research Space (South Africa)

    McGill, JE

    2011-08-01

    Full Text Available -GROUP-METAL (PGM) SUPPLY FROM THE EASTERN LIMB, BUSHVELD COMPLEX: GEOLOGICAL, MINING, AND MINERAL ECONOMIC ASPECTS Dr. Jeannette E. McGill & Prof. Murray W. Hitzman ACKNOWLEDGEMENTS ? COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH (CSIR) ? Centre for Mining... Innovation ? Office of Graduate Studies, Fogarty Endowment ? Mr. VISHNU PILLAY (EXECUTIVE HEAD: JV?S ? Anglo Platinum) ? ACADEMIC ADVISORS Prof. Murray Hitzman (Economic Geology); Dr. Hugh Miller (Mining Engineering); Prof. Rodderick Eggert (Mineral...

  7. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  8. Geologic map of the east half of the Lime Hills 1:250,000-scale quadrangle, Alaska

    Science.gov (United States)

    Gamble, Bruce M.; Reed, Bruce L.; Richter, Donald H.; Lanphere, Marvin A.

    2013-01-01

    This map is compiled from geologic mapping conducted between 1985 and 1992 by the U.S. Geological Survey as part of the Alaska Mineral Resource Assessment Program. That mapping built upon previous USGS work (1963–1988) unraveling the magmatic history of the Alaska–Aleutian Range batholith. Quaternary unit contacts depicted on this map are derived largely from aerial-photograph interpretation. K-Ar ages made prior to this study have been recalculated using 1977 decay constants. The east half of the Lime Hills 1:250,000-scale quadrangle includes part of the Alaska–Aleutian Range batholith and several sequences of sedimentary rocks or mixed sedimentary and volcanic rocks. The Alaska–Aleutian Range batholith contains rocks that represent three major igneous episodes, (1) Early and Middle Jurassic, (2) Late Cretaceous and early Tertiary, and (3) middle Tertiary; only rocks from the latter two episodes are found in this map area. The map area is one of very steep and rugged terrain; elevations range from a little under 1,000 ft (305 m) to 9,828 ft (2,996 m). Foot traverses are generally restricted to lowermost elevations. Areas suitable for helicopter landings can be scarce at higher elevations. Most of the area was mapped from the air, supplemented by direct examination of rocks where possible. This restricted access greatly complicates understanding some of the more complex geologic units. For example, we know there are plutons whose compositions vary from gabbro to granodiorite, but we have little insight as to how these phases are distributed and what their relations might be to each other. It is also possible that some of what we have described as compositionally complex plutons might actually be several distinct intrusions.

  9. Mapped minerals at Questa, New Mexico, using airborne visible-infrared imaging spectrometer (AVIRIS) data -- Preliminary report

    Science.gov (United States)

    Livo, K. Eric; Clark, Roger N.

    2002-01-01

    This preliminary study for the First Quarterly Report has spectrally mapped hydrothermally altered minerals useful in assisting in assessment of water quality of the Red River. Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) data was analyzed to characterize mined and unmined ground at Questa, New Mexico. AVIRIS data covers the Red River drainage north of the river, from between the town of Questa on the west, to east of the town of Red River. The data was calibrated and analyzed using U.S. Geological Survey custom software and spectral mineral library. AVIRIS data was tested for spectral features that matched similar features in the spectral mineral library. Goodness-of-fit and band-depth were calculated for each comparison of spectral features and used to identify surface mineralogy. Mineral distribution, mineral associations, and AVIRIS pixel spectra were examined. Mineral maps show the distribution of iron hydroxides, iron sulfates, clays, micas, carbonates, and other minerals. Initial results show a system of alteration suites that overprint each other. Quartz-sericite-pyrite (QSP) alteration grading out to propylitic alteration (epidote and calcite) was identified at the Questa Mine (molybdenum porphyry) and a similar alteration pattern was mapped at the landslide (?scar?) areas. Supergene weathering overprints the altered rock, as shown by jarosite, kaolinite, and gypsum. In the spectral analysis, hydrothermally altered ground appears to be more extensive at the unmined Goat Hill Gulch and the mined ground, than the ?scars? to the east. Though the ?scars? have similar overall altered mineral suites, there are differences between the ?scars? in sericite, kaolinite, jarosite, gypsum, and calcite abundance. Fieldwork has verified the results at the central unmined ?scar? areas.

  10. Geological mapping of the vertical southeast face of El Capitan, Yosemite Valley, California (Invited)

    Science.gov (United States)

    Stock, G. M.; Glazner, A. F.; Ratajeski, K.; Law, B.

    2010-12-01

    El Capitan in Yosemite Valley, California, is one of the world’s most accessible large granitic rock faces. At nearly 1 km tall, the vertical southeast face of El Capitan provides unique insight into igneous processes contributing to the assembly of the Sierra Nevada batholith ~103 million years ago. Although the base and summit dome of El Capitan have been mapped in detail, the vertical face has so far eluded comprehensive attempts at geologic mapping. We have combined field mapping by technical rock climbing with high-resolution gigapixel photography to develop the first detailed digital geologic map of the southeast face (North America Wall). Geologic units exposed on the face include the El Capitan and Taft Granites, at least two phases of dioritic intrusions, hybridized rocks, and late-stage aplite/pegmatite dikes and pods. We map these units on a high resolution far-range base image derived from a high-resolution panoramic photograph, and verify contact relationships with close-range field photographs and visual observations from anchor points along major climbing routes. Mapping of contact relationships between these units reveals the sequence of intrusion of the various units, as well as the relationship of the mafic intrusions with the more voluminous granites. Geologic mapping of the southeast face also informs geologic hazards by constraining the source area for lithologically distinct rock falls; for example, geologic mapping confirms that a 2.2 x 106 m3 rock avalanche that occurred circa 3,600 years ago originated from near the summit of El Capitan, within an area dominated by Taft Granite. In addition to expanding mapping to the southwest face, future mapping efforts will focus on integrating the high resolution base map with airborne and terrestrial LiDAR data to produce a three-dimensional geologic map of one of the most iconic rock formations in the world.

  11. Evaluation of electrical resistivity anisotropy in geological mapping ...

    African Journals Online (AJOL)

    user

    Key words: Electrical resistivity anisotropy, radial vertical electrical sounding, anisotropy polygons. INTRODUCTION ... electrical resistivity survey in the geological interpretation ... resistivity and other electrical or electromagnetic based.

  12. Processing and inversion of commercial helicopter time-domain electromagnetic data for environmental assessments and geologic and hydrologic mapping

    DEFF Research Database (Denmark)

    J.E., Podgorski; Auken, Esben; Schamper, Cyril Noel Clarence

    2013-01-01

    Helicopter time-domain electromagnetic (HTEM) surveying has historically been used for mineral exploration, but over the past decade it has started to be used in environmental assessments and geologic and hydrologic mapping. Such surveying is a cost-effective means of rapidly acquiring densely......%-23%, and the artificial lineations were practically eliminated. Our processing and inversion strategy is entirely general, such that with minor system-specific modifications it could be applied to any HTEM data set, including those recorded many years ago. © 2013 Society of Exploration Geophysicists....

  13. U.S. Geological Survey Energy and Minerals science strategy: a resource lifecycle approach

    Science.gov (United States)

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R.

    2013-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on population and consumption trends, the Nation’s use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth places further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting- edge science for the next generation of societal decisions. The long and continuing history of U.S. Geological Survey contributions to energy and mineral resources science provide a solid foundation of core capabilities upon which new research directions can grow. This science strategy provides a framework for the coming decade that capitalizes on the growth of core capabilities and leverages their application toward new or emerging challenges in energy and mineral resources research, as reflected in five interrelated goals.

  14. Geology and potency of Uranium mineralization occurrences in Harau area, West Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Background of this study is due to the geological setting of Harau area and its surrounding, West Sumatera, that is identified as a favourable area for uranium accumulation which is indicated by the presence of anomalous radioactivity in the Tertiary sedimentary rocks deposited on the terrestrial environment and the presence of anomalous uranium contents in Pre-Tertiary granites in several places in West Sumatera, and the presence of radioactivity anomalous in the Pre Tertiary metamorphic rocks. The purpose of this study is to determine the potential formation of uranium mineralization in the Harau area, to be used as a basis to conduct more detailed research in order to inventory the potential of uranium resources in Indonesia. The scope of the discussion in this review includes a discussion of geology, geochemistry and radioactivity of the outcrops. The composition of regional stratigraphic from old to young is quartzite unit, phyllite unit, conglomerate unit, sandstone unit, tuff unit and alluvium river. The main fault that developed in the study area are normal faults trending southwest – northeast. The study area is splitted into two sections where the southeastern part relatives fall down of the northwest. Based on geological setting, radioactivity and uranium data then is assumed that Harau is a potential area for the formation of uranium mineralization in sandstone and its vein type. Sandstone type is expected occur in sandstone conglomerate unit of The Brani Formation and vein type is expected occur in the quartzite unit of The Kuantan Formation. (author)

  15. Integration of geophysical and geological data for delimitation of mineralized zones in Um Naggat area, Central Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Ibrahim Gaafar

    2015-06-01

    Interpretations of the aeromagnetic maps delineated four regional structural trends oriented due NNW, NW, ENE and E–W directions. They are identified as strike-slip faults, which coincide well with field observations, where NW-trending faults cut and displace right laterally ENE-trending older ones. The interaction between these two strike-slip fault systems confining the albite granite is easily identified on the regional data presenting longer wavelength anomalies, implying deep-seated structures. They could represent potential pathways for migration of enriched mineralized fluids. Geochemically, albite granites of peraluminous characteristics that had suffered extensive post-magmatic metasomatic reworking, resulted into development of (Zr, Hf, Nb, Ta, U, Th, Sn and albite-enriched and greisenized granite body of about 600 m thick, and more than 3 km in strike length. The albite granite is characterized by sharp increase in average rare metal content: Zr (830 ppm, Hf (51 ppm, Nb (340 ppm, Ta (44 ppm, and U (90 ppm. Thorite, uranothorite, uraninite and zircon are the main uranium-bearing minerals of magmatic origin within the enclosing granite. However, with respect to Zr, Nb, and Ta, the albitized granite can be categorized as rare metal granite. The integration of airborne geophysical (magnetic and γ-ray spectrometric, geological, geochemical and mineralogical data succeeded in assigning the albite granite of Um Naggat pluton as a mineralized zone. This zone is characterized by its high thorium and uranium of hydrothermal origin as indicated by its low Th/U ratio, with rare metals mineralization controlled by two main structural trends in the NW- and ENE-directions.

  16. Geologic Map of the Derain (H-10) Quadrangle on Mercury: The Challenges of Consistently Mapping the Intercrater Plains Unit

    Science.gov (United States)

    Whitten, J. L.; Fassett, C. I.; Ostrach, L. R.

    2018-06-01

    We present the initial mapping of the H-10 quadrangle on Mercury, a region that was imaged for the first time by MESSENGER. Geologic map with assist with further characterization of the intercrater plains and their possible formation mechanism(s).

  17. Lidar-revised geologic map of the Des Moines 7.5' quadrangle, King County, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Booth, Derek B.

    2017-11-06

    This map is an interpretation of a modern lidar digital elevation model combined with the geology depicted on the Geologic Map of the Des Moines 7.5' Quadrangle, King County, Washington (Booth and Waldron, 2004). Booth and Waldron described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Des Moines 7.5' quadrangle. The base map that they used was originally compiled in 1943 and revised using 1990 aerial photographs; it has 25-ft contours, nominal horizontal resolution of about 40 ft (12 m), and nominal mean vertical accuracy of about 10 ft (3 m). Similar to many geologic maps, much of the geology in the Booth and Waldron (2004) map was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for much of the Puget Sound area, including the entire Des Moines 7.5' quadrangle. This new DEM has a horizontal resolution of about 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air-photo stereo models have much improved the interpretation of geology, even in this heavily developed area, especially the distribution and relative age of some surficial deposits. For a brief description of the light detection and ranging (lidar) remote sensing method and this data acquisition program, see Haugerud and others (2003). 

  18. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-01-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35 degree N; Long. 115 degree W and lat. 38 degree N, long. 118 degree W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. The procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute's ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado

  19. Preliminary geologic map of the late Cenozoic sediments of the western half of the Pasco Basin

    International Nuclear Information System (INIS)

    Lillie, J.T.; Tallman, A.M.; Caggiano, J.A.

    1978-09-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within the Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in Columbia River Basalt. This report represents a portion of the geological work conducted during fiscal year 1978 to assess the geological conditions in the Pasco Basin. The surficial geology of the western half of the Pasco Basin was studied and mapped in a reconnaissance fashion at a scale of 1:62,500. The map was produced through a compilation of existing geologic mapping publications and additional field data collected during the spring of 1978. The map was produced primarily to: (1) complement other mapping work currently being conducted in the Pasco Basin and in the region by Rockwell Hanford Operations and its subcontractors; and, (2) to provide a framework for more detailed late Cenozoic studies within the Pasco Basin. A description of procedures used to produce the surficial geologic map and geologic map units is summarized in this report

  20. Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data

    Science.gov (United States)

    Molan, Yusuf Eshqi; Refahi, Davood; Tarashti, Ali Hoseinmardi

    2014-04-01

    This study applies matched filtering on the HyMap airborne hyperspectral data to obtain the distribution map of alteration minerals in the Maherabad area and uses virtual verification to verify the results. This paper also introduces "moving threshold" which tries to find an appropriate threshold value to convert gray scale images, produced by mapping methods, to target and background pixels. The Maherabad area, located in the eastern part of the Lut block, is a Cu-Au porphyry system in which quartz-sericite-pyrite, argillic and propylitic alteration are most common. Minimum noise fraction transform coupled with a pixel purity index was applied on the HyMap images to extract the endmembers of the alteration minerals, including kaolinite, montmorillonite, sericite (muscovite/illite), calcite, chlorite, epidote, and goethite. Since there was no access to any portable spectrometer and/or lab spectral measurements for the verification of the remote sensing imagery results, virtual verification achieved using the USGS spectral library and showed an agreement of 83.19%. The comparison between the results of the matched filtering and X-ray diffraction (XRD) analyses also showed an agreement of 56.13%.

  1. Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-9A Thompson, PJ�and Thompson, TB, 1995, Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles,...

  2. Bedrock geologic map of the Knox Mountain pluton area, Marshfield and Peacham, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG08-3 Kim, J., Charnock, R., Chow, D. and Springston, G., 2008, Bedrock geologic map of the Knox Mountain pluton area, Marshfield and Peacham,...

  3. Developing an Application to Increase the Accessibility of Planetary Geologic Maps

    Science.gov (United States)

    Jacobsen, R. E.; Fay, C.

    2018-06-01

    USGS planetary geologic maps are widely used digital products with text, raster, vector, and temporal data, within a highly standardized design. This tool will augment the user experience by improving accessibility among the various forms of data.

  4. Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Burton, WC, and Ratcliffe, NM, 2000, Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont: USGS Open-File...

  5. Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-226A Walsh, G. J., and Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont: USGS...

  6. Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG97-854A Ratcliffe, NM, 1997,�Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont: USGS Open-File Report 97-854, 1...

  7. Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-330A Ratcliffe, N.M., and Walsh, G. J., 1998,�Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont: USGS...

  8. Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-DM1 Ratcliffe, NM, 1995, Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont, scale 1:24000, The bedrock...

  9. Digital bedrock geologic map of the Morrisville quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-1 Springston, G., Kim, J., and Applegate, G.S., 1998,�Digital bedrock geologic map of the Morrisville quadrangle,�Vermont: VGS Open-File...

  10. Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-4 (Digitized draft of VG97-5): Kim, J., 2009, Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, VGS...

  11. Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-03�Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont: VGS Open-File Report VG96-3A, 2 plates, scale...

  12. Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG2017-2 Thompson, P. J., and Thompson, T. B., 2017, Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont: VGS Open-File...

  13. Regional evolution of geological structure in south China and U mineralization

    International Nuclear Information System (INIS)

    Chen Guoda; Kang Zili; Shen Jinrui; Jin Yushu

    1992-01-01

    This paper states the development laws of regional geological structure of South China and its controlling effect on uranium deposit evolution, and the characteristics of rich uranium formation in different periods of geo-history are analysed. It also discusses the relationship between the distribution of time and space and tectonic structure and environmental vicissitudes. The rock-magma activities-the strong formation of the Diwa Era is of great significance to the formation of uranium deposits within the region, especially to the formation of a series of multi-genesis polygene uranium deposits which are a potential direction in which to look for minerals within the region

  14. Geological nature of mineral licks and the reasons for geophagy among animals

    Directory of Open Access Journals (Sweden)

    A. M. Panichev

    2017-06-01

    Full Text Available In this paper, the reasons for geophagy (the eating of rocks by wild herbivores in two regions of the eastern Sikhote-Alin volcanic belt are considered. The mineralogical and chemical features of the consumed rocks, as well as the geological conditions of their formation, are investigated. A comparative analysis of the mineral and chemical composition of the consumed rocks and the excrement of the animals, almost completely consisting of mineral substances, is carried out. It is established that the consumed rocks are hydrothermally altered rhyolitic tuffs located in the volcanic calderas and early Cenozoic volcano-tectonic depressions. They consist of 30–65 % from zeolites (mainly clinoptilolites and smectites, possessing powerful sorption properties. According to the obtained data, the main reason for geophagy may be connected with the animals' urge to discard excessive and toxic concentrations of certain elements that are widespread in specific habitats and ingested with forage plants.

