WorldWideScience

Sample records for geological hydrological geochemical

  1. Water information bulletin No. 30: geothermal investigations in Idaho. Part 11. Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.C. (ed.)

    1981-12-01

    The area under study included approximately 925 sq km (357 sq mi) of the Nampa-Caldwell portion of Canyon County, an area within the central portion of the western Snake River Plain immediately west of Boise, Idaho. Geologic mapping, hydrologic, geochemical, geophysical, including detailed gravity and aeromagnetic surveys, were run to acquire needed data. In addition, existing magnetotelluric and reflection seismic data were purchased and reinterpreted in light of newly acquired data.

  2. Gaining the necessary geologic, hydrologic, and geochemical understanding for additional brackish groundwater development, coastal San Diego, California, USA

    Science.gov (United States)

    Danskin, Wesley R.

    2012-01-01

    Local water agencies and the United States Geological Survey are using a combination of techniques to better understand the scant freshwater resources and the much more abundant brackish resources in coastal San Diego, California, USA. Techniques include installation of multiple-depth monitoring well sites; geologic and paleontological analysis of drill cuttings; geophysical logging to identify formations and possible seawater intrusion; sampling of pore-water obtained from cores; analysis of chemical constituents including trace elements and isotopes; and use of scoping models including a three-dimensional geologic framework model, rainfall-runoff model, regional groundwater flow model, and coastal density-dependent groundwater flow model. Results show that most fresh groundwater was recharged during the last glacial period and that the coastal aquifer has had recurring intrusions of fresh and saline water. These intrusions disguise the source, flowpaths, and history of ground water near the coast. The flow system includes a freshwater lens resting on brackish water; a 100-meter-thick flowtube of freshwater discharging under brackish estuarine water and above highly saline water; and broad areas of fine-grained coastal sediment filled with fairly uniform brackish water. Stable isotopes of hydrogen and oxygen indicate the recharged water flows through many kilometers of fractured crystalline rock before entering the narrow coastal aquifer.

  3. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  4. Hydrologic Regulation of Global Geochemical Cycles

    Science.gov (United States)

    Maher, K.

    2015-12-01

    Earth's temperature is thought to be regulated by a negative feedback between atmospheric CO2 levels and chemical weathering of silicate rocks. However, direct evidence for the operation of this feedback over million-year timescales is difficult to obtain. For example, weathering fluxes over the last 20 million years of the Cenozoic Era, calculated using marine isotopic proxies (i.e. 87Sr/86Sr, δ7Li, and 187Os/188Os), appear inconsistent with past atmospheric CO2 levels and carbon mass balance. Similarly, observations from modern catchments suggest that chemical weathering fluxes are strongly correlated with erosion rates and only weakly correlated with temperature. As an alternative approach to evaluating the operation of a negative feedback, we use the major surface reservoirs of carbon to determine the imbalance in the geologic carbon cycle and the required silicate weathering flux over the Cenozoic. A miniscule (0.5-1%) increase in silicate weathering is necessary to explain the long-term decline in CO2 levels over the Cenozoic, providing evidence for a strong negative feedback between silicate weathering and climate. Rather than an appreciable increase in the silicate weathering flux, the long-term decrease in CO2levels may be due to an increase in the strength of the silicate weathering feedback. To explain the observed variations in the strength of the weathering feedback during the Cenozoic, we present a model for silicate weathering where hydrologic processes regulate climatic and tectonic forcings due to the presence of a thermodynamic limit to weathering fluxes. Climate regulation by silicate weathering is thus strongest when global topography is elevated, similar to today, and lowest when global topography is more subdued, allowing planetary temperatures to vary depending on the global distribution of topography and mountain belts. These results also motivate several key outstanding challenges in earth surface processes, including the need to

  5. Forensic Analysis using Geological and Geochemical Techniques

    Science.gov (United States)

    Hoogewerff, J.

    2009-04-01

    Due to the globalisation of legal (and illegal) trade there is an increasing demand for techniques which can verify the geographical origin and transfer routes of many legal and illegal commodities and products. Although geological techniques have been used in forensic investigations since the emergence of forensics as a science in the late eighteen hundreds, the last decade has seen a marked increase in geo-scientists initiating concept studies using the latest analytical techniques, including studying natural abundance isotope variations, micro analysis with laser ablation ICPMS and geochemical mapping. Most of the concept studies have shown a good potential but uptake by the law enforcement and legal community has been limited due to concerns about the admissibility of the new methods. As an introduction to the UGU2009 session "Forensic Provenancing using Geological and Geochemical Techniques" I will give an overview of the state of the art of forensic geology and the issues that concern the admissibility of geological forensic evidence. I will use examples from the NITECRIME and FIRMS networks, the EU TRACE project and other projects and literature to illustrate the important issues at hand.

  6. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1983-03-01

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  7. Geological and geochemical variations in Mid-Tertiary Ethiopian ...

    African Journals Online (AJOL)

    Mekelle University. Geological and geochemical variations in Mid-Tertiary Ethiopian Flood Basalt. Province, Maychew, Tigray Region, Ethiopia. Kurkura Kabeto*. Department of Earth Science, College of Natural and Computational Sciences, P.O. Box 231,. Mekelle University, Ethiopia (*kurkura57@yahoo.com). ABSTRACT.

  8. A selected bibliography of references on geology, hydrology, and geochemistry of the Midwestern Basins and Arches region; Ohio, Indiana, Michigan, and Illinois

    Science.gov (United States)

    Robinson, Anthony; Bugliosi, Edward F.

    1994-01-01

    This report contains selected references used for the Midwestern Basins and Arches Regional Aquifer System Analysis project of the U.S. Geological Survey. The project was begun in 1988 to study the geologic framework, hydrology, and geochemistry of the surficial and the Silurian and Devonian carbonate-rock aquifers in the Midwestern Basins and Arches Region. The area of data collection is 90,000 square miles and includes parts of Ohio, Indiana, Michigan, and Illinois. Geologic, hydrologic, and geochemical references that apply to the hydrogeology and geochemistry of the region were collected and are presented in this bibliography by State and by geologic, hydrologic, and geochemical categories for each State.

  9. Hydrological and geochemical consequences of river regulation - hyporheic perspective

    Science.gov (United States)

    Siergieiev, Dmytro; Lundberg, Angela; Widerlund, Anders

    2014-05-01

    River-aquifer interfaces, essential for ecosystem functioning in terms of nutrient exchange and biological habitat, appear greatly threatened worldwide. Although river regulation is a vast pressure on river-aquifer interaction, influencing entire watersheds, knowledge about hyporheic exchange in regulated rivers is rather limited. In this study, we combine two decades of research on hydrological and geochemical impacts of hydropower regulation on river water and hyporheic zone in two large boreal rivers, unregulated Kalix River and regulated Lule River. Altered river discharge, with reduced spring peaks, daily summer fluctuations and elevated winter base flow severely modified Lule River water geochemistry and thus the transport of solutes to the Bothnian Bay (Baltic Sea). Further, these river modifications changed the river-aquifer exchange on both daily and seasonal scale, which resulted in deteriorated hyporheic conditions with reduced riverbed hydraulic conductivity (formation of a clogging layer) reflected in a declined hyporheic flux. Altered hydrological regime of the hyporheic zone created quasi-stagnant conditions beneath the river-aquifer interface and promoted the formation of geochemically suboxic environment. Taken that hyporheic water is a mixture of river water and groundwater, mixing models for the regulated site demonstrate a considerable addition of Fe, Mn, Al, NH4 and removal of dissolved oxygen and nitrate, which suggests the hyporheic zone in the Lule River to be a source of solutes. This contradicts the observations from the hyporheic zone in the unregulated river, with opposite behaviour functioning as a barrier. These results suggest that the hyporheic zone function is dependent on the river discharge and the state of the river-aquifer connectivity. Improved knowledge about the latter on a watershed scale will substantially increase our understanding about the status and potential pressures of riverine ecosystems and assist management and

  10. Impact of geological model uncertainty on integrated catchment hydrological modeling

    Science.gov (United States)

    He, Xin; Jørgensen, Flemming; Refsgaard, Jens Christian

    2014-05-01

    Various types of uncertainty can influence hydrological model performance. Among them, uncertainty originated from geological model may play an important role in process-based integrated hydrological modeling, if the model is used outside the calibration base. In the present study, we try to assess the hydrological model predictive uncertainty caused by uncertainty of the geology using an ensemble of geological models with equal plausibility. The study is carried out in the 101 km2 Norsminde catchment in western Denmark. Geostatistical software TProGS is used to generate 20 stochastic geological realizations for the west side the of study area. This process is done while incorporating the borehole log data from 108 wells and high resolution airborne transient electromagnetic (AEM) data for conditioning. As a result, 10 geological models are generated based solely on borehole data, and another 10 geological models are based on both borehole and AEM data. Distributed surface water - groundwater models are developed using MIKE SHE code for each of the 20 geological models. The models are then calibrated using field data collected from stream discharge and groundwater head observations. The model simulation results are evaluated based on the same two types of field data. The results show that the differences between simulated discharge flows caused by using different geological models are relatively small. The model calibration is shown to be able to account for the systematic bias in different geological realizations and hence varies the calibrated model parameters. This results in an increase in the variance between the hydrological realizations compared to the uncalibrated models that uses the same parameter values in all 20 models. Furthermore, borehole based hydrological models in general show more variance between simulations than the AEM based models; however, the combined total uncertainty, bias plus variance, is not necessarily higher.

  11. Fracture Sealing in Shales: Geological and Geochemical Factors

    International Nuclear Information System (INIS)

    Cathelineau, Michel

    2001-01-01

    The so-called self-sealing processes can be re-examined at the light of geological and geochemical consideration about the past history of the rocks. The concept of 'self sealing' needs to consider the formation and the sealing of fractures, especially three main stages: (i) the initiation of the fracture (development of micro-cracks initiated from previous heterogeneities up to fracturing), ii) the fracturing processes which occur generally at depth in presence of a fluid phase, iii) the healing or sealing of the fractures which corresponds basically to two main processes: a restoration of the initial permeability of the rock block by reducing the transmissivity of the discontinuity down to values equivalent to that of the homogeneous medium before fracturing, or the sealing of the open discontinuity by precipitation of newly formed minerals. In the latter case, the evolution of the open fracture is driven by re-arrangement of particles or precipitation of newly formed material, either by dissolution/crystallisation processes or by crystallisation from the percolating fluids (advective processes). Such processes are governed by chemical processes, especially the rate of precipitation of minerals which depends of the degree of saturation with respect to the mineral, and the kinetics of precipitation. (author)

  12. Geological-Hydrological Site Evaluation for NPP Planning

    Energy Technology Data Exchange (ETDEWEB)

    Faust, Brigitte; Mini, Paolo [Nordostsschweizerische Kraftwerke AG NOK, Parkstrasse 23, 5401 Baden (Switzerland)

    2008-07-01

    NOK is investigating the potential replacement of the current NPP in Beznau. In order to meet the requirements with respect to a general licence application, geological, seismological, and geotechnical engineering, but also hydrological boundary conditions have been defined. These conditions define the nature of necessary investigations to obtain the geological, seismic, geotechnical and hydrological data themselves forming the basis to determine the site suitability. Viability has to be provided that a NPP can be built and operated at the proposed site without compromising public health, safety and environment. The collected data are also the basis for the design of all safety relevant structures, systems, and components. For example, the latter have to withstand the effects of natural phenomena such as earthquakes and human induced impact such as airplane crash without loosing their capability to perform the assigned safety functions. (authors)

  13. Geological-Hydrological Site Evaluation for NPP Planning

    International Nuclear Information System (INIS)

    Faust, Brigitte; Mini, Paolo

    2008-01-01

    NOK is investigating the potential replacement of the current NPP in Beznau. In order to meet the requirements with respect to a general licence application, geological, seismological, and geotechnical engineering, but also hydrological boundary conditions have been defined. These conditions define the nature of necessary investigations to obtain the geological, seismic, geotechnical and hydrological data themselves forming the basis to determine the site suitability. Viability has to be provided that a NPP can be built and operated at the proposed site without compromising public health, safety and environment. The collected data are also the basis for the design of all safety relevant structures, systems, and components. For example, the latter have to withstand the effects of natural phenomena such as earthquakes and human induced impact such as airplane crash without loosing their capability to perform the assigned safety functions. (authors)

  14. Aquifers of Arkansas: protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.

    2014-01-01

    Sixteen aquifers in Arkansas that currently serve or have served as sources of water supply are described with respect to existing groundwater protection and management programs, geology, hydrologic characteristics, water use, water levels, deductive analysis, projections of hydrologic conditions, and water quality. State and Federal protection and management programs are described according to regulatory oversight, management strategies, and ambient groundwater-monitoring programs that currently (2013) are in place for assessing and protecting groundwater resources throughout the State.

  15. Geologic and geochemical studies of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, R.E.; Shimp, N.F.

    1980-06-30

    The Illinois State Geological Survey is conducting geological and geochemical investigations to evaluate the potential of New Albany Group shales as a source of hydrocarbons, particularly natural gas. Geological studies include stratigraphy and structure, mineralogic and petrographic characterization; analyses of physical properties; and development of a computer-based resources evaluation system. Geochemical studies include organic carbon content and trace elements; hydrocarbon content and composition; and adsorption/desorption studies of gas through shales. Separate abstracts have been prepared for each task reported.

  16. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  17. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  18. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    Science.gov (United States)

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  19. Overview of geology, hydrology, geomorphology, and sediment budget of the Deschutes River Basin, Oregon.

    Science.gov (United States)

    Jim E. O' Connor; Gordon E. Grant; Tana L. Haluska

    2003-01-01

    Within the Deschutes River basin of central Oregon, the geology, hydrology, and physiography influence geomorphic and ecologic processes at a variety of temporal and spatial scales. Hydrologic and physiographic characteristics of the basin are related to underlying geologic materials. In the southwestern part of the basin, Quaternary volcanism and tectonism has created...

  20. Perceiving the Crust in 3-D: A Model Integrating Geological, Geochemical, and Geophysical Data

    Science.gov (United States)

    Strati, Virginia; Wipperfurth, Scott A.; Baldoncini, Marica; McDonough, William F.; Mantovani, Fabio

    2017-12-01

    Regional characterization of the continental crust has classically been performed through either geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques fully integrated, due to limits of data coverage, quality, and/or incompatible data sets. We combine geologic observations, geochemical sampling, and geophysical surveys to create a coherent 3-D geologic model of a 50 × 50 km upper crustal region surrounding the SNOLAB underground physics laboratory in Canada, which includes the Southern Province, the Superior Province, the Sudbury Structure, and the Grenville Front Tectonic Zone. Nine representative aggregate units of exposed lithologies are geologically characterized, geophysically constrained, and probed with 109 rock samples supported by compiled geochemical databases. A detailed study of the lognormal distributions of U and Th abundances and of their correlation permits a bivariate analysis for a robust treatment of the uncertainties. A downloadable 3-D numerical model of U and Th distribution defines an average heat production of 1.5-0.7+1.4 µW/m3, and predicts a contribution of 7.7-3.0+7.7 TNU (a Terrestrial Neutrino Unit is one geoneutrino event per 1032 target protons per year) out of a crustal geoneutrino signal of 31.1-4.5+8.0 TNU. The relatively high local crust geoneutrino signal together with its large variability strongly restrict the SNO+ capability of experimentally discriminating among BSE compositional models of the mantle. Future work to constrain the crustal heat production and the geoneutrino signal at SNO+ will be inefficient without more detailed geophysical characterization of the 3-D structure of the heterogeneous Huronian Supergroup, which contributes the largest uncertainty to the calculation.

  1. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  2. Flow-through column experiments to determine the geochemical behavior of common hydrological tracers

    Science.gov (United States)

    Moola, P. S. N.; Sigfússon, B.; Stefansson, A.

    2015-12-01

    Tracer testing is one of the most effective methods used to study groundwater flow, reservoir characteristics and subsurface properties in geohydrology. Hydrological tracer tests were conducted with the basic assumption that the tracer is chemically inert and non-reactive. However, not all tracers behave non-reactive at different pH conditions, the particular tracer may interact with mineral surfaces in the reservoir. In order to study the geochemical behavior of some common hydrological tracers flow-through column experiments were conducted at 25°C. Six common hydrological tracers were investigated, amino G acid, fluorescein, napthionic acid, pyranine, rhodamine B and rhodamine G in porous rocks consisting of basaltic glass, quartz or rhyolite at pH 3, 6.5 and 9. Homogenous porous material of fixed grain size 45-125μm were dry packed in the column to conduct flow through column experiments. Tracers were pumped at fixed flow rates for 20 minutes and switched back to experimental blank solution and the tracer concentration monitored at the outlet. The measured break-through tracer curves were compared to theoretical 1-D reactive transport simulations calculated using the PHREEQC program (Parkhurst and Appelo, 1999). The data obtained from the breakthrough curves suggest that the tracers may be reactive, non-reactive and partially reactive depending on the rock type and solution pH. The tracers that were observed to be reactive showed the influence of adsorption and desorption. The results suggest that some tracers commonly used in ground water hydrology are not suitable under all conditions as they may react with the rocks of the groundwater system.

  3. Coupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms

    International Nuclear Information System (INIS)

    Scott Fendorf; Phil Jardine

    2006-01-01

    The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the vadose zone beneath the Hanford Tank Farms

  4. Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kvenvolden, K.A.; Claypool, G.E.

    1988-01-01

    The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

  5. A detailed examination of the chemical, hydrological, and geological properties influencing the mobility of 222radon and parent radionuclides in groundwater

    International Nuclear Information System (INIS)

    Sexsmith, K.S.

    1996-01-01

    This study examines hydrological, geological and geochemical controls on 222 Rn variability in groundwater in the Front Range of Colorado. Specific objectives of the study are: (1) to determine if there are any correlations or spatial relationships between 222 Rn and the geological, geochemical and hydrogeological data; and (2) to determine whether it is geochemically reasonable for observed 222 Rn levels to be the result of U and 226 Ra accumulation by fracture filling minerals. Domestic-water wells were sampled and tested to determine the local aquifer characteristics and aqueous geochemistry. A multivariate and staged approach was used in the data analyses. Analysis of variance tests were used to test for relationships between 222 Rn and the lithology of the study wells. The effects of rock-type were then removed from the chemical and hydrological variables by subtracting the mean value for each rock-type from each of the measured values within that rock-type (a residual transformation). Linear and linear multiple regression techniques were used to test for expected relationships between residual 222 Rn levels and these variables, and stepwise linear regressions were used to test for any unforeseen multivariate relationships in the data. Correlograms, distance-weighted average and inverse-distance-weighted average predictions were used to look for spatial relationships in the data

  6. A detailed examination of the chemical, hydrological, and geological properties influencing the mobility of {sup 222}radon and parent radionuclides in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sexsmith, K.S.

    1996-12-31

    This study examines hydrological, geological and geochemical controls on {sup 222}Rn variability in groundwater in the Front Range of Colorado. Specific objectives of the study are: (1) to determine if there are any correlations or spatial relationships between {sup 222}Rn and the geological, geochemical and hydrogeological data; and (2) to determine whether it is geochemically reasonable for observed {sup 222}Rn levels to be the result of U and {sup 226}Ra accumulation by fracture filling minerals. Domestic-water wells were sampled and tested to determine the local aquifer characteristics and aqueous geochemistry. A multivariate and staged approach was used in the data analyses. Analysis of variance tests were used to test for relationships between {sup 222}Rn and the lithology of the study wells. The effects of rock-type were then removed from the chemical and hydrological variables by subtracting the mean value for each rock-type from each of the measured values within that rock-type (a residual transformation). Linear and linear multiple regression techniques were used to test for expected relationships between residual {sup 222}Rn levels and these variables, and stepwise linear regressions were used to test for any unforeseen multivariate relationships in the data. Correlograms, distance-weighted average and inverse-distance-weighted average predictions were used to look for spatial relationships in the data.

  7. Geologic reconnaissance and geochemical analysis of ferromanganese crusts of the Ratak Chain, Marshall Islands

    Science.gov (United States)

    Schwab, W.C.; Davis, A.S.; Haggerty, J.A.; Ling, T.H.; Commeau, J.A.

    1984-01-01

    The U.S. Geological Survey R/V S.P. LEE (cruise L9-84-CP) left Majuro, Ratak chain of the Marshall Islands, on July 28, 1984 and reached Hawaii on August 15, 1984. The main objective of this cruise was to study the distribution and composition of ferromanganese-oxide crusts in the Marshall Islands area (Fig. 1). A total of 5410 km of 12-kHz and 3.5-kHz seismic-reflection data, and 730 km of 80-in3 to 148-in3 airgun seismic-reflection data were collected. A description of these data and the ship-tracklines are presented in Schwab and Bailey (1984). This open-file report describes the types of samples collected and tabulates the results of our preliminary geochemical analyses of the ferromanganese-oxide crusts.

  8. The geological, geochemical, topographical and hydrogeological characteristics of the Broubster natural analogue site, Caithness

    International Nuclear Information System (INIS)

    Ball, T.K.; Milodowski, A.E.

    1991-01-01

    One of the four analogue sites chosen for investigation by the British Geological Survey is the uranium mineralization at Broubster, Caithness, Scotland. Naturally occurring uranium has been leached from a thin mineralized limestone horizon and has been carried by groundwater flow into a peat bog about 100 m away. This process has probably been going on for at least 5 000 years. Standard surveying, hydrogeological and geochemical methods have been applied in the investigation and analysis of the area. Selected samples of the mineralization, peat soils and associated groundwaters have been examined in detail. This report summarizes the main findings accumulated since 1968 when the site was first discovered, and provides a useful information base for further modelling work. 27 refs.; 12 plates; 40 figs.; 17 tabs

  9. The geological, geochemical, topographical and hydrogeological characteristics of the Broubster natural analogue site, Caithness

    International Nuclear Information System (INIS)

    Ball, T.K.; Milodowski, A.E.

    1989-06-01

    One of the four natural analogue sites chosen for investigation by the British Geological Survey is the uranium mineralisation at Broubster, Caithness, Scotland. Naturally occurring uranium has been leached from a thin mineralised limestone horizon and has been carried by groundwater flow into a peat bog about 100m away. This process has probably been going on for at least 5000 years. Standard surveying, hydrogeological and geochemical methods have been applied in the investigation and analysis of the area. Selected samples of the mineralisation, peat soils and associated groundwaters have been examined in detail. This report summarises the main findings accumulated since 1968 when the site was first discovered, and provides a useful information base for further modelling work. (author)

  10. Application of hydro-geochemical simulator to the issues on geological environment

    International Nuclear Information System (INIS)

    Miyoshi, Satoru; Miura, Toshihiko; Tajima, Takatoshi; Kimura, Yukinobu

    2009-01-01

    Recently, it has become clear that the chemical circumstances under which long-term geological evolution occurs must be properly evaluated in order to develop effective remediation programs for contaminated soil, landfills, radioactive waste repositories, and carbon dioxide capture and storage. The issue of acidic leakage from excavated rock stuck was assessed using a hydro-geochemical simulator, TOUGHREACT. We concluded that in order to properly investigate the phenomenon of acidic leakage from excavated pyrite-containing rock stuck, it is important to obtain accurate information about the following factors: intensity of rainfall, unsaturated flow properties of the excavated rock stuck, specific surfaces for oxidation reaction of pyrite, the species and the quantity of other minerals contained in the rock, and secondary minerals produced. (author)

  11. Detailed geochemical survey for east-central Minnesota, geology and geochemistry of selected uranium targets

    International Nuclear Information System (INIS)

    Morey, G.B.; Lively, R.S.

    1980-01-01

    Results of a detailed geochemical survey of approximately 6820 km 2 in parts of Aitkin, Carlton, Kanabec, and Pine Counties, east-central Minnesota are reported. Geochemical data are presented for 883 groundwater samples and 200 bedrock samples. Although all of the groundwaters in the study area have similar major-element concentrations and therefore presumably a common ancestry, small differences in the minor-element concentrations serve to characterize various aquifers, both in the Quaternary deposits and in the bedrock. All of the aquifers locally yield waters having statistically anomalous concentrations of uranium or radon, but these anomalies are spatially coincident only in a few places and particularly in three geologic environments considered favorable for uranium mineralization. These include the following: (1) Thomson Formation near the unconformably overlying Fond du Lac Formation, (2) Hinckley Sandstone near a major fault system, and (3) Denham Formation near the unconformity with the McGrath Gneiss, particularly where these rocks are faulted and overlain by the Fond du Lac Formation. One additional uranium environment characterized by thin laminae of uraniferous apatite was located in the Thomson Formation during outcrop reconnaissance and sampling. The coincidence of this and other anomalously high uranium values in the bedrock with specific uranium and radon anomalies in the groundwater confirms the usefulness of the hydrogeochemical data to uranium exploration in this glaciated terrane

  12. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  13. Geochemical and hydrological processes controlling groundwater quality in Assiut Governorate, Egypt

    Science.gov (United States)

    Mohammad, R. G.; Tempel, R.; Gomaa, M.; Korany, E.

    2011-12-01

    Groundwater in Assiut area, Egypt, is an important source of fresh water for human consumption, agriculture, and domestic and industrial purposes. Due to a growing population and expansion of agricultural reclamation projects in the desert fringes of the Nile Valley, there is an increasing water demand in this arid region. This study has investigated the geochemical and hydrological processes that control groundwater quality within the Pleistocene, Plio-Pleistocene, and Eocene aquifers in Assiut, in addition to the hydraulic relationships between surface and groundwater systems and the relations among the defined groundwater aquifers. A total of 28 surface and 160 groundwater samples were collected for geochemical analysis (major and minor element chemistry, and stable isotope analyses). Total dissolved solids = 182 to 5657 mg/L, water-delta 18O = -7.5 to +6.5%, and water-delta D = -55 to +32%. Geochemical and stable isotope data indicate that the principal source of recharge to the Pleistocene and Plio-Pleistocene aquifers is the surface water system (irrigation canals), while the prevalence of Na-Cl type waters in the Eocene aquifer indicates recharge by upward leakage from the underlying Nubian sandstone aquifer which contains the same Na-Cl water type. Evaporation prior to infiltration, mixing, and mineral equilibria (dissolution and precipitation) are the main factors that affect water quality. Ion exchange plays a secondary role in controlling the water chemistry of the Pleistocene aquifer, but is more effective in controlling water quality within the Plio-Pleistocene and Eocene aquifers due to the prevalence of clay minerals within the matrices. The fresh water exploited from the Eocene aquifer may be of great importance for land reclamation projects not only at the western desert fringes, but also at the eastern desert fringes of Assiut and similar settings around the River Nile south of Assiut Governorate. Results of this study will be helpful for

  14. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  15. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ({sup 18}O, {sup 2}H, {sup 13}C, {sup 34}S, {sup 87}Sr, {sup 15}N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  16. Geochemical and Hydrologic Factors Controlling Subsurface Transport of Poly- and Perfluoroalkyl Substances, Cape Cod, Massachusetts.

    Science.gov (United States)

    Weber, Andrea K; Barber, Larry B; LeBlanc, Denis R; Sunderland, Elsie M; Vecitis, Chad D

    2017-04-18

    Growing evidence that certain poly- and perfluoroalkyl substances (PFASs) are associated with negative human health effects prompted the U.S. Environmental Protection Agency to issue lifetime drinking water health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in 2016. Given that groundwater is a major source of drinking water, the main objective of this work was to investigate geochemical and hydrological processes governing the subsurface transport of PFASs at a former fire training area (FTA) on Cape Cod, Massachusetts, where PFAS-containing aqueous film-forming foams were used historically. A total of 148 groundwater samples and 4 sediment cores were collected along a 1200-m-long downgradient transect originating near the FTA and analyzed for PFAS content. The results indicate that unsaturated zones at the FTA and at hydraulically downgradient former domestic wastewater effluent infiltration beds both act as continuous PFAS sources to the groundwater despite 18 and 20 years of inactivity, respectively. Historically different PFAS sources are evident from contrasting PFAS composition near the water table below the FTA and wastewater-infiltration beds. Results from total oxidizable precursor assays conducted using groundwater samples collected throughout the plume suggest that some perfluoroalkyl acid precursors at this site are transporting with perfluoroalkyl acids.

  17. Geochemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, Cape Cod, Massachusetts

    Science.gov (United States)

    Weber, Andrea K.; Barber, Larry B.; LeBlanc, Denis R.; Sunderland, Elsie M.; Vecitis, Chad D.

    2017-01-01

    Growing evidence that certain poly- and perfluoroalkyl substances (PFASs) are associated with negative human health effects prompted the U.S. Environmental Protection Agency to issue lifetime drinking water health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in 2016. Given that groundwater is a major source of drinking water, the main objective of this work was to investigate geochemical and hydrological processes governing the subsurface transport of PFASs at a former fire training area (FTA) on Cape Cod, Massachusetts, where PFAS-containing aqueous film-forming foams were used historically. A total of 148 groundwater samples and 4 sediment cores were collected along a 1200-m-long downgradient transect originating near the FTA and analyzed for PFAS content. The results indicate that unsaturated zones at the FTA and at hydraulically downgradient former domestic wastewater effluent infiltration beds both act as continuous PFAS sources to the groundwater despite 18 and 20 years of inactivity, respectively. Historically different PFAS sources are evident from contrasting PFAS composition near the water table below the FTA and wastewater-infiltration beds. Results from total oxidizable precursor assays conducted using groundwater samples collected throughout the plume suggest that some perfluoroalkyl acid precursors at this site are transporting with perfluoroalkyl acids.

  18. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  19. Hydrologic monitoring and selected hydrologic and environmental studies by the U.S. Geological Survey in Georgia, 2011–2013

    Science.gov (United States)

    Clarke, John S.; Dalton, Melinda J.

    2013-01-01

    This compendium of papers describes results of hydrologic monitoring and hydrologic and environmental studies completed by the U.S. Geological Survey (USGS) in Georgia during 2011–2013. The USGS addresses a wide variety of water issues in the State of Georgia working with local, State, and Federal partners. As the primary Federal science agency for water resource information, the USGS monitors the quantity and quality of water in the Nation’s rivers and aquifers, assesses the sources and fate of contaminants in aquatic systems, collects and analyzes data on aquatic ecosystems, develops tools to improve the application of hydrologic information, and ensures that its information and tools are available to all potential users. During 2011–2013, the USGS continued a long-term program of monitoring stream and groundwater resources, including flow, water quality, and water use. In addition, a variety of hydrologic and environmental studies were completed to assess water availability, hydrologic hazards, and the impact of development on water resources. Information on USGS activities in Georgia is available online at http://ga.water.usgs.gov/.

  20. Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life

    Science.gov (United States)

    Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)

    1997-01-01

    Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.

  1. Statistical treatment of geochemical data and its application in the geologic mapping and in the definition of the geochemical anomalies in the Alvo 2-Corpo 4 -Provincia Mineral de Carajas

    International Nuclear Information System (INIS)

    Moura, C.A.V.

    1982-01-01

    It was given a statistical treatment for the geochemical data about soil in the are named Alvo2 - Corpo4- in the Provincia Mineral de Carajas, Para, Brazil, for application of the geological mapping and definition of geochemical anomalies. (A.B.) [pt

  2. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    Science.gov (United States)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  3. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    Science.gov (United States)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15 concentration of NaCl up to 6 mol/kgH2O. The EoS allows us to predict equilibrium composition in both liquid and vapor phases, fugacity coefficients of components, and phase densities. Predictions show that inclusion of H2S in CO2 streams may lead to two-phase flow in pipelines. For H2S-CO2 mixtures at a given temperature the bubble and dew pressures decrease with increasing H2S content, while the mass density increases at low pressures and decreases at high pressures. Furthermore, the EoS can be incorporated into reservoir simulators so that the dynamic development of mixed fluid plumes in the reservoir can be simulated. Accurate modeling of fluid-mineral interactions must confront unresolved uncertainties of silicate dissolution - precipitation reaction kinetics. Most prominent among these uncertainties is the well-known lab-field apparent discrepancy in dissolution rates. Although reactive transport models that simulate the interactions between reservoir rocks and brine, and their attendant effects on porosity and permeability changes, have proliferated, whether these results have acceptable uncertainties are unknown. We have conducted a series of batch experiments at elevated temperatures and numerical simulations of coupled dissolution and precipitation reactions. The results show that taking into account of reaction coupling is able

  4. Results of the application of stable isotopes of light elements in geology and hydrology

    International Nuclear Information System (INIS)

    Jovan, Zoto

    2003-01-01

    Stable isotopes of light elements are used for studies in the fields of geology, agriculture, hydrogeology, hydrology, precipitation and geology of petroleum in our country. The results concerning application in geology and hydrology are presented. A - Determination of absolute geological age is very important for geological studies. There are several determination methods, but, for some specific analytical problems the potassium - argon method was used. The 40 K content of the monomineral geological sample is calculated from the content of K in the sample determined by the flame photometer. The 40 Ar content is determined by mass spectrometry. The results of our determination lie between 23.7 x 10 6 - 446.2 x 10 6 years and are in good correlation with the geological evaluations and in good agreement with the determinations of other laboratories. B - The stable isotopes of hydrogen and oxygen are used in the hydrologic studies in our country, but more interesting is the study of underground connection between Prespa and Ohrid lakes. Prespa and Ohrid lakes are in the East part of Albania at the border between Albania - Greece - Fyr. of Macedonia. The altitudes of Prespa and Ohrid lakes are 850 m and 690 m, respectively and between the lakes there are Mali I Thate and Galitcica mountains. On the side of Ohrid lake there are two big springs, Tushemishti in Albania territory and Sveti Naum in Fyr. of Macedonia territory. According to our data regarding δ 18 O and δ 2 H, an underground connection exists between Prespa lake and the big springs at the side of lake Ohrid. (author)

  5. Subduction between the Jiamusi and Songliao blocks: Geological, geochronological and geochemical constraints from the Heilongjiang Complex

    Science.gov (United States)

    Zhu, Chloe Yanlin; Zhao, Guochun; Ji, Jianqing; Sun, Min; Han, Yigui; Liu, Qian; Eizenhöfer, Paul R.; Zhang, Xiaoran; Hou, Wenzhu

    2017-06-01

    In Northeast China, oceanic subduction between the Jiamusi and Songliao blocks remains topic of hot debate. The Heilongjiang Complex has been regarded as an accretionary belt resulting from the subduction of an intervening ocean between the two blocks. In this study, we carry out extensive geological, geochemical and geochronological investigations on the sedimentary rocks, amphibolites and blueschists from the Heilongjiang Complex. The detrital zircons from meta-sedimentary rocks yield U-Pb age spams ranging from 268 to 780 Ma. Whereas the interlayered amphibolites show negative Nb-Ta-Ti and positive Pb anomalies and have a protolithic age of 188.2 ± 1.0 Ma, suggesting a subduction zone or magmatic arc origin in the Jurassic. The elevated initial Sr isotopic ratios (0.708-0.711) and negative εNd(t) values (- 4.3 to - 1.3) provide further evidence of the modification by upper continental crust during the magma ascending. LREE/HREE and MREE/HREE ratios suggest that the magma was likely derived from the mixing of lithospheric and asthenospheric melts. The presence of low Th/Ce (0.04-0.12) and Hf/Sm (0.35-0.55), but high Zr/Hf (35.4-43.4) and Pb/Ce (0.25-0.49) ratios strongly implies a contribution from subducted sediments. The identification of active continental margin type magmas of Early Jurassic age suggests that the subduction of the oceanic plate between the Jiamusi and Songliao blocks may have started around Early Jurassic time. In addition, the blueschists have a protolithic age of 186 ± 1.1 Ma and display geochemical affinities of oceanic island basalts, suggesting that the ocean between the Jiamusi and Songliao blocks closed sometime after 186 Ma. Mineral 40Ar/39Ar dating results from the Heilongjiang Complex further indicate that blueschist- to greenschist-facies metamorphism occurred in the Middle to Late Jurassic (158-175 Ma), marking the onset of termination of the oceanic subduction.

  6. Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman

    Science.gov (United States)

    Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M.; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S.

    2017-01-01

    Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3-, SO42-, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the

  7. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pilger, R.H. Jr. (ed.)

    1985-01-01

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  8. Learning to live with geologic and hydrologic hazards

    Science.gov (United States)

    Gori, Paula L.; Driedger, Carolyn L.; Randall, Sharon L.

    1999-01-01

    The Seattle, Washington, area is known for its livability and its magnificent natural setting. The city and nearby communities are surrounded by an abundance of rivers and lakes and by the bays of Puget Sound. Two majestic mountain ranges, the Olympics and the Cascades, rim the region. These splendid natural features are products of dynamic forces -- landslides, earthquakes, tsunamis, glaciers, volcanoes, and floods. The same processes that formed this beautiful landscape pose hazards to the ever-growing population of the region. To maintain the Seattle area's livability, public and private policymakers must learn to manage the area's vulnerability to natural hazards to protect its three million residents from loss and damage from future disasters. The U.S. Geological Survey (USGS) is working with other Federal and State agencies, the city of Seattle, and other local governments to provide necessary scientific information that will help communities manage the natural hazards. This information will be useful in planning future development, siting public facilities and businesses, and developing effective emergency plans. -- Gori, et.al., 1999

  9. Differentiating between anthropogenic and geological sources of nitrate using multiple geochemical tracers

    Science.gov (United States)

    Linhoff, B.; Norton, S.; Travis, R.; Romero, Z.; Waters, B.

    2017-12-01

    Nitrate contamination of groundwater is a major problem globally including within the Albuquerque Basin in New Mexico. Ingesting high concentrations of nitrate (> 10 mg/L as N) can lead to an increased risk of cancer and to methemoglobinemia in infants. Numerous anthropogenic sources of nitrate have been identified within the Albuquerque Basin including fertilizers, landfills, multiple sewer pipe releases, sewer lagoons, domestic septic leach fields, and a nitric acid line outfall. Furthermore, groundwater near ephemeral streams often exhibits elevated NO3 concentrations and high NO3/Cl ratios incongruous with an anthropogenic source. These results suggest that NO3 can be concentrated through evaporation beneath ephemeral streams and mobilized via irrigation or land use change. This study seeks to use extensive geochemical analyses of groundwater and surface water to differentiate between various sources of NO3 contamination. The U.S. Geological Survey collected 54 groundwater samples from wells and six samples from ephemeral streams from within and from outside of areas of known nitrate contamination. To fingerprint the sources of nitrate pollution, samples were analyzed for major ions, trace metals, nutrients, dissolved gases, δ15N and δ18O in NO3, δ15N within N2 gas, and, δ2H and δ18O in H2O. Furthermore, most sites were sampled for artificial sweeteners and numerous contaminants of emerging concern including pharmaceutical drugs, caffeine, and wastewater indicators. This study will also investigate the age distribution of groundwater and the approximate age of anthropogenic NO3 contamination using 3He/4He, δ13C, 14C, 3H, as well as pharmaceutical drugs and artificial sweeteners with known patent and U.S. Food and Drug Administration approval dates. This broad suite of analytes will be used to differentiate between naturally occurring and multiple anthropogenic NO3 sources, and to potentially determine the approximate date of NO3 contamination.

  10. Geochemical investigations by the U.S. Geological Survey on uranium mining, milling, and environmental restoration

    Science.gov (United States)

    Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.

    2000-01-01

    Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.

  11. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    Science.gov (United States)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport

  12. Hydrologic studies of the U.S. Geological Survey related to coal development on Colorado

    Science.gov (United States)

    ,

    1976-01-01

    This report summarizes the hydrologic studies related to coal development being conducted by the U.S. Geological Survey in the State of Colorado. The objective of the hydrologic data-acquisition program is to collect surface-water quality and quantity data and ground-water level records. These data are needed to define predevelopment conditions and to monitor the effects of construction and operation of coal mines and waste-disposal areas. Data-acquisition activities related to coal development in Colorado have concentrated on the Yampa River basin. A description of the hydrologic data-acquisition activities, including parameters collected and frequency of collection, precedes the summaries of the three interpretive studies currently in progress. Each study summary consists of the project title, definition of the problem being studied, objective of the study, approach of the study, and when known, the schedule for completion of the study and proposed report products resulting from the study. (Woodard-USGS)

  13. Geological and geochemical data for seamounts and associated ferromanganese crusts in the Ratak Chain, Marshall Islands

    Science.gov (United States)

    Schwab, W.C.; Hein, J.R.; Davis, A.S.; Morgenson, L.A.; Daniel, C.L.; Haggerty, J.A.

    1986-01-01

    In 1984, the U.S. Geological Survey (USGS) conducted a reconnaissance cruise L9-84-CP aboard the R/V S.P. LEE along the northern Ratak Ridge, Marshall Islands (Fig. 1). Preliminary geochemical results from the cruise show that ferromanganese crusts (Mn crusts) on the submarine slopes of seamounts, and islands may have potential for commercial exploitation (Schwab and others, 1985). In this report we present shipboard data and laboratory analyses for rock samples collected on cruise L9-84-CP. This report should supplement the reports of Schwab and Bailey (1985) and Schwab and others (1985). A total of 5410 km of 12-kHz and 3.5-kHz seismic-reflection data, and q O 730 km of 80-in3 and 148-in3 airgun seismic-reflection data were collected on cruise L9-84-CP (Schwab and Bailey, 1985). Eighteen sample stations were occupied; 13 dredge hauls and 3 box cores were collected (Table 1). These samples are available at the USGS Branch of Pacific Marine Geology offices in Menlo Park, California. Data presented in this report should encourage a more extensive field investigation and serious economic and technical evaluation of Mn crusts within the Marshall Islands area. Ferromanganese-oxide precipitates that encrust hard substrate on the submarine flanks of seamounts, guyots, atolls, islands, and linear volcanic ridges, have been known for several decades (Cronan, 1977; Frazer and Fisk, 1980) but were not studied in a systematic way until the West German MIDPAC expedition of 1981 (Halbach and others, 1982). Unlike abyssal ferromanganese nodules, Mn crusts contain higher concentrations of the economically attractive metals, cobalt and platinum (Toth, 1980; Craig and others, 1982; Halbach and others, 1984; Hein and others, 1985). Mn crusts are predominantly hydrogenous in origin, in contrast to abyssal ferromanganese nodules which also have a substantial diagenetic input (Halbach and others, 1981). In order for a Mn crust deposit to be economically attractive, it must be of high

  14. An integrated geological, geochemical, and geophysical investigation of uranium metallogenesis in selected granitic plutons of the Miramichi Anticlinorium, New Brunswick

    International Nuclear Information System (INIS)

    Hassan, H.H.; McAllister, A.L.