  15. Geological nature of mineral licks and the reasons for geophagy among animals

    Science.gov (United States)

    Panichev, Alexander M.; Popov, Vladimir K.; Chekryzhov, Igor Yu.; Seryodkin, Ivan V.; Sergievich, Alexander A.; Golokhvast, Kirill S.

    2017-06-01

    In this paper, the reasons for geophagy (the eating of rocks by wild herbivores) in two regions of the eastern Sikhote-Alin volcanic belt are considered. The mineralogical and chemical features of the consumed rocks, as well as the geological conditions of their formation, are investigated. A comparative analysis of the mineral and chemical composition of the consumed rocks and the excrement of the animals, almost completely consisting of mineral substances, is carried out. It is established that the consumed rocks are hydrothermally altered rhyolitic tuffs located in the volcanic calderas and early Cenozoic volcano-tectonic depressions. They consist of 30-65 % from zeolites (mainly clinoptilolites) and smectites, possessing powerful sorption properties. According to the obtained data, the main reason for geophagy may be connected with the animals' urge to discard excessive and toxic concentrations of certain elements that are widespread in specific habitats and ingested with forage plants.

  16. Geological map of Uruguay Esc 1,100,000. Guaycuru Sheet M-24

    International Nuclear Information System (INIS)

    Garat, I.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Guaycuru)) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to the Cenozoic and Precambrian period. The Cuaycuru area is located in the West of the Rio de la Plata socket constituted by metamorphic belts and is associated with migmatitic and intrusive granitoids

  17. Geological map of Uruguay Esc 1,100,000. Talita Sheet J-24

    International Nuclear Information System (INIS)

    Campal, N; Chulepin, H

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Talita) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils.The area belongs to the Rio de la Plata socket basin is associated with the orogenic cycle

  18. Geological map of Uruguay Esc 1,100,000. Carmelo Sheet P-24

    International Nuclear Information System (INIS)

    Ferrando, L; Eugui, W; Cabrera, Z; Elias, R

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Carmelo) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils of the precambrian period in the Mercedes , Fray Bentos, Libertad and Raigon formations. The Precambrian rocks are found in large quarries in Carmelo hill

  19. Geological map of Uruguay Esc 1,100,000. Molles Sheet K-19

    International Nuclear Information System (INIS)

    Ford, I

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Molles) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to the Cretaceous, Tertiary and Quaternary period in Arapey, Mercedes, Asencio, Palmitas, Fray Bentos and Libertad formations

  20. Geological map of Uruguay Esc 1,100,000. Bequelo Sheet N0-20

    International Nuclear Information System (INIS)

    Montana, J.; Ford, I.; Morales, H.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Bequelo) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics of the precambrian period in the Bequelo stream as well as the Mercedes , Asencio and Fray Bentos formations

  1. Geological map of Uruguay Esc 1,100,000. Bizcocho Sheet N-0-21

    International Nuclear Information System (INIS)

    Ford, I; Gancio, F

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Bizcocho) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics of the lower Proterozoic in the socket of the La Plata river, Upper Cretaceous in Mercedes and Asencio formations, lower Tertiary in Palmitas and Fray Bentos formations and soils characteristics of the Quaternary period

  2. Geological map of Uruguay scale 1.100.000 Canada Nieto Sheet P-23

    International Nuclear Information System (INIS)

    Ferrando, L; Eugui, W; Cabrera, Z; Elias, R

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Canada Nieto) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils of the pre devoniam period in the Mercedes , Asencio and Fray Bentos formations

  3. Geological map of Uruguay Esc 1,100,000. El Ombu Sheet N-18

    International Nuclear Information System (INIS)

    Ford, I

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (El Ombu) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to the Cretaceous, Tertiary and Quaternary period in Arapey, Mercedes, Asencio, Palmitas, Fray Bentos and Libertad formations

  4. Geological map of Uruguay Esc 1,100,000. Cerro Partido Sheet F-24

    International Nuclear Information System (INIS)

    Diaz, R; Albanell, H.; Bossi, J.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Cerro Partido) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils. The area corresponding to the Cerro Partido fotoplano is located in the orogenic belt or Don Feliciano belt

  5. Geological map of Uruguay Esc 1,100,000. Melo Sheet D-15

    International Nuclear Information System (INIS)

    Ferrando, L.; Andreis, R.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Melo) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to the pre devonian period in Melo, Buena Vista Yaguari and Tres islas formations. These metamorphic rocks would be compared with the orogenic cycle of the east and southeast groups

  6. Geological map of Uruguay Esc 1,100,000. La Union Sheet J-29

    International Nuclear Information System (INIS)

    Goso, C.; Veroslavsky, G.; Oyantcabal, P.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (La Union) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to the Holocene Pleistocene, Pliocene, Oligocene and Precambrian period. This area is located in the eastern of Montevideo and the South West of Canelones

  7. Geological map of Uruguay Esc 1,100,000. Chafalote Sheet D-26

    International Nuclear Information System (INIS)

    Masquelin, H; Tabo, F

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Chafalote) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils. The area corresponding to Chafalote is located in central and eastern metamorphic formation constituted by Lavalleja-Rocha group

  8. Geological map of Uruguay Esc 1,100,000. Piriapolis Sheet G-29

    International Nuclear Information System (INIS)

    Preciozzi, F; Pena, S; Masquelin, E; Pias, J; Tabo, F

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Piriapolis) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils. Geomorphologically Piriapolis fotoplano is dominated by Las Animas and an important Cenozoic coverage

  9. Geological map of Uruguay Esc 1,100,000. Algorta Sheet N-16

    International Nuclear Information System (INIS)

    Ford, I; Gancio, F

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Algorta) and the explanatory memoranda which describes the geological , lithological and sedimentological soil characteristics of the upper cretaceous in Guichon, Mercedes and Asencio formaltions as well as the lower tertiary period of Palmitas and Fray Bentos formations

  10. Geological map of Uruguay Esc 1,100,000. Palmitas Sheet 0- 22

    International Nuclear Information System (INIS)

    Ford, I.; Gancio, F

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Molles) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to the Proterozoic, Cretaceous, Tertiary and Quaternary period in Mercedes, Asencio, Palmitas and Fray Bentos formations

  11. Geological map of Uruguay Esc 1,100,000. Paso del Palmar Sheet N-19

    International Nuclear Information System (INIS)

    Ford, I.; Montana, J.; Morales, H.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Paso del Palmar) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to Cretaceous, Tertiary and Quaternary period in San Gregorio, Arapey, Mercedes, Asencio and Fray Bentos formations

  12. Geological map of Uruguay Esc 1,100,000. Cuchilla del Ombu. Sheet H-12

    International Nuclear Information System (INIS)

    Montana, J.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Cuchilla del Ombu) and the explanatory memoranda which describes the geological, lithological and sedimentological characteristics soils. In crystalline rocks have been recognized four basic units: porphyritic granite, Cunapiru granite, Cunapiru subvolcanic microgranite and metamorfites

  13. Geological map of Uruguay Esc 1,100,000. Piraraja Sheet F-23

    International Nuclear Information System (INIS)

    Preciozzi, F

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Piraraja) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to Cenozoic, Cretaceous, Jurassic and Precambrian period.The Pirafja fotoplano is located in Lavalleja and geomorphologically is constituted by the Lavalleja group, the Atlantic socket, Piraraja granite and the Barriga Negra group

  14. Mapping Potential Areas For Gold And Base Metals Mineralization In Southeastern Desert, Egypt: An Approach By Using Remote Sensing And GIS

    International Nuclear Information System (INIS)

    ElFouly, A.; Salem, H.

    2003-01-01

    Integration of Landsat-Thematic Mapper (TM), aero magnetic data, structural geology along with the known mineralization occurrences in the area are mainly the factors used to recognize favorable sites for structurally controlled mineralization at the northern part of the southeastern Desert of Egypt. Two knowledge-driven models were constructed based on a conceptual gold exploration model. The Density of Lineament Intersection (DLI) results from this study along with Dempster-Shafer (D-S) Belief approach show good results in delineating favorable mineralization areas. The basic assignment probability maps for the heat source, strong magnetism, hydrothermal alteration, geologic structure, and known mineralization occurrences in the area are the main D-S Belief approach recognition criteria component used for mineral exploration in the study area. The DLI method is maximizing the use of Landsat remote sensing data that could be used efficiently in the exploration for structurally controlled hydrothermal related mineralization. The DLI method results show higher resolution and accurate results for gold and base metals exploration. The high favorability areas by using the DLI method is 2196 Km 2 which are concise area than the D-S Belief approach for about 3976.5 Km 2 . These results are useful to be a strong base for planning accurate exploration program. The potential favorability maps of gold and base metals ore deposits from the northern part of the South Eastern Desert predicted the known areas of mineralization as well as identified high potential areas not known before with mineralization for future exploration

  15. Drawing 1/100,000 scale geological map of Mt. Hakkoda geothermal district

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Hirobumi; Takakura, Shin' ichi

    1987-10-01

    Geological map of geothermal district of Mt. Hakkoda was made which included the main volcanos created after Pliocene era. For the purpose, geothermal liquid, terrestial heat sources and its storing structures, were studied with consulting geological map. Aerial and satelite photographs were used for the study of faults, foldings, and dikes,. By the result, stratigragic order of layers, developing process of vocanos, and evoluting process of magma, were summarized for report. (5 figs, 4 tabs, 101 refs)

  16. AusLAMP long period magnetotellurics: progress update and new insights into Victorian geology and mineral prospectivity

    Science.gov (United States)

    Chopping, R. G.; Duan, J.; Czarnota, K.; Kemp, T.

    2016-12-01

    It is becoming generally accepted that world-class mineral deposits have a footprint on a scale of the lithosphere. For this reason, Australia has embarked on the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) to map the conductivity of the mid to lower crust and the lithospheric mantle. AusLAMP is a collaborative project between Geoscience Australia, State and Territory Geological Surveys and Universities. The project aims to collect long-period magnetotelluric data across the Australian continent on a nominal 0.5x0.5° ( 55x55 km) grid. To date, more than 450 sites have been acquired including all sites for the state of Victoria, two-thirds of sites in South Australia and Tasmania, and approximately 25 stations in Western Australia. Progress is ramping up with acquisition to turn to the state of New South Wales, the remainder of South Australia and also acquisition in northern Australia. To support this increasing acquisition activity, additional instruments have been purchased to add to those already in Australia. 3D inversion results are now available for AusLAMP Victoria. In collaboration with the National Computational Infrastructure (NCI), the 3D ModEM codes were optimised for use on the NCI's supercomputer, speeding up large-scale inversions by an order of magnitude. The results of these inversions indicate anomalously conductive lithospheric mantle associated with the central region of Victoria which contains significant mineral deposits and prospectivity, and also anomalous resistive lithosphere associated with the southern extension of the dynamically supported Australian Alps and the Newer Volcanics Province. Modelled conductivities are also consistent with mantle xenolith data from central Victoria. Within the crust, the dominant trend of the data is along elongate north-eastern corridors of conductive material. These results shed new questions on the geological history of this region and the lithospheric architecture of the

  17. Uncertainty in mapped geological boundaries held by a national geological survey:eliciting the geologists' tacit error model

    Science.gov (United States)

    Lark, R. M.; Lawley, R. S.; Barron, A. J. M.; Aldiss, D. T.; Ambrose, K.; Cooper, A. H.; Lee, J. R.; Waters, C. N.

    2015-06-01

    It is generally accepted that geological line work, such as mapped boundaries, are uncertain for various reasons. It is difficult to quantify this uncertainty directly, because the investigation of error in a boundary at a single location may be costly and time consuming, and many such observations are needed to estimate an uncertainty model with confidence. However, it is recognized across many disciplines that experts generally have a tacit model of the uncertainty of information that they produce (interpretations, diagnoses, etc.) and formal methods exist to extract this model in usable form by elicitation. In this paper we report a trial in which uncertainty models for geological boundaries mapped by geologists of the British Geological Survey (BGS) in six geological scenarios were elicited from a group of five experienced BGS geologists. In five cases a consensus distribution was obtained, which reflected both the initial individually elicited distribution and a structured process of group discussion in which individuals revised their opinions. In a sixth case a consensus was not reached. This concerned a boundary between superficial deposits where the geometry of the contact is hard to visualize. The trial showed that the geologists' tacit model of uncertainty in mapped boundaries reflects factors in addition to the cartographic error usually treated by buffering line work or in written guidance on its application. It suggests that further application of elicitation, to scenarios at an appropriate level of generalization, could be useful to provide working error models for the application and interpretation of line work.

  18. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    Science.gov (United States)

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  19. Identification of mineralized zones in the Zardu area, Kushk SEDEX deposit (Central Iran, based on geological and multifractal modeling

    Directory of Open Access Journals (Sweden)

    Dahooei Ahmad Heidari

    2016-02-01

    Full Text Available The aim of this paper is to delineate the different lead–zinc mineralized zones in the Zardu area of the Kushk zinc–lead stratabound SEDEX deposit, Central Iran, through concentration–volume (C–V modeling of geological and lithogeochemical drillcore data. The geological model demonstrated that the massive sulfide and pyrite+dolomite ore types as main rock types hosting mineralization. The C–V fractal modeling used lead, zinc and iron geochemical data to outline four types of mineralized zones, which were then compared to the mineralized rock types identified in the geological model. ‘Enriched’ mineralized zones contain lead and zinc values higher than 6.93% and 19.95%, respectively, with iron values lower than 12.02%. Areas where lead and zinc values were higher than 1.58% and 5.88%, respectively, and iron grades lower than 22% are labelled “high-grade” mineralized zones, and these zones are linked to massive sulfide and pyrite+dolomite lithologies of the geological model. Weakly mineralized zones, labelled ‘low-grade’ in the C– V model have 0–0.63% lead, 0–3.16% zinc and > 30.19% iron, and are correlated to those lithological units labeled as gangue in the geological model, including shales and dolomites, pyritized dolomites. Finally, a log-ratio matrix was employed to validate the results obtained and check correlations between the geological and fractal modeling. Using this method, a high overall accuracy (OA was confirmed for the correlation between the enriched and high-grade mineralized zones and two lithological units — the massive sulfide and pyrite+dolomite ore types.

  20. The 1:3M geologic map of Mercury: progress and updates

    Science.gov (United States)

    Galluzzi, Valentina; Guzzetta, Laura; Mancinelli, Paolo; Giacomini, Lorenza; Malliband, Christopher C.; Mosca, Alessandro; Wright, Jack; Ferranti, Luigi; Massironi, Matteo; Pauselli, Cristina; Rothery, David A.; Palumbo, Pasquale

    2017-04-01

    After the end of Mariner 10 mission a 1:5M geologic map of seven of the fifteen quadrangles of Mercury [Spudis and Guest, 1988] was produced. The NASA MESSENGER mission filled the gap by imaging 100% of the planet with a global average resolution of 200 m/pixel and this led to the production of a global 1:15M geologic map of the planet [Prockter et al., 2016]. Despite the quality gap between Mariner 10 and MESSENGER images, no global geological mapping project with a scale larger than 1:5M has been proposed so far. Here we present the status of an ongoing project for the geologic mapping of Mercury at an average output scale of 1:3M based on the available MESSENGER data. This project will lead to a fuller grasp of the planet's stratigraphy and surface history. Completing such a product for Mercury is an important goal in preparation for the forthcoming ESA/JAXA BepiColombo mission to aid selection of scientific targets and to provide context for interpretation of new data. At the time of this writing, H02 Victoria [Galluzzi et al., 2016], H03 Shakespeare [Guzzetta et al., 2016] and H04 Raditladi [Mancinelli et al., 2016] have been completed and H05 Hokusai [Rothery et al., 2017], H06 Kuiper [Giacomini et al., 2017], H07 Beethoven and H10 Derain [Malliband et al., 2017] are being mapped. The produced geologic maps were merged using the ESRI ArcGIS software adjusting discontinuous contacts along the quadrangle boundaries. Contact discrepancies were reviewed and discussed among the mappers of adjoining quadrangles in order to match the geological interpretation and provide a unique consistent stratigraphy. At the current stage, more than 20% of Mercury has now a complete 1:3M map and more than 40% of the planet will be covered soon by the maps that are being prepared. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0). References Galluzzi V. et al. (2016). Geology of the Victoria Quadrangle (H

  1. Remote mineral mapping using AVIRIS data at Summitville, Colorado and the adjacent San Juan Mountains

    Science.gov (United States)

    King, Trude V. V.; Clark, Roger N.; Ager, Cathy; Swayze, Gregg A.

    1995-01-01

    We have demonstrated the unique utility of imaging spectroscopy in mapping mineral distribution. In the Summitville mining region we have shown that the mine site does not contribute clay minerals to the Alamosa River, but does contribute Fe-bearing minerals. Such minerals have the potential to carry heavy metals. This application illustrates only one specific environmental application of imaging spectroscopy data. For instance, the types of minerals we can map with confidence are those frequently associated with environmental problems related to active and abandoned mine lands. Thus, the potential utility of this technology to the field of environmental science has yet to be fully explored.

  2. Geology, mineralization, geochemistry and petrology of intrusions in the Kuh Zar Au-Cu deposit, Damghan

    Directory of Open Access Journals (Sweden)

    Payam Roohbakhsh

    2018-04-01

    Full Text Available Introduction Kuh Zar Au-Cu deposit is located in the central part of the Torud-Chah Shirin Volcanic-Plutonic Belt, 100 km southeast of the city of Damghan. Mineralization including quartz-base metal veins are common throughout this Cenozoic volcano-plutonic belt (Liaghat et al., 2008; Mehrabi and Ghasemi Siani, 2010. The major part of the study area is covered with Cenozoic pyroclastic and volcanic rocks that are intruded by subvolcanic rocks. This paper aims to study the geological, geochemical and petrogenesis of the area using exploration keys for new mineral deposits in the Torud-Chah Shirin zone. Materials and methods To better understand the geological units and identify the alteration zones of the area, 200 rock samples were collected from the field and 132 thin sections with 15 polished thin sections were prepared for petrography and mineralization studies. Ten samples of intrusions with the least alteration were analyzed using the XRF at the East Amethyst Laboratory in Mashhad, Iran. These samples were also analyzed for trace and rare earth elements using ICP-MS, following a lithium metaborate/tetraborate fusion in the Acme Analytical Laboratories Ltd, Vancouver, Canada. 137 geochemistry samples were prepared by the chip composite method of alteration and mineralization zones and were analyzed in the Acme laboratory by Aqua Regia AQ250. Results The geology of the area consists of pyroclastic (crystal tuff and volcanic rocks with andesite and latite composition, which were intruded by subvolcanic intrusive rocks with porphyritic texture and monzonitic composition. Monzonite rocks were intruded by younger subvolcanic units with dioritic composition. The intrusion of monzonitic pluton and stocks led to the formation of QSP, propylitic, carbonate and silicification-tourmaline broad alteration zones in the area. Monzonite rocks accompanied with disseminated mineralization of about 1 to 10% of pyrite and these sulfides have been converted to

  3. Surface materials map of Afghanistan: iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  4. Quaternary Geologic Map of the Regina 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Fullerton, David S.; Christiansen, Earl A.; Schreiner, Bryan T.; Colton, Roger B.; Clayton, Lee; Bush, Charles A.; Fullerton, David S.

    2007-01-01

    For scientific purposes, the map differentiates Quaternary surficial deposits and materials on the basis of clast lithology or composition, matrix texture or particle size, structure, genesis, stratigraphic relations, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the 'Description of Map Units'. Deposits of some constructional landforms, such as end moraines, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, fluvial, and lacustrine deposits that are mapped may be terraced. Differentiation of sequences of fluvial and glaciofluvial deposits at this scale is not possible. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use planning, or land-management projects can be derived and from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  5. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Lidar-revised geologic map of the Poverty Bay 7.5' quadrangle, King and Pierce Counties, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Booth, Derek B.; Troost, Kathy Goetz

    2014-01-01

    For this map, we interpreted a 6-ft-resolution lidar digital elevation model combined with the geology depicted on the Geologic Map of the Poverty Bay 7.5' Quadrangle, King and Pierce Counties, Washington (Booth and others, 2004b). The authors of the 2004 map described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Poverty Bay 7.5' quadrangle.

  11. Necessity for Industry-Academic Economic Geology Collaborations for Energy Critical Minerals Research and Development

    Science.gov (United States)

    Hitzman, M.

    2012-12-01

    Economic geology is a highly interdisciplinary field utilizing a diverse set of petrologic, geochemical, geophysical, and tectonic data for improved scientific understanding of element migration and concentration in the crust (ore formation). A number of elements that were once laboratory curiosities now figure prominently in new energy technologies (e.g. wind turbines, solar energy collectors). If widely deployed, such technologies have the capacity to transform the way we produce, transmit, store, and conserve energy. To meet domestic and worldwide renewable energy needs these systems must be scaled from laboratory, to demonstration, to widespread deployment. Such technologies are materials intensive. If widely deployed, the elements required by these technologies will be needed in significant quantities and shortage of these "energy critical elements" could significantly inhibit the adoption of otherwise game changing energy technologies. It is imperative to better understand the geology, metallurgy, and mining engineering of critical mineral deposits if we are to sustainably develop these new technologies. There is currently no consensus among federal and state agencies, the national and international mining industry, the public, and the U.S. academic community regarding the importance of economic geology to secure sufficient energy critical elements to undertake large-scale renewable energy development. Available federal funding for critical elements focuses on downstream areas such as metallurgy, substitutions, and recycling rather than primary deposits. Undertaking the required research to discover and mine critical element deposits in an environmentally friendly manner will require significant partnering with industry due to the current lack of federal research support.

  12. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Holt, R.M.; Powers, D.W.

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab

  13. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    Science.gov (United States)

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  14. Geologic structure mapping database Spent Fuel Test - Climax, Nevada Test Site

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1984-01-01

    Information on over 2500 discontinuities mapped at the SFT-C is contained in the geologic structure mapping database. Over 1800 of these features include complete descriptions of their orientations. This database is now available for use by other researchers. 6 references, 3 figures, 2 tables

  15. Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2009-01-01

    terrane is faulted against the west edge of the Central Metamorphic terrane, and its northerly trend is disrupted by major left-lateral offsets along generally west-northwest-trending faults. The serpentinized peridotite-gabbro complex that forms the western base of the terrane is the Permian North Fork ophiolite, which to the east is overlain by broken formation of mafic-volcanic rocks, red chert, siliceous tuff, argillite, minor limestone, and clastic sedimentary rocks. The chert and siliceous tuff contain radiolarians of Permian and Mesozoic ages, and some are as young as Early Jurassic (Pliensbachian). Similar Pliensbachian radiolarians are found in Franciscan rocks of the Coast Ranges. The Eastern Hayfork terrane is broken formation and melange of mainly chert, sandstone, argillite, and various exotic blocks. The cherts yield radiolarians of Permian and Triassic ages but none of clearly Jurassic age. Limestone bodies of the Eastern Hayfork terrane contain Permian microfaunas of Tethyan affinity. The Western Hayfork terrane, exposed only in a small area in the southwestern part of the quadrangle, consists dominantly of mafic tuff and dark slaty argillite. Sparse paleontologic data indicate a Mesozoic age for the strata. The terrane includes small bodies of diorite that are related to the nearby Wildwood pluton of Middle Jurassic age and probably are related genetically to the stratified rocks. The terrane is interpreted to be the accreted remnants of a Middle Jurassic volcanic arc. Shortly after intrusion by Shasta Bally batholith (approx. 136 Ma), much of the southern half of the Weaverville quadrangle was overlapped by Lower Cretaceous, dominantly Hauterivian, marine strata of the Great Valley sequence, and to a lesser extent later during Oligocene and (or) Miocene time by fluvial and lacustrine deposits of the Weaverville Formation. This map of the Weaverville Quadrangle is a digital rendition of U.S. Geological Survey Miscellaneous Field

  16. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  17. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    Energy Technology Data Exchange (ETDEWEB)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  18. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  19. Onshore and offshore geologic map of the Coal Oil Point area, southern California

    Science.gov (United States)

    Dartnell, Pete; Conrad, James E.; Stanley, Richard G.; Guy R. Cochrane, Guy R.

    2011-01-01

    Geologic maps that span the shoreline and include both onshore and offshore areas are potentially valuable tools that can lead to a more in depth understanding of coastal environments. Such maps can contribute to the understanding of shoreline change, geologic hazards, both offshore and along-shore sediment and pollutant transport. They are also useful in assessing geologic and biologic resources. Several intermediate-scale (1:100,000) geologic maps that include both onshore and offshore areas (herein called onshore-offshore geologic maps) have been produced of areas along the California coast (see Saucedo and others, 2003; Kennedy and others, 2007; Kennedy and Tan, 2008), but few large-scale (1:24,000) maps have been produced that can address local coastal issues. A cooperative project between Federal and State agencies and universities has produced an onshore-offshore geologic map at 1:24,000 scale of the Coal Oil Point area and part of the Santa Barbara Channel, southern California (fig. 1). As part of the project, the U.S. Geological Survey (USGS) and the California Geological Survey (CGS) hosted a workshop (May 2nd and 3rd, 2007) for producers and users of coastal map products (see list of participants) to develop a consensus on the content and format of onshore-offshore geologic maps (and accompanying GIS files) so that they have relevance for coastal-zone management. The USGS and CGS are working to develop coastal maps that combine geospatial information from offshore and onshore and serve as an important tool for addressing a broad range of coastal-zone management issues. The workshop was divided into sessions for presentations and discussion of bathymetry and topography, geology, and habitat products and needs of end users. During the workshop, participants reviewed existing maps and discussed their merits and shortcomings. This report addresses a number of items discussed in the workshop and details the onshore and offshore geologic map of the Coal Oil

  20. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  1. A Test of the Circumvention-of-Limits Hypothesis in Scientific Problem Solving: The Case of Geological Bedrock Mapping

    Science.gov (United States)

    Hambrick, David Z.; Libarkin, Julie C.; Petcovic, Heather L.; Baker, Kathleen M.; Elkins, Joe; Callahan, Caitlin N.; Turner, Sheldon P.; Rench, Tara A.; LaDue, Nicole D.

    2012-01-01

    Sources of individual differences in scientific problem solving were investigated. Participants representing a wide range of experience in geology completed tests of visuospatial ability and geological knowledge, and performed a geological bedrock mapping task, in which they attempted to infer the geological structure of an area in the Tobacco…

  2. Surficial Geologic Map of the Bennington Area, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2017-1 DeSimone, D. J., 2017, Surficial Geology of the Bennington Area, Vermont: VGS Open File report VG2017-1, scale 1:12,000. Data may include...

  3. Customized Geological Map Patterns for the Macintosh Computer.

    Science.gov (United States)

    Boyer, Paul Slayton

    1986-01-01

    Describes how the graphics capabilities of the Apple Macintosh computer can be used in geological teaching by customizing fill patterns with lithologic symbols. Presents two methods for doing this: creating a dummy document, or by changing the pattern resource resident in the operating system. Special symbols can also replace fonts. (TW)

  4. Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico

    Science.gov (United States)

    Dethier, David P.; Thompson, Ren A.; Hudson, Mark R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Cochiti Dam quadrangle is located in the southern part of the Española Basin and contains sedimentary and volcanic deposits that record alluvial, colluvial, eolian, tectonic and volcanic processes over the past seventeen million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The primary mapping responsibilities were as follows: Dethier mapped the surficial deposits, basin-fill sedimentary deposits, Miocene to Quaternary volcanic deposits of the Jemez volcanic field, and a preliminary version of fault distribution. Thompson and Hudson mapped the Pliocene and Quaternary volcanic deposits of the Cerros del Rio volcanic field. Thompson, Minor, and Hudson mapped surface exposures of faults and Hudson conducted paleomagnetic studies for stratigraphic correlations. Thompson prepared the digital compilation of the geologic map.

  5. Earth-Base: testing the temporal congruency of paleontological collections and geologic maps of North America

    Science.gov (United States)

    Heim, N. A.; Kishor, P.; McClennen, M.; Peters, S. E.

    2012-12-01

    Free and open source software and data facilitate novel research by allowing geoscientists to quickly and easily bring together disparate data that have been independently collected for many different purposes. The Earth-Base project brings together several datasets using a common space-time framework that is managed and analyzed using open source software. Earth-Base currently draws on stratigraphic, paleontologic, tectonic, geodynamic, seismic, botanical, hydrologic and cartographic data. Furthermore, Earth-Base is powered by RESTful data services operating on top of PostgreSQL and MySQL databases and the R programming environment, making much of the functionality accessible to third-parties even though the detailed data schemas are unknown to them. We demonstrate the scientific potential of Earth-Base and other FOSS by comparing the stated age of fossil collections to the age of the bedrock upon which they are geolocated. This analysis makes use of web services for the Paleobiology Database (PaleoDB), Macrostrat, the 2005 Geologic Map of North America (Garrity et al. 2009) and geologic maps of the conterminous United States. This analysis is a way to quickly assess the accuracy of temporal and spatial congruence of the paleontologic and geologic map datasets. We find that 56.1% of the 52,593 PaleoDB collections have temporally consistent ages with the bedrock upon which they are located based on the Geologic Map of North America. Surprisingly, fossil collections within the conterminous United States are more consistently located on bedrock with congruent geological ages, even though the USA maps are spatially and temporally more precise. Approximately 57% of the 37,344 PaleoDB collections in the USA are located on similarly aged geologic map units. Increased accuracy is attributed to the lumping of Pliocene and Quaternary geologic map units along the Atlantic and Gulf coastal plains in the Geologic Map of North America. The abundant Pliocene fossil collections

  6. Topographic and Hydrographic GIS Datasets for the Afghanistan Geological Survey and U.S. Geological Survey 2014 Mineral Areas of Interest

    Science.gov (United States)

    DeWitt, Jessica D.; Chirico, Peter G.; Malpeli, Katherine C.

    2015-11-18

    Mineral extraction and associated industries play an important role in the Afghan economy, particularly in the “transitional era” of declining foreign aid and withdrawal of foreign troops post 2014. In addition to providing a substantial source of government revenue, other potential benefits of natural resource development include boosted exports, employment opportunities, and strengthened industrialization (Joya, 2012). Continued exploration and investment in these industries has resulted in large economic improvements since 2007, when this series of studies was initiated. At that time, the “Preliminary Non-Fuel Mineral Resource Assessment of Afghanistan” was completed by members of the U.S. Geological Survey and Afghanistan Geological Survey (Peters and others, 2007). The assessment published a series of country-wide datasets, including a digital elevation model (DEM), elevation contours, hydrography, transportation routes, geophysics, and cultural datasets (Peters and others, 2007). It also delineated 20 mineralized areas for further study using a geologic-based methodology. A second data product, “Summaries of Important Areas for Mineral Investment and Production Opportunities of Nonfuel Minerals in Afghanistan,” was released by Peters and others in 2011. This work highlighted geologic, geohydrologic, and hyperspectral studies that were carried out in specific Areas of Interest (AOIs) to assess the location and characteristics of mineral resources. Also included in the 2011 publication is a collection of appendixes and inventories of Geographic Information System (GIS) datasets for each of the 24 identified AOIs. A third data product was released in 2013 (Casey and Chirico, 2013), publishing datasets for five different AOIs, two subareas, and one AOI extension. Each dataset contains vector shapefiles of the AOI boundary, streams, roads, and contours at 25-, 50-, and 100-meter (m) intervals, as well as raster files of the AOI’s DEM and hillshade.

  7. Topographic and hydrographic GIS datasets for the Afghan Geological Survey and U.S. Geological Survey 2013 mineral areas of interest

    Science.gov (United States)

    Casey, Brittany N.; Chirico, Peter G.

    2013-01-01

    Afghanistan is endowed with a vast amount of mineral resources, and it is believed that the current economic state of the country could be greatly improved through investment in the extraction and production of these resources. In 2007, the “Preliminary Non-Fuel Resource Assessment of Afghanistan 2007” was completed by members of the U.S. Geological Survey and Afghan Geological Survey (Peters and others, 2007). The assessment delineated 20 mineralized areas for further study using a geologic-based methodology. In 2011, a follow-on data product, “Summaries and Data Packages of Important Areas for Mineral Investment and Production Opportunities of Nonfuel Minerals in Afghanistan,” was released (Peters and others, 2011). As part of this more recent work, geologic, geohydrologic, and hyperspectral studies were carried out in the areas of interest (AOIs) to assess the location and characteristics of the mineral resources. The 2011 publication included a dataset of 24 identified AOIs containing subareas, a corresponding digital elevation model (DEM), elevation contours, areal extent, and hydrography for each AOI. In 2012, project scientists identified five new AOIs and two subareas in Afghanistan. These new areas are Ahankashan, Kandahar, Parwan, North Bamyan, and South Bamyan. The two identified subareas include Obatu-Shela and Sekhab-ZamtoKalay, both located within the larger Kandahar AOI. In addition, an extended Kandahar AOI is included in the project for water resource modeling purposes. The dataset presented in this publication consists of the areal extent of the five new AOIs, two subareas, and the extended Kandahar AOI, elevation contours at 100-, 50-, and 25-meter intervals, an enhanced DEM, and a hydrographic dataset covering the extent of the new study area. The resulting raster and vector layers are intended for use by government agencies, developmental organizations, and private companies in Afghanistan to assist with mineral assessments, monitoring

  8. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    Science.gov (United States)

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.

    2014-01-01

    This geospatial database for a geologic map of the Cascades Range in Washington state is one of a series of maps that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of lithostratigraphic units. Geologic maps of the Eocene to Holocene Cascade Range in California and Oregon complete the series, providing a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanantion. The complete series will be useful for regional studies of volcanic hazards, volcanology, and tectonics.

  9. Specification for the U.S. Geological Survey Historical Topographic Map Collection

    Science.gov (United States)

    Allord, Gregory J.; Walter, Jennifer L.; Fishburn, Kristin A.; Shea, Gale A.

    2014-01-01

    This document provides the detailed requirements for producing, archiving, and disseminating a comprehensive digital collection of topographic maps for the U.S. Geological Survey (USGS) Historical Topographic Map Collection (HTMC). The HTMC is a digital archive of about 190,000 printed topographic maps published by the USGS from the inception of the topographic mapping program in 1884 until the last paper topographic map using lithographic printing technology was published in 2006. The HTMC provides a comprehensive digital repository of all scales and all editions of USGS printed topographic maps that is easily discovered, browsed, and downloaded by the public at no cost. The HTMC provides ready access to maps that are no longer available for distribution in print. A digital file representing the original paper historical topographic map is produced for each historical map in the HTMC in georeferenced PDF (GeoPDF) format (a portable document format [PDF] with a geospatial extension).