    1992-01-01

    Integrated geological, geochemical, and geophysical data for the post-tectonic granitic rocks of the North Pole, Burnthill, Dungarvon, Trout Brook, and Rocky Brook plutons and surrounding areas were examined to assess their potential for uranium mineralization. Geological, geochemical, and geophysical criteria that are thought to be useful guides for uranium exploration were also established for the host granites. The granitic plutons were emplaced discordantly, late in the tectonomagmatic sequence and at shallow depths within the metasedimentary rocks of the Miramichi Anticlinorium. Geochemically, the host granites are highly evolved (Si0 2 > 75 wt. %), peraluminous and have strong similarities with ilmenite-series 'S-type' and 'A-type' granitoids. Uranium occurrences are spatially and perhaps temporally associated with late-phase differentiates of the plutons where elevated levels of other lithophile elements such as Sn, W, Mo, and F were also detected. Geophysically, the granitic plutons are associated with distinctively high aeroradiometric eU, eTh, and K anomalies that coincide with strong negative Bouguer anomalies and low magnetic values. Conceptual models involving magmatic and hydrothermal processes have been adopted to explain the concentration of uranium and associated metals in the granitic plutons

  15. Influence of deterministic geologic trends on spatial variability of hydrologic properties in volcanic tuff

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.; Chornack, M.P.; Istok, J.D.

    1992-01-01

    Hydrologic properties have been measured on outcrop samples taken from a detailed, two-dimension grid covering a 1.4 km outcrop exposure of the 10-m thick non-welded-to-welded, shardy base microstratigraphic unit of the Tiva Canyon Member of the Miocene Paintbrush Tuff at Yucca Mountain, Nevada. These data allow quantification of spatial trends in rock matrix properties that exist in this important hydrologic unit. Geologic investigation, combined with statistical and geostatistical analyses of the numerical data, indicates that spatial variability of matrix properties is related to deterministic geologic processes that operated throughout the region. Linear vertical trends in hydrologic properties are strongly developed in the shardy base microstratigraphic unit, and they are more accurately modeled using the concept of a thickness-normalized stratigraphic elevation within the unit, rather than absolute elevation. Hydrologic properties appear to be correlated over distances of 0.25 to 0.3 of the unit thickness after removing the deterministic vertical trend. The use of stratigraphic elevation allows scaling of identified trends by unit thickness which may be of particular importance in a basal, topography-blanketing unit such as this one. Horizontal changes in hydrologic properties do not appear to form obvious trends within the limited lateral geographic extent of the ash-flow environment that was examined. Matrix properties appear to be correlated horizontally over distances between 100 and 400 m. The existence and quantitative description of these trends and patterns of vertical spatial continuity should increase confidence in models of hydrologic properties and groundwater flow in this area that may be constructed to support the design of a potential high-level nuclear waste repository at Yucca Mountain

  16. Toxic substances hydrology programs of the U.S. Geological survey

    International Nuclear Information System (INIS)

    Cohen, P.

    1991-01-01

    The US Geological Survey has been investigating ground-water and surface-water contamination for more than 100 years. Currently, more than half the Geological Survey's annual funding of about $280 million for water-related activities is spent on applied and basic research and associated data collection related to ground-water and surface-water quality. Among the problems that this research and data collection address are those related to point and nonpoint sources of contamination of ground water and surface water by organic, inorganic, and radioactive substances. Research being carried out by the Geological Survey includes process-oriented and regional contamination studies of heavy metals, hydrocarbons, organic solvents, and agricultural chemicals in the Toxic Substances Hydrology Program; high-and low-level radioactive waste studies in the Nuclear Waste Hydrology Program; studies of irrigation-induced contamination by selenium in the National Irrigation Drainage Program; and a number of National Research Program studies such as those related to coupled fluid flow and research activities relative to ground-water and surface-water contamination will continue to grow in the Geological Survey's effort to assist the US in addressing concerns about the quality of the water resources of the Nation and the prudent stewardship of these resources

  17. Accounting for geochemical alterations of caprock fracture permeability in basin-scale models of leakage from geologic CO2 reservoirs

    Science.gov (United States)

    Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.

    2012-12-01

    Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2

  18. Open hydrology courseware using the United States Geological Survey’s National Water Census Data Portal

    Science.gov (United States)

    Nelson, Jake; Ames, Daniel P.; Blodgett, David L.

    2018-01-01

    The U.S. Geological Survey (USGS) is the primary U.S. Government agency for water data collection and dissemination. In this role, the USGS has recently created and deployed a National Water Census Data Portal (NWC-DP) which provides access to streamflow, evapotransporation, precipitation, aquatic biology and other data at the national level. Recognizing the value of these data sets for hydrologic science education, this paper presents an effort to bridge the gap between pencil–and-paper-based hydrology curriculum and the USGS NWC-DP resource. Specifically, we have developed an R package, National Water Census Education (NWCEd), and five associated laboratory exercises that integrate R- and web-services-based access to the NWC-DP data sets. Using custom functions built into the NWCEd, students are able to access unprecedented amounts of hydrologic data from the NWC-DP, which can be applied to current hydrology curriculum and analyzed using NWCEd and a number of other open-source R tools.

  19. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  20. Earth sciences: Uranium geology, exploration and mining, hydrology, 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with earth sciences and issued during the period of 1986-1996. These topics are mainly in the field of uranium geology, exploration and mining, isotope applications in hydrology, IAEA Yearbook 1996 on the developments in nuclear science and technology and meetings on atomic energy. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English but all of these papers have English abstracts. The prices of books are quoted in Austrian Schillings

  1. Assessment of geochemical and hydrologic conditions near Old Yuma Mine in Saguaro National Park, Arizona, 2014–17

    Science.gov (United States)

    Beisner, Kimberly R.; Gray, Floyd

    2018-03-13

    The Old Yuma Mine is an abandoned copper, lead, zinc, silver, and gold mine located within the boundaries of Saguaro National Park, Tucson Mountain District, Arizona. This study analyzed the geochemistry of sediments associated with the Old Yuma Mine and assessed hydrologic and geochemical conditions of groundwater to evaluate the area surrounding the Old Yuma Mine. The purpose of the study was to establish the geochemical signature of material associated with the Old Yuma Mine and to compare it with background material and groundwater in the area. Few groundwater samples exceeded the U.S. Environmental Protection Agency (EPA) drinking water standards. Concentrations of several elements were elevated in the waste rock and mine tailings compared with concentrations in sediments collected in background areas. A subset of 15 sediment samples was leached to simulate precipitation interacting with the solid material. Analysis of leachate samples compared to groundwater samples suggests that groundwater samples collected in this study are distinct from leachate samples associated with mining related material. Results suggest that at this time groundwater samples collected during this investigation are not influenced by elements leached from Old Yuma Mine materials.

  2. Spatial analysis of geologic and hydrologic features relating to sinkhole occurrence in Jefferson County, West Virginia

    Science.gov (United States)

    Doctor, Daniel H.; Doctor, Katarina Z.

    2012-01-01

    In this study the influence of geologic features related to sinkhole susceptibility was analyzed and the results were mapped for the region of Jefferson County, West Virginia. A model of sinkhole density was constructed using Geographically Weighted Regression (GWR) that estimated the relations among discrete geologic or hydrologic features and sinkhole density at each sinkhole location. Nine conditioning factors on sinkhole occurrence were considered as independent variables: distance to faults, fold axes, fracture traces oriented along bedrock strike, fracture traces oriented across bedrock strike, ponds, streams, springs, quarries, and interpolated depth to groundwater. GWR model parameter estimates for each variable were evaluated for significance, and the results were mapped. The results provide visual insight into the influence of these variables on localized sinkhole density, and can be used to provide an objective means of weighting conditioning factors in models of sinkhole susceptibility or hazard risk.

  3. Multidisciplinary Studies of the Fate and Transport of Contaminants in Ground Water at the U.S. Geological Survey Cape Cod Toxic Substances Hydrology Program Research Site, Massachusetts

    Science.gov (United States)

    Leblanc, D. R.; Smith, R. L.; Kent, D. B.; Barber, L. B.; Harvey, R. W.

    2008-12-01

    The U.S. Geological Survey conducts multidisciplinary research on the physical, chemical, and microbiological processes affecting ground-water contaminants of global concern at its Cape Cod Toxic Substances Hydrology Program site in Massachusetts, USA. The work centers on a 6-kilometer-long plume of treated wastewater in a glacial sand and gravel aquifer. The plume is characterized by distinct geochemical zones caused by the biodegradation of organic materials in treated wastewater that was disposed to the aquifer by rapid infiltration during the period 1936-95. A core group of hydrogeologists, geochemists, microbiologists, and geophysicists has been involved in the research effort for more than two decades. The effort has been enhanced by stable funding, a readily accessible site, a relatively simple hydrologic setting, and logistical support from an adjacent military base. The research team uses a three-part approach to plan and conduct research at the site. First, detailed spatial and temporal monitoring of the plume since the late 1970s provides field evidence of important contaminant-transport processes and provides the basis for multidisciplinary, process-oriented studies. Second, ground-water tracer experiments are conducted in various geochemical zones in the plume to study factors that control the rate and extent of contaminant transport. Several arrays of multilevel sampling devices, including an array with more than 15,000 individual sampling points, are used to conduct these experiments. Plume-scale (kilometers) and tracer-test-scale (1- 100 meters) studies are complemented by laboratory experiments and mathematical modeling of flow and reactive transport. Third, results are applied to the treated-wastewater plume, other contaminant plumes at the military base, and other sites nationally to evaluate the applicability of the findings and to point toward further research. Examples of findings to date include that (1) macrodispersivity can be related to

  4. Climate change, geological and hydrological hazard and adaptation policy in Italy

    Science.gov (United States)

    Margottini, Claudio; Spizzichino, Daniele

    2010-05-01

    The present work try to underling the scientific and technical background for a national plan for adaptation to climate change in the field of geo hydrological disasters. The adaptation policy represents the need tool to prevent from the adverse effect of climate change, minimizing the impacts and maximizing the opportunity from these changes. The "decision and policy makers" therefore needs to understand the vulnerability of existing territory in terms of impacts, related risks, opportunities, costs and consequences of different options and scenarios. Climate change has significant impacts on the hydrological cycle and all its related phenomena. Landslide and floods represent the conflict between natural and physic system and social and economical setting, constituting a fundamental imbalance and risk for population. Italian territory due to geological and geomorphological settings is always been interested by geological and hydrological extreme events. Between 1279 and 2002 A.D. in Italy, the AVI catalog (http://avi.gndci.cnr.it) recorded 4521 extreme events in terms of damages. In the same period we had 13.8 victims per year during landslide and 49.6 victims per year due to floods. To define a strong correlation between actual trend in occurrence of geological and hydrological hazards and future scenarios, it seems to be very difficult. The correlation should consider the relationship between meteorological trigger mechanisms (not yet very well associated to climate change) and hazard. For the Italian situations the most recent models provide the following scenario: further increase in temperature (steadily increasing trend already in the last two decades) with increasing periods of drought and heat waves; a general decrease in average precipitation; a decrease in wet days; an increase in intensity of rainfall (extreme events). Such trend seem to be more relevant in the southern part of Italy. The same problems arise when defining the socio economic impacts. The

  5. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W. (comps.)

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  6. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    International Nuclear Information System (INIS)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W.

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword

  7. Understanding watershed hydrogeochemistry: 2. Synchronized hydrological and geochemical processes drive stream chemostatic behavior

    Science.gov (United States)

    Li, Li; Bao, Chen; Sullivan, Pamela L.; Brantley, Susan; Shi, Yuning; Duffy, Christopher

    2017-03-01

    Why do solute concentrations in streams remain largely constant while discharge varies by orders of magnitude? We used a new hydrological land surface and reactive transport code, RT-Flux-PIHM, to understand this long-standing puzzle. We focus on the nonreactive chloride (Cl) and reactive magnesium (Mg) in the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO). Simulation results show that stream discharge comes from surface runoff (Qs), soil lateral flow (QL), and deeper groundwater (QG), with QL contributing >70%. In the summer, when high evapotranspiration dries up and disconnects most of the watershed from the stream, Cl is trapped along planar hillslopes. Successive rainfalls connect the watershed and mobilize trapped Cl, which counteracts dilution effects brought about by high water storage (Vw) and maintains chemostasis. Similarly, the synchronous response of clay dissolution rates (Mg source) to hydrological conditions, maintained largely by a relatively constant ratio between "wetted" mineral surface area Aw and Vw, controls Mg chemostatic behavior. Sensitivity analysis indicates that cation exchange plays a secondary role in determining chemostasis compared to clay dissolution, although it does store an order-of-magnitude more Mg on exchange sites than soil water. Model simulations indicate that dilution (concentration decrease with increasing discharge) occurs only when mass influxes from soil lateral flow are negligible (e.g., via having low clay surface area) so that stream discharge is dominated by relatively constant mass fluxes from deep groundwater that are unresponsive to surface hydrological conditions.

  8. Geology and Hydrology Drive Benthic Fungal Community Structure in a Lowland River System

    Science.gov (United States)

    Mansour, I.; Heppell, C. M.; McKew, B.; Dumbrell, A.; Whitby, C. B.; Veresoglou, S.; Leung, G.; Binley, A. M.; Lansdown, K.; Trimmer, M.; Olde, L.; Rillig, M.

    2017-12-01

    Despite their essential roles in ecosystem functioning, exceptionally little is known about fungal communities and the ecological processes regulating their structure. This is particularly true for riverine ecosystems, where almost nothing about the diversity of their fungal communities is known. In this field study, benthic sediment samples and surface water samples were collected seasonally from lowland rivers (Hampshire Avon catchment, UK) underlain by three distinct parent geologies (clay, Greensand and Chalk), across a hydrological gradient of baseflow index ranging from 0.23 to 0.95. Fungal communities were assessed using high-throughput sequencing and community data were analyzed via ordination, variance partitioning and indicator species analysis. We found that distinct fungal communities inhabited the benthic sediments of the differing geologies. Clay sediments were dominated by the yeast Cryptococcus podzolicus, the hyphomycete Pseudeuotium hygrophilum, Mortierella, and unidentified fungi in the class Sordariomycetes - the latter two also common within Greensand sediments along with seasonal spikes in Rhizophydium littoreum, a parasite of green algae. An unidentified fungus from the phylum Ascomycota was numerically dominant at all chalk sites and across all seasons. Spatial variables explained only a negligible proportion of variance between communities, indicating that environmental and biotic processes drive the differences between the observed fungal communities rather than purely spatial mechanisms (e.g. stochastic processes). Season was a highly significant predictor of community structure (p=0.005) and baseflow index explained some of the variance within the fungal community data across seasons. This study demonstrates that deterministic rather than stochastic processes are important for structuring lotic fungal communities, and, for the first time, shows that underlying geology and associated differences in hydrology are drivers of fungal

  9. Snowmelt Induced Hydrologic Perturbations Drive Dynamic Microbiological and Geochemical Behaviors across a Shallow Riparian Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Danczak, Robert E.; Yabusaki, Steven B.; Williams, Kenneth H.; Fang, Yilin; Hobson, Chad; Wilkins, Michael J.

    2016-05-11

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments. Frontiers in Earth Science Journal Impact & Description - ResearchGate - Impact Rankings ( 2015 and 2016 ). Available from: https://www.researchgate.net/journal/2296-6463_Frontiers_in_Earth_Science [accessed Jul 25, 2016].

  10. Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.

    1995-08-01

    Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

  11. Modelling of water-gas-rock geo-chemical interactions. Application to mineral diagenesis in geological reservoirs

    International Nuclear Information System (INIS)

    Bildstein, Olivier

    1998-01-01

    Mineral diagenesis in tanks results from interactions between minerals, water, and possibly gases, over geological periods of time. The associated phenomena may have a crucial importance for reservoir characterization because of their impact on petrophysical properties. The objective of this research thesis is thus to develop a model which integrates geochemical functions necessary to simulate diagenetic reactions, and which is numerically efficient enough to perform the coupling with a transport model. After a recall of thermodynamic and kinetic backgrounds, the author discusses how the nature of available analytic and experimental data influenced choices made for the formalization of physical-chemical phenomena and for behaviour laws to be considered. Numerical and computational aspects are presented in the second part. The model is validated by using simple examples. The different possible steps during the kinetic competition between two mineral are highlighted, as well the competition between mineral reaction kinetics and water flow rate across the rock. Redox reactions are also considered. In the third part, the author reports the application of new model functions, and highlights the contribution of the modelling to the understanding of some complex geochemical phenomena and to the prediction of reservoir quality. The model is applied to several diagenetic transformations: cementation of dolomitic limestone by anhydride, illite precipitation, and thermal reduction of sulphates [fr

  12. Source document compilation: Los Alamos investigations related to the environment, engineering, geology, and hydrology, 1961--1990. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D. [comp.

    1994-03-01

    This document is a compilation of informal reports, letters, and memorandums regarding geologic and hydrologic studies and investigations such as foundation investigations for structures, drilling or coring for environmental studies, development of water supply, or construction of test or observation wells for monitoring. Also included are replies requested for specific environmental, engineering, geologic, and hydrologic problems. The purpose of this document is to preserve and make the original data available to the environmental studies that are now in progress at Los Alamos and provide a reference for and supplement the LAMS report ``Records of Observation Wells, Test Holes, Test Wells, Supply Wells, Springs, and Surface water stations at Los Alamos: with Reference to the Geology and Hydrology,`` which is in preparation. The informal reports and memorandums are listed chronologically from December 1961 to January 1990. Item 208 is a descriptive history of the US Geological Survey`s activities at Los Alamos from 1946 through 1972. The history includes a list of published and unpublished reports that cover geology, hydrology, water supply, waste disposal, and environmental monitoring in the Los Alamos area.

  13. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Thomas, J.M.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1980-09-01

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword

  14. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. [474 references

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1980-09-01

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword.

  15. Hydrological and geological preliminary studies in the scope of the RMB project

    International Nuclear Information System (INIS)

    Ferreira, Vinicius V.M.; Barreto, Alberto A.; Aleixo, Bruna L.

    2011-01-01

    The RMB - Brazilian Multipurpose Reactor is a project that will contribute decisively in order to develop the science and the technology of the country. However, the licensing process of this facility is not a simple task, since it involves nuclear and environmental questions. The utilization of geoprocessing tools became in the last years an important technique to aid the development of several studies, and will be necessary also in this project. The objective of this work is to present the first hydrological and geological geoprocessing studies done in order to support the future environmental licensing process of the facility. The results show that further efforts should be done since there is a lack of many data needed for the next steps. (author)

  16. Radionuclide field lysimeter experiment (RadFLEx): geochemical and hydrological data for SRS performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Powell, B. [Clemson Univ., SC (United States); Barber, K. [Clemson Univ., SC (United States); Devol, T. [Clemson Univ., SC (United States); Dixon, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Erdmann, B. [Clemson Univ., SC (United States); Maloubier, M. [Clemson Univ., SC (United States); Martinez, N. [Clemson Univ., SC (United States); Montgomery, D. [Clemson Univ., SC (United States); Peruski, K. [Clemson Univ., SC (United States); Roberts, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Witmer, M. [Clemson Univ., SC (United States)

    2017-12-12

    The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2) to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.

  17. Hydrologic and geochemical factors governing chemical evolution of discharges from an abandoned, flooded, underground coal mine network

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, K.M.; Lambert, D.C.; Mugunthan, P.; Dzombak, D.A. [Carnegie Mellon University, Pittsburgh, PA (US). Dept. of Civil and Environmental Engineering

    2005-04-01

    Discharges from some underground flooded coal mines have exhibited increases in pH and reductions in contaminant loadings with time. Data from a study of mine water quality evolution in interconnected, flooded mines of the Uniontown syncline, Southwestern Pennsylvania were evaluated with the aid of modeling to elucidate the hydrologic and geochemical factors responsible for such changes. Coal barriers left in place from mining operations define three hydraulically distinct but interconnected zones: the southern, central, and northern pools. Assuming each mine pool to behave as a completely mixed tank reactor, a steady-state, tanks-in-series model was developed to describe system hydraulics. Chemical modeling components were coupled with the tank reactor hydraulic model to simulate inputs to the mine voids, acid generation from pyrite dissolution, and discharge water quality. Empirical in-mine chemical production terms were estimated for each of the mine pools based on discharge data from 1974 to 1975 and 1998 to 2000. The production terms were then used to simulate discharge water quality for each of the mine pools over a 50 year period. Simulated water quality in the northern and central mine pools reached steady-state conditions approximately 25-30 years after the mine pools flooded, evolving over time to reflect the recharge water quality. The simulation results indicate that the evolution of mine water quality in the flooded mine voids has been governed by alkaline recharge water slowly displacing acidic 'first flush' water.

  18. A hydrological and geochemical survey of the groundwater resource of Favignana Island

    International Nuclear Information System (INIS)

    Grillini, Marcello; De Cassan, Maurizio; Proposito, Marco

    2015-01-01

    Small islands suffer water shortage, and tourist pressure makes it even worse: Favignana island is the site that best represents such conditions, due to the contrast between the intense anthropization and the harsh nature of the terrains. The ENEA study hypothesized a solution in identifying the best areas where groundwater is abundant and presents the best conditions to take water samples for anthropic use. With hydrological measurements and chemical analyses, an area theoretically interesting has been identified in the eastern sector, where groundwater is better in quality and just a few meters deep below the ground. Westwards, instead, it is at a lower depth and saltier, due to its more intense contamination with seawater. Yet the amount of available groundwater is everywhere so poor that more intense water sampling is not recommended: people have always been living in good balance with nature, and they know how to manage the island's groundwater resource, fed by rare precipitations, as a supplement to the drinking water supply coming from Trapani [it

  19. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. Vol. 2, Rev. 1

    International Nuclear Information System (INIS)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1979-07-01

    This bibliography, a compilation of 490 references, is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six data bases created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword

  20. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W. (comps.)

    1978-06-01

    A compilation of 490 references is presented which is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangel name, geoformational feature, taxonomic name, and keyword.

  1. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1978-06-01

    A compilation of 490 references is presented which is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangel name, geoformational feature, taxonomic name, and keyword

  2. Coastal submarine springs in Lebanon and Syria: Geological, Geochemical, and Radio-isotopic study

    International Nuclear Information System (INIS)

    Al-Charideh, A.

    2005-01-01

    The coastal karst aquifer system (Upper Cretaceous) and the submarine springs in the Syrian coast have been studied using chemical and isotopic methods in order to determine the hydraulic connections between the groundwater and the submarine springs. Results show that the groundwater and submarine springs are having the same slope on the δ 18 O/δ 2 H plot indicate the same hydrological origin for both. In addition this relation is very close to the Local Meteoric Water Line (LMWL) reflecting a rapid infiltration of rainfall to recharge coastal aquifer. The calculated percentage of freshwater in the two locations (Bassieh and Tartous) range from 20 to 96%. The estimation rate of the permanent submarines springs (BS1, BS2 and TS2, TS3) is 11m 3 /s or 350 million m 3 /y. The maximum residence time of the groundwater in the Cenomanian/Turonian aquifer was estimated at around 8 years, using the piston-flow model. (Author)

  3. Geological and geochemical reconnaissance in the central Santander Massif, Departments of Santander and Norte de Santander, Colombia

    Science.gov (United States)

    Evans, James George

    1976-01-01

    The central Santander Massif is composed of Precambrian Bucaramanga Gneiss and pre-Devonian Silgara Formation intruded by Mesozoic quartz diorite, quartz monzonite, and alaskite and Cretaceous or younger porphyry. Triassic (Bocas Formation), Jurassic (Jordan and Giron Formations).and Cretaceous (Tambor, Rosa Blanca, Paja, Tablazo, Simiti, La Luna, and Umir Formations) sedimentary rocks overlie the metamorphic rocks and are younger than most of the intrusions. A geological and geochemical reconnaissance of part of the central Santander Massif included the Vetas and California gold districts. At Vetas the gold is generally in brecciated aphanitic quartz and phyllonite. Dark-gray material in the ore may be graphite. The ore veins follow steep west-northwest- and north-northeast-striking fracture zones. No new gold deposits were found. Additional geochemical studies should concentrate on western Loma Pozo del Rey and on improvement of the gold extraction process. At California the gold is in pyritiferous quartz veins and quartz breccia. Ore containing black sooty material (graphite?) is highly radioactive. Some of the mineralization is post-Lower Cretaceous. Soil samples indicate that gold deposits lie under the thick blanket of soil on the ridges above the zone of mining. Three principal gold targets are outlined by gold and associated minerals in pan concentrates. The close relation of gold and copper anomalies suggests that copper may be useful as a pathfinder for gold elsewhere in the region. Based on occurrences of gold or high concentrations of pyrite or chalcopyrite in pan concentrates and on analytical data, eight potential gold targets are outlined in the central massif. Reconnaissance of the surrounding region is warranted.

  4. Influence of hydrological and geochemical processes on the transport of chelated metals and chromate in fractured shale bedrock.

    Science.gov (United States)

    Jardine, P M; Mehlhorn, T L; Larsen, I L; Bailey, W B; Brooks, S C; Roh, Y; Gwo, J P

    2002-03-01

    Field-scale processes governing the transport of chelated radionuclides in groundwater remain conceptually unclear for highly structured, heterogeneous environments. The objectives of this research were to provide an improved understanding and predictive capability of the hydrological and geochemical mechanisms that control the transport behavior of chelated radionuclides and metals in anoxic subsurface environments that are complicated by fracture flow and matrix diffusion. Our approach involved a long-term, steady-state natural gradient field experiment where nonreactive Br- and reactive 57Co(II)EDTA2- 109CdEDTA2-, and 51Cr(VI) were injected into a fracture zone of a contaminated fractured shale bedrock. The spatial and temporal distribution of the tracer and solutes was monitored for 500 days using an array of groundwater sampling wells instrumented within the fast-flowing fracture regime and a slower flowing matrix regime. The tracers were preferentially transported along strike-parallel fractures coupled with the slow diffusion of significant tracer mass into the bedrock matrix. The chelated radionuclides and metals were significantly retarded by the solid phase with the mechanisms of retardation largely due to redox reactions and sorption coupled with mineral-induced chelate-radionuclide dissociation. The formation of significant Fe(III)EDTA byproduct that accompanied the dissociation of the radionuclide-chelate complexes was believed to be the result of surface interactions with biotite which was the only Fe(III)-bearing mineral phase present in these Fe-reducing environments. These results counter current conceptual models that suggest chelated contaminants move conservatively through Fe-reducing environments since they are devoid of Fe-oxyhydroxides that are known to aggressively compete for chelates in oxic regimes. Modeling results further demonstrated that chelate-radionuclide dissociation reactions were most prevalent along fractures where accelerated

  5. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    White, M.B.; Garland, P.A. (comps.)

    1977-10-01

    This bibliography was compiled by selecting 580 references from the Bibliographic Information Data Base of the Department of Energy's (DOE) National Uranium Resource Evaluation (NURE) Program. This data base and five others have been created by the Ecological Sciences Information Center to provide technical computer-retrievable data on various aspects of the nation's uranium resources. All fields of uranium geology are within the defined scope of the project, as are aerial surveying procedures, uranium reserves and resources, and universally applied uranium research. References used by DOE-NURE contractors in completing their aerial reconnaissance survey reports have been included at the request of the Grand Junction Office, DOE. The following indexes are provided to aid the user in locating reference of interest: author, keyword, geographic location, quadrangle name, geoformational index, and taxonomic name.

  6. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography. Vol. 1

    International Nuclear Information System (INIS)

    White, M.B.; Garland, P.A.

    1977-10-01

    This bibliography was compiled by selecting 580 references from the Bibliographic Information Data Base of the Department of Energy's (DOE) National Uranium Resource Evaluation (NURE) Program. This data base and five others have been created by the Ecological Sciences Information Center to provide technical computer-retrievable data on various aspects of the nation's uranium resources. All fields of uranium geology are within the defined scope of the project, as are aerial surveying procedures, uranium reserves and resources, and universally applied uranium research. References used by DOE-NURE contractors in completing their aerial reconnaissance survey reports have been included at the request of the Grand Junction Office, DOE. The following indexes are provided to aid the user in locating reference of interest: author, keyword, geographic location, quadrangle name, geoformational index, and taxonomic name

  7. Geological-geochemical evidence for deep fluid action in Daqiaowu uranium deposit, Zhejiang province

    International Nuclear Information System (INIS)

    Qiu Linfei; Ou Guangxi; Zhang Jianfeng; Zhang Min; Jin Miaozhang; Wang Binghua

    2009-01-01

    Through the contrast study of petrography, micro thermometry and laser Raman ingredient analysis of fluid inclusion, this paper has verified the basic nature of ore-forming fluid (temperature, salinity and ingredient) in daqiaowu uranium deposit, discussed the origin of the ore-forming fluid with its structure character and geology-geochemistry character. The testing results indicats that ore-forming temperature of this deposit is between 200 degree C and 250 degree C in main metallogenetic period, which belongs to middle temperature hydrothermal. The ore-forming fluids are of middle-high salinity and rich in valatility suchas CO 2 , H 2 , CH 4 . To sum up, the deposit mineralization process should be affected by the deep fluid primarily, and the ore-forming fluid is mainly the mantle fluid.(authors)

  8. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variably Saturated Geologic Media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO 2 disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during heater

  9. Study of (U,Pu)O2 spent fuel matrix alteration under geological disposal conditions: Experimental approach and geochemical modeling

    International Nuclear Information System (INIS)

    Odorowski, Melina

    2015-01-01

    To assess the performance of direct disposal of spent fuel in a nuclear waste repository, researches are performed on the long-term behavior of spent fuel (UO x and MO x ) under environmental conditions close to those of the French disposal site. The objective of this study is to determine whether the geochemistry of the Callovian-Oxfordian (CO x ) clay geological formation and the steel overpack corrosion (producing iron and hydrogen) have an impact on the oxidative dissolution of the (U,Pu)O 2 matrix under alpha radiolysis of water. Leaching experiments have been performed with UO 2 pellets doped with alpha emitters (Pu) and MIMAS MO x fuel (un-irradiated or spent fuel) to study the effect of the CO x groundwater and of the presence of metallic iron upon the oxidative dissolution of these materials induced by the radiolysis of water. Results indicate an inhibiting effect of the CO x water on the oxidative dissolution. In the presence of iron, two different behaviors are observed. Under alpha irradiation as the one expected in the geological disposal, the alteration of UO 2 matrix and MO x fuel is very strongly inhibited because of the consumption of radiolytic oxidative species by iron in solution leading to the precipitation of Fe(III)-hydroxides on the pellets surface. On the contrary, under a strong beta/gamma irradiation field, alteration tracers indicate that the oxidative dissolution goes on and that uranium concentration in solution is controlled by the solubility of UO 2 (am,hyd). This is explained by the shifting of the redox front from the fuel surface to the bulk solution not protecting the fuel anymore. The developed geochemical (CHESS) and reactive transport (HYTEC) models correctly represent the main results and occurring mechanisms. (author) [fr

  10. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 μg/L in the aqueous phase and from approximately 10 to 290 μg/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone

  11. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    Energy Technology Data Exchange (ETDEWEB)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

  12. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran)

    Science.gov (United States)

    Taghipour, Batoul; Ahmadnejad, Farhad

    2015-03-01

    The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ), within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist) and footwall (meta-limestone) rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu) are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG) type shear zone and orogenic type gold mineralisation. Based on the number of phases observed at room temperature and their microthermometric behaviour, three fluid inclusion types have been recognised in quartz-sulphide and quartz-calcite veins: Type I monophase aqueous inclusions, Type II two-phase liquid-vapour (L-V) inclusions which are subdivided into two groups based on the homogenisation temperature (Th): a) L-V inclusions with Th from 205 to 255°C and melting temperature of last ice (Tm) from -3 to -9°C. b) L-V inclusions with higher Th from 335 to 385

  13. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    Directory of Open Access Journals (Sweden)

    P. Sahu

    2009-07-01

    Full Text Available This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW – a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also

  14. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    Science.gov (United States)

    Sikdar, P. K.; Sahu, P.

    2009-07-01

    This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW) - a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also present in groundwater of various depths. Therefore

  15. Reproducibility of a regional geological map derived from geochemical maps, using data mining techniques: with application to Chungbuk province of Korea

    Science.gov (United States)

    Hwang, Sanggi; Nguyen, Quocphi; Lee, Pyeongkoo

    2005-08-01

    Interpolated geochemical maps contain problems of sample catchments and vacant sample areas. However, the resemblance of these maps with regional geological maps implies that there are strong correlations between them. A conceptual model of the geological units from multivariate chemical elements is constructed by decision tree technique. The reproducibility of the geological map with the conceptual model is about 80% in the Chungbuk province map of Korea. Statistical uncertainties indicate that rock units could be predicted reasonably well by decision tree if the geological map polygon is big enough. Misinterpreted points are due to interpolation problems between samples from adjacent rock units and from different sample catchments. In the Chungbuk example, the latter is less significant. The size of the map polygon is one of the most critical factors, and a polygon size greater than 50 km2 is reliable for such analyses for the Chungbuk example. Combined lithologies in a single mapping unit are not critically affected by decision tree prediction.

  16. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  17. Roles of Nano- and Micro-Scale Subsurface Geochemical Reactions on Environmentally Sustainable Geologic Carbon Dioxide Sequestration

    Science.gov (United States)

    Hu, Yandi

    Geologic CO2 sequestration (GCS) is a promising approach to reduce anthropogenic CO2 emissions into the atmosphere. At GCS sites, injected CO2 is kept in formation rock by an overlying low permeability caprock. During and after CO2 injection, geochemical reactions can affect the porosity, permeability, and pollutant transport in aquifers. Despite their importance, nano- and micro-scale subsurface geochemical reactions are far from well-understood. Clay mobilization has been reported to decrease aquifer permeability during water flooding, and clay minerals are abundant in caprock. Thus, we studied CO2-brine-clay interactions under varied conditions relevant to different GCS sites (at 35-95°C and under 35-120 atm CO2, in water, NaCl, MgCl2, or CaCl2 solutions). Biotite, Fe-bearing mica, was used as a model clay mineral. We observed numerous fibrous illite precipitates on mica after reaction for only 3 h, which had not been previously reported. A few hours later, the mica surface cracked and fibrous illite detached. The mobilization of fibrous illite can decrease the aquifer's permeability greatly and affect the safety and efficiency of GCS. Mechanisms related to ion exchange, mica swelling, and CO2 intercalation were explored. Oriented aggregation of illite nanoparticles forming the fibrous illite was directly observed, suggesting a new mechanism for fibrous illite formation. Interestingly, besides the pH effect, aqueous CO2 enhances mica cracking over N2. These findings can help to achieve safer subsurface operations. At GCS field sites, Fe concentration increased near the injection sites and originally adsorbed pollutants were released. As the brine flows, Fe re-precipitated because of pH increase. To better predict the fate and transport of aqueous pollutants, the nucleation and growth of Fe(III) (hydr)oxides were studied. New information about sizes and volumes of the Fe(III) (hydr)oxide nanoparticles precipitated in solution and on quartz, mica, and sapphire

  18. The impact of pre-restoration land-use and disturbance on sediment structure, hydrology and the sediment geochemical environment in restored saltmarshes.

    Science.gov (United States)

    Spencer, Kate L; Carr, Simon J; Diggens, Lucy M; Tempest, James A; Morris, Michelle A; Harvey, Gemma L

    2017-06-01

    Saltmarshes are being lost or degraded as a result of human activity resulting in loss of critical ecosystem services including the provision of wild species diversity, water quality regulation and flood regulation. To compensate, saltmarshes are being restored or re-created, usually driven by legislative requirements for increased habitat diversity, flood regulation and sustainable coastal defense. Yet, there is increasing evidence that restoration may not deliver anticipated ecosystem services; this is frequently attributed to poor drainage and sediment anoxia. However, physical sediment characteristics, hydrology and the sediment geochemical environment are rarely examined in restoration schemes, despite such factors being critical for plant succession. This study presents the novel integration of 3D-computed X-ray microtomography to quantify sediment structure and porosity, with water level and geochemical data to understand the impact of pre-restoration land use and disturbance on the structure and functioning of restored saltmarshes. The study combines a broad-scale investigation of physical sediment characteristics in nine de-embanked saltmarshes across SE England, with an intensive study at one site examining water levels, sediment structure and the sediment geochemical environment. De-embankment does not restore the hydrological regime, or the physical/chemical framework in the saltmarshes and evidence of disturbance includes a reduction in microporosity, pore connectivity and water storage capacity, a lack of connectivity between the sub-surface environment and overlying floodwaters, and impeded sub-surface water flow and drainage. This has significant consequences for the sediment geochemical environment. This disturbance is evident for at least two decades following restoration and is likely to be irreversible. It has important implications for plant establishment in particular, ecosystem services including flood regulation, nutrient cycling and wild

  19. Geology, hydrology, and water quality in the vicinity of a brownfield redevelopment site in Canton, Illinois

    Science.gov (United States)

    Kay, Robert T.; Cornue, David B.; Ursic, James R.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency and Environmental Operations, Inc., assisted in the characterization of the geology, hydrology, and water quality at a Brownfield redevelopment site in Canton, Illinois. The investigation was designed to determine if metals and organic compounds historically used in industrial operations at the site resulted in a threat to the water resources in the area. The hydraulic units of concern in the study area are the upper semiconfining unit, the sand aquifer, and the lower semiconfining unit. The upper semiconfining unit ranges from about 1 to 19 feet in thickness and is composed of silt-and clay deposits with a geometric mean vertical hydraulic conductivity of 7.1 ? 10-3 feet per day. The sand aquifer is composed of a 1 to 5.5 foot thick sand deposit and is considered the primary pathway for ground-water flow and contaminant migration from beneath the study area. The geometric mean of the horizontal hydraulic conductivity of the sand aquifer was calculated to be 1.8 feet per day. The direction of flow in the sand aquifer is to the east, south, and west, away from a ground-water ridge that underlies the center of the site. Ground-water velocity through the sand aquifer ranges from 7.3 ? 10-2 to 2.7 ? 10-1 feet per day. The lower semiconfining unit is composed of sandy silt-and-clay deposits with a geometric mean vertical hydraulic conductivity of 1.1 ? 10-3 feet per day. Volatile organic compounds were detected in ground water beneath the study area. Pesticide compounds were detected in ground water in the western part of the study area. Partial or complete degradation of some of the volatile organic and pesticide compounds is occurring in the soils and ground water beneath the study area. Concentrations of most of the metals and major cations in the ground water show some variation within the study area and may be affected by the presence of a source area, pH, oxidation

  20. Groundwater flow in an intermountain basin: Hydrological, geophysical, and geological exploration of South Park, Colorado

    Science.gov (United States)

    Ball, Lyndsay Brooke

    Groundwater in the intermountain basins of the American West is increasingly of interest with respect to water supply, ecosystem integrity, and contaminant and heat transport processes. These basins are defined by their heterogeneity through large topographic relief, substantial climatic variability, and permeability distributions made complex through variations in lithology and deformation over the orogenic history of these regions, leading to folded and faulted aquifers. This dissertation focuses on the influence of these heterogeneities on the groundwater flow system of the South Park basin in central Colorado, USA. The influence of faults on shallow groundwater flow was examined at two locations along the mapped trace of the Elkhorn fault, a Laramide reverse fault that juxtaposes crystalline and sedimentary rocks in eastern South Park. At the first location, electromagnetic, resistivity, self-potential, and hydraulic data were collected at an existing well field straddling the fault trace. Integrated analysis suggested the fault behaves as combined conduit barrier to groundwater in flow the upper 60 m. A second location along the mapped trace was selected through additional geophysical exploration. New boreholes were drilled to make direct geologic, hydrologic, and geophysical observations of the fault zone. However, these boreholes did not intersect the Elkhorn fault despite passing through rocks with similar electrical resistivity signatures to the first study location. Analyses of drill core and geophysical data indicate that the mineralogical composition of the crystalline rocks strongly influences their resistivity values, and the resistivity contrasts associated with the rock juxtaposition created by the Elkhorn fault is not unique. A steady-state, three-dimensional groundwater flow model of the South Park basin was developed to explore the influence of complex topography, recharge, and permeability structure on regional groundwater flow. Geologic

  1. Geology, hydrology, seismology and geotechnique of Al-Jafra site (NORM remediation project)

    International Nuclear Information System (INIS)

    Redwan, Y.; Abou Zakhem, B; Sbeinati, R.; Moussa, A. M.

    2002-07-01

    The Jafra field site is located 35 km to the E-SE of Deir Ezzor Town (east Syria). The prevailing climate is characterized by cold winter (1.8?) and hot summer (39?) with an average rainfall of 144 mm/y. Annual evaporation rate reaches 214 mm/y and strong seasonal wind hits the area in autumn and spring. From geologic and tectonic point of view the Jafra Field Site is situated within Deir Ezzor Depression to the east of the intersection of the SE/ESE trending Euphratean Fault with the NE trending Southern Palymrean Faulting Zone. At the site, horizontal or westwards gently dipping Pliocene gypsum and clayey sediments outcrop. Q3 volcanism ascended through NNE faults covering a vast area. Pliocene gypsum suffer from deep weathering due to high solubility. Physical properties of the rocks exposed in Jafra Oil Field Site were estimated. It is recommended to take them seriously in consideration in designing and construction any future facility. Hydrologically, Lower Pliocene aquifer is composed of conglomerate, gravels and sands. It is fed by lateral infiltration from Euphrates. Shallow water bearing level is found at 20-30 m while a second one lies at 80-90 m. A soil profile was drilled to depth 2.5 m and the mineralogy of the soil was found to be prevailed mainly by gypsum and clay. Water chemical composition and salinity were defined. Seismic hazard of the site was assessed and found that NW-SE Euphrates Faults System and Al Bishri Fault govern the site's seismicity. Three historical earthquakes namely 160 Ad, 8th century Ad and 859-860 Ad hit the Jafra Oil Field Site area. Eighteen earthquakes of magnitudes vary between 4.1 and 5.5 during the time interval extends from 1900-1994 struck the area. A 1- Hz natural period and one vertical component portable seismic station has been installed in the field for two months. It monitored 13 events the strongest of which had a Md = 4.7 located 320 km from the site. The site was given an intensity of III degrees on (EMS-92

  2. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    International Nuclear Information System (INIS)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories

  3. Geological and Geochemical Criteria for the Estimation of the Area of The Lesser Hinggan for the Endogenous Gold Mineralization (The Far East, Russia)

    Science.gov (United States)

    Yurchenko, Yuriy

    2015-04-01

    The Area of the Lesser Hinggan in the middle of the XIX century has been known as one of the Gold areas of the Far East. Exploration of gold in different years were engaged by P.K. Yavorovskiy (1904), E.E. Anert (1928), G.V. Itsikson (1961), V.A. Buryak (1999, 2002, 2003), A.M. Zhirnov (1998, 2000, 2008), L.V. Eyrish (1960, 1964, 1995, 1999, 2002, 2008) and many others. But despite the abundance of factual materials in the problem of the gold metallogeny of the Lesser Hinggan are more aspects that still have not received a answer. Among them is the key issue about indigenous sources of the gold. First for the Lesser Hinggan area, structural-geochemical zoning at 1:200 000 scale was carried out based on the results of the precise analyses of over 2,600 soil and sediment stream samples. Three anomalous geochemical zones and nine anomalous geochemical clusters in their contours specialized for gold mineralization were revealed. Regional clarkes (fersms) for 19 chemical elements were calculated. Geological formations geochemically specialized for gold and their role in endogenous ore-forming processes were defined. Geochemical criteria for endogenous gold mineralization and its ore-formational affiliation were defined as well. Thus, from the geological and geochemical data, are the following signs of the gold mineralization of the Lesser Hinggan: 1. Some geological formations are geochemical specialized by the gold (carbon ("black") schists and ferruginous quartzite Vendian-Cambrian Hinggan series). They're considered as a source of the gold, involved in younger epigenetic processes of mobilization and redistribution of this element; 2. Contrasting geochemical anomalies of the gold and elements satellites in the secondary halos and stream sediments displayed in the contours of the geological formations of a wide age range - terrigenous-carbonate rocks of the Hinggan series, the Paleozoic granitoid massives, the Cretaceous volcanic fields ; 3. Samples of the native gold

  4. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  5. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  6. ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping

    Science.gov (United States)

    Abedi, Maysam; Torabi, Seyed Ali; Norouzi, Gholam-Hossain; Hamzeh, Mohammad

    2012-12-01

    This paper describes the application of a multicriteria decision-making (MCDM) technique called ELECTRE III, which is well-known in operations research, to mineral prospectivity mapping (MPM), which involves representation and integration of evidential map layers derived from geological, geophysical, and geochemical geo-data sets. In a case study, thirteen evidential map layers are used for MPM in the area containing the Now Chun copper prospect in the Kerman province of Iran. The ELECTRE III technique was applied for MPM, and the outputs are validated using 3D models of Cu and Mo concentrations from 21 drill hole data. This proposed method shows high performance for MPM.