  10. CRISM Multispectral and Hyperspectral Mapping Data - A Global Data Set for Hydrated Mineral Mapping

    Science.gov (United States)

    Seelos, F. P.; Hash, C. D.; Murchie, S. L.; Lim, H.

    2017-12-01

    parameters for a series of transform functions that minimize the total radiometric discrepancy across the mosaic. This empirical approach to CRISM data radiometric reconciliation and the utility of the resulting mapping data mosaic products for hydrated mineral mapping will be presented.

  11. Regional geochemical maps of the Tonopah 1 degree by 2 degrees Quadrangle, Nevada, based on samples of stream sediment and nonmagnetic heavy-mineral concentrate

    Science.gov (United States)

    Nash, J.T.; Siems, D.F.

    1988-01-01

    This report is part of a series of geologic, geochemical, and geophysical maps of the Tonopah 1° x 2° quadrangle, Nevada, prepared during studies of the area for the Conterminous United States Mineral Assessment Program (CUSMAP). Included here are 21 maps showing the distributions of selected elements or combinations of elements. These regional geochemical maps are based on chemical analyses of the minus-60 mesh (0.25 mm) fraction of stream-sediment samples and the nonmagnetic heavy-mineral concentrate derived from stream sediment. Stream sediments were collected at 1,217 sites. Our geochemical studies of mineralized rock samples provide a framework for evaluating the results from stream sediments.

  12. 3D Geological Mapping - uncovering the subsurface to increase environmental understanding

    Science.gov (United States)

    Kessler, H.; Mathers, S.; Peach, D.

    2012-12-01

    Geological understanding is required for many disciplines studying natural processes from hydrology to landscape evolution. The subsurface structure of rocks and soils and their properties occupies three-dimensional (3D) space and geological processes operate in time. Traditionally geologists have captured their spatial and temporal knowledge in 2 dimensional maps and cross-sections and through narrative, because paper maps and later two dimensional geographical information systems (GIS) were the only tools available to them. Another major constraint on using more explicit and numerical systems to express geological knowledge is the fact that a geologist only ever observes and measures a fraction of the system they study. Only on rare occasions does the geologist have access to enough real data to generate meaningful predictions of the subsurface without the input of conceptual understanding developed from and knowledge of the geological processes responsible for the deposition, emplacement and diagenesis of the rocks. This in turn has led to geology becoming an increasingly marginalised science as other disciplines have embraced the digital world and have increasingly turned to implicit numerical modelling to understand environmental processes and interactions. Recent developments in geoscience methodology and technology have gone some way to overcoming these barriers and geologists across the world are beginning to routinely capture their knowledge and combine it with all available subsurface data (of often highly varying spatial distribution and quality) to create regional and national geological three dimensional geological maps. This is re-defining the way geologists interact with other science disciplines, as their concepts and knowledge are now expressed in an explicit form that can be used downstream to design process models structure. For example, groundwater modellers can refine their understanding of groundwater flow in three dimensions or even directly

  13. Analysis of geological condition of uranium mineralization in the Xiangshan northern uranium orefield in central region of Jiangxi Province

    International Nuclear Information System (INIS)

    Zhou Yulong; Liu Yunlang; Gao Yan

    2013-01-01

    According to the basic conditions of 'source, guide, transportation, storage' for uranium mineralization in strata and different types of geological structure, departure from the condition, the coupling effect of stratigraphy, lithology and structure are studied in the process of uranium mineralization in northern Xiangshan volcanic basin. Studies show that the northern ore field are of good metallogenic geological conditions and the uranium rich ancient land mass and uranium rich magma generated by the melting of deep metamorphic rocks. The main geologic events are volcanic eruptions, accompanied by repeated subvolcanic magma intrusion and strong faults and nappe tectonics which result in volcanic collapse and volcanic ring structures. These ore-forming geological condition control the structural frame for the formation of main uranium deposit type-subvolcanic rocks in northern Xiangshan ore field. (authors)

  14. Mineral Grains, Dimples, and Hot Volcanic Organic Streams: Dynamic Geological Backstage of Macromolecular Evolution.

    Science.gov (United States)

    Skoblikow, Nikolai E; Zimin, Andrei A

    2018-04-01

    The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds-aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids-products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named "lithorheos"). That stream-even if the time of its existence was short-is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named "lithosomes"), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named "lithozymes") played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named "lithocytes") in the small natural streambed cavities (dimples)-as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis

  15. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  16. How semantics can inform the geological mapping process and support intelligent queries

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2017-04-01

    The geologic mapping process requires the organization of data according to the general knowledge about the objects, namely the geologic units, and to the objectives of a graphic representation of such objects in a map, following an established model of geotectonic evolution. Semantics can greatly help such a process in two concerns: the provision of a terminological base to name and classify the objects of the map; on the other, the implementation of a machine-readable encoding of the geologic knowledge base supports the application of reasoning mechanisms and the derivation of novel properties and relations about the objects of the map. The OntoGeonous initiative has built a terminological base of geological knowledge in a machine-readable format, following the Semantic Web tenets and the Linked Data paradigm. The major knowledge sources of the OntoGeonous initiative are GeoScience Markup Language schemata and vocabularies (through its last version, GeoSciML 4, 2015, published by the IUGS CGI Commission) and the INSPIRE "Data Specification on Geology" directives (an operative simplification of GeoSciML, published by INSPIRE Thematic Working Group Geology of the European Commission). The Linked Data paradigm has been exploited by linking (without replicating, to avoid inconsistencies) the already existing machine-readable encoding for some specific domains, such as the lithology domain (vocabulary Simple Lithology) and the geochronologic time scale (ontology "gts"). Finally, for the upper level knowledge, shared across several geologic domains, we have resorted to NASA SWEET ontology. The OntoGeonous initiative has also produced a wiki that explains how the geologic knowledge has been encoded from shared geoscience vocabularies (https://www.di.unito.it/wikigeo/). In particular, the sections dedicated to axiomatization will support the construction of an appropriate data base schema that can be then filled with the objects of the map. This contribution will discuss

  17. Database of the Geologic Map of North America - Adapted from the Map by J.C. Reed, Jr. and others (2005)

    Science.gov (United States)

    Garrity, Christopher P.; Soller, David R.

    2009-01-01

    The Geological Society of America's (GSA) Geologic Map of North America (Reed and others, 2005; 1:5,000,000) shows the geology of a significantly large area of the Earth, centered on North and Central America and including the submarine geology of parts of the Atlantic and Pacific Oceans. This map is now converted to a Geographic Information System (GIS) database that contains all geologic and base-map information shown on the two printed map sheets and the accompanying explanation sheet. We anticipate this map database will be revised at some unspecified time in the future, likely through the actions of a steering committee managed by the Geological Society of America (GSA) and staffed by scientists from agencies including, but not limited to, those responsible for the original map compilation (U.S. Geological Survey, Geological Survey of Canada, and Woods Hole Oceanographic Institute). Regarding the use of this product, as noted by the map's compilers: 'The Geologic Map of North America is an essential educational tool for teaching the geology of North America to university students and for the continuing education of professional geologists in North America and elsewhere. In addition, simplified maps derived from the Geologic Map of North America are useful for enlightening younger students and the general public about the geology of the continent.' With publication of this database, the preparation of any type of simplified map is made significantly easier. More important perhaps, the database provides a more accessible means to explore the map information and to compare and analyze it in conjunction with other types of information (for example, land use, soils, biology) to better understand the complex interrelations among factors that affect Earth resources, hazards, ecosystems, and climate.

  18. Application of Remote Sensing in Geological Mapping, Case Study al Maghrabah Area - Hajjah Region, Yemen

    Science.gov (United States)

    Al-Nahmi, F.; Saddiqi, O.; Hilali, A.; Rhinane, H.; Baidder, L.; El arabi, H.; Khanbari, K.

    2017-11-01

    Remote sensing technology plays an important role today in the geological survey, mapping, analysis and interpretation, which provides a unique opportunity to investigate the geological characteristics of the remote areas of the earth's surface without the need to gain access to an area on the ground. The aim of this study is achievement a geological map of the study area. The data utilizes is Sentinel-2 imagery, the processes used in this study, the OIF Optimum Index Factor is a statistic value that can be used to select the optimum combination of three bands in a satellite image. It's based on the total variance within bands and correlation coefficient between bands, ICA Independent component analysis (3, 4, 6) is a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals, MNF Minimum Noise Fraction (1, 2, 3) is used to determine the inherent dimensionality of image data to segregate noise in the data and to reduce the computational requirements for subsequent processing, Optimum Index Factor is a good method for choosing the best band for lithological mapping. ICA, MNF, also a practical way to extract the structural geology maps. The results in this paper indicate that, the studied area can be divided into four main geological units: Basement rocks (Meta volcanic, Meta sediments), Sedimentary rocks, Intrusive rocks, volcanic rocks. The method used in this study offers great potential for lithological mapping, by using Sentinel-2 imagery, the results were compared with existing geologic maps and were superior and could be used to update the existing maps.

  19. Geological map of Uruguay Esc 1,100,000. Fuente del Puma Sheet G-27

    International Nuclear Information System (INIS)

    Preciozzi, F.; Pena, S.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Fuente del Puma) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils. The area corresponding to Fuente del Puma is located in the SW of Lavalleja and NW of Maldonado town and its stratigraphy belong to the Cretaceous and Cenozoic formations as well as the Cambrian and upper Precambrian

  20. On the geology of the uranium mineralization in the Swiss Alps

    International Nuclear Information System (INIS)

    Gillieron, F.

    1988-01-01

    Numerous radiometric anomalies and several uranium occurrences were found in the Swiss Alps by systematic prospecting of selected areas carried out between 1957 and 1984. Most of the uranium indications lie in a rather narrow belt that follows roughly the valleys of the Rhone und of the Rhine Anterior, from Martigny onto Ilanz and extending northwards towards the Lake of Walenstadt. The uranium occurrences were found in the following geological environments: - permocarboniferous continental, variably metamorphosed series, belonging either to the formation of the 'Verrucano' or to the Penninic St. Bernhard nappe; - muscovite-chlorite-albite gneisses belonging to the pre-Westphalian basement of the St. Bernhard nappe; - muscovite-chlorite gneisses and phyllites of the Hercynian Tavetsch massiv; - muscovite-biotite gneisses within the southern border of the Aar massif; - Vallorcine granite of the Auguilles-Rouges massiv and polymetamorphic biotite gneisses along its northwestern contact zone. The possible geological (or 'in situ') resources are estimated to be 50-250 tonnes uranium in each one of the investigated mineralization zones of some importance; the respective estimated grades are 50-250 ppm U. Therefore the occurrences are actually of no economic value. (author) 25 figs., 1 tab., refs

  1. Hydrothermal Alteration Mineral Mapping Using Sentinel-2A MSI and ASTER Data in the Duolong Ore Concentrating Area,Tibetau Plateau,China

    Science.gov (United States)

    Hu, B.; Wan, B.

    2017-12-01

    The porphyry copper deposits are characterized by alteration zones. Hydrothermal alteration minerals have diagnostic spectral absorption properties in the visible and near-infrared (VNIR) through the shortwave infrared (SWIR) regions. In order to identify the alteration zones in the study area, the Sentinel-2A Multi-Spectral Instrument(MSI) * Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and field inspection were combined. The Sentinel-2A MSI has ten bands in the visible and near-infrared (VNIR) regions, which has advantages of detecting ferric iron alteration minerals. Six ASTER bands in the shortwave infrared(SWIR) regions have been demonstrated to be effective in the mapping of Al-OH * Mg-OH group minerals. Integrating ASTER and Sentinel-2A MSI (AM) for mineral mapping can compensate each other's defect. The methods of minimum noise fraction(MNF) * band combination * matched filtering were applied to get Al-OH and Mg-OH group minerals information from AM data. The anomaly-overlaying selection method was used to process three temporal Sentinel-2A MSI data for extracting iron oxides minerals. The ground inspection has confirmed the validity of AM and Sentinel-2A MSI data in mineral mapping. The methodology proved effective in an arid area of Duolong ore concentrating area,Tibet and hereby suggested for application in similar geological settings.

  2. Geodatabase model for global geologic mapping: concept and implementation in planetary sciences

    Science.gov (United States)

    Nass, Andrea

    2017-04-01

    One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards

  3. Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments

    International Nuclear Information System (INIS)

    Wang, YIFENG; Xu, HUIFANG

    2000-01-01

    Crystalline phases of pyrochlore (e.g., CaPuTi 2 O 7 , CaUTi 2 O 7 ) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus weapons-usable plutonium. In this paper, the authors use a linear free energy relationship to predict the Gibbs free energies of formation of pyrochlore phases (CaMTi 2 O 7 ). The Pu-pyrochlore phase is predicted to be stable with respect to PuO 2 , CaTiO 3 , and TiO 2 at room temperatures. Pu-pyrochlore is expected to be stable in a geologic repository where silica and carbonate components are absent or limited. The authors suggest that a repository in a salt formation be an ideal environment for disposal of high level, pyrochlore-based ceramic wastes. In such environment, adding CaO as a backfill will make pyrochlore minerals thermodynamically stable and therefore effectively prevent actinide release from these mineral phases

  4. Regional Geology Web Map Application Development: Javascript v2.0

    International Nuclear Information System (INIS)

    Russell, Glenn

    2017-01-01

    This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to the SFSWT program.

  5. Regional Geology Web Map Application Development: Javascript v2.0

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Glenn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-19

    This is a milestone report for the FY2017 continuation of the Spent Fuel, Storage, and Waste, Technology (SFSWT) program (formerly Used Fuel Disposal (UFD) program) development of the Regional Geology Web Mapping Application by the Idaho National Laboratory Geospatial Science and Engineering group. This application was developed for general public use and is an interactive web-based application built in Javascript to visualize, reference, and analyze US pertinent geological features of the SFSWT program. This tool is a version upgrade from Adobe FLEX technology. It is designed to facilitate informed decision making of the geology of continental US relevant to the SFSWT program.

  6. Quaternary geologic map of the Austin 4° x 6° quadrangle, United States

    Science.gov (United States)

    State compilations by Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.

    1993-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Austin 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  7. Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California

    Science.gov (United States)

    Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.

    2006-01-01

    The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.

  8. Niger Republic mineral planning : Part four Second volume : Main mineral substances specific study and their geological context

    International Nuclear Information System (INIS)

    Franconi, Antoine; Joo', Julien; Zibo, Idde

    1981-01-01

    This volume describes Niger Republic mineral substances capable of rising economic interest. After relating minerals occurrence , indices and deposits types, conclusions and recommendations have been made for mineral prospecting. Mineral substances described are : Copper, lead and zinc, molybdena, iron, manganese, titanium, vanadium, nickel and chrome ( cobalt and platinoid ), lithium, lignite, diamond and diverse substances rare earth, beryllium, silver, bismuth arsenic and antimony, barytine, alunite, talc and asbestos ( graphite and diatomite) [fr

  9. Book review: Economic geology: Principles and practice: Metals, minerals, coal and hydrocarbons—Introduction to formation and sustainable exploitation of mineral deposits

    Science.gov (United States)

    Anderson, Eric

    2013-01-01

    This volume, available in both hardcover and paperback, is an English translation of the fifth edition of the German language text Mineralische und Energie-Rohstoffe. The book provides an extensive overview of natural resources and societal issues associated with extracting raw materials. The comprehensive list of raw materials discussed includes metals, industrial minerals, coal, and hydrocarbons. The book is divided into four parts: (1) “Metalliferous ore deposits,” (2) “Nonmetallic minerals and rocks,” (3) “Practice of economic geology,” and (4) “Fossil energy raw materials—coal, oil, and gas.” These sections are bound by a brief introduction and an extensive list of up-to-date references as well as an index. Each chapter begins with a concise synopsis and concludes with a summary that contains useful suggestions for additional reading. All figures are grayscale images and line drawings; however, several have been grouped together and reproduced as color plates. Also included is a companion website (www.wiley.com/go/pohl/geology) that contains additional resources, such as digital copies of figures, tables, and an expanded index, all available for download in easy-to-use formats.Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploitation of Mineral Deposits. Walter l. Pohl. 2011. Wiley-Blackwell. Pp. 663. ISBN 978-1-4443-3663-4 (paperback).

  10. Geological maps of the Southern Cantabrian Mountains (Spain)

    NARCIS (Netherlands)

    Savage, J.F.; Boschma, D.

    1980-01-01

    This compilation of stratigraphic and structural data accompanying the (re)issue of the 1:50000 sheets completes the project initiated by Prof. L.U. de Sitter in 1950. The total area mapped comprises about 400 km² in a strip more than 150 km from east to west. This part of the Hercynian tectogene is

  11. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  12. Enhancement of a Virtual Geology Field Guide of Georgia Initiative Using Gigapan© and ArcGIS Online's Story Map

    Science.gov (United States)

    Mobasher, K.; Turk, H. J.; Witherspoon, W.; Tate, L.; Hoynes, J.

    2015-12-01

    A GIS geology geodatabase of Georgia was developed using ArcGIS 10.2. The geodatabase for each physiographic provinces of Georgia contains fields designed to store information regarding geologic features. Using ArcGIS online, the virtual field guide is created which provides an interactive learning experience for students to allow in real time photography, description, mapping and sharing their observations with the instructor and peers. Gigapan© facilitates visualizing geologic features at different scales with high resolutions and in their larger surrounding context. The classroom applications of the Gigapan© are limitless when teaching students the entire range of geologic structures from showcasing crystalline structures of minerals to understanding the geological processes responsible for formation of an entire mountain range. The addition of the Story Map enhances the virtual experience when you want to present a geo-located story point narrative featuring images or videos. The virtual field component and supplementary Gigapan© imagery coupled with Story Map added significantly to the detailed realism of virtual field guide further allowing students to more fully understand geological concepts at various scales. These technologies peaked students interest and facilitated their learning and preparation to function more effectively in the geosciences by developing better observations and new skills. These technologies facilitated increased student engagement in the geosciences by sharing, enhancing and transferring lecture information to actual field knowledge and experiences. This enhanced interactive learning experience not only begins to allow students to understand and recognize geologic features in the field but also increased their collaboration, enthusiasm and interest in the discipline. The increased interest and collaboration occurred as students assisted in populating a geologic geodatabase of Georgia.

  13. Engineering geological mapping in Wallonia (Belgium) : present state and recent computerized approach

    Science.gov (United States)

    Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.

    2012-04-01

    An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.

  14. Reconnaissance surficial geologic map of the Taylor Mountains quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2015-09-28

    This map and accompanying digital files are the result of the interpretation of aerial photographs from the 1950s as well as more modern imagery. The area, long considered a part of Alaska that was largely not glaciated (see Karlstrom, 1964; Coulter and others, 1965; or Péwé, 1975), actually has a long history reflecting local and more distant glaciations. An unpublished photogeologic map of the Taylor Mountains quadrangle from the 1950s by J.N. Platt Jr. was useful in the construction of this map. Limited new field mapping in the area was conducted as part of a mapping project in the Dillingham quadrangle to the south (Wilson and others, 2003); however, extensive aerial photograph interpretation represents the bulk of the mapping effort. The accompanying digital files show the sources for each line and geologic unit shown on the map.

  15. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  16. Geologic map of the northern White Hills, Mohave County, Arizona

    Science.gov (United States)

    Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.

    2017-07-10

    IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located

  17. Laser-induced plasma spectroscopy (LIPS): use of a geological tool in assessing bone mineral content.

    Science.gov (United States)

    Andrássy, László; Gomez, Izabella; Horváth, Ágnes; Gulyás, Katalin; Pethö, Zsófia; Juhász, Balázs; Bhattoa, Harjit Pal; Szekanecz, Zoltan

    2018-02-17

    Bone may be similar to geological formulations in many ways. Therefore, it may be logical to apply laser-based geological techniques in bone research. The mineral and element oxide composition of bioapatite can be estimated by mathematical models. Laser-induced plasma spectrometry (LIPS) has long been used in geology. This method may provide a possibility to determine the composition and concentration of element oxides forming the inorganic part of bones. In this study, we wished to standardize the LIPS technique and use mathematical calculations and models in order to determine CaO distribution and bone homogeneity using bovine shin bone samples. We used polished slices of five bovine shin bones. A portable LIPS instrument using high-power Nd++YAG laser pulses has been developed (OpLab, Budapest). Analysis of CaO distribution was carried out in a 10 × 10 sampling matrix applying 300-μm sampling intervals. We assessed both cortical and trabecular bone areas. Regions of interest (ROI) were determined under microscope. CaO peaks were identified in the 200-500 nm wavelength range. A mathematical formula was used to calculate the element oxide composition (wt%) of inorganic bone. We also applied two accepted mathematical approaches, the Bartlett's test and frequency distribution curve-based analysis, to determine the homogeneity of CaO distribution in bones. We were able to standardize the LIPS technique for bone research. CaO concentrations in the cortical and trabecular regions of B1-5 bones were 33.11 ± 3.99% (range 24.02-40.43%) and 27.60 ± 7.44% (range 3.58-39.51%), respectively. CaO concentrations highly corresponded to those routinely determined by ICP-OES. We were able to graphically demonstrate CaO distribution in both 2D and 3D. We also determined possible interrelations between laser-induced craters and bone structure units, which may reflect the bone structure and may influence the heterogeneity of CaO distributions. By using two different

  18. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    Science.gov (United States)

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  19. Artificial intelligence for geologic mapping with imaging spectrometers

    Science.gov (United States)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  20. Geologic Map of the Greenaway Quadrangle (V-24), Venus

    Science.gov (United States)

    Lang, Nicholas P.; Hansen, Vicki L.

    2010-01-01

    The Greenaway quadrangle (V-24; lat 0 degrees -25 degrees N., long 120 degrees -150 degrees E.), Venus, derives its name from the impact crater Greenaway, centered at lat 22.9 degrees N., long 145.1 degrees E., in the northeastern part of the quadrangle. Greenaway was a well-noted writer and illustrator of children`s books in Britain during the nineteenth century. In Greenaway`s honor, the Library Association of Great Britain presents the annual Kate Greenaway Medal to an illustrator living and publishing in Britain who has produced the most distinguished children`s book illustrations for that year. The Greenaway quadrangle occupies an 8,400,000 km2 equatorial swath of lowlands and highlands. The map area is bounded by the crustal plateau, Thetis Regio, to the south and Gegute Tessera to the west. The rest of the quadrangle consists of part of Llorona Planitia, which is part of the vast lowlands that cover about 80 percent of Venus` surface. The southern map area marks the north edge of Aphrodite Terra, including Thetis Regio, that includes the highest topography in the quadrangle with elevations reaching >1 km above the Mean Planetary Radius (MPR; 6,051.84 km). Northern Aphrodite Terra abruptly slopes north to Llorona Planitia. A broad northeast-trending topographic arch pocked with coronae separates two northeast-trending elongate basins, Llorona Planitia on the east, that form depositional centers for shield and coronae-sourced materials; both basins drop to elevations of history for this region, which in turn provides insights into volcanic and tectonic processes that shaped the Venusian surface. Map relations illustrate that aerially expansive shield terrain (unit st) played a primary role and coronae played a secondary role in volcanic resurfacing across the map area.

  1. GeoWall use in an Introductory Geology laboratory: Impacts in Student Understanding of Field Mapping Concepts

    Science.gov (United States)

    Ross, L. E.; Kelly, M.; Springer, A. E.

    2003-12-01

    In the Fall semester of 2003, Northern Arizona University will introduce the GeoWall to its introductory geology courses. This presents an opportunity to assess the impact of this new technology on students' understanding of basic topographic concepts and the spatial relationships between geology, topography, and hydrology on a field trip. Introductory Geology fulfills the Lab Science component of the Liberal Studies Program at Northern Arizona University. The class is open to all Northern Arizona University students, and is most commonly taken by non-science majors. In this class students learn to: locate their position using maps, identify common minerals and rocks, recognize the relationship between geology and geomorphology, visualize how rocks exposed at the surface continue into the subsurface, and to draw conclusions about possible geologic hazards in different settings. In this study we will report how a GeoWall 3D visualization technology was used in a field study of a graben south of Flagstaff. The goal of the field exercise is to improve students' ability to synthesize data collected at field stops into a conceptual model of the graben, linking geology, geomorphology and hydrology. We plan to present a quantitative assessment of the GeoWall learning objectives from data collected from a paired test and control group of students. Teaching assistants (TAs) with two or more lab classes have been identified; these TAs will participate in both GeoWall and non-GeoWall lab exercises. The GeoWall use will occur outside of normal lab hours to avoid disrupting the lab schedule during the eighth week of lab. This field preparation exercise includes a 3D visualization of the Lake Mary graben rendered with the ROMA software. The following week, all students attend the graben field trip; immediately following the trip, students will interviewed about their gain in understanding of the geologic features illustrated during the field trip. The results of the post

  2. Geology, mineralization, U-Pb dating and Sr-Nd isotope geochemistry of intrusive bodies in northeast of Kashmar

    Directory of Open Access Journals (Sweden)

    Alireza Almasi

    2015-04-01

    Full Text Available Alireza Almasi1, Mohammad Hassan Karimpour1*, Khosrow Ebrahimi Nasrabadi1, Behnam Rahimi1, Urs KlÖtzli2 and Jose Francisco Santos3 Introduction The study area is located in central part of the Khaf- Kashmar-Bardeskan belt which is volcano-plutonic belt at the north of the Dorouneh fault in the north of Lut block. The north of the Lut block is affected by tectonic rotation and subduction processes which occur in the east of Iran (Tirrul et al., 1983. The magmatism of Lut block begins in Jurassic and continues in Tertiary (Aghanabati, 1995. Karimpour (Karimpour, 2006 pointed out the Khaf-Kashmar-Bardeskan belt has significant potential for IOCG type mineralization such as Kuh-e-Zar, Tannurjeh, and Sangan (Karimpour, 2006; Mazloumi, 2009. The data gathered on the I-type intrusive rocks include their field geology, petrography, U–Pb zircon dating and Sr–Nd isotope and also alteration and mineralization in the study area. Materials and methods - Preparation of 150 thin sections of rock samples for study of petrography and alteration of the intrusive rocks. - Magnetic susceptibility measuring of intrusive rocks. - U-Pb dating in zircon of I-type intrusive rocks by Laser-Ablation Multi Collector ICP-MS method. - Sr-Nd analysis on 5 samples of I-type intrusive rocks by Multi-Collector Thermal Ionization Mass Spectrometer (TIMS VG Sector 54 instrument. - Mineralography and paragenetic studies of ore-bearing quartz veins and geochemical analysis for 28 samples. - Production of the geology, alteration and mineralization maps by scale: 1:20000 in GIS. Results Oblique subduction in southern America initiated an arc-parallel fault and shear zones in the back of continental magmatic arc (Sillitoe, 2003. Because of this event, pull-apart basins were formed and high-K to shoshonitic calc-alkalineI- and A-type magmatism occur (Sillitoe, 2003. Most important deposits accompany with this magmatism are Au-Cu deposits types and Fe-Skarns (Sillitoe, 2003. We have

  3. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS Quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. The purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  4. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. Purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  5. Cathodoluminescence mapping - optimising collection conditions and examples of applications to minerals and mineral processing

    International Nuclear Information System (INIS)

    Wilson, N.C.; MacRae, C.M.; Lynch, R.

    2003-01-01

    Full text: A Cathodoluminescence (CL) system has been developed at CSIRO Minerals that allows the simultaneous collection of X-ray, backscatter and multi-channel CL data on a JEOL 8900/8200 microprobe. This system offers significant benefits over traditional CL, X-ray and BSE techniques in that direct comparison with the elemental concentrations at the same pixel or over the same region is now possible. The CL signal is collected from a monocular eye-piece which is integrated into the electron optics on the electron microprobe. From here it is fed via a fibre optic to a grating spectrometer with a 2048-element linear charge-coupled device (CCD)-array. The CCD array is connected to a PCI A/D card in a PC. The PC also contains a digital I/O card that is connected to the microprobe to synchronise the CL capture with the X-ray capture. This paper looks at the various modifications we have made in order to improve the capturing and processing of the CL data. One of the first improvements we made was to fit a cooling device to stabilise the temperature of the CCD. Spectra acquired from a CCD has a 'dark noise' background which is dependent upon temperature, and CL maps acquired without the cooling device can show subtle variations in room temperature which lead to background banding or artefacts in the image. The removal of background drift due to thermal instability has enabled us to implement automatic background subtraction at every pixel. This has significantly improved peak to background ratios and enabled more subtle chemical and structural modifications within the CL image to be seen. We have also made a modification to allow the collection of CL maps in beam scan mode, as well as stage scan mode. Cathodoluminescence can offer very high spatial resolution; at low voltages resolutions of down to 20 nm have been recently achieved. Depending upon the region of interest, one can now select pixel sizes on this system down to 50 nm. When performing beam maps on larger

  6. Geologic map of the Montoso Peak quadrangle, Santa Fe and Sandoval Counties, New Mexico

    Science.gov (United States)

    Thompson, Ren A.; Hudson, Mark R.; Shroba, Ralph R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Montoso Peak quadrangle is underlain by volcanic rocks and associated sediments of the Cerros del Rio volcanic field in the southern part of the Española Basin that record volcanic, faulting, alluvial, colluvial, and eolian processes over the past three million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The geologic mapping was carried out in support of the U.S. Geological Survey (USGS) Rio Grande Basin Project, funded by the USGS National Cooperative Geologic mapping Program. The mapped distribution of units is based primarily on interpretation of 1:16,000-scale, color aerial photographs taken in 1992, and 1:40,000-scale, black-and-white, aerial photographs taken in 1996. Most of the contacts on the map were transferred from the aerial photographs using a photogrammetric stereoplotter and subsequently field checked for accuracy and revised based on field determination of allostratigraphic and lithostratigraphic units. Determination of lithostratigraphic units in volcanic deposits was aided by geochemical data, 40Ar/39Ar geochronology, aeromagnetic and paleomagnetic data. Supplemental revision of mapped contacts was based on interpretation of USGS 1-meter orthoimagery. This version of the Montoso Peak quadrangle geologic map uses a traditional USGS topographic base overlain on a shaded relief base generated from 10-m digital elevation model (DEM) data from the USGS National Elevation Dataset (NED). Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2) the youth of the deposits has allowed only modest displacements to accumulate for most faults, and (3) many may have significant strike-slip components that do not result in large vertical offsets that are readily apparent in offset of sub

  7. Geologic map of the Maumee quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Turner, Kenzie J.; Hudson, Mark R.

    2010-01-01

    This map summarizes the geology of the Maumee 7.5-minute quadrangle in northern Arkansas. The map area is in the Ozark plateaus region on the southern flank of the Ozark dome. The Springfield Plateau, composed of Mississippian cherty limestone, overlies the Salem Plateau, composed of Ordovician carbonate and clastic rocks, with areas of Silurian rocks in between. Erosion related to the Buffalo River and its tributaries, Tomahawk, Water, and Dry Creeks, has exposed a 1,200-ft-thick section of Mississippian, Silurian, and Ordovician rocks mildly deformed by faults and folds. An approximately 130-mile-long corridor along the Buffalo River forms the Buffalo National River that is administered by the National Park Service. McKnight (1935) mapped the geology of the Maumee quadrangle as part of a larger 1:125,000-scale map focused on understanding the lead and zinc deposits common in the area. Detailed new mapping for this study was compiled using a Geographic Information System (GIS) at 1:24,000 scale. Site location and elevation were obtained by using a Global Positioning Satellite (GPS) receiver in conjunction with a U.S. Geological Survey 7.5-minute topographic map and barometric altimeter. U.S. Geological Survey 10-m digital elevation model data were used to derive a hill-shade-relief map used along with digital orthophotographs to map ledge-forming units between field sites. Bedding attitudes were measured in drainage bottoms and on well-exposed ledges. Bedding measured at less than 2 degree dip is indicated as horizontal. Structure contours constructed for the base of the Boone Formation are constrained by field-determined elevations on both upper and lower formation contacts.

  8. Introducing students to digital geological mapping: A workflow based on cheap hardware and free software

    Science.gov (United States)

    Vrabec, Marko; Dolžan, Erazem

    2016-04-01

    The undergraduate field course in Geological Mapping at the University of Ljubljana involves 20-40 students per year, which precludes the use of specialized rugged digital field equipment as the costs would be way beyond the capabilities of the Department. A different mapping area is selected each year with the aim to provide typical conditions that a professional geologist might encounter when doing fieldwork in Slovenia, which includes rugged relief, dense tree cover, and moderately-well- to poorly-exposed bedrock due to vegetation and urbanization. It is therefore mandatory that the digital tools and workflows are combined with classical methods of fieldwork, since, for example, full-time precise GNSS positioning is not viable under such circumstances. Additionally, due to the prevailing combination of complex geological structure with generally poor exposure, students cannot be expected to produce line (vector) maps of geological contacts on the go, so there is no need for such functionality in hardware and software that we use in the field. Our workflow therefore still relies on paper base maps, but is strongly complemented with digital tools to provide robust positioning, track recording, and acquisition of various point-based data. Primary field hardware are students' Android-based smartphones and optionally tablets. For our purposes, the built-in GNSS chips provide adequate positioning precision most of the time, particularly if they are GLONASS-capable. We use Oruxmaps, a powerful free offline map viewer for the Android platform, which facilitates the use of custom-made geopositioned maps. For digital base maps, which we prepare in free Windows QGIS software, we use scanned topographic maps provided by the National Geodetic Authority, but also other maps such as aerial imagery, processed Digital Elevation Models, scans of existing geological maps, etc. Point data, like important outcrop locations or structural measurements, are entered into Oruxmaps as

  9. Revised draft: North Central Regional geologic characterization report. Volume 2. Plates

    International Nuclear Information System (INIS)

    1984-11-01

    Volume 8(2) comprises the following maps pertaining to the North-Central Region: Index Map; Overburden Thickness; Faults and Ground Acceleration; Rock and Mineral Resources; Groundwater Basins and Potential Major Zones; Groundwater Resource Potential; and a Geologic Map

  10. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  11. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply

    Science.gov (United States)

    Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    SummaryMineral commodities are vital for economic growth, improving the quality of life, providing for national defense, and the overall functioning of modern society. Minerals are being used in larger quantities than ever before and in an increasingly diverse range of applications. With the increasing demand for a considerably more diverse suite of mineral commodities has come renewed recognition that competition and conflict over mineral resources can pose significant risks to the manufacturing industries that depend on them. In addition, production of many mineral commodities has become concentrated in relatively few countries (for example, tungsten, rare-earth elements, and antimony in China; niobium in Brazil; and platinum-group elements in South Africa and Russia), thus increasing the risk for supply disruption owing to political, social, or other factors. At the same time, an increasing awareness of and sensitivity to potential environmental and health issues caused by the mining and processing of many mineral commodities may place additional restrictions on mineral supplies. These factors have led a number of Governments, including the Government of the United States, to attempt to identify those mineral commodities that are viewed as most “critical” to the national economy and (or) security if supplies should be curtailed.This book presents resource and geologic information on the following 23 mineral commodities currently among those viewed as important to the national economy and national security of the United States: antimony (Sb), barite (barium, Ba), beryllium (Be), cobalt (Co), fluorite or fluorspar (fluorine, F), gallium (Ga), germanium (Ge), graphite (carbon, C), hafnium (Hf), indium (In), lithium (Li), manganese (Mn), niobium (Nb), platinum-group elements (PGE), rare-earth elements (REE), rhenium (Re), selenium (Se), tantalum (Ta), tellurium (Te), tin (Sn), titanium (Ti), vanadium (V), and zirconium (Zr). For a number of these commodities

  12. Bedrock geologic map of the Nashua South quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts

    Science.gov (United States)

    Walsh, Gregory J.; Jahns, Richard H.; Aleinikoff, John N.