  7. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  8. Hydrology

    Science.gov (United States)

    Eisenbies, Mark H.; Hughes, W. Brian

    2000-01-01

    Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.

  9. Geochemical studies for geologic disposal of high-level radioactive waste. Research activities in Department of Environmental Safety Research, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Sato, Tsutomu; Nagano, Tetsushi; Yanase, Nobuyuki; Yamaguchi, Tetsuji; Isobe, Hiroshi; Ohnuki, Toshihiko; Sekine, Keiichi

    1995-07-01

    The Environmental Geochemistry Laboratory of the Department of Environmental Safety Research of JAERI (EGL/JAERI) is responsible for performing fundamental research to support the geologic disposal of high-level radioactive waste and the performance assessment of the disposal concept. This research includes basic laboratory experiments as well as field studies of natural analogs to understand the geochemical behavior of radionuclides, i.e., the interactions between radionuclides, groundwater and geological materials. This report summarizes background, objectives and recent results of the scientific investigations and emphasizes the significance of these studies in terms of both fundamental research on geochemistry and applied research for performance assessment of the waste disposal concept. The importance of performing fundamental research to radioactive waste disposal is stressed in this report. The report is aimed at both the radioactive waste disposal scientific community and the interdisciplinary sciences that interact with this community. (author)

  10. Hydrologi

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    Hydro1ogi er den videnskab, der omhand1er jordens vand, dets forekomst, cirku1ation og forde1ing, dets kemiske og fysiske egenskaber samt indvirkning på omgivelserne, herunder dets relation ti1 alt liv på jorden. Således lyder en b1andt mange definitioner på begrebet hydrologi, og som man kan se...

  11. Geochemical interpretation of distribution of aromatic hydrocarbons in components of geologic environment of Pechora, Barents and Kara seas.

    Science.gov (United States)

    Kursheva, Anna; Petrova, Vera; Litvinenko, Ivan; Morgunova, Inna

    2017-04-01

    Information about the hydrocarbons content (including aromatic ones) in components of geologic environment allows to define common factors in distribution and correlation both nature and technogenic component, and also to reveal the sources of contamination. At that, it should be noted, that hydrocarbons are widely spread in lithosphere and create steady geochemical background, variations are caused here by specifics of initial organic matter, conditions of its accumulation and transformation. The basis of the study are the samples of sea water and deep sea sediments (more than 600 stations), collected in western sector of Arctic region (Pechora, Barents and Kara seas) during the scientific-research expeditions of FSBI "VNIIOkeangeologia" for the period 2000-2010. Total content of aromatic hydrocarbons was defined by spectrofluorometric method using analyzer «FLUORAT-Panorama-02». Certification of data was performed on representative samples based on contents and molecule structure of polycyclic aromatic hydrocarbons using GC-MS (Agilent 5973/6850 GC-MS System). Results of spectrofluorometric analysis of lipid fraction of organic matter of bottom sediments allowed to define specific parameters, which characterize various lithofacies groups of sediments. Thus, sandy residues are characterized by low level of aromatic hydrocarbons (ca. 4.3 μg/g) with prevalence of bi- and tri-aromatic compounds (λmax 270-310 nm). This correlates with low sorption capacity of coarse-grained sediments and absence of organic-mineral component, containing the breakdown products of initial organic matter. Tetra- and penta- aromatic structures prevail in clay sediments (ca. 13.0 μg/g), which are typical components of lipid fraction of organic matter of post sedimentation and early diagenetic stages of transformation. At that, changes of spectral characteristic of sediments in stratigraphic sequence completely reflect processes of diagenetic transformation of organic matter, including

  12. Results From an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  13. Reach‐scale river metabolism across contrasting sub‐catchment geologies: Effect of light and hydrology

    DEFF Research Database (Denmark)

    Rovelli, Lorenzo; Attard, Karl; Binley, Andrew

    2017-01-01

    and reaches followed a general linear relationship with increasing stream light availability. Sub‐catchment specific NEM proved to be linearly related to the local hydrological connectivity, quantified as the ratio between base flow and stream discharge, and expressed on a timescale of 9 d on average....... This timescale apparently represents the average period of hydrological imprint for carbon turnover within the reaches. Combining a general light response and sub‐catchment specific base flow ratio provided a robust functional relationship for predicting NEM at the reach scale. The novel approach proposed...

  14. Geology and hydrology of the 300 Area and vicinity, Hanford Site, South-Central Washington

    Science.gov (United States)

    Gaylord, D. R.; Poeter, E. P.

    1991-10-01

    The following report summarizes the findings of a joint Washington State University (WSU) and Colorado School of Mines (CSM) research team that investigated the geology and hydrogeology of the 300 Area during FY 87-89. The primary goal of this research was to evaluate existing data and identify new and innovative techniques and/or methods necessary to characterize the 300 Area geology and hydrogeology. Site characterization of the 300 Area demands the close integration of geologic and hydrogeologic research to achieve the most meaningful results. Geologic aspects of the research focused on the identification and analysis of both small- (i.e., sedimentary-textural characteristics) and large-scale (i.e., lithofacies and architectural elements) aquifer heterogeneities and on the derivation of fundamental compositional (i.e., mineralogy and geochemistry) data to assist in identification of marker beds. Hydrogeologic aspects of the research focused on identification and refinement of hydraulically significant, three-dimensional aquifer units termed hydrofacies and on preliminary inverse modeling of ground water flow in the 300 Area. Hydrofacies are fundamental units that will aid in site characterization, development of monitoring programs, and design of remedial action. Inverse modeling is used to improve estimates of the values of hydraulic parameters associated with each hydrofacies. The WSU/CSM research team identified two major shortcomings of the geologic and hydrogeologic data base for the 300 Area. First, the quality of geologic data from 300 Area drilling is far below that necessary to characterize either the geology or hydrogeology of the suprabasalt strata. Second, the limited number of field-scale aquifer tests and the veritable lack of hydraulic testing of discrete aquifer intervals greatly limit attempts to accurately identify basic hydraulic parameters such as hydraulic conductivity and/or specific yield.

  15. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  16. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  17. Mechanical and hydrological characterization of the near-field surrounding excavations in a geologic salt formation

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Clifford L. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-09-01

    The technical basis for salt disposal of nuclear waste resides in salt’s favorable physical, mechanical and hydrological characteristics. Undisturbed salt formations are impermeable. Upon mining, the salt formation experiences damage in the near-field rock proximal to the mined opening and salt permeability increases dramatically. The volume of rock that has been altered by such damage is called the disturbed rock zone (DRZ).

  18. Technology demonstration: geostatistical and hydrologic analysis of salt areas. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Doctor, P.G.; Oberlander, P.L.; Rice, W.A.; Devary, J.L.; Nelson, R.W.; Tucker, P.E.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) requested Pacific Northwest Laboratory (PNL) to: (1) use geostatistical analyses to evaluate the adequacy of hydrologic data from three salt regions, each of which contains a potential nuclear waste repository site; and (2) demonstrate a methodology that allows quantification of the value of additional data collection. The three regions examined are the Paradox Basin in Utah, the Permian Basin in Texas, and the Mississippi Study Area. Additional and new data became available to ONWI during and following these analyses; therefore, this report must be considered a methodology demonstration here would apply as illustrated had the complete data sets been available. A combination of geostatistical and hydrologic analyses was used for this demonstration. Geostatistical analyses provided an optimal estimate of the potentiometric surface from the available data, a measure of the uncertainty of that estimate, and a means for selecting and evaluating the location of future data. The hydrologic analyses included the calculation of transmissivities, flow paths, travel times, and ground-water flow rates from hypothetical repository sites. Simulation techniques were used to evaluate the effect of optimally located future data on the potentiometric surface, flow lines, travel times, and flow rates. Data availability, quality, quantity, and conformance with model assumptions differed in each of the salt areas. Report highlights for the three locations are given

  19. Technology demonstration: geostatistical and hydrologic analysis of salt areas. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P.G.; Oberlander, P.L.; Rice, W.A.; Devary, J.L.; Nelson, R.W.; Tucker, P.E.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) requested Pacific Northwest Laboratory (PNL) to: (1) use geostatistical analyses to evaluate the adequacy of hydrologic data from three salt regions, each of which contains a potential nuclear waste repository site; and (2) demonstrate a methodology that allows quantification of the value of additional data collection. The three regions examined are the Paradox Basin in Utah, the Permian Basin in Texas, and the Mississippi Study Area. Additional and new data became available to ONWI during and following these analyses; therefore, this report must be considered a methodology demonstration here would apply as illustrated had the complete data sets been available. A combination of geostatistical and hydrologic analyses was used for this demonstration. Geostatistical analyses provided an optimal estimate of the potentiometric surface from the available data, a measure of the uncertainty of that estimate, and a means for selecting and evaluating the location of future data. The hydrologic analyses included the calculation of transmissivities, flow paths, travel times, and ground-water flow rates from hypothetical repository sites. Simulation techniques were used to evaluate the effect of optimally located future data on the potentiometric surface, flow lines, travel times, and flow rates. Data availability, quality, quantity, and conformance with model assumptions differed in each of the salt areas. Report highlights for the three locations are given.

  20. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  1. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  2. Geological and hydrological investigations at Sidi Kreir Site, west of Alexandria, Egypt

    International Nuclear Information System (INIS)

    El-Shazly, E.M.; Shehata, W.M.; Somaida, M.A.

    1978-01-01

    Sidi-Kreir site lies along the Mediterranean Sea coast at km 30 to km 33 westwards from the center of the city of Alexandria. The studied site covers approximately 10 km 2 from the Mediterranean Sea northward to Mallehet (Lake) Maryut southward. This study includes the results of geological investigation of the site both structurally and stratigraphically, and the groundwater conditions, in relation to the erection of a nuclear power station in the site. The surface geology has been mapped using aerial photographs on scale of 1:20,000. Twenty-five drillholes were core-drilled in order to outline the subsurface geology and to observe the groundwater fluctuations. Selected core samples and soil samples were tested geologically in thin sections, physically and mechanically. Water samples were also collected and tested for total dissolved solids and specific weight. Groundwater level fluctuations were observed for a period of one year in 75 wells and drillholes. Furthermore three pumping tests were conducted to estimate the hydraulic properties of the freshwater aquifer. These properties were also calculated using the core samples data

  3. Processing and inversion of commercial helicopter time-domain electromagnetic data for environmental assessments and geologic and hydrologic mapping

    DEFF Research Database (Denmark)

    J.E., Podgorski; Auken, Esben; Schamper, Cyril Noel Clarence

    2013-01-01

    spaced data over large regions. At the same time, the quality of HTEM data can suffer from various inaccuracies. We developed an effective strategy for processing and inverting a commercial HTEM data set affected by uncertainties and systematic errors. The delivered data included early time gates......%-23%, and the artificial lineations were practically eliminated. Our processing and inversion strategy is entirely general, such that with minor system-specific modifications it could be applied to any HTEM data set, including those recorded many years ago. © 2013 Society of Exploration Geophysicists.......Helicopter time-domain electromagnetic (HTEM) surveying has historically been used for mineral exploration, but over the past decade it has started to be used in environmental assessments and geologic and hydrologic mapping. Such surveying is a cost-effective means of rapidly acquiring densely...

  4. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  5. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    International Nuclear Information System (INIS)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes

  6. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data

    Science.gov (United States)

    Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto

    2012-03-01

    This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial modeling techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity models include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold geochemical anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil geochemical anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.

  7. Geological and hydrological investigation and mass transport study in a fractured system at the Kamaishi Mine

    International Nuclear Information System (INIS)

    Uchida, Masahiro; Sawada, Atsushi; Senba, Takeshi; Miyoshi, Tadakazu; Shimo, Michito; Yamamoto, Hajime; Takahara, Hiroyuki; Doe, T.W.; Cladouhos, T.T.

    1999-01-01

    The hydrologic investigations demonstrate clearly that variable connectivity of fracture networks can lead to compartmentalised flow systems. These compartments may be significant for understanding flow and transport in a repository site. The experiment shows that complex geometries of fracture networks can be deduced by simple, but careful monitoring of drilling and testing operations. Inadequate isolation of conducting features during experiment area development may short-circuit the flow system and make geometric assessment difficult or impossible. Once conducting features are identified, tracer tests can successfully provide information on transport properties. (author)

  8. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick; Houseworth, James

    2013-11-22

    The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.

  9. The application of evidential belief function in the integration of regional geochemical and geological data over the Ife-Ilesha goldfield, Nigeria

    Science.gov (United States)

    Likkason, Othniel K.; Shemang, Elisha M.; Suh, Cheo E.

    1997-10-01

    There are several methods available for the integration of geological, geophysical and even remotely sensed data sets. Several published reports have discussed the successful application of these integration techniques, including geologically orientated geographical information systems (GIS), to non-renewable resource exploration. Many geoscience data sets often have only partial coverage, and in most cases have different spatial resolution. These shortcomings plague statistical integration schemes employed in resource evaluation. In this paper, the evidential belief function approach is examined and applied to the integration of geological and geochemical data sets over the Ife-Ilesha goldfield, southwest Nigeria. In using this approach, nine maps of trace element concentrations (whole rock) and that of the bedrock geology of the test area were digitised. The characteristic grid values of the digitised maps were converted to degrees of belief, with a Au bearing mineral deposit as the target proposition. These resulting spatial data sets were pooled using the Dempster-Shafer combination rule. The resulting maps define portions of the study area with known auriferous mineral occurrences and even outline areas of past mining operations. There are additional areas with high interest that are not linked with known mineralisation and could therefore represent viable exploration targets. The Dempster-Shafer method of evidential reasoning appears to be suitable in identifying areas of known Au mineralisation in the test area. One of the major difficulties of this method is that the evidential belief function depends on the exploration target, which can only be defined, at present, by the interpreter's intuitive and qualitative knowledge of the environmental proposition being explored.

  10. A review of hydrologic and geologic conditions related to the radioactive solid-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    Science.gov (United States)

    Webster, D.A.

    1976-01-01

    Solid waste contaminated by radioactive matter has been buried in the vicinity of Oak Ridge National Laboratory since 1944. By 1973, an estimated six million cubic feet of such material had been placed in six burial grounds in two valleys. The practice initially was thought of as a safe method for permanently removing these potentially hazardous substances from man's surroundings, but is now que.3tionable at this site because of known leaching of contaminants from the waste, transport in ground water, and release to the terrestrial and fluvial environments. This review attempts to bring together in a single document information from numerous published and unpublished sources regarding the past criteria used for selecting the Oak Ridge burial-ground sites, the historical development and conditions of these facilities as of 1974, the geologic framework of the Laboratory area and the movement of water and water-borne contaminants in that area, the effects of sorption and ion exchange upon radionuclide transport, and a description and evaluation of the existing monitoring system. It is intended to assist Atomic Energy Commission (now Energy Research and Development Administration) officials in the formulation of managerial decisions concerning the burial grounds and present monitoring methods. Sites for the first three burial grounds appear to have been chosen during and shortly after World War II on the basis of such factors as safety, security, and distance from sources of waste origin. By 1950, geologic criteria had been introduced, and in the latter part of that decade, geohydrologic criteria were considered. While no current criteria have been defined, it becomes evident from the historical record that the successful containment of radionuclides below land surface for long periods of time is dependent upon a complex interrelationship between many geologic, hydrologic, and geochemical controls, and any definition of criteria must include consideration of these

  11. LANDSAT-4 Science Characterization Early Results. Volume 4: Applications. [agriculture, soils land use, geology, hydrology, wetlands, water quality, biomass identification, and snow mapping

    Science.gov (United States)

    Barker, J. L. (Editor)

    1985-01-01

    The excellent quality of TM data allows researchers to proceed directly with applications analyses, without spending a significant amount of time applying various corrections to the data. The early results derived of TM data are discussed for the following applications: agriculture, land cover/land use, soils, geology, hydrology, wetlands biomass, water quality, and snow.

  12. Quantification of Hydrological, Geochemical, and Mineralogical Processes Governing the Fate and Transport of Uranium over Multiple Scales in Hanford Sediments

    International Nuclear Information System (INIS)

    Fendorf, Scott; Mayes, Melanie A.; Perfect, Edmund; van den Berg, Elmer; Parker, Jack C.; Jardine, Philip M.; Tang, Guoping

    2006-01-01

    A long-term measure of the DOE Environmental Remediation Sciences Division is to provide sufficient scientific understanding to allow a significant fraction of DOE sites to incorporate coupled biological, chemical, and physical processes into decision making for environmental remediation and long-term stewardship by 2015. Our research targets two related, major obstacles to understanding and predicting contaminant transport at DOE sites: the heterogeneity of subsurface geologic media, and the scale dependence of experimental and modeled results

  13. Assessment of effectiveness of geologic isolation systems. Perspectives on the geological and hydrological aspects of long-term release scenario analyses

    Energy Technology Data Exchange (ETDEWEB)

    Stottlemyre, J.A.; Wallace, R.W.; Benson, G.L.; Zellmer, J.T.

    1980-06-01

    Information that may be relevant to individuals involved with analyzing long-term release scenarios of specific repositories for nuclear waste is presented. The bulk of the information is derived from recent studies in West Germany and the United States. Emphasis is on the specific geological and hydrological phenomena that, alone or in concert, could potentially perturb the area around specific repository sites. Research is continuing on most of the topics discussed within this report. Because research is ongoing, statements and conclusions described in this document are subject to change. The main topics of this report are: (1) fracturing, (2) geohydrology, (3) magmatic activity, and (4) geomorphology. Therefore, the site-specific nature of the problem cannot be overemphasized. As an example of how one might combine the many synergistic and time-dependent parameters into a concise format the reader is referred to A Conceputal Simulation Model for Release Scenario Analysis of a Hypothetical Site in Columbia Plateau Basalts, PNL-2892. For additional details on the topics in this report, the reader is referred to the Pacific Northwest Laboratory (PNL) consultant report listed in the bibliography.

  14. Assessment of effectiveness of geologic isolation systems. Perspectives on the geological and hydrological aspects of long-term release scenario analyses

    International Nuclear Information System (INIS)

    Stottlemyre, J.A.; Wallace, R.W.; Benson, G.L.; Zellmer, J.T.

    1980-06-01

    Information that may be relevant to individuals involved with analyzing long-term release scenarios of specific repositories for nuclear waste is presented. The bulk of the information is derived from recent studies in West Germany and the United States. Emphasis is on the specific geological and hydrological phenomena that, alone or in concert, could potentially perturb the area around specific repository sites. Research is continuing on most of the topics discussed within this report. Because research is ongoing, statements and conclusions described in this document are subject to change. The main topics of this report are: (1) fracturing, (2) geohydrology, (3) magmatic activity, and (4) geomorphology. Therefore, the site-specific nature of the problem cannot be overemphasized. As an example of how one might combine the many synergistic and time-dependent parameters into a concise format the reader is referred to A Conceputal Simulation Model for Release Scenario Analysis of a Hypothetical Site in Columbia Plateau Basalts, PNL-2892. For additional details on the topics in this report, the reader is referred to the Pacific Northwest Laboratory (PNL) consultant report listed in the bibliography

  15. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Dontsova, K.; Steefel, C.I.; Desilets, S.; Thompson, A.; Chorover, J.

    2009-07-15

    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.

  16. Multidisciplinary study of Wyoming test sites. [hydrology, biology, geology, lithology, geothermal, and land use

    Science.gov (United States)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.

    1974-01-01

    The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.

  17. Geophysical and Geochemical Aspects of Pressure and CO2 Saturation Modeling due to Migration of Fluids into the Above Zone Monitoring Interval of a Geologic Carbon Storage Site

    Science.gov (United States)

    Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.

    2016-12-01

    An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.

  18. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. Vol. 2, Rev. 1. [490 references

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Brock, M.L.; Garland, P.A.; White, M.B.; Daniel, E.W. (comps.)

    1979-07-01

    This bibliography, a compilation of 490 references, is the second in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base is one of six data bases created by the Ecological Sciences Information Center, Oak Ridge National Laboratory, for the Grand Junction Office of the Department of Energy. Major emphasis for this volume has been placed on uranium geology, encompassing deposition, genesis of ore deposits, and ore controls; and prospecting techniques, including geochemistry and aerial reconnaissance. The following indexes are provided to aid the user in locating references of interest: author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  19. A Combined Hydrological, Geochemical and Geophysical Reconnaissance of Groundwater Contamination In Oilfield Environment (republic of Tatarstan, Russia)

    Science.gov (United States)

    Levitski, A.; Titov, K.; Buès, M.; Ilyin, Yu.; Konosavski, P.; Kharkhordin, I.; Uchaev, V.; Sapozhnikov, B.; Kharkovski, K.

    , Sr and Ba; and (3) in mobile forms U Mg, Co, Sr. All five springs at the site of study show the presence of oil-related con- tamination in all indicator elements. Comparison of the groundwater flow model and 1 of the geochemical data enables quantification of the contaminant transport rate and volume, as well as the development of a preliminary remediation scheme for the site of study. This work was supported by INTAS, project No 32046. 2

  20. Early Cretaceous Tertiary magmatism in Eastern Paraguay (western Paraná basin): geological, geophysical and geochemical relationships

    Science.gov (United States)

    Comin-Chiaramonti, P.; Cundari, A.; DeGraff, J. M.; Gomes, C. B.; Piccirillo, E. M.

    1999-11-01

    Structural characteristics of Eastern Paraguay, at the westernmost side of the Paraná basin, show that the tectonics in the region is extensional. This tectonics controlled the emplacement of the alkaline rocks in Early Cretaceous-Tertiary times. Major structures are NW-trending zones of tectonic subsidence, i.e. the 'Asunción-Sapucai-Villarrica' and 'Amambay' grabens of the central and northeastern regions of Eastern Paraguay, respectively. Early Cretaceous potassic magmatism is widespread in the 'gravity lows', and predates the tholeiitic Early Cretaceous magmatism in the northern areas, whereas in central Paraguay it postdates the tholeiitic flood basalts. Sodic alkaline rocks (late Early Cretaceous-Tertiary) are widespread in cratonized areas of the La Plata Craton. The Early Cretaceous uncontaminated potassic rocks (and tholeiites) have geochemical features of 'subduction type' (e.g. Ta-Nb negative anomaly), while the contrary occurs for the closely associated younger sodic magmatism. This implies different mantle sources consistently with Sr-Nd isotopes which are Rb-Nd enriched and depleted for the potassic and sodic rocks, respectively. T DM(Nd) model ages point to two notional distinct metasomatic events occurred in Middle and Late Proterozoic times. A contribution of asthenospheric melts from Tristan da Cunha Plume is not appreciable. We suggest that the source(s) of the recurrent potassic magmatism and interposed tholeiitic event may not be easily accounted for by the Tristan da Cunha plume hypothesis.

  1. Corrosion of cementitious materials under geological disposal conditions with resulting effects on the geochemical stability of clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, H.J.; Meyer, Th. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koln (Germany)

    2001-07-01

    The long-term behaviour of cemented fly ashes and bentonite (MX80) has been investigated in high saline solutions by means of a cascade experiment, batch experiment and by the geochemical modelling of the observed reactions. In contact to IP21 the degradation of CSH phases in the cementitious material could be proposed indicated by the accumulation of Ca in solution. In contact to NaCl brine only a small amount of Ca in solution could be detected indicating a slight dissolution of CSH phases in the cementitious material. Considering the good agreement between the time accelerating laboratory scale cascade experiment and the modelled reaction path using the computer code EQ3/6 we conclude, that it is possible to predict the chemical behaviour of cementitious materials in salt solutions. The degradation experiments with MX80 and cementitious material in NaCl and IP21 solution showed an accumulation of Si and Al in solution and then a remove possibly indicating the formation of new phases. In contact to high saline solutions a reduction of swelling pressure of MX80 at various reduced initial dry densities could be observed in comparison to pure water. Moreover a reduced water-uptake of MX80 in contact to high saline and alkaline solution was obtained. (authors)

  2. Corrosion of cementitious materials under geological disposal conditions with resulting effects on the geochemical stability of clay minerals

    International Nuclear Information System (INIS)

    Herbert, H.J.; Meyer, Th.

    2001-01-01

    The long-term behaviour of cemented fly ashes and bentonite (MX80) has been investigated in high saline solutions by means of a cascade experiment, batch experiment and by the geochemical modelling of the observed reactions. In contact to IP21 the degradation of CSH phases in the cementitious material could be proposed indicated by the accumulation of Ca in solution. In contact to NaCl brine only a small amount of Ca in solution could be detected indicating a slight dissolution of CSH phases in the cementitious material. Considering the good agreement between the time accelerating laboratory scale cascade experiment and the modelled reaction path using the computer code EQ3/6 we conclude, that it is possible to predict the chemical behaviour of cementitious materials in salt solutions. The degradation experiments with MX80 and cementitious material in NaCl and IP21 solution showed an accumulation of Si and Al in solution and then a remove possibly indicating the formation of new phases. In contact to high saline solutions a reduction of swelling pressure of MX80 at various reduced initial dry densities could be observed in comparison to pure water. Moreover a reduced water-uptake of MX80 in contact to high saline and alkaline solution was obtained. (authors)

  3. Present Permafrost Thaw in Central Yakutia, North-East Siberia: Surficial Geology and Hydrology Evidence

    Science.gov (United States)

    Czerniawska, Jolanta; Chlachula, Jiri

    2017-04-01

    Current climate change in the high-latitudes of Eurasia is a generally accepted phenomenon characterized by increased annual temperature values and marked weather anomalies observed in the sub-polar and polar regions. In the northern and NE Siberia, this trend of the MAT rise, documented particularly over the last three decades, is believed to account for the territorial lowland as well as insular mountain frozen ground thaw that in turn has triggered ecosystem feedbacks on the local as well as regional scales. In the northern regions of Yakutia, this is principally witnessed by accelerated near-surface dynamics of seasonally activated de-freezing grounds and inter-linked geomorphic and hydrological actions affecting large-scale tundra landscape settings. In the southern and central taiga-forest areas with perennial alpine and continuous permafrost conditions, respectively, an increased depth of the seasonally melted top-soil layers has become evident accompanied by thermokarst lake expansion and ground surface collapsing. Some cryogenic depressions generated from small gullies over the past decades eloquently demonstrate the intensity and scales of the current permafrost degradation in the Siberian North. The fluvial discharge is most dynamic in late spring to mid-summer because of the cumulative effect of snow-melting because of a high solar radiation and short intervals of torrential rains. Yet, the climate-change-dependent and most active geomorphic agent is the accelerated permafrost thaw seen in landslides and tundra-forest cover decay due to a higher water table. Numerous preserved biotic fossiliferous records Pleistocene and early Holocene in age are being exposed in this process providing unique palaeoecology evidence at particular sites. These climate-generated processes have mostly highly negative effects to the natural habitats (migratory animal routes and riverine biota due to an earlier ice-melting) as well as the local settlement communities

  4. Thermal-hydraulic-geochemical coupled processes around disposed high level nuclear waste in deep granite hosted geological repositories: frontier areas of advanced groundwater research in India

    International Nuclear Information System (INIS)

    Bajpai, R.K.

    2012-01-01

    Indian policy for permanent disposal of high level nuclear wastes with radionuclide having very long half lives include their immobilization in a stable matrix i.e. glasses of suitable composition, its storage in high integrity steel canisters and subsequent disposal in suitable host rock like granites at a depth of 400-500m in stable geological set up. The site for such disposal facilities are selected after vigorous assessment of their stability implying an exhaustive site selection methodology based on a large number of criteria and attributes. In India, an area of about 70000 square kilometers occupied by granites has been subjected to such evaluation for generating comprehensive database on host rock parameters. The sites selected after such intensive analysis are expected to remain immune to processes like seismicity, volcanism, faulting, uplift, erosion, flooding etc. even in distant future spanning over tens of thousands of years. Nevertheless, groundwater has emerged as the only credible pathway through which disposed waste can eventually find its way to accessible biosphere. Hence groundwater research constitutes one of the most important aspects in demonstration of safety of such disposal. The disposed waste due to continuous emission of decay heat creates high temperature field around them with resultant increase in groundwater temperature in the vicinity. Hot groundwater on reacting with steel canisters, backfill clays and cement used around the disposed canister, produces geochemical environment characterized by altered Ph, Eh and groundwater compositions. Acceleration in geochemical interaction among waste-groundwater-clay-cement-granite often results in dissolution or precipitation reactions along the groundwater flow paths i.e. fractures with resultant increase or decrease in their permeability. Thus thermal, hydraulic and geochemical processes work interdependently around the disposed waste. These coupled processes also control the release and

  5. The hydrological and geochemical isolation of a freshwater bog within a saline fen in north-eastern Alberta

    Directory of Open Access Journals (Sweden)

    S.J. Scarlett

    2013-10-01

    Full Text Available In the oil sands development region near Fort McMurray, Alberta, wetlands cover ~62 % of the landscape, and ~95 % of these wetlands are peatlands. A saline fen was studied as a reference site for peatland reclamation. Despite highly saline conditions, a freshwater bog was observed in the path of local saline groundwater flow. The purpose of this study was to identify the hydrological controls that have allowed the development and persistence of a bog in this setting. The presence of bog vegetation and its dilute water chemistry suggest that saline groundwater from the fen rarely enters the bog, which functions predominantly as a groundwater recharge system. Chloride (Cl– and sodium (Na+ were the dominant ions in fen water, with concentrations averaging 5394 and 2307 mg L-1, respectively, while the concentrations in bog water were 5 and 4 mg L-1, respectively. These concentrations were reflected by salinity and electrical conductivity measurements, which in the fen averaged 9.3 ppt, and 15.8 mS cm-1, respectively, and in the bog averaged 0.1 ppt and 0.3 mS cm-1, respectively. A small ridge in the mineral substratum was found at the fen–bog margin, which created a persistent groundwater mound. Under the dry conditions experienced in early summer, groundwater flow was directed away from the bog at a rate of 14.6 mm day-1. The convex water table at the fen-bog margin impeded flow of saline water into the bog and instead directed it around the bog margin. However, the groundwater mound was eliminated during flooding in autumn, when the horizontal hydraulic gradient across the margin became negligible, suggesting the possibility of saline water ingress into the bog under these conditions.

  6. Mineralogical and Geochemical Analysis of Howardite DaG 779: understanding geological evolution of asteroid (4) Vesta

    Science.gov (United States)

    Marcel Müller, Christian; Mengel, Kurt; Singh Thangjam, Guneshwar; Weckwerth, Gerd

    2016-04-01

    metasomatic reactions were observed between clinopyroxene (pigeonite) and a sulphide-bearing agent, according to the principal reaction Pigeonite (Fe-rich) + S2 ↔ FeS + Augit (Mg-rich) + SiO2. This type of metasomatism (Zhang et al. (2013)) is not well understood yet. References: Grossman, J. N. (2000): The Meteoritical Bulletin, No. 84, 2000 August. Meteoritics & Planetary Science, 35: A119-A225. doi: 10.1111/j.1945-5100.2000.tb01797.x. Toplis, M.J. et al. (2013): Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48: 2300-2315. doi: 10.1111/maps.12195. Zhang, A. et al. (2013): Record of S-rich vapors on asteroid 4 Vesta: Sulfurization in the Northwest Africa 2339 eucrite. Geochim. Cosmochim. Acta 109, 1-13. Mittlefehldt, D.W., (2015): Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie Erde-Geochem. 75, 2, 155-183. Prettyman, T.H. et al. (2013): Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science 48:2211-2236.

  7. Geochemical characteristics and geological significance of shale gas from the Lower Silurian Longmaxi Formation in Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-04-01

    Full Text Available The shale of the Lower Silurian Longmaxi Formation has become a key target for shale gas exploration and development in China recently. The origin of carbon and hydrogen isotopic reversal in shale gas is discussed in this paper based on the analysis of the chemical components and stable isotope composition of natural gas in the Carboniferous Huanglong Formation sourced from Longmaxi Formation and Longmaxi shale gas. The shale gas was mainly composed of hydrocarbon gas in which the content of CH4 was in the range of 95.52%–99.59%, C2H6 0.23%–0.72%, and C3H8 0.0%–0.03%. The drying coefficient (Cl/Cl–5 was more than 0.99, indicating typical dry gas. The values of δ13C1, δ13C2 and δ13C3 ranged from −37.3‰ to −26.7‰, −42.8‰ to −31.6‰, and −43.5‰ to −33.1‰, respectively. The carbon isotope values indicated that the hydrocarbon gas was an oil-type gas. However, the reversal of carbon and hydrogen isotopes of hydrocarbon gases in shale gas occurred, i.e., δ13C1 > δ13C2, δD1 > δD2. The geochemical characteristic of high thermal maturity and carbon isotope reversal in the Longmaxi shale gas was similar to those of the Fayetteville shale gas in U.S. The Longmaxi shale gas is a mixture of gases from decomposition of kerogen at high thermal maturity and cracking of soluble organic matter retained within the shale, suggesting there is an abundance of shale gas to support high productivity.

  8. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    International Nuclear Information System (INIS)

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, W.; Weir, J.E. Jr.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000 to 50,000 ft or 9,140 to 15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000 to 20,000 ft or 305 to 6,100 m), (3) a mined chamber (1,000 to 10,000 ft or 305 to 3,050 m), (4) a cavity with separate manmade structures (1,000 to 10,000 ft or 305 to 3,050 m), and (5) an exploded cavity (2,000 to 20,000 ft or 610 to 6,100 m). Areas considered to be unsuitable for waste disposal are those where seismic risk is high, where possible sea-level rise would inundate potential sites, where high topographic relief coincides with high frequency of faults, where there are unfavorable ground-water conditions, and where no suitable rocks are known to be present to depths of 20,000 feet (6,100 m) or more, and where these strata either contain large volumes of ground water or have high oil and gas potential

  9. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variable Saturated Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-05-24

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during

  10. TOURGHREACT: A Simulation Program for Non-isothermal MultiphaseReactive Geochemical Transport in Variably Saturated GeologicMedia

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-12-07

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.

  11. Using micro-seismicity and seismic velocities to map subsurface geologic and hydrologic structure within the Coso geothermal field, California

    Science.gov (United States)

    Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2012-01-01

    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide

  12. Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, south Texas: A future shale gas resource?

    Science.gov (United States)

    Hackley, Paul C.

    2012-01-01

    As part of an assessment of undiscovered hydrocarbon resources in the northern Gulf of Mexico onshore Mesozoic section, the U.S. Geological Survey (USGS) evaluated the Lower Cretaceous Pearsall Formation of the Maverick Basin, south Texas, as a potential shale gas resource. Wireline logs were used to determine the stratigraphic distribution of the Pearsall Formation and to select available core and cuttings samples for analytical investigation. Samples used for this study spanned updip to downdip environments in the Maverick Basin, including several from the current shale gas-producing area of the Pearsall Formation.The term shale does not adequately describe any of the Pearsall samples evaluated for this study, which included argillaceous lime wackestones from more proximal marine depositional environments in Maverick County and argillaceous lime mudstones from the distal Lower Cretaceous shelf edge in western Bee County. Most facies in the Pearsall Formation were deposited in oxygenated environments as evidenced by the presence of biota preserved as shell fragments and the near absence of sediment laminae, which is probably caused by bioturbation. Organic material is poorly preserved and primarily consists of type III kerogen (terrestrial) and type IV kerogen (inert solid bitumen), with a minor contribution from type II kerogen (marine) based on petrographic analysis and pyrolysis. Carbonate dominates the mineralogy followed by clays and quartz. The low abundance and broad size distribution of pyrite are consistent with the presence of oxic conditions during sediment deposition. The Pearsall Formation is in the dry gas window of hydrocarbon generation (mean random vitrinite reflectance values, Ro = 1.2–2.2%) and contains moderate levels of total organic carbon (average 0.86 wt. %), which primarily resides in the inert solid bitumen. Solid bitumen is interpreted to result from in-situ thermal cracking of liquid hydrocarbon generated from original type II kerogen

  13. Methods for geochemical analysis

    Science.gov (United States)

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  14. Geology and hydrology in the vicinity of the inactive uranium mill tailings pile, Ambrosia Lake, New Mexico

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Wienke, C.L.; Dreesen, D.R.

    1977-06-01

    A study was made of the geology and hydrology of the immediate area around a uranium mill at Ambrosia Lake, New Mexico. The mill was in operation from June 1958 through April 1963 and produced 2.7 x 10 9 kg of tailings. The possible environmental consequences of this inactive tailings pile must first be delineated so that stabilization needs and future stabilization success can be properly assessed. The Ambrosia Lake area is underlain by over 1000 m of alternating shales, siltstones, and sandstones that dip gently to the northeast into the San Juan Basin. Water-bearing sandstones make up less than 25 percent of this sedimentary section. Water quality in the sandstones is fair to poor, with total dissolved solids ranging from 500 to 2000 mg/l. The present total volume of tailings is estimated at 1.5 x 10 6 m 3 and ranges in thickness from about 1 to 10 m. The tailings pile is underlain by the Mancos shale which dips to the northeast. The shale is about 120 m thick with three interbedded silty sandstones that are about 9 m in thickness. One of these sandstones outcrops beneath the western part of the pile; the eastern part of the pile is underlain by shale. Ground water in the shales and sandstones beneath the pile is recharged by runoff north of the pile and from three ponds located north, northeast, and east of the pile. The movement of water in shale and sandstones is to the southwest. Secondary recharge to the water in the shales and sandstone is from the basin within the tailings pile. Water in the southeast part of the tailings basin is forming a ground water mound above the underlying sediments. The major transport mechanisms of tailings and possible contaminants from the pile include wind erosion, surface water runoff, movement of ground water beneath the pile, and gaseous diffusion from the pile

  15. Mineralogical and geochemical studies on apatites and phosphate host rocks of Esfordi deposit, Yazd province, to determine the origin and geological setting of the apatite

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2014-10-01

    Full Text Available Introduction Iron-apatite ore deposits well known as Kiruna iron type formed in association with calc-alkaline volcanism from Proterozoic to Tertiary (Hitzman et al., 1992. Liquid immiscibility in an igneous system was proposed to explain the formation of the iron oxides accompanying apatite in mineralized zones (Förster and Jafarzadeh, 1994; Daliran, 1999. The mode of ore formation however, is a matter in debate. Bafq region in Central Iran is one of the greatest iron mining regions in Iran with 750 million tons of reservoir. The majority of the iron deposits contains apatite as minor mineral and underwent metamorphism-alteration in varying degrees. The mode of formation and geological setting of Esfordi iron-apatite deposit in this region with an average of 13.9 wt% apatite are discussed using geochemical and mineralogical data along with field description. Materials and methods Fifty-three samples of mineralized zones and host rocks collected from 7 cross sections were studied by conventional microscopic methods. Seven representative samples were determined by XRD at Department of Physics, Shiraz University. Fifteen and six samples were also analyzed for major and trace elements using XRF at Binaloud Co. Iran, and ICP-MS at Labwest Minerals Analysis, Australia, respectively. Microprobe analyses were carried out on apatite in Geo Forschungs Zentrum Telegrafenberg at Potsdam University, Germany. Results Field observation shows that igneous host rocks in Esfordi were intensively altered by hydrothermal fluids. The ores are surrounded by wide altered halos. Petrographic investigation indicated that the most important alterations are of potassic, carbonatitic and silicification types. Magnetite and apatite occur as major minerals, accompanied by minor hematite and goethite in the mineralized zones. Rare Earth Element (REE minerals are present as minor phases in the ores. Three apatite mineralization types (vein, massive, and disseminated were

  16. Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated WSn mineralization and their tectonic setting

    Science.gov (United States)

    Zaw, Khin

    The granitoid rocks in Burma extend over a distance of 1450 km from Putao, Kachin State in the north, through Mogok, Kyaukse, Yamethin and Pyinmana in the Mandalay Division, to Tavoy and Mergui areas, Tenasserim Division, in the south. The Burmese granitoids can be subdivided into three N-S trending, major belts viz. western granitoid belt, central graniotoid belt and eastern granitoid belt. The Upper Cretaceous-Lower Eocene western belt granitoids are characterized by high-level intrusions associated with porphyry Cu(Au) related, younger volcanics; these plutonic and volcanic rocks are thought to have been emplaced as a magmatic-volcanic arc (inner magmatic-volcanic arc) above an east-dipping, but westwardly migrating, subduction zone related to the prolonged plate convergence which occurred during Upper Mesozoic and Cenozoic. The central granitoid belt is characterized by mesozonal, Mostly Upper Cretaceous to Lower Eocene plutons associated with abundant pegmalites and aplites, numerous vein-type W-Sn deposits and rare co-magmatic volcanics. The country rocks are structurally deformed, metamorphic rocks of greenschist to upper amphibolite facies ranging in age as early as Upper Precambrian to Upper Paleozoic and locally of fossiliferous, metaclastic rocks (Mid Jurassic to Lower Cretaceous). Available K/Ar radiometric data indicate significant and possibly widespread thermal disturbances in the central granitoid belt during the Tertiary (mostly Miocence). In this study, the distribution, lithological, textural and structural characteristics of the central belt granitoids are reviewed, and their mineralogical, petrological, and geochemical features are presented. A brief description of W-Sn ore veins associated with these granitoid plutons is also reported. Present geological, petrological and geochemical evidences demonstrate that the W-Sn related, central belt granitoids are mostly granodiorite and granite which are commonly transformed into granitoid gneisses

  17. Geology, water-quality, hydrology, and geomechanics of the Cuyama Valley groundwater basin, California, 2008--12

    Science.gov (United States)

    Everett, Rhett; Gibbs, Dennis R.; Hanson, Randall T.; Sweetkind, Donald S.; Brandt, Justin T.; Falk, Sarah E.; Harich, Christopher R.

    2013-01-01

    To assess the water resources of the Cuyama Valley groundwater basin in Santa Barbara County, California, a series of cooperative studies were undertaken by the U.S. Geological Survey and the Santa Barbara County Water Agency. Between 2008 and 2012, geologic, water-quality, hydrologic and geomechanical data were collected from selected sites throughout the Cuyama Valley groundwater basin. Geologic data were collected from three multiple-well groundwater monitoring sites and included lithologic descriptions of the drill cuttings, borehole geophysical logs, temperature logs, as well as bulk density and sonic velocity measurements of whole-core samples. Generalized lithologic characterization from the monitoring sites indicated the water-bearing units in the subsurface consist of unconsolidated to partly consolidated sand, gravel, silt, clay, and occasional cobbles within alluvial fan and stream deposits. Analysis of geophysical logs indicated alternating layers of finer- and coarser-grained material that range from less than 1 foot to more than 20 feet thick. On the basis of the geologic data collected, the principal water-bearing units beneath the monitoring-well sites were found to be composed of younger alluvium of Holocene age, older alluvium of Pleistocene age, and the Tertiary-Quaternary Morales Formation. At all three sites, the contact between the recent fill and younger alluvium is approximately 20 feet below land surface. Water-quality samples were collected from 12 monitoring wells, 27 domestic and supply wells, 2 springs, and 4 surface-water sites and were analyzed for a variety of constituents that differed by site, but, in general, included trace elements; nutrients; dissolved organic carbon; major and minor ions; silica; total dissolved solids; alkalinity; total arsenic and iron; arsenic, chromium, and iron species; and isotopic tracers, including the stable isotopes of hydrogen and oxygen, activities of tritium, and carbon-14 abundance. Of the 39

  18. Inverse Geochemical Reaction Path Modelling and the Impact of Climate Change on Hydrologic Structure in Snowmelt-Dominated Catchments in the Southwestern USA

    Science.gov (United States)

    Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.

    2011-12-01

    Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By

  19. Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash. Part II. The geochemistry of leachate from Landfill Lostorf, Switzerland

    Science.gov (United States)

    Johnson, C. Annette; Kaeppeli, Michael; Brandenberger, Sandro; Ulrich, Andrea; Baumann, Werner

    1999-12-01

    The leachate composition of the Landfill Lostorf, Buchs, Switzerland has been examined as a function rain events and dry periods between November 1994 and November 1996. Discharge and electrical conductivity of the central drainage discharge were monitored continuously, whilst samples for chemical analysis were taken at discrete intervals. The average total concentrations of Na, Cl, K, Mg, Ca and SO 4 are 44.5, 47.1, 11.8, 0.63, 8.2 and 12.4 mM, respectively. During rain events, the leachate is diluted by the preferential flow of rainwater into the drainage discharge. Drainage discharge pH values range between 8.68 and 11.28, the latter under dry conditions. Thermodynamic calculations indicate that CaSO 4, ettringite (3CaOAl 2O 3CaSO 4·32H 2O) and Al(OH) 3 may control the concentrations of the components Ca, SO 4 and Al. Dissolved Si may be in thermodynamic equilibrium with either Ca silicate hydrate or imogolite. Cadmium, Mo, V, Mn and Zn are also diluted during rain events and concentration changes agree with those of conductivity (representing the major constituents). Average concentrations are 0.012, 5.4, 2.3, 0.085, and 0.087 μM, respectively. Components such as Al, Cu, Sb and Cr increase in concentration with increased discharge. Average concentrations are 1.6, 0.27 and 0.21 μM, respectively. For Cu, the explanation lies in its affinity for total organic carbon (TOC). Thermodynamic calculations indicate that whilst dissolution/precipitation reactions with metal hydroxides and carbonates can explain the observed concentrations of Cd, sorption and complexation reactions probably influence the concentrations of Cu, Pb (average measurable concentration 0.013 μM), Zn and Mn. For the oxyanion species such as MoO 4 and WO 4 (average concentration 0.61 μM), it is probable that Ca metallate formation plays a dominant role in determining concentration ranges. Geochemical processes appear to determine concentration ranges and the hydrological factors, the

  20. Mapping hotspots of malaria transmission from pre-existing hydrology, geology and geomorphology data in the pre-elimination context of Zanzibar, United Republic of Tanzania.

    Science.gov (United States)

    Hardy, Andrew; Mageni, Zawadi; Dongus, Stefan; Killeen, Gerry; Macklin, Mark G; Majambare, Silas; Ali, Abdullah; Msellem, Mwinyi; Al-Mafazy, Abdul-Wahiyd; Smith, Mark; Thomas, Chris

    2015-01-22

    Larval source management strategies can play an important role in malaria elimination programmes, especially for tackling outdoor biting species and for eliminating parasite and vector populations when they are most vulnerable during the dry season. Effective larval source management requires tools for identifying geographic foci of vector proliferation and malaria transmission where these efforts may be concentrated. Previous studies have relied on surface topographic wetness to indicate hydrological potential for vector breeding sites, but this is unsuitable for karst (limestone) landscapes such as Zanzibar where water flow, especially in the dry season, is subterranean and not controlled by surface topography. We examine the relationship between dry and wet season spatial patterns of diagnostic positivity rates of malaria infection amongst patients reporting to health facilities on Unguja, Zanzibar, with the physical geography of the island, including land cover, elevation, slope angle, hydrology, geology and geomorphology in order to identify transmission hot spots using Boosted Regression Trees (BRT) analysis. The distribution of both wet and dry season malaria infection rates can be predicted using freely available static data, such as elevation and geology. Specifically, high infection rates in the central and southeast regions of the island coincide with outcrops of hard dense limestone which cause locally elevated water tables and the location of dolines (shallow depressions plugged with fine-grained material promoting the persistence of shallow water bodies). This analysis provides a tractable tool for the identification of malaria hotspots which incorporates subterranean hydrology, which can be used to target larval source management strategies.

  1. The Circum-Chryse Region as a Possible Example of a Hydrologic Cycle on Mars: Geologic Observations and Theoretical Evaluation

    Science.gov (United States)

    Moore, Jeffrey M.; Clow, Gary D.; Davis, Wanda L.; Gulick, Virginia C.; Janke, David R.; McKay, Christopher P.; Stoker, Carol R.; Zent, Aaron P.

    1995-01-01

    dipping subsurface layer accessed along the southern edge of the lake, recharging the flood-source aquifers. H2O not redeposited in the flood-source region was largely lost to the hydrologic cycle. This loss progressively lowered the vitality of the cycle, probably by now killing it. Our numerical evaluations indicate that of the two hypotheses we formulated, the groundwater seep cycle seems by far the more viable. Optimally, approximately 3/4 of the original mass of an ice-covered cylindrical lake (albedo 0.5, 1 km deep, 100-km radius, draining along its rim for one quarter of its circumference into substrata with a permeability of 3000 darcies) can be modeled to have moved underground (on timescales of the order of 10(exp 3) years) before the competing mechanisms of sublimation and freeze down choked off further water removal. Once underground, this water can travel distances equal to the separation between Chryse basin and flood-source sites in geologically short (approximately 10(exp 6) year-scale) times. Conversely, we calculate that optimally only approximately 40% of the H2O carried from Chryse can condense at the highlands, and most of the precipitate would either collect at the base of the highlands/lowlands scrap or sublimate at rates greater than it would accumulate over the flood-source sites. Further observations from forthcoming missions may permit the determination of which mechanisms may have operated to recycle the Chryse flood-waters.

  2. Geology, Hydrology, and Water Quality of the Little Blackwater River Watershed, Dorchester County, Maryland, 2006-09

    Science.gov (United States)

    Fleming, Brandon J.; DeJong, Benjamin D.; Phelan, Daniel J.

    2011-01-01

    The Little Blackwater River watershed is a low-lying tidal watershed in Dorchester County, Maryland. The potential exists for increased residential development in a mostly agricultural watershed that drains into the Blackwater National Wildlife Refuge. Groundwater and surface-water levels were collected along with water-quality samples to document hydrologic and geochemical conditions within the watershed prior to potential land-use changes. Lithologic logs were collected in the Little Blackwater River watershed and interpreted with existing geophysical logs to conceptualize the shallow groundwater-flow system. A shallow water table exists in much of the watershed as shown by sediment cores and surface geophysical surveys. Water-table wells have seasonal variations of 6 feet, with the lowest water levels occurring in September and October. Seasonally low water-table levels are lower than the stage of the Little Blackwater River, creating the potential for surface-water infiltration into the water table. Two stream gages, each equipped with stage, velocity, specific conductance, and temperature sensors, were installed at the approximate mid-point of the watershed and near the mouth of the Little Blackwater River. The gages recorded data continuously and also were equipped with telemetry. Discharge calculated at the mouth of the Little Blackwater River showed a seasonal pattern, with net positive discharge in the winter and spring months and net negative discharge (flow into the watershed from Blackwater National Wildlife Refuge and Fishing Bay) in the summer and fall months. Continuous water-quality records showed an increase in specific conductance during the summer and fall months. Discrete water-quality samples were collected during 2007--08 from 13 of 15 monitoring wells and during 2006--09 from 9 surface-water sites to characterize pre-development conditions and the seasonal variability of inorganic constituents and nutrients. The highest mean values of

  3. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  4. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment.

  5. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment

  6. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    Science.gov (United States)

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Ground water has been the only source of potable water supply for residential, industrial, and agricultural users in the Beaumont and Banning storage units of the San Gorgonio Pass area, Riverside County, California. Ground-water levels in the Beaumont area have declined as much as 100 feet between the early 1920s and early 2000s, and numerous natural springs have stopped flowing. In 1961, the San Gorgonio Pass Water Agency (SGPWA) entered into a contract with the California State Department of Water Resources to receive 17,300 acre-feet per year of water to be delivered by the California State Water Project (SWP) to supplement natural recharge. Currently (2005), a pipeline is delivering SWP water into the area, and the SGPWA is artificially recharging the ground-water system using recharge ponds located along Little San Gorgonio Creek in Cherry Valley with the SWP water. In addition to artificial recharge, SGPWA is considering the direct delivery of SWP water for the irrigation of local golf courses and for agricultural supply in lieu of ground-water pumpage. To better understand the potential hydrologic effects of different water-management alternatives on ground-water levels and movement in the Beaumont and Banning storage units, existing geohydrologic and geochemical data were compiled, new data from a basin-wide ground-water level and water-quality monitoring network were collected, monitoring wells were installed near the Little San Gorgonio Creek recharge ponds, geohydrologic and geochemical analyses were completed, and a ground-water flow simulation model was developed. The San Gorgonio Pass area was divided into several storage units on the basis of mapped or inferred faults. This study addresses primarily the Beaumont and Banning storage units. The geologic units in the study area were generalized into crystalline basement rocks and sedimentary deposits. The younger sedimentary deposits and the surficial deposits are the main water-bearing deposits in the

  7. Shallow Geology and Permafrost Characterization using Ground-Penetrating Radar to infer Hydrological Controls and Landscape Evolution of Interior Alaska

    Science.gov (United States)

    Campbell, S. W.; Saari, S. P.; Douglas, T. A.; Day-Lewis, F. D.; Walvoord, M. A.; Nolan, J. T.

    2012-12-01

    This investigation is part of a larger ongoing study, in which geophysical results are incorporated into numerical models and GIS tools to support simulation of current and future permafrost extent and changing hydrology throughout interior Alaska. The objective of this work was to identify depth and extent of the active layer, permafrost, and shallow geology. We collected 100-400 MHz ground-penetrating radar (GPR) profiles in the summer and spring of 2011-2012 across three vegetation regimes, bordering two small lakes, and near inactive flow channels of the Yukon River, Alaska. From these data we seek to infer controls on groundwater/surface water interaction and utilize the baseline information as means of assessing future change with projected warming. The elevation range of the study region is < 20 meters. Vegetation is characterized by black spruce transitioning into aspen, low growth shrubs, and grasses with increasing proximity to current or recent water bodies. Shallow sediment cores (1-3 m deep) revealed mixtures of silt, gravel, and sandy lenses, with each unit ranging from 10-50 cm in thickness. Shallow (≤ 2 m) ground truth pits exposed these units to be sub-horizontal to steeply dipping, laterally intermittent, yet commonly in sequence throughout the study region. Frost probing and coring in the summer suggested a water table between 1-2 m depth at lower elevation sites whereas cores extracted from the higher elevation sites did not reach the water table. A discontinuous frozen layer mostly confined within a 20-50 cm thick organic silt-rich layer was also extracted from sediment cores in the low grassland/shrub brush at ~1 m depth. Thawed material below this frozen unit varied from saturated clay to gravel. Maximum depth of penetration for the 400 MHz GPR antenna ranged between 1-3 m whereas the 100 MHz antenna reached ≤ 30 m depth. Regions with shallower penetration depths are interpreted as thaw zones exhibiting high silt of free water content

  8. Investigation of the geology and hydrology of the Mogollon Highlands of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Parker, John T.C.; Flynn, Marilyn E.

    2000-01-01

    The Mogollon Highlands of east central Arizona is a region of forested plateau and mountains, deep, sheerwalled canyons, and desert valleys. Known for its scenic beauty and characterized by a generally mild climate, the area, though still sparsely populated, attracts an increasing number of tourists and summer residents. Furthermore, the permanent population is expected to nearly double over the next 50 years. Consequently, there is increased pressure on the water resources of this area for several sometimes conflicting uses. Rational management of water resources is necessary to meet increased domestic requirements while ensuring an adequate supply of water for commercial and agricultural use, for Indian lands, and for preservation of valued environmental elements, including surface waters, riparian woodlands, forest and grassland areas, and wildlife and aquatic habitat. Such management requires an understanding of the relations among different components of the hydrologic system—recharge areas, surface flows, shallow aquifers, deep aquifers, discharge areas, and the regional ground-water flow system—and how each is affected by geology, climate, topography, and human use. The U.S. Geological Survey (USGS) is conducting an assessment of the hydrogeology of the Mogollon Highlands in cooperation with the Arizona Department of Water Resources. The study, funded through the State’s Rural Watershed Initiative program, is one of three assessments being conducted by the USGS. Assessments also are underway in the Upper-Middle Verde River watershed and on the Coconino Plateau. Each study has as its objectives: (1) the collection, compilation, and evaluation of all existing geologic, hydrologic, and related data pertaining to the study area and the creation of a data base that is readily accessible to the public and (2) developing an understanding of the hydrogeologic framework, which is the relation between geologic and hydrologic properties, that can be used for

  9. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil

    International Nuclear Information System (INIS)

    Almeida, Marcelo Esteves

    2006-01-01

    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  10. Statistical behavior and geological significance of the geochemical distribution of trace elements in the Cretaceous volcanics Cordoba and San Luis, Argentina

    International Nuclear Information System (INIS)

    Daziano, C.

    2010-01-01

    Statistical analysis of trace elements in volcanics research s, allowed to distinguish two independent populations with the same geochemical environment. For each component they have variable index of homogeneity resulting in dissimilar average values that reveal geochemical intra telluric phenomena. On the other hand the inhomogeneities observed in these rocks - as reflected in its petrochemical characters - could be exacerbated especially at so remote and dispersed location of their pitches, their relations with the enclosing rocks for the ranges of compositional variation, due differences relative ages

  11. Geological-geochemical characterization of the Semilus and upper Frasnian deposits of the northern part of the Timano-Pechorsk province. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Aminov, L.Z.; Peneva, A.Z.; Udot, V.F.

    1981-01-01

    A geochemical characterization of the semilux-upper-Frasnian sections of various Paleotectonic elements of the northern part of the Timano-Pechorsk province is presented. The distribution of oil and gas source rock is established and an assessment of the regions is given.

  12. Technical summary of geological, hydrological, and engineering studies at the Slick Rock Uranium Mill Tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1990-12-01

    The purpose of this document is to provide the Colorado Department of Health (CDH) with a summary of the technical aspects of the proposed remedial action for the Slick Rock tailings near Slick Rock, Colorado. The technical issues summarized in this document are the geology and groundwater at the Burro Canyon disposal site and preliminary engineering considerations for the disposal cell

  13. Geology, vegetation, and hydrology of the 52 bog at the MEF: 12,000 years in northern Minnesota. Chapter 4.

    Science.gov (United States)

    Elon S. Verry; Joannes. Jansenns

    2011-01-01

    A clear understanding of geology and landscape setting is fundamental to the interpretation of water and solute movement among landscape forms. This understanding allows us to assess how land use affects water, soils, and vegetation as well as assess the fate of acids, nutrients, trace metals, and organic compounds deposited from the atmosphere. Pleistocene Glaciation...

  14. Laboratory electrical resistivity analysis of geologic samples from Fort Irwin, California: Chapter E in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Bloss, Benjamin R.; Bedrosian, Paul A.

    2015-01-01

    Correlating laboratory resistivity measurements with geophysical resistivity models helps constrain these models to the geology and lithology of an area. Throughout the Fort Irwin National Training Center area, 111 samples from both cored boreholes and surface outcrops were collected and processed for laboratory measurements. These samples represent various lithologic types that include plutonic and metamorphic (basement) rocks, lava flows, consolidated sedimentary rocks, and unconsolidated sedimentary deposits that formed in a series of intermountain basins. Basement rocks, lava flows, and some lithified tuffs are generally resistive (≥100 ohm-meters [Ω·m]) when saturated. Saturated unconsolidated samples are moderately conductive to conductive, with resistivities generally less than 100 Ω·m, and many of these samples are less than 50 Ω·m. The unconsolidated samples can further be separated into two broad groups: (1) younger sediments that are moderately conductive, owing to their limited clay content, and (2) older, more conductive sediments with a higher clay content that reflects substantial amounts of originally glassy volcanic ash subsequently altered to clay. The older sediments are believed to be Tertiary. Time-domain electromagnetic (TEM) data were acquired near most of the boreholes, and, on the whole, close agreements between laboratory measurements and resistivity models were found. 

  15. Geology of pre-Dakota uranium geochemical cell, sec. 13, T. 16 N., R. 17 W., Church Rock area, McKinley County

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1980-01-01

    Exploration drilling on sec. 13, T. 16 N., R. 17 W., McKinley County, New Mexico, has defined uranium deposits within the Westwater Canyon Member of the Morrison Formation (Jurassic). Elongate, tabular, redistributed deposits were formed peripherally along the zones of highest transmissivity of the northeast-trending Westwater Canyon fluvial system by a Jurassic-Cretaceous geochemical cell. Strongly reducing conditions, which existed locally in the channel-margin areas owing to the presence of organic materials, were the primary ore control. Evidence that this major redistribution process took place in pre-Dakota time is the bleaching of the Westwater Canyon Sandstone by Dakota swamps is superimposed on older oxidation, and the primary mineralization above the Jurassic-Cretaceous water table was not affected by the geochemical-cell redistribution process

  16. Management of Reclaimed Produced Water in the Rocky Mountain States Enhanced with the Expanded U.S. Geological Survey Produced Waters Geochemical Database

    Science.gov (United States)

    Gans, K. D.; Blondes, M. S.; Reidy, M. E.; Conaway, C. H.; Thordsen, J. J.; Rowan, E. L.; Kharaka, Y. K.; Engle, M.

    2016-12-01

    The Rocky Mountain states; Wyoming, Colorado, Montana, New Mexico and Utah produce annually approximately 470,000 acre-feet (3.66 billion barrels) of produced water - water that coexists with oil and gas and is brought to the surface with the pumping of oil and gas wells. Concerns about severe drought, groundwater depletion, and contamination have prompted petroleum operators and water districts to examine the recycling of produced water. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water reuse. Water with low salinity can be reclaimed for use inside and outside of the petroleum industry. Since a great proportion of petroleum wells in the Rocky Mountain states, especially coal-bed methane wells, have produced water with relatively low salinity (generally hydraulic fracturing or enhanced oil recovery, and even for municipal uses, such as drinking water. The USGS Produced Waters Geochemical Database, available at http://eerscmap.usgs.gov/pwapp, has 60,000 data points in this region (this includes 35,000 new data points added to the 2002 database) and will facilitate studies on the management of produced water for reclamation in the Rocky Mountain region. Expanding on the USGS 2002 database, which contains geochemical analyses of major ions and total dissolved solids, the new data also include geochemical analyses of minor ions and stable isotopes. We have added an interactive web map application which allows the user to filter data on chosen fields (e.g. TDS Rocky Mountains.

  17. Geochemical studies in watersheds expanded

    Science.gov (United States)

    Church, M. Robbins

    In the past, geochemical research in forested watersheds has focused on understanding the basic processes that occur in soils and rocks. Watershed geochemical processes, however, are greatly influenced by, and in turn, greatly influence, both organisms and biological process in soils, and hydrologic responses of catchments. To date, geochemical research has dealt principally with basic chemical processes in soils and rocks, and much less with questions concerning hydrologic routing through catchments and the effects such routing has on temporal variation in chemical composition of surface waters.Research on flow generation in catchments has focused on intensive field studies on plots, hillslope sections, and small catchments, with extension to larger scales necessarily involving the application of conceptual models that might (or might not) be valid. The acquisition of direct experimental evidence (for example, verifying flow generation mechanisms) on larger-scale watersheds has always been problematic. Although geochemists understand that the explanation of some geochemical observations requires that flow pathways be explicitly identified, and hydrologists understand that flow generation can be better elucidated if the geochemical history of waters is known, critical integrated communication between the disciplines is often lacking. In turn, biologists require physical and geochemical information to interpret biological effects in watersheds, and hydrologists and geochemists need to be aware of the effects of biological processes on hydrochemical response of catchments.

  18. Geochemical characteristics and organic carbon sources within the ...

    Indian Academy of Sciences (India)

    This paper uses C isotopic methods coupled with other geochemical parameters to investigate differences in the geochemical characteristics and sources of organic C within the Nanpan and Beipan rivers, two upstream tributaries to the Xi River. 2. Geographic, hydrologic, and geochemical setting. The Nanpan and Beipan ...

  19. A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

    2008-04-15

    The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

  20. Chemical, geologic, and hydrologic data from the Little Colorado River basin, Arizona and New Mexico, 1988-91

    Science.gov (United States)

    Fisk, Gregory G.; Ferguson, S.A.; Rankin, D.R.; Wirt, Laurie

    1994-01-01

    In June 1988, The U.S. Geological Survey began a 4-year study of the occurrence and movement of radionuclides and other chemical constituents in ground water and surface water in the Little Colorado River basin in Arizona and New Mexico. Radionuclides and other chemical constituents occur naturally in water, rock, and sediment throughout the region; however, discharge of mine--dewatering effluents released by mining operations increased the quantity of radionuclides and other chemical contaminants. Additionally, in 1979, the failure of a tailings-pond dike resulted in the largest known single release of water contaminated by uranium tailings in the United States. Ground-water data and surface-water data were collected from July 1988 through September 1991. Sixty-nine wells were sampled, and collected data include well- construction information, lithologic logs, water levels and chemical analysis of water samples. The wells include 31 wells drilled by the U.S. Geological Survey, 7 wells drilled by the New Mexico Environment Department, 11 private wells, and 20 temporary drive-point wells; in addition, 1 spring was sampled. Data from nine continual-record and five partial-record stxeamflow-gaging stations include daily mean discharge, daily mean suspended-sediment concentration and discharge, and chemical analysis for discrete water and sediment samples. Precipitation data also were collected at the nine continual-record stations.

  1. Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life.

    Science.gov (United States)

    Beaty, David W; Clifford, Stephen M; Borg, Lars E; Catling, David C; Craddock, Robert A; Des Marais, David J; Farmer, Jack D; Frey, Herbert V; Haberle, Robert M; McKay, Christopher P; Newsom, Horton E; Parker, Timothy J; Segura, Teresa; Tanaka, Kenneth L

    2005-12-01

    In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.

  2. Investigation of geology and hydrology of the upper and middle Verde River watershed of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Woodhouse, Betsy; Flynn, Marilyn E.; Parker, John T.C.; Hoffmann, John P.

    2002-01-01

    The upper and middle Verde River watershed in west-central Arizona is an area rich in natural beauty and cultural history and is an increasingly popular destination for tourists, recreationists, and permanent residents seeking its temperate climate. The diverse terrain of the region includes broad desert valleys, upland plains, forested mountain ranges, narrow canyons, and riparian areas along perennial stream reaches. The area is predominantly in Yavapai County, which in 1999 was the fastest-growing rural county in the United States (Woods and Poole Economics, Inc., 1999); by 2050, the population is projected to more than double. Such growth will increase demands on water resources. The domestic, industrial, and recreational interests of the population will need to be balanced against protection of riparian, woodland, and other natural areas and their associated wildlife and aquatic habitats. Sound management decisions will be required that are based on an understanding of the interactions between local and regional aquifers, surface-water bodies, and recharge and discharge areas. This understanding must include the influence of climate, geology, topography, and cultural development on those components of the hydrologic system. In 1999, the U.S. Geological Survey (USGS), in cooperation with the Arizona Department of Water Resources (ADWR), initiated a regional investigation of the hydrogeology of the upper and middle Verde River watershed. The project is part of the Rural Watershed Initiative (RWI), a program established by the State of Arizona and managed by the ADWR that addresses water supply issues in rural areas while encouraging participation from stakeholder groups in affected communities. The USGS is performing similar RWI investigations on the Colorado Plateau to the north and in the Mogollon Highlands to the east of the Verde River study area (Parker and Flynn, 2000). The objectives of the RWI investigations are to develop: (1) a single database

  3. Statistical analysis of the geological-hydrological conditions within part of the Eye-Dashwa pluton, Atikokan, northwestern Ontario

    International Nuclear Information System (INIS)

    Brown, P.A.; Rey, N.A.C.

    1989-01-01

    The occurrence and distribution of fracture-filling material within the Eye-Dashwa granite indicate that the dominant fracture system formed shortly after emplacement and cooling of the pluton at 2678 ± 67 Ma. Subsequent reactivation of these ancient fractures was accompanied by sequentially younger and lower temperature filling materials. These reopened ancient fractures are best developed in the upper 300-400 m of the rock mass and are commonly conduits for present-day groundwater flow. Multiple linear regression analysis performed on the geological variables identified a highly significant correlation between a number of these variable and hydraulic conductivity values measured in 25 m test sections of the boreholes. The predictive capability of the regression design was tested with seven new test data and found to be a valid estimator of the hydrogeological conditions

  4. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    Science.gov (United States)

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  5. Effect of source integration on the geochemical fluxes from springs

    International Nuclear Information System (INIS)

    Frisbee, Marty D.; Phillips, Fred M.; White, Art F.; Campbell, Andrew R.; Liu, Fengjing

    2013-01-01

    Geochemical fluxes from watersheds are typically defined using mass-balance methods that essentially lump all weathering processes operative in a watershed into a single flux of solute mass measured in streamflow at the watershed outlet. However, it is important that we understand how weathering processes in different hydrological zones of a watershed (i.e., surface, unsaturated, and saturated zones) contribute to the total geochemical flux from the watershed. This capability will improve understanding of how geochemical fluxes from these different zones may change in response to climate change. Here, the geochemical flux from weathering processes occurring solely in the saturated zone is investigated. This task, however, remains exceedingly difficult due to the sparsity of subsurface sampling points, especially in large, remote, and/or undeveloped watersheds. In such cases, springflow is often assumed to be a proxy for groundwater (defined as water residing in fully saturated geologic formations). However, springflow generation may integrate different sources of water including, but not limited to, groundwater. The authors’ hypothesis is that long-term estimates of geochemical fluxes from groundwater using springflow proxies will be too large due to the integrative nature of springflow generation. Two conceptual models of springflow generation are tested using endmember mixing analyses (EMMA) on observations of spring chemistries and stable isotopic compositions in a large alpine watershed in the San Juan Mountains of southwestern Colorado. In the “total springflow” conceptual model, springflow is assumed to be 100% groundwater. In the “fractional springflow” conceptual model, springflow is assumed to be an integration of different sources of water (e.g., groundwater, unsaturated flow, preferential flow in the soil, etc.) and groundwater is only a fractional component. The results indicate that groundwater contributions in springflow range from 2% to 100

  6. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    Science.gov (United States)

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  7. Characterization of the geology, geochemistry, hydrology and microbiology of the in-situ air stripping demonstration site at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, C.A.; Looney, B.B.; Dougherty, J.M.; Hazen, T.C.; Kaback, D.S.

    1991-05-01

    The Savannah River Site is the location of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration at sites contaminated with volatile organic contaminants. This demonstration utilizes directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. Phase I of the Integrated Demonstration focused on the application and development of in-situ air stripping technologies to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The objective of this report is to provide baseline information on the geology, geochemistry, hydrology, and microbiology of the demonstration site prior to the test. The distribution of contaminants in soils and sediments in the saturated zone and groundwater is emphasized. These data will be combined with data collected after the demonstration in order to evaluate the effectiveness of in-situ air stripping. New technologies for environmental characterization that were evaluated include depth discrete groundwater sampling (HydroPunch) and three-dimensional modeling of contaminant data.

  8. US Geological Survey Committee for the Advancement of Science in the Yucca Mountain Project symposium on open-quotes Fractures, Hydrology, and Yucca Mountainclose quotes: Abstracts and summary

    International Nuclear Information System (INIS)

    Gomberg, J.

    1991-01-01

    The principal objective of this symposium is to review the available information on fractured/faulted terrains in terms of a coherent hydrogeologic model of ground-water fluid flow and transport, particularly as it pertains to the Yucca Mountain region. This review addresses the influence and significance of fractures on ground-water flow and the transport of conservative-species solutes within the context of the hydrogeologic setting of the Yucca Mountain area. The relations between fluid flow and fractured or faulted host rock are examined integrally from information on geologic, seismologic, hydrologic, and geomechanical properties of the system. The development of new hydrogeologic approaches that incorporate information from this integrated database are contrasted with more standard approaches toward understanding flow in fractured reservoirs. Ground-water flow in both the unsaturated zone and the saturated zone are considered. The application of various models of flow is addressed, examples include porous-media equivalent and discontinuum fracture-network models. Data and interpretations from the Yucca Mountain area are presented to establish a context for information exchange. The symposium includes discussions relevant to technical considerations for characterizing the Yucca Mountain area hydrogeology. On the basis of these discussions, CASY has compiled this document in order to formally summarize the proceedings and communicate recommendations for future directions of research and investigation

  9. Geologic and geochemical studies of the New Albany Group in Illinois (Devonian black shale) to evaluate its characteristics as a source of hydrocarbons. Annual report, October 1, 1976--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, R.E.; Shimp, N.F.

    1977-01-01

    The Illinois State Geological Survey is conducting geological and geochemical investigations to evaluate the potential of New Albany Group shales as sources of hydrocarbons. Geological studies include stratigraphy and structure; mineralogic and petrographic characterization; analyses of physical properties; and development of a computer-based resources evaluation system. Studies include quantitative determination of 49 major, minor, and trace elements; trace element distribution between inorganic and organic phases; hydrocaron characterization; and adsorption/desorption studies of gas through shales. Six cores (five from Illinois and one from western Kentucky) provide the principal data base for these investigations.Using subsurface stratigraphic techniques, twenty-two cross-sections and a preliminary New Albany Group thickness map have been prepared. Isopach maps are in preparation for each of the formations within the New Albany. Black shales predominate in the center of the Illinois Basin, whereas gray shales predominate around the margins of the Basin. A computer data base of over 5000 wells penetrating the New Albany Group has been compiled. Tectonic origins are not postulated for any of the linears, and caution is advised when interpreting linear features in glaciated terrains. Mineralogic and petrographic studies have concentrated on two cores. A preliminary classification of four shales lithofacies based on primary depositional characteristics has been established and related to oxygenation of the bottom environment. Preliminary results of physical index properties; major, minor, and trace elements; and gas compositions have been obtained for three cores. Internal surface area measurements reveal that gray shales have higher ultramicroporosity than do black shales. The gray shales also have high gas diffusion rates and are better reservoir rocks.

  10. Utilizing geochemical, hydrologic, and boron isotopic data to assess the success of a salinity and selenium remediation project, Upper Colorado River Basin, Utah.

    Science.gov (United States)

    Naftz, David L; Bullen, Thomas D; Stolp, Bert J; Wilkowske, Christopher D

    2008-03-15

    Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R(2) values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177 metric tons/month and decreased after remediation to less than 590 metric tons/month. The net gain in dissolved Se load during the same pre-closure period exceeded 120 kg/month and decreased to less than 18 kg/month. Sen's slope estimator verified the statistical significance of the modeled reduction in monthly salinity and Se loads. Measured gain in dissolved constituent loads during seepage tests conducted during September and November 2003 ranged from 0.334 to 0.362 kg/day for dissolved Se and 16.9 to 26.1 metric tons/day for dissolved salinity. Stream discharge and changes in the isotopic values of delta boron-11 (delta(11)B) were used in a mixing model to differentiate between constituent loadings contributed by residual sewage effluent and naturally occurring ground-water seepage entering Ashley Creek. The majority of the modeled delta(11)B values of ground-water seepage were positive, indicative of minimal seepage contributions from sewage effluent. The stream reach between sites S3 and AC2A contained a modeled ground-water seepage delta(11)B value of -2.4 per thousand, indicative of ground-water seepage composed of remnant water still draining from the abandoned sewage lagoons.

  11. Massive sulfide exploration models of the Iberian Pyrite Belt Neves Corvo mine region, based in a 3D geological, geophysical and geochemical ProMine study

    Science.gov (United States)

    Inverno, Carlos; Matos, João Xavier; Rosa, Carlos; Mário Castelo-Branco, José; Granado, Isabel; Carvalho, João; João Baptista, Maria; Represas, Patrícia; Pereira, Zélia; Oliveira, Tomás; Araujo, Vitor

    2013-04-01

    The Iberian Pyrite Belt (IPB) hosts one of the largest concentrations of massive sulfides in the Earth's crust. This highly productive VMS belt contains more than 85 massive sulfide deposits, totalling an estimate of 1600 Mt of massive ore and about 250 Mt of stockwork ore (Leistel et al., 1998; Oliveira et al., 2005; Tornos, 2006). Included in the South Portuguese Zone the IPB is represented by the Phyllite-Quartzite Group (PQG) composed of shales and quartzites of late Devonian age followed by the Volcanic-Sedimentary Complex (VSC) a submarine succession of sediments and felsic and basic volcanic rocks (late Famennian-late Viséan age). Above the IPB a turbidite sedimentary unit occurs being represented by the Baixo Alentejo Flysch Group (BAFG). The ore deposits are hosted by felsic volcanic rocks and sediments that are dominant in the lower part of the VSC succession. The Neves Corvo (ProMine, EU FP7) project area is focused on the Neves Corvo deposit, an active copper mine. The project area is located between the Messejana Fault and the Portuguese/Spanish border which has been selected for the 3D geological and geophysical modelling study, based on high exploration potential of the Neves Corvo area (Oliveira et al. 2006, Relvas et al. 2006, Pereira et al. 2008, Rosa et al. 2008, Matos et al. 2011, Oliveira et al. 2013). In this study existing LNEG and AGC geological, geophysical and geochemistry databases were considered. New surveys were done: i) - A physical volcanology and palynostratigraphic age data study and log of the Cotovio drill-hole core (1,888 m, drilled by AGC). ii) - Interpretation of 280 km of Squid TEM performed by AGC. Based on the TEM data, significant conductors have been identified related with: shallow conductive cover, graphitic shale, black shale and sulphide mineralizations. The most important TEM conductors are related with the Neves Corvo massive sulphides lenses (1-10 Ωm). iii) - Ground and residual gravimetry studies including

  12. Climate and hydrology of the last interglaciation (MIS 5) in Owens Basin, California: Isotopic and geochemical evidence from core OL-92

    Science.gov (United States)

    Li, H.-C.; Bischoff, J.L.; Ku, T.-L.; Zhu, Z.-Y.

    2004-01-01

    ??18O, ??13C, total organic carbon, total inorganic carbon, and acid-leachable Li, Mg and Sr concentrations on 443 samples from 32 to 83 m depth in Owens Lake core OL-92 were analyzed to study the climatic and hydrological conditions between 60 and 155 ka with a resolution of ???200 a. The multi-proxy data show that Owens Lake overflowed during wet/cold conditions of marine isotope stages (MIS) 4, 5b and 6, and was closed during the dry/warm conditions of MIS 5a, c and e. The lake partially overflowed during MIS 5d. Our age model places the MIS 4/5 boundary at ca 72.5 ka and the MIS 5/6 boundary (Termination II) at ca 140 ka, agreeing with the Devils Hole chronology. The diametrical precipitation intensities between the Great Basin (cold/wet) and eastern China (cold/dry) on Milankovitch time scales imply a climatic teleconnection across the Pacific. It also probably reflects the effect of high-latitude ice sheets on the southward shifts of both the summer monsoon frontal zone in eastern Asia and the polar jet stream in western North America during glacial periods. ?? 2003 Elsevier Ltd. All rights reserved.

  13. The formation of auriferous quartz-sulfide veins in the Pataz region, northern Peru: A synthesis of geological, mineralogical, and geochemical data

    Science.gov (United States)

    Schreiber, D. W.; Amstutz, G. C.; Fontboté, L.

    1990-12-01

    The Pataz region in the eastern part of the North Peruvian Department La Libertad hosts a number of important gold mining districts like La Lima, El Tingo, Pataz, Parcoy, and Buldibuyo. Economic gold mineralization occurs in quartz-sulfide veins at the margin of the calc-alkaline Pataz Batholith, that mainly consists of granites, granodiorites, and monzodiorites. The batholith is of Paleozoic age and cuts the Precambrian to Early Paleozoic low-grade metamorphic basement series. Its intrusion was controlled by a NNW-trending fault of regional importance. The gold-bearing veins are characterized by a two-stage sulfide mineralization. Bodies of massive pyrite and some arsenopyrite were formed in stage 1, and after subsequent fracturing they served as sites for deposition of gold, electrum, galena, sphalerite, and chalcopyrite. It is concluded that gold was transported as a AuCl{2/-}-complex by oxidizing chloride solutions and deposited near older pyrite by micro-scale redox changes and a slight temperature decrease. Mineralogical, textural, geochemical, and microthermometric features are interpreted as a consequence of mineralization at considerable depth produced by a hydrothermal system linked with the emplacement of the Pataz Batholith. acteristics in order to outline a general physicochemical model of the hydrothermal ore-forming processes.

  14. Assessing the risk of phosphorus transfer to high ecological status rivers: Integration of nutrient management with soil geochemical and hydrological conditions.

    Science.gov (United States)

    Roberts, William M; Gonzalez-Jimenez, Jose L; Doody, Donnacha G; Jordan, Philip; Daly, Karen

    2017-07-01

    Agriculture has been implicated in the loss of pristine conditions and ecology at river sites classified as at 'high ecological status' across Europe. Although the exact causes remain unclear, diffuse phosphorus (P) transfer warrants consideration because of its wider importance for the ecological quality of rivers. This study assessed the risk of P loss at field scale from farms under contrasting soil conditions within three case-study catchments upstream of near-pristine river sites. Data from 39 farms showed P surpluses were common on extensive farm enterprises despite a lower P requirement and level of intensity. At field scale, data from 520 fields showed that Histic topsoils with elevated organic matter contents had low P reserves due to poor sorption capacities, and received applications of P in excess of recommended rates. On this soil type 67% of fields recorded a field P surplus of between 1 and 31kgha -1 , accounting for 46% of fields surveyed across 10 farms in a pressured high status catchment. A P risk assessment combined nutrient management, soil biogeochemical and hydrological data at field scale, across 3 catchments and the relative risks of P transfer were highest when fertilizer quantities that exceeded current recommendations on soils with a high risk of mobilization and high risk of transport as indicated by topographic wetness index values. This situation occurred on 21% of fields surveyed in the least intensively managed catchment with no on-farm nutrient management planning and soil testing. In contrast, the two intensively managed catchments presented a risk of P transfer in only 3% and 1% of fields surveyed across 29 farms. Future agri-environmental measures should be administered at field scale, not farm scale, and based on soil analysis that is inclusive of OM values on a field-by-field basis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hydrologic and geochemical controls on the transport of radionuclides in natural undisturbed arid environments as determined by accelerator mass spectrometry measurements. 1997 annual progress report

    International Nuclear Information System (INIS)

    Caffee, M.W.; Finkel, R.C.; McAninch, J.E.; Nimz, G.J.

    1997-01-01

    'During FY97 this study has developed unique accelerator mass spectrometry (AMS) analytical techniques for measurement of 99 Tc and 129 I, which compliments an improved capability for measurement of 36 Cl. The ability to measure these nuclides in natural soil samples has been demonstrated through analytical results obtained during FY97. Methods to determine the distribution of these nuclides in their natural setting, which will vary depending on site-specific chemical conditions, have also been developed. Spatially well-characterized soil samples have been collected from the vadose zone to a depth of -5 meters at the Nevada Test Site. To do this, a deep trench has been excavated and the geological setting for the soils has been well documented. Physical, chemical, and isotopic analysis of these soil samples during the course of this research project will result in a numerical computer model for moisture and radionuclide migration in arid soils that is valuable to nuclear waste storage, site remediation, and groundwater recharge concerns.'

  16. Association between physical and geochemical characteristics of ...

    African Journals Online (AJOL)

    ... as well as in waters relatively rich in uranium, rubidium, vanadium and manganese. It was clear that the occurrence of algae coincided with specific geological formations. These algae could act as indicator species of geology and heavy metals. Keywords: thermal springs, Limpopo Province, algae, diversity, geochemical ...

  17. Studies of geology and hydrology in the Basin and Range Province, Southwestern United States, for isolation of high-level radioactive waste - Basis of characterization and evaluation

    Science.gov (United States)

    Bedinger, M.S.; Sargent, K.A.; Langer, William H.; Sherman, Frank B.; Reed, J.E.; Brady, B.T.

    1989-01-01

    The geologic and hydrologic factors in selected regions of the Basin and Range province were examined to identify prospective areas for further study that may provide isolation of high-level radioactive waste from the accessible environment. The six regions selected for study were characterized with respect to the following guidelines: (1) Potential repository media; (2) Quaternary tectonic conditions; (3) climatic change and geomorphic processes; (4) ground-water conditions; (5) ground-water quality; and (6) mineral and energy resources.The repository medium will function as the first natural barrier to radionuclide travel by virtue of associated slow ground-water velocity. The principal rock types considered as host media include granitic, intermediate, and mafic intrusive rocks; argillaceous rocks; salt and anhydrite; volcanic mudflow (laharic) breccias; some intrusive rhyolitic plugs and stocks; partially zeolitized tuff; and metamorphic rocks. In the unsaturated zone, the permeability and hydrologic properties of the rocks and the hydrologic setting are more important than the rock type. Media ideally should be permeable to provide drainage and should have a minimal water fluxThe ground-water flow path from a repository to the accessible environment needs to present major barriers to the transport of radionuclides. Factors considered in evaluating the ground-water conditions include ground-water traveltimes and quality, confining beds, and earth materials favorable for retardation of radionuclides. Ground-water velocities in the regions were calculated from estimated hydraulic properties of the rocks and gradients. Because site-specific data on hydraulic properties are not available, data from the literature were assembled and synthesized to obtain values for use in estimating ground-water velocities. Hydraulic conductivities for many rock types having granular and fracture permeability follow a log-normal distribution. Porosity for granular and very weathered

  18. Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996

    Energy Technology Data Exchange (ETDEWEB)

    Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

    1997-04-01

    The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

  19. Pharmaceuticals, hormones, personal-care products, and other organic wastewater contaminants in water resources: Recent research activities of the U.S. Geological Survey's toxic substances hydrology program

    Science.gov (United States)

    Focazio, Michael J.; Kolpin, Dana W.; Buxton, Herbert T.