    2013-01-01

    The bedrock geology of the 7.5-minute Nashua South quadrangle consists primarily of deformed Silurian metasedimentary rocks of the Berwick Formation. The metasedimentary rocks are intruded by a Late Silurian to Early Devonian diorite-gabbro suite, Devonian rocks of the Ayer Granodiorite, Devonian granitic rocks of the New Hampshire Plutonic Suite including pegmatite and the Chelmsford Granite, and Jurassic diabase dikes. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts and New Hampshire. This report presents mapping by G.J. Walsh and R.H. Jahns and zircon U-Pb geochronology by J.N. Aleinikoff. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are only available as downloadable files (see frame at right). The GIS database is available for download in ESRITM shapefile and Google EarthTM formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, photographs, and a three-dimensional model.

  13. Fully polarimetric ALOS PALSAR data to aid geological mapping in densely vegetated areas

    CSIR Research Space (South Africa)

    Engelbrecht, J

    2016-08-01

    Full Text Available The analysis of image data from space-borne or airborne sensors has been widely used to aid geological mapping. The advantages of using remotely sensed data are numerous and include the fact that large areas can be observed in a single observation...

  14. Maps of Clash of Opinions – Classification of Geological Conditions in Karviná Region

    Czech Academy of Sciences Publication Activity Database

    Lednická, Markéta; Kaláb, Zdeněk

    2008-01-01

    Roč. 283, č. 1781 (2008), s. 139-147 ISSN 0372-9508 Institutional research plan: CEZ:AV0Z30860518 Keywords : maps sof clash of opinions * geological conditions Subject RIV: DC - Siesmology, Volcanology, Earth Structure www.wydawnictvopolitechniki.pl

  15. Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-121A Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont: USGS Open-File Report 98-121-A, 1...

  16. Digital compilation bedrock geologic map of the Mt. Ellen quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-6A Stanley, RS, Walsh, G, Tauvers, PR, DiPietro, JA, and DelloRusso, V, 1995,�Digital compilation bedrock geologic map of the Mt. Ellen...

  17. Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-7A Doolan, B, 1995,�Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont: VGS Open-File Report VG95-7A, 2 plates, scale...

  18. Digital compilation bedrock geologic map of the South Mountain quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-3A Stanley, R.S., DelloRusso, V., Tauvers, P.R., DiPietro, J.A., Taylor, S., and Prahl, C., 1995, Digital compilation bedrock geologic map of...

  19. Digital bedrock geologic map of the Mount Holly and Ludlow quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG94-229A Walsh, G.J., Ratcliffe, N.M., Dudley, J.B., and Merrifield, T., 1994,�Digital bedrock geologic map of the Mount Holly and Ludlow...

  20. Bedrock geologic map of the Jay and North Troy area, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG97-04C Stanley, RS, and Roy, D, 1997,�Bedrock geologic map of the Jay and North Troy area, Vermont: VGS Open-File Report VG97-04c, scale 1:24000....

  1. Estimating the social value of geologic map information: A regulatory application

    Science.gov (United States)

    Bernknopf, R.L.; Brookshire, D.S.; McKee, M.; Soller, D.R.

    1997-01-01

    People frequently regard the landscape as part of a static system. The mountains and rivers that cross the landscape, and the bedrock that supports the surface, change little during the course of a lifetime. Society can alter the geologic history of an area and, in so doing, affect the occurrence and impact of environmental hazards. For example, changes in land use can induce changes in erosion, sedimentation, and ground-water supply. As the environmental system is changed by both natural processes and human activities, the system's capacity to respond to additional stresses also changes. Information such as geologic maps describes the physical world and is critical for identifying solutions to land use and environmental issues. In this paper, a method is developed for estimating the economic value of applying geologic map information to siting a waste disposal facility. An improvement in geologic map information is shown to have a net positive value to society. Such maps enable planners to make superior land management decisions.

  2. Surficial geologic map of the Burlington, Vermont 7.5 minute quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG09-1 Wright, S., S. Fuller, S. Jones, A. McKinney, S. Rupard, and S.D. Shaw, 2009,�Surficial geologic map of the Burlington, Vermont 7.5 minute...

  3. Study on Regional Geology and Uranium Mineralization of Schwaner Mountains West and Central Kalimantan

    International Nuclear Information System (INIS)

    Soepradto-Tjokrokardono; Djoko-Soetarno; MS; Liliek-Subiantoro; Retno-Witjahyati

    2004-01-01

    Uranium occurrences indication in Kalimantan has been discovered at metamorphic and granites rocks of Schwaner Mountains as the radioactivity and geochemical anomalies. A regional geology of Schwaner Mountains show a watershed of West and East Kalimantan consist of Pinoh metamorphic rocks that was intruded by tonalitic and granitic batholite. The goal of this study is to observe the mechanism of the Uranium occurrences related to the regional tectonic, metamorphic rocks, tonalite and granitic batholite. Permokarbonaferrous metamorphic rocks as the big masses of roof pendant within tonalite mass. The metamorphic rocks originally as the big masses of roof pendant within tonalite mass. The metamorphic rocks originally derived from sedimentary process that produce a high content of uranium as well as a fine grained volcanic material. This uranium is deposited within neritic facies. Those sediments have been metamorphosed by low grade Abukuma regional metamorphism at the condition about 540 o C and 2000 bar. In early Cretaceous Tonalite of Sep auk intruded the rock and both metamorphics and tonalites. Those rocks were intruded by Late Cretaceous alkalin granite of Sukadana. Those crystalline rocks overlaid by an unconformity-related Kampari and Tebidah Formations that including within Melawi Group of Tertiary age. Uranium mineralization as the centimetric-metric veins related to tectonic N 100 o -110 o E and N 50 o E lineaments. Uranium was interpreted as a volcanic sedimentary origin, than it re mobilized by low grade regional metamorphism process. This enuchment process was carried out by fluor, boron and other metalliferous mineral within hydrothermal solutions of Sukadana granite. (author)

  4. Geologic map of the Bodie Hills, California and Nevada

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Box, Stephen E.; Vikre, Peter G.; Rytuba, James J.; Fleck, Robert J.; Moring, Barry C.

    2015-01-01

    The Bodie Hills covers about 1,200 km2 straddling the California-Nevada state boundary just north of Mono Lake in the western part of the Basin and Range Province, about 20 km east of the central Sierra Nevada. The area is mostly underlain by the partly overlapping, middle to late Miocene Bodie Hills volcanic field and Pliocene to late Pleistocene Aurora volcanic field (John and others, 2012). Upper Miocene to Pliocene sedimentary deposits, mostly basin-filling sediments, gravel deposits, and fanglomerates, lap onto the west, north, and east sides of the Bodie Hills, where they cover older Miocene volcanic rocks. Quaternary surficial deposits, including extensive colluvial, fluvial, glacial, and lacustrine deposits, locally cover all older rocks. Miocene and younger rocks are tilted ≤30° in variable directions. These rocks are cut by several sets of high-angle faults that exhibit a temporal change from conjugate northeast-striking left-lateral and north-striking right-lateral oblique-slip faults in rocks older than about 9 Ma to north- and northwest-striking dip-slip faults in late Miocene rocks. The youngest faults are north-striking normal and northeast-striking left-lateral oblique-slip faults that cut Pliocene-Pleistocene rocks. Numerous hydrothermal systems were active during Miocene magmatism and formed extensive zones of hydrothermally altered rocks and several large mineral deposits, including gold- and silver-rich veins in the Bodie and Aurora mining districts (Vikre and others, in press).

  5. Geology and associated mineral occurrences of the Araxa Group, Mossamedes Region, Goias, Brazil

    International Nuclear Information System (INIS)

    Simoes, L.S.A.

    1984-01-01

    In the region of Mossamedes, State of Goias, Brazil, the Precambrian metamorphic rocks of the Araxa group were mapped at the scale of 1:25,000, with emphasis on stratigraphic, structural, petrographic and economic aspects. These metamorphites represent a continous stratigraphic sequence which, from bottom to top can be subdivided into five informal lithostratigraphic units: 1) psamitic unit (quartzite, metaconglomerate); 2) psamitic-pelitic unit (quartzite, quartz schist, muscovite schist); 3) lower pelitic - volcanic unit (chlorite - biotite schist, fine grained blastoporphyritic gneiss, amphibolite and calc-schist); 4) upper pelitic - volcanic unit (garnet muscovite schist, biotite schist and gneiss, amphibolite, magnetite muscovite schist); 5) gneissic unit (epidote biotite gneiss, amphibolite). Three types of meta-intrusive rocks were found, besides basic dykes related to Mesozoic magmatism. Four phases of deformation affected the volcano-sedimentary sequence;D 1 , D 2 , D 3 and D 4 , each of them developing distinct deformational features. Barrowian type metamorphism increases progressively from North to South from the biotite zone to the garnet zone (greenschist facies), reaching the staurolite-kyanite zone (amphibolite facies). The magmatism throughout the Group's evolution consists of mafic to felsic volcanic activity, mustly intermediary, as well as three intrusive events. Gold, copper and zinc minerals of economic interest occur within the studied area. The gold mineralizations are related to the pelitic-volcanic sequences. Copper occurs in several rocks from the pelitic-volcanic and gneissic sequences. (Author) [pt

  6. Geologic map of the Strawberry Butte 7.5’ quadrangle, Meagher County, Montana

    Science.gov (United States)

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2017-06-19

    The 7.5′ Strawberry Butte quadrangle in Meagher County, Montana near the southwest margin of the Little Belt Mountains, encompasses two sharply different geologic terranes.  The northern three-quarters of the quadrangle are underlain mainly by Paleoproterozoic granite gneiss, across which Middle Cambrian sedimentary rocks rest unconformably.  An ancestral valley of probable late Eocene age, eroded northwest across the granite gneiss terrane, is filled with Oligocene basalt and overlying Miocene and Oligocene sandstone, siltstone, tuffaceous siltstone, and conglomerate.  The southern quarter of the quadrangle is underlain principally by deformed Mesoproterozoic sedimentary rocks of the Newland Formation, which are intruded by Eocene biotite hornblende dacite dikes.  In this southern terrane, Tertiary strata are exposed only in a limited area near the southeast margin of the quadrangle.  The distinct terranes are juxtaposed along the Volcano Valley fault zone—a zone of recurrent crustal movement beginning possibly in Mesoproterozoic time and certainly established from Neoproterozoic–Early Cambrian to late Tertiary time.  Movement along the fault zone has included normal faulting, the southern terrane faulted down relative to the northern terrane, some reverse faulting as the southern terrane later moved up against the northern terrane, and lateral movement during which the southern terrane likely moved west relative to the northern terrane.  Near the eastern margin of the quadrangle, the Newland Formation is locally the host of stratabound sulfide mineralization adjacent to the fault zone; west along the fault zone across the remainder of the quadrangle are significant areas and bands of hematite and iron-silicate mineral concentrations related to apparent alteration of iron sulfides.  The map defines the distribution of a variety of surficial deposits, including the distribution of hematite-rich colluvium and iron-silicate boulders.  The southeast

  7. Database for the Geologic Map of the Skykomish River 30-Minute by 60-Minute Quadrangle, Washington (I-1963)

    Science.gov (United States)

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared from the published geologic map of the Skykomish River 30- by 60-minute quadrangle by the senior author. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, its correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks of the Puget Group crop out farther to the west. Rocks of

  8. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    Science.gov (United States)

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  9. Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.

    2007-01-01

    INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.

  10. Seismic Microzonation of Breginjski Kot (NW Slovenia) Based on Detailed Engineering Geological Mapping

    Science.gov (United States)

    2013-01-01

    Breginjski kot is among the most endangered seismic zones in Slovenia with the seismic hazard assessed to intensity IX MSK and the design ground acceleration of 0.250 g, both for 500-year return period. The most destructive was the 1976 Friuli Mw = 6.4 earthquake which had maximum intensity VIII-IX. Since the previous microzonation of the area was based solely on the basic geological map and did not include supplementary field research, we have performed a new soil classification of the area. First, a detailed engineering geological mapping in scale 1 : 5.000 was conducted. Mapped units were described in detail and some of them interpreted anew. Stiff sites are composed of hard to medium-hard rocks which were subjected to erosion mainly evoked by glacial and postglacial age. At that time a prominent topography was formed and different types of sediments were deposited in valleys by mass flows. A distinction between sediments and weathered rocks, their exact position, and thickness are of significant importance for microzonation. On the basis of geological mapping, a soil classification was carried out according to the Medvedev method (intensity increments) and the Eurocode 8 standard (soil factors) and two microzonation maps were prepared. The bulk of the studied area is covered by soft sediments and nine out of ten settlements are situated on them. The microzonation clearly points out the dependence of damage distribution in the case of 1976 Friuli earthquake to local site effects. PMID:24453884

  11. Geologic map of the west-central Buffalo National River region, northern Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2014-01-01

    This map summarizes the geology of the west-central Buffalo National River region in the Ozark Plateaus region of northern Arkansas. Geologically, the region lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the map area spans the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone and the higher Boston Mountains to the south, held up by Pennsylvanian rocks. The Buffalo River flows eastward through the map area, enhancing bedrock erosion of an approximately 1,600-ft- (490-m-) thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Quaternary surficial units are present as alluvial deposits along major streams, including a series of terrace deposits from the Buffalo River, as well as colluvium and landslide deposits mantling bedrock on hillslopes.

  12. Analytical methods manual for the Mineral Resource Surveys Program, U.S. Geological Survey

    Science.gov (United States)

    Arbogast, Belinda F.

    1996-01-01

    The analytical methods validated by the Mineral Resource Surveys Program, Geologic Division, is the subject of this manual. This edition replaces the methods portion of Open-File Report 90-668 published in 1990. Newer methods may be used which have been approved by the quality assurance (QA) project and are on file with the QA coordinator.This manual is intended primarily for use by laboratory scientists; this manual can also assist laboratory users to evaluate the data they receive. The analytical methods are written in a step by step approach so that they may be used as a training tool and provide detailed documentation of the procedures for quality assurance. A "Catalog of Services" is available for customer (submitter) use with brief listings of:the element(s)/species determined,method of determination,reference to cite,contact person,summary of the technique,and analyte concentration range.For a copy please contact the Branch office at (303) 236-1800 or fax (303) 236-3200.

  13. Deriving optimal exploration target zones on mineral prospectivity maps

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-08-01

    Full Text Available into an objective function in simulated annealing in order to derive a set of optimal exploration focal points. Each optimal exploration focal point represents a pixel or location within a circular neighborhood of pixels with high posterior probability of mineral...

  14. Mapping hydrothermal altered mineral deposits using Landsat 7 ...

    Indian Academy of Sciences (India)

    the colour composite, band ratio, principal component analysis, least square ... to hydrothermal alteration mapping using multi- ..... ing of the two images is also achieved by PCA; .... remote sensing perspective; 2nd edn, Prentice Hall Series.

  15. Geologic map of Three Sisters volcanic cluster, Cascade Range, Oregon

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew T.