    2003-01-01

    Recent decades have brought increasing concerns for potential contamination of water resources that could inadvertently result during production, use, and disposal of the numerous chemicals offering improvements in industry, agriculture, medical treatment, and even common household products. Increasing knowledge of the environmental occurrence or toxicological behavior of these contaminants from various studies in Europe, United States, and elsewhere has resulted in increased concern for potential adverse environmental and human health effects (Daughton and Ternes, 1999). Ecologists and public health experts often have incomplete understandings of the toxicological significance of many of these contaminants, particularly long-term, low-level exposure and when they occur in mixtures with other contaminants (Daughton and Ternes, 1999; Kümmerer, 2001). In addition, these ‘emerging contaminants’ are not typically monitored or assessed in ambient water resources. The need to understand the processes controlling the transport and fate of these contaminants in the environment, and the lack of knowledge of the significance of long-term exposures have increased the need to study environmental occurrence down to trace (nanogram per liter) levels. Furthermore, the possibility that mixtures of environmental contaminants may interact synergistically or antagonistically has increased the need to characterize the types of mixtures that are found in our waters. The U.S. Geological Survey’s Toxic Substances Hydrology Program (Toxics Program) is developing information and tools on emerging water-quality issues that will be used to design and improve water-quality monitoring and assessment programs of the USGS and others, and for proactive decision-making by industry, regulators, the research community, and the public (http://toxics.usgs.gov/regional/emc.html). This research on emerging water-quality issues includes a combination of laboratory work to develop new analytical

  20. Hydrogeological and geochemical studies in the Perch Lake basin

    International Nuclear Information System (INIS)

    Barry, P.J.

    1979-08-01

    The Perch Lake basin is a small drainage system along the Ottawa River about 200 km west of Ottawa on the Canadian Shield. Since 1975, groups of scientists from several Canadian universities and government departments have been studying the hydrological, geological and geochemical properties of the basin. The object of these studies is to develop and test simulation models used to describe the time-dependent mass flow rates of water and dissolved and suspended substances through the basin. To review progress, a symposium/workshop was held at Chalk Rier in 1978 April. This report contains 24 extended summaries of the material presented verbally at the workshop. Subject matters include atmospheric sources and sinks, mass flows through the surface and subsurface regimes in the drainage basins and interactions occurring in the lake. (author)

  1. Water and rock geochemistry, geologic cross sections, geochemical modeling, and groundwater flow modeling for identifying the source of groundwater to Montezuma Well, a natural spring in central Arizona

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Arnold, L. Rick; Horton, John D.

    2011-01-01

    The National Park Service (NPS) seeks additional information to better understand the source(s) of groundwater and associated groundwater flow paths to Montezuma Well in Montezuma Castle National Monument, central Arizona. The source of water to Montezuma Well, a flowing sinkhole in a desert setting, is poorly understood. Water emerges from the middle limestone facies of the lacustrine Verde Formation, but the precise origin of the water and its travel path are largely unknown. Some have proposed artesian flow to Montezuma Well through the Supai Formation, which is exposed along the eastern margin of the Verde Valley and underlies the Verde Formation. The groundwater recharge zone likely lies above the floor of the Verde Valley somewhere to the north or east of Montezuma Well, where precipitation is more abundant. Additional data from groundwater, surface water, and bedrock geology are required for Montezuma Well and the surrounding region to test the current conceptual ideas, to provide new details on the groundwater flow in the area, and to assist in future management decisions. The results of this research will provide information for long-term water resource management and the protection of water rights.

  2. Shallow groundwater monitoring at the SACROC oilfield, Scurry County, TX: good news for geologic storage of CO2 despite a complex hydrogeologic and geochemical setting (Invited)

    Science.gov (United States)

    Smyth, R. C.; Romanak, K.; Yang, C.; Hovorka, S.

    2009-12-01

    The SACROC water study is the first comprehensive research project with application to geologic storage (GS) of CO2 that focuses on collection and interpretation of field measurements of groundwater (water level and water chemistry data). CO2 has been injected for enhanced oil recovery at the SACROC oilfield in Scurry County, TX since 1972. Hence, we have a perfect natural laboratory and an analog for monitoring future commercial CO2 sequestration sites. Kinder Morgan currently operates the SACROC oilfield where over 150 million metric tons (MMT) of CO2 has been injected for EOR at ~2 km depth; over 75 MMT of the CO2 has been produced and re-injected. CO2 is assumed to be trapped in the deep subsurface at SACROC. The goals of monitoring shallow groundwater over CO2 injection sites are to (1) confirm that CO2 has remained in the deep subsurface and (2) assess impacts to water quality if CO2 were to migrate upward along conduit flow paths (e.g. leaking well bores). We collected groundwater and stratigraphic data within an ~3,000 km2 area centered on SACROC to establish regional variability prior to assessing potential impacts to groundwater from CO2 injection. Groundwater data include results from five sampling trips between June 2006 and November 2008, and a compilation of historical data from the Texas Water Development Board database, dating back to 1936. Sources of complexity that contribute to data interpretation challenges include: (1) regional historic oilfield activity, (2) multiple freshwater-bearing strata in the regional Dockum aquifer, (3) sampled wells screened in shallowest (30 m), deepest (150 m), or across both water-bearing zones, (4) variable discharge rate of sampled wells (250 gpm), (5) groundwater flow divide that bisects SACROC, (6) variable aquifer recharge mechanisms, (7) temporal variability in groundwater levels and chemistry, (8) cation exchange, (9) presence of biogenically-produced CO2 in aquifer, and (10) incongruent dissolution of

  3. Geochemical regionalism of biržai area topsoil and technogenous ground

    OpenAIRE

    Stankevičius, Tadas

    2008-01-01

    Objectives: to perform Biržai region soil geochemical regionalism in accordance with geological-geophormalogical evidence, to establish geochemical field differences, evaluate resistance to polution technogenous chemical elements. Goals: 1. Summarize experience gained in previously accomplished geochemical regionalism in Lithuania. 2. Familiarize with geochemical mapping of Biržai region . 3. To explore geological (quaternary), geomorphologic and anthropocentric pollution conditions in Biržai...

  4. Watershed Boundaries - WATERSHEDS_HUC06_USGS_IN: 6-Digit Accounting Units, Hydrologic Units, in Indiana, (Derived from US Geological Survey, 1:24,000 Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — WATERSHEDS_HUC06_USGS_IN is a polygon shapefile showing the boundaries of accounting units (HUA) in Indiana. Accounting units are noted by a 6-digit hydrologic unit....

  5. Geological, hydrological, and biological issues related to the proposed development of a park at the confluence of the Los Angeles River and the Arroyo Seco, Los Angeles County, California

    Science.gov (United States)

    Land, Michael; Trenham, Peter C.; Ponti, Daniel J.; Reichard, Eric G.; Tinsley, John C.; Warrick, Jonathan A.; Meyer, Robert W.

    2005-01-01

    A new park is being considered for the confluence of the Los Angeles River and the Arroyo Seco in Los Angeles County, California. Components of the park development may include creation of a temporary lake on the Los Angeles River, removal of channel lining along part of the Arroyo Seco, restoration of native plants, creation of walking paths, and building of facilities such as a boat ramp and a visitor center. This report, prepared in cooperation with the Mountains Recreation and Conservancy Authority, delineates the geological, hydrological, and biological issues that may have an impact on the park development or result from development at the confluence, and identifies a set a tasks to help address these science issues. Geologic issues of concern relate to surface faulting, earthquake ground motions, liquefaction, landsliding, and induced seismicity. Hydrologic issues of concern relate to the hydraulics and water quality of both surface water and ground water. Biological issues of concern include colonization-extinction dynamics, wildlife corridors, wildlife reintroduction, non-native species, ecotoxicology, and restoration of local habitat and ecology. Potential tasks include (1) basic data collection and follow-up monitoring, and (2) statistical and probabilistic analyses and simulation modeling of the seismic, hydraulic, and ecological processes that may have the greatest impact on the park. The science issues and associated tasks delineated for the proposed confluence park will also have transfer value for river restoration in other urban settings.

  6. Geology of hydrothermal uranium deposits

    International Nuclear Information System (INIS)

    Korolev, K.G.; Belov, V.K.; Putilov, G.S.

    1983-01-01

    Geological characteristics of hydrothermal phosphorus-uranium deposits placed in sedimentary, igneous-sedimentary, metamorphic and intrusion formations are presented. Attention is paid to mineral composition, texture and structure of ores, their genesis, tectonics. Geochemical peculiarities of ores and age of molybdenum-uranium and uranium deposits are described. Geological criteria and prospecting features of uranium and uranium-molybdenum deposits are given

  7. Preliminary report on the geology and hydrology of Mortandad Canyon near Los Alamos, New Mexico, with reference to disposal of liquid low-level radioactive waste

    Science.gov (United States)

    Baltz, E.H.; Abrahams, J.H.; Purtyman, W.D.

    1963-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Atomic Energy Commission and the Los Alamos Scientific Laboratory, selected the upper part of Mortandad Canyon near Los Alamos, New Mexico for a site for disposal of treated liquid low-level radioactive waste. This report summarizes the part of a study of the geology and hydrology that was done from October 1960 through June 1961. Additional work is being continued. Mortandad Canyon is a narrow east-southeast-trending canyon about 9? miles long that heads on the central part of the Pajarito Plateau at an altitude of about 7,340 feet. The canyon is tributary to the Rio Grande. The drainage area of the part of Mortandad Canyon that was investigated is about 2 square miles, and the total drainage area is about 4.9 square miles. The Pajarito Plateau is capped by the Bandelier Tuff of Pleistocene age. Mortandad Canyon is cut in the Bandelier, and alluvium covers the floor of the canyon to depths ranging from less than 1 foot to as much as 100 feet. The Bandelier is underlain by silt, sand, conglomerate, and interbedded basalt of the Santa Fe Group of Miocene, Pliocene, and Pleistocene(?) age. Some ground water is perched in the alluvium in the canyon; however, the top of the main aquifer is in the Santa Fe Group at a depth of about 990 feet below the canyon floor. Joints in the Bandelier Tuff probably were caused by shrinkage of the tuff during cooling. The joints range in width from hairline cracks to fissures several inches wide. Water can infiltrate along the open joints where the Bandelier is at the surface; however, soil, alluvial fill, and autochthonous clay inhibit infiltration on the tops of mesas and probably in the alluvium-floored canyons also. Thirty-three test holes, each less than 100 feet deep, were drilled in 10 lies across Mortandad Canyon from the western margin of the study area to just west of the Los Alamos-Santa Fe County line. Ten of the holes were cased for observation wells to measure

  8. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  9. National Geochemical Survey Locations and Results for Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The United States Geological Survey (USGS), in collaboration with other state and federal agencies, industry, and academia, is conducting a National Geochemical...

  10. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  11. Summary of Geophysical Field Investigations to Constrain the Geologic Structure and Hydrologic Characteristics of Fortymile Wash Essential for Assessing the Performance of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, Nevada

    Science.gov (United States)

    Farrell, D. A.; La Femina, P.; Winterle, J.; Hill, M.; Sims, D.; Smith, M.; Green, R.; Illman, W.; Sandberg, S.; Rogers, N.

    2001-12-01

    The U.S. Department of Energy (DOE) is currently evaluating Yucca Mountain, located in southwestern Nevada, as a possible geologic high-level nuclear waste repository with a performance period of 10,000 years. Groundwater flow and possible radionuclide transport from Yucca Mountain within the saturated zone will be influenced by the geologic structure and the hydrogeologic characteristics of the subsurface in the vicinity of the site. An understanding of these characteristics is essential to evaluating the performance of the repository. South of Yucca Mountain, along the anticipated radionuclide transport pathway, uncertainties in structural geology, hydrogeologic models, and supporting data (for example, the location of the watertable transition from tuff to valley-fill, and the architecture of the basin) impact site performance assessment calculations. Some of these uncertainties will be reduced by the point information provided by the well drilling program currently being carried out by Nye County, Nevada. However, geologic and hydrologic uncertainties remain within inter-well regions which extend over several tens of square kilometers. In recognition of the uncertainties inherent in analyses based upon relatively sparse point data available for Fortymile Wash, the Center for Nuclear Waste Regulatory Analyses and the Nuclear Regulatory Commission have developed a surface geophysics program that targets the inter-well regions utilizing gravity, magnetic, electrical resistivity, and electromagnetic measurements to support confirmatory analyses and performance assessment calculations. This presentation describes various aspects of these surveys and their results. In particular, the presentation presents new models for the structure of the Fortymile Wash (including an improved mapping of the tuff valley-fill interface) based on the integrated geophysical approach and provides an independent basis for the watertable configuration over the region. By combining the

  12. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  13. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California: Chapter G in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Science.gov (United States)

    Bedrosian, Paul A.; Ball, Lyndsay B.; Bloss, Benjamin R.

    2014-01-01

    From December 2010 to January 2011, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of Leach Lake Basin within the National Training Center, Fort Irwin, California. These data were collected to characterize the subsurface and provide information needed to understand and manage groundwater resources within Fort Irwin. A resistivity stratigraphy was developed using ground-based time-domain electromagnetic soundings together with laboratory resistivity measurements on hand samples and borehole geophysical logs from nearby basins. This report releases data associated with the airborne surveys, as well as resistivity cross-sections and depth slices derived from inversion of the airborne electromagnetic data. The resulting resistivity models confirm and add to the geologic framework, constrain the hydrostratigraphy and the depth to basement, and reveal the distribution of faults and folds within the basin.

  14. Hydrologic Classification of Bristol Bay, Alaska Using Hydrologic Landscapes

    Science.gov (United States)

    Todd, J.; Wigington, P. J., Jr.; Sproles, E. A.

    2014-12-01

    The use of hydrologic landscapes has proven to be a useful tool for broad scale assessment and classification of landscapes across the United States. These classification systems help organize larger geographical areas into areas of similar hydrologic characteristics based on climate, terrain and underlying geology. Such characterization of landscapes into areas of common hydrologic patterning is particularly instructive where site specific hydrologic data is sparse or spatially incomplete. By using broad scale landscape metrics to organize the landscape into discrete, characterized units, natural resources managers can gain valuable understanding of landscape patterning and how locations may be differentially affected by a variety of environmental stressors ranging from land use change to climate change. The heterogeneity of aquatic habitats and undisturbed hydrologic regimes within Bristol Bay are a known principal driver for its overall fisheries stability and the use of hydrologic landscapes offers the ability to better characterize the hydrologic and landscape influences on structuring biotic populations at a regional scale. Here we classify the entire Bristol Bay region into discrete hydrologic landscape units based on indices of annual climate and seasonality, terrain, and geology. We then compared hydrologic landscape units to locations of available long term streamflow for characterization of expected hydrologic behavior where streamflow data was lacking. This demonstration of hydrologic landscapes in Bristol Bay, Alaska shows the utility of using large-scale datasets on climate, terrain and geology to infer broad scale hydrologic patterning within a data poor area. Disclaimer: The authors' views expressed here do not necessarily reflect views or policies of USEPA.

  15. Coal and petroleum resources in the Appalachian basin: index maps of included studies: Chapter B.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Kinney, Scott A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This chapter B.1 of U.S. Geological Survey (USGS) Professional Paper 1708 provides index maps for many of the studies described in other chapters of the report. Scientists of the USGS and State geological surveys studied coal and petroleum resources in the central and southern Appalachian structural basins. In the southern Appalachian basin, studies focused on the coal-bearing parts of the Black Warrior basin in Alabama. The scientists used new and existing geologic data sets to create a common spatial geologic framework for the fossil-fuel-bearing strata of the central Appalachian basin and the Black Warrior basin in Alabama.

  16. The utilization of geochemical parameters for the environmental monitoring of the Nuclear Power Center of Angra I, Ribeira Bay, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Bidone, E.D.; Carmo Lima, S. do.

    1984-01-01

    In order that a geochemical balance be as complete as possible and thus, reach predictive values for toxic chemical dispersion, an understanding of the hydrological, sedimentological and geological contexts is fundamental. The dispersion of a polluent (in this case radionuclides) is dependent, in part, on its chemical properties and its interaction by sorption and desorption from solid particles (in particular, sediments). This interaction needs to be incorporated in dispersion models and can influence the passage of a pollutant along the food chain. In the case of Ribeira Bay, near the nuclear power center of Angra I, it was observed, through the analysis of sedimentological and geochemical parameters (TOC, TSS, chemical and mineralogical compositions, and granularity): an increase in absorption capacity of surface sediments owing to a homogeneous grain size distribution and a varying clay composition; a possibility of remobilization and transfer of particulate material to areas outside the bay. (Author) [pt

  17. Synthesizing Earth's geochemical data for hydrogeochemical analysis

    Science.gov (United States)

    Brantley, S. L.; Kubicki, J.; Miller, D.; Richter, D.; Giles, L.; Mitra, P.

    2007-12-01

    For over 200 years, geochemical, microbiological, and chemical data have been collected to describe the evolution of the surface earth. Many of these measurements are data showing variations in time or in space. To forward predict hydrologic response to changing tectonic, climatic, or anthropogenic forcings requires synthesis of these data and utilization in hydrogeochemical models. Increasingly, scientists are attempting to synthesize such data in order to make predictions for new regions or for future time periods. However, to make such complex geochemical data accessible requires development of sophisticated cyberinfrastructures that both invite uploading as well as usage of data. Two such cyberinfrastructure (CI) initiatives are currently developing, one to invite and promote the use of environmental kinetics data (laboratory time course data) through ChemxSeer, and the other to invite and promote the use of spatially indexed geochemical data for the Earth's Critical Zone through CZEN.org. The vision of these CI initiatives is to provide cyber-enhanced portals that encourage domain scientists to upload their data before publication (in private cyberspace), and to make these data eventually publicly accessible (after an embargo period). If the CI can be made to provide services to the domain specialist - e.g. to provide data analysis services or data comparison services - we envision that scientists will upload data. In addition, the CI can promote the use and comparison of datasets across disciplines. For example, the CI can facilitate the use of spatially indexed geochemical data by scientists more accustomed to dealing with time-course data for hydrologic flow, and can provide user-friendly interfaces with CI established to facilitate the use of hydrologic data. Examples of the usage of synthesized data to predict soil development over the last 13ky and its effects on active hydrological flow boundaries in surficial systems will be discussed for i) a N

  18. Geological heritage diversity in the Faiyum Oasis (Egypt): A comprehensive assessment

    Science.gov (United States)

    Sallam, Emad S.; Fathy, Esraa E.; Ruban, Dmitry A.; Ponedelnik, Alena A.; Yashalova, Natalia N.

    2018-04-01

    The Faiyum Oasis in the Western Desert of Egypt is famous for its palaeontological localities (Cenozoic whales, primates, etc.) of global importance, but its geological heritage has been not studied in the modern theoretical frame. The new investigation based on the field studies and the literature review permits comprehensive assessment of the geological heritage diversity in this oasis. For this purposes, unique geological features are inventoried with establishment of their geological essence, rank, relative abundance, and intrinsic diversity. As a result, the existence of ten geological heritage types in the Faiyum Oasis is found. These include palaeontological, palaeogeographical, geomorphological, stratigraphical, sedimentary (merged with mineralogical), hydrological coupled with geochemical, igneous, and economical types. From them, the palaeontological and palaeogeographical types are ranked globally, and the geomorphological and hydrological types are ranked nationally. The other types are either of regional (provincial) or local importance. Some hills and cliffs can serve as viewpoint sites for observation of the local geological landscape. The relative abundance and the intrinsic diversity of the unique geological features vary between low and high. Generally, the concentration of this geological heritage in the Faiyum Oasis permits recognition of the geodiversity hotspot that requires conservation and use for tourism purposes. The protected areas located in the oasis and the existing tourism programs do not offer geoconservation and geotourism activities for the entire hotspot. The possible solution of this problem would be creation of a large geopark similar in its design to the Jeju Island Geopark in South Korea. There are important premises for geotourism development in the Faiyum Oasis and its combination with the archaeological and industrial tourism. Nature conservation failures in this geopark should be avoided; some recommendations are given on

  19. The National Geochemical Survey; database and documentation

    Science.gov (United States)

    ,

    2004-01-01

    The USGS, in collaboration with other federal and state government agencies, industry, and academia, is conducting the National Geochemical Survey (NGS) to produce a body of geochemical data for the United States based primarily on stream sediments, analyzed using a consistent set of methods. These data will compose a complete, national-scale geochemical coverage of the US, and will enable construction of geochemical maps, refine estimates of baseline concentrations of chemical elements in the sampled media, and provide context for a wide variety of studies in the geological and environmental sciences. The goal of the NGS is to analyze at least one stream-sediment sample in every 289 km2 area by a single set of analytical methods across the entire nation, with other solid sample media substituted where necessary. The NGS incorporates geochemical data from a variety of sources, including existing analyses in USGS databases, reanalyses of samples in USGS archives, and analyses of newly collected samples. At the present time, the NGS includes data covering ~71% of the land area of the US, including samples in all 50 states. This version of the online report provides complete access to NGS data, describes the history of the project, the methodology used, and presents preliminary geochemical maps for all analyzed elements. Future editions of this and other related reports will include the results of analysis of variance studies, as well as interpretive products related to the NGS data.

  20. Glossary of Geology

    Science.gov (United States)

    Jackson, Julia A.

    The Glossary has expanded coverage particularly in such active fields as carbonate sedimentology, environmental geology and geophysics, GIS, GPS, hydrology and hydraulics, marine and coastal geology, organic geochemistry, paleoecology, seismology, stratigraphic nomenclature, speleology and karst, and structural geology and tectonics. Many definitions provide a syllabification guide and background information. Thus a reader will learn the difference between look-alike pairs, such as sylvanite (a mineral) and sylvinite (a rock); the origin of terms; the meaning of abbreviations and acronyms common in the geosciences vocabulary; the dates many terms were first used; the meaning of certain prefixes; and the preferred term of two or more synonyms.

  1. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  2. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  3. A hydro-geochemical study of Nahr-Ibrahim catchment area: Fluvial metal transport

    International Nuclear Information System (INIS)

    Korfali, Samira

    2004-01-01

    Author.Metals enter water bodies geological weathering, soil erosion, industrial and domestic waste discharges, as well as atmospheric deposition. The metal content in sediments is a reflection of the nature of their background whether of geologic and/or anthropogenic origin. The depositional process of metals in sediment are controlled by river discharge, turbulence of river, morphology and river geometry, as well as the geochemical phases of sediment and soils. Thus a study of metal content in river and /or metal transport with a water body should include a hydrological study of the river, types of minerals in sediment and soil, sediment and soil textures, and metal speciation in the different geochemical phases of sediment, bank and soils. A contaminated flood plain is a temporary storage system for pollutants and an understanding of soil-sediment-interactions is important prerequisite for modeling fluvial pollutant transport. The determination of metal speciation in sediment and soil chemical fraction can provide information on the way in which these metals are bound to sediment and soil, their mobilization potential, bioavailability and possible mechanism of fluvial pollutant transport. Sequential extraction techniques yielding operationally defined chemical pools have been used by many workers to examine the partitioning of metals among the various geochemical phases of sediment or soil. The sequential extraction method specifies metals in sediment fractions as: exchangeable, specifically sorbed, easily reducible, moderately reducible, organic, residual. Previously, I have conducted a study on speciation of metals (Fe, Mn, Zn, Cu, Pb and Cd) in the dry season bed-load sediments only at five sites 13 km stretch upstream from the mouth of Nahr Ibrahim. The reported data revealed that the specifically sorbed sediment fraction was the prime fraction for deposition of Mn, Z, CU, Pb and Cd metals in sediments. X-ray diffraction analysis of bed sediments showed

  4. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    Science.gov (United States)

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  5. The concept of hydrologic landscapes

    Science.gov (United States)

    Winter, T.C.

    2001-01-01

    Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land-surface form, geology, and climate. The basic land-surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground-water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land-surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake-research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic-landscapes concept to evaluate the effect of ground water on the degree of mineralization and major-ion chemistry of lakes that lie within ground-water flow systems.

  6. Workplan for U.S. Geological Survey hydrologic data-collection and support activities on Fort Wainwright, Alaska, 1994-97

    Science.gov (United States)

    Claar, David V.; Lilly, Michael R.

    1999-01-01

    The U.S. Army Alaska is responsible for environmental activities on Fort Wainwright near Fairbanks, Alaska. In order to better meet the needs of environmental investigations, the Army requires geohydrologic information about the Fort Wainwright area. Since 1994, the U.S. Geological Survey has been working in cooperation with the U.S. Army Alaska and the U.S. Army Corps of Engineers to investigate the geohydrology of the Fort Wainwright area. The primary objectives of the study are to collect basic ground-water and surface-water data and to support ongoing environmental investigations by other agencies. This report is the workplan describing the technical methods used by the USGS to meet these objectives. It includes details on field procedures, data collection, and analyses of water samples.

  7. Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information

    Science.gov (United States)

    Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland

    2016-03-01

    Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the

  8. Maps of the Bonsall area of the San Luis Rey River valley, San Diego County, California, showing geology, hydrology, and ground-water quality

    Science.gov (United States)

    Izbicki, John A.

    1985-01-01

    In November 1984, 84 wells and 1 spring in the Bonsall area of the San Luis Rey River valley were inventoried by U.S. Geological Survey personnel. Depth to water in 38 wells ranged from 1.3 to 38 ft and 23 wells had depths to water less than 10 feet. Dissolved solids concentration of water from 29 wells and 1 spring sampled in autumn 1983 and spring 1984 ranged from 574 to 2,370 mgs/L. Groundwater with a dissolved solids concentration less than 1,000 mgs/L was generally restricted to the eastern part of the aquifer. The total volume of alluvial fill in the Bonsall area is 113,000 acre-feet; the amount of groundwater storage available in the alluvial aquifer is 18,000 acre-feet. The alluvial aquifer is, in part, surrounded and underlain by colluvium and weathered crystalline rock that add some additional groundwater storage capacity to the system. Data in this report are presented on five maps showing well locations , thickness of alluvial fill, water level contours in November 1983 and hydrographs of selected wells, groundwater quality in spring 1960 and graphs showing changes in dissolved solids concentrations of water from selected wells with time, and groundwater quality in spring 1984. This report is part of a larger cooperative project between the Rainbow Municipal Irrigation District and the U.S. Geological Survey. The purpose of the larger project is to develop an appropriate groundwater management plan for the Bonsall area of the San Luis Rey River valley. (USGS)

  9. Precise determination of δ88Sr in rocks, minerals, and waters by double-spike TIMS: A powerful tool in the study of chemical, geologic, hydrologic and biologic processes

    Science.gov (United States)

    Neymark, Leonid A.; Premo, Wayne R.; Mel'nikov, Nikolay N.; Emsbo, Poul

    2014-01-01

    We present strontium isotopic (88Sr/86Sr and 87Sr/86Sr) results obtained by 87Sr–84Sr double spike thermal ionization mass-spectrometry (DS-TIMS) for several standards as well as natural water samples and mineral samples of abiogenic and biogenic origin. The detailed data reduction algorithm and a user-friendly Sr-specific stand-alone computer program used for the spike calibration and the data reduction are also presented. Accuracy and precision of our δ88Sr measurements, calculated as permil (‰) deviations from the NIST SRM-987 standard, were evaluated by analyzing the NASS-6 seawater standard, which yielded δ88Sr = 0.378 ± 0.009‰. The first DS-TIMS data for the NIST SRM-607 potassium feldspar standard and for several US Geological Survey carbonate, phosphate, and silicate standards (EN-1, MAPS-4, MAPS-5, G-3, BCR-2, and BHVO-2) are also reported. Data obtained during this work for Sr-bearing solids and natural waters show a range of δ88Sr values of about 2.4‰, the widest observed so far in terrestrial materials. This range is easily resolvable analytically because the demonstrated external error (±SD, standard deviation) for measured δ88Sr values is typically ≤0.02‰. It is shown that the “true” 87Sr/86Sr value obtained by the DS-TIMS or any other external normalization method combines radiogenic and mass-dependent mass-fractionation effects, which cannot be separated. Therefore, the “true” 87Sr/86Sr and the δ87Sr parameter derived from it are not useful isotope tracers. Data presented in this paper for a wide range of naturally occurring sample types demonstrate the potential of the δ88Sr isotope tracer in combination with the traditional radiogenic 87Sr/86Sr tracer for studying a variety of biological, hydrological, and geological processes.

  10. The evaluation of in-situ leaching hydrological-geologic condition in a sandstone-type uranium deposits of a low-grade and thick ledge

    International Nuclear Information System (INIS)

    Jiang Yan

    2014-01-01

    The ore aquifer of a sandstone-type uranium deposits is thick, the grade, and uranium amount per square meter is low. To demonstrate the economic rationality of the in-situ leaching deposit, the Pumping test on the spot, recovery of water levels test, Pumping test and Injection test, Injection test in a Drilling hole, the pumping and injection balance test are carried out. And the hydro geological parameters of mineral aquifer are acquired. The parameters includes coefficient of transmissibility, Coefficient of permeability, Specific discharge of a well and Water injection. Radius of influence etc. The relation between discharge of drilling and Drawdown is researched. The capability of pumping and injection by a drilling hole is determined. The Hydraulic between the aquifer with mineral and the upper and lower aquifer is researched. The reasonable Mining drawdown is testified, the hydrogeological conditions of in-Situ leaching of the mining deposit is found out, this provides necessary parameters and basis for this kind of Situ-leach uranium mining wells, the designing of Spacing of wells, and the economic evaluation of In-situ leaching technology. (author)

  11. VALLECITO HYDROLOGY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. Israel Geological Society, annual meeting 1994

    International Nuclear Information System (INIS)

    Amit, R.; Arkin, Y.; Hirsch, F.

    1994-02-01

    The document is a compilation of papers presented during the annual meeting of Israel Geological Society. The document is related with geological and environmental survey of Israel. It discusses the technology and instruments used to carry out such studies. Main emphasis is given to seismology, geochemical analysis of water, water pollution and geophysical survey of rocks

  13. The geologic, geomorphic, and hydrologic context underlying options for long-term management of the Spirit Lake outlet near Mount St. Helens, Washington

    Science.gov (United States)

    Grant, Gordon E.; Major, Jon J.; Lewis, Sarah L.

    2017-01-01

    The 1980 eruption of Mount St. Helens produced a massive landslide and consequent pyroclastic currents, deposits of which blocked the outlet to Spirit Lake. Without an outlet, the lake began to rise, threatening a breaching of the blockage and release of a massive volume of water. To mitigate the hazard posed by the rising lake and provide an outlet, in 1984–1985 the U.S. Army Corps of Engineers bored a 2.6-km (8,500-ft) long tunnel through a bedrock ridge on the western edge of the lake. Locally, the tunnel crosses weak rock along faults, and external pressures in these weak zones have caused rock heave and support failures, which have necessitated periodic major repairs. During its more than 30-year lifetime, the tunnel has maintained the level of Spirit Lake at a safe elevation. The lake approaches its maximum safe operating level only when the tunnel closes for repair. The most recent major repair in early 2016 highlights the need for a reliable outlet that does not require repeated and expensive interventions and extended closures. The U.S. Forest Service, U.S. Army Corps of Engineers, and U.S. Geological Survey developed, reviewed, and analyzed an array of options for a long-term plan to remove the threat of catastrophic failure of the tunnel. In this report, we (1) provide background on natural hazards that can affect existing and alternative infrastructure; (2) evaluate the potential for tunnel failure and consequent breaching of the blockage posed by the current tunnel infrastructure; (3) evaluate potential consequences to downstream communities and infrastructure in the event of a catastrophic breaching of the blockage; (4) evaluate potential risks associated with alternative lake outlets; and (5) identify data and knowledge gaps that need to be addressed to fully evaluate options available to management.

  14. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  15. US Geological Survey Committee for the Advancement of Science in the Yucca Mountain Project symposium on {open_quotes}Fractures, Hydrology, and Yucca Mountain{close_quotes}: Abstracts and summary

    Energy Technology Data Exchange (ETDEWEB)

    Gomberg, J. [ed.

    1991-12-31

    The principal objective of this symposium is to review the available information on fractured/faulted terrains in terms of a coherent hydrogeologic model of ground-water fluid flow and transport, particularly as it pertains to the Yucca Mountain region. This review addresses the influence and significance of fractures on ground-water flow and the transport of conservative-species solutes within the context of the hydrogeologic setting of the Yucca Mountain area. The relations between fluid flow and fractured or faulted host rock are examined integrally from information on geologic, seismologic, hydrologic, and geomechanical properties of the system. The development of new hydrogeologic approaches that incorporate information from this integrated database are contrasted with more standard approaches toward understanding flow in fractured reservoirs. Ground-water flow in both the unsaturated zone and the saturated zone are considered. The application of various models of flow is addressed, examples include porous-media equivalent and discontinuum fracture-network models. Data and interpretations from the Yucca Mountain area are presented to establish a context for information exchange. The symposium includes discussions relevant to technical considerations for characterizing the Yucca Mountain area hydrogeology. On the basis of these discussions, CASY has compiled this document in order to formally summarize the proceedings and communicate recommendations for future directions of research and investigation.

  16. Hydrology Project

    International Nuclear Information System (INIS)

    Anon.

    Research carried out in the 'Hydrology Project' of the Centro de Energia Nuclear na Agricultura', Piracicaba, Sao Paulo State, Brazil, are described. Such research comprises: Amazon hydrology and Northeast hydrology. Techniques for the measurement of isotope ratios are used. (M.A.) [pt

  17. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Bahadur, J.; Saxena, R.K.

    1974-01-01

    Several types of sealed radioactive sources, stable isotopes and water soluble radioactive tracers, used by different investigators, have been listed for studying the dynamic behaviour of water in nature. In general, all the facets of hydrological cycle, are amenable to these isotopic techniques. It is recommended that environmental isotopes data collection should be started for studying the water balance and also the interrelationships between surface and subsurface water in various rivers catchments with changing physical, geological and climatic parameters. (author)

  18. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  19. Hillslope hydrology and stability

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  20. Composition of natural gas and crude oil produced from 10 wells in the Lower Silurian "Clinton" Sandstone, Trumbull County, Ohio: Chapter G.7 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Burruss, Robert A.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Natural gases and associated crude oils in the “Clinton” sandstone, Medina Group sandstones, and equivalent Tuscarora Sandstone in the northern Appalachian basin are part of a regional, continuous-type or basin-centered accumulation. The origin of the hydrocarbon charge to regional continuoustype accumulations is poorly understood. We have analyzed the molecular and stable isotopic composition of gases and oils produced from 10 wells in the “Clinton” sandstone in Trumbull County, Ohio, in an initial attempt to identify the characteristics of the accumulated fluids. The analyses show that the fluids have remarkably uniform compositions that are similar to previously published analyses of oils (Cole and others, 1987) and gases (Laughrey and Baldasarre, 1998) in Early Silurian reservoirs elsewhere in Ohio; however, geochemical parameters in the oils and gases suggest that the fluids have experienced higher levels of thermal stress than the present-day burial conditions of the reservoir rocks. The crude oils have an unusual geochemical characteristic: they do not contain detectable levels of sterane and triterpane biomarkers. The origin of these absences is unknown.

  1. Appalachian basin oil and natural gas: stratigraphic framework, total petroleum systems, and estimated ultimate recovery: Chapter C.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ryder, Robert T.; Milici, Robert C.; Swezey, Christopher S.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The most recent U.S. Geological Survey (USGS) assessment of undiscovered oil and gas resources of the Appalachian basin was completed in 2002 (Milici and others, 2003). This assessment was based on the total petroleum system (TPS), a concept introduced by Magoon and Dow (1994) and developed during subsequent studies such as those by the U.S. Geological Survey World Energy Assessment Team (2000) and by Biteau and others (2003a,b). Each TPS is based on specific geologic elements that include source rocks, traps and seals, reservoir rocks, and the generation and migration of hydrocarbons. This chapter identifies the TPSs defined in the 2002 Appalachian basin oil and gas assessment and places them in the context of the stratigraphic framework associated with regional geologic cross sections D–D′ (Ryder and others, 2009, which was re-released in this volume, chap. E.4.1) and E–E′ (Ryder and others, 2008, which was re-released in this volume, chap. E.4.2). Furthermore, the chapter presents a recent estimate of the ultimate recoverable oil and natural gas in the basin.

  2. Geohydrologic-engineering geology evaluation of the Selma Group in western Alabama and northeast Mississippi for possible radioactive waste disposal

    International Nuclear Information System (INIS)

    Gonzales, S.

    1975-06-01

    The following topics are discussed: regional stratigraphy, lithologic characteristic-chalk sequences, structural geology settting, earthquakes and historical seismicity, regional geomorphology, recovery of geological resources, and groundwater hydrology

  3. Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area, Japan

    Directory of Open Access Journals (Sweden)

    Emilie Even

    2017-02-01

    New hydrological insights for the region: The geochemical mapping showed that As in river water exceeded the maximum limit concentration of 10 ppb in several places. The highest As levels (waters and sediments correlated well with the surface geologies, concentrating in a halo around granitic intrusion and nearby faults. The isotopic analysis of sulfur revealed the occurrence of two kinds of sulfide mineralizations responsible for As contamination: one from Late Paleozoic submarine volcanism in sedimentary rocks, and one from Late Cretaceous igneous activities in contact-metamorphosed rocks disseminated with sulfides. The transport of As along river courses occurred mainly as a dissolved species rather than absorbed on Fe/Mn/Al particles, signifying the least role of iron oxy-hydroxides in As adsorption.

  4. The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resource maps of the Ajo and Lukeville 1 degree x 2 degrees quadrangles, Arizona

    Science.gov (United States)

    Gray, Floyd; Tosdal, R.M.; Peterson, J.A.; Cox, D.P.; Miller, R.J.; Klein, D.P.; Theobald, P.K.; Haxel, G.B.; Grubensky, M.J.; Raines, G.L.; Barton, H.N.; Singer, D.A.; Eppinger, R.G.

    1992-01-01

    Encompassing about 21,000 km 2 in southwestern Arizona, the Ajo and Lukeville 1 ? by 2 ? quadrangles have been the subject of mineral resource investigations utilizing field and laboratory studies in the disciplines of geology, geochemistry, geophysics, and Landsat imagery. The results of these studies are published as a folio of maps, figures, and tables, with accompanying discussions. Past mineral production has been limited to copper from the Ajo Mining District. In addition to copper, the quadrangles contain potentially significant resources of gold and silver; a few other commodities, including molybdenum and evaporites, may also exist in the area as appreciable resources. This circular provides background information on the mineral deposits and on the investigations and integrates the information presented in the folio. The bibliography cites references to the geology, geochemistry, geophysics, and mineral deposits of the two quadrangles.

  5. Bituminous coal production in the Appalachian basin: past, present, and future: Chapter D.3 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Polyak, Désirée E.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Although small quantities of coal first were produced from the Appalachian basin in the early 1700s, the first production statistics of significance were gathered during the census of 1830 (Eavenson, 1942). Since then, about 35 billion short tons of bituminous coal have been produced from the Appalachian basin from an original potential coal reserve (PCR(o)) estimated to range from about 60 to 90 billion short tons. The term “reserve” refers to economically producible coal, and a “potential coal reserve” (PCR(n)) is an estimate of the amount of coal economically recoverable in a region (State, coal field) over a defined time period (n = number of years) and under a range of economic, societal, and technological conditions. Thus, the current cumulative production plus the PCR(n) equals an estimated cumulative production (ECP(n)). The maps in this report (oversized figures 1, 2, 3, and 4) were produced from a digital database of historical and current coal production records by county. Sources of the original data include various State geological surveys, the U.S. Geological Survey, the former U.S. Bureau of Mines, and the U.S. Department of Energy’s Energy Information Administration. This report is part of the U.S. Geological Survey’s National Coal Resource Assessment Project.

  6. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    groundwaters, and also by stable isotopes and uranium isotopes in secondary minerals. Information on timing of water and solute movements is important because it indicates any correlation with the timing of external events that might have perturbed and destabilised the groundwater system in the past, and allows a timescale to be estimated for the persistence of stable conditions. Data from a number of published site investigation projects and research programmes are reviewed to illustrate the patterns of geochemical data and the relationships between them, and how these are interpreted in terms of hydrodynamic stability. Data from Aespoe and Stripa and from exploratory boreholes at Finnsjoen and other sites in Sweden are compiled and discussed. Preliminary data from SKB's ongoing site investigations at Simpevarp/Laxemar and Forsmark are not considered in detail but their general similarities with Aespoe and Finnsjoen/SFR respectively are introduced into the discussion of geochemical evidence for groundwater stability in inland and coastal areas. Relevant data from Finnish sites including Olkiluoto, from the Whiteshell URL area in Canada, from Sellafield in the UK, and from the Tono area and URL in Japan are also summarised in appendices and discussed because they add further insights into the interpretation of geochemical indicators for a range of geological environments. The compiled data provide only limited scope for comparison of groundwater evolution and stability between inland and coastal areas in Sweden, because of the patchiness of representative data especially from early site studies. The external changes that might have perturbed stable groundwater conditions in the past are glaciation (i.e. melt water, mechanical loading/unloading and permafrost) and varying sea water infiltration at coastal sites due to changes in palaeo-Baltic and isostatic conditions. The present distributions of palaeo-Baltic sea water in groundwaters at coastal sites vary, reflecting

  7. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  8. AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Dove, F.H.; Cole, C.R.; Foley, M.G.

    1982-09-01

    A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere.

  9. AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Foley, M.G.

    1982-09-01

    A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere

  10. Postcards from Mars: Insights into Martian Geochemical Processes from the Curiosity Rover

    OpenAIRE

    Leshin, L. A.; Grotzinger, J. P.; Blake, D. F.; Gellert, R.; Mahaffy, P. R.; Wiens, R. C.; Maurice, S.

    2013-01-01

    With the successful landing of the Mars Curiosity Rover in August 2012, we now have the most capable geochemical laboratory ever to travel to another planet roving Mars’ Gale crater. The geochemical instrument suite includes the Chemistry Camera (ChemCam), which uses a laser to vaporize geologic targets and performs atomic emission spectroscopy on the vapor from distances of up to 7m. This provides a geochemical surveying capability that enables rapid identification of...

  11. The hydrological properties of Deltaic sediments

    NARCIS (Netherlands)

    Ridder, de N.A.

    1961-01-01

    This paper deals with the hydrological properties of deltaic sediments. A detailed study was made of the geological history of part of the delta plain of the Rhine and Meuse. Such hydrological properties as thickness of aquifers and semi-permeable layers, transmissibility of the aquifers were

  12. Watershed-Scale Geochemical Inventory of Soils by Portable X-Ray Fluorescence

    Science.gov (United States)

    Beaudette, D. E.; Stupi, L. K.; Swarowsky, A.; O'Geen, A. T.; Chang, J. F.; Gallagher, B.

    2009-12-01

    Spatial databases of geochemical data are an excellent source of point-scale information on naturally occurring toxic elements (arsenic, selenium or radon), contamination from industrial processes (lead, mercury, or cesium), mineralogical variability, and the fate of toxic compounds (i.e. sorption of pesticides to iron oxyhydroxide minerals) in soil. Sample preparation time, safety concerns associated with HF or HNO3 acid dissolution, instrument availability, and cost are all common constraints that limit the scale at which new geochemical surveys can be conducted. We used a Thermo-Fisher Niton portable X-Ray fluorescence (XRF) meter to perform comparatively rapid geochemical surveys in soils of two (35 ha) watersheds. The watersheds have contrasting parent materials, one formed from metavolcanic rock and the other from granite. The X-Ray fluorescence inventory of genetic soil horizons (n=660) was used to identify trends in soil development and landscape processes. Since soil samples are usually sieved and ground for standard laboratory characterization, the additional time required to prepare samples for XRF analysis was minimal, approximately 2 minutes for sample preparation and 6 minutes for machine scan time per sample. Preliminary analysis of the resulting geochemical data show strong spatial trends in watershed- and hillslope-scale variability in weathering indices (FeCBD:FeTotal and K:Ti), inferred mineralogy (Si:Al, Si:Al+Fe), and geologic signatures (multivariate analysis of 20 common elements). Depth trends and spatial patterns were correlated with common terrain-shape indices (slope, upslope contributing area, surface curvatures, local prominence, etc.), degree of soil development, parent material, and hydrological conditions. For example, Si:Al was higher in soils with greater upslope contributing area, and in seasonally saturated soils (Fig 1). Our findings demonstrate that portable XRF technology is a promising new tool for rapid lab-based and in situ

  13. Index map of cross sections through parts of the Appalachian basin (Kentucky, New York, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia): Chapter E.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ryder, Robert T.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Ten cross sections and three seismic profiles of regional extent through the subsurface of the Appalachian basin are presented in chapter E of this volume (fig. 1). These cross sections and seismic profiles are subdivided into four groups: (1) five restored cross sections through Cambrian and Ordovician rocks, (2) three restored cross sections through Lower and Upper (part) Silurian rocks, (3) two geologic (structural) cross sections through the entire preserved section of Paleozoic rocks, and (4) three seismic profiles through the entire preserved section of Paleozoic rocks.

  14. Alligator Rivers Analogue project. Geochemical Data Bases

    International Nuclear Information System (INIS)

    Bennett, D.G.; Read, D.

    1992-01-01

    The Koongarra uranium deposit in the Northern Territory of Australia is being studied to evaluate the processes involved in the geochemical alteration of the ore body and the formation of the uranium dispersion fan. A broad range of research is being undertaken into the geochemistry and hydrology of the site with the aim of understanding the transport of radionuclides through the system. During the project a range of geochemical and hydrogeochemical models have been developed to account for measured data from the site and with which to predict site evolution. The majority of these models are based on the premise of thermodynamic chemical equilibrium and employ fundamental thermodynamic data to characterise the chemistry of the system. From the differences which exist between the thermodynamic data bases (Appendices I and II) it is possible to gain a view of the level of uncertainty associated with thermodynamic data in each set of calculations. This report gives a brief introduction to the geochemical processes underlying the models, and details the equations used to quantify the more common of these processes (e.g. aqueous speciation and mineral solubility). A description is given of the computer codes (EQ3/6, PHREEQE, MINTEQ) most commonly used during the project for geochemical modelling. Their key features are highlighted and comparisons made. It is concluded that the degree of uncertainty in geochemical modelling studies arising as a result of using one code rather than another is relatively insignificant when compared to that related to differences in the underlying data bases. 73 refs., 3 figs

  15. Geochemical trends in the weathered profiles above granite gneiss ...

    African Journals Online (AJOL)

    Geochemical trends in the weathered profiles above granite gneiss and schist of Abeokuta area, southwestern Nigeria. Anthony T Bolarinwa, Anthony A Elueze. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol. 41(1): 19-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT ...

  16. Mineralogical and geochemical studies of phosphorite nodules in ...

    African Journals Online (AJOL)

    Mineralogical and geochemical studies of phosphorite nodules in the Dange Formation Sokoto Basin, Northwestern Niveria. OA Adekeye, SO Akande. Abstract. No Abstract Available Journal of Mining and Geology Vol.40(2) 2004: 101-106. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT ...

  17. Geochemical features of rare metal pegmatites in Nassarawa area ...

    African Journals Online (AJOL)

    Geochemical features of rare metal pegmatites in Nassarawa area, central Nigeria. JID Adekeye, OF Akintola. Abstract. No Abstract. Journal of Mining and Geology Vol. 43 (1) 2007: pp. 15-21. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  18. Geochemical and petrogenetic trends of syenite and charnockitic ...

    African Journals Online (AJOL)

    Geochemical and petrogenetic trends of syenite and charnockitic rock of Ike Iho and Osuntedo areas, soutweastern Nigeria. AA Elueze, OO Kehinde-Phillips, OA Okunlola. Abstract. No Abstract. Journal of Mining and Geology Vol. 44 (1) 2008: pp. 21-36. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL ...

  19. Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation

    Science.gov (United States)

    Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.

    2012-01-01

    The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into

  20. Assessment of Appalachian basin oil and gas resources: Carboniferous Coal-bed Gas Total Petroleum System: Chapter G.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Carboniferous Coal-bed Gas Total Petroleum System, which lies within the central and southern Appalachian basin, consists of the following five assessment units (AUs): (1) the Pocahontas Basin AU in southern West Virginia, eastern Kentucky, and southwestern Virginia; (2) the Central Appalachian Shelf AU in Tennessee, eastern Kentucky, and southern West Virginia; (3) the East Dunkard (Folded) AU in western Pennsylvania and northern West Virginia; (4) the West Dunkard (Unfolded) AU in Ohio and adjacent parts of Pennsylvania and West Virginia; and (5) the Appalachian Anthracite and Semi-Anthracite AU in Pennsylvania and Virginia. Only two of these assessment units were assessed quantitatively by the U.S. Geological Survey (USGS) in the National Oil and Gas Assessment in 2002. The USGS estimated the Pocahontas Basin AU and the East Dunkard (Folded) AU to contain a mean of about 3.6 and 4.8 trillion cubic feet (TCF) of undiscovered, technically recoverable gas, respectively.

  1. Geochemical baseline studies of soil in Finland

    Science.gov (United States)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  2. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  3. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  4. Influence of geochemical processes on transport in porous medium; application to the clogging of confinement barriers in a geological waste disposal; Influence des processus geochimiques sur le transport en milieu poreux; application au colmatage en barrieres de confinement potentielles dans un stockage en formation geologique

    Energy Technology Data Exchange (ETDEWEB)

    Lagneau, V

    2002-07-01

    Three research orientations are currently followed for the future of radioactive wastes. Disposal in deep geological formations is one of these options. The package and the successive barriers are attacked by the in-situ water and start interacting. These reactions lead to modifications of the mineralogical composition of the materials and of their macroscopic properties. While the coupling between transport and geochemistry is widely studied, the feedback of porosity changes is usually neglected. Yet, studying different possible interfaces of a repository reveals that large modifications of porosity are likely to occur. This work, performed at the Ecole des Mines de Paris and Commissariat a l'Energie Atomique, aimed at investigating the effective consequences of taking porosity changes into account in coupled geochemistry-transport models. A simplified theoretic problem was addressed. It highlighted the difficulties of introducing porosity changes. In particular, it pointed out the effect of the several macroscopic relations binding porosity to transport and chemistry. Separately, two series of experiments, on very simple geochemical systems, gave concrete information on clogging systems. Following these results, porosity changes and their feedback on chemistry and transport were inserted in the coupled code HYTEC at the Ecole des Mines de Paris. Complex issues, related to the engineered barrier, were then addressed (concrete-clay interaction). New effects were found, including a decrease in the flux of dissolved species, due to the partial clogging at the interface, a slow down of reacting fronts; some reactions were even found to change directions. (author)

  5. Geochemical prospecting in Guiana

    International Nuclear Information System (INIS)

    Coulomb, R.

    1957-01-01

    During the last few years geochemical prospecting techniques have become common usage in the field of mineral deposit prospecting. The real scope of these methods lies in their use in the prospecting of large areas. The most promising use of the geochemistry and hydro-geochemistry of uranium is in heavily forested tropical territories, with few outcrops, where radiometry is strongly handicapped. (author) [fr

  6. Reconnaissance Geochemical Study

    African Journals Online (AJOL)

    Geochemical exploration of Orle district within the Igarra schist belt in southwestern Nigeria was carried out using reconnaissance ... The occurrence of pathfinder elements such as As and W; and of rock units, such as amphibolites and pegmatites, within the schist belt that ...... house for national prosperity. Inaugural.

  7. Geographic information system (GIS)-based maps of Appalachian basin oil and gas fields: Chapter C.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    One of the more recent maps of Appalachian basin oil and gas fields (and the adjoining Black Warrior basin) is the U.S. Geological Survey (USGS) compilation by Mast and others (1998) (see Trippi and others, this volume, chap. I.1). This map is part of a larger oil and gas field map for the conterminous United States that was derived by Mast and others (1998) from the Well History Control System (WHCS) database of Petroleum Information, Inc. (now IHS Energy Group). Rather than constructing the map from the approximately 500,000 proprietary wells in the Appalachian and Black Warrior part of the WHCS database, Mast and others (1998) subdivided the region into a grid of 1-mi2 (square mile) cells and allocated an appropriate type of hydrocarbon production (oil production, gas production, oil and gas production, or explored but no production) to each cell. Each 1-mi2 cell contains from 0 to 5 or more exploratory and (or) development wells. For example, if the wells in the 1-mi2 cell consisted of three oil wells, one gas well, and one dry well, then the cell would be characterized on the map as an area of oil and gas production. The map by Mast and others (1998) accurately shows the distribution and types of hydrocarbon accumulation in the Appalachian and Black Warrior basins, but it does not show the names of individual fields. To determine the locality and name of individual oil and gas fields, one must refer to State oil and gas maps (for example, Harper and others, 1982), which are generally published at scales of 1:250,000 or 1:500,000 (see References Cited), and (or) published journal articles.

  8. Instrumentation For Geological Fieldwork on the Moon

    OpenAIRE

    Talboys, D. L.; Fraser, G. W.; Ambrosi, R. M.; Nelms, N.; Bannister, N. P.; Sims, M. R.; Pullan, D.; Holt, J.

    2005-01-01

    A human return to the Moon will require that astronauts are well equipped with instrumentation to aid their investigations during geological field work. Two instruments are described in detail. The first is a portable X-ray Spectrometer, which can provide rapid geochemical analyses of rocks and soils, identify lunar resources and aid selection of samples for return to Earth. The second instrument is the Geological and Radiation environment package (GEORAD). This is an instrument package, moun...

  9. Development of Hydrologic Characterization Technology of Fault Zones

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  10. Development of Hydrologic Characterization Technology of Fault Zones

    International Nuclear Information System (INIS)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-01-01

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone is the one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the

  11. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  12. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  13. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  14. Geochemical modeling: a review

    International Nuclear Information System (INIS)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted

  15. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short......Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...

  16. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Merchán, D., E-mail: d.merchan@igme.es [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain); Auqué, L.F.; Acero, P.; Gimeno, M.J. [University of Zaragoza — Department of Earth Sciences (Geochemical Modelling Group), C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Causapé, J. [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain)

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. - Highlights: • Salinization in Lerma Basin was controlled by the dissolution of soluble salts. • Water salinization and nitrate pollution were found to be independent processes. • High NO{sub 3}, fresh groundwater evolved to lower NO{sub 3}, higher salinity surface water. • Inverse and direct geochemical modeling confirmed the hypotheses. • Salinization was a natural ongoing process

  17. La migration des hydrocarbures dans les bassins sédimentaires: aspects géologiques et géochimiques Migration of Hydrocarbons in Sedimentary Basins: Geological and Geochemical Aspects

    Directory of Open Access Journals (Sweden)

    Tissot B. P.

    2006-11-01

    expulsion from the source rock where it was formed (primary migration, has long remained one of the least well understood problems in all petroleum geology. The displacement of oil and gas occurs in a separate hydrocarbon phase. Water, which is often considered as the vehicle for oil during migration, effectively plays a negative role. Water saturation must have been sufficiently diminished (by expulsion and hydrocarbon saturation must be sufficiently increased (by generation from kerogen for the flow of a hydrocarbon phase to become possible. The driving force for this expulsion is the pressure gradient. A rise in pressure in the pore volume of source rocks results from three causes (the sedimentary load, the formation of hydrocarbons, and the thermal expansion of water. Microfracturing, which occurs when the internal pressure of fluids exceeds the mechanical strength of the rock, may play an important role. Observations of well documented cases in sedimentary basins are still too rare. In particular, it is difficult to compute the reserves mobilized on the scale of a permit or basin. The numerical modeling of migration combined with that of the formation of oil and gas opens up perspectives in this direction, but it still requires further work. Among the consequences of migration, mention can be made of the possibility of oil/source-rock correlation, the lower content of heavy products in reservoirs than in source rocks, and the role often played by a displacement in which liquid and gaseous hydrocarbons form a single phase that migrates while progressively leaving the heavier fractions behind it, by retrograde condensation.

  18. Geological aspects of acid deposition

    International Nuclear Information System (INIS)

    Bricker, O.P.

    1984-01-01

    The general pattern of rain falling on the earth and reacting with the materials of the lithosphere (the weathering reactions so familiar to every beginning geology student) began soon after the earth was formed and has continued to the present. Anthropogenic additions to the natural acidic components of the atmosphere have increased since the time of the industrial revolution until they now rival or exceed those of the natural system. The severity of the environmental perturbations caused by these anthropogenic additions to the atmosphere has become a hotly debated topic in scientific forums and in the political arena. The six chapters in this book address various aspects of the acid deposition phenomenon from a geological perspective. It is hoped that the geological approach will be useful in bringing the problem more clearly into focus and may shed light on the geochemical processes that modify the chemical composition of acid deposition after it encounters and reacts with the materials of the lithosphere

  19. Developing protocols for geochemical baseline studies: An example from the Coles Hill uranium deposit, Virginia, USA

    International Nuclear Information System (INIS)

    Levitan, Denise M.; Schreiber, Madeline E.; Seal, Robert R.; Bodnar, Robert J.; Aylor, Joseph G.

    2014-01-01

    Highlights: • We outline protocols for baseline geochemical surveys of stream sediments and water. • Regression on order statistics was used to handle non-detect data. • U concentrations in stream water near this unmined ore were below regulatory standards. • Concentrations of major and trace elements were correlated with stream discharge. • Methods can be applied to other extraction activities, including hydraulic fracturing. - Abstract: In this study, we determined baseline geochemical conditions in stream sediments and surface waters surrounding an undeveloped uranium deposit. Emphasis was placed on study design, including site selection to encompass geological variability and temporal sampling to encompass hydrological and climatic variability, in addition to statistical methods for baseline data analysis. The concentrations of most elements in stream sediments were above analytical detection limits, making them amenable to standard statistical analysis. In contrast, some trace elements in surface water had concentrations that were below the respective detection limits, making statistical analysis more challenging. We describe and compare statistical methods appropriate for concentrations that are below detection limits (non-detect data) and conclude that regression on order statistics provided the most rigorous analysis of our results, particularly for trace elements. Elevated concentrations of U and deposit-associated elements (e.g. Ba, Pb, and V) were observed in stream sediments and surface waters downstream of the deposit, but concentrations were below regulatory guidelines for the protection of aquatic ecosystems and for drinking water. Analysis of temporal trends indicated that concentrations of major and trace elements were most strongly related to stream discharge. These findings highlight the need for sampling protocols that will identify and evaluate the temporal and spatial variations in a thorough baseline study

  20. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  1. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  2. Predictive Analysis of Geochemical Controls in an Alpine Stream

    Science.gov (United States)

    Jochems, A. P.; Sherson, L. R.; Crossey, L. J.; Karlstrom, K. E.

    2010-12-01

    Alpine watersheds are increasingly relied upon for use in the American West, necessitating a more complete understanding of annual hydrologic patterns and geologic influences on water chemistry. The Jemez River is a fifth order stream in central New Mexico that flows from its source in the Jemez Mountains to its confluence with the Rio Grande north of the town of Bernalillo. Designated uses of the Jemez River include domestic water supply, recreation, and agriculture. Geothermal uses are currently being considered as well. The river recharges shallow aquifer waters used by several communities, including tribal lands of the Jemez Pueblo. The hydrogeology of the Jemez system is characterized by geothermal inputs from the Baca hydrothermal system associated with the 1.2Ma Valles caldera, as well as groundwater and surface water interactions. Freshwater input from the Rio Guadalupe and several ephemeral tributaries also influences the water chemistry of the Jemez system. Fifteen sites along a 35 km reach of the river were sampled between 2006 and 2010. Discharge of the Jemez River ranged from 10-876 cfs over the study period. The annual hydrograph is affected by annual snowmelt in the Jemez Mountains as well as surges due to monsoonal rains in July and August. Geochemical data collected over this period include temperature, conductivity, pH, dissolved oxygen (D.O.), major ions, trace elements, and stable isotopes. Continuous records of temperature, conductivity, pH, D.O. and turbidity data were collected from a water quality sonde installed in March 2010. Geochemical modeling and time series analysis were performed using PHREEQC, Geochemist’s Workbench, and MATLAB. Empirical data collected during this study gave rise to several models describing the hydrology and geochemistry of the Jemez system. Our data suggest that springs are the primary contributors to dissolved load, and that solute loading from geothermal inputs is intensified by low flows observed on

  3. Hydrological and geochemical investigations of selenium behavior at Kesterson Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zawislanski, P.T.; Tokunaga, T.K.; Benson, S.M. [Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.] [and others

    1995-05-01

    This report describes research relevant to selenium specification, fractionation, physical redistribution, reduction and oxidation, and spatial distribution as related to Kesterson Reservoir. The work was carried out by scientists and engineers from the Earth Sciences Division of the Lawrence Berkeley Laboratory over a two year period from October 1992 to September 1994. Much of the focus of these efforts was on the effects of two above-average rainfall years (1991/1992 and 1992/1993). These events marked a departure from the previous six years of drought conditions, under which oxidation of Se in the soil profile led to a marked increase in soluble Se. Evidence from the last two years show that much of the re-oxidized Se was once more reduced due to increased soil moisture content. Also, in areas of high hydraulic conductivity, major vertical displacement of selenium and other solutes due to rainfall infiltration was observed. Such observations underscore the dependence of the future of Se speciation and distribution on environmental conditions.

  4. (Hydrological and geochemical response and recovery in disturbed arctic ecosystems)

    Energy Technology Data Exchange (ETDEWEB)

    Everett, K.R.

    1990-08-31

    Ionic concentration of snow prior to meltoff in 1990 as in previous years ranged widely from point to point within the basin. Overland flow began on May 12 and was monitored at closely-spaced time intervals for discharge volume and ionic concentrations to better define this relationship in non-channelized flow. Ionic concentration in both watertrack flow and in Imnavait Creek were closely monitored during meltoff. During the post melt period daily sampling was maintained in watertrack 7 and Imnavait Creek. Rainfall collection and analysis on an eight day schedule was maintained as in previous years. Soil solution composition was monitored on an event basis in conjunction with a similar schedule of precipitation sampling to determine relationships between precipitation and near surface and overland flow. Composition of deeper soil solution was also monitored and sampled for {sup 18}O analyses to determine the age structure of water contributed by the active layer to stream and watertracks. A pilot experiment employing salt tracers was conducted across landscape units to determine rates and pathways of soil solution movement in response to individual rain events. Nutrient addition in rime and fog were also recorded to add detail to the input side of the balance equation.

  5. Hydrological, geochemical, and ecological characterization of Kesterson Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report describes Kesterson Reservoir related research activities carried out under a cooperative program between Lawrence Berkeley Laboratory and the Division of Agriculture and Natural Resources at the University of California during FY89. The primary objectives of these investigations are: Predict the extent, probability of the occurrence, and selenium concentrations in surface water of temporary wetland habitat at Kesterson; assess rates and direction of migration of the drainage water plume that seeped into the aquifer under Kesterson; monitor and predict changes in quantity and speciation of selenium in surface soils and vadose zone pore-waters; and develop a comprehensive strategy through soil, water, and vegetation management to safely dissipate the high concentrations of selenium accumulated in Kesterson soils. This report provides an up-date on progress made in each of these areas. Chapter 2 describes results of recent investigations of water table fluctuations and plume migration. Chapter 3 describes results of ongoing monitoring of soil water selenium concentrations and evaporative accumulation of selenium at the soil surface. Chapter 4 describes early results from the soil, water, and vegetation management field trials as well as supporting laboratory and theoretical studies. In Chapter 5, new analytical methods for selenium speciation are described and quality assurance/quality control statistics for selenium and boron are provided. 110 refs., 138 figs., 62 tabs.

  6. Computer Modeling of Hydrology, Weathering, and Isotopic Fractionation in Andrews Creek, Rocky Mountain National Park, Colorado for Water Years 1992 through 2012

    Science.gov (United States)

    Webb, R. M. T.; Parkhurst, D. L.; Mast, A.; Clow, D. W.

    2014-12-01

    The U.S. Geological Survey's (USGS) Water, Energy, and Biogeochemical Model (WEBMOD) was used to simulate hydrology, weathering, and isotopic fractionation in the 1.7 square kilometer Andrews Creek alpine watershed. WEBMOD includes hydrologic modules derived from the USGS Precipitation Runoff Modeling System, the National Weather Service Hydro-17 snow model, and TOPMODEL. PHREEQC, a geochemical reaction model, is coupled with the hydrologic model to simulate the geochemical evolution of waters as they evaporate, mix, and react within the landscape. Major solute concentrations and δ18O were modeled over the period 1992-2012. Variations of chloride and inorganic nitrogen respond almost entirely to variations in atmospheric deposition and preferential elution of snowpack. Both evaporation and melting result in isotopic enrichment of heavy isotopes in the residual snowpack throughout the summer. Magnesium and potassium, derived mostly from weathering with some atmospheric inputs, vary seasonally with uptake during the growing season and release during the fall and winter. The weathering of granitic minerals—oligoclase, biotite, chlorite, pyrite, calcite, and formation of secondary minerals—kaolinite, goethite, gibbsite, and smectite-illite—were selected as primary reactions based on mole-balance modeling of basin outflows. The rates of these reactions were quantified by calibrating WEBMOD to match observed concentrations and loads. Exported annual loads of most weathering products are highly correlated with discharge, whereas silica loads are less correlated with discharge, suggesting a source that is more active during dry years and less active during wet years. Potential sources include net dissolution of kaolinite and smectite-illite or mineralization of colloids with high silica content. WEBMOD is a valuable tool for simulating water quality variations in response to climate change, acid mine drainage, acid rain, biological transformations, and other

  7. Geologic, stratigraphic, thermal, and mechanical factors which influence repository design in the bedded salt environment

    International Nuclear Information System (INIS)

    Ashby, J.P.; Nair, O.; Ortman, D.; Rowe, J.

    1979-12-01

    This report describes the geologic, stratigraphic, thermal, and mechanical considerations applicable to repository design. The topics discussed in the report include: tectonic activity; geologic structure; stratigraphy; rock mechanical properties; and hydrologic properties

  8. A geological reconnaissance study of the Lac du Bonnet batholith

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Kerford, P.S.; Requeima, J.C.; Temple, C.A.

    1980-02-01

    A geological reconnaissance survey was carried out of the Lac du Bonnet batholith, southeastern Manitoba, as part of the concept verification phase of the nuclear fuel waste disposal program for Canada. This report summarizes available geological information, presents the results of field mapping and discusses the geochemical analyses of rock samples. The geological and structural aspects of the batholith are described as well as its regional setting and possible genesis. (auth)

  9. Geochemical normalization of magnetic susceptibility for investigation of floodplain sediments

    Czech Academy of Sciences Publication Activity Database

    Faměra, Martin; Matys Grygar, Tomáš; Elznicová, J.; Grison, Hana

    2018-01-01

    Roč. 77, č. 5 (2018), č. článku 189. ISSN 1866-6280 R&D Projects: GA ČR(CZ) GA15-00340S Institutional support: RVO:61388980 ; RVO:67985530 Keywords : Background functions * Geochemical normalization * Mass-specific magnetic susceptibility * Post-depositional processes * Provenance Subject RIV: DD - Geochemistry OBOR OECD: Environmental sciences (social aspects to be 5.7); Geology (GFU-E) Impact factor: 1.569, year: 2016

  10. 77 FR 19321 - Geological and Geophysical Exploration on the Atlantic Outer Continental Shelf (OCS)

    Science.gov (United States)

    2012-03-30

    ... Bureau of Ocean Energy Management Geological and Geophysical Exploration on the Atlantic Outer... environmental effects of multiple Geological and Geophysical (G&G) activities in the Mid- and South Atlantic...-sonar surveys, electromagnetic surveys, geological and geochemical sampling, and remote sensing. The...

  11. Organic geochemical a

    Indian Academy of Sciences (India)

    63

    Geological Settings. The Northern margin of the Indian plate is occupied by an active fold and thrust belt of the Salt ... light grey in color, nodular and occurs as interbeds with shale units. The sandstone is ..... under light microscope is known as amorphous organic matter (Plate 2, figures 7, 8 and 9; Tyson. 1995; Pacton et al.

  12. YUCCA MOUNTAIN: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste

    Science.gov (United States)

    Long, Jane C. S.

    2004-05-01

    The nation has over 40,000 metric tonnes (MT) of nuclear waste destined for disposal in a geologic repository at Yucca Mountain. In this review, we highlight some of the important geoscience issues associated with the project and place them in the context of the process by which a final decision on Yucca Mountain will be made. The issues include understanding how water could infiltrate the repository, corrode the canisters, dissolve the waste, and transport it to the biosphere during a 10,000-year compliance period in a region, the Basin and Range province, that is known for seismic and volcanic activity. Although the site is considered to be "dry," a considerable amount of water is present as pore waters and as structural water in zeolites. The geochemical environment is oxidizing, and the present repository design will maintain temperatures at greater than 100°C for thousands of years. Geoscientists in this project are challenged to make unprecedented predictions about coupled thermal, hydrologic, mechanical, and geochemical processes governing the future behavior of the repository and to conduct research in a regulatory and legal environment that requires a quantitative analysis of repository performance.

  13. Geological and geochemical variations in Mid-Tertiary Ethiopian ...

    African Journals Online (AJOL)

    The paper presents the results of a comprehensive major element, trace element, and Sr-Nd-Pb-Hf isotopic study of Mid-Tertiary volcanic sequences from the northwestern flood basalt province in Ethiopia. The volcanic rocks studied range in composition from basanites, alkaline basalts, and ankaramites, which form the 1st ...

  14. Evaluation of uranium geochemical anomalies in the Charlotte 10 x 20 NTMS quadrangle

    International Nuclear Information System (INIS)

    Carpenter, R.H.

    1981-11-01

    This report contains a synthesis of published geological, geophysical, and geochemical information for portions of Cabarrus and Rowan Counties, NC, where uranium geochemical anomalies have been described by Heffner and Ferguson (1978). The results of a ground radiation survey in selected areas are also described. Based on an evaluation of published information and the data obtained in the field study, conclusions are made regarding the possible occurrence of uranium concentration. Recommendations for detailed surveys in certain areas are also presented

  15. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons

  16. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir

    International Nuclear Information System (INIS)

    Jeandel, E.

    2008-12-01

    To limit emissions of greenhouse gases in the atmosphere, CO 2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO 2 . Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  17. Geochemical Survey of Pernambuco

    International Nuclear Information System (INIS)

    Horowitz, A.; Duarte, P.J.; Almeida, M.G. de; Medeiros, M.O.

    1988-01-01

    The area studied i this work is located in a triangle formed by the Sibiro and Boca da Mata Sugar-Mills and Serinhaem country. In the Cabo Formation the search determinated conglomerates, arcos and clays. Although the highest geochemical activity have been done in the decomposed crystalin, and the values from Cabo Formation don't be encourager, this formation has lithology compatible with uranium mineralization. The Cabo Formation's sediments presents lithologic variations very expressives, with conglomerates, arcoses and clay silts, which determinate the choise of the area. This area presented favorable to uranium prospecting and to others elements interesting to ragional geochemistry. The atomic absorption analysis, fluorimetry and spectrometry were done for the following elements: Zn, V, Ti, Ni, Pb, Mn, Ga, Cu, Co, Bi, Ag, B, Mo, and U. (C.D.G.) [pt

  18. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Tascotal survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Tascotal survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 337 groundwater and 611 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 80.0 ppB uranium were detected in three areas largely producing from acidic volcanoclastics in the south central portion of the survey area. High specific conductance and an association of lithium, selenium, and sodium were observed in these areas of anomalously high uranium. High uranium/specific conductance, uranium/boron, and uranium/sulfate ratios are also associated with areas of the highest uranium concentrations. Alkalinities in these areas were noted to be highly variable over short distances within the same hydrologic unit. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium are located in the southwestern and the north and south central portions of the survey area. High U-FL/U-NT and low thorium/U-NT values are observed with sediments derived from acidic volcanics in the southern portions of the survey area. In areas of anomalously high uranium, an association of above background concentrations of thorium, lithium, potassium, beryllium, and zirconium were noted. In view of these data, areas containing the Buck Hill Volcanic Series, the Mitchell Mesa, and Tascotal Formations provide the best possibilities of an economical uranium deposit

  19. Concerning evaluation of eco-geochemical background in remediation strategy

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for

  20. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  1. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Knight, Rosemary

    2008-01-01

    Proton nuclear magnetic resonance (NMR) is used in the Earth Sciences as a means of obtaining information about the molecular-scale environment of fluids in porous geological materials. Laboratory experiments were conducted to advance our fundamental understanding of the link between the NMR response and the geochemical properties of geological materials. In the first part of this research project, we studied the impact of both the surface-area-to-volume ratio (S/V) of the pore space and the surface relaxivity on the NMR response of fluids in sand-clay mixtures. This study highlighted the way in which these two parameters control our ability to use NMR measurements to detect and quantify fluid saturation in multiphase saturated systems. The second part of the project was designed to explore the way in which the mineralogic form of iron, as opposed to simply the concentration of iron, affects the surface relaxation rate and, more generally, the NMR response of porous materials. We found that the magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. Of particular significance from this study was the finding of an anomalously large surface relaxivity of magnetite compared to that of the other iron minerals. Differences in the NMR response of iron minerals were seen in column experiments during the reaction of ferrihydrite-coated quartz sand with aqueous Fe(II) solutions to form goethite, lepidocrocite and magnetite; indicating the potential use of NMR as a means of monitoring geochemical reactions. The final part of the research project investigated the impact of heterogeneity, at the pore-scale, on the NMR response. This work highlighted the way in which the geochemistry, by controlling the surface relaxivity, has a significant impact on the link between NMR data and the microgeometry of the pore space.

  2. Structural Geology

    Science.gov (United States)

    Weber, John; Frankel, Kurt L.

    2011-05-01

    Structural geology and continental tectonics were ushered in to the modern quantitative age of geosciences with the arrival of the global plate tectonics paradigm (circa 1968), derived using new data from the oceans' depths, and John Ramsay's 1967 seminal work, Folding and Fracturing of Rocks. Fossen is to be applauded for crafting a unique, high-caliber, and accessible undergraduate textbook on structural geology that faithfully reflects this advance and the subsequent evolution of the discipline. This well-written text draws on Fossen's wealth of professional experience, including his broad and diverse academic research and experience in the petroleum industry. This book is beautifully illustrated, with excellent original color diagrams and with impressive color field photographs that are all keyed to locations and placed into geologic context.

  3. Selected bibliography on the geology of Canadian deposits and occurrences of uranium and thorium

    International Nuclear Information System (INIS)

    Garneau, D.M.

    1976-01-01

    This bibliography is an update to one published in 1956. References are principally geological and mineralogical. Geophysical and geochemical literature is included only if it deals with specific deposits or occurrences. (E.C.B.)

  4. Applying hydrology to land management on the Valles Caldera National Preserve

    Science.gov (United States)

    Robert R. Parmenter

    2009-01-01

    Since 2004, the Valles Caldera National Preserve (VCNP) in the Jemez Mountains of northern New Mexico has hosted extensive field hydrology research by scientists from the Center for Sustainability of semi- Arid Hydrology and Riparian Areas (SAHRA) at the University of Arizona. With the development of a detailed hydrologic understanding of VCNP's climate, geology,...

  5. Hydrology and Change (Invited)

    Science.gov (United States)

    Koutsoyiannis, D.

    2009-12-01

    Since “panta rhei” was pronounced by Heraclitus, hydrology and the objects it studies, such as rivers and lakes, offer grounds to observe and understand change and flux. Change occurs on all time scales, from minute to geological, but our limited senses and life span, as well as the short time window of instrumental observations, restrict our perception to the most apparent daily to yearly variations. As a result, our typical modelling practices assume that natural changes are just a short-term “noise” superimposed to the daily and annual cycles in a scene that is static and invariant in the long run. According to this perception, only an exceptional and extraordinary forcing can produce a long-term change. The hydrologist H. E. Hurst, studying the long flow records of the Nile and other geophysical time series, was the first to observe a natural behaviour, named after him, related to multi-scale change, as well as its implications in engineering designs. Essentially, this behaviour manifests that long-term changes are much more frequent and intense than commonly perceived and, simultaneously, that the future states are much more uncertain and unpredictable on long time horizons than implied by standard approaches. Due to its close relationship with engineering design, hydrology has always been concerned with long-term predictions. Hydrologists understood early that deterministic predictions for typical design horizons of 50-100 years are hopeless and appreciated the usefulness of probabilistic approaches. Yet, during the last two decades, hydrology, following other geophysical disciplines, changed perspective and invested its hopes in deterministic descriptions and models. In particular, climate model outputs have been assumed to represent the future of hydrological inputs for the next 50-100 years. However, recent comparisons of climate model results with long historical records for local to sub-continental spatial scales show that these models are not

  6. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  7. Hydrology team

    Science.gov (United States)

    Ragan, R.

    1982-01-01

    General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.

  8. Statistical interpretation of geochemical data

    International Nuclear Information System (INIS)

    Carambula, M.

    1990-01-01

    Statistical results have been obtained from a geochemical research from the following four aerial photographies Zapican, Carape, Las Canias, Alferez. They have been studied 3020 samples in total, to 22 chemical elements using plasma emission spectrometry methods.

  9. Applications of 129I and 36Cl in hydrology

    International Nuclear Information System (INIS)

    Fabryka-Martin, J.; Davis, S.N.; Elmore, D.

    1987-01-01

    Since the first AMS measurements of 36 Cl in 1978, this cosmogenic radionuclide has proved to be a versatile tracer of hydrologic processes in over 20 field studies. Natural 129 I also appears to be useful for studying hydrologic processes although incomplete understanding of its production in nature and geochemical behavior largely limits interpretation to qualitative discussions. The range of hydrologic applications demonstrated for these radionuclides covers: estimation of residence time of water in the subsurface and net infiltration in arid soils; evaluation of ion filtration, leaching of connate water, and salt dissolution as sources of ground-water salinity; estimation of lithospheric thermal-neutron fluxes; and emanation and migration characteristics of fission-product 129 I in different geochemical environments. (orig.)

  10. Integrating geophysics and hydrology for reducing the uncertainty of groundwater model predictions and improved prediction performance

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    constructed from geological and hydrological data. However, geophysical data are increasingly used to inform hydrogeologic models because they are collected at lower cost and much higher density than geological and hydrological data. Despite increased use of geophysics, it is still unclear whether......, ‘true’, hydrogeological and geophysical systems. The two types of ‘true’ systems can be used together with corresponding forward codes to generate hydrological and geophysical datasets, respectively. These synthetic datasets can be interpreted using any hydrogeophysical inversion scheme...

  11. Radioactivity in the hydrologic environment

    International Nuclear Information System (INIS)

    Werner, L.B.

    1969-01-01

    Certain proposed uses of nuclear explosives for peaceful purposes will introduce radioactive debris into the natural hydrologic environment. Consideration must therefore be given in each situation to the extent and significance to man of resulting radioactively contaminated water. For contained underground detonations, space-time - concentration predictions of radioactive materials in ground water are dependent on several factors: radionuclide production and initial distribution, radioactive decay, sorption on geologic materials, and dispersion during hydrologic transport. For uncontained (cratering) detonations, other aspects of the hydrologic cycle, particularly rainfall, and watershed characteristics must be considered. Programs sponsored principally by the U.S. Atomic Energy Commission have investigated these factors. Examination of their net effects on radioactivity concentration in water shows that areas if any, underlain by water exceeding permissible concentrations tend first to increase in size, then decrease, and finally disappear. Hydrologic processes at the surface remove or redistribute radioactive debris deposited on a watershed to other locations. Where sufficient information is available, predictions of location and concentration of radionuclides in natural waters can be made. Any potentially hazardous conditions arising from a particular detonation can then be evaluated. (author)

  12. A bibliography of planetary geology principal investigators and their associates, 1976--1978

    International Nuclear Information System (INIS)

    1978-05-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided

  13. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS Quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. The purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  14. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. Purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  15. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    Rose, A.W.

    1977-01-01

    The processes and types of dispersion that produce anomalies in stream water, stream sediment, and ground water, and the factors that must be considered in planning and interpreting geochemical surveys are reviewed. Examples of surveys near known deposits show the types of results to be expected. Background values depend mainly on the content of U in rocks of the drainage area. In igneous rocks, U tends to increase with potassium from ultramafic rocks (0.01 ppM) to granitic rocks (1 to 5 ppM). Some alkalic rocks have unusually high contents of U (15 to 100 ppM). Uranium-rich provinces marked by igneous rocks unusually rich in U are recognized in several areas and appear to have a deep crustal or mantle origin. In western U.S., many tertiary tuffaceous rocks have a high U content. Sandstones, limestones, and many shales approximate the crustal abundance at 0.5 to 4 ppM, but black shales, phosphates, and some organic materials are notably enriched in U. Uranium is very soluble in most oxidizing waters at the earth's surface, but is precipitated by reducing agents (organic matter, H 2 S) and adsorbed by organic material and some Fe oxides. In most surface and ground waters, U correlates approximately with the total dissolved solids, conductivity, and bicarbonate concentration of the water, and with the U content of rocks it comes into contact with. Most surveys of stream water near known districts show distinct anomalies extending a few km to tens of km downstream. A complication with water is the large variability with time, up to x 50, as a result of changes in the ratio of ground water to direct runoff, and changes in rate of oxidation and leaching. Collection and analysis of water samples also pose some difficulties

  16. Geology Fulbrights

    Science.gov (United States)

    Fulbright grants in geology for 1988-89 remain open. Specific opportunities are available in Egypt, German Democratic Republic, Hungary, Iceland, Iraq, Kuwait, Morocco, Mozambique, Oman, Poland, Sudan, Syria, Tanzania, Turkey, U.S.S.R., West Bank, Yemen, and Zimbabwe. Other countries are also open to applications in any discipline, and geology is among their preferred fields.The grants are available until awarded and are open only to U.S. citizens. In Central and South America and French-speaking Africa, knowledge of host-country language is required. For more information, contact the Council for International Exchange of Scholars (CIES), 11 Dupont Circle N.W., Suite 300, Washington, DC 20036; tel. 202-939-5401.

  17. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil; Evolucao geologica da porcao centro-sul do escudo das Guianas com base no estudo geoquimico, geocronologico e isotopico dos granitoides paleoproterozoicos do sudeste de Roraima, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Marcelo Esteves

    2006-07-01

    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  18. Role of geochemical background at evaluation of investment attractiveness of recreational territories

    Directory of Open Access Journals (Sweden)

    Vdovina Ol'ga Konstantinovna

    2014-09-01

    Full Text Available The article shows the role of natural geochemical background when estimating investment attractiveness of recreational areas. It is noted, that geochemical background influence on people's sickness rate isn't considered now. Though it's understood, that even insignificant increase of geochemical background in relation to percentage abundance of Earth crest may lead to endemic diseases of people, animals and plants. An indicator of geochemical endemicity areas was proposed for assessing the impact of storage elements and of a lack of geological environment on human health. Thanks to this measure, and taking into account landscape features of the area, the authors allocated lands, dangerous and potentially dangerous in terms of endemicity. The importance of ratings was achieved by the use of those factors that could have a great influence on the cost of land development. This includes, first of all, the factors that affect population health, and economic and geographic factors that minimize the cost of the territory development and the factors that give rise to financial risks and risks of human losses. The main risk factors include: potential ecological and geochemical risk; high absolute heights, development and activity of dangerous geological processes and phenomena. Systemacity of researches was reached by using factors, that characterize the object from different aspects; readiness of area infrastructure to its exploration and possible risks. Objectivity was achieved by the use of figures obtained from the results of geochemical and engineering surveys with their metrological support.

  19. Coal weathering and the geochemical carbon cycle

    Science.gov (United States)

    Chang, Soobum; Berner, Robert A.

    1999-10-01

    The weathering rate of sedimentary organic matter in the continental surficial environment is poorly constrained despite its importance to the geochemical carbon cycle. During this weathering, complete oxidation to carbon dioxide is normally assumed, but there is little proof that this actually occurs. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. We have determined the aqueous oxidation rates of pyrite-free bituminous coal at 24° and 50°C by using a dual-cell flow-through method. Coal was used as an example of sedimentary organic matter because of the difficulty in obtaining pyrite-free kerogen for laboratory study. The aqueous oxidation rate obtained in the present study for air-saturated water (270 μM O2) was found to be on the order of 2 × 10-12 mol O2/m2/s at 25°C, which is fast compared to other geologic processes such as tectonic uplift and exposure through erosion. The reaction order with respect to oxygen level is 0.5 on a several thousand hour time scale for both 24° and 50°C experiments. Activation energies, determined under 24° and 50°C conditions, were ≈40 kJ/mol O2 indicating that the oxidation reaction is surface reaction controlled. The oxygen consumption rate obtained in this study is two to three orders of magnitude smaller than that for pyrite oxidation in water, but still rapid on a geologic time scale. Aqueous coal oxidation results in the formation of dissolved CO2, dissolved organic carbon (DOC), and solid oxidation products, which are all quantitatively significant reaction products.

  20. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  1. Geochemical assessment of nuclear waste isolation. Report of activities during fiscal year 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    The status of the following investigations is reported: canister/overpack-backfill chemical interactions and mechanisms; backfill and near-field host rock chemical interactions mechanisms; far-field host rock geochemical interactions; verification and improvement of predictive algorithms for radionuclide migration; and geologic systems as analogues for long-term radioactive waste isolation.

  2. The potential of lacquer-peel soil profiles for palaeo-geochemical analysis using XRF analysis

    NARCIS (Netherlands)

    Arnoldussen, Stijn; van Os, B.J.H.