    2012-01-01

    The cluster of glaciated stratovolcanoes called the Three Sisters—South Sister, Middle Sister, and North Sister—forms a spectacular 20-km-long reach along the crest of the Cascade Range in Oregon. The three eponymous stratocones, though contiguous and conventionally lumped sororally, could hardly display less family resemblance. North Sister (10,085 ft), a monotonously mafic edifice at least as old as 120 ka, is a glacially ravaged stratocone that consists of hundreds of thin rubbly lava flows and intercalated falls that dip radially and steeply; remnants of two thick lava flows cap its summit. Middle Sister (10,047 ft), an andesite-basalt-dacite cone built between 48 and 14 ka, is capped by a thick stack of radially dipping, dark-gray, thin mafic lava flows; asymmetrically glaciated, its nearly intact west flank contrasts sharply with its steep east face. Snow and ice-filled South Sister is a bimodal rhyolitic-intermediate edifice that was constructed between 50 ka and 2 ka; its crater (rim at 10,358 ft) was created between 30 and 22 ka, during the most recent of several explosive summit eruptions; the thin oxidized agglutinate that mantles its current crater rim protects a 150-m-thick pyroclastic sequence that helped fill a much larger crater. For each of the three, the eruptive volume is likely to have been in the range of 15 to 25 km³, but such estimates are fairly uncertain, owing to glacial erosion. The map area consists exclusively of Quaternary volcanic rocks and derivative surficial deposits. Although most of the area has been modified by glaciation, the volcanoes are young enough that the landforms remain largely constructional. Furthermore, twelve of the 145 eruptive units on the map are postglacial, younger than the deglaciation that was underway by about 17 ka. The most recent eruptions were of rhyolite near South Sister, about 2,000 years ago, and of mafic magma near McKenzie Pass, about 1,500 years ago. As observed by trailblazing volcanologist

  16. An exploration in mineral supply chain mapping using tantalum as an example

    Science.gov (United States)

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  17. Geology and Mineral Deposits of the Snow Camp-Saxapahaw Area, Central North Carolina

    Science.gov (United States)

    Schmidt, Robert G.; Gumiel, Pablo; Payas, Alba

    2006-01-01

    The Snow Camp-Saxapahaw study area, in the Carolina slate belt in the Southeastern United States, is notable for large zones of high-sulfidation alteration in arc-related metavolcanic rocks. The area has potential for additional significant pyrophyllite and related aluminosilicate refractory mineral deposits and may have potential for small- to medium-size gold deposits also associated with the high-sulfidation hydrothermal systems. The Carolina slate belt is an elongate zone of mostly low-grade metamorphic rocks of Neoproterozoic to early Paleozoic age that extends from northeastern Georgia to southern Virginia. It is dominated by volcanic rocks but locally consists of fine-grained epiclastic sedimentary rocks. Plutons and subvolcanic bodies have intruded the rocks of the Carolina slate belt in many places and have been important in controlling the metamorphism and in localizing hydrothermal alteration. The Snow Camp-Saxapahaw area is mostly underlain by volcanic and volcaniclastic rocks and lesser amounts of intrusive shallow plutons. The volcanic rocks range in composition from basalt to rhyolite; however andesites, dacites, and rhyodacites are the most abundant. The intrusive bodies are largely granite and quartz monzonite; gabbroic bodies also are common. It was possible to establish the relative ages of only part of these rocks. Two northeast-trending fault zones and fractures divide the map area into three structural blocks; the central block was tilted down to the southwest to form a grabenlike structure. Most of the hydrothermally altered rocks and all of the intensely altered zones are confined to the downdropped block, which we think may have been calderalike in origin. A major volcanic unit, the Reedy Branch Tuff, is limited to the southwestern part of the graben and may be the youngest volcanic rock in the area. Layered rocks record one or more strong folding events, but the diversity of rock types, lack of recognizable stratigraphic markers, and

  18. Reconstructing Magmatic-Hydrothermal Systems via Geologic Mapping of the Tilted, Cross-sectional Exposures of the Yerington District, Nevada

    Science.gov (United States)

    Dilles, J. H.; Proffett, J. M.

    2011-12-01

    The Jurassic Yerington batholith was cut by Miocene to recent normal faults and tilted ~90° west (Proffett, 1977). Exposures range from the volcanic environment to ~6 km depth in the batholith. Magmatic-hydrothermal fluids derived from the Luhr Hill granite and associated porphyry dikes produced characteristic porphyry copper mineralization and rock alteration (K-silicate, sericitic, and advanced argillic) in near-vertical columnar zones above cupolas on the deep granite. In addition, saline brines derived from the early Mesozoic volcanic and sedimentary section intruded by the batholith were heated and circulated through the batholith producing voluminous sodic-calcic and propylitic alteration. The magnetite-copper ore body at Pumpkin Hollow is hosted in early Mesozoic sedimentary rocks in the contact aureole of the batholith, and appears to be an IOCG type deposit produced where the sedimentary brines exited the batholith. Although many advances in understanding of Yerington have been made by lab-based geochronology and geochemistry studies, the first order igneous and hydrothermal features were recognized first in the 1960s and 1970s and are best documented by geological mapping at a variety of scales ranging from 1:500 to 1:24,000. The Anaconda technique of mapping mine benches, trenches, and drill cores was perfected here (Einaudi, 1997), and other techniques were used for surface exposures. The geologic and hydrothermal alteration maps establish that hydrothermal alteration accompanied each of several porphyry dike intrusions, and affected more than 100 km3 of rock. Both zonation in alteration mineralogy and vein orientations allow reconstruction of source areas and >5 km-long flow-paths of hydrothermal fluids through the batholith and contact aureole.

  19. THE ANALYSIS OF THE GEOLOGICAL AND ECONOMIC MINERAL RESOURCES IN THE RAIL ROAD CORRIDOR "URAL INDUSTRIAL – URAL POLAR"

    Directory of Open Access Journals (Sweden)

    V.P. Pakhomov

    2007-06-01

    Full Text Available The article brings forth the geological-economic analysis of the mineral resource in the area of the transport corridor "Urals industrial – Urals Polar". Given is the analysis of the potential finding of coal on the territory, chromate and other important excavations, the whereabouts of which are more easily approachable for the acquiring with the condition of building a railroad with the path of station Polunochnoye-Obskaya. Given are the possible masses of the delivery of the products accordingly. Distinguished is the size of the investments, that are needed for the mineral resources of the given territory.

  20. Niger Republic Mineral Planning : Part IV - first volume : Main mineral substances specific study and their geological context

    International Nuclear Information System (INIS)

    Franconi, Antoine; Joo', Julien; Zibo, Idde

    1981-01-01

    This volume contains the detailed study of mineral substances industrially exploited to date : uranium, coal, non metallic building materials and public activities, and non conventionally exploited substances, that are : tin, columbite-tantalite, tungsten, gold, phosphates and evaporates [fr

  1. Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data

    International Nuclear Information System (INIS)

    Pournamdari, M; Hashim, M

    2014-01-01

    Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects

  2. A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran

    Science.gov (United States)

    Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain

    2013-03-01

    Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.

  3. Road-map to successful implementation of geological disposal in the EU

    International Nuclear Information System (INIS)

    Patrakka, Eero

    2010-01-01

    In the conclusions from its first meeting in Bratislava (2007), the European Nuclear Energy Forum (ENEF) identified the management of spent fuel and radioactive waste as an important subject to be looked into with the objective 'to encourage Member States and industry to swiftly implement adequate nuclear waste disposal facilities, in particular deep geological repositories for high level waste'. To this end the Sub-Working Group 'Waste Management' (SWG-WM) was created in the context of the ENEF Working Group 'Risks'. As a first task, the SWG-WM was requested to compile a road-map that includes the essential elements of what is required at national level to foster the implementation of geological disposal for high level waste and spent fuel. In October 2009, a 'Road-map to Successful Implementation of Geological Disposal in the EU' was endorsed. The aim of this document is to provide guidance to EU Member States that are starting out or are at an early stage on the decades-long process leading towards the implementation of geological repositories for high level radioactive wastes or spent nuclear fuel, if this is deemed to be a waste. The guidance is based to a large extent on the positive progress that has been made in a number of Member States. Small and new nuclear states may take a long time to reach such a position - but a strong message of this Road-map is that the process should be initiated as soon as possible. The Road-map is intended to be generic enough to be applicable to all Member States, independently of their current position; the national Road-maps to be developed should be compatible with this, but will differ in the specifics of approach and of timing. (authors)

  4. Surficial Geologic Map of the Evansville, Indiana, and Henderson, Kentucky, Area

    Science.gov (United States)

    Moore, David W.; Lundstrom, Scott C.; Counts, Ronald C.; Martin, Steven L.; Andrews, William M.; Newell, Wayne L.; Murphy, Michael L.; Thompson, Mark F.; Taylor, Emily M.; Kvale, Erik P.; Brandt, Theodore R.

    2009-01-01

    The geologic map of the Evansville, Indiana, and Henderson, Kentucky, area depicts and describes surficial deposits according to their origin and age. Unconsolidated alluvium and outwash fill the Ohio River bedrock valley and attain maximum thickness of 33-39 m under Diamond Island, Kentucky, and Griffith Slough, south of Newburgh, Indiana. The fill is chiefly unconsolidated, fine- to medium-grained, lithic quartz sand, interbedded with clay, clayey silt, silt, coarse sand, granules, and gravel. Generally, the valley fill fines upward from the buried bedrock surface: a lower part being gravelly sand to sandy gravel, a middle part mostly of sand, and a surficial veneer of silt and clay interspersed with sandy, natural levee deposits at river's edge. Beneath the unconsolidated fill are buried and discontinuous, lesser amounts of consolidated fill unconformably overlying the buried bedrock surface. Most of the glaciofluvial valley fill accumulated during the Wisconsin Episode (late Pleistocene). Other units depicted on the map include creek alluvium, slackwater lake (lacustrine) deposits, colluvium, dune sand, loess, and sparse bedrock outcrops. Creek alluvium underlies creek floodplains and consists of silt, clayey silt, and subordinate interbedded fine sand, granules, and pebbles. Lenses and beds of clay are present locally. Silty and clayey slackwater lake (lacustrine) deposits extensively underlie broad flats northeast of Evansville and around Henderson and are as thick as 28 m. Fossil wood collected from an auger hole in the lake and alluvial deposits of Little Creek, at depths of 10.6 m and 6.4 m, are dated 16,650+-50 and 11,120+-40 radiocarbon years, respectively. Fossil wood collected from lake sediment 16 m below the surface in lake sediment was dated 33,100+-590 radiocarbon years. Covering the hilly bedrock upland is loess (Qel), 3-7.5 m thick in Indiana and 9-15 m thick in Kentucky, deposited about 22,000-12,000 years before present. Most mapped surficial

  5. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-09-01

    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  6. Geologic map of the Artemis Chasma quadrangle (V-48), Venus

    Science.gov (United States)

    Bannister, Roger A.; Hansen, Vicki L.

    2010-01-01

    Artemis, named for the Greek goddess of the hunt, represents an approximately 2,600 km diameter circular feature on Venus, and it may represent the largest circular structure in our solar system. Artemis, which lies between the rugged highlands of Aphrodite Terra to the north and relatively smooth lowlands to the south, includes an interior topographic high surrounded by the 2,100-km-diameter, 25- to 200-km-wide, 1- to 2-km-deep circular trough, called Artemis Chasma, and an outer rise that grades outward into the surrounding lowland. Although several other chasmata exist in the area and globally, other chasmata have generally linear trends that lack the distinctive circular pattern of Artemis Chasma. The enigmatic nature of Artemis has perplexed researchers since Artemis Chasma was first identified in Pioneer Venus data. Although Venus' surface abounds with circular to quasi-circular features at a variety of scales, including from smallest to largest diameter features: small shield edifices (>1 km), large volcanic edifices (100-1,000 km), impact craters (1-270 km), coronae (60-1,010 km), volcanic rises and crustal plateaus (~1,500-2,500 km), Artemis defies classification into any of these groups. Artemis dwarfs Venus' largest impact crater, Mead (~280 km diameter); Artemis also lacks the basin topography, multiple ring structures, and central peak expected for large impact basins. Topographically, Artemis resembles some Venusian coronae; however Artemis is an order of magnitude larger than the average corona (200 km) and about twice the size of Heng-O Corona (which is 1,010 km in diameter), the largest of Venusian coronae. In map view Artemis' size and shape resemble volcanic rises and crustal plateaus; however, both of these classes of features differ topographically from Artemis. Volcanic rises and crustal plateaus form broad domical regions, and steep-sided regions with flat tops, respectively; furthermore, neither rises nor plateaus include circular troughs

  7. Association between mapped vegetation and Quaternary geology on Santa Rosa Island, California

    Science.gov (United States)

    Cronkite-Ratcliff, C.; Corbett, S.; Schmidt, K. M.

    2017-12-01

    Vegetation and surficial geology are closely connected through the interface generally referred to as the critical zone. Not only do they influence each other, but they also provide clues into the effects of climate, topography, and hydrology on the earth's surface. This presentation describes quantitative analyses of the association between the recently compiled, independently generated vegetation and geologic map units on Santa Rosa Island, part of the Channel Islands National Park in Southern California. Santa Rosa Island was heavily grazed by sheep and cattle ranching for over one hundred years prior to its acquisition by the National Park Service. During this period, the island experienced significant erosion and spatial reduction and diversity of native plant species. Understanding the relationship between geology and vegetation is necessary for monitoring the recovery of native plant species, enhancing the viability of restoration sites, and understanding hydrologic conditions favorable for plant growth. Differences in grain size distribution and soil depth between geologic units support different plant communities through their influence on soil moisture, while differences in unit age reflect different degrees of pedogenic maturity. We find that unsupervised machine learning methods provide more informative insight into vegetation-geology associations than traditional measures such as Cramer's V and Goodman and Kruskal's lambda. Correspondence analysis shows that unique vegetation-geology patterns associated with beach/dune, grassland, hillslope/colluvial, and fluvial/wetland environments can be discerned from the data. By combining geology and vegetation with topographic variables, mixture models can be used to partition the landscape into multiple representative types, which then be compared with conceptual models of plant growth and succession over different landforms. Using this collection of methods, we show various ways that that Quaternary geology

  8. Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado

    Science.gov (United States)

    Rockwell, Barnaby W.

    2013-01-01

    Multispectral satellite data acquired by the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and Landsat 7 Enhanced Thematic Mapper Plus (TM) sensors are being used to populate an online Geographic Information System (GIS) of the spatial occurrence of mineral groups and green vegetation across the western conterminous United States and Alaska. These geospatial data are supporting U.S. Geological Survey national-scale mineral deposit database development and other mineral resource and geoenvironmental research as a means of characterizing mineral exposures related to mined and unmined hydrothermally altered rocks and mine waste. This report introduces a new methodology for the automated analysis of Landsat TM data that has been applied to more than 180 scenes covering the western United States. A map of mineral groups and green vegetation produced using this new methodology that covers the western San Juan Mountains, Colorado, and the Four Corners Region is presented. The map is provided as a layered GeoPDF and in GIS-ready digital format. TM data analysis results from other well-studied and mineralogically characterized areas with strong hydrothermal alteration and (or) supergene weathering of near-surface sulfide minerals are also shown and compared with results derived from ASTER data analysis.

  9. Preliminary Geologic Map of the Cook Inlet Region, Alaska-Including Parts of the Talkeetna, Talkeetna Mountains, Tyonek, Anchorage, Lake Clark, Kenai, Seward, Iliamna, Seldovia, Mount Katmai, and Afognak 1:250,000-scale Quadrangles

    Science.gov (United States)

    Wilson, Frederic H.; Hults, Chad P.; Schmoll, Henry R.; Haeussler, Peter J.; Schmidt, Jeanine M.; Yehle, Lynn A.; Labay, Keith A.; Shew, Nora B.

    2009-01-01

    The growth in the use of Geographic Information Systems (GIS) has highlighted the need for digital geologic maps that have been attributed with information about age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. This report is part of a series of integrated geologic map databases that cover the entire United States. Three national-scale geologic maps that portray most or all of the United States already exist; for the conterminous U.S., King and Beikman (1974a,b) compiled a map at a scale of 1:2,500,000, Beikman (1980) compiled a map for Alaska at 1:2,500,000 scale, and for the entire U.S., Reed and others (2005a,b) compiled a map at a scale of 1:5,000,000. A digital version of the King and Beikman map was published by Schruben and others (1994). Reed and Bush (2004) produced a digital version of the Reed and others (2005a) map for the conterminous U.S. The present series of maps is intended to provide the next step in increased detail. State geologic maps that range in scale from 1:100,000 to 1:1,000,000 are available for most of the country, and digital versions of these state maps are the basis of this product. The digital geologic maps presented here are in a standardized format as ARC/INFO export files and as ArcView shape files. The files named __geol contain geologic polygons and line (contact) attributes; files named __fold contain fold axes; files named __lin contain lineaments; and files named __dike contain dikes as lines. Data tables that relate the map units to detailed lithologic and age information accompany these GIS files. The map is delivered as a set 1:250,000-scale quadrangle files. To the best of our ability, these quadrangle files are edge-matched with respect to geology. When the maps are merged, the combined attribute tables can be used directly with the merged maps to make

  10. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    Science.gov (United States)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure

  11. Geology and mineral deposits of an area in the Departments of Antioquia and Caldas (Subzone IIB), Colombia

    Science.gov (United States)

    Feininger, Tomas; Barrero L., Dario; Castro, Nestor; Hall, R.B.