    2015-01-01

    This paper discusses the suitability of hand-held XRF analysis to extract palaeo-geochemical information from lacquer-peel soil sections that have been taken to document pedological information at geological and archaeological sites. This not only allows the study of sections from archaeological and

  3. Hydrologic modeling of the Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Bond, F.W.; Zimmerman, D.A.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) directed the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program to conduct a technology demonstration of current performance assessment techniques for the Department of Energy (DOE) as applied to a nuclear waste repository in the Columbia Plateau Basalts. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The hydrologic simulation was divided into three major parts: (1) aquifer recharge calculations, (2) a regional hydrologic model, and (3) a local hydrologic model of the Pasco Basin. The presentation discusses the regional model. An estimate of the amount of water transmitted through the groundwater system was required to bound the transmissivity values and to estimate the transmissivity distributions for the deeper basalts. The multiple layer two-dimensional Variable Thickness Transient (VTT) code was selected as appropriate for the amount of data available and for the conditions existing in the regional systems. This model uses a finite difference formulation to represent the partial differential flow equation. The regional study area as defined for the VTT model was divided into 55 by 55 square pattern with each grid 5 kilometers on a side. The regional system was modeled as a held potential surface layer and two underlying basalt layers. The regional model established the boundary conditions for the hydrologic model the Pasco Basin

  4. Assessment of effectiveness of geologic isolation systems: the AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1981-02-01

    Assessment of the post-closure performance of a nuclear waste repository has two basic components: the identification and analysis of potentially disruptive sequences and the pattern of geologic events and processes causing each sequence, and the identification and analysis of the environmental consequences of radionuclide transport and interactions subsequent to disruption of a repository. The AEGIS Scenario Analysis Task is charged with identifying and analyzing potenially disruptive sequences of geologic events and processes. The Geologic Simulation Model (GSM) was developed to evaluate the geologic/hydrologic system surrounding an underground repository, and describe the phenomena that alone, or in concert, could perturb the system and possibly cause a loss of repository integrity. The AEGIS approach is described in this report. It uses an integrated series of models for repository performance analysis; the GSM for a low-resolution, long-term, comprehensive evaluation of the geologic/hydrologic system, followed by more detailed hydrogeologic, radionuclide transport, and dose models to more accurately assess the consequences of disruptive sequences selected from the GSM analyses. This approach is felt to be more cost-effective than an integrated one because the GSM can be used to estimate the likelihoods of different potentially disruptive future evolutionary developments within the geologic/hydrologic system. The more costly consequence models can then be focused on a few disruptive sequences chosen for their representativeness and effective probabilities

  5. Groundwater drought in different geological conditions

    International Nuclear Information System (INIS)

    Machlica, A; Stojkovova, M

    2008-01-01

    The identification of hydrological extremes (drought) is very actual at present. The knowledge of the mechanism of hydrological extremes evolution could be useful at many levels of human society, such as scientific, agricultural, local governmental, political and others. The research was performed in the Upper part of the Nitra River catchment (central part of Slovakia) and in the Topla and Ondava River catchments (eastern part of Slovakia). Lumped hydrological model BILAN was used to identify relationships among compounds of the water balance. Presented results are focused on drought in groundwater storage, soil moisture, base flow and discharges. BFI model for baseflow estimation was used and results were compared with those gained by BILAN model. Another item of the research was to compare results of hydrological balance model application on catchments with different geological conditions.

  6. Map showing geochemical data for panned stream sediments from the Bread Loaf Further Planning Area, Addison and Washington counties, Vermont

    Science.gov (United States)

    Grosz, A.E.; Schruben, P.G.; Atelsek, P.J.

    1987-01-01

    A geochemical survey of bedrock samples in the Bread Loaf Roadless Area (index map; fig. 1) was conducted by the U.S. Geological Survey (USGS) during October, 1981 in order to outline areas that may contain undiscovered mineral deposits. This report describes the results of a geochemical analysis of panned concentrates collected from stream sediments, and complements other geologic and geochemical investigations of the area (Slack and Bitar, 1983). The present study has offered us a chance to identify sampling media and a technique most appropriate for the enhancement of certain metallic elements in samples of panned concentrate. This study is important to the resource evaluation of the Bread Loaf Roadless Area because it reveals that geochemical anomalies produced by this technique are not evident in the standard magnetic and nonmagnetic fractions of panned concentrates.

  7. A geochemical atlas of North Carolina, USA

    Science.gov (United States)

    Reid, J.C.

    1993-01-01

    very general indication of geochemical distribution patterns and should not be used for site specific studies. The atlas maps for each element were computer-generated at the state's geographic information system (Center for Geographic Information and Analysis [CGIA]). The Division of Statistics and Information Services provided input files. The maps in the atlas are point maps. Each sample is represented by a symbol generally corresponding to a quartile class. Other reports will transmit sample and analytical data for state regions. Data are tentatively planned to be available on disks in spreadsheet format for personal computers. During the second phase of this project, stream-sediment samples are being assigned to state geologic map unit names using a GIS system to determine background and anomaly values. Subsequent publications will make this geochemical data and accompanying interpretations available to a wide spectrum of interdisciplinary users. ?? 1993.

  8. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    International Nuclear Information System (INIS)

    Kalin, R.M.

    1996-01-01

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs

  9. Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: A holistic watershed approach

    Science.gov (United States)

    Barber, L.B.; Murphy, S.F.; Verplanck, P.L.; Sandstrom, M.W.; Taylor, Howard E.; Furlong, E.T.

    2006-01-01

    Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.

  10. Review of information on hydrology and radionuclide migration at the Nevada Test Site 1976--1988, and annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, J.R.; Eddy, P.A.; Wallace, R.W.; Foley, M.G.; Bierschenk, W.H.; Harrison, R.P. (Pacific Northwest Lab., Richland, WA (USA); IT Corp., Richland, WA (USA); Pacific Northwest Lab., Richland, WA (USA))

    1989-09-01

    The purpose of this report is to provide information on changes in the state of knowledge on the hydrology and radionuclide migration that have occurred at the Nevada Test Site (NTS) since 1976. In the present study, a literature review was conducted to examine information published since 1976 about the various activities that have occurred at the NTS. Information was collected from the literature on the site's geological, hydrological, geochemical, and geomorphic characteristics related to the impacts on the ground water from weapons testing and the disposal of waste at the NTS. This information was used to identify the state of knowledge about the NTS and the potential impacts of NTS activities on the ground water. More than 250 reports were reviewed, of which about 200 contained information pertinent to the subject of this report. Because the reports have never been collected in a single location, only those that were supplied by the US Department of Energy and other cooperating organizations could be reviewed, and some pertinent documents may have been missed. Appendix A contains an annotated bibliography of the reports reviewed. 149 refs., 28 figs., 2 tabs.

  11. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  12. The use of fluoride as a natural tracer in water and the relationship to geological features: Examples from the Animas River Watershed, San Juan Mountains, Silverton, Colorado

    Science.gov (United States)

    Bove, D.J.; Walton-Day, K.; Kimball, B.A.

    2009-01-01

    Investigations within the Silverton caldera, in southwestern Colorado, used a combination of traditional geological mapping, alteration-assemblage mapping, and aqueous geochemical sampling that showed a relationship between geological and hydrologic features that may be used to better understand the provenance and evolution of the water. Veins containing fluorite, huebnerite, and elevated molybdenum concentrations are temporally and perhaps genetically associated with the emplacement of high-silica rhyolite intrusions. Both the rhyolites and the fluorite-bearing veins produce waters containing elevated concentrations of F-, K and Be. The identification of water samples with elevated F/Cl molar ratios (> 10) has also aided in the location of water draining F-rich sources, even after these waters have been diluted substantially. These unique aqueous geochemical signatures can be used to relate water chemistry to key geological features and mineralized source areas. Two examples that illustrate this relationship are: (1) surface-water samples containing elevated F-concentrations (> 1.8 mg/l) that closely bracket the extent of several small high-silica rhyolite intrusions; and (2) water samples containing elevated concentrations of F-(> 1.8 mg/ l) that spatially relate to mines or areas that contain late-stage fluorite/huebnerite veins. In two additional cases, the existence of high F-concentrations in water can be used to: (1) infer interaction of the water with mine waste derived from systems known to contain the fluorite/huebnerite association; and (2) relate changes in water quality over time at a high elevation mine tunnel to plugging of a lower elevation mine tunnel and the subsequent rise of the water table into mineralized areas containing fluorite/huebnerite veining. Thus, the unique geochemical signature of the water produced from fluorite veins indicates the location of high-silica rhyolites, mines, and mine waste containing the veins. Existence of high F

  13. the linkage between geological setting and human health in ethiopia

    African Journals Online (AJOL)

    preferred customer

    geo-sciences in Ethiopia to investigate the linkage between geo-environments and associated health risks. Fluoride and related diseases are the most widely studied from geological ... Key words: Geochemical diseases, geo-environmental setting, Ethiopia, health belts .... Highly leached iron, aluminum and silica-rich.

  14. NOAA and MMS Marine Minerals Geochemical Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Minerals Geochemical Database was created by NGDC as a part of a project to construct a comprehensive computerized bibliography and geochemical database...

  15. Oak Ridge Geochemical Reconnaissance Program

    International Nuclear Information System (INIS)

    Arendt, J.W.

    1977-03-01

    The Oak Ridge reconnaissance program is responsible for the geochemical survey in a 12-state area covering Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Iowa, Indiana, and Illinois as part of the National Uranium Resource Evaluation Program. The program concept is outlined and the planning and organization of the program is discussed

  16. The Geology of Somalia: A Selected Bibliography of Somalian Geology, Geography and Earth Science

    Science.gov (United States)

    2007-02-01

    Snails; Africa; Central America; Orinoco River ; South America; Tilapia; Fish; Somalia. Abstract: The characteristics of malaria, bilharzia, river ...from the Orinoco River area South America. The Somalian Earth Sciences Engineering Research and Development Center 205 large snail out competes the...Energy. Forests. Geology. Geography. Groundwater. Hydrology. Maps. Mining. Rivers . Soils. Surface-water. Terrain. Topography. Transportation

  17. Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US sub-tropical reservoir

    International Nuclear Information System (INIS)

    Brandenberger, Jill M.; Louchouarn, Patrick; Herbert, Bruce; Tissot, Philippe

    2004-01-01

    The phase distribution of trace metals and oxyanions was investigated within a South Texas watershed hosting a high density of surface uranium mine pits and tailings. The objectives of the study were to evaluate the potential impact of these old uranium mining sites on the watershed with particular emphasis on spatial and temporal changes in water quality of a reservoir that serves as the major source of freshwater to a population of ∼ 350,000 people in the region. A livestock pond, bordered by uranium mine tailings, was used as a model case-study site to evaluate the cycling of uranium mine-derived oxyanions under changing redox conditions. Although the pond showed seasonal thermal and chemical stratification, geochemical cycling of metals was limited to Co and Pb, which seemed to be mostly associated with redox cycling of Mn mineral phases, and U, which suggested reductive precipitation in the ponds hypolimnion. Uranium levels, however, were too low to support strong inputs from th e tailings into the water column of the pond. The strong relations observed between particulate Cr, Cs, V and Fe suggest that these metals are associated with a stable particulate phase (probably allochthonous aluminosilicates) enriched in unreactive iron. This observation is supported by a parallel relationship in sediments collected across a broad range of sediment depositional processed (and histories) in the basin. Arsenic, though selectively enriched in the ponds water column, remained stable and mostly in solution throughout the depth of the profile and showed no sign of geochemical cycling or interaction with Fe-rich particles. We found no evidence of anthropogenic impacts of U mines beyond the purely local scale. Arsenic does decrease in concentration downstream of uranium mining sites but its presence within the Nueces drainage basin is related to interactions between surface and ground waters with uranium-rich geological formations rather than long-scale transport of

  18. Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US sub-tropical reservoir

    International Nuclear Information System (INIS)

    Brandenberger, J.; Louchouarn, P.; Herbert, B.; Tissot, P.

    2004-01-01

    is related to interactions between surface and groundwaters with U- and As-rich geological formations rather than large-scale transport of contaminants downstream of the U mine pits and tailings. A quantitative mass balance model, constructed using monthly hydrological data for the reservoir, provides quantitative evidence of seasonal evaporative concentration of As in surface waters demonstrating the predominance of hydrodynamic over geochemical constraints, on the cycling of this element

  19. HYDROLOGY, CHISAGO COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, CUSTER COUNTY, SD

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, HOUSTON COUNTY, ALABAMA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating ALood discharges for a ALood Insurance...

  2. HYDROLOGY, Allegheny County, PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  3. HYDROLOGY, GLADES COUNTY, FLORIDA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  4. HYDROLOGY, Lawrence County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  5. Hydrology, ABBEVILLE COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, CITRUS COUNTY, FLORIDA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, LOWNDES COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. Hydrology, OCONEE COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, NESHOBA COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, LEAKE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, LEE COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  12. HYDROLOGY, GREENE County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  13. HYDROLOGY, Newberry COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, WEBSTER COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. HYDROLOGY, LAKE COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, JASPER, MISSOURI USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. HYDROLOGY, Lawrence COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. LOS PINOS HYDROLOGY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. Hydrology, MECKLENBURG COUNTY, NC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, MONTGOMERY COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, GILCHRIST COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, SUNFLOWER COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, CLAIBORNE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, LAFAYETTE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, Yazoo COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. Hydrology, BENNINGTON COUNTY, VERMONT

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, FERGUS COUNTY, MONTANA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, POWESHIEK COUNTY, IA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, LEE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, CLALLAM, WASHINGTON

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. Weber County Hydrology Report

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. The progress of hydrology

    International Nuclear Information System (INIS)

    Chow, V.T.

    1967-01-01

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  13. Hydrological and hydro-geological effects on wetlands and forest areas from the repository at Forsmark. Results from modelling with MIKE SHE; Hydrologiska och hydrogeologiska effekter paa vaatmarker och skogsomraaden av slutfoervarsanlaeggningen i Forsmark. Resultat fraan modellering med MIKE SHE

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran; Gustafsson, Ann-Marie; Aneljung, Maria; Sabel, Ulrika (DHI Sverige AB, Goeteborg (Sweden))

    2010-06-15

    This report provides background material for investigations and associated impact assessments concerning water operations in terms of withdrawal of groundwater from the final repository for spent nuclear fuel at Forsmark. The report presents detailed modelling results in the form of supplementary sensitivity analyses and detailed hydrological and hydrogeological analyses of specific nature objects in Forsmark. The sensitivity analyses aim to investigate the sensitivity of the modelling results to i) the meteorological conditions, ii) impervious surfaces and iii) the model description of the present SFR (final repository for short-lived radioactive waste). A number of simulation cases aim to study cumulative effects of groundwater withdrawal from an extended SFR. The simulations are evaluated with respect to the groundwater table drawdown and head changes in the bedrock. The report analyses the hydrogeological and hydrological conditions for a number of selected wetland objects and forest objects. The selection of objects aims to cover different types of valuable nature objects at different geographical locations in relation to the influence area of the groundwater table drawdown. The analysis comprises groundwater levels at all nature objects, whereas wetlands with particularly high nature values have been studied in detail with respect to surface water levels, the need for water supply and object-specific water balances. These studies have been performed for different meteorological conditions in the form of a type (2006) and a statistically normal, dry and wet year, respectively, with a return period of 100 years for the dry- and wet years. All simulations for disturbed conditions with a fully open repository are done with a hydraulic conductivity of K{sub inj} = 10-7 or 10-8 m/s in the grouted zone. The results show that time-dependent precipitation and snow melt have large influence on the temporal variations of the depth to the groundwater table for

  14. Assessment of Deep Geological Environmental Condition for HLW Disposal in Korea

    International Nuclear Information System (INIS)

    Koh, Yong Kweon; Bae, Dae Seok; Kim, Kyung Su

    2010-04-01

    The research developed methods to study and evaluate geological factors and items to select radioactive waste disposal site, which should meet the safety requirements for radioactive waste disposal repositories according to the guidelines recommended by IAEA. A basic concept of site evaluation and selection for high level radioactive waste disposal and develop systematic geological data management with geological data system which will be used for site selection in future are provided. We selected 36 volcanic rock sites and 26 gneissic sites as the alternative host rocks for high level radioactive waste disposal and the geochemical characteristics of groundwaters of the four representative sites were statistically analyzed. From the hydrogeological and geochemical investigation, the spatial distribution characteristics were provided for the disposal system development and preliminary safety assessment. Finally, the technology and scientific methods were developed to obtain accurate data on the hydrogeological and geochemical characteristics of the deep geological environments

  15. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Hydro-geochemical modeling of subalpine urbanized area: geochemical characterization of the shallow and deep aquifers of the urban district of Como (first results).

    Science.gov (United States)

    Terrana, Silvia; Brunamonte, Fabio; Frascoli, Francesca; Ferrario, Maria Francesca; Michetti, Alessandro Maria; Pozzi, Andrea; Gambillara, Roberto; Binda, Gilberto

    2016-04-01

    One of the greatest environmental and social-economics threats is climate change. This topic, in the next few years, will have a significant impact on the availability of water resources of many regions. This is compounded by the strong anthropization of water systems that shows an intensification of conflicts for water resource exploitation. Therefore, it is necessary a sustainable manage of natural resources thorough knowledge of the hosting territories. The development of investigation and data processing methods are essential to reduce costs for the suitable use and protection of resources. Identify a sample area for testing the best approach is crucial. This research aims to find a valid methodology for the characterization, modeling and management of subalpine urban aquifers, and the urban district of Como appears perfect. The city of Como is located at the southern end of the western sector of Lake Como (N Italy). It is a coastal town, placed on a small alluvial plain, therefore in close communication with the lake. The plain is drained by two streams, which are presently artificially buried, and have an underground flow path in the urban section till the mouth. This city area, so, is suitable for this project as it is intensely urbanized, its dimensions is not too extensive and it is characterized by two aquifers very important and little known. These are a shallow aquifer and a deep aquifer, which are important not only for any water supply, but also for the stability of the ground subsidence in the city. This research is also the opportunity to work in a particular well-known area with high scientific significance; however, there is complete absence of information regarding the deep aquifer. Great importance has also the chosen and used of the more powerful open source software for this type of area, such as PHREEQC, EnvironInsite, PHREEQE etc., used for geological and geochemical data processing. The main goal of this preliminary work is the

  17. Introducing Au Potential Areas, Using Remote Sensing and Geochemical Data Processing Using Fractal Methods in Chartagh, Western Azerbijan - Iran

    Science.gov (United States)

    Mansouri, Edris; Feizi, Faranak

    2016-06-01

    The studied area - Chartagh - is located in the East of Azerbaijan gharbi Province, Iran. In this paper, geology map, ASTER satellite images were used and after processing these images with ENVI softwares, geochemical data analysis consisting of lithogeochemical samples, within geological field observations. On ASTER data; using a number of selected methods including band ratio, Minimum Noise Fraction (MNF) and Spectral Angle Maper (SAM) distinguished alternation zones. Geochemical anomalies were separated by number - size (N-S) fractal method. (N-S) fractal method was utilized for High intensive Au, As and Ag anomalies.

  18. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  19. LASL approach to uranium geochemical reconnaissance

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R.R. Jr.

    1977-01-01

    The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) organization and planning, which includes management, design, and execution; (2) field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) data handling and presentation, including verification, storage, output, and plotting; and (5) data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described.

  20. LASL approach to uranium geochemical reconnaissance

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.

    1977-01-01

    The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) organization and planning, which includes management, design, and execution; (2) field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) data handling and presentation, including verification, storage, output, and plotting; and (5) data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described

  1. Snowball Earth climate dynamics and Cryogenian geology-geobiology.

    Science.gov (United States)

    Hoffman, Paul F; Abbot, Dorian S; Ashkenazy, Yosef; Benn, Douglas I; Brocks, Jochen J; Cohen, Phoebe A; Cox, Grant M; Creveling, Jessica R; Donnadieu, Yannick; Erwin, Douglas H; Fairchild, Ian J; Ferreira, David; Goodman, Jason C; Halverson, Galen P; Jansen, Malte F; Le Hir, Guillaume; Love, Gordon D; Macdonald, Francis A; Maloof, Adam C; Partin, Camille A; Ramstein, Gilles; Rose, Brian E J; Rose, Catherine V; Sadler, Peter M; Tziperman, Eli; Voigt, Aiko; Warren, Stephen G

    2017-11-01

    Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO 2 was 10 2 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO 2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.

  2. The Porretta thermal springs (Northern Apennines: seismogenic structures and long-term geochemical monitoring

    Directory of Open Access Journals (Sweden)

    F. Italiano

    2007-06-01

    Full Text Available The thermal springs of Porretta are located on a seismically active area of the Northern Apennines. In 19th Century a chemist identified anomalous behaviour of the thermal waters in concomitance with local seismic events. Recent studies assessed the geochemical features of the circulating fluids (e.g., waters carry a dissolved CH4-dominated gas phase with a radiogenic signature of the helium isotopic ratio and observed anomalous hydrologic and geochemical signals possibly related to crustal strain phenomena due to local seismic events. Long-term geochemical monitoring was carried out from 2001 to 2006 with the aim of detecting the behaviour of the circulating fluids possibly coinciding with seismic activity. The collected data reveal a sensitivity of the thermal waters to the activity of the main fault crossing the village of Porretta and identify a «seismogenic» structure crossing the village.

  3. The role of atomic absorption spectrometry in geochemical exploration

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  4. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  5. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Department of Resources — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  6. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  7. Geochemical aspects of environmental problems of protection of the surrounding natural environment

    International Nuclear Information System (INIS)

    Azadaliev, Dzh.A.; Azadalieva, S.Dzh.; Azadalieva, F.G.

    2004-01-01

    Full text :This article is devoted to consideration of geochemical aspects of geological problems of preservation of the environment. With this purpose various methods of the analytical geochemistry are considered here, which promote to define of a wide spectrum of geochemical parameters and characteristics. The important attention is given to consideration of radioactive elements and heavy metals, representing considerable danger to an environment, i.e. biosphere. Further the connection of a physical condition with contents of any element with environmental contamination is explained and also further methods on elimination of harmful consequences of influence of the specified elements on environment and vital functions were given [ru

  8. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N.

    1992-05-01

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  9. Geochemical studies of potential source minerals of radon: case studies in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Rajnai, G.; Nagy-Balogh, J.; Gal-Solymos, K.; Konc, Z.; Breitner, D.; Barabas, A.; Szabo, C. [Eotvos Univ., Lithosphere Fluid Research Lab, Dept. of Petrology and Geochemistry, Budapest (Hungary); Barabas, A. [Eotvos Univ., Dept. of Geophysics, Budapest (Hungary)

    2006-07-01

    In Hungary, during the past decade five distinct regions have been chosen to find possible explanations of the uncommonly high radon background radiation values. The main aim of the research is to study U- and Th-bearing minerals in petrographic and geochemical characters. Besides the microscopic techniques, whole rock and in situ geochemical analytical methods were applied to determine the bulk U and Th content of the studied geological samples. We assume that some of the radon measured is related to the U and Th contents of the samples. (authors)

  10. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  11. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  12. An integrated geophysical and geochemical exploration of critical zone weathering on opposing montane hillslope

    Science.gov (United States)

    Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.

    2017-12-01

    Quantifying coupled geochemical and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate geochemical and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated geochemical and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. Geochemical samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. Geochemical data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while geochemical data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance

  13. Hydrological resiliency in the Western Boreal Plains: classification of hydrological responses using wavelet analysis to assess landscape resilience

    Science.gov (United States)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff

    2017-04-01

    The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic

  14. Status report: A hydrologic framework for the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Solomon, D.K.; Toran, L.E.; Dreier, R.B.; Moore, G.K.; McMaster, W.M.

    1992-05-01

    This first status report on the Hydrologic Studies Task of the Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) revises earlier concepts of subsurface hydrology and hydrogeochemistry of the ORR. A new classification of hydrogeologic units is given, as well as new interpretations of the gydrogeologic properties and processes that influence contaminant migration. The conceptual hydrologic framework introduced in this report is based primarily on reinterpretations of data acquired during earlier hydrologic investigations of waste areas at and near the three US Department of Energy Oak Ridge (DOE-OR) plant facilities. In addition to describing and interpreting the properties and processes of the groundwater systems as they are presently understood, this report describes surface water-subsurface water relations, influences on contaminant migration,and implications to environmental restoration, environmental monitoring, and waste management

  15. Hyphenated hydrology: Interdisciplinary evolution of water resource science

    Science.gov (United States)

    McCurley, Kathryn L.; Jawitz, James W.

    2017-04-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-twentieth century. Modern water resource related questions have forced adaptation from exclusively physical or engineering science viewpoints toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution were foreseen by prominent expert hydrologists. However, their narrative descriptions have lacked substantial quantification. This study addressed that gap by measuring the prevalence of and analyzing the relationships between the terms most frequently used by hydrologists to define and describe their research. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerged. Our word frequency and term cooccurrence network results revealed the dynamic timing of the lateral movement of hydrology across multiple disciplines as well as the deepening of scientific discourse with respect to traditional hydrologic questions. The conversation among water resource scientists surrounding the hydrologic subdisciplines of catchment-hydrology, hydro-meteorology, socio-hydrology, hydro-climatology, and eco-hydrology gained statistically significant momentum in the analyzed time period, while that of hydro-geology and contaminant-hydrology experienced periods of increase followed by significant decline. This study concludes that formerly exotic disciplines can potentially modify hydrology, prompting new insights and inspiring unconventional perspectives on old questions that may have otherwise become obsolete.

  16. Hydrology and radionuclide migration program

    International Nuclear Information System (INIS)

    Marsh, K.V.

    1992-02-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during fiscal year 1988. The report discusses studies at a new well 100 m down the hydrologic gradient from the previous sampling point at the Cheshire site; laboratory investigations of the mineralogical composition of NTS colloids; the strength of colloidal deposits and parameters affecting their formation and release; accelerator mass spectrometric measurements of 129 I in water from the Cheshire stie; 222 Rn concentrations in water from several pumped wells at the NTS; and a description of a new well (PM3) drilled off the NTS near Area 20. Further studies on groundwater sampled show that both technetium and iodine are quite mobile; both closely track the trend of the decreasing tritium concentration with increasing distance. Antimony and cesium concentrations decrease much more rapidly than tritium, and europium was not detected at all in the new well. Colloidal particles found in water collected from the Cheshire cavity are in size range of 0.050 to 0.003 μm and are dominated by quartz and (Ca, K) feldspars. A new well was drilled on US Air Force land adjacent to the NTS Area 20. Static water level measurements and geochemical data from this well will help to determine the extent to which Pahute Mesa base flow infiltrates Oasis Valley. Preliminary results indicate tritium concentrations in water samples from this well to be in the range of 0.1 to 0.4 pCi/ml as measured under field conditions

  17. Site characterizations around KURT area-Geologic model (Version 1)-

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Kim, Geon Young

    2009-08-01

    To characterize the geologic elements around study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as geophysical surveys and borehole drillings were carried out since 1997. Especially, the KURT (KAERI Underground Research Tunnel) was constructed to understand the deep geological environments in 2006. At recent, the deep boreholes, which have 500m depth at left research module inside the KURT and 1,000m depth outside the KURT, were drilled around the KURT area to confirm and validate the geological model. The objective of this research is to construct the first version of geological model around KURT area in the point of hydro-geological view. The data in this study are based on the surface geological investigation and borehole investigations drilled in until 2005. At results, total 4 geological elements are obtained from geological analysis, which are a subsurface weathered zone, log-angled fractures zone, fracture zones and bedrock. And, the geometries of these elements are also plotted by three-dimensional model. The first version of geological model which is built in this study will be supported to construct the hydrogeological model and geochemical model

  18. smwrGraphs—An R package for graphing hydrologic data, version 1.1.2

    Science.gov (United States)

    Lorenz, David L.; Diekoff, Aliesha L.

    2017-01-31

    This report describes an R package called smwrGraphs, which consists of a collection of graphing functions for hydrologic data within R, a programming language and software environment for statistical computing. The functions in the package have been developed by the U.S. Geological Survey to create high-quality graphs for publication or presentation of hydrologic data that meet U.S. Geological Survey graphics guidelines.

  19. Field Analytical Techniques for Geochemical Surveys

    OpenAIRE

    Lemière, Bruno

    2015-01-01

    International audience; Obtaining geochemical results in the field has been a persistent dream for exploration geologists in the last century, and a few practical geochemical? tests were developed, but shipping samples to faraway labs and waiting weeks for results was the rule. This remained a dream until around 1990, when technology developments of portable instruments allowed on-site measurement of the first key metals in solids. This development progressed rapidly and by 2010, most geochem...

  20. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  1. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  2. Nuclear well logging in hydrology

    International Nuclear Information System (INIS)

    1971-01-01

    The optimum development of regional and local groundwater resources requires a quantitative evaluation of its aquifers and aquicludes, and of the physical and chemical properties relevant to the recharge to and withdrawal of water from them. If an understanding of the groundwater regime is to be obtained, geological observations at outcrop must be augmented by subsurface measurements of the strata and the waters they contain. Measurements of many hydrological and geological parameters can be made in situ by nuclear geophysical well-logging methods. Very simply, well logging consists of lowering a measuring probe into a well and making a continuous record of the variations of a particular parameter with depth. In most circumstances, repetition of the measurements under differing hydrodynamic conditions results in a better definition of the flow regime in the aquifer. Nuclear well-logging techniques have for some years been capable of solving a number of the sub-surface measurement problems faced by hydrogeologists. However, the present usage of these methods varies from country to country and the literature concerning applications is scattered in the professional journals of several disciplines. The objective of this report is to include in a single reference volume descriptions of the physical principles of nuclear logging methods, their applications to hydrogeological problems and their limitations on a level suitable for the practising hydrologists with a limited knowledge of nuclear physics. The Working Group responsible for compiling the report recommended that it should cover a broad spectrum of hydrogeological investigations and problems. For example, it saw no valid reason to distinguish for the purposes of the report between well-logging applications for water-supply purposes and for water-flooding studies in the petroleum industry. Neutron measurements made for soil-moisture determinations in the unsaturated zone have been specifically omitted, however, as

  3. Geology and mineral technology of the grants uranium region 1979

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1980-01-01

    Forty six papers which were presented at the 1979 Symposium on the Geology of the Grants Uranium Region plus three more are included in this Proceedings. The papers cover the geology of the Grants region with discussions of exploration history and methods, individual deposits, petrographic investigations, field studies mining and experimental studies. Other topics such as ground water hydrology and severence taxes are also included. All papers have been abstracted and all but four have been indexed

  4. Development of thermodynamic databases for geochemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States); Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Neyama, Atsushi [Computer Software Development Corp., Tokyo (Japan)

    1999-09-01

    Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary

  5. Development of TIGER code for radionuclide transport in a geochemically evolving region

    International Nuclear Information System (INIS)

    Mihara, Morihiro; Ooi, Takao

    2004-01-01

    In a transuranic (TRU) waste geological disposal facility, using cementitious materials is being considered. Cementitious materials will gradually dissolve in groundwater over the long-term. In the performance assessment report of a TRU waste repository in Japan already published, the most conservative radionuclide migration parameter set was selected considering the evolving cementitious material. Therefore, a tool to perform the calculation of radionuclide transport considering long-term geochemically evolving cementitious materials, named the TIGER code, Transport In Geochemically Evolving Region was developed to calculate a more realistic performance assessment. It can calculate radionuclide transport in engineered and natural barrier systems. In this report, mathematical equations of this code are described and validated with analytical solutions and results of other codes for radionuclide transport. The more realistic calculation of radionuclide transport for a TRU waste geological disposal system using the TIGER code could be performed. (author)

  6. Geochemical investigation of UMTRAP designated site at Durango, Colorado

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Durango, Colorado. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the UMTRA Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover system which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted remove easily soluble salts and acids extracted to remove cabonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Three major conclusions are: (1) carbonate salts and low TDS characterize the tailings; (2) the adjacent area and raffinate ponds contain contaminants deposited by a single event of fluid permeation of the soils; and (3) the Animas River adjacent to the site has elevated gross alpha activity attributed to 226 Ra in the sediments derived from the tailings or milling activities

  7. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  8. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  9. Analysis of Hydrologic Properties Data

    International Nuclear Information System (INIS)

    L. Pan

    2004-01-01

    This analysis report describes the methods used to determine hydrologic properties based on the available field data from the unsaturated zone (UZ) at Yucca Mountain, Nevada. The technical scope, content, and management of this analysis report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 2, 4, and 8). Fracture and matrix properties are developed by analyzing available survey data from the Exploratory Studies Facility (ESF), the Enhanced Characterization of Repository Block (ECRB) Cross-Drift, and/or boreholes; air-injection testing data from surface boreholes and from boreholes in the ESF; and data from laboratory testing of core samples. In addition, the report ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]) also serves as a source report by providing the geological framework model of the site. This report is a revision of the model report under the same title (BSC 2003 [DIRS 161773]), which in turn superceded the analysis report under the same title. The principal purpose of this work is to provide representative uncalibrated estimates of fracture and matrix properties for use in the model report Calibrated Properties Model. The term ''uncalibrated'' is used to distinguish the properties or parameters estimated in this report from those obtained from the inversion modeling used in ''Calibrated Properties Model''. The present work also provides fracture geometry properties for generating dual-permeability grids as documented in the scientific analyses report, ''Development of Numerical Grids for UZ Flow and Transport Modeling''

  10. Status report on geochemical modelling

    International Nuclear Information System (INIS)

    Read, D.

    1991-12-01

    This report describes the findings of a review undertaken on behalf of the project management group of the programme 'Endlagersicherheit in der Nachbetriebsphase' based at GSF-IfT (Forschungszentrum fuer Umwelt und Gesundheit - Institut fuer Tieflagerung) to establish the current status of research into the simulation of geochemical processes relevant to radiological assessment. The review is intended to contribute to Stage 1 of a strategy formulated to enhance the use of geochemical models in Germany. Emphasis has been placed on processes deemed to be of greatest relevance to performance assessment for a HLW-repository in a salt dome principally, speciation-solubility in high salinity solutions, complexation by natural organics and generation-transport of colloids. For each of these and other topics covered, a summary is given of fundamental concepts, theoretical representations and their limitations, highlighting, where appropriate, the advantages and disadvantages of alternative approaches. The availability of data to quantify any given representation is addressed, taking into account the need for information at elevated temperatures and pressures. Mass transfer is considered in terms of aqueous, particulate and gas-mediated transport, respectively. (orig.) [de

  11. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  12. Rare earth elements in coastal sediments of the northern Galician shelf: Influence of geological features

    Science.gov (United States)

    Prego, Ricardo; Caetano, Miguel; Bernárdez, Patricia; Brito, Pedro; Ospina-Alvarez, Natalia; Vale, Carlos

    2012-03-01

    The Northern coast of Galicia, NW Iberian Peninsula, exhibits a variety of geological features: Ortegal allochthonous complex, Ollo-de-Sapo autochthonous domain and massifs of Bares, Barqueiro and San-Ciprian. In order to examine the influence of terrestrial lithologies on coastal sediments, 103 samples were collected in the Rias of Ortigueira, Barqueiro and Viveiro, their neighbouring shelf and the estuaries of Mera, Sor and Landro rivers. Aluminium, Fe, Sc, particulate inorganic and organic carbon and rare earth elements (REE) were determined in the lanthanides (ΣREEN>6) near Cape Ortegal and the innermost ria zones. The ratio between light and heavy REE (L/H) showed lower values (4-11) around Cape Ortegal and the shelf while higher ratios (15-23) were detected in west of the Cape Estaca-de-Bares and in the inner Viveiro Ria due to elevated contributions of La and Ce. The L/H values normalised to ES reflects the importance of HREE in the adjacent area to Ortegal Complex (LN/HN1.4) in the inner estuaries and west Cape Estaca-de-Bares. The highest REE individual ES normalised were measured in fine-grained sediments of the Mera and Sor estuaries. Sediments from the eastern shelf of Cape Ortegal presented enhanced ratios only for HREE. These results indicate that distribution of REE in the northern Galician region is highly depending on the neighbouring lithological pattern, contrasting with the situation found in the western Galician shelf and the Bay of Biscay. Lanthanides can, thus, provide a useful tool to follow the sediment pathway in the land-sea boundary zones, denoting continental geochemical imprint or fluvial outputs accordingly to the existing hydrological and geological conditions.

  13. Geothermal investigation in Idaho. Part 14. Geochemical and isotopic investigations of thermal water occurrences of the Boise Front Area, Ada County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, A.L.; Muller, A.B.; Mitchell, J.C.

    1984-12-01

    A limited chemical and isotopic investigation was undertaken and geological, geophysical, and hydrological data in the literature were reviewed to evaluate the geothermal potential of the Boise area. 68 refs., 12 figs., 4 tabs. (ACR)

  14. Geochemical geochronology and genesis of granite from Coronel Murta, Northeast of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Soares, A.C.P.; Siga Junior, O.

    1987-01-01

    Geological, petrographic, geochemical (including rare-earth elements) and geochronological data of the Coronel Murta (Northeast Minas Gerais State) post-tectonic intrusive alkalic granites were summarized in order to discuss their genesis. This paper shows that Coronel Murta granites were generated by anatexis of dominantly metasedimentary rocks, in an ensialic environment, as the late results of an intraplate A-type subduction during the Brazilian Cycle. (author) [pt

  15. Reconnaissance geochemical survey for uranium and related industrial minerals in Cebu Island

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Ramos, A.F.; Magsambol, W.N.; Hernandez, E.

    1989-03-01

    Consistent with the program of evaluating the nuclear mineral resource potential and related industrial minerals of the Philippines, a reconnaissance geochemical survey was conducted in Cebu with considerable success. The total area covered by the survey was about 5,088 sq. kms. The survey consisted of systematic collection of 857 geochemical stream and water and heavy mineral samples, and measurement of radioactivity in over 352 stations. The average sampling density was about one set of samples per 15 to 30 sq. kms. All solid samples were analyzed for U, Cu, Pb, Zn, Mn, Ag, Co and Ni. Uranium, radon and conductivity were measured on most water samples collected. A total of 4,518 elemental determinations were involved. All field and analytical data were treated by statistics, and the computed parameters data were correlated with the geology of the area to establish anomalous zones. Four areas were delineated for possible uranium mineralization. Of the areas, the Mandaue river area is the most interesting for uranium. The contact zone between the diorite and the sedimentary rocks in this area appears to be a favorable geological environment for uranium mineralization. The other anomalous uranium values were found to be related with the guano and phosphate deposits. Uranium was also shown to be independent of the other seven elements in the geologic environment of Cebu. No definite elemental association could be established at present. This study also marks the thorough utilization of Q'GAS, Cadplot and Autocad, all microcomputer-based programs/systems, in the evaluation and interpretation of exploration-oriented geochemical and geological data, and with more significance in the sense that computer generated quality geochemical maps were produced, a first in the country. (Author). Appendices (23); 23 figs; 13 refs.; 4 tabs

  16. Hydrologic Services Course.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    A course to develop an understanding of the scope of water resource activities, of the need for forecasting, of the National Weather Service's role in hydrology, and of the proper procedures to follow in fulfilling this role is presented. The course is one of self-help, guided by correspondence. Nine lessons are included: (1) Hydrology in the…

  17. Fundamentals of watershed hydrology

    Science.gov (United States)

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  18. Arid Zone Hydrology

    Science.gov (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  19. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  20. Hydrological modelling in forested systems

    Science.gov (United States)

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological p...

  1. Coal and coalbed-methane resources in the Appalachian and Black Warrior basins: maps showing the distribution of coal fields, coal beds, and coalbed-methane fields: Chapter D.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Trippi, Michael H.; Ruppert, Leslie F.; Milici, Robert C.; Kinney, Scott A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The maps contained in this chapter show the locations of coal fields, coal beds assessed by the U.S. Geological Survey (USGS) in 2000, and coalbed-methane fields in the central and southern Appalachian basin study areas, which include the coal-producing parts of the Black Warrior basin. The maps were compiled and modified from a variety of sources such as Tully (1996), Northern and Central Appalachian Basin Coal Regions Assessment Team (2001), Hatch and others (2003), Milici (2004), and unpublished data from the State geological surveys of Pennsylvania, West Virginia, Virginia, and Alabama. The terms “coalbed methane” and “coal-bed gas” are used interchangeably in this report. All of the figures are located at the end of this report.

  2. Titan's geoid and hydrology: implications for Titan's geological evolution

    Science.gov (United States)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013) Icarus, 225, 367-377. [3] Choukroun M. and C. Sotin (2012) Geophys. Res. Lett., 39, L0420. [4] Barnes J.W. et al. (2011) Icarus, 216, 136-140. [5] MacKenzie S.M. et al. (2014) submitted to JGR.

  3. Proceedings of the workshop on geochemical modeling

    International Nuclear Information System (INIS)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices

  4. Uranium exploration data and global geochemical baselines: The need for co-ordinated action

    International Nuclear Information System (INIS)

    Darnley, A.G.

    1997-01-01

    Public concern about environmental problems continues. In order to assess the magnitude of potential problems it is necessary to have comprehensive information. The absence of quantitative geochemical data to map the surface composition of the earth is one of the major information gaps in present day environmental science. An IAEA Technical Committee meeting held in November 1993 reviewed the uses of uranium exploration data for environmental purposes. Most attention was focussed on data involving radiation measurements. Uranium exploration programmes conducted since 1970 in many countries collected a considerable amount of geochemical survey data, providing information about the distribution of non-radioactive elements in the natural environment. Canada is one of several countries where such data provided the foundation for national geochemical mapping; other countries could benefit from similar actions. Increasing importance is being attached by governments to the need to enact effective environmental legislation concerning ''safe levels'' of many chemical substances. Such legislation requires geochemical variations in the natural environment. It is becoming necessary to make quantitative comparisons of element abundances across national boundaries, and from continent to continent. In 1995 the IAEA, with other organizations, supported UNESCO to publish a report concerned with the establishment of a Global Geochemical Reference Network. This is designed to provide a framework to connect all types of geochemical survey, to move towards international compatibility of data. The report contains recommendations relating to the standardization of field and laboratory methods; the use of the most sensitive analytical techniques; and standardization of data management. Ground and airborne gamma ray spectrometry, and nuclear laboratory techniques are all discussed. Following the publication of the report, the International Union of Geological Sciences has now established a

  5. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    Science.gov (United States)

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  6. Geology and uranium occurrences in the Forez tertiary plain (in the French 'Massif Central')

    International Nuclear Information System (INIS)

    Duclos, P.

    1967-01-01

    In the first part, the observations made during the geological survey of the Forez Tertiary plain (in the French 'Massif Central') are recalled. Then, using various methods, the author lists the formations according to chronology. Finally, a reconstitution of the geological history of this subsidence basin is attempted. In the second part, the occurrence of 17 uranium bearing geochemical anomalies is commented upon. Each of these various anomalies is given a place on the stratigraphic scale. This enables the author to put the successive phases of uranium deposition into their proper perspective in the history of the plain. In conclusion, the author points out the usefulness of these uraniferous geochemical anomalies. (author) [fr

  7. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  8. Geophysics & Geology Inspected.

    Science.gov (United States)

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  9. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  10. Variation and correlation of hydrologic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Hydrological properties vary within a given geological formation and even more so among different soil and rock media. The variance of the saturated permeability is shown to be related to the variance of the pore-size distribution index of a given medium by a simple equation. This relationship is deduced by comparison of the data from Yucca Mountain, Nevada (Peters et al., 1984), Las Cruces, New Mexico (Wierenga et al., 1989), and Apache Leap, Arizona (Rasmussen et al., 1990). These and other studies in different soils and rocks also support the Poiseuille-Carmen relationship between the mean value of saturated permeability and the mean value of capillary radius. Correlations of the mean values and variances between permeability and pore-geometry parameters can lead us to better quantification of heterogeneous flow fields and better understanding of the scaling laws of hydrological properties.

  11. Research on the hydrogeological and geochemical conditions at the coastal area and submarine formations

    International Nuclear Information System (INIS)

    Tokunaga, Tomochika; Taniguchi, Makoto; Goto, Junji

    2003-05-01

    One of the major concerns for the high-level radioactive waste disposal is the possibility of the radionuclides to reach biosphere by groundwater flow. Recent research results have shown that the fresh groundwater discharge from subsea formations are widespread phenomena, thus, it is necessary to evaluate the submarine groundwater discharge as possible pathways of contaminant discharge towards the biosphere. It is also important to unravel the groundwater flow and associated material transport at the coastal area and subsea formations. To better understand the groundwater flow processes and the submarine groundwater discharge, we have conducted the hydrological, hydrogeological, geochemical, and numerical modeling studies at the Kurobe alluvial fan and its offshore, Toyama Prefecture, Japan. In this report, the results of the following research activities are presented: 1) Development and application of a method to detect the locations of the submarine groundwater discharge. 2) Development and application of a method to collect uncontaminated groundwater samples from subsea formations. 3) Measurements of submarine groundwater discharge fluxes by automated seepage meter. 4) Hydrological and geochemical studies for groundwater flow at the coastal area. 5) Geochemical studies to understand sources of fresh submarine groundwater discharge. 6) Examination of groundwater flow and submarine groundwater discharge using methane concentration and carbon isotope ratio. 7) Numerical modeling studies for coastal groundwater flow system. (author)

  12. Geochemical exploration for phosphate in the State of Acre

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de; Santos, A.J.M. dos

    1989-01-01

    The geochemical prospecting conducted for phosphates in Acre which could explain the good fertility of the region was charged to discover this material. The phosphates are strictly built of all the bone structures and coprolites of the several fragments of vertebrate fossils, which are widespread in the region. The phosphatic fossils are bedded in the Solimoes Formation, especially its basal to intermediary conglomeratic bed. The fossils are constituted of low crystallinity apatite, and their matrix sediments include quartz, feldspars, smectite, halloysite and calcite. The P 2 O 5 content reaches up to 5% in the sediments and up to 32% in the fragments. The fossils are enriched in U 3 O 8 and rare earth elements. There is no perspect of classic or mineral deposits but the geological knowlwdge will permit the improvement of the use of the soils in Acre. (author) [pt

  13. The 'glass earth' - geochemical frontiers in exploration through cover

    International Nuclear Information System (INIS)

    Carr, G.; Denton, G.; Giblin, A.; Korsch, M.; Andrew, A.; Whitford, D.

    1999-01-01

    'Glass Earth' represents a number of current and planned projects within CSIRO aimed at making 'transparent' the top 1000 m of the Earth's crust It builds upon current technologies developed within a number of CSIRO divisions as well as the Australian Mineral Exploration Technologies CRC (AMET CRC), the Australian Geodynamics CRC (AG CRC) and the CRC for Landscape Evolution and Mineral Exploration (CRC LEME). New geophysical and geochemical technologies will be developed to complement these, together with new capabilities in modelling, data integration and visualisation, including hydrogeochemistry, hydrogeology, surface geochemistry and isotope geochemistry, modelling of chemical, fluid and heat flows in rock and regolith, advanced visualisation and data fusion. This paper describes some recent work in the field of isotope geochemistry, with the principal aim of 'seeing through' cover to understand basement geology and detect hidden ore systems

  14. Microstructural and geochemical evolution of sliding surfaces in landslides

    Science.gov (United States)

    Schaebitz, M.; Janssen, C.; Wirth, R.; Dresen, G. H.

    2014-12-01

    The formation of basal sliding surfaces in mass movements is known to be associated with chemical and physical alteration of rock and regolith. To evaluate its microstructural and geochemical evolution we collected samples from the host rock to the sliding surface and adjacent deposits within landslides in Kirgizstan and central China. The sample locations represent different morphological and geological conditions to evaluate if the weakness of the sliding surface derives from general factors such as (micro)structural or mineralogical changes within the landslide body. Based on qualitative and quantitative geochemical analysis we could not find neither indication for notable weathering of the parent bedrock nor accumulation of clay minerals along the sliding surface to explain its reduced shear strength in the investigated near-surface landslides. The cataclasites are mainly composed of quartz, illite, calcite, kaolinite and feldspar with grain sizes between 5 μm down to contents towards the sliding surface, pointing to alteration processes. Transmission electron microscopy and focused ion beam technique for TEM sample preparation were used to compare the microstructures. It clearly revealed a severe reduction of grain size, and increase of pore space due to grain comminution by creeping and moving processes, indicating that elevated pore pressures are the main reason for the weakness of the sliding surfaces in shallow landslides. The comminution process within sliding surface formation seems to be comparable to fault gauge formation.

  15. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Moser, H.

    1976-01-01

    The nuclear techniques used in hydrology are usually tracer techniques based on the use of nuclides either intentionally introduced into, or naturally present in the water. The low concentrations of these nuclides, which must be detected in groundwater and surface water, require special measurement techniques for the concentrations of radioactive or of stable nuclides. The nuclear techniques can be used most fruitfully in conjunction with conventional methods for the solution of problems in the areas of hydrology, hydrogeology and glacier hydrology. Nuclear techniques are used in practice in the areas of prospecting for water, environment protection and engineering hydrogeology. (orig.) [de

  16. The geology and geochemistry of some epigenetic uranium deposits near the Swakop River, South West Africa

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.

    1983-10-01

    This study comprises a geological and geochemical investigation of the uranium deposits in the region near the Swakop River which extends from the Langer Heinrich Mountain in the east to the end of the Tumas River in the west. The general geology of the basement rocks in the Langer Heinrich region only is discussed. The general geology of the younger duricrust formations is discussed. Analytical methods were developed for the separation of thorium, protactinium and uranium from geological materials using various chromatographic procedures. Alpha spectrometry, neutron activation analysis and delayed neutron counting were the main techniques used. The occurrence of uranium in the region of study follows a unique geochemical cycle, and the geochemistry at each stage in the cycle was examined. The first stage in the uranium-geochemical cycle was the basement rocks. The second stage in the geochemical cycle of uranium was the subsurface water. The third stage in the geochemical cycle of uranium concerns its occurrence in the duricrust deposits. Isotopic disequilibrium measurements showed that uranium is still migrating, and that the age of the carnotite precipitation is 30 000 years, based on the open-system model of uranium migration. In the final stage of the geochemical cycle, the geochemistry of uranium in seawater and the diatomaceous muds is discussed. A classification system for the uranium deposits near the Swakop River, based on genetic relationships, is proposed and described in terms of the geochemical cycle of uranium, the mode of transport and mode of deposition. The relationships between the duricrust uranium deposits and the other uranium deposits of South Africa are compared

  17. Composition of natural gas and crude oil produced from 14 wells in the Lower Silurian "Clinton" Sandstone and Medina Group Sandstones, northeastern Ohio and northwestern Pennsylvania: Chapter G.6 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Burruss, Robert A.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The geochemical processes that control the distribution of hydrocarbons in the regional accumulation of natural gas and crude oil in reservoirs of Early Silurian age in the central Appalachian basin are not well understood. Gas and oil samples from 14 wells along a down-dip transect through the accumulation in northeastern Ohio and northwestern Pennsylvania were analyzed for molecular and stable isotopic compositions to look for evidence of hydrocarbon source, thermal maturation, migration, and alteration parameters. The correlation of carbon and hydrogen stable isotopic composition of methane with thermal maturation indicates that the deepest gases are more thermally mature than independent estimates of thermal maturity of the reservoir horizon based on the conodont alteration index. This correlation indicates that the natural gas charge in the deepest parts of the regional accumulation sampled in this study originated in deeper parts of the Appalachian basin and migrated into place. Other processes, including mixing and late-stage alteration of hydrocarbons, may also impact the observed compositions of natural gases and crude oils.

  18. Geologic simulation model for a hypothetical site in the Columbia Plateau. [AEGIS

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, G.M.; Zellmer, J.T.; Lindberg, J.W.; Foley, M.G.

    1981-04-01

    This report describes the structure and operation of the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Geologic Simulation Model, a computer simulation model of the geology and hydrology of an area of the Columbia Plateau, Washington. The model is used to study the long-term suitability of the Columbia Plateau Basalts for the storage of nuclear waste in a mined repository. It is also a starting point for analyses of such repositories in other geologic settings. The Geologic Simulation Model will aid in formulating design disruptive sequences (i.e. those to be used for more detailed hydrologic, transport, and dose analyses) from the spectrum of hypothetical geological and hydrological developments that could result in transport of radionuclides out of a repository. Quantitative and auditable execution of this task, however, is impossible without computer simulation. The computer simulation model aids the geoscientist by generating the wide spectrum of possible future evolutionary paths of the areal geology and hydrology, identifying those that may affect the repository integrity. This allows the geoscientist to focus on potentially disruptive processes, or series of events. Eleven separate submodels are used in the simulation portion of the model: Climate, Continental Glaciation, Deformation, Geomorphic Events, Hydrology, Magmatic Events, Meteorite Impact, Sea-Level Fluctuations, Shaft-Seal Failure, Sub-Basalt Basement Faulting, and Undetected Features. Because of the modular construction of the model, each submodel can easily be replaced with an updated or modified version as new information or developments in the state of the art become available. The model simulates the geologic and hydrologic systems of a hypothetical repository site and region for a million years following repository decommissioning. The Geologic Simulation Model operates in both single-run and Monte Carlo modes.

  19. Geologic simulation model for a hypothetical site in the Columbia Plateau

    International Nuclear Information System (INIS)

    Petrie, G.M.; Zellmer, J.T.; Lindberg, J.W.; Foley, M.G.

    1981-04-01

    This report describes the structure and operation of the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Geologic Simulation Model, a computer simulation model of the geology and hydrology of an area of the Columbia Plateau, Washington. The model is used to study the long-term suitability of the Columbia Plateau Basalts for the storage of nuclear waste in a mined repository. It is also a starting point for analyses of such repositories in other geologic settings. The Geologic Simulation Model will aid in formulating design disruptive sequences (i.e. those to be used for more detailed hydrologic, transport, and dose analyses) from the spectrum of hypothetical geological and hydrological developments that could result in transport of radionuclides out of a repository. Quantitative and auditable execution of this task, however, is impossible without computer simulation. The computer simulation model aids the geoscientist by generating the wide spectrum of possible future evolutionary paths of the areal geology and hydrology, identifying those that may affect the repository integrity. This allows the geoscientist to focus on potentially disruptive processes, or series of events. Eleven separate submodels are used in the simulation portion of the model: Climate, Continental Glaciation, Deformation, Geomorphic Events, Hydrology, Magmatic Events, Meteorite Impact, Sea-Level Fluctuations, Shaft-Seal Failure, Sub-Basalt Basement Faulting, and Undetected Features. Because of the modular construction of the model, each submodel can easily be replaced with an updated or modified version as new information or developments in the state of the art become available. The model simulates the geologic and hydrologic systems of a hypothetical repository site and region for a million years following repository decommissioning. The Geologic Simulation Model operates in both single-run and Monte Carlo modes

  20. An Eco-hydrologic Assessment of Small Experimental Catchments with Various Land Uses within the Panama Canal Watershed: Agua Salud Project

    Science.gov (United States)

    Crouch, T. D.; Ogden, F. L.; Stallard, R. F.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project

    2010-12-01

    Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One of the project’s main objectives is to understand how reforestation effects seasonal stream flows. To meet this objective, a baseline characterization of hydrology on the small catchment scale is being assessed across different land uses typical in rural Panama. The small experimental catchments are found within Panama’s protected Soberania National Park and the adjacent headwaters of the Agua Salud and Mendoza Rivers, all of which are part of the greater Panama Canal Watershed. The land uses being monitored include a variety of control catchments as well as treated pasture sites. The catchments used for this study include a mature old regrowth forest, a 50% deforested or mosaic regrowth site, an active pasture and a monoculture invasive grass site (saccharum spontaneum) as experimental controls and two treated catchments that were recently abandoned pastures converted to teak and native species timber plantations. Installed instrumentation includes a network of rain gauges, v-notched weirs, atmometers, an eddy covariance system and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across these six geologically and topographically similar catchments are available from 2009 and 2010. Classic water balance and paired catchment techniques were used to compare the catchments on an annual, seasonal, and event basis. This study sets the stage for hydrologic modeling and for better understanding the effects of vegetation and land-use history on rainfall-runoff processes for the Agua Salud Project and Panama Canal

  1. Hydrological heritage: New direction in hydrology and geoheritage

    OpenAIRE

    Simić Sava; Gavrilović Ljiljana; Belij Srđan

    2010-01-01

    Until recently hydrological heritage has practically existed in science neither as an idea nor a subject. Definitions of the main terms, general classification of hydrological heritage, as well as expanded classification of hydrological heritage of Serbia are presented in the paper which is the starting point needed for further determination of new direction in hydrology and geoheritage. The paper has also pointed to the key reasons for the previous unfavourable status of hydrological h...

  2. Hydrologic Engineering Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Hydrologic Engineering Center (HEC), an organization within the Institute for Water Resources, is the designated Center of Expertise for the U.S. Army Corps of...

  3. Allegheny County Hydrology Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  4. Allegheny County Hydrology Lines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  5. PNW Hydrologic Landscape Class

    Data.gov (United States)

    U.S. Environmental Protection Agency — Work has been done to expand the hydrologic landscapes (HLs) concept and to develop an approach for using it to address streamflow vulnerability from climate change....

  6. Design aspects of hydrological networks

    NARCIS (Netherlands)

    Made, J.W. van der; Schilperoort, T.; Schaaf, S. van der; Buishand, T.A.; Brouwer, G.K.; Duyvenbooden, W. van; Becinsky, P.

    1986-01-01

    Network design is a subject which is of essential importance for hydrology. The system of hydrological gauging stations provides the information, necessary for all other hydrological activities. In early times hydrological measurements were carried out already. The most famous example is the Roda

  7. Towards a Convention on Geological Heritage (CGH) for the protection of Geological Heritage

    Science.gov (United States)

    Brocx, Margaret; Semeniuk, Vic

    2017-04-01

    2 V & C Semeniuk Research Group; 21 Glenmere Rd., Warwick, WA, 6024 The history of the biological conservation essentially began with the IUCN and the global awakening following publication of "The Silent Spring". Since then the IUCN has been active in species conservation and later, when recognising the importance of biodiversity, in the development of a Convention on Biological Diversity. However, even in a framework of Convention on Biological Diversity, there are organisations, political systems/parties, and personnel that strive to subjugate and control nature and biology and use nature for profit or to benefit humankind (e.g., genetically modified foods, use of terrain for food production, use of forests as a resource, managed ecosystems, construction of luxury resorts and tourist resorts in wildernesses). This has been the same for geology, in that geological materials are fundamental to industrialisation in the use of metals, building materials, other commodities, and fossil fuels, and have been exploited often regardless of their geoheritage values. The history of geology and its conservation actually predates the focus on conservation of biology - Siccar Point, numerous palaeontologic sites, and other iconic geological sites serve as examples. But in spite of their recognition as iconic geological sites, areas such as Siccar Point, Cliefden Caves, Hallett Cove, and the Kimberley are still under threat. Given that firstly there is an importance to geological features of the Earth per se and, secondly, geological features as geodiversity underpin and sustain biological systems, there is a critical need to develop a convention, similar to the Convention on Biological Diversity, that recognises the importance of geology as a part of Nature. The scope of Geoheritage and the diversity of Geology is such that it involves all sub-disciplines of Geology (e.g., palaeontology, mineralogy, igneous, sedimentary, and metamorphic geology, structural geology, hydrology

  8. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  9. Establishment of quantitative hydrological indexes for studies of hydro-biogeochemical interactions at the subsurface.

    Science.gov (United States)

    Alves Meira Neto, A.; Sengupta, A.; Wang, Y.; Volkmann, T.; Chorover, J.; Troch, P. A. A.

    2017-12-01

    Advances in the understanding of processes in the critical zone (CZ) are dependent on studies coupling the fields of hydrology, microbiology, geochemistry and soil development. At the same time, better insights are needed to integrate hydrologic information into biogeochemical analysis of subsurface environments. This study investigated potential hydrological indexes that help explaining spatiotemporal biogeochemical patterns. The miniLEO is a 2 m3, 10 degree sloping lysimeter located at Biosphere 2 - University of Arizona. The lysimeter was initially filled with pristine basaltic soil and subject to intermittent rainfall applications throughout the period of 18 months followed by its excavation, resulting in a grid-based sample collection at 324 locations. As a result, spatially distributed microbiological and geochemical patterns as well as soil physical properties were obtained. A hydrologic model was then developed in order to simulate the history of the system until the excavation. After being calibrated against sensor data to match its observed input-state-output behavior, the resulting distributed fields of flow velocities and moisture states were retrieved. These results were translated into several hydrological indexes to be used in with distributed microbiological and geochemical signatures. Our study attempts at conciliating sound hydrological modelling with an investigation of the subsurface biological signatures, thus providing a unique opportunity for understanding of fine-scale hydro-biological interactions.

  10. Geology and geochemistry of petroleum and gas. Geologiya i geokhimiya nefti i gaza

    Energy Technology Data Exchange (ETDEWEB)

    Bakirova, A.A.; Tabasaranskii, Z.A.; Bordovskaya, M.V.; Mal' tseva, A.K.

    1982-01-01

    An examination is made of the theoretical and practical aspects of petroleum and gas geology. Information is given on the formation, migration, and accumulation of hydrocarbons in the earth crust as well as the characteristics of their spatial distribution. Also presented are problems in petroleum and gas geochemistry and the characteristics of their compositional change under various geological-geochemical conditions. 23 references, 99 figures, 219 tables.

  11. Geochemical evolution of magmatism in Archean granite-greenstone terrains

    Science.gov (United States)

    Samsonov, A. V.; Larionova, Yu. O.

    2006-05-01

    Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9-2.7 Ga) and Kaapvaal (3.5-2.9 Ga) cratons and in the Pilbara block (3.5-2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type

  12. A Fast Independent Component Analysis Algorithm for Geochemical Anomaly Detection and Its Application to Soil Geochemistry Data Processing

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2014-01-01

    Full Text Available A fast independent component analysis algorithm (FICAA is introduced to process geochemical data for anomaly detection. In geochemical data processing, the geological significance of separated geochemical elements must be explicit. This requires that correlation coefficients be used to overcome the limitation of indeterminacy for the sequences of decomposed signals by the FICAA, so that the sequences of the decomposed signals can be correctly reflected. Meanwhile, the problem of indeterminacy in the scaling of the decomposed signals by the FICAA can be solved by the cumulative frequency method (CFM. To classify surface geochemical samples into true anomalies and false anomalies, assays of the 1 : 10 000 soil geochemical data in the area of Dachaidan in the Qinghai province of China are processed. The CFM and FICAA are used to detect the anomalies of Cu and Au. The results of this research demonstrate that the FICAA can demultiplex the mixed signals and achieve results similar to actual mineralization when 85%, 95%, and 98% are chosen as three levels of anomaly delineation. However, the traditional CFM failed to produce realistic results and has no significant use for prospecting indication. It is shown that application of the FICAA to geochemical data processing is effective.

  13. Description of the National Hydrologic Model for use with the Precipitation-Runoff Modeling System (PRMS)

    Science.gov (United States)

    Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.

    2018-01-08

    This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.

  14. Petrographic features, geochemical trends and mass balance ...

    African Journals Online (AJOL)

    Petrographic features, geochemical trends and mass balance computation, in relation to the evolution of anatectic migmatites in the granulite facies terrain of the Manalur area, Tamil Nadu, south India.

  15. Proceedings of 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analytical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  16. Collected radiochemical and geochemical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kleinberg, J [comp.

    1990-05-01

    This revision of LA-1721, 4th Ed., Collected Radiochemical Procedures, reflects the activities of two groups in the Isotope and Nuclear Chemistry Division of the Los Alamos National Laboratory: INC-11, Nuclear and radiochemistry; and INC-7, Isotope Geochemistry. The procedures fall into five categories: I. Separation of Radionuclides from Uranium, Fission-Product Solutions, and Nuclear Debris; II. Separation of Products from Irradiated Targets; III. Preparation of Samples for Mass Spectrometric Analysis; IV. Dissolution Procedures; and V. Geochemical Procedures. With one exception, the first category of procedures is ordered by the positions of the elements in the Periodic Table, with separate parts on the Representative Elements (the A groups); the d-Transition Elements (the B groups and the Transition Triads); and the Lanthanides (Rare Earths) and Actinides (the 4f- and 5f-Transition Elements). The members of Group IIIB-- scandium, yttrium, and lanthanum--are included with the lanthanides, elements they resemble closely in chemistry and with which they occur in nature. The procedures dealing with the isolation of products from irradiated targets are arranged by target element.

  17. Analysis of Hydrologic Properties Data

    Energy Technology Data Exchange (ETDEWEB)

    L. Pan

    2004-10-04

    This analysis report describes the methods used to determine hydrologic properties based on the available field data from the unsaturated zone (UZ) at Yucca Mountain, Nevada. The technical scope, content, and management of this analysis report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 2, 4, and 8). Fracture and matrix properties are developed by analyzing available survey data from the Exploratory Studies Facility (ESF), the Enhanced Characterization of Repository Block (ECRB) Cross-Drift, and/or boreholes; air-injection testing data from surface boreholes and from boreholes in the ESF; and data from laboratory testing of core samples. In addition, the report ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]) also serves as a source report by providing the geological framework model of the site. This report is a revision of the model report under the same title (BSC 2003 [DIRS 161773]), which in turn superceded the analysis report under the same title. The principal purpose of this work is to provide representative uncalibrated estimates of fracture and matrix properties for use in the model report Calibrated Properties Model. The term ''uncalibrated'' is used to distinguish the properties or parameters estimated in this report from those obtained from the inversion modeling used in ''Calibrated Properties Model''. The present work also provides fracture geometry properties for generating dual-permeability grids as documented in the scientific analyses report, ''Development of Numerical Grids for UZ Flow and Transport Modeling''.

  18. The Geology of Titan

    Science.gov (United States)

    Jaumann, Ralf

    Titan, the largest and most complex satellite in the solar system exhibits an organic dominated surface chemistry and shares surface features with other large icy satellites as well as the terrestrial planets. It is subject to tidal stresses, and its surface appears to have been modified tectonically. Cassini's global observations at infrared and radar wavelengths as well as local investigations by the instruments on the Huygens probe has revealed that Titan has the largest known abundance of organic material in the solar system apart from Earth, and that its active hydrological cycle is analogous to that of Earth, but with methane replacing water. The surface of Titan exhibits morphological features of different sizes and origins created by geological processes that span the entire dynamic range of aeolian, fluvial and tectonic activities, with likely evidence that cryovolcanism might exists where liquid water, perhaps in concert with ammonia, methane and carbon dioxide, makes its way to the surface from the interior [e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Extended dune fields, lakes, mountainous terrain, dendritic erosion patterns and erosional remnants indicate dynamic surface processes. Valleys, small-scale gullies and rounded cobbles require erosion by extended energetic flow of liquids. There is strong evidence that liquid hydrocarbons are ponded on the surface in lakes, predominantly, but not exclusively, at high northern latitudes. A variety of features including extensive flows and caldera-like constructs are interpreted to be cryovolcanic in origin. Chains and isolated blocks of rugged terrain rising from smoother areas are best described as mountains and might be related to tectonic processes. Impact craters form on all solid bodies in the solar system, and have been detected on Titan. But very few have been observed so they must be rapidly destroyed or buried by other geologic processes The morphologies of the impact

  19. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  20. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    International Nuclear Information System (INIS)

    Mani, Devleena; Kumar, T. Satish; Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V.

    2011-01-01

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana–Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r 2 < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  1. Geochemical orientation for mineral exploration in the Hashemite Kingdom of Jordan

    Science.gov (United States)

    Overstreet, W.C.; Grimes, D.J.; Seitz, J.F.

    1982-01-01

    This report is a supplement to previous accounts of geochemical exploration conducted in the Hashemite Kingdom of Jordan by the Natural Resources Authority of the Royal Government of Jordan and the U.S. Geological Survey. The field work on which this report is based was sponsored by the U.S. Agency for International Development, U.S. Department of State. Procedures used in collecting various kinds of rocks, ores, slags, eluvial and alluvial sediments, heavy-mineral concentrates, and organic materials for use as geochemical sample media are summarized, as are the laboratory procedures followed for the analysis of these sample materials by semiquantitative spectrographic, atomic absorption, fluorometric, and X-ray diffraction methods. Geochemical evaluations of the possibilities for economic mineral deposits in certain areas are presented. The results of these preliminary investigations open concepts for further use in geochemical exploration in the search for metallic mineral deposits in Jordan. Perhaps the most desirable new activity would be hydrogeochemical exploration for uranium and base metals, accompanied by interpretation of such remote-sensing data as results of airborne radiometric surveys and computer-enhanced LANDSAT imagery. For more conventional approaches to geochemical exploration, however, several fundamental problems regarding proper choice of geochemical sample media for different geologic and geographic parts of the Country must be solved before effective surveys can be made. The present results also show that such common geochemical exploration techniques as the determination of the trace-element contents of soils, plant ash, and slags have direct application also toward the resolution of several archaeological problems in Jordan. These include the relation of trace-elements chemistry of local soils to the composition of botanic remains, the trace-elements composition of slags to the technological development of the extractive metallurgy of

  2. Hydrological extremes and security

    Directory of Open Access Journals (Sweden)

    Z. W. Kundzewicz

    2015-04-01

    Full Text Available Economic losses caused by hydrological extremes – floods and droughts – have been on the rise. Hydrological extremes jeopardize human security and impact on societal livelihood and welfare. Security can be generally understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. The traditional interpretation of security, focused on the state military capabilities, has been replaced by a wider understanding, including economic, societal and environmental aspects that get increasing attention. Floods and droughts pose a burden and serious challenges to the state that is responsible for sustaining economic development, and societal and environmental security. The latter can be regarded as the maintenance of ecosystem services, on which a society depends. An important part of it is water security, which can be defined as the availability of an adequate quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. Security concerns arise because, over large areas, hydrological extremes − floods and droughts − are becoming more frequent and more severe. In terms of dealing with water-related risks, climate change can increase uncertainties, which makes the state’s task to deliver security more difficult and more expensive. However, changes in population size and development, and level of protection, drive exposure to hydrological hazards.

  3. Baseline Geochemical Data for Medical Researchers in Kentucky

    Science.gov (United States)

    Anderson, W.

    2017-12-01

    According to the Centers for Disease Control, Kentucky has the highest cancer incidence and death rates in the country. New efforts by geochemists and medical researchers are examining ways to diagnose the origin and sources of carcinogenesis. In an effort to determine if naturally occurring geochemical or mineral elements contributes to the cancer causation, the Kentucky Geological Survey has established a Minerals and Geochemical Database that is available to medical researchers for examination of baseline geochemistry and determine if naturally occurring mineral or chemical elements contribute to the high rate of cancers in the state. Cancer causation is complex, so if natural sources can be accounted for, then researchers can focus on the true causation. Naturally occurring minerals, metals and elements occur in many parts of the state, and their presence is valuable for evaluating causation. For example, some data in the database contain maps showing (a) statewide elemental geochemistry, (b) areas of black shale oxidation occurrence, which releases metals in soil and surface waters, (c) some clay deposits in the state that can contain high content of rare earth elements, and (d) site-specific uranium occurrences. Knowing the locations of major ore deposits in the state can also provide information related to mineral and chemical anomalies, such as for base metals and mercury. Radionuclide data in soil and water analyses are limited, so future research may involve obtaining more analyses to determine radon potential. This database also contains information on faulting and geology in the state. Although the metals content of trees may not seem relevant, the ash and humus content of degraded trees affects soil, stream sediment and water geochemistry. Many rural homes heat with wood, releasing metals into the surrounding biosphere. Stressed vegetation techniques can be used to explore for ore deposits and look for high metal contents in soils and rocks. These

  4. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  5. Geochemical investigation of UMTRAP designated site at Grand Junction, Colorado

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Grand Junction, Colorado. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results should be used to model contaminant migration and to develop criteria for long-term containment media, such as a cover system which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a sampling of waters in two seasons and solid material from the background, the area adjacent to the site, and the site. The solid samples were water extracted to remove easily soluble salts and acid extracted to remove carbonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Four major conclusions are: (1) trace element concentrations in shallow subsurface waters adjacent to the tailings temporally vary up to an order of magnitude; (2) the riverbank soils and borehole waters are contaminated with uranium, radium, and trace elements from discharge of tailings solids and solutions during the active time of the mill; however, the movement of contaminants toward the Colorado River does not appear to be significant; (3) the Colorado River adjacent to the tailings is not contaminated; and (4) trace metals have accumulated at both the tailings/cover and tailings/soil interface because of precipitation reactions caused by chemical differences between the two materials

  6. Database creation, data quality assessment, and geochemical maps (phase V, deliverable 59)—Final report on compilation and validation of geochemical data: Chapter D in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Eppinger, Robert G.; Giles, Stuart A.; Lee, Gregory K.; Smith, Steven M.

    2015-01-01

    Under the World Bank-funded Second Projet de Renforcement Institutionnel du Secteur Minier de la Republique Islamique de Mauritanie (PRISM-II), this Phase V geochemistry report follows earlier Phase I and Phase II summary reports on geochemical data (U.S. Geological Survey, 2007 and Eppinger, 2007; respectively). All the reports are based on evaluations of geochemical data collected in 1999-2004 under an earlier World Bank program (PRISM-I) by the British Geological Survey (BGS) and the Bureau de Recherches Géologiques et Minières (BRGM) for the Government of Mauritania. There are no associated Phase III or IV reports.

  7. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin, one of the largest Pennsylvanian bituminous coal-producing regions in the world, currently contains nearly one-half of the top 15 coal-producing States in the United States (Energy Information Agency, 2006). Anthracite of Pennsylvanian age occurs in synclinal basins in eastern Pennsylvania, but production is minimal. A simplified correlation chart was compiled from published and unpublished sources as a means of visualizing currently accepted stratigraphic relations between the rock formations, coal beds, coal zones, and key stratigraphic units in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. The thickness of each column is based on chronostratigraphic divisions (Lower, Middle, and Upper Pennsylvanian), not the thickness of strata. Researchers of Pennsylvanian strata in the Appalachian basin also use biostratigraphic markers and other relative and absolute geologic age associations between the rocks to better understand the spatial relations of the strata. Thus, the stratigraphic correlation data in this chart should be considered provisional and will be updated as coal-bearing rocks within the Appalachian coal regions continue to be evaluated.

  8. Microwave hydrology: A trilogy

    Science.gov (United States)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  9. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface......Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... hydrological and tested by assimilating synthetic hydraulic head observations in a catchment in Denmark. Assimilation led to a substantial reduction of model prediction error, and better model forecasts. Also, a new assimilation scheme is developed to downscale and bias-correct coarse satellite derived soil...

  10. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...... hydrological and tested by assimilating synthetic hydraulic head observations in a catchment in Denmark. Assimilation led to a substantial reduction of model prediction error, and better model forecasts. Also, a new assimilation scheme is developed to downscale and bias-correct coarse satellite derived soil...

  11. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    Science.gov (United States)

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  12. National assessment of geologic carbon dioxide storage resources: summary

    Science.gov (United States)

    ,

    2013-01-01

    The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national

  13. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's Geochemical Program Plan

    International Nuclear Information System (INIS)

    Harrison, W.; Seitz, M.; Fenster, D.; Lerman, A.; Brookins, D.; Tisue, M.

    1984-02-01

    Describe the management program for coordinating subcontractors and their work, and integrating research results. Appropriate flowcharts should be included. Provide more information on the overall scope of the program. For each subcontractor, provide specific workscopes that indicate whether analytical activities are developmental or routine, approximate number of analyses to be made, and something of the adequacy of the analyses to meet program goals. Indicate interfaces with other earth-science disciplines like hydrology and with other groups doing relevant geochemical research and engineering design. Address the priorities for each activity or group of activities. High priority should be given to early development of a geochemical statement of what constitutes suitable salt for a repository. Reference standard procedures for sampling, sample preservation, and sample analysis wherever appropriate or, if not appropriate, indicate that any deviations from standard procedures will be documented. Ensure that appropriate quality assurance procedures will be followed for the procedures listed above. Include specific procedures for the choice, verification, validation, and documentation of computer codes related to the geochemical aspects of repository performance assessment. Include activities addressing regional hydrochemistry and make clear that each principal hydrogeologic unit at each site will be studied geochemically. Indicate that proposed plans for obtaining hydrogeochemical data will be included in each site characterization plan. Describe how site geochemical stability will be handled, especially with respect to dissolution, postemplacement geochemistry, human influences, and climatic variations. Minor recommendations and suggested improvements in the text of the plan are given in Sec. 5

  14. Hydrologic connections between environmental and societal change at the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Bowen, B. B.; Harman, C. J.; Kipnis, E. L.; Liu, T.; Bernau, J. A.; Horel, J.

    2017-12-01

    The Bonneville Salt Flats (BSF) is an ephemeral and valued salt pan in northwestern Utah where a century of land speed racing and potash mining have created a complex and intertwined social and hydrologic system. The character of BSF changes on daily, weekly, monthly, annual, and geologic time scales in response to fluctuations in water balance, solute flux, and groundwater flow which is impacted by both local meteorology and water management associated with potash mining. In addition, the texture of the salt surface is changed by land use including racing activities, which impacts water fluxes through the crust. Ongoing research is focused on characterizing physical changes in the BSF environment and attributing observed changes in the landscape to specific processes and drivers. Five years of field observations and sampling, analyses of satellite imagery dating back the 1980s, and geochemical analysis of surface brines have shown that spatiotemporal changes in surface water and fluctuations in the surface salt footprint are linked to both climate and land use. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on flooding, evaporation, and desiccation cycles. A new weather station installed in the Fall of 2016 in the middle of BSF allows for unprecedented analyses of halite surface dynamics. Spatiotemporally dispersed stable isotope analyses of BSF surface brine samples constrain brine sources and evolution. An understanding of the processes that change the surface composition and texture through time inform interpretation of subsurface saline deposits at BSF. The wide range of temporal and spatial scales of observation help to guide to best management practices of this iconic natural resource.

  15. Hydrology and Cosmic radiation

    DEFF Research Database (Denmark)

    Andreasen, Mie

    Processes like evapotranspiration and infiltration are closely linked to the wetness of the soil, and soil moisture is therefore a key variable for water balance studies. Catchment scale hydrological modeling is used for weather and climate prediction and for estimating fluxes and variables...... of the hydrological system important for managing the water resources. Soil moisture is highly variable in time and space, and the variability changes with scale. Soil moisture measurements at a scale comparable to the discretization of catchment scale models are therefore of great importance for validation...

  16. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  17. Chemical elements in the environment: multi-element geochemical datasets from continental to national scale surveys on four continents

    Science.gov (United States)

    Caritat, Patrice de; Reimann, Clemens; Smith, David; Wang, Xueqiu

    2017-01-01

    During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality-controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents.

  18. Final Report for the ZERT Project: Basic Science of Retention Issues, Risk Assessment & Measurement, Monitoring and Verification for Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee; Cunningham, Alfred; Lageson, David; Melick, Jesse; Gardner, Mike; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Bajura, Richard; McGrail, B Peter; Oldenburg, Curtis M; Wagoner, Jeff; Pawar, Rajesh

    2011-03-31

    ZERT has made major contributions to five main areas of sequestration science: improvement of computational tools; measurement and monitoring techniques to verify storage and track migration of CO{sub 2}; development of a comprehensive performance and risk assessment framework; fundamental geophysical, geochemical and hydrological investigations of CO{sub 2} storage; and investigate innovative, bio-based mitigation strategies.

  19. Major geochemical processes in the evolution of carbonate-Aquifer systems

    Science.gov (United States)

    Hanshaw, B.B.; Back, W.

    1979-01-01

    -reefs, where reflux dolomites may form, highly alkaline, on-shore and continental lakes, and sabkha flats; these dolomites are typically associated with evaporite minerals. However, these processes cannot account for most of the regionally extensive dolomites in the geologic record. A major environment of regional dolomitization is in the mixing zone (zone of dispersion) where profound changes in mineralogy and redistribution of porosity and permeability occur from the time of early emergence and continuing through the time when the rocks are well-developed aquifers. The reactions and processes, in response to mixing waters of differing chemical composition, include dissolution and precipitation of carbonate minerals in addition to dolomitization. An important control on permeability distribution in a mature aquifer system is the solution of dolomite with concomitant precipitation of calcite in response to gypsum dissolution (dedolomitization). Predictive models developed by mass-transfer calculations demonstrate the controlling reactions in aquifer systems through the constraints of mass balance and chemical equilibrium. An understanding of the origin, chemistry, mineralogy and environments of deposition and accumulation of carbonate minerals together with a comprehension of diagenetic processes that convert the sediments to rocks and geochemical, tectonic and hydrologic phenomena that create voids are important to hydrologists. With this knowledge, hydrologists are better able to predict porosity and permeability distribution in order to manage efficiently a carbonate-aquifer system. ?? 1979.

  20. Maps of geologically informative Pb isotope parameters

    Science.gov (United States)

    Albarede, F.; Delile, H.; Bouchet, R. A.; Blichert-Toft, J.

    2013-12-01

    The development of large seismic arrays and the large throughput of MC-ICP-MS are providing new impetus to the integration of seismic tomography data (VP, VS, attenuation, shear-wave splitting), geophysical maps (heat flow), and geochemical maps with geology. Synoptic representation of geochemical data started nearly 50 years ago with Hurley and others, who demonstrated that time-integrated parent/daughter ratios (Rb/Sr, U/Pb, Sm/Nd) and apparent crustal residence times inferred from the isotope compositions of radiogenic elements in felsic magmas and metamorphic rocks could be used to identify tectonic provinces. Geochemical parameters derived from such long-lived radioactive isotopic systems are far less noisy than raw trace element ratios in the same rocks: for example, measured uranium concentrations are severely biased by the transit of samples through the water table during erosive exhumation. The U-Th-Pb isotope system is particularly powerful. However, georeferenced geochemical databases are still incomplete. We recently began to map at the continental scale the Pb isotope compositions into axes with geologically informative content: the two-stage Pb model age, which dates the closure of the U-Pb chronometer, and the time-integrated U/Pb (mu) and Th/U (kappa) ratios of the Pb source [1]. Maps of model ages essentially depict the maximum extension of the ~600°C isotherm. Because rocks from granulite facies terranes tend to have Th/U higher than the planetary value of 3.88, maps of kappa ratios track the rise of lower crustal material and its melts. We compiled maps of the above-mentioned Pb parameters from the archeological OXALID database (Western Europe) [2] and localized its samples and from Mamani et al.'s [3] database for the Central Andes. For the Western US, we used NAVDAT (http://www.navdat.org/) for Cenozoic continental felsic igneous rocks and added ore data from the literature (Bouchet et al., this meeting). In all cases, we found that the

  1. Assessment of Appalachian basin oil and gas resources: Devonian gas shales of the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System: Chapter G.9 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Swezey, Christopher S.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This report presents the results of a U.S. Geological Survey (USGS) assessment of the technically recoverable undiscovered natural gas resources in Devonian shale in the Appalachian Basin Petroleum Province of the eastern United States. These results are part of the USGS assessment in 2002 of the technically recoverable undiscovered oil and gas resources of the province. This report does not use the results of a 2011 USGS assessment of the Devonian Marcellus Shale because the area considered in the 2011 assessment is much greater than the area of the Marcellus Shale described in this report. The USGS assessment in 2002 was based on the identification of six total petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian gas shales described in this report are within the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System, which extends generally from New York to Tennessee. This total petroleum system is divided into ten assessment units (plays), four of which are classified as conventional and six as continuous. The Devonian shales described in this report make up four of these continuous assessment units. The assessment results are reported as fully risked fractiles (F95, F50, F5, and the mean); the fractiles indicate the probability of recovery of the assessment amount. The products reported are oil, gas, and natural gas liquids. The mean estimates for technically recoverable undiscovered hydrocarbons in the four gas shale assessment units are 12,195.53 billion cubic feet (12.20 trillion cubic feet) of gas and 158.91 million barrels of natural gas liquids

  2. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates

    Science.gov (United States)

    Atchley, Adam L.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb2 +) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb2 + concentrations within the plume. Dissimilarities between ensemble Pb2 + concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb2 + concentrations are the same for all three

  3. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates.

    Science.gov (United States)

    Atchley, Adam L; Navarre-Sitchler, Alexis K; Maxwell, Reed M

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb(2+)) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb(2+) concentrations within the plume. Dissimilarities between ensemble Pb(2+) concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb(2+) concentrations are the same for all

  4. Geology of the seashore

    OpenAIRE

    Institute, Marine

    2013-01-01

    There are many different types of beaches around Ireland. By looking at the geology of the seashore, students can study its rocks, soil, and minerals and learn about its origins. The geology of the seashore also offers a natural environment for many species and plants to live.

  5. Geochemical feature of stable isotopes in sandstone-type uranium deposit 511 in Xinjiang, China

    International Nuclear Information System (INIS)

    Zeng Aihua; Pan Jiayong

    2013-01-01

    Uranium deposit 511 is a typical in-situ leachable sandstone-type uranium deposit, study on its geochemical characteristics of stable isotopes may give help to the exploration and mining design of other deposit of the same kind. Considering the geology feature of uranium deposit 511, we analyzed its geochemical features of stable isotopes S, C, H and O by using EA-MS, MAT-253, GAS-Bench and GASBENCH-MAT253 facilities. The experimental results indicated that S has close relationship with the process of sulfate changing into sulphide through reducing bacteria, C may come organic carbon, the relative low and negative value of C, H and O isotopes suggest that the metallogenic fluid were originated from atmospheric precipitation. (authors)

  6. HYDROLOGY, Richland County, ND, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, Grant County, SD, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, IRON COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, SIMPSON COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, LA PAZ COUNTY, AZ

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, MENIFEE COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. HYDROLOGY, MONTGOMERY COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  13. HYDROLOGY, CHILTON COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, HOWELL COUNTY, MISSOURI USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. HYDROLOGY, DALLAS COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, IONIA COUNTY, MI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. HYDROLOGY, VAN BUREN COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, BOYD COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. HYDROLOGY, SPALDING COUNTY, GEORGIA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, BRADFORD COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...