    1973-01-01

    The Inventario Minero National (IMN), a four-year cooperative geologic mapping and mineral resources appraisal project, was accomplished under an agreement between the Republic of Colombia and the U. S. Agency for International Development from 1964 through 1969. Subzone IIB, consisting essentially of the east half of Zone comprises nearly 20,000 km2 principally in the Department of Antioquia but including also small parts of the Departments of Caldas and Tolima. The rocks in IIB range from Precambrian to Holocene. Precambrian feldspar-quartz gneiss occupies a mosaic of fault-bounded blocks intruded by igneous rocks between the Oto fault and the Rio Magdalena. Paleozoic rocks are extensive, and include lightly metamorphosed graptolite-bearing Ordovician shale at Cristalina, and a major suite of graphitic quartz-mica schist, feldspathic and aluminous gneiss, quartzite, marble, amphibolite, and other rocks. Syntectonic intrusive gneiss included many of the older rocks during a late Paleozoic(?) orogeny, which was accompanied by Abukuma-type metamorphosing from lowermost greenschist to upper amphibolite facies. A Jurassic diorite pluton bounded by faults cuts volcanic rocks of unknown age east of the Otu fault. Cretaceous rocks are major units. Middle Cretaceous carbonaceous shale, sandstone, graywacke, conglomerate, and volcanic rocks are locally prominent. The Antioquian batholith (quartz diorite) of Late Cretaceous age cuts the middle Cretaceous and older rocks. A belt of Tertiary nonmarine clastic sedimentary rocks crops out along the Magdalena Valley. Patches of Tertiary alluvium are locally preserved in the mountains. Quaternary alluvium, much of it auriferous, is widespread in modern stream valleys. Structurally IIB constitutes part of a vast complex synclinorium intruded concordantly by syntectonic catazonal or mesozonal felsic plutons, and by the later epizonal post-tectonic Antioquian batholith. Previously unrecognized major wrench faults are outstanding

  12. Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Slate, Janet L.; Berry, Margaret E.; Rowley, Peter D.; Fridrich, Christopher J.; Morgan, Karen S.; Workman, Jeremiah B.; Young, Owen D.; Dixon, Gary L.; Williams, Van S.; McKee, Edwin H.; Ponce, David A.; Hildenbrand, Thomas G.; Swadley, W.C.; Lundstrom, Scott C.; Ekren, E. Bartlett; Warren, Richard G.; Cole, James C.; Fleck, Robert J.; Lanphere, Marvin A.; Sawyer, David A.; Minor, Scott A.; Grunwald, Daniel J.; Laczniak, Randell J.; Menges, Christopher M.; Yount, James C.; Jayko, Angela S.

    1999-01-01

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map compilation presents new polygon (geologic map unit contacts), line (fault, fold axis, metamorphic isograd, dike, and caldera wall) and point (structural attitude) vector data for the NTS and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California. The map area covers two 30 x 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7.5-minute quadrangles on the east side-72 quadrangles in all. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains. This geologic map improves on previous geologic mapping of the same area (Wahl and others, 1997) by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 1999) and a new aeromagnetic map (Ponce, 1999).

  13. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  14. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  15. Mapping radon-prone areas using γ-radiation dose rate and geological information

    International Nuclear Information System (INIS)

    García-Talavera, M; Rey, C; Ramos, L; García-Pérez, A

    2013-01-01

    Identifying radon-prone areas is key to policies on the control of this environmental carcinogen. In the current paper, we present the methodology followed to delineate radon-prone areas in Spain. It combines information from indoor radon measurements with γ-radiation and geological maps. The advantage of the proposed approach is that it lessens the requirement for a high density of measurements by making use of commonly available information. It can be applied for an initial definition of radon-prone areas in countries committed to introducing a national radon policy or to improving existing radon maps in low population regions. (paper)

  16. Long-term evolution of radio-active waste storage in geological formations: analogy with the weathering of mineral deposits

    International Nuclear Information System (INIS)

    Cantinolle, P.; Griffault, L.; Jebrak, M.

    1986-01-01

    The aim of this study was to select examples of mineral deposits and their weathering environment, showing the long-term behaviour, in geological time, measuring (area, volume) some constituent elements of radio-active waste storage subject to the hazards of hydrogeochemical weathering. Initially, a feasibility study was made to collate data available within the BRGM (mining group and public service) and from literature dealing with weathering of deposits. It was thus discovered that the analogy between radio-active waste storage and mineral deposits could be approached in two different yet complementary ways: - one approach is to observe the behaviour of a mineral deposit in relation to the country rocks. For this a bibliographic metallogenic study was made. The other approach is to observe the behaviour of chemical elements during deposition of a mineral deposit whose genesis is similar to the spatial and thermal environment of a deposit of radio-active waste in a geological formation. For this two sites were selected corresponding to hydrothermal systems showing strong analogies to those expected in the neighbourhood of the storage sites. These two sites, Langenberg in the Vosges and La Telhaie in Brittany, were the subject of complementary analytical work [fr

  17. Non-metric close range photogrammetric system for mapping geologic structures in mines

    Energy Technology Data Exchange (ETDEWEB)

    Brandow, V D

    1976-01-01

    A stereographic close-range photogrammetric method of obtaining structural data for mine roof stability analyses is described. Stereo pairs were taken with 70 mm and 35 mm non-metric cameras. Photo co-ordinates were measured with a stereo-comparator and reduced by the direct linear transformation method. Field trials demonstrate that the technique is sufficiently accurate for geological work and is a practical method of mapping.

  18. The impact of geology on the migration of fluorides in mineral waters of the Bukulja and Brajkovac pluton area, Serbia

    Directory of Open Access Journals (Sweden)

    Papić Petar

    2012-01-01

    Full Text Available One of the hydrogeochemical parameters that classify groundwater as mineral water is the content of fluoride ions. Their concentration is both important and limited for bottled mineral waters. Hydrochemical research of mineral waters in the surrounding area of Bukulja and Brajkovac pluton, in central Serbia, was conducted in order to define the chemical composition and genesis of these waters. They are carbonated waters, with content of fluoride ranging from 0.2 up to 6.6 mg/L. Since hydrochemical analyses showed variations in the major water chemistry, it was obvious that, apart from hydrochemical research, some explorations of the structure of the regional terrain would be inevitable. For these purposes, some additional geological research was performed, creating an adequate basis for the interpretation of the genesis of these carbonated mineral waters. The results confirmed the significance of the application of hydrochemical methods in the research of mineral waters. The work tended to emphasize that “technological treatment” for decreasing the concentration of fluoride in mineral waters occurs in nature, indicating the existence of natural defluoridization. [Projekat Ministarstva nauke Republike Srbije, br. 43004

  19. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less

  20. Use of geological mapping tools to improve the hydraulic performance of SuDS.

    Science.gov (United States)

    Bockhorn, Britta; Klint, Knud Erik Strøyberg; Jensen, Marina Bergen; Møller, Ingelise

    2015-01-01

    Most cities in Denmark are situated on low permeable clay rich deposits. These sediments are of glacial origin and range among the most heterogeneous, with hydraulic conductivities spanning several orders of magnitude. This heterogeneity has obvious consequences for the sizing of sustainable urban drainage systems (SuDS). We have tested methods to reveal geological heterogeneity at field scale to identify the most suitable sites for the placement of infiltration elements and to minimize their required size. We assessed the geological heterogeneity of a clay till plain in Eastern Jutland, Denmark measuring the shallow subsurface resistivity with a geoelectrical multi-electrode system. To confirm the resistivity data we conducted a spear auger mapping. The exposed sediments ranged from clay tills over sandy clay tills to sandy tills and correspond well to the geoelectrical data. To verify the value of geological information for placement of infiltration elements we carried out a number of infiltration tests on geologically different areas across the field, and we observed infiltration rates two times higher in the sandy till area than in the clay till area, thus demonstrating that the hydraulic performance of SuDS can be increased considerably and oversizing avoided if field geological heterogeneity is revealed before placing SuDS.

  1. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  2. A spatial database of bedding attitudes to accompany Geologic map of the greater Denver area, Front Range Urban Corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  3. Geological Features Mapping Using PALSAR-2 Data in Kelantan River Basin, Peninsular Malaysia

    Science.gov (United States)

    Pour, A. B.; Hashim, M.

    2016-09-01

    In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB) colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system that associated

  4. GEOLOGICAL FEATURES MAPPING USING PALSAR-2 DATA IN KELANTAN RIVER BASIN, PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. B. Pour

    2016-09-01

    Full Text Available In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2 onboard the Advanced Land Observing Satellite-2 (ALOS-2, remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system

  5. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  6. Geology, petrography, alteration, mineralization and petrogenesis of intrusive bodies in the Hamech prospect area, Southwest of Birjand

    Directory of Open Access Journals (Sweden)

    Abbas Etemadi

    2018-04-01

    Full Text Available Introduction The Hamech prospect area is located in the eastern Iran, 85 kilometers southwest of Birjand. The study area coordinates between 58¬¬˚¬53΄¬00 ˝ to 59˚¬00΄¬00˝ latitude and 32˚¬22΄¬30 ˝ to 32˚¬26΄¬00˝ longitude. Due to the high volume of magmatism and the presence of geo-structure special condition in the Lut Block at a different time, a variety of metal (copper, lead, zinc, gold, etc. and non-metallic mineralization has been formed (Karimpour et al., 2012. The studied area (Hamech includes Paleocene-Eocene igneous outcrops which contain a wide range of subvolcanic bodies (diorite to monzonite porphyry associated with mafic intrusives, volcanic units (andesite, volcaniclastic and sedimentary rocks. Material and Methods This study was done in two parts including field and laboratory works. Sampling and structural studies were done during field work. Geological and alteration maps for the study area were also prepared. 200 thin and 60 polished sections for petrographic purpose were studied. The number of 200 thin sections and 60 polished sections were prepared and studied in order to investigate petrography and mineralogy. Major oxides (XRF method- East Amethyst Laboratory in Mashhad, rare earth elements and trace (ICP-MS method-ACME Laboratory in Vancouver, Canada elements were analyzed for 13 samples that included subvolcanic units and intrusive bodies. Data processing and geological and alteration mapping is done by the GCD.kit and Arcgis software. Discussion and Results Based on lab work and XRF analysis, the rocks in the area are composed of intrusive-subvolcanic bodies and volcanic rocks (andesite, trachyandesite and dacite together with volcano-classic and sedimentary rocks. Also, alteration zones consist of a variety of argillic, silicified, quartz-sericite-pyrite (QSP, propylitic and carbonate. Igneous rock textures are mainly porphyritic for sub-volcanic and granular for intrusive bodies. Phenocrysts

  7. Facilitating the exploitation of ERTS imagery using snow enhancement techniques. [geological mapping of New England test area

    Science.gov (United States)

    Wobber, F. J.; Martin, K. R. (Principal Investigator); Amato, R. V.; Leshendok, T.

    1974-01-01

    The author has identified the following significant results. The procedure for conducting a regional geological mapping program utilizing snow-enhanced ERTS-1 imagery has been summarized. While it is recognized that mapping procedures in geological programs will vary from area to area and from geologist to geologist, it is believed that the procedure tested in this project is applicable over a wide range of mapping programs. The procedure is designed to maximize the utility and value of ERTS-1 imagery and aerial photography within the initial phase of geological mapping programs. Sample products which represent interim steps in the mapping formula (e.g. the ERTS Fracture-Lineament Map) have been prepared. A full account of these procedures and products will be included within the Snow Enhancement Users Manual.

  8. Mineral and Vegetation Maps of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada, Generated from ASTER Satellite Data

    Science.gov (United States)

    Rockwell, Barnaby W.

    2010-01-01

    Multispectral remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were analyzed to identify and map minerals, vegetation groups, and volatiles (water and snow) in support of geologic studies of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada. Digital mineral and vegetation mapping results are presented in both portable document format (PDF) and ERDAS Imagine format (.img). The ERDAS-format files are suitable for integration with other geospatial data in Geographic Information Systems (GIS) such as ArcGIS. The ERDAS files showing occurrence of 1) iron-bearing minerals, vegetation, and water, and 2) clay, sulfate, mica, carbonate, Mg-OH, and hydrous quartz minerals have been attributed according to identified material, so that the material detected in a pixel can be queried with the interactive attribute identification tools of GIS and image processing software packages (for example, the Identify Tool of ArcMap and the Inquire Cursor Tool of ERDAS Imagine). All raster data have been orthorectified to the Universal Transverse Mercator (UTM) projection using a projective transform with ground-control points selected from orthorectified Landsat Thematic Mapper data and a digital elevation model from the U.S. Geological Survey (USGS) National Elevation Dataset (1/3 arc second, 10 m resolution). Metadata compliant with Federal Geographic Data Committee (FGDC) standards for all ERDAS-format files have been included, and contain important information regarding geographic coordinate systems, attributes, and cross-references. Documentation regarding spectral analysis methodologies employed to make the maps is included in these cross-references.

  9. Reconnaissance geologic map of the Hyampom 15' quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2010-01-01

    Late Triassic conodonts and Permian or Triassic foraminifers, and small exotic(?) plutons. The plutons probably are similar to ones to the southeast beyond the quadrangle boundary that yielded isotopic ages ranging from 193 Ma to 207 Ma. The Rattlesnake Creek terrane contains several areas of well- bedded sedimentary rocks (rcs) that somewhat resemble the Galice(?) Formation and may be inliers of the Western Jurassic terrane. The Western Jurassic terrane in the Hyampom quadrangle appears to consist only of a narrow tectonic sliver of slaty to semischistose detrital sedimentary rocks of the Late Jurassic Galice(?) Formation. The isotopic age of metamorphism of the rocks is about 150 Ma, which probably indicates when the terrane was accreted to the Rattlesnake Creek terrane. The Pickett Peak terrane, which is the most westerly of the succession of terranes in the Hyampom quadrangle, is the accreted eastern margin of the Coast Ranges province. It mainly consists of semischistose and schistose metagraywacke of the South Fork Mountain Schist and locally contains the blueschist-facies mineral lawsonite. Isotopic analysis indicates a metamorphic age of 120 to 115 Ma. During the Cretaceous period, much of the southern fringe of the Klamath Mountains was onlapped by sedimentary strata of the Great Valley sequence. However, much of the onlapping Cretaceous strata has since been eroded away, and in the Hyampom quadrangle only a few small remnants are found in the northeast corner near Big Bar. Near the west edge of the quadrangle, in the vicinity of the village of Hyampom, weakly consolidated fluvial and lacustrine rocks and coaly deposits of Oligocene and (or) Miocene age are present. These rocks are similar to the Weaverville Formation that occurs in separate sedimentary basins to the east in the Weaverville and Hayfork 15? quadrangles. This map of the Hyampom 15' quadrangle is a digital version of U.S. Geological Survey Miscellaneous Field Stu

  10. Interactions between CO2, saline water and minerals during geological storage of CO2

    International Nuclear Information System (INIS)

    Hellevang, Helge

    2006-06-01

    The topic of this thesis is to gain a better understanding of interactions between injected CO 2 , aqueous solutions and formation mineralogies. The main focus is concerned with the potential role mineral reactions play in safe long term storage of CO 2 . The work is divided into an experimental part concentrated on the potential of dawsonite (NaAl(OH) 2 CO 3 ) as a permanent storage host of CO 2 , and the development of a new geochemical code ACCRETE that is coupled with the ATHENA multiphase flow simulator. The thesis is composed of two parts: (I) the first part introducing CO 2 storage, geochemical interactions and related work; and (II) the second part that consists of the papers. Part I is composed as follows: Chapter 2 gives a short introduction to geochemical reactions considered important during CO 2 storage, including a thermodynamic framework. Chapter 3 presents objectives of numerical work related to CO 2 -water-rock interactions including a discussion of factors that influence the outcome of numerical simulations. Chapter 4 presents the main results from paper A to E. Chapter 5 give some details about further research that we propose based on the present work and related work in the project. Several new activities have emerged from research on CO 2 -water-rock interaction during the project. Several of the proposed activities are already initiated. Papers A to F are then listed in Part II of the thesis after the citation list. The thesis presents the first data on the reaction kinetics of dawsonite at different pH (Paper A), and comprehensive numerical simulations, both batch- and large scale 3D reactive transport, that illustrate the role different carbonates have for safe storage of CO 2 in geological formations (Papers C to F). The role of dawsonite in CO 2 storage settings is treated throughout the study (Papers A to E) After the main part of the thesis (Part I and II), two appendices are included: Appendix A lists reactions that are included in the

  11. Surficial Geologic Map of the Southern Two-Thirds of the Woodbury Quadrangle, Vermont, Washington County, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2015-3 Springston, G, Thomas, E, and Kim, J, 2015,�Surficial Geologic Map of the Southern Two-Thirds of the Woodbury Quadrangle, Vermont,...

  12. Bedrock Geologic Map of the Southern Worcester Mountains Watershed, Middlesex and Stowe�7.5 minute quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG2006-2 Gale, M.H., Kim, J., King, S., Montane, P., and Orsi, C., 2006,�Bedrock Geologic Map of the Southern Worcester Mountains Watershed,...

  13. Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Armstrong, T.R., and Ratcliffe, N.M., 1998, Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle,...

  14. Digital and preliminary bedrock geologic map of the Vermont part of the Hartland quadrangle, Windsor County, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-123A Walsh, G. J., 1998,�Digital and preliminary bedrock geologic map of the Vermont part of the Hartland quadrangle, Windsor County, Vermont:...

  15. Automated pattern recognition to support geological mapping and exploration target generation: a case study from southern Namibia

    CSIR Research Space (South Africa)

    Eberle, D

    2015-06-01

    Full Text Available This paper demonstrates a methodology for the automatic joint interpretation of high resolution airborne geophysical and space-borne remote sensing data to support geological mapping in a largely automated, fast and objective manner. At the request...

  16. Digital field mapping for stimulating Secondary School students in the recognition of geological features and landforms

    Science.gov (United States)

    Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi