WorldWideScience

Sample records for geological events

  1. Determining probabilities of geologic events and processes

    International Nuclear Information System (INIS)

    Hunter, R.L.; Mann, C.J.; Cranwell, R.M.

    1985-01-01

    The Environmental Protection Agency has recently published a probabilistic standard for releases of high-level radioactive waste from a mined geologic repository. The standard sets limits for contaminant releases with more than one chance in 100 of occurring within 10,000 years, and less strict limits for releases of lower probability. The standard offers no methods for determining probabilities of geologic events and processes, and no consensus exists in the waste-management community on how to do this. Sandia National Laboratories is developing a general method for determining probabilities of a given set of geologic events and processes. In addition, we will develop a repeatable method for dealing with events and processes whose probability cannot be determined. 22 refs., 4 figs

  2. Geological events in submerged areas: attributes and standards in the EMODnet Geology Project

    Science.gov (United States)

    Fiorentino, A.; Battaglini, L.; D'Angelo, S.

    2017-12-01

    EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas

  3. Major geological events and uranium metallogenesis in South-west China

    International Nuclear Information System (INIS)

    Zhang Chengjiang; Xu Zhengqi; Ni Shijun; Chen Youliang

    2012-01-01

    Uranium is widely distributed in South-west China, with all types but on a not-so-large scale. South-west China is located on the combining site of several large tectonic elements and every tectonic movement has different effects on different regions. To study and clarify the correlation between the major geological events in South-west China and the Uranium metallogenesis, comprehensive research and field investigation are made besides collecting a lot of materials. Through analysis and research on the major geological events in South-west China, the evolution of those e vents is basically clarified and the events closely related with uranium mineralization are determined. It is discovered that there are several ore-forming geologic events in the geological history of South-west China; almost every major tectonic movement cycle is accompanied with uranium metallogenesis, from Jinning Movement to Chengjiang Movement, to Hercynian Movement, to Indosinian Movement. to Yanshan Movement. to Himalayan movement. Even though every major tectonic cycle is accompanied with uranium mineralization, three major geological events are generally obviously related with uranium metallogenesis, i.e. the Rodinian supercontinent breakup even in Jinning-Chengjiang Period, Yanshan Movement and Himalayan movement, in which the first one is the process of uranium pre-enrichment and provides the source of uranium. Yanshan Movement and Himalayan movement are the important processes for mineralization, mainly the hydrothermal superimposed mineralization. (authors)

  4. Episodic events in long-term geological processes: A new classification and its applications

    Directory of Open Access Journals (Sweden)

    Dmitry A. Ruban

    2018-03-01

    Full Text Available Long-term geological processes are usually described with curves reflecting continuous changes in the characteristic parameters through the geological history, and such curves can be employed directly for recognition of episodic (relatively long-term events linked to these changes. The episodic events can be classified into several categories according to their scale (ordinary and anomalous events, “shape” (positive, negative, and neutral events, and relation to long-term trend change (successive, interruptive, facilitative, stabilizing, transformative, increasing, and decreasing. Many types of these events can be defined depending on the combination of the above-mentioned patterns. Of course, spatial rank, duration, and origin can be also considered in description of these events. The proposed classification can be applied to events in some real long-term geological processes, which include global sea-level changes, biodiversity dynamics, lithospheric plate number changes, and palaeoclimate changes. Several case examples prove the usefulness of the classification. It is established that the Early Valanginian (Early Cretaceous eustatic lowstand (the lowest position of the sea level in the entire Cretaceous was negative, but ordinary and only interruptive event. In the other case, it becomes clear that the only end-Ordovician and the Permian/Triassic mass extinctions transformed the trends of the biodiversity dynamics (from increase to decrease and from decrease to increase respectively, and the only Cretaceous/Paleogene mass extinction was really anomalous event on the Phanerozoic biodiversity curve. The new palaeontological data are employed to reconstruct the diversity dynamics of brachiopods in Germany (without the Alps and the Swiss Jura Mountains. The further interpretation of the both diversity curves implies that the Early Toarcian mass extinction affected the regional brachiopod faunas strongly, but this event was only decreasing

  5. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    International Nuclear Information System (INIS)

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-01-01

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described

  6. Quasi-periodic fractal patterns in geomagnetic reversals, geological activity, and astronomical events

    International Nuclear Information System (INIS)

    Puetz, Stephen J.; Borchardt, Glenn

    2015-01-01

    Highlights: • Spectral analysis indicates similar harmonics in astronomical and geological events. • Quasi-periodic cycles occur in tripling patterns of 30.44, 91.33, 274, 822, and 2466 myr. • Similar astro- and geo-phases suggest that the cycles develop from a common source. - Abstract: The cause of geomagnetic reversals remains a geological mystery. With the availability of improved paleomagnetic databases in the past three years, a reexamination of possible periodicity in the geomagnetic reversal rate seems warranted. Previous reports of cyclicity in the reversal rate, along with the recent discovery of harmonic cycles in a variety of natural events, sparked our interest in reevaluating possible patterns in the reversal rate. Here, we focus on geomagnetic periodicity, but also analyze paleointensity, zircon formation, star formation, quasar formation, supernova, and gamma ray burst records to determine if patterns that occur in other types of data have similar periodicity. If so, then the degree of synchronization will indicate likely causal relationships with geomagnetic reversals. To achieve that goal, newly available time-series records from these disciplines were tested for cyclicity by using spectral analysis and time-lagged cross-correlation techniques. The results showed evidence of period-tripled cycles of 30.44, 91.33, 274, 822, and 2466 million years, corresponding to the periodicity from a new Universal Cycle model. Based on the results, a fractal model of the universe is hypothesized in which sub-electron fractal matter acts as a dynamic medium for large-scale waves that cause the cycles in astronomical and geological processes. According to this hypothesis, the medium of sub-electron fractal matter periodically compresses and decompresses according to the standard laws for mechanical waves. Consequently, the compressions contribute to high-pressure environments and vice versa for the decompressions, which are hypothesized to cause the

  7. The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline.

    Science.gov (United States)

    Piombino, Aldo

    2016-01-01

    Since the rise of photosynthesis, life has influenced terrestrial atmosphere, particularly the O2 and the CO2 content (the latter being originally more than 95%), changing the chemistry of waters, atmosphere, and soils. Billions of years after, a far offspring of these first unicellular forms conquered emerging lands, not only completely changing landscape, but also modifying geological cycles of deposition and erosion, many chemical and physical characteristics of soils and fresh waters, and, more, the cycle of various elements. So, there are no doubts that vascular plants modified geology; but it is true that also geology has affected (and, more, has driven) plant evolution. New software, PyRate, has determined vascular plant origin and diversification through a Bayesian analysis of fossil record from Silurian to today, particularly observing their origination and extinction rate. A comparison between PyRate data and geological history suggests that geological events massively influenced plant evolution and that also the rise of nonflowering seed plants and the fast diffusion of flowering plants can be explained, almost partly, with the environmental condition changes induced by geological phenomena.

  8. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event.

    Science.gov (United States)

    Petrenko, Vasilii V; Smith, Andrew M; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F; Severinghaus, Jeffrey P

    2017-08-23

    Methane (CH 4 ) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane ( 14 CH 4 ) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  9. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event

    Science.gov (United States)

    Petrenko, Vasilii V.; Smith, Andrew M.; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F.; Severinghaus, Jeffrey P.

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (14CH4) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today’s natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  10. Assessment of effectiveness of geologic isolation systems. Geologic factors in the isolation of nuclear waste: evaluation of long-term geomorphic processes and catastrophic events

    International Nuclear Information System (INIS)

    Mara, S.J.

    1980-03-01

    SRI International has projected the rate, duration, and magnitude of geomorphic processes and events in the Southwest and Gulf Coast over the next million years. This information will be used by the Department of Energy's Pacific Northwest Laboratory (PNL) as input to a computer model, which will be used to simulate possible release scenarios and the consequences of the release of nuclear waste from geologic containment. The estimates in this report, although based on best scientific judgment, are subject to considerable uncertainty. An evaluation of the Quaternary history of the two study areas revealed that each had undergone geomorphic change in the last one million years. Catastrophic events were evaluated in order to determine their significance to the simulation model. Given available data, catastrophic floods are not expected to occur in the two study areas. Catastrophic landslides may occur in the Southwest, but because the duration of the event is brief and the amount of material moved is small in comparison to regional denudation, such events need not be included in the simulation model. Ashfalls, however, could result in removal of vegetation from the landscape, thereby causing significant increases in erosion rates. Because the estimates developed during this study may not be applicable to specific sites, general equations were presented as a first step in refining the analysis. These equations identify the general relationships among the important variables and suggest those areas of concern for which further data are required. If the current model indicates that geomorphic processes (taken together with other geologic changes) may ultimately affect the geologic containment of nuclear waste, further research may be necessary to refine this analysis for application to specific sites

  11. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  12. Iterative Calibration: A Novel Approach for Calibrating the Molecular Clock Using Complex Geological Events.

    Science.gov (United States)

    Loeza-Quintana, Tzitziki; Adamowicz, Sarah J

    2018-02-01

    During the past 50 years, the molecular clock has become one of the main tools for providing a time scale for the history of life. In the era of robust molecular evolutionary analysis, clock calibration is still one of the most basic steps needing attention. When fossil records are limited, well-dated geological events are the main resource for calibration. However, biogeographic calibrations have often been used in a simplistic manner, for example assuming simultaneous vicariant divergence of multiple sister lineages. Here, we propose a novel iterative calibration approach to define the most appropriate calibration date by seeking congruence between the dates assigned to multiple allopatric divergences and the geological history. Exploring patterns of molecular divergence in 16 trans-Bering sister clades of echinoderms, we demonstrate that the iterative calibration is predominantly advantageous when using complex geological or climatological events-such as the opening/reclosure of the Bering Strait-providing a powerful tool for clock dating that can be applied to other biogeographic calibration systems and further taxa. Using Bayesian analysis, we observed that evolutionary rate variability in the COI-5P gene is generally distributed in a clock-like fashion for Northern echinoderms. The results reveal a large range of genetic divergences, consistent with multiple pulses of trans-Bering migrations. A resulting rate of 2.8% pairwise Kimura-2-parameter sequence divergence per million years is suggested for the COI-5P gene in Northern echinoderms. Given that molecular rates may vary across latitudes and taxa, this study provides a new context for dating the evolutionary history of Arctic marine life.

  13. Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events.

    Science.gov (United States)

    Frantz, Laurent A F; Rudzinski, Anna; Nugraha, Abang Mansyursyah Surya; Evin, Allowen; Burton, James; Hulme-Beaman, Ardern; Linderholm, Anna; Barnett, Ross; Vega, Rodrigo; Irving-Pease, Evan K; Haile, James; Allen, Richard; Leus, Kristin; Shephard, Jill; Hillyer, Mia; Gillemot, Sarah; van den Hurk, Jeroen; Ogle, Sharron; Atofanei, Cristina; Thomas, Mark G; Johansson, Friederike; Mustari, Abdul Haris; Williams, John; Mohamad, Kusdiantoro; Damayanti, Chandramaya Siska; Wiryadi, Ita Djuwita; Obbles, Dagmar; Mona, Stephano; Day, Hally; Yasin, Muhammad; Meker, Stefan; McGuire, Jimmy A; Evans, Ben J; von Rintelen, Thomas; Ho, Simon Y W; Searle, Jeremy B; Kitchener, Andrew C; Macdonald, Alastair A; Shaw, Darren J; Hall, Robert; Galbusera, Peter; Larson, Greger

    2018-04-11

    The high degree of endemism on Sulawesi has previously been suggested to have vicariant origins, dating back to 40 Ma. Recent studies, however, suggest that much of Sulawesi's fauna assembled over the last 15 Myr. Here, we test the hypothesis that more recent uplift of previously submerged portions of land on Sulawesi promoted diversification and that much of its faunal assemblage is much younger than the island itself. To do so, we combined palaeogeographical reconstructions with genetic and morphometric datasets derived from Sulawesi's three largest mammals: the babirusa, anoa and Sulawesi warty pig. Our results indicate that although these species most likely colonized the area that is now Sulawesi at different times (14 Ma to 2-3 Ma), they experienced an almost synchronous expansion from the central part of the island. Geological reconstructions indicate that this area was above sea level for most of the last 4 Myr, unlike most parts of the island. We conclude that emergence of land on Sulawesi (approx. 1-2 Myr) may have allowed species to expand synchronously. Altogether, our results indicate that the establishment of the highly endemic faunal assemblage on Sulawesi was driven by geological events over the last few million years. © 2018 The Authors.

  14. Geological evidence of pre-2012 seismic events, Emilia-Romagna, Italy

    Directory of Open Access Journals (Sweden)

    Riccardo Caputo

    2012-10-01

    Full Text Available In May 2012, two moderate (-to-strong earthquakes that were associated with a noticeable aftershock sequence affected the eastern sector of the Po Plain, Italy, in correspondence with a buried portion of the Apennines thrust belt. The Provinces of Ferrara, Modena and Bologna (Emilia Romagna Region, Mantua (Lombardy Region, and Rovigo (Veneto Region were affected to different extents. The first shock (Ml 5.9 according to the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology, and Mw 6.1 according to the US Geological Service occurred on May 20, 2012, at 2:03 a.m. (GMT; this was the strongest of the sequence, and it was followed by several aftershocks (up to Ml 5.1. This first event produced secondary ground deformation effects, which were mainly associated with liquefaction phenomena that were spread across the broader epicentral region, and particularly in the western sector of the Ferrara Province [Papathanassiou et al. 2012, this volume]. A few weeks after the earthquake, a paleoseismological trench was excavated south of San Carlo village, where earthquake-induced effects were widely documented. This report presents the preliminary results of the paleoseismological investigation and documents the occurrence in the same area of paleo-events older than the May 2012 earthquakes. […

  15. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  16. On most ancient geologic events on the Anabar Shield

    International Nuclear Information System (INIS)

    Melnikow, A.I.; Lepin, V.S.; Solodyankina, V.N.; Kolosnicyna, T.I.; Oxmann, V.S.; Petrov, A.F.

    1987-01-01

    The Anabar Shield is considered in geologic literature as one of the oldest formations of the Earth. In present work a special selection of two series of samples was undertaken: crystallic schists of the Daldynskaya Series and plagio-granito-gneisses from the basin of the Knyasevaya River. Concentrations of Rb, Sr, K and 87 Sr/ 86 Sr, 87 Rb/ 86 Sr isotope ratios were determined. A Rb-Sr isochron for plagio-granito-gneisses gives ages 1.1 and 1.8 by (depending on interpretation). According to the data obtained the plagio-granito-gneisses may not be regarded as oldest formations of the Earth. In contrast to these, the crystallic schists allow to obtain a reliable Rb-Sr isochron age of 3.8 ± 0.2 by with ( 87 Sr/ 86 Sr) 0 = 0.7010. Thus, on the Anabar shield one of the oldest events of the Earth is detected. It is stated that K/Rb and 87 Rb/ 86 Sr ratios are correlated and are quite specific for oldest formations of the Earth. (author)

  17. Geological Time, Biological Events and the Learning Transfer Problem

    Science.gov (United States)

    Johnson, Claudia C.; Middendorf, Joan; Rehrey, George; Dalkilic, Mehmet M.; Cassidy, Keely

    2014-01-01

    Comprehension of geologic time does not come easily, especially for students who are studying the earth sciences for the first time. This project investigated the potential success of two teaching interventions that were designed to help non-science majors enrolled in an introductory geology class gain a richer conceptual understanding of the…

  18. Current Events via Electronic Media: An Instructional Tool in a General Education Geology Course

    Science.gov (United States)

    Flood, T. P.

    2008-12-01

    St. Norbert College (SNC) is a liberal arts college in the Green Bay Metropolitan area with an enrollment of approximately 2100 students. All students are required to take one science course with a laboratory component as part of the general education program. Approximately 40% of all SNC students take introductory geology. Class size for this course is approximately 35 students. Each faculty member teaches one section per semester in a smart classroom A synthesis of current events via electronic media is an excellent pedagogical tool for the introductory geology course. An on-going informal survey of my introductory geology class indicates that between 75- 85% of all students in the class, mostly freshman and sophomores, do not follow the news on a regular basis in any format, i.e. print, internet, or television. Consequently, most are unaware of current scientific topics, events, trends, and relevancy. To address this issue, and develop a positive habit of the mind, a technique called In-the-News-Making-News (INMN) is employed. Each class period begins with a scientifically-related (mostly geology) online news article displayed on an overhead screen. The articles are drawn from a variety of sources that include international sites such as the BBC and CBC; national sites such as PBS, New York Times, and CNN; and local sites such as the Milwaukee Journal Sentinel and the Green Bay Press Gazette. After perusing the article, additional information is often acquired by "Google" to help supplement and clarify the original article. An interactive discussion follows. Topics that are typically covered include: global climate change, basic scientific and technological discoveries, paleontology/evolution, natural disasters, mineral/ energy/ water resources, funding for science, space exploration, and other. Ancillary areas that are often touched on in the conversation include ethics, politics, economics, philosophy, education, geography, culture, or other. INMN addresses

  19. Assessment of effectiveness of geologic isolation systems: the AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1981-02-01

    Assessment of the post-closure performance of a nuclear waste repository has two basic components: the identification and analysis of potentially disruptive sequences and the pattern of geologic events and processes causing each sequence, and the identification and analysis of the environmental consequences of radionuclide transport and interactions subsequent to disruption of a repository. The AEGIS Scenario Analysis Task is charged with identifying and analyzing potenially disruptive sequences of geologic events and processes. The Geologic Simulation Model (GSM) was developed to evaluate the geologic/hydrologic system surrounding an underground repository, and describe the phenomena that alone, or in concert, could perturb the system and possibly cause a loss of repository integrity. The AEGIS approach is described in this report. It uses an integrated series of models for repository performance analysis; the GSM for a low-resolution, long-term, comprehensive evaluation of the geologic/hydrologic system, followed by more detailed hydrogeologic, radionuclide transport, and dose models to more accurately assess the consequences of disruptive sequences selected from the GSM analyses. This approach is felt to be more cost-effective than an integrated one because the GSM can be used to estimate the likelihoods of different potentially disruptive future evolutionary developments within the geologic/hydrologic system. The more costly consequence models can then be focused on a few disruptive sequences chosen for their representativeness and effective probabilities

  20. Japanese issues on the future behavior of the geological environment

    International Nuclear Information System (INIS)

    Aoki, Kaz; Nakatsuka, Noboru; Ishimaru, Tsuneari

    1994-01-01

    Comprehending and predicting the future states of the geological environment is very important in ensuring a safe geological disposal of high level radioactive wastes (HLW). This paper is one in a series of studies required to ascertain the existence of a geologically stable area in Japan over the long term. In particular, interest is focussed on the aspect of accumulating data on behavior patterns of selected natural phenomena which will enable predictions of future behavior of geological processes and finding of areas of long term stability. While this paper limits itself to the second and part of the third step, the overall flow-chart of study on natural processes and events which may perturb the geological environment entails three major steps. They include: (i) identification of natural processes and events relevant to long term stability of geological environment to be evaluated; (ii) characterization of the identified natural processes and events; and (iii) prediction of the probability of occurrence, magnitude and influence of the natural processes and events which may perturb the geological environment. (J.P.N)

  1. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    Science.gov (United States)

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  2. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  3. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  4. Stratigraphy and geologic history of Mercury

    Science.gov (United States)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  5. The role of climatic and geological events in generating diversity in Ethiopian grass frogs (genus Ptychadena).

    Science.gov (United States)

    Smith, Megan L; Noonan, Brice P; Colston, Timothy J

    2017-08-01

    Ethiopia is a world biodiversity hotspot and harbours levels of biotic endemism unmatched in the Horn of Africa, largely due to topographic-and thus habitat-complexity, which results from a very active geological and climatic history. Among Ethiopian vertebrate fauna, amphibians harbour the highest levels of endemism, making amphibians a compelling system for the exploration of the impacts of Ethiopia's complex abiotic history on biotic diversification. Grass frogs of the genus Ptychadena are notably diverse in Ethiopia, where they have undergone an evolutionary radiation. We used molecular data and expanded taxon sampling to test for cryptic diversity and to explore diversification patterns in both the highland radiation and two widespread lowland Ptychadena . Species delimitation results support the presence of nine highland species and four lowland species in our dataset, and divergence dating suggests that both geologic events and climatic fluctuations played a complex and confounded role in the diversification of Ptychadena in Ethiopia. We rectify the taxonomy of the endemic P. neumanni species complex, elevating one formally synonymized name and describing three novel taxa. Finally, we describe two novel lowland Ptychadena species that occur in Ethiopia and may be more broadly distributed.

  6. Major episodes of geologic change - Correlations, time structure and possible causes

    Science.gov (United States)

    Rampino, Michael R.; Caldeira, Ken

    1993-01-01

    Published data sets of major geologic events of the past about 250 Myr (extinction events, sea-level lows, continental flood-basalt eruptions, mountain-building events, abrupt changes in sea-floor spreading, ocean-anoxic and blackshale events and the largest evaporite deposits) have been synthesized (with estimated errors). These events show evidence for a statistically significant periodic component with an underlying periodicity, formally equal to 26.6 Myr, and a recent maximum, close to the present time. The cycle may not be strictly periodic, but a periodicity of about 30 Myr is robust to probable errors in dating of the geologic events. The intervals of geologic change seem to involve jumps in sea-floor spreading associated with episodic continental rifting, volcanism, enhanced orogeny, global sea-level changes and fluctuations in climate. The period may represent a purely internal earth-pulsation, but evidence of planetesimal impacts at several extinction boundaries, and a possible underlying cycle of 28-36 Myr in crater ages, suggests that highly energetic impacts may be affecting global tectonics. A cyclic increase in the flux of planetesimals might result from the passage of the Solar System through the central plane of the Milky Way Galaxy - an event with a periodicity and mean phasing similar to that detected in the geologic changes.

  7. Phylogeographic patterns of the Aconitum nemorum species group (Ranunculaceae) shaped by geological and climatic events in the Tianshan Mountains and their surroundings

    Science.gov (United States)

    Xiao-Long Jiang; Ming-Li Zhang; Hong-Xiang Zhang; Stewart C. Sanderson

    2014-01-01

    To investigate the impacts of ancient geological and climatic events on the evolutionary history of the Aconitum nemorum species group, including A. nemorum s. str., A. karakolicum, and A. soongoricum; a total of 18 natural populations with 146 individuals were sampled, mainly from grassy slopes or the coniferous forest understory of the Tianshan Mountain Range and its...

  8. The Tsunami Geology of the Bay of Bengal Shores and the Predecessors of the 2004 Indian Ocean Event

    Science.gov (United States)

    Rajendran, C.; Rajendran, K.; Seshachalam, S.; Andrade, V.

    2010-12-01

    The 2004 Aceh-Andaman earthquake exceeded the known Indian Ocean precedents by its 1,300-km long fault rupture and the height and reach of its tsunami. Literature of the ancient Chola dynasty (AD 9-11 centuries) of south India and the archeological excavations allude to a sea flood that crippled the historic port at Kaveripattinam, a trading hub for Southeast Asia. Here, we combine a variety of data from the rupture zone as well as the distant shores to build a tsunami history of the Bay of Bengal. A compelling set of geological proxies of possible tsunami inundation include boulder beds of Car Nicobar Island in the south and the East Island in the northernmost Andaman, a subsided fossil mangrove forest near Port Blair and a washover sedimentation identified in the Kaveripattinam coast of Tamil Nadu, south India. We have developed an extensive chronology for these geological proxies, and we analyze them in conjunction with the historical information culled from different sources for major sea surges along the Bay of Bengal shores. The age data and the depositional characteristics of these geological proxies suggest four major tsunamis in the last 2000 years in the Bay of Bengal, including the 1881 Car Nicobar tsunami. Among these, the evidence for the event of 800-1200 cal yr BP is fairly well represented on both sides of the Bay of Bengal shores. Thus, we surmise that the 800-1000-year old tsunami mimics the transoceanic reach of the 2004 Indian Ocean and the age constraints also agree with the sea surge during the Chola period. We also obtained clues for a possible medieval tsunami from the islands occurred probably a few hundred years after the Chola tsunami, but its size cannot constrained, nor its source. The convergence of ages and the multiplicity of sites would suggest at least one full size predecessor of the 2004 event 1000-800 years ago.

  9. Demographic expansion of two Tamarix species along the Yellow River caused by geological events and climate change in the Pleistocene.

    Science.gov (United States)

    Liang, Hong-Yan; Feng, Zhi-Pei; Pei, Bing; Li, Yong; Yang, Xi-Tian

    2018-01-08

    The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.

  10. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  11. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  12. Risk analysis for repositories in north Switzerland. Extent and probability of geologic processes and events

    Energy Technology Data Exchange (ETDEWEB)

    Buergisser, H M; Herrnberger, V

    1981-07-01

    The literature study assesses, in the form of expert analysis, geological processes and events for a 1200 km/sup 2/-area of northern Switzerland, with regard to repositories for medium- and high-active waste (depth 100 to 600 m and 600 to 2500 m, respectively) over the next 10/sup 6/ years. The area, which comprises parts of the Tabular Jura, the folded Jura and the Molasse Basin, the latter two being parts of the Alpine Orogene, has undergone a non-uniform geologic development since the Oligocene. Within the next 10/sup 4/ to 10/sup 5/ years a maximum earthquake intensity of VIII-IX (MSK-scale) has been predicted. After this period, particularly in the southern and eastern parts of the area, glaciations will probably occur, with asociated erosion of possibly 200 to 300 m. Fluvial erosion as a response to an uplift could reach similar values after 10/sup 5/ to 10/sup 6/ years; however, there are no data on the recent relative vertical crustal movements of the area. The risk of a meteorite impact is considered small as compared to that of these factors. Seismic activity and the position and extent of faults are so poorly known within the area that the faulting probability cannot be derived at present. Flooding by the sea, intrusion of magma, diapirism, metamorphism and volcanic eruptions are not considered to be risk factors for final repositories in northern Switzerland. For the shallow-type repositories, the risk of denudation and landslides have to be judged when locality-bound projects have been proposed.

  13. Geologic simulation model for a hypothetical site in the Columbia Plateau

    International Nuclear Information System (INIS)

    Petrie, G.M.; Zellmer, J.T.; Lindberg, J.W.; Foley, M.G.

    1981-04-01

    This report describes the structure and operation of the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Geologic Simulation Model, a computer simulation model of the geology and hydrology of an area of the Columbia Plateau, Washington. The model is used to study the long-term suitability of the Columbia Plateau Basalts for the storage of nuclear waste in a mined repository. It is also a starting point for analyses of such repositories in other geologic settings. The Geologic Simulation Model will aid in formulating design disruptive sequences (i.e. those to be used for more detailed hydrologic, transport, and dose analyses) from the spectrum of hypothetical geological and hydrological developments that could result in transport of radionuclides out of a repository. Quantitative and auditable execution of this task, however, is impossible without computer simulation. The computer simulation model aids the geoscientist by generating the wide spectrum of possible future evolutionary paths of the areal geology and hydrology, identifying those that may affect the repository integrity. This allows the geoscientist to focus on potentially disruptive processes, or series of events. Eleven separate submodels are used in the simulation portion of the model: Climate, Continental Glaciation, Deformation, Geomorphic Events, Hydrology, Magmatic Events, Meteorite Impact, Sea-Level Fluctuations, Shaft-Seal Failure, Sub-Basalt Basement Faulting, and Undetected Features. Because of the modular construction of the model, each submodel can easily be replaced with an updated or modified version as new information or developments in the state of the art become available. The model simulates the geologic and hydrologic systems of a hypothetical repository site and region for a million years following repository decommissioning. The Geologic Simulation Model operates in both single-run and Monte Carlo modes

  14. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  15. Development of FEP database for geological and climatic disruptive events. Uplift, subsidence, earthquake activity, and climate change (Contract research)

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Takeda, Seiji; Kimura, Hideo; Matsuba, Hisashi

    2011-06-01

    In the safety assessment for a geological disposal of radioactive waste such as high-level radioactive waste, it is necessary to estimate the hydrological environmental changes affected by external factors such as long-termed earthquake activity and volcanic activity. Therefore it is important to perform the informations including a wide range of future processes and conditions of engineered barriers and geosphere in a systematic manner and to construct scenarios considering external factors. Generation of geological and climatic disruptive events such as earthquake activity, volcanic activity, uplift, subsidence, climatic change and sea-level change and propagation process of their impacts and their types are needed to be clarified in order to understand the phenomena of their influence on a disposal system in case of our country. Japan Atomic Energy Agency started to develop FEP database including the correlation of FEPs and FEP data sheet. This paper presents the FEP data base of upheaval, submergence, earthquake activity and climate change in this study and also presents the results of the questionnaire survey to external experts to update the technical reliability and to keep the objective view in selecting the critical safety correlations. (author)

  16. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  17. Seismological and geological investigation for earthquake hazard in the Greater Accra Metropolitan Area

    International Nuclear Information System (INIS)

    Doku, M. S.

    2013-07-01

    A seismological and geological investigation for earthquake hazard in the Greater Accra Metropolitan Area was undertaken. The research was aimed at employing a methematical model to estimate the seismic stress for the study area by generating a complete, unified and harmonized earthquake catalogue spanning 1615 to 2012. Seismic events were souced from Leydecker, G. and P. Amponsah, (1986), Ambraseys and Adams, (1986), Amponsah (2008), Geological Survey Department, Accra, Ghana, Amponsah (2002), National Earthquake Information Service, United States Geological Survey, Denver, Colorado 80225, USA, the International Seismological Centre and the National Data Centre of the Ghana Atomic Energy Commission. Events occurring in the study area were used to create and Epicentral Intensity Map and a seismicity map of the study area after interpolation of missing seismic magnitudes. The least square method and the maximum likelihood estimation method were employed to evaluate b-values of 0.6 and 0.9 respectively for the study area. A thematic map of epicentral intensity superimposed on the geology of the study area was also developed to help understand the relationship between the virtually fractured, jointed and sheared geology and the seismic events. The results obtained are indicative of the fact that the stress level of GAMA has a telling effect on its seismicity and also the events are prevalents at fractured, jointed and sheared zones. (au)

  18. On risk analysis for repositories in northern Switzerland: extent and probability of geological processes and events

    International Nuclear Information System (INIS)

    Buergisser, H.M.; Herrnberger, V.

    1981-01-01

    The literature study assesses, in the form of expert analysis, geological processes and events for a 1200 km 2 -area of northern Switzerland, with regard to repositories for medium- and high-active waste (depth 100 to 600 m and 600 to 2500 m, respectively) over the next 10 6 years. The area, which comprises parts of the Tabular Jura, the folded Jura and the Molasse Basin, the latter two being parts of the Alpine Orogene, has undergone a non-uniform geologic development since the Oligocene. Within the next 10 4 to 10 5 years a maximum earthquake intensity of VIII-IX (MSK-scale) has been predicted. After this period, particularly in the southern and eastern parts of the area, glaciations will probably occur, with associated erosion of possibly 200 to 300 m. Fluvial erosion as a reponse to an uplift could reach similar values after 10 5 to 10 6 years; however, there are no data on the recent relative vertical crustal movements of the area. The risk of a meteorite impact is considered small as compared to that of these factors. Seismic activity and the position and extent of faults are so poorly known within the area that the faulting probability cannot be derived at present. Flooding by the sea, intrusion of magma, diapirism, metamorphism and volcanic eruptions are not considered to be risk factors for final repositories in northern Switzerland. For the shallow-type repositories, the risk of denudation and landslides have to be judged when locality-bound projects have been proposed. (Auth.)

  19. Developing, deploying and reflecting on a web-based geologic simulation tool

    Science.gov (United States)

    Cockett, R.

    2015-12-01

    Geoscience is visual. It requires geoscientists to think and communicate about processes and events in three spatial dimensions and variations through time. This is hard(!), and students often have difficulty when learning and visualizing the three dimensional and temporal concepts. Visible Geology is an online geologic block modelling tool that is targeted at students in introductory and structural geology. With Visible Geology, students are able to combine geologic events in any order to create their own geologic models and ask 'what-if' questions, as well as interrogate their models using cross sections, boreholes and depth slices. Instructors use it as a simulation and communication tool in demonstrations, and students use it to explore concepts of relative geologic time, structural relationships, as well as visualize abstract geologic representations such as stereonets. The level of interactivity and creativity inherent in Visible Geology often results in a sense of ownership and encourages engagement, leading learners to practice visualization and interpretation skills and discover geologic relationships. Through its development over the last five years, Visible Geology has been used by over 300K students worldwide as well as in multiple targeted studies at the University of Calgary and at the University of British Columbia. The ease of use of the software has made this tool practical for deployment in classrooms of any size as well as for individual use. In this presentation, I will discuss the thoughts behind the implementation and layout of the tool, including a framework used for the development and design of new educational simulations. I will also share some of the surprising and unexpected observations on student interaction with the 3D visualizations, and other insights that are enabled by web-based development and deployment.

  20. Okinawa, Japan: Geologic Battleground

    Science.gov (United States)

    Waymack, S. W.; Carrington, M. P.; Harpp, K. S.

    2005-12-01

    One of our main goals as instructors, particularly in introductory courses, is to impart students with an appreciation of how geology has influenced the course of human events. Despite the apparent accessibility of such topics, communicating this in a lively, relevant, and effective way often proves difficult. We use a series of historical events, the Pacific island hopping campaign of WWII, to engage students in an active, guided inquiry exercise to explore how terrain and the underlying geology of an area can shape historical events. Teams of students are assigned the role of planning either the defense or occupation of Okinawa Island, in the Ryukyu arc, in a theoretical version of the 1945 conflict. Students are given a package of information, including geologic and topographic maps, a list of military resources available to them at the time, and some historical background. Students also have access to "reconnaissance" images, 360o digital panoramas of the landscape of Okinawa, keyed to their maps. Each team has a week to plan their strategies and carry out additional research, which they subsequently bring to the table in the form of a written battle plan. With an instructor as arbiter, teams alternate drawing their maneuvers on a map of the island, to which the other team then responds. This continues one move at a time, until the instructor declares a victor. Throughout the exercise, the instructor guides students through analysis of each strategic decision in light of the island's structure and topography, with an emphasis on the appropriate interpretation of the maps. Students soon realize that an understanding of the island's terrain literally meant the difference between life and death for civilians and military participants alike in 1945. The karst landscape of Okinawa posed unique obstacles to both the Japanese and the American forces, including difficult landing sites, networks of natural caves, and sequences of hills aligned perpendicular to the

  1. Features, Events, and Processes: Disruptive Events

    Energy Technology Data Exchange (ETDEWEB)

    J. King

    2004-03-31

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report.

  2. Features, Events, and Processes: Disruptive Events

    International Nuclear Information System (INIS)

    J. King

    2004-01-01

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report

  3. Three Dimensional Simulation of the Baneberry Nuclear Event

    Science.gov (United States)

    Lomov, Ilya N.; Antoun, Tarabay H.; Wagoner, Jeff; Rambo, John T.

    2004-07-01

    Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical investigations, coupled with a series of 1D and 2D computational studies were used to reconstruct the sequence of events that led to the catastrophic failure. However, the geological profile of the Baneberry site is complex and inherently three-dimensional, which meant that some geological features had to be simplified or ignored in the 2D simulations. This left open the possibility that features unaccounted for in the 2D simulations could have had an important influence on the eventual containment failure of the Baneberry event. This paper presents results from a high-fidelity 3D Baneberry simulation based on the most accurate geologic and geophysical data available. The results are compared with available data, and contrasted against the results of the previous 2D computational studies.

  4. Stable carbon isotope response to oceanic anoxic events

    International Nuclear Information System (INIS)

    Hu Xiumian; Wang Chengshan; Li Xianghui

    2001-01-01

    Based on discussion of isotope compositions and fractionation of marine carbonate and organic carbon, the author studies the relationship between oceanic anoxic events and changes in the carbon isotope fractionation of both carbonate and organic matter. During the oceanic anoxic events, a great number of organisms were rapidly buried, which caused a kind of anoxic conditions by their decomposition consuming dissolved oxygen. Since 12 C-rich organism preserved, atmosphere-ocean system will enrich relatively of 13 C. As a result, simultaneous marine carbonate will record the positive excursion of carbon isotope. There is a distinctive δ 13 C excursion during oceanic anoxic events in the world throughout the geological time. In the Cenomanian-Turonian anoxic event. this positive excursion arrived at ∼0.2% of marine carbonate and at ∼0.4% of organic matter, respectively. Variations in the carbon isotopic compositions of marine carbonate and organic carbon record the changes in the fraction of organic carbon buried throughout the geological time and may provide clues to the changes in rates of weathering and burial of organic carbon. This will provide a possibility of interpreting not only the changes in the global carbon cycle throughout the geological time, but also that in atmospheric p CO 2

  5. Geologic field-trip guide to Long Valley Caldera, California

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2017-07-26

    This guide to the geology of Long Valley Caldera is presented in four parts: (1) An overview of the volcanic geology; (2) a chronological summary of the principal geologic events; (3) a road log with directions and descriptions for 38 field-trip stops; and (4) a summary of the geophysical unrest since 1978 and discussion of its causes. The sequence of stops is arranged as a four-day excursion for the quadrennial General Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), centered in Portland, Oregon, in August 2017. Most stops, however, are written freestanding, with directions that allow each one to be visited independently, in any order selected.

  6. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  7. Volcano!: An Event-Based Science Module. Student Edition. Geology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  8. Volcano!: An Event-Based Science Module. Teacher's Guide. Geology Module.

    Science.gov (United States)

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research,…

  9. Impact of Geological Changes on Regional and Global Economies

    Science.gov (United States)

    Tatiana, Skufina; Peter, Skuf'in; Vera, Samarina; Taisiya, Shatalova; Baranov, Sergey

    2017-04-01

    Periods of geological changes such as super continent cycle (300-500 million years), Wilson's cycles (300-900 million years), magmatic-tectonic cycle (150-200 million years), and cycles with smaller periods (22, 100, 1000 years) lead to a basic contradiction preventing forming methodology of the study of impact of geological changes on the global and regional economies. The reason of this contradiction is the differences of theoretical and methodological aspects of the Earth science and economics such as different time scales and accuracy of geological changes. At the present the geological models cannot provide accurate estimation of time and place where geological changes (strong earthquakes, volcanos) are expected. Places of feature (not next) catastrophic events are the only thing we have known. Thus, it is impossible to use the periodicity to estimate both geological changes and their consequences. Taking into accounts these factors we suggested a collection of concepts for estimating impact of possible geological changes on regional and global economies. We illustrated our approach by example of estimating impact of Tohoku earthquake and tsunami of March 2011 on regional and global economies. Based on this example we concluded that globalization processes increase an impact of geological changes on regional and global levels. The research is supported by Russian Foundation for Basic Research (Projects No. 16-06-00056, 16-32-00019, 16-05-00263A).

  10. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  11. Impact, and its implications for geology

    International Nuclear Information System (INIS)

    Marvin, U.B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe

  12. Preliminary geologic map of the Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Harrington, C.; McFadden, L.; Perry, F.; Wells, S.; Turrin, B.; Champion, D.

    1988-12-01

    A preliminary geologic map has been compiled for the bedrock geology of the Lathrop Wells volcanic center. The map was completed through use of a combination of stereo photographic interpretation and field mapping on color aerial photographs. These photographs (scale 1:4000) were obtained from American Aerial Surveys, Inc. They were flown on August 18, 1987, at the request of the Yucca Mountain Project (then Nevada Nuclear Waste Storage Investigations). The photographs are the Lathrop Wells VC-Area 25 series, numbers 1--32. The original negatives for these photographs are on file with American Aerial Surveys, Inc. Copies of the negatives have been archived at the Los Alamos National Laboratory, Group N-5. The preliminary geologic map is a bedrock geologic map. It does not show alluvial deposits, eolian sands, or scoria fall deposits from the youngest eruptive events. The units will be compiled on separate maps when the geomorphic and soils studies are more advanced

  13. Geochemical behaviour of natural uranium-series nuclides in geological formation

    International Nuclear Information System (INIS)

    Yamakawa, Minoru

    1991-01-01

    Recent research and investigation show that the Tono uranium deposit and its natural uranium-series nuclides have been preserved, without any significant changes like re-migration or reconcentration, throughout geological events such as upheaval-submergence, marine transgression-regression, and faulting which can readily change geological, hydrogeological, and geochemical conditions. This situation might have come about as a result of being kept in a geometrical closure system, with reducing and milk alkalic geochemical conditions, from the hydrogeological and geochemical point of view. (author)

  14. Geologic Mapping Results for Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.

  15. How Do Novice and Expert Learners Represent, Understand, and Discuss Geologic Time?

    Science.gov (United States)

    Layow, Erica Amanda

    This dissertation examined the representations novice and expert learners constructed for the geologic timescale. Learners engaged in a three-part activity. The purpose was to compare novice learners' representations to those of expert learners. This provided insight into the similarities and differences between their strategies for event ordering, assigning values and scale to the geologic timescale model, as well as their language and practices to complete the model. With a qualitative approach to data analysis informed by an expert-novice theoretical framework grounded in phenomenography, learner responses comprised the data analyzed. These data highlighted learners' metacognitive thoughts that might not otherwise be shared through lectures or laboratory activities. Learners' responses were analyzed using a discourse framework that positioned learners as knowers. Novice and expert learners both excelled at ordering and discussing events before the Phanerozoic, but were challenged with events during the Phanerozoic. Novice learners had difficulty assigning values to events and establishing a scale for their models. Expert learners expressed difficulty with determining a scale because of the size of the model, yet eventually used anchor points and unitized the model to establish a scale. Despite challenges constructing their models, novice learners spoke confidently using claims and few hedging phrases indicating their confidence in statements made. Experts used more hedges than novices, however the hedging comments were made about more complex conceptions. Using both phenomenographic and discourse analysis approaches for analysis foregrounded learners' discussions of how they perceived geologic time and their ways of knowing and doing. This research is intended to enhance the geoscience community's understanding of the ways novice and expert learners think and discuss conceptions of geologic time, including the events and values of time, and the strategies used

  16. The role of calculations to define containment phenomenology in complex geology

    International Nuclear Information System (INIS)

    Swift, R.P.; Rambo, J.T.; Bryan, J.B.

    1985-10-01

    Containment evaluation of some underground nuclear events has become strongly dependent on the use of calculations to help define important phenomenology. This results from the increasing necessity to test in sites having a geology that precludes acceptance based solely on experience. This paper discusses the rationale of a suite of TENSOR code calculations undertaken in support of the containment evaluation for a recent event and highlights the results of these calculations. The calculations illustrate containment phenomena in a layered geology of alluvium and tuff with a working point in the proximity of the Paleozoic surface. They show that reflected disturbances from surfaces above and/or below the working point can significantly hinder the development of the residual stress field if their arrival in the residual stress region coincides with the rebound phase of cavity growth. In addition, the results demonstrate a need for the development of a criterion for the probability of successful containment in complex geology other than the historical concept of a strong, sufficiently thick residual stress field. 15 refs., 13 figs., 4 tabs

  17. Geology of Northwestern Switzerland - with special emphasis on Opalinus Clay

    International Nuclear Information System (INIS)

    Burkhard, M.

    2007-01-01

    This report describes the variations of the geological structures of Northwestern Switzerland during about the last 200 million years. This gives an explanation for the present partition of the different rock layers in the studied domain. The geology of Switzerland is dominated by the formation of the Alps. The Mont Terri geology is best explained within the framework of the tectonic Wilson cycle: assembly of Pangea in Late Paleozoic times culminating in the Variscan orogeny, collapse and decay of this earlier mountain chain, peneplanation and new rifting leading to the opening of the alpine Tethys Ocean during the Mesozoic, followed by plate convergence, subduction, collision and new mountain-building in the Neogene. The Mont Terri geology bears witness to the same suite of events as the Alps; tectonically speaking, Mont Terri is part of the Alps. Africa continues to push Apulia against the larger European plate and the question arises as to what the geological future has in store for our hills and mountains. Recent GPS (Global Positioning System) data Iead to believe that it will be just erosion and decay

  18. Long term safety assessment of geological waste disposal systems: issues on release scenarios

    International Nuclear Information System (INIS)

    Khan, S.A.; Qureshi, A.A.

    1995-01-01

    Geological insolation of high level nuclear waste is an attractive waste disposal concept. However, long term safety demonstration of this concept is a major challenge to the operators, regulators and the scientific community. Identification of the factors responsible for the release of radionuclides from geosphere to biosphere,is first step in this regard. Current understanding of the release scenarios indicates that faulting, ground after percolation, seismicity, volcanism and human intrusion are the dominating release factors for most of the candidate rock formations. The major source of uncertainties is the probability values of various release events due to random nature of catastrophic geological events and past poor historical records of the frequencies of such events. There is consensus among the experts that the waste release via human intrusion is the most unpredictable scenario at present state of the knowledge. (author)

  19. Effect of geological medium on seismic signals from underground ...

    Indian Academy of Sciences (India)

    underground nuclear explosion event in a composite media with faults and complex ... faults, in situ stresses and tectonic strains, location of the free surface with respect .... at the elastic radius are the local geological formations, porosity, water con- ... the problem for a longer duration Sommerfeld (1949) radiation boundary ...

  20. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  1. Impact of advanced fuel cycles on uncertainty associated with geologic repositories

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Lee, Joon; Sutton, Mark; Greenberg, Harris R.; Robinson, Bruce A.; Nutt, W. Mark

    2013-01-01

    This paper provides a qualitative evaluation of the impact of advanced fuel cycles, particularly partition and transmutation of actinides, on the uncertainty associated with geologic disposal. Based on the discussion, advanced fuel cycles, will not materially alter (1) the repository performance (2) the spread in dose results around the mean (3) the modeling effort to include significant features, events, and processes in the performance assessment, or (4) the characterization of uncertainty associated with a geologic disposal system in the regulatory environment of the United States. (authors)

  2. Hydromechanical coupling in geologic processes

    Science.gov (United States)

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  3. Geologic evolution of the SE.23 Sheet - Belo Horizonte, MG, Brazil

    International Nuclear Information System (INIS)

    Pereira, A.D.C.; Fonseca, E.G. da; Braz, E.R.C.

    1987-01-01

    The aim of this paper is to present a synthesis of the geologic evolution in the Belo Horizonte Sheet comprising an area about 281.210 Km 2 . Rb-Sr and K-Ar isotope dating methods are used for age estimation of geologic deposits. The geologic evolution of the cratonic area is reflected by a stable central nucleus surrounded by marginal orogenic belts. In the central area were recognized greenstone belts structures involved by granite terrains and bordered by a granulitic region. The framework of the Sao Francisco Craton involves events of metamorphism, granitogenesis, sedimentary, volcanism and plutonism developed in the Early to Late Proterozoic. The stratigraphic column is complemented by Late Jurassic-Early Cretaceous continental deposits belonging to Parana-Basin. (M.V.M.)

  4. Geological evolution and uranium mineralisation of Chhinjra area, Kulu district, Himachal Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Sen, D B; Kumar, Suresh; Gangadharan, G R [Department of Atomic Energy, New Delhi (India). Atomic Minerals Div.

    1995-08-01

    Several shear-controlled and fracture-filled/disseminated type uranium occurrences are known in the Rampur window. This paper presents the geology and genetic aspects of fracture-filled type of mineralisation in Chhinjra area on the basis of recent stratigraphical, geochronological and tectonic data. Based on the angular unconformity between Manikaran quartzites and overlying chlorite phyllites, the geological evolution of Chhinjra area has been reconstructed in two stages: pre-unconformity and post-unconformity. Each stage is characterised by different phases of deformation with typical structural style and accompanying mineralisation processes. Four major tectonic events can be recognised here, namely 2500 Ma, 1200 Ma, 700 Ma and 55 Ma. Each event has left its imprint on the rocks as well as uranium mineralisation of Chhinjra area. (author). 14 refs., 4 figs.

  5. Teachers doing science: An authentic geology research experience for teachers

    Science.gov (United States)

    Hemler, D.; Repine, T.

    2006-01-01

    Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.

  6. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  7. Re-Evaluating the Geological Evidence for Late Holocene Marine Incursion Events along the Guerrero Seismic Gap on the Pacific Coast of Mexico.

    Directory of Open Access Journals (Sweden)

    Thomas A Bianchette

    Full Text Available Despite the large number of tsunamis that impact Mexico's Pacific coast, stratigraphic studies focusing on geological impacts are scanty, making it difficult to assess the long-term risks for this vulnerable region. Surface samples and six cores were taken from Laguna Mitla near Acapulco to examine sedimentological and geochemical evidence for marine incursion events. Sediment cores collected from behind the beach barrier are dominated by intercalated layers of peat and inorganic sediments, mostly silt and clay, with little or no sand. Sand- and shell-rich clastic layers with high levels of sulfur, calcium, and strontium only occur adjacent to the relict beach ridge remnants near the center of the lagoon. With the exception of one thin fine sand layer, the absence of sand in the near-shore cores and the predominance of the terrigenous element titanium in the inorganic layers, evidently eroded from the surrounding hillslopes, suggests that these large-grained intervals do not represent episodic marine incursions, but rather were likely formed by the erosion and redeposition of older marine deposits derived from the beach ridge remnants when water levels were high. These results do not support the occurrence of a large tsunami event at Laguna Mitla during the Late Holocene.

  8. Re-Evaluating the Geological Evidence for Late Holocene Marine Incursion Events along the Guerrero Seismic Gap on the Pacific Coast of Mexico.

    Science.gov (United States)

    Bianchette, Thomas A; McCloskey, Terrence A; Liu, Kam-Biu

    2016-01-01

    Despite the large number of tsunamis that impact Mexico's Pacific coast, stratigraphic studies focusing on geological impacts are scanty, making it difficult to assess the long-term risks for this vulnerable region. Surface samples and six cores were taken from Laguna Mitla near Acapulco to examine sedimentological and geochemical evidence for marine incursion events. Sediment cores collected from behind the beach barrier are dominated by intercalated layers of peat and inorganic sediments, mostly silt and clay, with little or no sand. Sand- and shell-rich clastic layers with high levels of sulfur, calcium, and strontium only occur adjacent to the relict beach ridge remnants near the center of the lagoon. With the exception of one thin fine sand layer, the absence of sand in the near-shore cores and the predominance of the terrigenous element titanium in the inorganic layers, evidently eroded from the surrounding hillslopes, suggests that these large-grained intervals do not represent episodic marine incursions, but rather were likely formed by the erosion and redeposition of older marine deposits derived from the beach ridge remnants when water levels were high. These results do not support the occurrence of a large tsunami event at Laguna Mitla during the Late Holocene.

  9. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    correlated through the whole region and described using the GeoSciML vocabularies. A hierarchical schema is provided for the Piemonte Geological Map that gives the parental relations between several orders of GeologicUnits referring to mostly recurring geological objects and main GeologicEvents, in a logical framework compliant with GeoSciML and INSPIRE data models. The classification criteria and the Hierarchy Schema used to define the GEOPiemonteMap Legend, as well as the intended meanings of the geological concepts used to achieve the overall classification schema, are explicitly described in several WikiGeo pages (implemented by "MediaWiki" open source software, https://www.mediawiki.org/wiki/MediaWiki). Moreover, a further step toward a formal classification of the contents (both data and interpretation) of the GEOPiemonteMap was triggered, by setting up an ontological framework, named "OntoGeonous", in order to achieve a thorough semantic characterization of the Map.

  10. Predictive geology in nuclear-waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1982-01-01

    The present situation at a specific site on the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes of the minimum average spacing of conductive zones in subsurface rocks of low-hydraulic conductivity, is based on a combination of the binomial and Poisson distributions, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attention is given to the preservation of tectonic blocks of large rock volumes with low-hydraulic conductivity throughout the present cratonic stage, whereas intermittent movement can be traced in marked fault zones bordering the Shield and three different orogenies affected the surrounding regions. Rock mechanical, stochastic, and deterministic approaches are utilized to predict future effects from this basis. (author)

  11. Predictive geology in nuclear waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1980-07-01

    The present situation at a specific site in the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes, of the minimum average spacing of conductive zones in subsurface rocks of low hydraulic conductivity is based on a combination of the binomial and Poisson distribution, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attenetion is given to the preservation of tectonic blocks of large rock-volumes with very low hydraulic conductivity throughout the present cratonic stage, during which intermittent movement took place in marked fault-zones bordering the Shield, and three different orogenies affected the surrounding regions. Rock-mechanical, stochastic and deterministic approaches are utilized to predict future effects from this basis. (Author)

  12. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco

    2016-04-01

    SimpleLithology CGI vocabulary and aligned as a subclass of the Substance class in NASA SWEET ontology), and 3) an ontology of the MappedFeatures (as defined in the Representation sub-taxonomy of the NASA SWEET ontology). The latter correspond to the concrete elements of the map, with their geometry (polygons, lines) and geographical coordinates. The ontology model has been developed by taking into account applications primarily concerning the needs of geological mapping; nevertheless, the model is general enough to be applied to other contexts. In particular, we show how the automatic reasoning capabilities of the ontology system can be employed in tasks of unit definition and input filling of the map database and for supporting geologists in thematic re-classification of the map instances (e.g. for coloring tasks). ---------------------------------------- [1] http://www.geosciml.org [2] http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf [3] http://www.cgi-iugs.org/tech_collaboration/geoscience_terminology_working_group.html [4] https://www.seegrid.csiro.au/subversion/CGI_CDTGVocabulary/trunk/OwlWork/CGI_Lithology.owl [5] We are currently neglecting the encoding of the geologic events, left as a future work. [6] http://resource.geosciml.org/vocabulary/cgi/201211/ [7] Web site: https://sweet.jpl.nasa.gov, Di Giuseppe et al., 2013, SWEET ontology coverage for earth system sciences, http://www.ics.uci.edu/~ndigiuse/Nicholas_DiGiuseppe/Research_files/digiuseppe14.pdf; S. Barahmand et al. 2009, A Survey on SWEET Ontologies and their Applications, http://www-scf.usc.edu/~taheriya/reports/csci586-report.pdf

  13. Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes

    Directory of Open Access Journals (Sweden)

    F. Cigna

    2011-03-01

    Full Text Available We present a new post-processing methodology for the analysis of InSAR (Synthetic Aperture Radar Interferometry multi-temporal measures, based on the temporal under-sampling of displacement time series, the identification of potential changes occurring during the monitoring period and, eventually, the classification of different deformation behaviours. The potentials of this approach for the analysis of geological processes were tested on the case study of Naro (Italy, specifically selected due to its geological setting and related ground instability of unknown causes that occurred in February 2005. The time series analysis of past (ERS1/2 descending data; 1992–2000 and current (RADARSAT-1 ascending data; 2003–2007 ground movements highlighted significant displacement rates (up to 6 mm yr−1 in 2003–2007, followed by a post-event stabilization. The deformational behaviours of instable areas involved in the 2005 event were also detected, clarifying typology and kinematics of ground instability. The urban sectors affected and unaffected by the event were finally mapped, consequently re-defining and enlarging the influenced area previously detected by field observations. Through the integration of InSAR data and conventional field surveys (i.e. geological, geomorphologic and geostructural campaigns, the causes of instability were finally attributed to tectonics.

  14. Geological research for public outreach and education in Lithuania

    Science.gov (United States)

    Skridlaite, Grazina; Guobyte, Rimante

    2013-04-01

    Successful IYPE activities and implementation of Geoheritage day in Lithuania increased public awareness in geology. A series of projects introducing geology to the general public and youth, supported by EU funds and local communities, were initiated. Researchers from the scientific and applied geology institutions of Lithuania participated in these projects and provided with the geological data. In one case, the Lithuanian Survey of Protected Areas supported the installation of a series of geological exhibitions in several regional and national parks. An animation demonstrating glacial processes was chosen for most of these because the Lithuanian surface is largely covered with sedimentary deposits of the Nemunas (Weichselian) glaciation. Researchers from the Lithuanian Geological Survey used the mapping results to demonstrate real glacial processes for every chosen area. In another case, 3D models showing underground structures of different localities were based on detailed geological maps and profiles obtained for that area. In case of the Sartai regional park, the results of previous geological research projects provided the possibility to create a movie depicting the ca. 2 Ga geological evolution of the region. The movie starts with the accretion of volcanic island arcs on the earlier continental margin at ca. 2 Ga and deciphers later Precambrian tectonic and magmatic events. The reconstruction is based on numerous scientific articles and interpretation of geophysical data. Later Paleozoic activities and following erosion sculptured the surface which was covered with several ice sheets in Quaternary. For educational purpose, a collection of minerals and rocks at the Forestry Institute was used to create an exhibition called "Cycle of geological processes". Forestry scientists and their students are able to study the interactions of geodiversity and biodiversity and to understand ancient and modern geological processes leading to a soil formation. An aging

  15. Study plan for research on long-term stability of geological environments in FY2009

    International Nuclear Information System (INIS)

    Yasue, Ken-ichi; Hanamuro, Takahiro; Kokubu, Yoko; Ishimaru, Tsuneari; Umeda, Koji

    2009-09-01

    The Japanese islands lie in a region of the Circum-Pacific orogenic belt characterized by active tectonics such as volcanism and earthquakes. The concept of geological disposal of HLW in Japan is based on a multi-barrier system which consists of the engineered barrier in the stable geological environments and the natural barrier. The natural phenomena which potentially affect the geological environments in tectonically active Japan are volcanism, faulting, uplift, denudation, climatic change, and sea-level change. Investigation technologies to evaluate their long-term stability of the geological environments have been developed. In fiscal year 2009, we continue researches to develop technologies for detecting latent geotectonic events in preliminary investigation. With regard to modelling technology, we plan to develop prediction models for evaluating the changes of geological environment (e.g., thermal, hydraulic, mechanical, and geochemical conditions) for long term. In addition to these, the development of dating techniques prerequisite for these studies is also carried out. (author)

  16. EXAMINATION OF SECURITY EVENTS AS DBEs FOR MGDS IMPORTANT TO SAFETY SSCs

    International Nuclear Information System (INIS)

    J.M. Hartsell

    1998-01-01

    A portion of the safeguards and security system for the Mined Geologic Disposal System (MGDS) has been identified as QA-1 based on the classification of structures, systems, and components (SSCs) performed in accordance with QAP-2-3, ''Classification of Permanent Items'' (Reference 5.2). The classification analysis, ''Classification of the Preliminary MGDS Repository Design'' (Reference 5.9), identifies the ''Safeguards Material Control and Accountability'' system as a QA-1 SSC based on the identification of unauthorized intrusion, sabotage, theft, and diversion as potential Design Basis Events (DBEs). The purpose of this analysis is to provide justification to eliminate these events as DBEs for the MGDS based on a review of the Codes of Federal Regulation (CFRs) for geologic repositories (10 CFR 60), commercial reactor facilities (10 CFR 50), independent spent fuel storage installations (ISFSIs) and monitored retrievable storage (MRS) installations (10 CFR 72), and other relevant guidance documents in an effort to clarify that security events should not be considered in the QA design process of important to safety SSCs for the MGDS. The MGDS is a first of a kind geologic repository and no licensing precedent has been established for this type of facility

  17. U.S. Geological Survey investigations in connection with the dining car event, U12e.18 tunnel, rainier mesa, Nevada test site

    International Nuclear Information System (INIS)

    1978-06-01

    The Dining Car event was a Defense Nuclear Agency nuclear weapons test located in the U12e.18 drift of the E-tunnel complex, central Rainier Mesa, Area 12, Nevada Test Site. The main drift and bypass drift were mined in zeolitized tuff to a total length of 544 m (1,785 ft). The overburden thickness above the experiment is approximately 396 m (1,300 ft) in the U12e.18 area. The pre-Tertiary surface, which is most probably quartzite in this area, is located approximately 243.8 to 274.3 m (800 to 900 ft) below tunnel level. Site geology and geophysical investigations were made in one vertical and two horizontal drill holes prior to mining of the U12e.18 drift. Electric logs in the two horizontal holes indicate no extensive zones of argillization which might create problems in tunnelling. Geophysical logs in the vertical exploratory hole suggest that the tuff is saturated at a depth of about 244 m (800 ft). Electric logs in all three holes show a pronounced signature in tunnel bed 4J. Seismic velocities obtained in the tunnel after mining compare favorably with sonic velocities obtained in one hole by means of a sonic probe, indicating that the bulk geologic structure is not significant in affecting seismic-wave propagation. This condition is not always observed in such comparisons. A repeat seismic survey in the tunnel showed no change in seismic velocity 4 months after mining. In situ stresses determined by the overcore technique are within experience for the Rainier Mesa tunnel complex

  18. Earth System Stability Through Geologic Time

    Science.gov (United States)

    Rothman, D.; Bowring, S. A.

    2015-12-01

    Five times in the past 500 million years, mass extinctions haveresulted in the loss of greater than three-fourths of living species.Each of these events is associated with significant environmentalchange recorded in the carbon-isotopic composition of sedimentaryrocks. There are also many such environmental events in the geologicrecord that are not associated with mass extinctions. What makes themdifferent? Two factors appear important: the size of theenvironmental perturbation, and the time scale over which it occurs.We show that the natural perturbations of Earth's carbon cycle during thepast 500 million years exhibit a characteristic rate of change overtwo orders of magnitude in time scale. This characteristic rate isconsistent with the maximum rate that limits quasistatic (i.e., nearsteady-state) evolution of the carbon cycle. We identify this rate withmarginal stability, and show that mass extinctions occur on the fast,unstable side of the stability boundary. These results suggest thatthe great extinction events of the geologic past, and potentially a"sixth extinction" associated with modern environmental change, arecharacterized by common mechanisms of instability.

  19. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  20. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  1. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  2. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  3. MGR External Events Hazards Analysis

    International Nuclear Information System (INIS)

    Booth, L.

    1999-01-01

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses

  4. Preandean geological configuration of the eastern North Patagonian Massif, Argentina

    Directory of Open Access Journals (Sweden)

    Daniel A. Gregori

    2013-11-01

    Full Text Available The Preandean geological configuration of the eastern North Patagonian Massif is established through the use of geological and geophysical analysis. The positive gravity anomalies located near the Atlantic coast are due to 535 and 540 Ma old rocks belonging to the Pampean Orogeny (Precambrian–middle Cambrian, which are widely recognized in central and northern Argentina. The Famatinian Cycle (Ordovician–Devonian is represented by a Silurian–Devonian marine basin equivalent to those of eastern-central Argentina and South Africa, and which was deformed at the end of the Devonian by an ∼E–W to WNW–ESE compressional event, part of the Famatinian Orogeny. Containing strong gravity gradients, the NW–SE belt is coincident with fault zones which were originated during the Gondwanide Orogeny. This event also produced NW–SE overthrusting of the Silurian–Devonian sequences and strike-slip faults that displaced blocks in the same direction. This deformation event belongs to the Gondwanide Orogeny that includes movements related to a counterclockwise rotation of blocks in northern Patagonia. The strong negative anomalies located in the western part of the area stem from the presence of rocks of the Jurassic Cañadón Asfalto basin interbedded in the Marifil Complex. These volcaniclastic sequences show mild deformation of accommodation zones in a pre-Jurassic paleorelief.

  5. Subsurface geological modeling using GIS and remote sensing data: a case study from Platanos landslide, Western Greece

    Science.gov (United States)

    Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.

    2014-08-01

    Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.

  6. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  7. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  8. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  9. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  10. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  11. Geological evidence of pre-2012 Emilia, Italy, seismic events

    Science.gov (United States)

    Caputo, Riccardo; Minarelli, Luca; Papathanassiou, Giorgos; Poli, Eliana M.; Rapti-Caputo, Dimitra; Sboras, Sotiris; Stefani, Marco; Zanferrari, Adriano

    2013-04-01

    In May 2012, two moderate (ML = 5.9 and 5.8) earthquakes, associated with a noticeable aftershock sequence, affected the eastern sector of the Po Plain, Italy. The causative faults are two segments of the Ferrara Arc thrust system representing the most frontal portion of the buried Northern Apennines fold-and-thrust belt. Few weeks after the earthquake, a palaeoseismological trench was excavated south of the San Carlo village (western Ferrara Province), where a system of aligned ground ruptures were observed. In the trench walls we observed several features documenting the occurrence of past liquefaction events affecting the same site. For example, i) 10 cm-thick dikes filled with injected sand and associated with vertical displacements have no correspondence with the fractures mapped at the surface before the excavation; ii) some thick dikes are arrested below the ploughed level or even by older sedimentary layers; iii) along the internal slope of the palaeo-channel exposed by the trench, load structures and slided blocks are observed; iv) in correspondence with the ground fractures characterised by vertical displacement and opening occurred during the 2012 earthquake and thick dikes, observed at the surface and in the trench's walls, respectively, sand and water ejection did not occur. In conclusion, the results of the palaeoseismological investigation document for the first time that shacking (i.e. seismic) events occurred in the past producing a sufficient ground motion capable of triggering liquefaction phenomena prior to, but likely stronger than, the May 2012 earthquake. A likely candidate is the November 17, 1570 Ferrara earthquake.

  12. Impacts of natural events and processes on groundwater flow conditions: a case study in the Horonobe Area, Hokkaido, Northern Japan

    International Nuclear Information System (INIS)

    Niizato, T.; Yasue, K.I.; Kurikami, H.

    2009-01-01

    In order to assess the long-term stability of the geological environments for over several hundred thousand years, it is important to consider the influence of natural events and processes, such as uplift, subsidence, denudation and climate change, on the geological environments, especially in an active region such as Japan. This study presents a conceptual model related to the future natural events and processes which have potential impacts on the groundwater flow conditions in the Horonobe area, Hokkaido, northern Japan on the basis of the neo-tectonics, palaeogeography, palaeo-climate, historical development of landform, and present state of groundwater flow conditions. We conclude that it is important to consider interactions among natural events and processes on the describing of the best-possible approximation of the time-variation of geological environment. (authors)

  13. Long-term environmental impacts of geologic repositories

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1983-05-01

    This paper summarizes a study of the long-term environmental impacts of geologic repositories for radioactive wastes. Conceptual repositories in basalt, granite, salt, and tuff were considered. Site-specific hydrological and geochemical parameters were used wherever possible, supplemented with generic parameters when necessary. Radiation doses to future maximally exposed individuals who use the contaminated groundwater and surface water were calculated and compared with a performance criterion of 10 -4 Sv/yr for radiation exposures from probable events. The major contributors to geologic isolation are the absence of groundwater if the repository is in natural salt, the slow dissolution of key radioelements as limited by solubility and by diffusion and convection in groundwater, long water travel times from the waste to the environment, and sorption retardation in the media surrounding the repository. In addition, dilution by surface water can considerably reduce the radiation exposures that result from the small fraction of the waste radioactivity that may ultimately reach the environment. Estimates of environmental impacts are made both for unreprocessed spent fuel and for reprocessing wastes. Accelerated dissolution of waste exposed to groundwater during the period of repository heating is also considered. This study of environmental impacts is a portion of a more comprehensive study of geologic waste disposal carried out by the Waste Isolation System Panel of the US National Research Council

  14. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  15. Post-Lau Event (late Ludfordian, Silurian) recovery of conodont faunas of Bohemia

    Czech Academy of Sciences Publication Activity Database

    Slavík, Ladislav; Carls, P.

    2012-01-01

    Roč. 87, č. 4 (2012), s. 815-832 ISSN 1214-1119 R&D Projects: GA ČR GA205/09/0703 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : late Silurian * Ludfordian * post-Lau Event, * conodont recovery * Lau Event, Prague Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.141, year: 2012

  16. Geological reconnaissance and chronologic studies. Technical report No. 33

    International Nuclear Information System (INIS)

    Davis, J.

    1983-03-01

    There are several possible scenarios by which a radioactive waste storage facility in the unsaturated zone could be compromised; among them erosion, water table rise, or downward percolation of water. In order to assess these risks, the geologic and climatic events of the past few million years can be used to project the future of the unsaturated deposits. Geologic reconnaissance on and around the NTS was undertaken to identify specific evidence of depositional, erosional, and hydrologic events, as well as to develop an understanding of the timing of these events. Several kinds of evidence were noted and studied: layers or volcanic ash in the basin-fill sediments were discovered and dated at 11 to 5 m.y. old, showing the modern valleys and ranges are at least 11 m.y. old. Exposure of these ash layers by erosion has taken 5 m.y., implying that additional millions of years must pass before modern closed basins on the NTS are eroded. Detailed study of young sediments in Las Vegas Valley suggest that water tables stood at 926 m as recently as 14,000 y ago. To the northeast or the NTS, sediments in basin bottoms also reflect high water tables until about 7000 y ago, but sediments on the NTS proper do not show this effect during the last 700,000 y. The observed relation between erosion due to downwearing or mountain ranges and infilling of valleys suggests that these processes continue, only the uppermost parts of present alluvial fans will be eroded

  17. Large natural geophysical events: planetary planning

    International Nuclear Information System (INIS)

    Knox, J.B.; Smith, J.V.

    1984-09-01

    Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proof testing is rich in opportunities for collaboration for peace

  18. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  19. Three-dimensional Subsurface Geological Modeling of the Western Osaka Plane based on Borehole Data

    Science.gov (United States)

    Nonogaki, S.; Masumoto, S.; Nemoto, T.

    2012-12-01

    Three-dimensional (3D) geological model of subsurface structure plays an important role in developing infrastructures. In particular, the 3D geological model in urban area is quite helpful to solve social problems such as underground utilization, environmental preservation, and disaster assessment. Over the past few years, many studies have been made on algorithms for 3D geological modeling. However, most of them have given little attention to objectivity of the model and traceability of modeling procedures. The purpose of this study is to develop an algorithm for constructing a 3D geological model objectively and for maintaining high-traceability of modeling procedures. For the purpose of our work, we proposed a new algorithm for 3D geological modeling using gridded geological boundary surfaces and the "logical model of geologic structure". The geological boundary surface is given by a form of Digital Elevation Model (DEM). The DEM is generated based on geological information such as elevation, strike and dip by using a unique spline-fitting method. The logical model of geological structure is a mathematical model that defines a positional relation between geological boundary surfaces and geological units. The model is objectively given by recurrence formula derived from a sequence of geological events arranged in chronological order. We applied the proposed algorithm into constructing a 3D subsurface geological model of the western Osaka Plane, southwest Japan. The data used for 3D geological modeling is a set of borehole data provided by Osaka City and Kansai Geoinformatics Agency. As a result, we constructed a 3D model consistent with the subjective model reported in other studies. In addition, all information necessary for modeling, such as the used geological information, the parameters of surface fitting, and the logical model, was stored in text files. In conclusion, we can not only construct 3D geological model objectively but also maintain high

  20. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  1. Preliminary research on thermoluminescence application in complicated geological situation

    International Nuclear Information System (INIS)

    Gong Gelian; Liu Chunsheng

    2003-01-01

    Thermoluminescent phenomenon resulting from two kinds of complicated geological situation, Ordos Basin and Huainan deposits in Anhui Province, is studied by the means of thermoluminescence counting method. It is shown that: (1) there are no apparent abnormalities of natural TL detected from the rock samples selected in the first 1000 meter depth of the Earth, and these natural TL are accumulated through natural radiation effects; (2) the natural TL shows statistically obvious reducing trends for the rock samples selected under the 2000 meter depth, and even no detectable TL is found for those rocks selected at 4000 meter depth. (3) the natural TL peaks corresponding to high temperature generally shift to the direction of higher temperature for the quartz-related rock samples, and several thermal events which occurred during the geological times might be responsible for this case

  2. Commencement of Geoparks, Geology day and International Earth Science Olympiad, IYPE in Japan

    Science.gov (United States)

    Tsukuda, Eikichi; Kodama, Kisaburo; Miyazaki, Teruki

    2010-05-01

    commemorates the first publication of the geological map of Japan on 10th of May in 1878. A total of fifty-nine geology-related organizations including natural museums and academic societies have joined the eighty nine events for Geology Day all over Japan in 2009. After the great success of 1st Iinternational Earth Science Olympiad(IESO) in Korea (2007), 2nd Philippines (2008) and 3rd Taiwan (2009), 6th IESO was decided to be held in Japan (2012). We also expect great success of 4th IESO in Indonesia and 5th IESO in Italy. Earth science communities in Japan including Societies, Universities, and Research Institutes take present-day environmental crisis seriously and throw strong messages to young people for saving the earth. Under such circumstances, IESO provides wonderful chances to think of the earth, to make friendships among worldwide participants and to understand each other. We, earth science communities in Japan, promise strongly to support 6th IESO in Tsukuba, Japan (2012) and then to organize this event efficiently. Through the triennial activity of IYPE we all learned the importance of international cooperation and public outreach.

  3. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  4. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  5. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  6. Evolution caused by extreme events.

    Science.gov (United States)

    Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna

    2017-06-19

    Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  7. Geology and religion - historical perspective and current problems

    Science.gov (United States)

    Kölbl-Ebert, Martina

    2010-05-01

    debate, if there has to be one, should not be about geology versus theology but about enlightenment versus fundamentalism. It is important that geologists should be aware that many theologians are just as appalled by the recent rise of Christian fundamentalism as they are. Probably the best remedy is to engage in dialogue with those many open-minded philosophers and theologians rather than frighten them off with a militant atheist stance, bearing in mind that dialogue requires first of all respect for the intellectual achievements of the other but also a common language to avoid misunderstandings. Two seemingly trivial words, "chance" and "design", often seem to be the core of such misunderstandings. While for a palaeontologist or biologist, it is quite possible to talk about chance and design within an evolutionary framework, e.g. undirected mutations and natural selection leading to the body-plan of certain organisms, i.e. chance and necessity leading to design, these two terms exclude each other for most theologians. "Design" for them is synonymous to "purpose", while a chance event in theology is per definition without sense and purpose. Whenever we as scientists talk of "chance", a theologian suspects that we explicitly exclude god, while we are convinced that we have not made any statement about god at all.

  8. Detailed geologic modeling of a turbidity reservoir interval at the Mars discovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahaffie, M.J.; Chapin, M.A. [Shell Exploration and Production Technology Co. (United States); Henry, W.A. [Shell Offshore, Inc. (United States)

    1995-12-31

    Detailed reservoir architecture studies using high resolution seismic data coupled with geologic and seismic inversion modeling have been used to evaluate a major hydrocarbon bearing turbidite reservoir found within Prospect Mars. Early interpretations of this interval, based on lower frequency (40 Hz) seismic data, indicated the presence of a single, laterally continuous event covering an area nearly 3 miles square ({approx} 5200 acres). Correlations from well control supported the notion that this seismic event comprised a series of continuous sheet sands exhibiting a high degree of lateral continuity and connectivity. However pressure data taken during fluid sampling of the reservoir suggested the possibility of discontinuities not observed within the resolution of the seismic data. Seismic reprocessing enhancements to increase frequency content revealed the presence of multiple stratigraphic features not previously recognized. Detailed seismic mapping using loop-level seismic attributes and seismic inversion studies constrained by geologic models provide a more realistic depiction of the environment of deposition and improve reservoir simulation modeling for this stratigraphic interval. (author). 3 figs

  9. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    Science.gov (United States)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  10. Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise

    NARCIS (Netherlands)

    Gunnink, J.J.; Maljers, D.; Hummelman, J.

    2010-01-01

    Uncertainty quantification of geological models that are constructed with additional geological expert-knowledge is not straightforward. To construct sound geological 3D layer models we use a lot of additional knowledge, with an uncertainty that is hard to quantify. Examples of geological expert

  11. Palaeogeographical type of the geological heritage of Egypt: A new evidence

    Science.gov (United States)

    Sallam, Emad S.; Ruban, Dmitry A.

    2017-05-01

    The geoconservation and geotourism potential of Northeast Africa and, particularly, Egypt is big, but the knowledge of geosites of this territory remains limited. Another urgent task is establishment of the geological heritage of different types. The literature review and the personal field experience permit to propose several geosites that reflect the geological history of Egypt. These include El-Goza El-Hamra, Gebel Qatrani and Birqash, Khashm El-Galala, Wadi El-Hitan, Kom El-Shelul, Wadi Araba, Gebel Umm Bisilla, Maadi Petrified Forest, Dababiya Quarry, and Atud. The noted geosites represent all six main subtypes (facies, palaeoecological, ichnological, taphonomic, event, and geoarchaeological) of the palaeogeographical type of the geological heritage. Their rank varies between local and global. The entire palaeogeographical heritage of Egypt is of international importance. It is argued that three kinds of geodiversity are linked to this heritage. These are determined by the number of subtypes in the country, the co-occurrence of subtypes in the geosites, and the combination of the palaeogeographical and other geological heritage types. The proposed palaeogeographical geosites can be employed successfully for the purposes of geoconservation and geotourism. Presumably, the importance of archaeological objects for tourism activities in Egypt may facilitate attractiveness of the palaeogeographical heritage.

  12. LISA: A performance assessment code for geological repositories of radioactive waste

    International Nuclear Information System (INIS)

    Bertozzi, G.; Saltelli, A.

    1985-01-01

    LISA, developed at JRC-Ispra, is a statistical code, which calculates the radiation exposures and risks associated with radionuclide releases from geological repositories of nuclear waste. The assessment methodology is described briefly. It requires that a number of probabilistic components be quantified and introduced in the analysis; the results are thus expressed in terms of risk. The subjective judgment of experts may be necessary to quantify the probabilities of occurrence of rare geological events. Because of large uncertainties in input data, statistical treatment of the Monte Carlo type is utilized for the analysis; thus, the output from LISA is obtained in the form of distributions. A few results of an application to a probabilistic scenario for a repository mined in a clay bed are illustrated

  13. How do we know about Earth's history? Constructing the story of Earth's geologic history by collecting and interpreting evidence based scenarios.

    Science.gov (United States)

    Ruthford, Steven; DeBari, Susan; Linneman, Scott; Boriss, Miguel; Chesbrough, John; Holmes, Randall; Thibault, Allison

    2013-04-01

    Beginning in 2003, faculty from Western Washington University, Skagit Valley Community College, local public school teachers, and area tribal college members created an innovative, inquiry based undergraduate geology curriculum. The curriculum, titled "Energy and Matter in Earth's Systems," was supported through various grants and partnerships, including Math and Science Partnership and Noyce Teacher Scholarship grants from the National Science Foundation. During 2011, the authors wrote a geologic time unit for the curriculum. The unit is titled, "How Do We Know About Earth's History?" and has students actively investigate the concepts related to geologic time and methods for determining age. Starting with reflection and assessment of personal misconceptions called "Initial Ideas," students organize a series of events into a timeline. The unit then focuses on the concepts of relative dating, biostratigraphy, and historical attempts at absolute dating, including uniformitarianism, catastrophism, Halley and Joly's Salinity hypothesis, and Kelvin's Heat Loss model. With limited lecture and text, students then dive into current understandings of the age of the Earth, which include radioactive decay rates and radiometric dating. Finally, using their newfound understanding, students investigate a number of real world scenarios and create a timeline of events related to the geologic history of the Earth. The unit concludes with activities that reinforce the Earth's absolute age and direct students to summarize what they have learned by reorganizing the timeline from the "Initial Ideas" and sharing with the class. This presentation will include the lesson materials and findings from one activity titled, "The Earth's Story." The activity is located midway through the unit and begins with reflection on the question, "What are the major events in the Earth's history and when did they happen?" Students are directed to revisit the timeline of events from the "Initial Ideas

  14. Using Hollywood Movies to Teach Basic Geological Concepts: A Comparison of Student Outcomes

    Science.gov (United States)

    Crowder, M. E.

    2008-12-01

    Throughout the history of cinema, events based in Earth Science have been the focus of many an action- disaster plot. From the most recent 2008 remake of Journey to the Center of the Earth, to 1965's Crack in the World, and all the way back to the 1925 silent film rendition of The Lost World, Hollywood's obsession with the geological sciences has been clear. These particular sub-genres of disaster films and science fiction present science that, from a Hollywood viewpoint, looks exciting and seems realistic. However, from a scientific viewpoint, the presentations of science are often shockingly incorrect and unfortunately serve to perpetuate common misconceptions. In 2003, Western Kentucky University began offering an elective non-majors science course, Geology and Cinema, to combat these misconceptions while using the framework of Hollywood films as a tool to appeal and connect to a broad student population. To see if this method is truly working, this study performs a student outcome comparison for basic geologic knowledge and general course perception between several sections of standard, lecture-based Introductory Geology courses and concurrent semester sections of Geology and Cinema. Preliminary results indicate that while performance data is similar between the courses, students have a more positive perception of the Cinema sections.

  15. Geological events and Pliocene climate fluctuations explain the phylogeographical pattern of the cold water fish Rhynchocypris oxycephalus (Cypriniformes: Cyprinidae) in China.

    Science.gov (United States)

    Yu, Dan; Chen, Ming; Tang, Qiongying; Li, Xiaojuan; Liu, Huanzhang

    2014-10-25

    Rhynchocypris oxycephalus is a cold water fish with a wide geographic distribution including the relatively warm temperate regions of southern China. It also occurs in second- and third-step geomorphic areas in China. Previous studies have postulated that high-altitude populations of R. oxycephalus in southern China are Quaternary glacial relics. In this study, we used the mitochondrial gene Cytb and the nuclear gene RAG2 to investigate the species phylogeographical patterns and to test two biogeographic hypotheses: (1) that divergence between lineages supports the three-step model and (2) climatic fluctuations during the Quaternary resulted in the present distribution in southern China. Phylogenetic analysis detected three major matrilines (A, B, and C); with matrilines B and C being further subdivided into two submatrilines. Based on genetic distances and morphological differences, matriline A potentially represents a cryptic subspecies. The geographic division between matrilines B and C coincided with the division of the second and third geomorphic steps in China, suggesting a historical vicariance event. Pliocene climatic fluctuations might have facilitated the southwards dispersal of R. oxycephalus in matriline C, with the subsequent warming resulting in its split into submatrilines C1 and C2, leaving submatriline C2 as a relic in southern China. Our study demonstrates that geological events (three steps orogenesis) and climate fluctuations during the Pliocene were important factors in shaping phylogeographical patterns in R. oxycephalus. Notably, no genetic diversity was detected in several populations, all of which possessed unique genotypes. This indicates the uniqueness of local populations and calls for a special conservation plan for the whole species at the population level.

  16. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    orientation (e.g. 'miarolitic cavities'). The Earth material package allows for the description of both individual components, such as minerals, and compound materials, such as rocks or unconsolidated materials. Provision is made for alteration, weathering, metamorphism, particle geometry, fabric, and petrophysical descriptions. Mapped features describe the shape of the geological features using standard GML geometries, such as polygons, lines, points or 3D volumes. Geological events provide the age, process and environment of formation of geological features. The Earth Resource section includes features to represent mineral occurrences and mines and associated human activities independently. This addition allows description of resources and reserves that can comply with national and internationally accepted reporting codes. GeoSciML v3 is under consideration as the data model for INSPIRE annex 2 geologic reporting in Europe.

  17. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  18. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  19. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  20. Surficial Geology of Mount Rainier National Park, Washington

    Science.gov (United States)

    Crandell, Dwight Raymond

    1969-01-01

    Much of the ground surface around Mount Rainier volcano is directly underlain by loose geologic deposits that veneer the hard rock formations. Examples of these deposits are sand and gravel bars along the rivers, ridges of loose rock debris beside the glaciers, and sloping aprons of rock fragments beneath almost every cliff. Even though they are generally thin and inconspicuous when compared with the rock formations, these surficial deposits are clues to geologic events that have profoundly influenced the shape of the park's landscape. Thus, from the character and extent of glacial deposits one can judge the age and size of former glaciers that carved the cirques and deep canyons of the park; from the mudflows which streamed down nearly every valley one can infer the age and size of huge landslides of the past that helped determine Mount Rainier's present shape; and from the pumice deposits some of the volcano's recent eruptive activity can be reconstructed. The map (plate 1, in pocket) that accompanies this description of the surficial deposits of Mount Rainier National Park shows the location of the various geologic formations, and the explanation shows the formations arranged in order of their relative age, with the oldest at the bottom. The text describes the surficial deposits in sequence from older to younger. A discussion of the pumice deposits of the park, which were not mapped, is followed by a description of the formations shown on the geologic map. Inspection of the geologic map may lead the viewer to question why the surficial deposits are shown in more detail in a zone several miles wide around the base of the volcano than elsewhere. This is partly because the zone is largely near or above timberline, relatively accessible, and the surficial deposits there can be readily recognized, differentiated, and mapped. In contrast, access is more difficult in the heavily timbered parts of the park, and surficial deposits there are generally blanketed by a dense

  1. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  2. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  3. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  4. The ISC Seismic Event Bibliography

    Science.gov (United States)

    Di Giacomo, Domenico; Storchak, Dmitry

    2015-04-01

    The International Seismological Centre (ISC) is a not-for-profit organization operating in the UK for the last 50 years and producing the ISC Bulletin - the definitive worldwide summary of seismic events, both natural and anthropogenic - starting from the beginning of 20th century. Often researchers need to gather information related to specific seismic events for various reasons. To facilitate such task, in 2012 we set up a new database linking earthquakes and other seismic events in the ISC Bulletin to bibliographic records of scientific articles (mostly peer-reviewed journals) that describe those events. Such association allows users of the ISC Event Bibliography (www.isc.ac.uk/event_bibliography/index.php) to run searches for publications via a map-based web interface and, optionally, selecting scientific publications related to either specific events or events in the area of interest. Some of the greatest earthquakes were described in several hundreds of articles published over a period of few years. The journals included in our database are not limited to seismology but bring together a variety of fields in geosciences (e.g., engineering seismology, geodesy and remote sensing, tectonophysics, monitoring research, tsunami, geology, geochemistry, hydrogeology, atmospheric sciences, etc.) making this service useful in multidisciplinary studies. Usually papers dealing with large data set are not included (e.g., papers describing a seismic catalogue). Currently the ISC Event Bibliography includes over 17,000 individual publications from about 500 titles related to over 14,000 events that occurred in last 100+ years. The bibliographic records in the Event Bibliography start in the 1950s, and it is updated as new publications become available.

  5. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  6. Geological safety aspects of nuclear waste disposalin in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, L; Hakkarainen, V; Kaija, J; Kuivamaki, A; Lindberg, A; Paananen, M; Paulamaki, S; Ruskeeniemi, T

    2011-07-01

    The management of nuclear waste from Finnish power companies is based on the final geological disposal of encapsulated spent fuel at a depth of several hundreds of metres in the crystalline bedrock. Permission for the licence requires that the safety of disposal is demonstrated in a safety case showing that processes, events and future scenarios possibly affecting the performance of the deep repository are appropriately understood. Many of the safety-related issues are geological in nature. The Precambrian bedrock of Finland has a long history, even if compared with the time span considered for nuclear waste disposal, but the northern location calls for a detailed study of the processes related to Quaternary glaciations. This was manifested in an extensive international permafrost study in northern Canada, coordinated by GTK. Hydrogeology and the common existence of saline waters deep in the bedrock have also been targets of extensive studies, because water chemistry affects the chemical stability of the repository near-field, as well as radionuclide transport. The Palmottu natural analogue study was one of the international high-priority natural analogue studies in which transport phenomena were explored in a natural geological system. Currently, deep biosphere processes are being investigated in support of the safety of nuclear waste disposal. (orig.)

  7. RETRIEVAL EVENTS EVALUATION

    International Nuclear Information System (INIS)

    Wilson, T.

    1999-01-01

    The purpose of this analysis is to evaluate impacts to the retrieval concept presented in the Design Analysis ''Retrieval Equipment and Strategy'' (Reference 6), from abnormal events based on Design Basis Events (DBE) and Beyond Design Basis Events (BDBE) as defined in two recent analyses: (1) DBE/Scenario Analysis for Preclosure Repository Subsurface Facilities (Reference 4); and (2) Preliminary Preclosure Design Basis Event Calculations for the Monitored Geologic Repository (Reference 5) The objective of this task is to determine what impacts the DBEs and BDBEs have on the equipment developed for retrieval. The analysis lists potential impacts and recommends changes to be analyzed in subsequent design analyses for developed equipment, or recommend where additional equipment may be needed, to allow retrieval to be performed in all DBE or BDBE situations. This analysis supports License Application design and therefore complies with the requirements of Systems Description Document input criteria comparison as presented in Section 7, Conclusions. In addition, the analysis discusses the impacts associated with not using concrete inverts in the emplacement drifts. The ''Retrieval Equipment and Strategy'' analysis was based on a concrete invert configuration in the emplacement drift. The scope of the analysis, as presented in ''Development Plan for Retrieval Events Evaluation'' (Reference 3) includes evaluation and criteria of the following: Impacts to retrieval from the emplacement drift based on DBE/BDBEs, and changes to the invert configuration for the preclosure period. Impacts to retrieval from the main drifts based on DBE/BDBEs for the preclosure period

  8. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  9. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  10. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  11. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  12. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  13. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  14. Geological and geotechnical limitations of radioactive waste retrievability in geologic disposals

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon-Vargas, Rocio; Mintzlaff, Volker; Treidler, Ann-Kathrin [TU Braunschweig (Germany). Inst. for Soil Mechanics and Foundation Engineering

    2015-07-01

    The capability of retrieving radioactive waste emplaced in deep geological formations is nowadays in discussion in many countries. Based on the storage of high-level radioactive waste (HAW) in deep geological repositories there is a number of possible scenarios for their retrieval. Measurements for an improved retrieving capability may impact on the geotechnical and geological barriers, e.g. keeping open the access drifts for a long period of time can result in a bigger evacuation damage zone (EDZ) in the host rock which implies potential flow paths for ground water. Nevertheless, to limit the possible scenarios associated to the retrieval implementation, it is necessary to take in consideration which criteria will be used for an efficient monitoring program, while clearly determining the performance reliability of the geotechnical barriers. In addition, the integrity of the host rock as geological barrier has to be verified. Therefore, it is important to evaluate different design solutions and the most appropriate measurement methods to improve the retrievability process of wastes from a geological repository. A short presentation of the host rocks is given is this paper.

  15. Geology of Joshua Tree National Park geodatabase

    Science.gov (United States)

    Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.

    2015-09-16

    The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges

  16. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  17. MORPHOLOGICAL AND GEOLOGICAL INDICATORS OF THE POSSIBLE BAUXITE DEPOSITS IN THE KARST REGION OF WESTERN HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Ivan Blašković

    1995-12-01

    Full Text Available Investigation results of morphological and geological potential bauxite deposit indicators in the Mesihovina-Rakitno bauxitebearing sedimentary basin in Western Herzegovina are presented. Region with carbonate and clastic hangingwalls as well as those without overlying sediments have been studied. It was established that the expression and number of the indicators depend size as well as on character and thickness of hangingwall sediments. The morphological indicators are expressed as a particular relief forms situated right above the deposits or nearby and are a consequence of geological relations and exodynamic processes. Ihe numerous geological indicators resulted from complex geological events. The most important are: preore structural relations, the formation of paleorelief, peculiar way of hangingwall rocks sedimentation, lithification processes and the formation of the recent structural pattern. It has been observed that particular indicators should be recognized within a relatively thick succession of the overlying sediments which is of the great importance in the exploration of bauxite deposits.

  18. Temporal variations in the gene expression levels of cyanobacterial anti-oxidant enzymes through geological history: implications for biological evolution during the Great Oxidation Event

    Science.gov (United States)

    Harada, M.; Furukawa, R.; Yokobori, S. I.; Tajika, E.; Yamagishi, A.

    2016-12-01

    A significant rise in atmospheric O2 levels during the GOE (Great Oxidation Event), ca. 2.45-2.0 Ga, must have caused a great stress to biosphere, enforcing life to adapt to oxic conditions. Cyanobacteria, oxygenic photosynthetic bacteria that had been responsible for the GOE, are at the same time one of the organisms that would have been greatly affected by the rise of O2 level in the surface environments. Knowledge on the evolution of cyanobacteria is not only important to elucidate the cause of the GOE, but also helps us to better understand the adaptive evolution of life in response to the GOE. Here we performed phylogenetic analysis of an anti-oxidant enzyme Fe-SOD (iron superoxide dismutase) of cyanobacteria, to assess the adaptive evolution of life under the GOE. The rise of O2 level must have increased the level of toxic reactive oxygen species in cyanobacterial cells, thus forced them to change activities or the gene expression levels of Fe-SOD. In the present study, we focus on the change in the gene expression levels of the enzyme, which can be estimated from the promoter sequences of the gene. Promoters are DNA sequences found upstream of protein encoding regions, where RNA polymerase binds and initiates transcription. "Strong" promoters that efficiently interact with RNA polymerase induce high rates of transcription, leading to high levels of gene expression. Thus, from the temporal changes in the promoter sequences, we can estimate the variations in the gene expression levels during the geological time. Promoter sequences of Fe-SOD at each ancestral node of cyanobacteria were predicted from phylogenetic analysis, and the ancestral promoter sequences were compared to the promoters of known highly expressed genes. The similarity was low at the time of the emergence of cyanobacteria; however, increased at the branching nodes diverged 2.4 billon years ago. This roughly coincided with the onset of the GOE, implying that the transition from low to high gene

  19. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    Science.gov (United States)

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  20. Analysis of geological condition of uranium mineralization in the Xiangshan northern uranium orefield in central region of Jiangxi Province

    International Nuclear Information System (INIS)

    Zhou Yulong; Liu Yunlang; Gao Yan

    2013-01-01

    According to the basic conditions of 'source, guide, transportation, storage' for uranium mineralization in strata and different types of geological structure, departure from the condition, the coupling effect of stratigraphy, lithology and structure are studied in the process of uranium mineralization in northern Xiangshan volcanic basin. Studies show that the northern ore field are of good metallogenic geological conditions and the uranium rich ancient land mass and uranium rich magma generated by the melting of deep metamorphic rocks. The main geologic events are volcanic eruptions, accompanied by repeated subvolcanic magma intrusion and strong faults and nappe tectonics which result in volcanic collapse and volcanic ring structures. These ore-forming geological condition control the structural frame for the formation of main uranium deposit type-subvolcanic rocks in northern Xiangshan ore field. (authors)

  1. Geologic drivers of late ordovician faunal change in laurentia: investigating links between tectonics, speciation, and biotic invasions.

    Directory of Open Access Journals (Sweden)

    David F Wright

    Full Text Available Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.

  2. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  3. Geologic modeling in risk assessment methodology for radioactive waste management

    International Nuclear Information System (INIS)

    Logan, S.E.; Berbano, M.C.

    1977-01-01

    Under contract to the U.S. Environmental Protection Agency (EPA), the University of New Mexico is developing a computer based assessment methodology for evaluating public health and environmental impacts from the disposal of radioactive waste in geologic formations. Methodology incorporates a release or fault tree model, an environmental model, and an economic model. The release model and its application to a model repository in bedded salt is described. Fault trees are constructed to provide the relationships between various geologic and man-caused events which are potential mechanisms for release of radioactive material beyond the immediate environs of the repository. The environmental model includes: 1) the transport to and accumulations at various receptors in the biosphere, 2) pathways from these environmental concentrations, and 3) radiation dose to man. Finally, economic results are used to compare and assess various disposal configurations as a basis for formulatin

  4. Geologic map of the upper Arkansas River valley region, north-central Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.

    2017-11-17

    This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are

  5. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  6. The Astronomical Pulse of Global Extinction Events

    Directory of Open Access Journals (Sweden)

    David F.V. Lewis

    2006-01-01

    Full Text Available The linkage between astronomical cycles and the periodicity of mass extinctions is reviewed and discussed. In particular, the apparent 26 million year cycle of global extinctions may be related to the motion of the solar system around the galaxy, especially perpendicular to the galactic plane. The potential relevance of Milankovitch cycles is also explored in the light of current evidence for the possible causes of extinction events over a geological timescale.

  7. Selection of the situations taken into account for the safety demonstration of a repository in deep geological formations - French regulatory guidance and IPSN modelling experience

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Greneche, D.

    1993-01-01

    A regulatory guidance has been recently set up in France for the safety assessment of radwaste deep geological disposal: the present paper deals with the methodology related to the safety demonstration of such a disposal, particularly the situations to be taken into account to address the potential evolution of the repository under natural or human induced events. This approach, based on a selection of events considered as reasonably envisageable, relies on a reference scenario characterized by a great stability of the geological formation and on hypothetical situations corresponding to the occurrence of random events of natural origin or of conventional nature. The implementation of this methodology within the framework of the IPSN (Protection and Nuclear Safety Institute, CEA) participation in the CEC EVEREST project is addressed. This programme consists in the evaluation of the sensitivity of the radiological consequences associated to deep radwaste disposal systems to the different elements of the performance assessment (scenario characteristics, phenomena, physico-chemical parameters) in three types of geological formations (granite, salt and clay).(author). 11 refs., 3 tabs

  8. Outreach to Inspire Girls in Geology: A Recipe for Success (Invited)

    Science.gov (United States)

    Kekelis, L.

    2010-12-01

    Geology and engineering careers can seem very abstract to a young girl, especially to a girl who has no role model in technical fields. Many girls want to make the world a better place but don’t see how their interests connect with geology or engineering. Role models and field trips to worksites are instrumental in encouraging girls to consider careers in geoscience and engineering. The opportunities to see real-world applications of technology and meet with role models who work in technical fields are extremely impactful and can have a strong influence on a girl’s career path. Together we need to do a better job of communicating what geoscience and engineering have to offer girls and what girls have to offer these fields. This presentation will provide practical tips to help combat stereotypes, 2) share resources for outreach at one-day special events, summer camps, visits to the classroom and field trips to corporate sites and college campuses, and 3) highlight strategies for groups to work collaboratively in outreach. This presentation will help those currently involved in outreach who want to improve on existing efforts, along with those who have never done outreach and are interested in getting started. Techbridge will share a “recipe for success” for planning and hosting role model visits to the classroom and field trips. A case study of outreach by Chevron with Techbridge girls will be shared including the pre-event planning that made this event a success. Activities that make geology fun and friendly to girls and tips for dispelling stereotypes about careers in geology and engineering will also be shared. Participants will be invited to ask questions and share on topics of interest, such as “Challenges with outreach,” “How to get involved without burning out,” and “How to show your manager or organization that outreach is worth the effort.” We will also promote a candid discussion of the challenges that can arise along with way and how

  9. Iridium abundance measurements across bio-event horizons in the geological record

    Science.gov (United States)

    Orth, C. J.; Attrep, M., Jr.

    1988-01-01

    Geochemical studies have been performed on thousands of rock samples collected across bio-event horizons in the fossil record using INAA for about 40 common and trace elements and radiochemical isolation procedures for Os, Ir, Pt, and Au on selected samples. These studies were begun soon after the Alvarez team announced their discovery of the Cretaceous-Tertiary (K-T) Ir anomaly in marine rock sequences in Europe. With their encouragement the Authors searched for the anomaly in nearby continental (freshwater coal swamp) deposits. In collaboration with scientists from the U.S.G.S. in Denver, the anomaly was located and it was observed that a floral crisis occurred at the same stratigraphic position as the Ir spike. Further work in the Raton Basin has turned up numerous well-preserved K-T boundary sections. Although the Authors have continued to study the K-T boundary and provide geochemical measurements for other groups trying to precisely locate it, the primary effort was turned to examining the other bio-events in the Phanerozoic, especially to those that are older than the terminal Cretaceous. A list of horizons that were examined in collaboration with paleontologists and geologists is given. Results are also given and discussed.

  10. Fracture analysis for engineering geological utilization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H I; Choi, P Y; Hong, S H; Chi, K H; Kim, J Y; Lee, S R; Lee, S G; Park, D W; Han, J G [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The problem of geological hazards (earthquakes) and water or thermal resources urges us to understand the regional tectonic setting or recent tectonics. The Uisong Subbasin is located in one of the seismicity zones in Korea. Because the reactivity of the Gaeum Fault System is an important problem focussing on these faults, we studied their whole extension and timing of faulting in terms of tectonics. Fault tectonic analysis is so effective as to easily reconstruct the tectonic sequence and each stress state at each site, eventually in a region. One can get insights for faulting timing in terms of the restored tectonic sequence, and discriminating the active faults or the faults active in the last (present) tectonics. Examining the filling materials in tension gashes, one can get raw knowledge regarding the thermal states at each site. For this study, we first analyzed the topographic textures (lineament, drainage and circular structures) on the relief map produced based on the topographic maps of 1:100,000 scale. Through investigations of susceptible area along the faults, their existence and movement modes were studied, and we can get information about movement history and whole extension of the faults belonging to the WNW-ESE trending Gaeum Fault System. In order to reconstruct the tectonic sequence, we measured fault slip data, tension gashes and dikes, from which fault populations were classified and stress (and thermal) states were determined. Seven compressional tectonic events and six extensional events were reconstructed. Because coaxial events partially coexisted, we bundled these events in one, finally we get seven tectonic events. Determining the types of minerals filling the tension gashes, we suggested the possibility of investigation of geothermal resources with less efforts. (author). 162 refs., 14 tabs., 51 figs.

  11. Research on interactive genetic-geological models to evaluate favourability for undiscovered uranium resources

    International Nuclear Information System (INIS)

    Finch, W.I.; Granger, H.C.; Lupe, R.; McCammon, R.B.

    1980-01-01

    Current methods of evaluating favourability for undiscovered uranium resources are unduly subjective, quite possibly inconsistent and, as a consequence, of questionable reliability. This research is aimed at reducing the subjectivity and increasing the reliability by designing an improved method that depends largely on geological data and their statistical frequency of occurrence. This progress report outlines a genetic approach to modelling the geological factors that controlled uranium mineralization in order to evaluate the favourability for the occurrence of undiscovered uranium deposits of the type modelled. A genetic model is constructed from all the factors that describe the processes, in chronological sequence, that formed uranium deposits thought to have a common origin. The field and laboratory evidence for the processes constitute a geologic-occurrence base that parallels the chronological sequence of events. The genetic model and the geologic-occurrence base are portrayed as two columns of an interactive matrix called the ''genetic-geologic model''. For each column, eight chronological stages are used to describe the overall formation of the uranium deposits. These stages consist of (1) precursor processes; (2) host-rock formation; (3) preparation of host-rock; (4) uranium-source development; (5) transport of uranium; (6) primary uranium deposition; (7) post-deposition modification; and (8) preservation. To apply the genetic-geological model to evaluate favourability, a question is posed that determines the presence or absence of each attribute listed under the geologic-occurrence base. By building a logic circuit of the attributes according to either their essential or non-essential nature, the resultant match between a well-documented control area and the test area may be determined. The degree of match is a measure of favourability for uranium occurrence as hypothesized in the genetic model

  12. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    objective is to determine the distribution and ages of valleys. In our study, we incorporated detailed photogeologic mapping, comprehensive crater statistics (table 1), and geologic, paleotectonic, and paleoerosional Geographic Information System (GIS) databases. Sheets 1–3 show geologic units, faults and other significant structures, and valleys, respectively. To help unravel the complex geologic history of the Thaumasia region, we transferred the highly detailed geologic unit, paleotectonic, and paleoerosional information of sheets 1–3 into a multilayered GIS database for comparative analysis. The geologic information was transferred from hard copy into a digital format by scanning at 25 micron resolution on a drum scanner. The 2-bit scanned image was then converted to an x,y coordinate system using ARC/INFO's vectorization routine. The geologic unit, structural, and erosional data were transformed into the original map projection, Lambert Conformal. The average transformation root mean square error was 0.25 km (acceptable for the Thaumasia map base at 1:5,000,000 scale). After transformation, the features were properly attributed and tediously checked. Once digitized, the map data can be transformed into any map projection depending on the type of data analysis. For example, the equal-area sinusoidal projection was used for determining the precise area of geologic units (table 1). In addition to the geologic map and its attendant stratigraphic section, correlation chart, and description of map units, we include text sections that clarify the histories and temporal, spatial, and causal relations of the various geologic units and landforms of the Thaumasia region. The geologic summary section defines the sequence of major geologic events.

  13. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  14. Adaptive dynamics on an environmental gradient that changes over a geological time-scale.

    Science.gov (United States)

    Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Toivonen, Jaakko

    2015-07-07

    The standard adaptive dynamics framework assumes two timescales, i.e. fast population dynamics and slow evolutionary dynamics. We further assume a third timescale, which is even slower than the evolutionary timescale. We call this the geological timescale and we assume that slow climatic change occurs within this timescale. We study the evolution of our model population over this very slow geological timescale with bifurcation plots of the standard adaptive dynamics framework. The bifurcation parameter being varied describes the abiotic environment that changes over the geological timescale. We construct evolutionary trees over the geological timescale and observe both gradual phenotypic evolution and punctuated branching events. We concur with the established notion that branching of a monomorphic population on an environmental gradient only happens when the gradient is not too shallow and not too steep. However, we show that evolution within the habitat can produce polymorphic populations that inhabit steep gradients. What is necessary is that the environmental gradient at some point in time is such that the initial branching of the monomorphic population can occur. We also find that phenotypes adapted to environments in the middle of the existing environmental range are more likely to branch than phenotypes adapted to extreme environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Geological Society of New Zealand Inc 1999 Annual Conference : programme and abstracts

    International Nuclear Information System (INIS)

    Wallace, C.

    1999-01-01

    The call for papers resulted in about 113 oral and 66 poster abstracts being received. These have been loosely assembled under the advertised themes: Hazard Events from a Biological or Paleontological Perspective, Neotectonics of the North Island, Marine Geology, Wanganui Basin, Volcanology, Earth Science Education and Soils, Landscapes and the Environment, Additional to the papers in these themes there has been a wide assortment of General topics. (author)

  16. Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record.

    Science.gov (United States)

    Campbell, Kathleen A; Lynne, Bridget Y; Handley, Kim M; Jordan, Sacha; Farmer, Jack D; Guido, Diego M; Foucher, Frédéric; Turner, Susan; Perry, Randall S

    2015-10-01

    New Zealand and Argentine (Late Jurassic-Recent) siliceous hot-spring deposits (sinter) reveal preservation pathways of environmentally controlled, microbe-dominated sedimentary facies over geological time scales. Texturally distinctive, laminated to thinly layered, dense and vertically oriented, microtubular "palisade" fabric is common in low-temperature (geological events. A systematic approach was used to characterize palisade fabric in sinters of different ages to refine tools for recognizing biosignatures in extreme environments and to track their long-term preservation pathways into the geological record. Molecular techniques, scanning electron microscopy, Raman spectrometry, X-ray powder diffraction, petrography, and lipid biomarker analyses were applied. Results indicate that microbial communities vary at the micron scale and that early and rapid silicification is paramount to long-term preservation, especially where minimal postdepositional disturbance follows fossilization. Overall, it appears that the most robust biomarkers of fossil microbial activity in hot-spring deposits are their characteristic macro- and microtextures and laser micro-Raman identified carbon. Studies of Phanerozoic geothermal deposits with mineralized microbial components are relevant analogs for Precambrian geobiology because early life is commonly preserved as microbial microfossils and biofilms in silica, some of it hydrothermal in origin. Yet the diagenetic "movie" has already been run. Hence, studying younger sinters of a range of ages provides an opportunity to "play it again" and follow the varied influences on biosignatures into the deep-time geological record.

  17. Development and improvement of safety analysis code for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to confirm the long-term safety concerning geological disposal, probabilistic safety assessment code and other analysis codes, which can evaluate possibility of each event and influence on engineered barrier and natural barrier by the event, were introduced. We confirmed basic functions of those codes and studied the relation between those functions and FEP/PID which should be taken into consideration in safety assessment. We are planning to develop 'Nuclide Migration Assessment System' for the purpose of realizing improvement in efficiency of assessment work, human error prevention for analysis, and quality assurance of the analysis environment and analysis work for safety assessment by using it. As the first step, we defined the system requirements and decided the system composition and functions which should be mounted in them based on those requirements. (author)

  18. Results from exploratory drill hole UE2ce, Northwest Yucca Flat, Nevada Test Site, near the NASH Event

    International Nuclear Information System (INIS)

    Pawloski, G.A.

    1982-01-01

    Exploratory drill hole UE2ce was drilled in January 1977 to determine geologic and geophysical characteristics of this site. This report presents geophysical logs, lithology, geologic structure, water table measurements, and physical properties for this drill hole. The data are then extrapolated to the NASH site, an event in U2ce, 55.6 m due north of UE2ce

  19. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  20. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    International Nuclear Information System (INIS)

    Kappes, J.A.

    1999-01-01

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M andO 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS)

  1. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  2. A SKOS-based multilingual thesaurus of geological time scale for interopability of online geological maps

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.

    2011-01-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a

  3. Database system of geological information for geological evaluation base of NPP sites(I)

    International Nuclear Information System (INIS)

    Lim, C. B.; Choi, K. R.; Sim, T. M.; No, M. H.; Lee, H. W.; Kim, T. K.; Lim, Y. S.; Hwang, S. K.

    2002-01-01

    This study aims to provide database system for site suitability analyses of geological information and a processing program for domestic NPP site evaluation. This database system program includes MapObject provided by ESRI and Spread 3.5 OCX, and is coded with Visual Basic language. Major functions of the systematic database program includes vector and raster farmat topographic maps, database design and application, geological symbol plot, the database search for the plotted geological symbol, and so on. The program can also be applied in analyzing not only for lineament trends but also for statistic treatment from geologically site and laboratory information and sources in digital form and algorithm, which is usually used internationally

  4. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    Science.gov (United States)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone

  5. Geological Changes of the Americas and their Influence on the Diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae).

    Science.gov (United States)

    Justi, Silvia A; Galvão, Cleber; Schrago, Carlos G

    2016-04-01

    The family Reduviidae (Hemiptera: Heteroptera), or assassin bugs, is among the most diverse families of the true bugs, with more than 6,000 species. The subfamily Triatominae (kissing bugs) is noteworthy not simply because it is the only subfamily of the Reduviidae whose members feed on vertebrate blood but particularly because all 147 known members of the subfamily are potential Chagas disease vectors. Due to the epidemiological relevance of these species and the lack of an efficient treatment and vaccine for Chagas disease, it is more common to find evolutionary studies focusing on the most relevant vectors than it is to find studies aiming to understand the evolution of the group as a whole. We present the first comprehensive phylogenetic study aiming to understand the events that led to the diversification of the Triatominae. We gathered the most diverse samples of Reduviidae and Triatominae (a total of 229 Reduviidae samples, including 70 Triatominae species) and reconstructed a robust dated phylogeny with several fossil (Reduviidae and Triatominae) calibrations. Based on this information, the possible role of geological events in several of the major cladogenetic events within Triatominae was tested for the first time. We were able to not only correlate the geological changes in the Neotropics with Triatominae evolution but also add to an old discussion: Triatominae monophyly vs. paraphyly. We found that most of the diversification events observed within the Rhodniini and Triatomini tribes are closely linked to the climatic and geological changes caused by the Andean uplift in South America and that variations in sea levels in North America also played a role in the diversification of the species of Triatoma in that region.

  6. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  7. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  8. Biogeographical patterns of Myrcia s.l. (Myrtaceae) and their correlation with geological and climatic history in the Neotropics.

    Science.gov (United States)

    Santos, Matheus Fortes; Lucas, Eve; Sano, Paulo Takeo; Buerki, Sven; Staggemeier, Vanessa Graziele; Forest, Félix

    2017-03-01

    Many recent studies discuss the influence of climatic and geological events in the evolution of Neotropical biota by correlating these events with dated phylogenetic hypotheses. Myrtaceae is one of the most diverse Neotropical groups and it therefore a good proxy of plant diversity in the region. However, biogeographic studies on Neotropical Myrtaceae are still very limited. Myrcia s.l. is an informal group comprising three accepted genera (Calyptranthes, Marlierea and Myrcia) making up the second largest Neotropical group of Myrtaceae, totalling about 700 species distributed in nine subgroups. Exclusively Neotropical, the group occurs along the whole of the Neotropics with diversity centres in the Caribbean, the Guiana Highlands and the central-eastern Brazil. This study aims to identify the time and place of divergence of Myrcia s.l. lineages, to examine the correlation in light of geological and climatic events in the Neotropics, and to explore relationships among Neotropical biogeographic areas. A dated phylogenetic hypothesis was produced using BEAST and calibrated by placing Paleomyrtinaea princetonensis (56Ma) at the root of the tree; biogeographic analysis used the DEC model with dispersal probabilities between areas based on distance and floristic affinities. Myrcia s.l. originated in the Montane Atlantic Forest between the end of Eocene and early Miocene and this region acted as a secondary cradle for several lineages during the evolution of this group. The Caribbean region was important in the diversification of the Calyptranthes clade while the Guayana shield appears as ancestral area for an older subgroup of Myrcia s.l. The Amazon Forest has relatively low diversity of Myrcia s.l. species but appears to have been important in the initial biogeographic history of old lineages. Lowland Atlantic Forest has high species diversity but species rich lineages did not originate in the area. Diversification of most subgroups of Myrcia s.l. occurred throughout

  9. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  10. The geology and Mesozoic collisional history of the Cordillera Real, Ecuador

    Science.gov (United States)

    Aspden, John A.; Litherland, Martin

    1992-04-01

    The geology of the metamorphic rocks of the Cordillera Real of Ecuador is described in terms of five informal lithotectonic divisions. We deduce that during the Mesozoic repeated accretionary events occurred and that dextral transpression has been of fundamental importance in determining the tectonic evolution of this part of the Northern Andes. The oldest event recognised, of probable Late Triassic age, may be related to the break-up of western Gondwana and generated a regional belt of 'S-type' plutons. During the Jurassic, major calc-alkaline batholiths were intruded. Following this, in latest Jurassic to Early Cretaceous time, a volcano-sedimentary terrane, of possible oceanic or marginal basin origin (the Alao division), and the most westerly, gneissic Chaucha-Arenillas terrane, were accreted to continental South America. The accretion of the oceanic Western Cordillera took place in latest Cretaceous to earliest Tertiary time. This latter event coincided with widespread thermal disturbance, as evidenced by the large number of young K-Ar mineral ages recorded from the Cordillera Real.

  11. Analysis on the use of engineered barriers for geologic isolation of spent fuel in a reference salt site repository

    International Nuclear Information System (INIS)

    Cloninger, M.O.; Cole, C.R.; Washburn, J.F.

    1980-12-01

    A perspective on the potential durability and effectiveness requirements for the waste form, container and other engineered barriers for geologic disposal of spent nuclear fuel has been developed. This perspective is based on calculated potential doses to individuals who may be exposed to radioactivity released from a repository via a groundwater transport pathway. These potential dose commitments were calculated with an integrated geosphere transport and bioshpere transport model. A sensitivity analysis was accomplished by varying four important system parameters, namely the waste radionuclide release rate from the repository, the delay prior to groundwater contact with the waste (leach initiation), aquifer flow velocity and flow path length. The nuclide retarding capacity of the geologic media, a major determinant of the isolation effectiveness, was not varied as a parameter but was held constant for a particular reference site. This analysis is limited to looking only at engineered barriers whose net effect is either to delay groundwater contact with the waste form or to limit the rate of release of radionuclides into the groundwater once contact has occurred. The analysis considers only leach incident scenarios, including a water well intrusion into the groundwater near a repository, but does not consider other human intrusion events or catastrophic events. The analysis has so far been applied to a reference salt site repository system and conclusions are presented.Basically, in nearly all cases, the regional geology is the most effective barrier to release of radionuclides to the biosphere; however, for long-lived isotopes of carbon, technetium and iodine, which were poorly sorbed on the geologic media, the geology is not very effective once a leach incident is initiated

  12. Geology Field Trips as Performance Evaluations

    Science.gov (United States)

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  13. Identification of scenarios in the safety assessment of a deep geological site for radioactive waste disposal

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.

    1990-01-01

    The selection and qualification procedure of a site for radioactive wastes disposal in a deep geologic formation, has begun in France in the early eighties. The public authorities, on ANDRA's proposal, has preselected in 1987 four sites, each of them corresponding to a type of geologic formations (granite, clay, salt and shale). Within two years, one of these sites will be chosen for the location of an underground laboratory. The safety analysis for the site's qualification uses evolution scenarios of the repository and its environment, chosen according to a deterministic method. With an appropriate detail level, are defined a reference scenario and scenario with random events. 4 refs., 1 tab [fr

  14. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  15. Geological model for Boulder 1 at Station 2, South Massif, Valley of Taurus-Littrow

    Science.gov (United States)

    Schmitt, H. H.

    1975-01-01

    A possible geological model for the origin and history of the materials that make up Boulder 1 is proposed on the basis of firm and probable regional, local, and boulder geological constraints. These constraints are described in detail, unresolved questions are considered, and a model is presented which appears to satisfy all the firm constraints and most of the probable constraints. According to this model, the crystallization of plagioclase and other ANT-suite phases now present in the boulder as clasts and matrix materials took place during the melted-shell stage of lunar history; the original rocks were greatly modified during the cratered-highland stage; and the events that determined the major characteristics of the boulder occurred during the large-basin stage.

  16. On ocean island geological repository - a second-generation option for disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1993-01-01

    The concept of an ocean subseabed geological high-level waste repository with access via an ocean island is discussed. The technical advantages include, in addition to geologic waste isolation, geographical isolation, near-zero groundwater flow through the disposal site, and near-infinite ocean dilution as a backup in the event of a failure of the repository geological waste isolation system. The institutional advantages may include reduced siting problems and the potential of creating an international waste repository. Establishment of a repository accepting wastes from many countries would allow cost sharing, aid international nonproliferation goals, and ensure proper disposal of spent fuel from developing countries. Major uncertainties that are identified in this concept are the uncertainties in rock conditions at waste disposal depths, costs, and ill-defined institutional issues

  17. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  18. The geologic story of Isle Royale National Park

    Science.gov (United States)

    Huber, N. King

    1975-01-01

    Isle Royale is an outstanding example of relatively undisturbed northwoods lake wilderness. But more than simple preservation of such an environment is involved in its inclusion in our National Park System. Its isolation from the mainland provides an almost untouched laboratory for research in the natural sciences, especially those studies whose very nature depends upon such isolation. One excellent example of such research is the intensive study of the predator-prey relationship of the timber wolf and moose, long sponsored by the National Park Service and Purdue University. In probably no other place in North America are the necessary ecological conditions for such a study so admirably fulfilled as on Isle Royale. The development of a natural laboratory with such conditions is ultimately dependent upon geologic processes and events that although not unique in themselves, produced in their interplay a unique result, the island archipelago as we know it today, with its hills and valleys, swamps and bogs the ecological framework of the plant and animal world. Even the most casual visitor can hardly fail to be struck by the fiordlike nature of many of the bays, the chains of fringing islands, the ridge-and-valley topography, and the linear nature of all these features. The distinctive topography of the archipelago is, of course, only the latest manifestation of geologic processes in operation since time immemorial. Fragments of geologic history going back over a billion years can be read from the rocks of the island, and with additional data from other parts of the Lake Superior region, we can fill in some of the story of Isle Royale. After more than a hundred years of study by man, the story is still incomplete. But then, geologic stories are seldom complete, and what we do know allows a deeper appreciation of one of our most naturally preserved parks and whets our curiosity about the missing fragments.

  19. Present situation and perspective of China's geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Zhang, H.

    2005-01-01

    The theme of the conference, 'Political and Technical Progress of Geologic Repositories', has drawn world-wide attention and remains a challenging topic facing the nuclear industry. I am delighted to attend this important conference and have the opportunity to state our views. And I would like to express my gratitude to our host Sweden and IAEA. The development of nuclear science and technology and the peaceful uses of nuclear energy is one of the greatest achievements of the mankind in the 20. century. The development and progress of nuclear technology, from application of fission energy to the exploration of fusion energy, embodies the mankind's expectation to the future. It will be the major energy of final settlement of the issue of global sustainable development. The safe and effective treatment and disposal of nuclear waste are of vital importance to the peaceful uses of nuclear energy and technology. The most dangerous and long-lived waste has to be contained and isolated from the human living environment. Construction of geologic repository in appropriate geological formation for radioactive waste disposal is being accepted as a suitable solution and being studied widely. In the International Conference on Geological Repositories held in Denver, U.S.A., in November 1999, senior governmental representatives from more than 20 countries stated related policies and decisions of their respective countries, which caught world-wide attention. I am convinced that this conference, an event about geologic repository following the Denver conference, will produce positive results for the safe and effective disposal of nuclear waste. Now I would like to take this opportunity to brief you on China's current situation and perspectives of geologic disposal of high-level radioactive waste. (author)

  20. Compliance demonstration: What can be reasonably expected from safety assessment for geological repositories?

    International Nuclear Information System (INIS)

    Zuidema, P.; Smith, P.; Sumerling, T.

    1999-01-01

    When licensing a nuclear facility, it is important to demonstrate that it will comply with regulatory limits (e.g. individual dose limits) and also show that sufficient attention has been paid to optimisation of facility design and operation, such that any associated radiological impacts will be as low as reasonably achievable (ALARA). In general, in demonstrating compliance, experience can be drawn from the performance of existing and similar facilities, and monitoring plans can be specified that will confirm that actual radiological discharges during operations are within authorised limits for the facility. This is also true in respect of the operational period of a geological repository. For the post-closure phase of a repository, however, it is also necessary to show that possible releases will remain acceptably low even at long times in the future when, it is assumed, control of the facility has lapsed and there is no method of either monitoring releases or taking remedial action in the case of unexpected events or releases. In addition, within each country, a deep geological repository will be a first-of-a-kind development so that compliance arguments can be expected to be rigorously tested without any assistance from the precedent of licensing of similar facilities nationally. This puts heavy, and quite unusual, burdens on the long-term safety assessment for a geological repository to develop a case that is sufficiently strong to demonstrate compliance. This paper focuses on the problem of demonstrating compliance with long-term safety requirements for a geological repository, and explores: the overall aims and special difficulties of demonstrating compliance for a geological repository; the role of safety assessment in demonstrating compliance; the scope for optimisation of a geological repository and importance of robustness and lessons learnt from the application of safety assessment. In addition, some issues requiring further discussion and clarification

  1. The large uranium deposits, their position in the geological cycle, their distribution in the world and their economic importance

    International Nuclear Information System (INIS)

    Cuney, M.; Cathelineau, M.; Nguyen Trung, C.; Pagel, M.; Poty, B.; Aumaitre, R.; Leroy, J.; Ruhlman, F.

    1994-01-01

    The nine types of geological formations with uranium deposits (superficial, precambrian conglomerates, sandstones...) are reviewed. U ore deposits are generally the product of successive enrichments during the geological cycle. Two main mechanisms control U fractionation during the cycle: partial melting followed or not by fractional crystallization and redox reactions. Most of the U ore deposits were formed in relation with major geodynamic events. The most interesting deposits from an economical point of view are the Proterozoic unconformity related deposits which contain very large reserves at a much higher grade than in other deposits

  2. The geological carbon cycle and the global warming / climate debate

    International Nuclear Information System (INIS)

    Frank, F.

    2013-01-01

    The extensively cited seasonal carbon cycle describes the size and the annual fluxes between the temporary reservoirs (ocean, atmosphere, biosphere and soils). Compared with these large annual fluxes (approx. 200 GtC/y) the human contribution seems to be of minor amount and is currently (2011) in the range of 4-5%. However, in the geological carbon cycle, which describes the nearly equal amounts of input (volcanoes etc.) and output (sediments) into and from the temporary reservoirs, the human contribution has now reached 30-50 times the average natural level (9.5 Gt C/y versus ca. 0.2-0.3Gt C/y). In the long-term range (1-10x106y), the variable, but much smaller net imbalance between these geological sources und sinks was responsible for the atmospheric CO2-level in the last 400 My (since then comparable temporary reservoirs exist) and influenced via the various feedbacks the climate on earth. In nearly 95% of this long time the climate system was in (nearly) equilibrium conditions and changes occurred extremely slow. Whenever a certain range of higher rate of change of these driving forces were reached, it had - together with other effects - severe influence on the evolution of life, causing 5 large and many minor 'geological accidents'. Based on isotope geochemistry and a fairly good time resolution by orbitally tuned cyclostratigraphy (astrochronology) in the sedimentary record, we are able to quantify these rates of change with reasonable errors. It turns out that the present rate of change - caused by the C-based fossil energy use - is one to two orders of magnitude more rapid than these severe events (impacts excluded) in the earth system. A vast amount of data is available from the ice age cycles. Climate geology (e.g. the group of M. Sarnthein) made considerable progress in understanding the related geological/oceanic processes and proposed a reasonably constrained mass balance of CO2 during the last cycle, which could help us to understand the future

  3. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  4. Body and Surface Wave Modeling of Observed Seismic Events

    Science.gov (United States)

    1981-04-30

    mechanisms for foreshock , mainshock, and aftershock sequences using Seismic Research Observatory (SRO) data, EOS, 57(12), p. 954, 1976. Bache, T.C., W.L...the event as well as that of the immediate foreshock were 95 located (Allen and Nordquist, 1972) and where the largest surface displacements were...1972). Foreshock , main shock and larger aftershocks of the Borrego Mountain earthquake, U. S. Geological Survey Professional Paper 787, 16-23. Bache

  5. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  6. Geology, petrography and macro meso- aspects, and microstructural area of Salto del Penitente

    International Nuclear Information System (INIS)

    Guerrero Cherma, S.

    2016-05-01

    This work corresponds to a geological and structural study of multi scale approach conducted in a representative area of ​​the southwest sector Dom Feliciano Belt. The study area is located near the Salto del Penitente and presents an array of blocks with lithology and structural characteristics distinctive. A foundation block pre-Brasiliano, a strip of supra crustal rocks and granitoid non-cinematic. The base block, is constituted mainly of gneisses, migmatites, schists and quartzites, foliation has a preferential N259º / 70 (NW). The supra crustal correspond to a meta-volcano sedimentary green schist facies, sequence preferential foliation N040º / 75 ° (SE) and non-kinematic granitoid a granite-gneiss foliation mylonitic according to said preferential direction. The geological survey and the macro- and mesoestructural analysis, determines that the contact of these blocks is through shear zones. These, presented regional and preferential directions N040º and N020º. They are defined respectively as Shear Zone La Posada (informal) and Shear Zone Tips Sugar loaf, corresponding in the study area to the homonymous lineament Machado and Fragoso (1987). Microstructural analysis suggests in low temperature conditions (green schist facies lower) for the event that brings the ZCPPA and contacts Rocks pre-Brasiliano basement with supra crustal. Instead, this event is only significant in the ZCLP, which shows effects of deformation temperature under medium high (amphibolite facies). Based on these conditions, as well as the relations between the two cutting shear zones, a poly phase evolution for the proposed study area. The deformation conditions identified in the work area are correlated with regional events. Both the high temperature dextral event that brings Shear Zone Sarandi del Yi, during the collision Land Nico Perez with the Río de la Plata Craton between 630-590 Ma (Oriolo et al., 2016), as the (2009 Oyhantçabal et al.) sinistral event that gathers the

  7. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  8. The role of catastrophic geomorphic events in central Appalachian landscape evolution

    Science.gov (United States)

    Jacobson, R.B.; Miller, A.J.; Smith, J.A.

    1989-01-01

    Catastrophic geomorphic events are taken as those that are large, sudden, and rare on human timescales. In the nonglaciated, low-seismicity central Appalachians, these are dominantly floods and landslides. Evaluation of the role of catastrophic events in landscape evolution includes assessment of their contributions to denudation and formation of prominent landscape features, and how they vary through space and time. Tropical storm paths and topographic barriers at the Blue Ridge and Allegheny Front create significant climatic variability across the Appalachians. For moderate floods, the influence of basin geology is apparent in modifying severity of flooding, but for the most extreme events, flood discharges relate mainly to rainfall characteristics such as intensity, duration, storm size, and location. Landslide susceptibility relates more directly to geologic controls that determine what intensity and duration of rainfall will trigger slope instability. Large floods and landslides are not necessarily effective in producing prominent geomorphic features. Large historic floods in the Piedmont have been minimally effective in producing prominent and persistent geomorphic features. In contrast, smaller floods in the Valley and Ridge produced erosional and depositional features that probably will require thousands of years to efface. Scars and deposits of debris slide-avalanches triggered on sandstone ridges recover slowly and persist much longer than scars and deposits of smaller landslides triggered on finer-grained regolith, even though the smaller landslides may have eroded greater aggregate volume. The surficial stratigraphic record can be used to extend the spatial and temporal limits of our knowledge of catastrophic events. Many prominent alluvial and colluvial landforms in the central Appalachians are composed of sediments that were deposited by processes similar to those observed in historic catastrophic events. Available stratigraphic evidence shows two

  9. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  10. Geostatistics: a common link between medical geography, mathematical geology, and medical geology.

    Science.gov (United States)

    Goovaerts, P

    2014-08-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.

  11. Environmental geophysics: Locating and evaluating subsurface geology, geologic hazards, groundwater contamination, etc

    International Nuclear Information System (INIS)

    Benson, A.K.

    1994-01-01

    Geophysical surveys can be used to help delineate and map subsurface geology, including potential geologic hazards, the water table, boundaries of contaminated plumes, etc. The depth to the water table can be determined using seismic and ground penetrating radar (GPR) methods, and hydrogeologic and geologic cross sections of shallow alluvial aquifers can be constructed from these data. Electrical resistivity and GPR data are especially sensitive to the quality of the water and other fluids in a porous medium, and these surveys help to identify the stratigraphy, the approximate boundaries of contaminant plumes, and the source and amount of contamination in the plumes. Seismic, GPR, electromagnetic (VLF), gravity, and magnetic data help identify and delineate shallow, concealed faulting, cavities, and other subsurface hazards. Integration of these geophysical data sets can help pinpoint sources of subsurface contamination, identify potential geological hazards, and optimize the location of borings, monitoring wells, foundations for building, dams, etc. Case studies from a variety of locations will illustrate these points. 20 refs., 17 figs., 6 tabs

  12. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  13. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  14. The geology of the Falkland Islands

    OpenAIRE

    Aldiss, D.T.; Edwards, E.J.

    1999-01-01

    This report is complementary to the 1:250 000 scale geological map of the Falkland Islands compiled in 1998. The report and map are products of the Falkland Islands Geological Mapping Project (1996-1998). Geological observation and research in the Islands date from 1764. The Islands were visited during two pioneering scientific cruises in the 19th century. Subsequently, many scientists visited en route to the Antarctic or Patagonia. Geological affinities to other parts of the sout...

  15. A 3D geological and geomechanical model of the 1963 Vajont landslide

    Science.gov (United States)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Chistolini, Filippo; Battista Crosta, Giovanni; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele

    2014-05-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin

  16. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  17. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  18. A Geospatial Information Grid Framework for Geological Survey.

    Science.gov (United States)

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  19. Considering timescales in the post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2009-01-01

    A key challenge in the development of safety cases for the deep geological disposal of radioactive waste is handling the long time frame over which the radioactive waste remains hazardous. The intrinsic hazard of the waste decreases with time, but some hazard remains for extremely long periods. Safety cases for geological disposal typically address performance and protection for thousands to millions of years into the future. Over such periods, a wide range of events and processes operating over many different timescales may impact on a repository and its environment. Uncertainties in the predictability of such factors increase with time, making it increasingly difficult to provide definite assurances of a repository's performance and the protection it may provide over longer timescales. Timescales, the level of protection and the assurance of safety are all linked. Approaches to handling timescales for the geological disposal of radioactive waste are influenced by ethical principles, the evolution of the hazard over time, uncertainties in the evolution of the disposal system (and how these uncertainties themselves evolve) and the stability and predictability of the geological environment. Conversely, the approach to handling timescales can affect aspects of repository planning and implementation including regulatory requirements, siting decisions, repository design, the development and presentation of safety cases and the planning of pre- and post-closure institutional controls such as monitoring requirements. This is an area still under discussion among NEA member countries. This report reviews the current status and ongoing discussions of this issue. (author)

  20. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  1. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  2. 49 CFR 801.59 - Geological records.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Geological records. 801.59 Section 801.59... PUBLIC AVAILABILITY OF INFORMATION Exemption From Public Disclosure § 801.59 Geological records. Pursuant to 5 U.S.C. 552(b)(9), records concerning geological wells are exempt from public disclosure. ...

  3. American West Tephras – Geomagnetic polarity events redefined through calibration of radio-isotopic and astronomical time

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael

    calibration. Although this geomagnetic event is not part of the most recent geologic timescale, refined ages on short-lived excursions could hold importance to understanding time scales for the wavering nature of Earth’s magnetic field. We propose a new 40Ar/39Ar age for the Quaternary mineral dating standard......The foundation of the EARTHTIME/GTSnext initiative seeks to construct an internally consistent geologic timescale based on astronomical and radio-isotopic geochronology. American west tephras offer a prime opportunity to integrate these two independent timescales with the geomagnetic timescale....... Using an astronomically calibrated age for the monitor mineral Fish Canyon sanidine (FCs;28.201 ± 0.046 Ma, Kuiper, et al., 2008), ages of Pleistocene geomagnetic polarity events are reexamined. Of particular interest, the Quaternary mineral dating standard Alder Creek sandine (ACs) is the type locality...

  4. Bio-, Magneto- and event-stratigraphy across the K-T boundary

    Science.gov (United States)

    Preisinger, A.; Stradner, H.; Mauritsch, H. J.

    1988-01-01

    Determining the time and the time structure of rare events in geology can be accomplished by applying three different and independent stratigraphic methods: Biostratigraphy, magneto-stratigraphy and event-stratigraphy. The optimal time resolution of the two former methods is about 1000 years, while by means of event-stratigraphy a resolution of approximately one year can be achieved. For biostratigraphy across the Cretaceous-Tertiary (K-T) boundary micro- and nannofossils have been found best suited. The qualitative and quantitative analyses of minerals and trace elements across the K-T boundary show anomalies on a millimeter scale and permit conclusions regarding the time structure of the K-T event itself. The results of the analyses find a most consistent explanation by the assumption of an extraterrestrial impact. The main portion of the material rain from the atmosphere evidently was deposited within a short time. The long-time components consist of the finest portion of the material rain from the atmosphere and the transported and redeposited fall-out.

  5. The Oligocene carbonate platform of the Zagros Basin, SW Iran: An assessment of highly-complex geological heritage

    Science.gov (United States)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-05-01

    North Africa and the Middle East possess rich geological heritage, but the latter is yet to be fully identified and described. The Oligocene carbonate platform of the Zagros Basin in southwest Iran, which corresponds to the lower part of the Asmari Formation, has significant potential for geoconservation and geotourism. The types of the geological heritage, their value, and the possible geosites have been assessed. The studied deposits are interesting because of lithology (carbonate rocks), fossils (larger foraminifera, other microfossils, diverse marine invertebrates, fish microremains, and trace fossils), biostratigraphical developments, facies (homoclinal carbonate ramp) and signature of global events (glacioeustatic fluctuations), and outstanding hydrocarbon resources. The five main geological heritage types are sedimentary, palaeontological, stratigraphical, palaeogeographical, and economical, from which the palaeontological, palaeogeographical, and economical types are of global rank. The Khollar and Kavar sections in the Fars Province of Iran are recommended as geosites suitable for research, education, and tourism. The high complexity of the geological heritage linked to the Oligocene carbonate platform of the Zagros Basin implies the phenomenon of geodiversity should be understood with regard to the relationships between types and their values.

  6. The Treatment of Geological Time & the History of Life on Earth in High School Biology Textbooks

    Science.gov (United States)

    Summers, Gerald; Decker, Todd; Barrow, Lloyd

    2007-01-01

    In spite of the importance of geological time in evolutionary biology, misconceptions about historical events in the history of life on Earth are common. Glenn (1990) has documented a decline from 1960 to 1989 in the amount of space devoted to the history of life in high school earth science textbooks, but we are aware of no similar study in…

  7. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    On April 2008, the Swiss Federal Council approved the conceptual part of the Sectoral Plan for Deep Geological Repositories. The Plan sets out the details of the site selection procedure for geological repositories for low- and intermediate-level waste (L/ILW) and high-level waste (HLW). It specifies that selection of geological siting regions and sites for repositories in Switzerland will be conducted in three stages, the first one (the subject of this report) being the definition of geological siting regions within which the repository projects will be elaborated in more detail in the later stages of the Sectoral Plan. The geoscientific background is based on the one hand on an evaluation of the geological investigations previously carried out by Nagra on deep geological disposal of HLW and L/ILW in Switzerland (investigation programmes in the crystalline basement and Opalinus Clay in Northern Switzerland, investigations of L/ILW sites in the Alps, research in rock laboratories in crystalline rock and clay); on the other hand, new geoscientific studies have also been carried out in connection with the site selection process. Formulation of the siting proposals is conducted in five steps: A) In a first step, the waste inventory is allocated to the L/ILW and HLW repositories; B) The second step involves defining the barrier and safety concepts for the two repositories. With a view to evaluating the geological siting possibilities, quantitative and qualitative guidelines and requirements on the geology are derived on the basis of these concepts. These relate to the time period to be considered, the space requirements for the repository, the properties of the host rock (depth, thickness, lateral extent, hydraulic conductivity), long-term stability, reliability of geological findings and engineering suitability; C) In the third step, the large-scale geological-tectonic situation is assessed and large-scale areas that remain under consideration are defined. For the L

  8. How Quaternary geologic and climatic events in the southeastern margin of the Tibetan Plateau influence the genetic structure of small mammals: inferences from phylogeography of two rodents, Neodon irene and Apodemus latronum.

    Science.gov (United States)

    Fan, Zhenxin; Liu, Shaoying; Liu, Yang; Zhang, Xiuyue; Yue, Bisong

    2011-03-01

    Phylogeographical studies that focus on the southeastern margin of the Tibetan Plateau are limited. The complex terrain and unique geological history make it a particularly unusual region of the Tibetan Plateau. We carried out a phylogeographical study of two rodent species Neodon irene and Apodemus latronum using the mitochondrial cytochrome b gene sequences. High genetic diversities and deep phylogenetic splits were detected in both rodents. Some haplotypes from one sampling region fell into different evolutionary clades, but most haplotypes from the same sampling regions were clustered together with each other. The results of isolation by distance analysis further substantiated that their genetic diversities were structured along geography. Thus, there were high levels of geographical structure for both rodents. Demographic analyses implied a relatively constant population size for all samples of N. irene and A. latronum in history. However, clade B of N. irene and clade 3 of A. latronum experienced population expansions at 105-32 and 156-47 Kya, respectively. Through comparison with previous studies, we suggest the high mitochondrial DNA diversities in them are probably not a species-specific feature, but a common pattern for small mammals in this unique area. Details of the historical demography of these rodents revealed in this study could provide new insights into how rodents and possibly other small mammals in this region responded to the geological and climatic events.

  9. Intelligent Learning for Knowledge Graph towards Geological Data

    Directory of Open Access Journals (Sweden)

    Yueqin Zhu

    2017-01-01

    Full Text Available Knowledge graph (KG as a popular semantic network has been widely used. It provides an effective way to describe semantic entities and their relationships by extending ontology in the entity level. This article focuses on the application of KG in the traditional geological field and proposes a novel method to construct KG. On the basis of natural language processing (NLP and data mining (DM algorithms, we analyze those key technologies for designing a KG towards geological data, including geological knowledge extraction and semantic association. Through this typical geological ontology extracting on a large number of geological documents and open linked data, the semantic interconnection is achieved, KG framework for geological data is designed, application system of KG towards geological data is constructed, and dynamic updating of the geological information is completed accordingly. Specifically, unsupervised intelligent learning method using linked open data is incorporated into the geological document preprocessing, which generates a geological domain vocabulary ultimately. Furthermore, some application cases in the KG system are provided to show the effectiveness and efficiency of our proposed intelligent learning approach for KG.

  10. New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir

    Science.gov (United States)

    Wells, Ray E.; Haugerud, Ralph A.; Niem, Alan; Niem, Wendy; Ma, Lina; Madin, Ian; Evarts, Russell C.

    2018-04-10

    A geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region’s complex geology (currently in review: “Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington,” by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others). The map, which is planned to be published as a U.S. Geological Survey Scientific Investigations Map, will consist of 51 7.5′ quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region’s crops—in this case, grapes for wine.On this new poster (“New geologic mapping of the northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)—A foundation for understanding their terroir”), we present the geologic map at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

  11. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    Science.gov (United States)

    House, P. K.

    2008-12-01

    The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an

  12. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  13. Geology of the North Sea and Skagerrak

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O. [ed.

    1995-12-31

    The Marine Geology Unit of the Department of Earth Sciences organized the second Marine Geology symposium at Aarhus University, 7-8 October 1993. The intention was to bring together people working especially with the geology of the North Sea and Skagerrak. Approximately 60 people from different Danish and Norwegian institutions attended the symposium. 28 oral presentations were given and 2 posters presented. A large range of geological topics was covered, embracing biostratigraphy, sequence stratigraphy, sedimentology and structural geology. The majority of the presentations dealt with Quaternary geology and Cenozoic sequence stratigraphy, but also Jurassic and Lower Cretaceous stratigraphy was treated. Studies from the major part of the Danish sector were presented, spanning from Bornholm to the central North Sea, and further into the Norwegian North Sea sector. (au)

  14. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  15. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  16. Handling long timescales: approaches and issues in the context of geological disposal

    International Nuclear Information System (INIS)

    Preter, P. de; Smith, P.; Voinis, S.

    2005-01-01

    Geologic repositories are sited, designed and operated to protect humans and the environment from the hazards associated with radioactive waste. Most challengingly, they are required to provide protection after their closure and over timescales that are considerably in excess of those commonly considered in most engineering projects, often up to several thousand or even a million years. This requirement is laid down in international guidance and in many national regulations. Various processes and events will drive the evolution of a repository and its environment, and hence could affect the containment and lead to possible release of radioactive substances from the repository and their migration to the surface. These processes and events are characterised by timescales ranging from a few tens or hundreds of years for transient processes associated with, for example, the re-saturation of the repository and its immediate surroundings following closure, to perhaps millions of years for changes in the geological environment. Safety assessments must consider consequences of releases of radioactive substances and verify that targets set by regulation are complied with. In order to evaluate compliance with dose or risk criteria, assumptions must be made regarding the habits of potentially exposed groups (e.g., diet, lifestyle and land use), and these may change over timescales of just a few years. The need to deal with such a wide range of timescales gives rise to a range of issues related to the methods and presentation of safety assessments and of safety cases. (author)

  17. Exploring the Relationship between Students' Understanding of Conventional Time and Deep (Geologic) Time

    Science.gov (United States)

    Cheek, Kim A.

    2013-07-01

    Many geologic processes occur in the context of geologic or deep time. Students of all ages demonstrate difficulty grasping this fundamental concept which impacts their ability to acquire other geoscience concepts. A concept of deep time requires the ability to sequence events on an immense temporal scale (succession) and to judge the durations of geologic processes based on the rates at which they occur. The twin concepts of succession and duration are the same ideas that underlie a concept of conventional time. If deep time is an extension of conventional time and not qualitatively different from it, students should display similar reasoning patterns when dealing with analogous tasks over disparate temporal periods. Thirty-five US students aged 13-24 years participated in individual task-based interviews to ascertain how they thought about succession and duration in conventional and deep time. This is the first attempt to explore this relationship in the same study in over 30 years. Most students successfully completed temporal succession tasks, but there was greater variability in responses on duration tasks. Conventional time concepts appear to impact how students reason about deep time. The application of spatial reasoning to temporal tasks sometimes leads to correct responses but in other instances does not. Implications for future research and teaching strategies are discussed.

  18. Geochronology and geochemistry by nuclear tracks method: some utilization examples in geologic applied

    International Nuclear Information System (INIS)

    Poupeau, G.; Soliani Junior, E.

    1988-01-01

    This article discuss some applications of the 'nuclear tracks method' in geochronology, geochemistry and geophysic. In geochronology, after rapid presentation of the dating principles by 'Fission Track' and the kinds of geological events mensurable by this method, is showed some application in metallogeny and in petroleum geolocy. In geochemistry the 'fission tracks' method utilizations are related with mining prospecting and uranium prospecting. In geophysics an important application is the earthquake prevision, through the Ra 222 emanations continous control. (author) [pt

  19. Characteristics of Chinese petroleum geology. Geological features and exploration cases of stratigraphic, foreland and deep formation traps

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chengzao [PetroChina Company Limited, Beijing (China)

    2012-07-01

    The first book of this subject in the recent 10 years. ''Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep Formation Traps'' systematically presents the progress made in petroleum geology in China and highlights the latest advances and achievements in oil/gas exploration and research, especially in stratigraphic, foreland and deep formation traps. The book is intended for researchers, practitioners and students working in petroleum geology, and is also an authoritative reference work for foreign petroleum exploration experts who want to learn more about this field in China.

  20. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  1. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  2. Russian geological education in the world market (the case of Russian State Geological Prospecting University

    Directory of Open Access Journals (Sweden)

    Vasily Ivanovich Lisov

    2016-12-01

    Full Text Available Higher geological education in Russia and in MSGPI-RSGPU specific. It - engineering. The mineral deposits determine the development of the global industry and foreign trade. Growing global demand for the profession of geologists and mining engineers. Training of foreign students in Russia has its own geopolitical and economic importance. In Russia a strong resource-based economy. It attracts students from developing countries. MGRI-RSGPU is the leading universities training specialists for mining. The article presents data about the University and types of education. Shown scientific and educational problems in higher education. This article discusses the prospects for the promotion of Russian higher geological education at the world market of educational services. The increasing role of new scientific and technological achievements in mining, enhanced environmental as well as staff requirements is revealed. Given that the leading schools in the mining industry, in addition to Russia, are formed in Canada, Germany, USA, Australia, Great Britain, many developing countries rich in natural resources, have begun to form their own national centers for training in this area. Under such competitive conditions Russian geological education maintains its own niche. Recognition of this is the active participation of Russian universities in the creation and development of the World Forum of sustainable development of mineral universities (WFURS, described in the article. The main factors of competitiveness that led to leading positions of Russian State Geological Prospecting University in system of the Russian geological education are described. Particular attention is paid to the international activities of Russian higher educational institutions including Geological Prospecting University. The basic statistics (both in the context of the country, and in the field of foreign undergraduate and graduate students enrolled at this university is provided. The

  3. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  4. Maps showing geology, oil and gas fields, and geological provinces of South America

    Science.gov (United States)

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  5. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    Science.gov (United States)

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  6. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  7. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  8. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  9. Provincial geology and the Industrial Revolution.

    Science.gov (United States)

    Veneer, Leucha

    2006-06-01

    In the early nineteenth century, geology was a new but rapidly growing science, in the provinces and among the gentlemen scientists of London, Oxford and Cambridge. Industry, particularly mining, often motivated local practical geologists, and the construction of canals and railways exposed the strata for all to see. The most notable of the early practical men of geology was the mineral surveyor William Smith; his geological map of England and Wales, published in 1815, was the first of its kind. He was not alone. The contributions of professional men, and the provincial societies with which they were connected, are sometimes underestimated in the history of geology.

  10. Engineering Geological Conditions of the Ignalina NPP Region

    International Nuclear Information System (INIS)

    Buceviciute, S.

    1996-01-01

    During engineering geological mapping, the upper part (to 15-20 m depths) of the lithosphere was investigated at the Ignalina Nuclear Power Plant (INPP) for physical rock characteristics and recent exogenic geological processes and phenomena. The final result of engineering geological mapping was the division of the area into engineering geological regions. In this case five engineering geological regions have been distinguished. The Fig. shows a scheme of engineering geological regionalization of the area and the typical sections of the engineering geological regions. The sections show genesis, age, soil type, thickness of stratigraphic genetical complex for the rocks occurring in the zone of active effect of engineering buildings, as well as the conical strength and density of the distinguished soils. 1 fig., 1 tab

  11. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  12. Scenarios used for the evaluations of the safety of a site for adioactive waste disposal in deep geologic formations

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.

    1989-11-01

    The selection and qualification procedure of a site for radioactive wastes disposal in a deep geologic formation, has begun in France in the early eighties. The public authorities, on ANDRA's proposal, has preselected in 1987 four sites, each of them coppresponding to a type, of geologic formations (granite, clay, salt and shale). Within two years, one of these sites will be chosen for the location of an undergound laboratory. The safety analysis for the site's qualification uses evolution scenarios of the repository and its environment, chosen according to a deterministic method. With an appropriate detail level, are defined a reference scenario and scenario with random events [fr

  13. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  14. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  15. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  16. Hydro-Geological Hazard Temporal Evolution during the last seven decades in the Solofrana River Basin—Southern Italy

    Science.gov (United States)

    Longobardi, Antonia; Diodato, Nazzareno; Mobilia, Mirka

    2017-04-01

    Extremes precipitation events are frequently associated to natural disasters falling within the broad spectrum of multiple damaging hydrological events (MDHEs), defined as the simultaneously triggering of different types of phenomena, such as landslides and floods. The power of the rainfall (duration, magnitude, intensity), named storm erosivity, is an important environmental indicator of multiple damaging hydrological phenomena. At the global scale, research interest is actually devoted to the investigation of non-stationary features of extreme events, and consequently of MDHEs, which appear to be increasing in frequency and severity. The Mediterranean basin appears among the most vulnerable regions with an expected increase in occurring damages of about 100% by the end of the century. A high concentration of high magnitude and short duration rainfall events are, in fact, responsible for the largest rainfall erosivity and erosivity density values within Europe. The aim of the reported work is to investigate the relationship between the temporal evolution of severe geomorphological events and combined precipitation indices as a tool to improve understanding the hydro-geological hazard at the catchment scale. The case study is the Solofrana river basin, Southern Italy, which has been seriously and consistently in time affected by natural disasters. Data for about 45 MDH events, spanning on a decadal scale 1951-2014, have been collected and analyzed for this purpose. A preliminary monthly scale analysis of event occurrences highlights a pronounced seasonal characterization of the phenomenon, as about 60% of the total number of reported events take place during the period from September to November. Following, a statistical analysis clearly indicates a significant increase in the frequency of occurrences of MDHEs during the last decades. Such an increase appears to be related to non-stationary features of an average catchment scale rainfall-runoff erosivity index

  17. A Geospatial Information Grid Framework for Geological Survey

    OpenAIRE

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of ...

  18. Plans for characterization of the potential geologic repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dobson, D.C.; Blanchard, M.B.; Voegele, M.D.; Younker, J.L.

    1990-01-01

    Site investigations in the vicinity of the potential repository site at Yucca Mountain, Nevada, have occurred for many years. Although information from previous site investigations was adequate to support preliminary evaluations by the US Department of Energy (DOE) in the Environmental Assessment and to develop conceptual repository and waste package designs, this information is insufficient to proceed to the advanced designs and performance assessments required for the license application to the US Nuclear Regulatory Commission (NRC). Therefore, intensive site characterization is planned, as described in the December 1988 Site Characterization Plan (SCP). The data acquisition activities described in the SCP are focused on obtaining information to allow evaluations of the natural and engineered barriers considered potentially relevant to repository performance. The site data base must be adequate to allow predictions of the range of expected variation in geologic conditions over the next 10,000 years, as well as predictions of the probabilities for catastrophic geologic events that could affect repository performance. 4 refs., 4 figs

  19. The 3D geological model of the 1963 Vajont rockslide, reconstructed with implicit surface methods

    Science.gov (United States)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Taller, Claudio

    2015-04-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and of its particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all the relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along

  20. County digital geologic mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  1. County digital geologic mapping. Final report

    International Nuclear Information System (INIS)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-01-01

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included

  2. Geologic Resource Evaluation of Pu'ukohola Heiau National Historic Site, Hawai'i: Part I, Geology and Coastal Landforms

    Science.gov (United States)

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'ukohola Heiau National Historic Site (PUHE) is the smallest (~86 acres) of three National Parks located on the leeward Kona coast of the Island of Hawai'i. The main structure at PUHE, Pu'ukohola Heiau, is an important historical temple that was built during 1790-91 by King Kamehameha I

  3. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam

  4. Magnetic susceptibility as a simple tracer for fluvial sediment source ascription during storm events.

    Science.gov (United States)

    Rowntree, Kate M; van der Waal, Bennie W; Pulley, Simon

    2017-06-01

    Sediment tracing using a single tracer, low frequency magnetic susceptibility (X lf ), was used to apportion suspended sediment to geologically defined source areas and to interpret sediment source changes during flood events in the degraded catchment of the Vuvu River, a headwater tributary of the Mzimbubu River, South Africa. The method was tested as a simple tool for use by catchment managers concerned with controlling erosion. The geology of the 58 km 2 catchment comprises two distinct formations: basalt in the upper catchment with a characteristically high magnetic susceptibility and shales with a low magnetic susceptibility in the lower catchment. Application of an unmixing model incorporating a Monte Carlo uncertainty analysis showed that X lf provided a means to assign the proportion of each geological province contributing to the river's sediment load. Grab water samples were collected at ten-minute intervals during flood events for subsequent analysis of suspended sediment concentration and the magnetic susceptibility of the filtered sediment. Two floods are presented in detail, the first represents a significant event at the start of the wet season (max. discharge 32 m 3  s -1 ); the second was a smaller flood (max discharge 14 m 3  s -1 ) that occurred a month later. Suspended sediment concentrations during the twelve monitored events showed a characteristic decline over the wet season. The main source of suspended sediment was shown to be from the mudstones in the lower catchment, which contributed 86% of the total measured load. The sediment dynamics during the two floods monitored in detail were quite different from each other. In the first the sediment concentration was high (11 g L -1 ), peaking after the flood peak. The X lf value increased during the event, indicating that contribution to the sediment load from basalt in the upper catchment increased during the recession limb. In the second, smaller flood the sediment peak (6 g L -1

  5. Abrupt global events in the Earth's history: a physics perspective

    International Nuclear Information System (INIS)

    Ryskin, Gregory

    2010-01-01

    The timeline of the Earth's history reveals quasi-periodicity of the geological record over the last 542 Myr, on timescales close, in the order of magnitude, to 1 Myr. What is the origin of this quasi-periodicity? What is the nature of the global events that define the boundaries of the geological time scale? I propose that a single mechanism is responsible for all three types of such events: mass extinctions, geomagnetic polarity reversals, and sea-level fluctuations. The mechanism is fast, and involves a significant energy release. The mechanism is unlikely to have astronomical causes, both because of the energies involved and because it acts quasi-periodically. It must then be sought within the Earth itself. And it must be capable of reversing the Earth's magnetic field. The last requirement makes it incompatible with the consensus model of the origin of the geomagnetic field-the hydromagnetic dynamo operating in the Earth's fluid core. In the second part of the paper, I show that a vast amount of seemingly unconnected geophysical and geological data can be understood in a unified way if the source of the Earth's main magnetic field is a ∼200 km thick lithosphere, repeatedly magnetized as a result of methane-driven oceanic eruptions, which produce ocean flow capable of dynamo action. The eruptions are driven by the interplay of buoyancy forces and exsolution of dissolved gas, which accumulates in the oceanic water masses prone to stagnation and anoxia. Polarity reversals, mass extinctions and sequence boundaries are consequences of these eruptions. Unlike the consensus model of geomagnetism, this scenario is consistent with the paleomagnetic data showing that 'directional changes during a reversal can be astonishingly fast, possibly occurring as a nearly instantaneous jump from one inclined dipolar state to another in the opposite hemisphere'.

  6. Geologic history of quartz-normative and olivine-normative basalts in the vicinity of Hadley Rille (Apollo 15)

    International Nuclear Information System (INIS)

    Grove, T.L.

    1985-01-01

    The geologic history of the quartz normative (QNB) and olivine normative (ONB) basalt types at Hadley Rille are discussed. A model for the geology of the mare basalts was constructed from a combination of field observations, sample chemistry, sample petrology and personal bias from terrestrial experience. The model proposes that the QNBs are the only mare lava type that is present as outcrop in the area traversed by the astronauts during the Apollo 15 mission. The returned QNB samples formed during a single eruptive phase of the Hadley Rille lava tube system. The ONB lavas are an exotic component transported to the site by a cratering event, or the ONBs are samples excavated from older are bedrock that was partly covered by the QNB lavas

  7. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  8. Geological disposal: security and R and D. Security of 'second draft for R and D of geological disposal'

    International Nuclear Information System (INIS)

    Shiotsuki, Masao; Miyahara, Kaname

    2003-01-01

    The second draft for R and D of geological disposal (second draft) was arranged in 1999. The idea of security of geological disposal in the second draft is explained. The evaluation results of the uncertainty analysis and an example of evaluation of the effect of separation nuclear transmutation on the geological disposal are shown. The construction of strong engineered barrier is a basic idea of geological disposal system. Three processes such as isolation, engineering countermeasures and safety evaluation are carried out for the security of geological disposal. The security of geological environment for a long time of 12 sites in Japan was studied by data. Provability of production and enforcement of engineered barrier were confirmed by trial of over pack, tests and the present and future technologies developed. By using the conditions of reference case in the second draft, the evaluation results of dose effects in the two cases: 1) 90 to 99% Cs and Sr removed from HLW (High Level radioactive Waste) and 2) high stripping ratio of actinium series are explained. (S.Y.)

  9. Proceedings of the symposium on isotope geology progress: technology, methods, theory and application

    International Nuclear Information System (INIS)

    2003-11-01

    The symposium was held in Beijing, Nov. 7-11, and the proceedings collects 122 articles, the contents include: new technology and new methods on isotopic test; isotope fractionation mechanism; the early evolution of the solar system and the Earth; continental dynamics and evolution of orogenic belts; minerals, energy and water; major history events on life origin, evolution and geology; changes in the Earth's global and modern environment--the oceans, the atmosphere, rivers and lakes, karst and soil, ecological agriculture and modern environment

  10. Aniakchak National Monument and Preserve: Geologic resources inventory report

    Science.gov (United States)

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  11. Methodology of safety assessment and sensitivity analysis for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1995-01-01

    A deterministic safety assessment methodology has been developed to evaluate long-term radiological consequences associated with geologic disposal of high-level radioactive waste, and to demonstrate a generic feasibility of geologic disposal. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. A computer code system GSRW thus developed is based on a non site-specific model, and consists of a set of sub-modules for calculating the release of radionuclides from engineered barriers, the transport of radionuclides in and through the geosphere, the behavior of radionuclides in the biosphere, and radiation exposures of the public. In order to identify the important parameters of the assessment models, an automated procedure for sensitivity analysis based on the Differential Algebra method has been developed to apply to the GSRW. (author)

  12. Geocongress 84: 20. Geological congress of the Geological Society of South Africa. Abstracts: Pt. 1. General

    International Nuclear Information System (INIS)

    1984-01-01

    Various aspects of the geology, geochemistry and geophysics of the geologic deposits in South Africa are dealt with. Uranium and thorium resources are included in this. There are also chapters on stratigraphy, petrology and petrochemistry

  13. Geology of Cardiff and Faraday Townships

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, D F

    1960-12-31

    The area described in this report lies at the centre of the Haliburton-Bancroft uranium district in Ontario, where prospecting and mining have been carried out for over 50 years. The report describes the area`s physiography, natural resources, general geology (Precambrian metasedimentary, plutonic, and granitic and syenitic rocks), structural geology, and economic geology. The latter section includes descriptions of occurrences, claims, mines, and mineral properties, including the principal uranium properties in the area.

  14. Active fault and other geological studies for seismic assessment: present state and problems

    International Nuclear Information System (INIS)

    Kakimi, Toshihiro

    1997-01-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the 'cautiousness' of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the 'precaution faults' having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a 'precaution fault'. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  15. Active fault and other geological studies for seismic assessment: present state and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  16. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  17. The Early Ludfordian leintwardinensis graptolite Event and the Gorstian-Ludfordian boundary in Bohemia (Silurian, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Štorch, Petr; Manda, Š.; Loydell, D. K.

    2014-01-01

    Roč. 57, č. 5 (2014), s. 1003-1043 ISSN 0031-0239 R&D Projects: GA ČR GA205/09/0703 Institutional support: RVO:67985831 Keywords : biostratigraphy * extinction * Gorstian-Ludfordian boundary * graptolites * leintwardinensis Event * Silurian Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.240, year: 2014

  18. Complex geologic characterization of the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Harper, T R [British Petroleum Research Center, Sunberry, England; Szymanski, J S

    1982-01-01

    The present basis for characterizing geological environments is identified in this paper, and the additional requirements imposed by the need to isolate high-level waste safely are discussed. Solutions to these additional requirements are proposed. The time scale of concern and the apparent complexity of the required multidisciplinary approach are identified. It is proposed that an increased use of the geologic record, together with a recognition that all geologic processes operate within an interdependent system, be a key feature in geologic characterization of deep repositories.

  19. Three-dimensional Geological and Geo-mechanical Modelling of Repositories for Nuclear Waste Disposal in Deep Geological Structures

    International Nuclear Information System (INIS)

    Fahland, Sandra; Hofmann, Michael; Bornemann, Otto; Heusermann, Stefan

    2008-01-01

    To prove the suitability and safety of underground structures for the disposal of radioactive waste extensive geo-scientific research and development has been carried out by BGR over the last decades. Basic steps of the safety analysis are the geological modelling of the entire structure including the host rock, the overburden and the repository geometry as well as the geo-mechanical modelling taking into account the 3-D modelling of the underground structure. The geological models are generated using the special-construction openGEO TM code to improve the visualisation an d interpretation of the geological data basis, e.g. borehole, mine, and geophysical data. For the geo-mechanical analysis the new JIFE finite-element code has been used to consider large 3-D structures with complex inelastic material behaviour. To establish the finite-element models needed for stability and integrity calculations, the geological models are simplified with respect to homogenous rock layers with uniform material behaviour. The modelling results are basic values for the evaluation of the stability of the repository mine and the long-term integrity of the geological barrier. As an example of application, the results of geological and geo-mechanical investigations of the Morsleben repository based on 3-D modelling are presented. (authors)

  20. Description of geological data in SKBs database GEOTAB

    International Nuclear Information System (INIS)

    Stark, T.

    1988-01-01

    Measurements for the characterization of geological, geophysical, hydrogeological and hydrochemical condition have been performed since 1977 in specific site investigation as well as for geoscientific projects. The database comprises four main groups of data volumes. These are: geological data, geophysical data, hydrogeological data, and hydrochemical data. In the database, background information from the investigations and results are stored on-line on the VAX 750, while raw data are either stored on-line or on magnetic tapes. This report deals with geological data and describes the dataflow from the measurements at the sites to the result tables in the database. All of the geological investigations were carried out by the Swedish Geological Survey, and since July 1982 by Swedish Geological Co, SGAB. The geological investigations have been divided into three categories, and each category is stored separately in the database. The are: surface factures, core mapping, and chemical analyses. At SGU/SGAB the geological data were stored on-line on-line on a PRIME 750 mini computer, on microcomputer floppy disks or in filed paper protocols. During 1987 the data files were transferred from SGAB to datafiles on the VAX computer. In the report the data flow of each of the three geological information categories are described separately. (L.E.)

  1. USGS National Geologic Map Database Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. According to...

  2. Geologic factors in the isolation of nuclear waste: evaluation of long-term geomorphic processes and events

    International Nuclear Information System (INIS)

    Mara, S.J.

    1979-01-01

    In this report the rate, duration, and magnitude of changes from geomorphic processes and events in the Southwest and the Gulf Coast over the next million years are projected. The projections were made by reviewing the pertinent literature; evaluating the geomorphic history of each region, especially that during the Quaternary Period; identifying the geomorphic processes and events likely to be significant in the two regions of interest; and estimating the average and worst-case conditions expected over the next million years

  3. Age determination and geological studies

    International Nuclear Information System (INIS)

    Stevens, R.D.; Delabio, R.N.; Lachance, G.R.

    1982-01-01

    Two hundred and eight potassium-argon age determinations carried out on Canadian rocks and minerals are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in brief outline and the constants used in the calculation of ages are listed. Two geological time-scales are reproduced in tabular form for ready reference and an index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference

  4. Role of waste packages in the safety of a high level waste repository in a deep geological formation

    International Nuclear Information System (INIS)

    Bretheau, F.; Lewi, J.

    1990-06-01

    The safety of a radioactive waste disposal facility lays on the three following barriers placed between the radioactive materials and the biosphere: the waste package; the engineered barriers; the geological barrier. The function assigned to each of these barriers in the performance assessment is an option taken by the organization responsible for waste disposal management (ANDRA in France), which must show that: expected performances of each barrier (confinement ability, life-time, etc.) are at least equal to those required to fulfill the assigned function; radiation protection requirements are met in all situations considered as credible, whether they be the normal situation or random event situations. The French waste management strategy is based upon two types of disposal depending on the nature and activity of waste packages: - surface disposal intended for low and medium level wastes having half-lives of about 30 years or less and alpha activity less than 3.7 MBq/kg (0.1 Ci/t), for individual packages and less than 0.37 MBq/kg (0.01 Ci/t) in the average. Deep geological disposal intended for TRU and high level wastes. The conditions of acceptance of packages in a surface disposal site are subject to the two fundamental safety rules no. I.2 and III.2.e. The present paper is only dealing with deep geological disposal. For deep geological repositories, three stages are involved: stage preceding definitive disposal (intermediate storage, transportation, handling, setting up in the disposal cavities); stage subsequent to definitive sealing of the disposal cavities but prior to the end of operation of the repository; stage subsequent to closure of the repository. The role of the geological barrier has been determined as the essential part of long term radioactivity confinement, by a working group, set up by the French safety authorities. Essential technical criteria relating to the choice of a site so defined by this group, are the following: very low permeability

  5. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitations, and, where available, case history applications in crystalline rock. Available information indicates that individual techniques provide reliable information on characteristics at the surface, but have limited success in projections to depths greater that approximately 100 m. A combination of integrated techniques combines with data from a limited number of boreholes would significantly improve the reliability and confidence of early characterization studies to provide qualitative rock body characteristics for region-to-area and area-to-site selection evaluations. 458 refs., 32 figs., 14 tabs

  6. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  7. Evaluating Boy Scout Geology Education, A Pilot Study

    Science.gov (United States)

    Hintz, R. S.; Thomson, B.

    2008-12-01

    This study investigated geology knowledge acquisition by Boy Scouts through use of the Boy Scout Geology Merit Handbook. In this study, boys engaged in hands-on interactive learning following the requirements set forth in the Geology Merit Badge Handbook. The purposes of this study were to determine the amount of geology content knowledge engendered in adolescent males through the use of the Geology Merit Badge Handbook published by the Boy Scouts of America; to determine if single sex, activity oriented, free-choice learning programs can be effective in promoting knowledge development in young males; and to determine if boys participating in the Scouting program believed their participation helped them succeed in school. Members of a local Boy Scout Troop between the ages of 11 and 18 were invited to participate in a Geology Merit Badge program. Boys who did not already possess the badge were allowed to self-select participation. The boys' content knowledge of geology, rocks, and minerals was pre- and post-tested. Boys were interviewed about their school and Scouting experiences; whether they believed their Scouting experiences and work in Merit Badges contributed to their success in school. Contributing educational theories included single-sex education, informal education with free-choice learning, learning styles, hands-on activities, and the social cognitive theory concept of self-efficacy. Boys who completed this study seemed to possess a greater knowledge of geology than they obtained in school. If boys who complete the Boy Scout Geology Merit Badge receive additional geological training, their field experiences and knowledge acquired through this learning experience will be beneficial, and a basis for continued scaffolding of geologic knowledge.

  8. Fission-track ages and their geological interpretation

    International Nuclear Information System (INIS)

    Wagner, G.A.

    1981-01-01

    In fission-track dating, experimental procedures such as etching and thermal pre-treatment may strongly affect the age values determined and their geological interpretation. This peculiarity is due to the common phenomenon of partial fading of fossil (spontaneous-) fission tracks during a sample's geological history. The proper geological interpretation of the age data must take into account the specific experimental conditions, the stability characteristics and size distribution of fission tracks in the sample, the ages of co-existing minerals, and the independent information about the thermal history of the geological region. (author)

  9. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  10. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  11. Features, Events and Processes for the Used Fuel Disposition Campaign

    International Nuclear Information System (INIS)

    Blink, J.A.; Greenberg, H.R.; Caporuscio, F.A.; Houseworth, J.E.; Freeze, G.A.; Mariner, P.; Cunnane, J.C.

    2010-01-01

    The Used Fuel Disposition (UFD) Campaign within DOE-NE is evaluating storage and disposal options for a range of waste forms and a range of geologic environments. To assess the potential performance of conceptual repository designs for the combinations of waste form and geologic environment, a master set of Features, Events, and Processes (FEPs) has been developed and evaluated. These FEPs are based on prior lists developed by the Yucca Mountain Project (YMP) and the international repository community. The objective of the UFD FEPs activity is to identify and categorize FEPs that are important to disposal system performance for a variety of disposal alternatives (i.e., combinations of waste forms, disposal concepts, and geologic environments). FEP analysis provides guidance for the identification of (1) important considerations in disposal system design, and (2) gaps in the technical bases. The UFD FEPs also support the development of performance assessment (PA) models to evaluate the long-term performance of waste forms in the engineered and geologic environments of candidate disposal system alternatives. For the UFD FEP development, five waste form groups and seven geologic settings are being considered. A total of 208 FEPs have been identified, categorized by the physical components of the waste disposal system as well as cross-cutting physical phenomena. The combination of 35 waste-form/geologic environments and 208 FEPs is large; however, some FEP evaluations can cut across multiple waste/environment combinations, and other FEPs can be categorized as not-applicable for some waste/environment combinations, making the task of FEP evaluation more tractable. A FEP status tool has been developed to document progress. The tool emphasizes three major areas that can be statused numerically. FEP Applicability documents whether the FEP is pertinent to a waste/environment combination. FEP Completion Status documents the progress of the evaluation for the FEP

  12. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park

    International Nuclear Information System (INIS)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-01-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  13. Ontology-aided annotation, visualization and generalization of geological time-scale information from online geological map services

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a RDF (Resource Description Framework) model to represent

  14. Ontology-aided annotation, visualization and generalization of geological time scale information from online geological map services

    NARCIS (Netherlands)

    Ma, Marshal; Ma, X.; Carranza, E.J.M; Wu, C.; van der Meer, F.D.

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a Resource Description Framework model to represent the

  15. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  16. Long-term characteristics of geological conditions in Japan. Pt. 1. Fundamental concept for future's prediction of geological conditions and the subjects

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro; Chigira, Masahiro.

    1997-01-01

    It is very important to evaluate the long-term stability of geological conditions such as volcanic activity, uplift-subsidence, earthquakes, faulting and sea level change when the long-term safety performance of HLW geological disposal is investigated. We proposed the extrapolation method using the geological date obtained in the geologic time of the last 500 ka to predict the future's tectonic movements in Japan. Furthermore, we extract geological conditions that would affect the long-term safety of HLW geological disposal with regard to direct and indirect radionuclide release scenarios. As a result, it was concluded that volcanic activity and tectonic movements including faulting and uplift-subsidence, should be considered and their surveying system and evaluating method should be developed. (author)

  17. Geology for a changing world 2010-2020-Implementing the U.S. Geological Survey science strategy

    Science.gov (United States)

    Gundersen, Linda C.S.; Belnap, Jayne; Goldhaber, Martin; Goldstein, Arthur; Haeussler, Peter J.; Ingebritsen, S.E.; Jones, John W.; Plumlee, Geoffrey S.; Thieler, E. Robert; Thompson, Robert S.; Back, Judith M.

    2011-01-01

    This report describes a science strategy for the geologic activities of the U.S. Geological Survey (USGS) for the years 2010-2020. It presents six goals with accompanying strategic actions and products that implement the science directions of USGS Circular 1309, 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017.' These six goals focus on providing the geologic underpinning needed to wisely use our natural resources, understand and mitigate hazards and environmental change, and understand the relationship between humans and the environment. The goals emphasize the critical role of the USGS in providing long-term research, monitoring, and assessments for the Nation and the world. Further, they describe measures that must be undertaken to ensure geologic expertise and knowledge for the future. The natural science issues facing today's world are complex and cut across many scientific disciplines. The Earth is a system in which atmosphere, oceans, land, and life are all connected. Rocks and soils contain the answers to important questions about the origin of energy and mineral resources, the evolution of life, climate change, natural hazards, ecosystem structures and functions, and the movements of nutrients and toxicants. The science of geology has the power to help us understand the processes that link the physical and biological world so that we can model and forecast changes in the system. Ensuring the success of this strategy will require integration of geological knowledge with the other natural sciences and extensive collaboration across USGS science centers and with partners in Federal, State, and local agencies, academia, industry, nongovernmental organizations and, most importantly, the American public. The first four goals of this report describe the scientific issues facing society in the next 10 years and the actions and products needed to respond to these issues. The final two goals focus on the expertise and

  18. The 2016 Kumamoto Earthquakes: Cascading Geological Hazards and Compounding Risks

    Directory of Open Access Journals (Sweden)

    Katsuichiro Goda

    2016-08-01

    Full Text Available A sequence of two strike-slip earthquakes occurred on 14 and 16 April 2016 in the intraplate region of Kyushu Island, Japan, apart from subduction zones, and caused significant damage and disruption to the Kumamoto region. The analyses of regional seismic catalog and available strong motion recordings reveal striking characteristics of the events, such as migrating seismicity, earthquake surface rupture, and major foreshock-mainshock earthquake sequences. To gain valuable lessons from the events, a UK Earthquake Engineering Field Investigation Team (EEFIT was dispatched to Kumamoto, and earthquake damage surveys were conducted to relate observed earthquake characteristics to building and infrastructure damage caused by the earthquakes. The lessons learnt from the reconnaissance mission have important implications on current seismic design practice regarding the required seismic resistance of structures under multiple shocks and the seismic design of infrastructure subject to large ground deformation. The observations also highlight the consequences of cascading geological hazards on community resilience. To share the gathered damage data widely, geo-tagged photos are organized using Google Earth and the kmz file is made publicly available.

  19. The K-PG boundary: how geological events lead to collapse of marine primary producers

    Science.gov (United States)

    Hir guillaume, Le; frederic, Fluteau; yves, Goddéris

    2017-04-01

    The cause(s) of Cretaceous/Paleogene (K-Pg) mass extinction event is a matter of debate since three decades. A first scenario connects the K-Pg crisis with the Chicxulub impact while the second scenario evokes the emplacement of the Deccan traps in India as the cause for the K-Pg biodiversity collapse. Pierazzo et al. (1998) estimated that the extraterrestrial bolide lead to an instantaneously CO2 degassing ranging from 880 Gt to 2,960 Gt into the atmosphere, together with a massive release of SO2 ranging from 150 to 460 Gt.. Self et al. (2006, 2008) and Chenet et al. (2009) suggested that the emplacement of the Deccan traps released 15,000 Gt to 35,000 Gt of CO2 and 6,800 Gt to 17,000 Gt of SO2 over a 250 kyr-long period (Schoene et al., 2015). To decipher and quantify the long term environmental consequences of both events, we tested different scenarios: a pulse-like magmatic degassing, a bolide impact, and a combination of both. To understand the environmental changes and quantify biodiversity responses, we improve GEOCLIM, a coupled climate-carbon numerical model, by implementing a biodiversity model in which marine species are described by specific death/born rates, sensitivity to abiotic factors (temperature, pH, dissolved O2, calcite saturation state) and feeding relationships, each of these characteristics is assigned randomly. Preliminary simulations accounting for the eruption of the Deccan traps show that successive cooling events (S-aerosols effect) combined with a progressive acidification of surface water (caused by CO2 and SO2 injections) cause a major collapse of the marine biomass. Additional simulations in which Chicxulub impact, different community structures of primary producers will be discussed.

  20. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  1. Advances in planetary geology

    International Nuclear Information System (INIS)

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed

  2. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    Science.gov (United States)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively

  3. Bedrock Geologic Map of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG06-4 Thompson, P. J., 2006, Bedrock Geologic Map of Woodstock, Vermont: VGS Open-File Report VG06-4, scale 1:24,000. The bedrock geologic map...

  4. Digital geologic map in the scale 1:50 000

    International Nuclear Information System (INIS)

    Kacer, S.; Antalik, M.

    2005-01-01

    In this presentation authors present preparation of new digital geologic map of the Slovak Republic. This map is prepared by the State Geological Institute of Dionyz Stur as a part of the project Geological information system GeoIS. One of the basic information geologic layers, which will be accessible on the web-site will be digital geologic map of the Slovak Republic in the scale 1: 50 000

  5. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  6. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    Science.gov (United States)

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  7. Study on radon geological potential of Beijing city

    International Nuclear Information System (INIS)

    Liu Qingcheng; Wu Xinmin; Liu Yujuan; Yang Yaxin; Zhang Ye

    2009-01-01

    According to elemental geochemistry in Beijing, the uranium content in the area was measured, and distribution of radon concentration was predicted. Based on the uranium-radium equilibrium coefficient, porosity and diffusion coefficient, which were either measured or calculated, the radon geological potential of Beijing city was studied using γ-ray spectroscopy or mass spectroscopy and certain models were used to calculate the relation between radon geological potential and lithology and geological structure. The results showed that radon geological potential of Beijing city could be divided into four zones, tend of every zone coincides with the main structure, and the potential values nearly relate with geological factors. (authors)

  8. Examining the effect of adverse geological conditions on jamming of a single shielded TBM in Uluabat tunnel using numerical modeling

    Directory of Open Access Journals (Sweden)

    Rohola Hasanpour

    2017-12-01

    Full Text Available Severe shield jamming events have been reported during excavation of Uluabat tunnel through adverse geological conditions, which resulted in several stoppages at advancing a single shielded tunnel boring machine (TBM. To study the jamming mechanism, three-dimensional (3D simulation of the machine and surrounding ground was implemented using the finite difference code FLAC3D. Numerical analyses were performed for three sections along the tunnel with a higher risk for entrapment due to the combination of overburden and geological conditions. The computational results including longitudinal displacement contours and ground pressure profiles around the shield allow a better understanding of ground behavior within the excavation. Furthermore, they allow realistically assessing the impact of adverse geological conditions on shield jamming. The calculated thrust forces, which are required to move the machine forward, are in good agreement with field observations and measurements. It also proves that the numerical analysis can effectively be used for evaluating the effect of adverse geological environment on TBM entrapments and can be applied to prediction of loads on the shield and pre-estimating of the required thrust force during excavation through adverse ground conditions.

  9. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  10. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  11. Constructing a Geology Ontology Using a Relational Database

    Science.gov (United States)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances

  12. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    Science.gov (United States)

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  13. The safety case for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kwong, Gloria

    2014-01-01

    The concept of a 'safety case' for a deep geological repository for radioactive waste was first introduced by the NEA Expert Group on Integrated Performance Assessment (IPAG). It was further developed in the NEA report entitled Confidence in the Long-term Safety of Deep Geological Repositories (1999), and since then it has been taken up in international safety standards as promulgated by the International Atomic Energy Agency (IAEA, 2006, 2011) and more recently in recommendations by the International Commission on Radiological Protection on the application of the system of radiological protection in geological disposal (ICRP, 2013). Many national radioactive waste disposal programmes and regulatory guides are also applying this concept. The NEA has used the safety case as a guide in several international peer reviews of national repository programmes and safety documentation. In Europe, the EU Directive 2011/70/ Euratom (EU, 2011) establishes a framework to ensure responsible and safe management of spent fuel and radioactive waste by member states that, inter alia, requires a decision-making process based on safety evidence and arguments that mirror the safety case concept. In 2007, the NEA, the IAEA and the European Commission (EC) organised a symposium on Safety Cases for the Deep Disposal of Radioactive Waste: Where Do We Stand? Since this time, however, there have been some major developments in a number of national geological disposal programmes and significant experience in preparing and reviewing cases for the operational and long-term safety of proposed and operating geological repositories. A symposium on The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art was thus organised to assess developments since 2007 in the practice, understanding and roles of the safety case, as applied internationally at all stages of repository development, including the interplay of technical, regulatory and societal issues. The symposium

  14. Global Tsunami Database: Adding Geologic Deposits, Proxies, and Tools

    Science.gov (United States)

    Brocko, V. R.; Varner, J.

    2007-12-01

    A result of collaboration between NOAA's National Geophysical Data Center (NGDC) and the Cooperative Institute for Research in the Environmental Sciences (CIRES), the Global Tsunami Database includes instrumental records, human observations, and now, information inferred from the geologic record. Deep Ocean Assessment and Reporting of Tsunamis (DART) data, historical reports, and information gleaned from published tsunami deposit research build a multi-faceted view of tsunami hazards and their history around the world. Tsunami history provides clues to what might happen in the future, including frequency of occurrence and maximum wave heights. However, instrumental and written records commonly span too little time to reveal the full range of a region's tsunami hazard. The sedimentary deposits of tsunamis, identified with the aid of modern analogs, increasingly complement instrumental and human observations. By adding the component of tsunamis inferred from the geologic record, the Global Tsunami Database extends the record of tsunamis backward in time. Deposit locations, their estimated age and descriptions of the deposits themselves fill in the tsunami record. Tsunamis inferred from proxies, such as evidence for coseismic subsidence, are included to estimate recurrence intervals, but are flagged to highlight the absence of a physical deposit. Authors may submit their own descriptions and upload digital versions of publications. Users may sort by any populated field, including event, location, region, age of deposit, author, publication type (extract information from peer reviewed publications only, if you wish), grain size, composition, presence/absence of plant material. Users may find tsunami deposit references for a given location, event or author; search for particular properties of tsunami deposits; and even identify potential collaborators. Users may also download public-domain documents. Data and information may be viewed using tools designed to extract and

  15. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  16. Geologic mapping of the Hi’iaka and Shamshu regions of Io

    Science.gov (United States)

    Bunte, Melissa K.; Williams, David A.; Greeley, Ronald; Jaeger, Windy L.

    2010-06-01

    We produced regional geologic maps of the Hi'iaka and Shamshu regions of Io's antijovian hemisphere using Galileo mission data to assess the geologic processes that are involved in the formation of Io's mountains and volcanic centers. Observations reveal that these regions are characterized by several types of volcanic activity and features whose orientation and texture indicate tectonic activity. Among the volcanic features are multiple hotspots and volcanic vents detected by Galileo, one at each of the major paterae: Hi'iaka, Shamshu, and Tawhaki. We mapped four primary types of geologic units: flows, paterae floors, plains, and mountains. The flows and patera floors are similar, but are subdivided based upon emplacement environments and mechanisms. The floors of Hi'iaka and Shamshu Paterae have been partially resurfaced by dark lava flows, although portions of the paterae floors appear bright and unchanged during the Galileo mission; this suggests that the floors did not undergo complete resurfacing as flooding lava lakes. However, the paterae do contain compound lava flow fields and show the greatest activity near the paterae walls, a characteristic of Pele type lava lakes. Mountain materials are tilted crustal blocks that exhibit varied degrees of degradation. Lineated mountains have characteristic en echelon grooves that likely formed as a result of gravitational sliding. Undivided mountains are partially grooved but exhibit evidence of slumping and are generally lower elevation than the lineated units. Debris lobes and aprons are representative of mottled mountain materials. We have explored the possibility that north and south Hi'iaka Mons were originally one structure. We propose that strike-slip faulting and subsequent rifting separated the mountain units and created a depression which, by further extension during the rifting event, became Hi'iaka Patera. This type of rifting and depression formation is similar to the mechanism of formation of terrestrial

  17. Enhancing Geologic Education in Grades 5-12: Creating Virtual Field Trips

    Science.gov (United States)

    Vitek, J. D.; Gamache, K. R.; Giardino, J. R.; Schroeder, C. E.

    2011-12-01

    New tools of technology enhance and facilitate the ability to bring the "field experience" into the classroom as part of the effort necessary to turn students onto the geosciences. The real key is high-speed computers and high-definition cameras with which to capture visual images. Still and movie data are easily obtained as are large and small-scale images from space, available through "Google Earth°". GPS information provides accurate location data to enhance mapping efforts. One no longer needs to rely on commercial ventures to show students any aspect of the "real" world. The virtual world is a viable replacement. The new cost-effective tools mean everyone can be a producer of information critical to understanding Earth. During the last four summers (2008-2011), Texas teachers have participated in G-Camp, an effort to instill geologic and geomorphic knowledge such that the information will make its way into classrooms. Teachers have acquired thousands of images and developed concepts that are being used to enhance their ability to promote geology in their classrooms. Texas will soon require four years of science at the high-school level, and we believe that geology or Earth science needs to be elevated to the required level of biology, chemistry and physics. Teachers need to be trained and methodology developed that is exciting to students. After all, everyone on Earth needs to be aware of the hazardous nature of geologic events not just to pass an exam, but for a lifetime. We use a video, which is a composite of our ventures, to show how data collected during these trips can be used in the classroom. . Social media, Facebook°, blogs, and email facilitate sharing information such that everyone can learn from each other about the best way to do things. New tools of technology are taking their place in every classroom to take advantage of the skills students bring to the learning environment. Besides many of these approaches are common to video gaming, and

  18. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  19. Geology and Design: Formal and Rational Connections

    Science.gov (United States)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  20. INSAR observations of the DPRK event series

    Science.gov (United States)

    Mellors, R. J.; Ford, S. R.; Walter, W. R.

    2017-12-01

    Interferometric synthetic aperture radar (INSAR) data have revealed signals associated with the recent DPRK events in 2016 and 2017. These signals include decorrelation and indications of subsidence. Both standard phase differences and amplitude offsets are calculated. We show results of INSAR analysis as conducted using C and L band data and investigate the causes of the decorrelation (e.g. subsidence, landslide, or spall) and compare the observed signal with numerical models of deformation and seismic observations. A time series approach is applied to constrain post-event deformation at the weeks to months' timescale. We compare the INSAR observations of the DPRK tests with previous observations of events at other source regions using ERS archive data, which revealed a variety of post-seismic signatures. The signatures are evaluated with respect to the known geology and causes, including long-term surface relaxation and possible groundwater/thermal effects. Particular focus is on the sites on Pahute and Rainier Mesa, which displayed long-term subsidence signals that extended for several years after the explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

  1. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  2. 36 CFR 902.59 - Geological and geophysical information.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  3. Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (Pseudacris).

    Science.gov (United States)

    Lemmon, Emily Moriarty; Lemmon, Alan R; Cannatella, David C

    2007-09-01

    Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs. We show the first evidence that inundation of the Mississippi Embayment contributed to speciation. We reject the hypotheses that Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River contributed to speciation in this clade. We find that by reducing gene flow, rivers have the potential to cause divergence of lineages. Finally, we demonstrate that populations in areas affected by Quaternary glaciation and aridification have reduced levels of genetic variation compared to those from more equable regions, suggesting recent colonization.

  4. Uruguayan South Geology

    International Nuclear Information System (INIS)

    Guillemain, H.

    1980-01-01

    This monograph is about the sedimentary geological formation in the southern of Uruguay. According to the previous Gondwana studies there are several concordances between the Uruguayan and Brazilian ground.

  5. The geologic evolution of the planet Mars

    International Nuclear Information System (INIS)

    Masson, P.

    1982-01-01

    A brief summary of our knowledge on the Martian geology is presented here based on the results published by the members of Mariner 9 and Viking Orbiter Imaging Teams, the NASA Planetary Geology Principal Investigators and the scientists involved in the Mars Data Analysis Program. A special emphasis is given to the geologic evolution (volcanism and tectonism) related to our knowledge on the internal structure of the planet

  6. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  7. Geological and Hydrodynamical Examination of the Bathyal Tsunamigenic Origin of Miocene Conglomerates in Chita Peninsula, Central Japan

    Science.gov (United States)

    Tachibana, Toru; Tsuji, Yoshinobu

    2011-06-01

    A conglomerate appears on a rocky coast called "Tsubutega-ura Coast", located on the southwestern coast near the southern tip of the Chita Peninsula, Aichi Prefecture, central Japan. The conglomerate belongs to Miocene sedimentary rocks termed the Morozaki Group. The conglomerate includes meter-scale boulders, indicating that it was formed by an extraordinary event. In the geological investigation, we observed that the conglomerate shows alternate changes of paleocurrent directions between seaward and landward. This feature is supposed to be formed by tsunami currents. In the hydrodynamical investigation, we obtained following results: (1) the lowest limit of a current velocity to move a boulder of about 3 m in diameter would be about 2-3 m/s, (2) the speed of tsunami currents reproduced by tsunami simulation exceeds 3 m/s at 300 m in depth when the tsunami is generated by a gigantic earthquake with magnitude 9.0 or more, (3) the transport distance of the boulder would be several hundred meters to several kilometers by one tsunami event caused by a gigantic earthquake. We conclude that tsunamis best explain the formation of the conglomerate deposited in upper bathyal environments about 200-400 m depth, both from geological and hydrodynamical viewpoints.

  8. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  9. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group (EEG) is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant (WIPP). As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, titled Geotechnical Considerations for Radiological Hazard Assessment of WIPP on January 17-18, 1980. During this conference, it was realized that a field trip to the site would further clarify the different views on the geological processes active at the site. The field trip of June 16-18, 1980 was organized for this purpose. This report provides a summary of the field trip activities along with the participants post field trip comments. Important field stops are briefly described, followed by a more detailed discussion of critical geological issues. The report concludes with EEG's summary and recommendations to the US Department of Energy for further information needed to more adequately resolve concerns for the geologic and hydrologic integrity of the site

  10. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  11. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  12. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  13. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  14. Environmental resources of selected areas of Hawaii: Geological hazards

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  15. The geological evolution of opalinus clay in the Zurcher Weinland Area (ne Switzerland): learning from the past to predict future evolution and stability

    International Nuclear Information System (INIS)

    Gautschi, A.; Mazurek, M.

    2004-01-01

    A number of safety-relevant issues need to be addressed when considering long-term evolution of a radioactive waste repository, out of which uplift/erosion, fault activity, and changes in the geochemical and hydrogeological environment are particularly important. Among the strongest arguments in the prediction of future evolution is the extrapolation of events and processes that occurred over a long period of time in the geological past (e.g. 10 Ma) to a shorter period in the future. The future long-term evolution of Opalinus Clay in a potential siting area for a high-level waste repository in the Zurcher Weinland (NE Switzerland) is considered over a time period of around l Ma. The geological evolution or geological stability, respectively, can be predicted plausibly within reasonable limits over such a time period based on a detailed analysis of geological history. Predictions extending beyond this time period are feasible but contain an increasing element of uncertainty. This paper summarises the project-related conclusions, which are presented in greater detail in Nagra (2002a). (author)

  16. Assessment of effectiveness of Geologic Isolation Systems. The development and application of a geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1982-03-01

    The Geologic Simulation Model (GSM) developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) project at the Pacific Northwest Laboratory for the Department of Energy is a quasi-deterministic process-response model which simulates the development of the geologic and hydrologic systems of a ground-water basin for a million years into the future. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach. The completed AEGIS GSM was used to generate 500 Monte Carlo simulations of the behavior of the geologic/hydrologic system affecting a hypothetical repository in the Pasco Basin over the next million years. These simulations used data which were not subjected to a review adequate to the needs of a real site performance assessment. However, the general care used in generating the data, and the overall behavior of the GSM suggest that the results are plausible at this time

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 23. Environmental effluent analyses

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/23, ''Environmental Effluent Analysis,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Drat Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume discusses the releases to the environment of radioactive and non-radioactive materials that arise during facility construction and waste handling operations, as well as releases that could occur in the event of an operational accident. The results of the analyses are presented along with a detailed description of the analytical methodologies employed

  18. Internet-based information system of digital geological data providing

    Science.gov (United States)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements

  19. Economic geology of the Bingham mining district, Utah, with a section on areal geology, and an introduction on general geology

    Science.gov (United States)

    Boutwell, J.M.; Keith, Arthur; Emmons, S.F.

    1905-01-01

    The field work of which this report represents the final results was first undertaken in the summer of the year 1900. This district had long been selected by the writer as worthy of special economic investigation, as well on account of the importance of its products as because of its geological structure and the peculiar relations of its ore deposits. It was not, however, until the summer mentioned above that the means at the disposal of the Survey, both pecuniary and scientific, justified its undertaking. As originally planned, the areal or surface geology was to have been worked out by Mr. Keith, who had already spent many years in unraveling the complicated geological structure of the Appalachian province, while Mr. Boutwell, who had more recently become attached to the Survey, was to have charge of the underground geology, or a study of the ore deposits, under the immediate supervision of the writer. When the time came for actually taking the field, it was found that the pressure of other work would not permit Mr. Keith to carry out fully the part allotted to him, and in consequence a part of his field work has fallen to Mr. Boutwell. Field work was commenced by the writer and Mr. Boutwell early in July, 1900. Mr. Keith joined the party on August 10, but was obliged to leave for other duties early in September. Mr. Boutwell carried on his field work continuously from July until December, taking up underground work after the snowfall had rendered work on the surface geology impracticable. The geological structure had proved to be unexpectedly intricate and complicated, so that, on the opening of the field season of 1901, it was found necessary to make further study in the light of results already worked out, and Mr. Boutwell spent some weeks in the district in the early summer of 1901. His field work that year, partly in California and partly in Arizona, as assistant to Mr. Waldemar Lindgren, lasted through the summer and winter and well into the spring of 1902

  20. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  1. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data

    Science.gov (United States)

    Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.

    2018-02-01

    Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  2. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data.

    Science.gov (United States)

    Martinot, M; Besse, S; Flahaut, J; Quantin-Nataf, C; Lozac'h, L; van Westrenen, W

    2018-02-01

    Moon Mineralogy Mapper (M 3 ) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M 3 data, using a custom-made method for M 3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  3. Engineering Geological Investigation of Slow Moving Landslide in Jahiyang Village, Salawu, Tasikmalaya Regency

    Directory of Open Access Journals (Sweden)

    Dwi Sarah

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i1.133An understanding of landslide mechanism is imperative to determine the appropriate mitigation method. The slow moving landslide (creeping which occurred in Kampung Salawangi, Jahiyang Village, Salawu Subregency, Tasikmalaya had caused economical and environmental losses due to the frequent active movement particularly following rainfall events. Engineering geological investigation and slope stability analysis were carried out in the studied area in order to elucidate the mechanism of the landslide. The engineering geological investigation consists of local topographical mapping, geotechnical drillings, hand borings, cone penetration, and laboratory tests. The slope stability assessment of the recent landslide was conducted by a finite element method. The results of engineering geological data analysis show that the studied area is composed of residual soils of soft to firm sandy silt and loose to compact silty sand and base rock of fresh to weathered volcanic breccias with groundwater level varying between 3 - 16 m. The engineering properties of the residual soils indicate that the sandy silt is of high plasticity and the shear strength properties of the sandy silt and silty sand show low value with effective cohesion of 6.0 - 21.74 kPa and effective friction angle of 12.00 - 25.980. The assessment of slope stability shows that the stability of the studied area is largely influenced by the rise of groundwater level marked by the decrease of safety factor and increase of slope displacement.

  4. Application of Laser Scanning for Creating Geological Documentation

    Directory of Open Access Journals (Sweden)

    Buczek Michał

    2018-01-01

    Full Text Available A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud in combination with the photographs. The results were compared with the geological cross-section.

  5. Preclosure Seismic Design Methodology for a Geologic Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    K. Coppersmith

    2004-01-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) intends to use for preclosure seismic design of structures, systems, and components (SSCs) that are important to safety (ITS) in the geologic repository operations area. 10 Code of Federal Regulations (CFR) Part 63 [DIRS 156605], states that for a license to be issued for operation of a high-level radioactive waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public (Section 63.41[c] [DIRS 156605]). Section 63.21(c)(5) [DIRS 156605] requires that a preclosure safety analysis (PCSA) be performed to ensure that the preclosure performance objectives (Section 63.111 [DIRS 156605]) have been met. The PCSA is a systematic examination of the site, the design, and the potential hazards (Section 63.102[f] [DIRS 156605]), including a comprehensive identification of potential event sequences. Potential naturally-occurring hazards include those event sequences that are initiated by earthquake ground motions or fault displacements due to earthquakes

  6. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  7. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    Science.gov (United States)

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  8. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  9. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    Science.gov (United States)

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  10. Bureau of Economic Geology. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

  11. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  12. The Beaverhead impact structure, SW Montana and Idaho: Implications for the regional geology of the western U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Fiske, P.S.; Hargaves, R.B.

    1994-03-17

    The Beaverhead impact structure in SW Montana and Idaho is an allochthonous fragment of a large impact structure ({approximately} 100 km diameter) that was transported some distance eastward during the Cretaceous Sevier orogeny. It is the first tectonic fragment of a large impact structure identified in the geologic record. The present evidence for impact consists of shatter cones, pseudotachylites, and planar deformation features in quartz. The age of the impact is not well constrained but is estimated to be Neoproterozoic to Cambrian (1000-500 Ma). The Beaverhead impact event must have created other features that may be preserved, elsewhere in western Montana and Idaho. These include proximal and distal ejecta (which may be misinterpreted as diamictites and/or tuff horizons) and other fragments of the crater floor containing shatter cones and pseudotachylite. A large circular gravity, magnetic and topographic anomaly, which could be the root of the impact structure, has been identified near Challis, Idaho. An enigmatic lithic tuff, identified in drill cores from the Challis area and an intraformational quartzite breccia in the Leaton Gulch area may be impact-related deposits, but no definitive evidence of shock metamorphism has been observed in these materials. The discovery of more pieces of the Beaverhead puzzle, as well as the recognition of other large impacts in the geologic record, are likely once the regional geologic community grows to accept the incidence of such events and becomes more familiar with the features of shock metamorphism in the field. To that end, the community of geologists in this area should integrate the Beaverhead structure into their research and teaching curriculum.

  13. Abrupt global events in the Earth's history: a physics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Ryskin, Gregory, E-mail: ryskin@northwestern.ed [Robert R McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208 (United States)

    2010-12-01

    The timeline of the Earth's history reveals quasi-periodicity of the geological record over the last 542 Myr, on timescales close, in the order of magnitude, to 1 Myr. What is the origin of this quasi-periodicity? What is the nature of the global events that define the boundaries of the geological time scale? I propose that a single mechanism is responsible for all three types of such events: mass extinctions, geomagnetic polarity reversals, and sea-level fluctuations. The mechanism is fast, and involves a significant energy release. The mechanism is unlikely to have astronomical causes, both because of the energies involved and because it acts quasi-periodically. It must then be sought within the Earth itself. And it must be capable of reversing the Earth's magnetic field. The last requirement makes it incompatible with the consensus model of the origin of the geomagnetic field-the hydromagnetic dynamo operating in the Earth's fluid core. In the second part of the paper, I show that a vast amount of seemingly unconnected geophysical and geological data can be understood in a unified way if the source of the Earth's main magnetic field is a {approx}200 km thick lithosphere, repeatedly magnetized as a result of methane-driven oceanic eruptions, which produce ocean flow capable of dynamo action. The eruptions are driven by the interplay of buoyancy forces and exsolution of dissolved gas, which accumulates in the oceanic water masses prone to stagnation and anoxia. Polarity reversals, mass extinctions and sequence boundaries are consequences of these eruptions. Unlike the consensus model of geomagnetism, this scenario is consistent with the paleomagnetic data showing that 'directional changes during a reversal can be astonishingly fast, possibly occurring as a nearly instantaneous jump from one inclined dipolar state to another in the opposite hemisphere'.

  14. "Carta geologica totius Poloniae, Moldaviae, Transilvaniae et partis Hungariae et Valachiae" by S. Staszic and its importance for European geology and geological cartography

    Czech Academy of Sciences Publication Activity Database

    Czarniecki, S.; Grigelis, A.; Kozák, Jan; Narebski, W.; Wójcik, Z.

    -, č. 6 (2008), s. 81-101 ISSN 1507-0557 Institutional research plan: CEZ:AV0Z30120515 Keywords : history of geology * geological cartography * Stanislaw Wawrzyniec Staszic Subject RIV: DB - Geology ; Mineralogy

  15. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Science.gov (United States)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  16. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  17. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  18. Nagra technical report 14-02, geological basics - Dossier III - Long-term geological developments

    International Nuclear Information System (INIS)

    Schnellmann, M.; Madritsch, H.

    2014-01-01

    This dossier is the third of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. Dossier III takes a look at long-term geological developments. Developments in the topography and river networks of northern Switzerland over the past five million years are looked at. Data and information derived from high-resolution models and compilations of gravel deposition, glacier developments and moraines are reviewed. Tectonic developments, seismological aspects and erosion are discussed. Their consequences for the long-term geological developments in the proposed depository areas are looked at

  19. A new algorithm for coding geological terminology

    Science.gov (United States)

    Apon, W.

    The Geological Survey of The Netherlands has developed an algorithm to convert the plain geological language of lithologic well logs into codes suitable for computer processing and link these to existing plotting programs. The algorithm is based on the "direct method" and operates in three steps: (1) searching for defined word combinations and assigning codes; (2) deleting duplicated codes; (3) correcting incorrect code combinations. Two simple auxiliary files are used. A simple PC demonstration program is included to enable readers to experiment with this algorithm. The Department of Quarternary Geology of the Geological Survey of The Netherlands possesses a large database of shallow lithologic well logs in plain language and has been using a program based on this algorithm for about 3 yr. Erroneous codes resulting from using this algorithm are less than 2%.

  20. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  1. Use of space applications for geologic research

    Energy Technology Data Exchange (ETDEWEB)

    Presnukhin, V I

    1981-01-01

    Overview of literature published in USSR during 1969-1977 shows broad potential and effectiveness for using satellite imaging of earth in the geologic sciences: geomorphology, tectonics, engineering geology, and searh for useful ore and minerals.

  2. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  3. Study on the development of geological environmental model. 2

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Saito, Shigeyuki; Ueta, Shinzo; Ohashi, Toyo; Sasaki, Ryouichi; Tomiyama, Shingo

    2003-02-01

    The safety performance assessment was carried out in imaginary geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process from the data production to analysis in the three fields, and to systematize the knowledge base that unifies the information flow hierarchically. The information flow for geological environment model generation process is examined and modified base on the product of the research of 'Study on the development of geological environment model' that was examined in 2002. The work flow diagrams for geological structure and hydrology are modified, and those for geochemical and rock property are examined from the scratch. Furthermore, database design was examined to build geoclinal environment database (knowledgebase) based on the results of the systemisation of the environment model generation technology. The geoclinal environment database was designed and the prototype system is build to contribute databased design. (author)

  4. The use of U.S. Geological Survey CD-ROM-based petroleum assessments in undergraduate geology laboratories

    Science.gov (United States)

    Eves, R.L.; Davis, L.E.; Dyman, T.S.; Takahashi, K.I.

    2002-01-01

    Domestic oil production is declining and United States reliance on imported oil is increasing. America will be faced with difficult decisions that address the strategic, economic, and political consequences of its energy resources shortage. The geologically literate under-graduate student needs to be aware of current and future United States energy issues. The U.S. Geological Survey periodically provides energy assessment data via digitally-formatted CD-ROM publications. These publications are free to the public, and are well suited for use in undergraduate geology curricula. The U.S. Geological Survey (USGS) 1995 National Assessment of United States Oil and Gas Resources (Digital Data Series or DDS-30) (Gautier and others, 1996) is an excellent resource for introducing students to the strategies of hydrocarbon exploration and for developing skills in problem-solving and evaluating real data. This paper introduces the reader to DDS-30, summarizes the essential terminology and methodology of hydrocarbon assessment, and offers examples of exercises or questions that might be used in the introductory classroom. The USGS contact point for obtaining DDS-30 and other digital assessment volumes is also provided. Completing the sample exercises in this report requires a copy of DDS-30.

  5. Evaluations for draft reports on geological disposal

    International Nuclear Information System (INIS)

    Maekawa, Keisuke; Igarashi, Hiroshi

    2002-10-01

    This report summarizes the results of the technical evaluations on two reports which are named as 'Overview of the Geological Disposal Facility' and Considerable Factors on Selection of Potential Sites for Geological Disposal' drafted by NUMO (Nuclear Waste Management Organization of Japan). The review of each draft report has been referred to committee (held on 9th September, 2002) and working group (held on 1st October, 2002) which were organized in order to confirm a progress of implementation of geological disposal by government. (author)

  6. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  7. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  8. Source models for the 2016 Mw6.0 Hutubi earthquake, Xinjiang, China: A possible reverse event

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2017-09-01

    Full Text Available South and north-dipping nodal planes from the U.S. Geological Survey moment tensor solution were used to invert global teleseismic body waves to reveal the source rupture process of the December 8, 2016, Mw6.0 Hutubi earthquake. The results show that a compact pattern is the main feature of this event for only one main slip zone located at the hypocenter for both models. The slip distributions are dominated by a nearly pure-thrust fault, and there is no apparent surface rupture. The inversion revealed that the slip zone extends 10 km along strike and 12 km along dip. The released total seismic moment was about 9.0 × 1017 Nm, corresponding to a magnitude of Mw6.0. It is difficult to solve for a best-fit rupture plane due to the sample slip pattern without obvious rupture directivity. This makes the far-field teleseismic data not sensitive enough to determine the fault geometric parameters. The source model of the reverse north-dipping plane fits well with the observed waveforms, and the results of the aftershock relocation outline a trend of north-dipping profiles, indicating the possibility of a reverse event. The inverted normal fault beneath the Qigu fold, interpreted by geological and seismic studies, may be the seismogenic fault for this reverse event.

  9. Archives: Journal of Mining and Geology

    African Journals Online (AJOL)

    Items 1 - 13 of 13 ... Archives: Journal of Mining and Geology. Journal Home > Archives: Journal of Mining and Geology. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 13 of 13 ...

  10. Israel Geological Society, annual meeting 1994

    International Nuclear Information System (INIS)

    Amit, R.; Arkin, Y.; Hirsch, F.

    1994-02-01

    The document is a compilation of papers presented during the annual meeting of Israel Geological Society. The document is related with geological and environmental survey of Israel. It discusses the technology and instruments used to carry out such studies. Main emphasis is given to seismology, geochemical analysis of water, water pollution and geophysical survey of rocks

  11. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  12. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  13. The Role of Geologic Mapping in NASA PDSI Planning

    Science.gov (United States)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  14. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  15. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  16. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  17. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  18. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  19. Digital Geologic Map of New Mexico - Formations

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  20. Geologic repositories for radioactive waste: the nuclear regulatory commission geologic comments on the environmental assessment

    International Nuclear Information System (INIS)

    Justus, P.S.; Trapp, J.S.; Westbrook, K.B.; Lee, R.; Blackford, M.B.; Rice, B.

    1985-01-01

    The NRC staff completed its review of the Environmental Assessments (EAs) issued by the Department of Energy (DOE) in December, 1984, in support of the site selection processes established by the Nuclear Waste Policy Act of 1982 (NWPA). The EAs contain geologic information on nine sites that DOE has identified as potentially acceptable for the first geologic repository in accordance with the requirements of NWPA. The media for the sites vary from basalt at Hanford, Washington, tuff at Yucca Mountain, Nevada, bedded salt in the Palo Duro Basin, Texas and Paradox Basin, Utah, to salt domes in Mississippi and Louisiana. Despite the diversity in media there are common areas of concern for all sites. These include; structural framework and pattern, rates of tectonic and seismic activity, characterization of subsurface features, and stratigraphic thickness, continuity and homogeneity. Site-specific geologic concerns include: potential volcanic and hydrothermal activity at Yucca Mountain, potential hydrocarbon targets and deep basalt and sub-basalt structure at Hanford, and potential dissolution at all salt sites. The NRC comments were influenced by the performance objectives and siting criteria of 10 CFR Part 60 and the environmental protection criteria in 40 CFR Part 191, the applicable standards proposed by EPA. In its review the NRC identified several areas of geologic concern that it recommended DOE re-examine to determine if alternative or modified conclusions are appropriate

  1. Geological aspects of acid deposition

    International Nuclear Information System (INIS)

    Bricker, O.P.

    1984-01-01

    The general pattern of rain falling on the earth and reacting with the materials of the lithosphere (the weathering reactions so familiar to every beginning geology student) began soon after the earth was formed and has continued to the present. Anthropogenic additions to the natural acidic components of the atmosphere have increased since the time of the industrial revolution until they now rival or exceed those of the natural system. The severity of the environmental perturbations caused by these anthropogenic additions to the atmosphere has become a hotly debated topic in scientific forums and in the political arena. The six chapters in this book address various aspects of the acid deposition phenomenon from a geological perspective. It is hoped that the geological approach will be useful in bringing the problem more clearly into focus and may shed light on the geochemical processes that modify the chemical composition of acid deposition after it encounters and reacts with the materials of the lithosphere

  2. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift

  3. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  5. The geology of Piz Pian Grand

    International Nuclear Information System (INIS)

    Huber, M.; Staeuble, J.

    1987-01-01

    Nagra has identified four potential sites for a repository for low- and intermediate-level waste. Exploration work is already underway at Oberbauenstock (UR) and Piz Pian Grand (GR). As part of the investigations in the Piz Pian Grand area, geological surface mapping was carried out between 1984 and 1987. Since the data obtained is still being evaluated, it would be premature to draw any interpretative conclusions at this stage. On the other hand, some of the most significant observations of this work can be summarised here. As a first step, the geological framework in which these investigations are to be seen should be defined. Observations will then be made on the rock content (lithology) and geometric structure (structural geology) of the area. (author) 6 figs

  6. Barcelona Rocks, a mobile app to learn geology in your city

    Science.gov (United States)

    Geyer, Adelina; Cabrera, Lluis; Alias, Gemma; Aulinas, Meritxell; Becerra, Margarita; Casadellà, Jordi; Clotet, Roger; Delclós, Xavier; Fernández-Turiel, José-Luis; Tarragó, Marta; Travé, Anna

    2016-04-01

    Barcelona Rocks is an application for personal mobile devices suitable for secondary and high school students as well as the general public without a solid background in Earth Sciences. The main objective of this app is to teach Geology using as learning resource our city façades and pavements. Additionally, Barcelona Rocks provides a short explanation about the significance of the appearance of the different rock types at the different historical periods of the city. Although it has been designed as a playful learning resource for secondary school students, the level of knowledge also allows bringing some basic concepts and principles of Earth Sciences to the general public, irrespective of age. This app is intended to provide the degree of interactivity and entertainment required by the different individual users and aims to: (i) Explain the techniques and experiments that allow the user to identify the different rocks, as well as their genesis. (ii) Introduce geology to the youngest users in a more attractive and entertaining way, providing also some information regarding the use of the different ornamental rocks during the different historical periods of the city: roman, medieval, etc. (iii) Provide historical and architectural information of the selected buildings in order to improve the city's historical architectural knowledge of the users. (iv) Show the non-expert public the importance of their country's geology. (v) Develop of outreach and dissemination resources taking advantage of the versatile and potent mobile application format using also the content as support material for science courses, seminars, or social learning events. (vi) Encourage new generations of Earth Scientists (vii) Promote science and scientific culture of the society, integrating culture and innovation as essential for the emergence of new scientific and technological vocations, promoting critical thinking, understanding of the scientific method and the social interest in science

  7. The 16th International Geological Congress, Washington, 1933

    Science.gov (United States)

    Nelson, C.M.

    2009-01-01

    In 1933, the International Geological Congress (IGC) returned to the United States of America (USA) for its sixteenth meeting, forty-two years after the 5th IGC convened in Washington. The Geological Society of America and the U.S. Geological Survey (USGS) supplied the major part of the required extra-registration funding after the effects of the Great Depression influenced the 72th U.S. Congress not to do so. A reported 1, 182 persons or organizations, representing fifty-four countries, registered for the 16 th IGC and thirty-four countries sent 141 official delegates. Of the total number of registrants, 665 actually attended the meeting; 500 came from the USA; and fifteen had participated in the 5th IGC. The 16 th Meeting convened in the U.S. Chamber of Commerce Building from 22 to 29 July. The eighteen half-day scientific sections-orogenesis (four), major divisions of the Paleozoic (three), miscellaneous (three), batholiths and related intrusives (two), arid-region geomorphic processes and products (one), fossil man and contemporary faunas (one), geology of copper and other ore deposits (one), geology of petroleum (one), measuring geologic time (one), and zonal relations of metalliferous deposits (one)-included 166 papers, of which fifty (including several of the key contributions) appeared only by title. The Geological Society of Washington, the National Academy of Sciences, and the U.S. Bureau of Mines hosted or contributed to evening presentations or receptions. Twenty-eight of the 16th IGC's thirty new guidebooks and one new USGS Bulletin aided eight pre-meeting, seven during-meeting, and four post-meeting field trips of local, regional, or national scope. The remaining two new guidebooks outlined the USA's structural geology and its stratigraphic nomenclature. The 16th IGC published a two-volume monograph on the world's copper resources (1935) and a two-volume report of its proceedings (1936).

  8. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden)); Simeonov, Assen (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  9. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Simeonov, Assen; Isaksson, Hans

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  10. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  11. 10 CFR 51.67 - Environmental information concerning geologic repositories.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental information concerning geologic repositories... information concerning geologic repositories. (a) In lieu of an environmental report, the Department of Energy... connection with any geologic repository developed under Subtitle A of Title I, or under Title IV, of the...

  12. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  13. 3D geological modelling of the Renard 2 kimberlite pipe, Québec, Canada: from exploration to extraction

    Science.gov (United States)

    Lépine, Isabelle; Farrow, Darrell

    2018-04-01

    The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a > 400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.

  14. Geology--hydrology of Avery Island Salt Dome

    International Nuclear Information System (INIS)

    Jacoby, C.H.

    1977-07-01

    After a review of the geology of the Gulf Coast salt domes, the geology (geomorphology and tectonics) and hydrology of Avery Island Dome, 10 miles south-southwest of New Iberia, Louisiana, were studied in detail. Rock mechanics were studied using grouts and piezometers. 17 figs

  15. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov (United States)

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  16. Medical Geology: a globally emerging discipline

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, J.E.; Finkelman, R.B.; Centeno, J.A.; Selinus, O. [Armed Forces Institute of Pathology, Washington, DC (United States)

    2007-07-01

    Medical Geology, the study of the impacts of geologic materials and processes on animal and human health, is a dynamic emerging discipline bringing together the geoscience, biomedical, and public health communities to solve a wide range of environmental health problems. Among the Medical Geology described in this review are examples of both deficiency and toxicity of trace element exposure. Goiter is a widespread and potentially serious health problem caused by deficiency of iodine. In many locations the deficiency is attributable to low concentrations of iodine in the bedrock. Similarly, deficiency of selenium in the soil has been cited as the principal cause of juvenile cardiomyopathy and muscular abnormalities. Overexposure to arsenic is one of the most widespread Medical Geology problems affecting more than one hundred million people in Bangladesh, India, China, Europe, Africa and North and South America. The arsenic exposure is primarily due to naturally high levels in groundwater but combustion of mineralized coal has also caused arsenic poisoning. Dental and skeletal fluorosis also impacts the health of millions of people around the world and, like arsenic, is due to naturally high concentrations in drinking water and, to a lesser extent, coal combustion. Other Medical Geology issues described include geophagia, the deliberate ingestion of soil, exposure to radon, and ingestion of high concentrations of organic compounds in drinking water. Geoscience and biomedical/public health researchers are teaming to help mitigate these health problems as well as various non-traditional issues for geoscientists such as vector-borne diseases.

  17. Ecological geology environmental assessment of open-pit mines

    International Nuclear Information System (INIS)

    Dong Shuangfa; Jiang Xue

    2010-01-01

    In this paper, there is a detail description of ecological geology environmental assessment of open-pit mines, including method, process and results. We took ecological geology environmental assessment work on the base of the results of some open-pit mines such as extremely low content magnetite in Hebei Province, inducted and summarized the ecological geology environment quality. The results are reasonable. It provides basic data for the second mines programming in Hebei Province. (authors)

  18. CHUVARDINSKY’S ANTIGLACIAL (GENERALIZED GEOLOGICAL CONCEPTION

    Directory of Open Access Journals (Sweden)

    P. K. Skufyin

    2016-12-01

    Full Text Available Based on the analytical study of V. G. Chuvardinsky’s monographs on the revision of the generally accepted glacial theory, the authors of the review concluded that there was convincing evidence of a fault-tectonic origin of ‘ice-exaration’ relief of the Baltic Shield. Developed by Chuvardinsky, a radically new methodology of boulder prospecting of ore deposits not only refuted the old glacial theory, but also led to the discovery of copper-nickel deposits, a new apatite alkaline massif, promising manifestation of copper-nickel ore, platinum group metals, native gold, chromite and other mineral resources. A thorough drilling of ice sheets in Greenland and Antarctica for the international project determined the absence of boulder material over the entire thickness of the ice, only pulverulent and fine particles (mainly volcanic ash were found in the ice. Bottom ice layers are immobilised, their function is preservation of the geological surface. V. G. Chuvardinsky far outstripped western and Russian scientists in the field of Earth Sciences. His field studies on the Baltic Shield not only refuted the mighty glacial theory, but also created and substantiated a new geological concept instead. Professor V. Z. Negrutsa was quite right when he wrote in his review on Chuvardinsky’s work (journal Geomorfologiya, 2003, no. 1, ‘Evidence of Chuvardinsky about tectonic origin of geological and geomorphological features traditionally associated with the Quaternary glaciation is so obvious and reproducible both by field observations and by geological modeling that is presented irrefutable and undeniable in its essence’. In general, assessing the scientific significance of V. G. Chuvardinsky’s works, it can be stated that his work would have done honour to research institutes of geological and geographical orientation according to the level of study of the geological material and the value of his field studies. His books present the material for

  19. Southeastern Regional Geologic Characterization Report. Executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final Southeastern Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes, and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in central Maryland; noncoastal Virginia, North Carolina, and South Carolina; and northern Georgia. For each of the states within the Southeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening

  20. Innovative progress and sustainable development of remote sensing for uranium geology

    International Nuclear Information System (INIS)

    Liu Dechang; Zhao Yingjun; Ye Fawang

    2009-01-01

    The paper reviewes the innovative process of remote sensing for the uranium geology in Beijing Research Institute of Uranium Geology (BRIUG), discusses the science and technology progress of uranium geology due to remote sensing technique, and the way how to keep sustainable development of the remote sensing for uranium geology so as to play an important role in the uranium geology in the future. (authors)

  1. Software development for geologic information management system on open-pit production

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Tian, A.; Ren, Z.; Pang, Y. [China University of Mining and Technomogy, Xuzhou (China). College of Mineral and Energy Resources

    2001-09-01

    A software, including geological data gathering and processing, deposit modelling, reserves calculating and mine map plotting, for geologic information management of open-pit production was developed. Based on the interactive technique, CAD, the object-oriented simulation, and the characteristics of geologic structures, all the geologic information databases and geologic mapping sub-systems have been established for open-pit production, planning and management. 6 refs., 1 fig.

  2. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    Directory of Open Access Journals (Sweden)

    Liang Wu

    2017-06-01

    Full Text Available Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional features via geological domain ontology. These fragments are reorganized into a NoSQL (Not Only SQL database, and then associations between the fragments are added. A specific class of geological questions was analyzed and transformed into workflow tasks according to the predefined rules and associations between fragments to identify spatial information and unstructured content. We establish a knowledge-driven geologic survey information smart-service platform (GSISSP based on previous work, and we detail a study case for our research. The study case shows that all the content that has known relationships or semantic associations can be mined with the assistance of multiple ontologies, thereby improving the accuracy and comprehensiveness of geological information discovery.

  3. X-ray fluorescence in geology

    International Nuclear Information System (INIS)

    Dutra, C.V.; Gomes, C.B.

    1990-01-01

    This work is about the X-ray fluorescence aplication in geology. It's showing the X-ray origin and excitation. About the instrumentation this work shows the following: X-ray tubes, colimators, analysers crystals, detectors, amplifiers, pulse height selector, and others electronic components. By X-ray fluorescente are done quantitative and qualitative geological analysis and this work shows this analysis and its detection limits. The problems determination is the example. In this work was done yet the comparative analysis of the various instrumental methods in geochemistry. (C.G.) [pt

  4. Introductory Geological Mapwork--An Active Learning Classroom

    Science.gov (United States)

    Drennan, Gillian R.; Evans, Mary Y.

    2011-01-01

    First year Geology students at the University of the Witwatersrand experience problems with both three-dimensional and "four-dimensional" (or time) visualization when attempting to interpret geological maps. These difficulties have been addressed by the introduction of hands-on modeling exercises, which allow students to construct…

  5. Geologic Map of MTM 35337, 40337, and 45337 Quadrangles, Deuteronilus Mensae Region of Mars

    Science.gov (United States)

    Chuang, Frank C.; Crown, David A.

    2009-01-01

    present time. Several scenarios for its formation, including single and multiple large impact events, have been proposed and debated in the literature. Endogenic processes whereby crust is thinned by internal mantle convection and tectonic processes have also been proposed. Planetary accretion models and isotopic data from Martian meteorites suggest that the crust formed very early in Martian history. Using populations of quasi-circular depressions extracted from the topography of Mars, other studies suggest that the age difference between the highlands and lowlands could be ~100 m.y.. Furthermore, understanding the origin and age of the dichotomy boundary has been made more complicated due to significant erosion and deposition that have modified the boundary and its adjacent regions. The resulting diversity of terrains and features is likely a combined result of ancient and recent events. Detailed geologic analyses of dichotomy boundary zones are important for understanding the spatial and temporal variations in highland evolution. This information, and comparisons to other highland regions, can help elucidate the scale of potential environmental changes. Previous geomorphic and geologic mapping investigations of the Deuteronilus Mensae region have been completed at local to global scales. The regional geology was first mapped by Lucchitta (1978) at 1:5,000,000 scale using Mariner 9 data. This study concluded that high crater flux early in Martian history formed overlapping craters and basins that were later filled by voluminous lava flows that buried the impacted surface, creating the highlands. After this period of heavy bombardment, fluvial erosion of the highlands formed the canyons and valleys, followed by dissection that created the small mesas and buttes, and later, formation of the steep escarpment marking the present-day northern highland margin. After valley dissection, mass wasting and eolian processes caused lateral retreat of mesas and buttes

  6. Geological beauties and Landscape: new proposals to communicate the Geodiversity

    Science.gov (United States)

    Lugeri, Francesca; Farabollini, Piero; Amadio, Vittorio

    2015-04-01

    children the secrets of geology, telling them how everything is always changing. The individuation of a specific target as the youngest audience is, has a multiple purpose: to provide their information relating to the geosciences, directly connected to a major sporting event (which involves cycling initiatives for children), a further aim is to induce an involvement of the families, often distracted or indifferent to territorial issues.

  7. Pilot monitoring program: geologic input for the hillslope component (includes a discussion of Caspar Creek geology and geomorphology)

    Science.gov (United States)

    T. E. Spittler

    1995-01-01

    The California Department of Conservation, Division of Mines and Geology (DMG) is submitting this report and accompanying maps to the California Department of Forestry and Fire Protection (CDF) to fulfill Interagency Agreement number 8CA38400, Pilot Monitoring Program -- Geologic Input for the Hillslope Component. Under this agreement, DMG has assisted CDF in the...

  8. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    Science.gov (United States)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  9. Office of Geologic Repositories issues hierarchy for a mined geologic disposal system

    International Nuclear Information System (INIS)

    1987-08-01

    The Nuclear Regulatory Commission (NRC) has indicated that the identification of the issues that must be resolved to complete licensing assessments of site and design suitability is an important step in the licensing process. The issues hierarchy developed by the Office of Geologic Repositories (OGR) for the mined geologic disposal system (MGDS) are based on the issues-hierarchy concept presented in the Mission Plan. Specific questions are encompassed by the general issue statements in the OGR issues hierarchy. The OGR issues hierarchy is limited to the issues related to the siting and licensing requirements of applicable federal regulations and does not address the requirements of other regulations, functional or operating requirements for the MGDS, or requirements for the integration and the design/operational efficiency of the MGDS. 4 figs

  10. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  11. Event-Driven Technology to Generate Relevant Collections of Near-Realtime Data

    Science.gov (United States)

    Graves, S. J.; Keiser, K.; Nair, U. S.; Beck, J. M.; Ebersole, S.

    2017-12-01

    Getting the right data when it is needed continues to be a challenge for researchers and decision makers. Event-Driven Data Delivery (ED3), funded by the NASA Applied Science program, is a technology that allows researchers and decision makers to pre-plan what data, information and processes they need to have collected or executed in response to future events. The Information Technology and Systems Center at the University of Alabama in Huntsville (UAH) has developed the ED3 framework in collaboration with atmospheric scientists at UAH, scientists at the Geological Survey of Alabama, and other federal, state and local stakeholders to meet the data preparedness needs for research, decisions and situational awareness. The ED3 framework supports an API that supports the addition of loosely-coupled, distributed event handlers and data processes. This approach allows the easy addition of new events and data processes so the system can scale to support virtually any type of event or data process. Using ED3's underlying services, applications have been developed that monitor for alerts of registered event types and automatically triggers subscriptions that match new events, providing users with a living "album" of results that can continued to be curated as more information for an event becomes available. This capability can allow users to improve capacity for the collection, creation and use of data and real-time processes (data access, model execution, product generation, sensor tasking, social media filtering, etc), in response to disaster (and other) events by preparing in advance for data and information needs for future events. This presentation will provide an update on the ED3 developments and deployments, and further explain the applicability for utilizing near-realtime data in hazards research, response and situational awareness.

  12. Modelling geological uncertainty for mine planning

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M

    1980-07-01

    Geosimplan is an operational gaming approach used in testing a proposed mining strategy against uncertainty in geological disturbance. Geoplan is a technique which facilitates the preparation of summary analyses to give an impression of size, distribution and quality of reserves, and to assist in calculation of year by year output estimates. Geoplan concentrates on variations in seam properties and the interaction between geological information and marketing and output requirements.

  13. Use of waveform similarity to define planes of mining-induced seismic events

    CSIR Research Space (South Africa)

    Spottiswoode, SM

    1998-04-15

    Full Text Available can be associated with failure of previously unfractured rock (Ortlepp, 1978), geological discon- tinuities, large and small, play an important role. The largest mining-induced seismic events are usually as- sociated with faults and dykes (Gay et al... by SIMRAC under the project GAP033. We would like to thank Blyvooruitzicht Mine and R.J. Stewart for use of the seismic data. The au- thors thank N.C. Gay for his helpful review and discussions. References Deichmann, N., Garcia-Fernandez, M., 1992. Rupture...

  14. Rheological investigation and simulation of a debris-flow event in the Fella watershed

    Directory of Open Access Journals (Sweden)

    M. A. Boniello

    2010-05-01

    Full Text Available To set an approach for the future territorial planning, the Geological Survey of Friuli Venezia Giulia Region, through the researchers of Trieste University, started a program of debris-flow risk analysis using Flo-2D software as tool to delimit the hazardous areas. In the present paper, as a case study, a debris flow, called Fella sx, occurring in a torrent catchment was analyzed. The choice was due to the abundance of information about past events, inundated areas, rain fall, geology and to its representativeness. An initial back-analysis investigation identified a couple of representative rheological parameters. Riverbed samples were collected, sieve analyses were performed and rheological tests were carried out on the fraction finer than 0.063 mm using a rotationally controlled stress rehometer equipped with the serrated parallel plate geometry. The shear dependent behaviour was examined at different concentrations ranging from 33 to 48%, by weight. Viscosity data treatment was performed to determine the most suitable rheological model to provide the best approximation of the debris-flow behaviour. The rheological parameters, derived from experimental data, were used and compared with those obtained through the back-analysis and with the real inundated area. Data obtained through rheological analysis are useful in constructing scenarios of future events where no data for back-analysis are available.

  15. Geologic-SURFICIAL62K-Sand and gravel pits

    Data.gov (United States)

    Vermont Center for Geographic Information — The GeologicSurficial_SURFICIAL data consists of surficial geologic features as digitized from the 1:62,500 15 minute series USGS quadrangle map sheets, compiled by...

  16. The Preliminary Processing and Geological Interpretation of Lunar Penetrating Radar Channel-1 Data from Chang'E-3

    Science.gov (United States)

    Yuan, Y.; Zhu, P.; Zhao, N.; Guo, S.; Xiao, L.; Xiao, Z.

    2014-12-01

    This is the first time to obtain the subsurface profiles using the lunar penetrating radar (LPR) on the Moon surface. Two types of antennas, channel-1 and channel-2, with different resolutions were equipped on the LPR, which detected the lunar subsurface structure with low frequency and the thickness of regolith with high frequency, respectively. We focus on the study of the lunar subsurface structure using channel-1 data. Considering the propagation characteristics of radar wave, the processing of amplitude compensation and filtering are applied to improve the imaging quality, and the processed profile clearly represents deeper than 300 meters of layered information. Based on the geological background around landing site, we present the preliminary geological interpretation for the lunar subsurface structure. More than 5 obvious reflecting events should be concerned along the track of the Yutu rover, which infer different lava sequences, including the Eratosthenian basalts, paleo-regolith formed between Eratosthenian and Imbrium, and multistage infilled lavas formed inter-layers among the Imbrium basalts.

  17. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    OpenAIRE

    Liang Wu; Lei Xue; Chaoling Li; Xia Lv; Zhanlong Chen; Baode Jiang; Mingqiang Guo; Zhong Xie

    2017-01-01

    Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP) and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional f...

  18. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach

  19. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    Energy Technology Data Exchange (ETDEWEB)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

  20. Crustal structural survey for the state of Minas Gerais, Brazil, utilizing geophysical and geological information

    International Nuclear Information System (INIS)

    Haralyi, N.L.E.; Hasui, Y.; Mioto, J.A.; Hamza, V.M.

    1985-01-01

    Gravity, Magnetic (airborne, Magnet and Magsat), heat flow and seismicity available data for the state of Minas Gerais and adjacent regions is here analyzed, discussed and integrated with geologic information. The Late Archean crustal structure is defined as blocks of granite-greenstone separated by belts of high-grade terrains. The belts in eastern and southern Minas Gerais represent the lower parts of the Vitoria, Sao Paulo and Parana Blocks, which were up thrusted over the Brasilia Block through low-angle ductile simple shear Zones. That regional structure is cut and somewhat displaced by NW, ENE, NE and Ns fault sets. These faults are mostly related to the Transamazonian Event, and their geological expression appears to be as high-angle ductile simple shear zones. The development of the Middle/upper proterozoic folded sequences, the incidence of the Brasiliano/Uruacuano thermo tectonic events and the geometry of the Sao Francisco Craton were highly influenced by the preexistent weakness zones. The high-grade terrains, the borders of the Brasilia Block and the Transamazonian lineaments have been preferentially affected. The tectono-magmatic manifestations of the Wealdenian Reactivation, related to the opening of the Atlantic Ocean, occurred mostly among the uplifted zones (Alto Paranaiba Uplift) that developed partially until the rift stage (Mantiqueira Uplift). These processes clearly reveal the influence of the old structures of the state of Minas Gerais. The Mantiqueira Uplift presents a more accentuated seismic activity and thermal flow regime than the neighboring regions, so corresponding to the present less stable area of Minas Gerais. (DJM) [pt

  1. The Geological Grading Scale: Every million Points Counts!

    Science.gov (United States)

    Stegman, D. R.; Cooper, C. M.

    2006-12-01

    The concept of geological time, ranging from thousands to billions of years, is naturally quite difficult for students to grasp initially, as it is much longer than the timescales over which they experience everyday life. Moreover, universities operate on a few key timescales (hourly lectures, weekly assignments, mid-term examinations) to which students' maximum attention is focused, largely driven by graded assessment. The geological grading scale exploits the overwhelming interest students have in grades as an opportunity to instill familiarity with geological time. With the geological grading scale, the number of possible points/marks/grades available in the course is scaled to 4.5 billion points --- collapsing the entirety of Earth history into one semester. Alternatively, geological time can be compressed into each assignment, with scores for weekly homeworks not worth 100 points each, but 4.5 billion! Homeworks left incomplete with questions unanswered lose 100's of millions of points - equivalent to missing the Paleozoic era. The expected quality of presentation for problem sets can be established with great impact in the first week by docking assignments an insignificant amount points for handing in messy work; though likely more points than they've lost in their entire schooling history combined. Use this grading scale and your students will gradually begin to appreciate exactly how much time represents a geological blink of the eye.

  2. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lomenick, T.F.

    1996-03-01

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  3. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    International Nuclear Information System (INIS)

    Lomenick, T.F.

    1996-03-01

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee

  4. Developing medical geology in Uruguay: a review.

    Science.gov (United States)

    Mañay, Nelly

    2010-05-01

    Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population's exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  5. Developing Medical Geology in Uruguay: A Review

    Directory of Open Access Journals (Sweden)

    Nelly Mañay

    2010-04-01

    Full Text Available Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population’s exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  6. Alpha-decay event damage in zircon

    International Nuclear Information System (INIS)

    Murakami, Takashi; Chakoumakos, B.C.; Ewing, R.C.; Lumpkin, G.R.; Weber, W.J.

    1991-01-01

    Based on density measurements, X-ray diffraction analysis, and high-resolution transmission electron microscopy of a suite of natural zircon samples from Sri Lanka, three stages of damage accumulation may be delineated. Stage 1 ( 15 α-decay events/mg) is characterized by sharp Bragg diffraction maxima with a minor contribution from the diffuse-scattering component. Electron diffraction patterns were sharp. Damage is dominated by the accumulation of isolated point defects, which cause unit-cell expansion and distortion that account for most of the decrease in density. These defects may partially anneal over geologic periods of time. Stage 2 (3 x 10 15 to 8 x 10 15 α-decay events/mg) is characterized by significant decreases in the intensity of the Bragg diffraction maxima, which becomes asymmetric from increased contributions of the diffuse-scattering component. High-resolution transmission electron microscopy indicated that the microstructure consists of distorted crystalline regions and amorphous tracks caused by α-recoil nuclei. With increasing α-decay dose, damaged crystalline regions are converted into aperiodic regions but with no further significant expansion of the unit cell in the remaining crystalline regions. State 3 (> 8 x 10 15 α-decay events/mg) consists of material that is entirely aperiodic as far as can be determined by X-ray or electron diffraction. There was no evidence for the formation of ZrO 2 or SiO 2 as final products during the last stage of metamictization. Based on modeled density changes, aperiodic regions continue to experience a change in structure as they are redamaged

  7. Data Qualification Report: Precipitation and Surface Geology Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    C. Wilson

    2000-01-01

    The unqualified data addressed in this qualification report have been cited in an Analysis Model Report (AMR) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high-level radioactive waste. The unqualified data include precipitation volumes and surface geology maps The precipitation data consist of daily precipitation volumes measured at Yucca Mountain. The surface geology data include identification of the types and surface expressions of geologic units and associated structural features such as faults. These data were directly used in AMR U0010, Simulation of Net Infiltration for Modern and Potential Future Climates, ANL-NBS-HS-000032 (Hevesi et al. 2000), to estimate net infiltration into Yucca Mountain. This report evaluates the unqualified data within the context of supporting studies of this type for the Yucca Mountain Site Characterization Project (YMP). The purpose of this report is to identify data that can be cited as qualified for use in technical products to support the YMP Site Recommendation and that may also be used to support the License Application. The qualified data may either be retained in the original Data Tracking Number (DTN) or placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this report. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 02, Managing Technical Product Inputs, it has been determined that the unqualified precipitation and surface geology data are not used in the direct calculation of Principal Factors for postclosure safety or disruptive events. References to tables, figures, and sections from Hevesi et al. (2000) are based on Rev. 00 of that document

  8. Postclosure safety assessment of a deep geological repository for Canada's used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, N.G.; Kremer, E.P.; Garisto, F.; Gierszewski, P.; Gobien, M.; Medri, C.L.D. [Nuclear Waste Management Organization, Toronto, ON (Canada); Avis, J.D. [Geofirma Engineering Ltd., Ottawa, ON (Canada); Chshyolkova, T.; Kitson, C.I.; Melnyk, W.; Wojciechowski, L.C. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    This paper reports on elements of a postclosure safety assessment performed for a conceptual design and hypothetical site for a deep geological repository for Canada's used nuclear fuel. Key features are the assumption of a copper used fuel container with a steel inner vessel, container placement in vertical in-floor boreholes, a repository depth of 500 m, and a sparsely fractured crystalline rock geosphere. The study considers a Normal Evolution Scenario together with a series of Disruptive Event Scenarios. The Normal Evolution Scenario is a reasonable extrapolation of present day site features and receptor lifestyles, while the Disruptive Event Scenarios examine abnormal and unlikely failures of the containment and isolation systems. Both deterministic and probabilistic simulations were performed. The results show the peak dose consequences occur far in the future and are well below the applicable regulatory acceptance criteria and the natural background levels. (author)

  9. Popularizing Geological Education among Civil Engineering Students

    Science.gov (United States)

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  10. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    Science.gov (United States)

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  11. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  12. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    Science.gov (United States)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  13. Northeastern Regional Geologic Characterization Report: executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final Northeastern Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. 5 refs., 3 figs

  14. The geological thought process: A help in developing business instincts

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.A. [Dean Witter Reynolds, New York, NY (United States)

    1995-09-01

    Since the beginning of modern-day geology it has been understood that the present is the key to the past. However, when attempting to apply current geological models one discovers that there are no exact look-alikes. Thus, the geological discipline inherently accepts modifications, omissions, and relatively large margins of error compared with engineering. Geologists are comfortable in a world of non-unique solutions. Thus the experience in working with numerous geological settings is extremely critical in selecting the most reasonable geological interpretations, often by using a composite of specific models. One can not simply replace a dynamic geologist`s life-time of experiences and geologic instinct with simply a book-smart young upstart. Petroleum corporations accept geologic risk and manage it by drilling numerous wells in various geological provenances. Oil corporations have attempted to quantify and manage risk by using Monte Carlo simulations, thus invoking a formal discipline of risk. The acceptance of risk, results in an asset allocation approach to investing. Asset allocators attempt to reduce volatility and risk, inherently understanding that in any specific time interval anything can happen. Dollar cost averaging significantly reduces market risk over time, however it requires discipline and commitment. The single most important ingredient to a successful investing plan is to assign a reasonable holding period. Historically, a majority of the investment community demands instant gratification causing unneeded anxiety and failure. As in geology nothing can replace experience.

  15. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  16. Geologic Reconnaissance and Lithologic Identification by Remote Sensing

    Science.gov (United States)

    remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.

  17. Status report on the geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences); Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young (Oak Ridge National Lab., TN (United States)); Lietzke, D.A. (Lietzke (David A.), Rutledge, TN (United States)); McMaster, W.M. (McMaster (William M.), Heiskell, TN (United States))

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  18. Status report on the geology of the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth

  19. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  20. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1992-01-01

    This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling

  1. A drill-hole geodatabase as a tool to investigate geological hazard in Napoli Urban Area

    Science.gov (United States)

    Albericoa, I.; Lirer, L.; Petrosino, P.

    2003-04-01

    Geological investigations in urban areas are complicated by the absence of good outcrops and field exposures, as a result of the density of civil buildings and railway and road network. On the other side, in urban areas geological investigation represents a basic tool to decisional support for the management of present private buildings and public works and for the planning of new ones. This is much more true in urban areas very exposed to geological hazard (volcanic, hydrogeological, seismic) where the high exposed value greatly rises the risk. The methodology to deal with the geological hazard in urban areas here presented is the reconstruction of buried geological formations deduced by drill-holes stratigraphy.The test area is represented by the whole municipality of Napoli city, that proves very apt to the investigation of the hazard in urban areas since it stands over an active volcanic area, comprised between the Campi Flegrei volcanic field and the Somma-Vesuvio district, that both gave explosive and effusive activity through the last centuries. Besides, the extension of the main part of the city constrained between the coastline and the belt of volcanic hills together with the presence of loose material due to pyroclastic activity makes the alluvional events an other hazardous phenomenon for the city. The performed up datable drill-holes geodata-base for the city of Napoli at present contains the record of about 800 holes stratigraphy, collected through the main public and private bodies, reflecting the drill-holes surveys made along the last 50 years before constructing the main railways, roads and aqueduct network. Drill-holes data have been interpreted and can now be read under various viewpoints (geological, lithological, volcanological); the present work presents the first results of the geological hazard investigation. The investigation of buried stratigraphy in the eastern area allows to identify the presence of pyroclastic flow deposits from Somma

  2. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  3. Characterization of long-term geological changes for final disposal of spent fuel in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.; Blomqvist, R.; Aikaes, T.

    1996-01-01

    The bedrock of Finland is very old and major crustal deformation processes ceased long ago. At present continuous slow processes prevail and geological changes taking place today are very difficult to observe. Anticipated future geological changes are dominated by the renewed development of the continental ice sheet in northern Europe. The present climate will deteriorate to a state amenable to glacier formation. Continuous processes such as groundwater flow and interrelated hydrogeochemical phenomena will be influenced by changes in the climate as well as by developing permafrost. The crust itself will be loaded by the weight of the ice sheet, and will will warp down. The final disposal programme has been devised with even more exceptional future changes in mind. The process of site identification in the site selection research programme has been developed to consider the eventuality of the future bedrock movements. Analysis of bedrock geometry and block patterns, together with related fracture zones assists in selecting a repository site where the risks of accumulation of large stresses, and their subsequent release as shear movements, can be minimized. By studying the prevailing conditions and tracing the record of earlier events an understanding of the relevant processes in general is developed. Paleo-hydrogeology is one of the areas which can provide information relating to 'why the conditions at the site today are as they are'. Although it is not possible to predict the future behavior of a site in a detailed manner, it is possible to constrain the scenarios needed in the safety assessment by establishing and documenting real events that have sometimes occurred, and that will most probably be repeated. (authors). 31 refs., 8 figs

  4. Historical foundations of chemical geology and geochemistry

    NARCIS (Netherlands)

    Manten, A.A.

    1966-01-01

    Roughly, the name chemical geology has been used for as long as chemistry has been applied in geology; the name geochemistry was introduced by Schönbein, in 1838. Whereas initially the names were often regarded as synonymous, in our century there is a tendency to make a distinction between the two

  5. Iowa Geologic Sampling Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Point locations of geologic samples/files in the IGS repository. Types of samples include well cuttings, outcrop samples, cores, drillers logs, measured sections,...

  6. Mining-induced seismicity at the Lucky Friday Mine: Seismic events of magnitude >2.5, 1989--1994

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, J.K.; Williams, T.J. [USDOE, Spokane, WA (United States). Spokane Research Center; Blake, W. [Blake (W.), Hayden Lake, ID (United States); Sprenke, K. [Idaho Univ., Moscow, ID (United States); Wideman, C. [Montana Tech, Butte, MT (United States)

    1996-09-01

    An understanding of the types of seismic events that occur in a deep mine provides a foundation for assessing the seismic characteristics of these events and the degree to which initiation of these events can be anticipated or controlled. This study is a first step toward developing such an understanding of seismic events generated by mining in the Coeur d`Alene Mining District of northern Idaho. It is based on information developed in the course of a long-standing rock burst research effort undertaken by the U. S. Bureau of Mines in cooperation with Coeur d`Alene Mining District mines and regional universities. This information was collected for 39 seismic events with local magnitudes greater than 2.5 that occurred between 1989 and 1994. One of these events occurred, on average, every 8 weeks during the study period. Five major types of characteristic events were developed from the data; these five types describe all but two of the 39 events that were studied. The most common types of events occurred, on average, once every 30 weeks. The characteristic mechanisms, first-motion patterns, damage patterns, and relationships to mining and major geologic structures were defined for each type of event. These five types of events need to be studied further to assess their ability to camouflage clandestine nuclear tests as well as the degree to which they can be anticipated and controlled.

  7. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  8. Contributions to a Brazilian Code of Conduct for Fieldwork in Geology: an approach based on Geoconservation and Geoethics.

    Science.gov (United States)

    Mansur, Kátia L; Ponciano, Luiza C M O; Castro, Aline R S F DE

    2017-05-01

    When considering the numerous events that have prohibited the development of scientific projects or caused destruction of outcrops, it is clear that there is rapidly increasing necessity to define a Brazilian Code of Conduct for geological fieldwork. In general, this destruction is attributed to lack of knowledge as to the relevance of geological sites. The aim of this Code of Conduct is to guide geologists to adopt good practices during geoscience activities. Proposed guidelines are based on Codes of Conduct from other countries, mainly Scotland and England, on situations described in papers and on the personal experience of the authors. In this paper 29 points are suggested, in order to guarantee that fieldwork is conducted in accordance with geoethics, geoconservation and sustainability values. The proposal is structured in three parts: (1) Behavior and practices in respect to local traditions and providing information to the population; (2) Measures to minimize degradation on outcrops; and (3) Safety. The proposal seeks to broaden the debate on the need for responsible behavior during fieldwork, in order to promote respect for geodiversity. Through this code, Brazilian geoscientists will be able to contribute to the conservation of geological heritage and of outcrops with special educational relevance.

  9. Exploring the assessment of geological observation with design research

    Science.gov (United States)

    Baek, John Y.

    The purpose of this study was to investigate the assessment of geological observation through the development and field testing of performance tasks. The study addressed a central challenge in geoscience education: for students to observe the world around them and make real-world connections. Yet, there existed no cohesive research approach for the study of observation in geoscience education. The research goal was to understand the assessment of geological observation. The design research of geological observation encountered the situation where few performance assessments existed and few domain-specific learning theories were available. Design research is suited to inquiries in which a domain of learning is unexplored and the phenomena needs to be supported in the classroom in order to study it. This dissertation addressed one general research question and four subquestions: (RQ) How should geological observation be assessed? (S1) What role did perception play in assessing students' geological observations? (S2) What role did explanation play in assessing students' geological observations? (S3) What role did gestures play in assessing students' geological observations? (S4) Were there performance differences between the first and second trial of the GO Inquire prototype with fourth graders? Students were supported in making geological observations with three performance tasks: GO Inquire stamp task, Cutting task, and Fieldguide task. The data set for this study consisted of student response data, videorecordings, and participant observations from seven field tests across one fourth and one fifth grade class. Three data-analytic methods, qualitative coding, item-difficulty analysis, and non-parametric comparisons, were utilized based on four mixed-method data analysis strategies: typology development, data transformation, extreme case analysis, and data consolidation. Analysis revealed that assessment should take into account the separation of visual from verbal

  10. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  11. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  12. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  13. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  14. Relation of geological structure to seismicity at Pahute Mesa, Nevada Test Site

    International Nuclear Information System (INIS)

    McKeown, F.A.

    1975-01-01

    Some of the abundant and unique geological and seismological data acquired at the Nevada Test Site is integrated with the objectives of (1) resolving some of the ambiguity in explanations of the source of aftershocks of nuclear explosions, and (2) demonstrating the value of using detailed geological and seismological data to infer realistic source parameters of earthquakes. The distribution of epicenters of aftershocks from nuclear explosions at Pahute Mesa suggests that they are related to faults or intersections of faults in the buried ring-fracture zones of calderas rather than to the conspicuous basin-and-range faults exposed at the surface. Histograms of fault length show clearly that faults in a basin-and-range regime differ significantly in length, median length, and distribution of length from faults in a caldera regime. A histogram of fault lengths derived from magnitudes of aftershocks shows both the median and distribution characteristics of caldera faults rather than of basin-and-range faults. Cumulative frequency-fault length-squared plots also show differences in the two fault regimes, and have slopes, herein called bf slopes, of --0.89 for caldera and basin-and-range faults, respectively. The bf slopes are similar to the average slope of a cumulative frequency-strain plot for aftershocks rather than to the b slopes for cumulative frequency-magnitude plots. Although the significance of b and bf slopes and differences between them are not resolved clearly, it is concluded that the fault length and strain data reflect dimensions of seismic sources rather than energy of seismic events. The principal conclusion of the investigation is that the most obvious geology of a seismically active area may not provide the proper basis for inferring seismic-source parameters. (U.S.)

  15. Geological hazards in the Azores archipelago: Volcanic terrain instability and human vulnerability

    Science.gov (United States)

    Malheiro, A.

    2006-08-01

    The islands of the Azores archipelago are geologically young and located in a tectonically and volcanically active region. Not surprisingly, the islands are subject to many geological hazards, including earthquakes, landslides, and coastal erosion; some selected examples are discussed in this paper. As demonstrated by two recent earthquakes (1980, Terceira; 1998, Faial), the principal damage was related to one or more of these factors: (1) unsafe location of structures near faults; (2) unstable foundation soils; (3) poor quality of building materials and construction methods; (4) disregard of building codes; and (5) lack of building maintenance. Major landsliding events in the Azores (e.g., Ponta da Fajã, Ribeira Quente, and Fajã dos Cubres) typically are triggered by intense, long-duration precipitation and (or) earthquake-induced ground shaking. The loose, unconsolidated nature of the rocks and soils of these volcanic islands is another significant contributing factor, sometimes aggravated by ground instability caused by human activity. Coastal erosion is prevalent on the north coast of São Miguel and the south coast of Faial, mostly resulting from natural circumstances (e.g., steepness of cliffs, differential erosion, intense wave action during storms) and also from human activity (e.g., poorly engineered drainage works on cliff faces). Where severe, coastal erosion can pose a risk to populations and societal infrastructures situated near the tops of the seacliffs. To mitigate the risk of these and other geological hazards in the Azores, it is necessary to (1) prepare hazards and risks maps of the affected areas; (2) adopt prudent land-use planning that considers the hazards; (3) upgrade the building codes in the hazardous areas; (4) initiate slope-stabilization programs; (5) preserve the natural environmental integrity of the regions; and (6) educate the affected populace and governmental officials about the possibilities and consequences of hazardous

  16. Geology of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Roxburgh, I.S.

    1988-01-01

    The concept of geological disposal is set out by describing the major rock types in terms of their ability to isolate high-level nuclear waste. The advantages and problems posed by particular rock formations are explored and the design and construction of geological repositories is considered, along with the methods used to estimate their safety. It gives special consideration to the use of sea-covered rock and sediment as well as the on-land situation. Throughout the book the various principles and problems inherent in geological disposal are explained and illustrated by reference to a multitude of European and North American case studies, backed up by a large number of tables, figures and an extensive bibliography

  17. Geodiversity: Exploration of 3D geological model space

    Science.gov (United States)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  18. Nurture of human resources for geological repository program

    International Nuclear Information System (INIS)

    Fujiwara, A.

    2004-01-01

    The Japanese geological repository program entered the implementing stage in 2002. At the implementing stage of the program, different sectors need various human resources to conduct their functions. This paper discusses a suitable framework of nurture of the human resources to progress the geological repository program. The discussion is based on considering of specific characters involved in the program and of the multidisciplinary knowledge related to geological disposal. Considering the specific characters of the project, two types of the human resources need to be nurtured. First type is the core persons with the highest knowledge on geological disposal. They are expected to communicate with the various stakeholders and pass down the whole knowledge of the project to the next generation. Another is to conduct the project as the managers, the engineers and the workers. The former human resources can be developed through the broad practice and experience in each sector. The latter human resources can be effectively developed by training of the fundamental knowledge on geological disposal at training centers as well as by conventional on-the-job training. The sectors involved in the program need to take their own roles in the nurture of these human resources. (author)

  19. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  20. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  1. The U.S. Geological Survey Astrogeology Science Center

    Science.gov (United States)

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  2. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event.

    Science.gov (United States)

    Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a

  3. Geology and petrography of the Socoscora Sierra . Province of San Luis. Republica Argentina

    International Nuclear Information System (INIS)

    Carugno Duran, A.

    1998-01-01

    The following paper include an study geological and petrographic of the Sierra de Socoscora. San Luis, Argentina. This mountainas is a block with less elevation that the Sierra de San Luis, and it located in the west center of it. It' s formed by an crystalline basement composed by metamorphic haigh grade rocks, with a penetrative foliation of strike N-S. in this context is possible to define petrographicly the following units, migmatitic that fill a big part of the mountain, amphibolites, marbles, skarns, milonites and pegmatites. This units have amphibolitic facies assemblanges mineral and in some them, we can observe retrograde metamorphism of the greesnschist facies. The metamorphic structure is complex and evidence at least three deformation event

  4. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  5. Several issues of uranium geology exploration facilities decommissioning

    International Nuclear Information System (INIS)

    Zhang Lu; Lu Caixia; Sheng Qing; Zhuang Jingqi; Xie Shujun; Liao Yunxuan

    2013-01-01

    The environmental protection completion acceptance review work of uranium geology exploration facilities 'llth five-year plan' decommissioned and remediation projects is introduced. Some questions related to norms and standards for uranium geology exploration facilities decommissioning and remediation, scheme of decommissioning and remediation, process inspection and acceptance of project and so on are discussed, and corresponding countermeasures and suggestions are put forward, Some references can be provided for the later development of uranium geological exploration facility '12th five-year plan' decommissioning and remediation projects. (authors)

  6. Predicting thermally stressful events in rivers with a strategy to evaluate management alternatives

    Science.gov (United States)

    Maloney, K.O.; Cole, J.C.; Schmid, M.

    2016-01-01

    Water temperature is an important factor in river ecology. Numerous models have been developed to predict river temperature. However, many were not designed to predict thermally stressful periods. Because such events are rare, traditionally applied analyses are inappropriate. Here, we developed two logistic regression models to predict thermally stressful events in the Delaware River at the US Geological Survey gage near Lordville, New York. One model predicted the probability of an event >20.0 °C, and a second predicted an event >22.2 °C. Both models were strong (independent test data sensitivity 0.94 and 1.00, specificity 0.96 and 0.96) predicting 63 of 67 events in the >20.0 °C model and all 15 events in the >22.2 °C model. Both showed negative relationships with released volume from the upstream Cannonsville Reservoir and positive relationships with difference between air temperature and previous day's water temperature at Lordville. We further predicted how increasing release volumes from Cannonsville Reservoir affected the probabilities of correctly predicted events. For the >20.0 °C model, an increase of 0.5 to a proportionally adjusted release (that accounts for other sources) resulted in 35.9% of events in the training data falling below cutoffs; increasing this adjustment by 1.0 resulted in 81.7% falling below cutoffs. For the >22.2 °C these adjustments resulted in 71.1% and 100.0% of events falling below cutoffs. Results from these analyses can help managers make informed decisions on alternative release scenarios.

  7. Spatial Digital Database for the Geologic Map of Oregon

    Science.gov (United States)

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  8. The fungal and acritarch events as time markers for the latest Permian mass extinction: An update

    Directory of Open Access Journals (Sweden)

    Michael R. Rampino

    2018-01-01

    Full Text Available The latest Permian extinction (252 Myr ago was the most severe in the geologic record. On land, widespread Late Permian gymnosperm/seed-fern dominated forests appear to have suffered rapid and almost complete destruction, as evidenced by increased soil erosion and changes in fluvial style in deforested areas, signs of wildfires, replacement of trees by lower plants, and almost complete loss of peat-forming and fire-susceptible vegetation. Permian–Triassic boundary strata at many sites show two widespread palynological events in the wake of the forest destruction: The fungal event, evidenced by a thin zone with >95% fungal cells (Reduviasporonites and woody debris, found in terrestrial and marine sediments, and the acritarch event, marked by the sudden flood of unusual phytoplankton in the marine realm. These two events represent the global temporary explosive spread of stress-tolerant and opportunistic organisms on land and in the sea just after the latest Permian disaster. They represent unique events, and thus they can provide a time marker in correlating latest Permian marine and terrestrial sequences.

  9. Digital Geologic Map of New Mexico - Volcanic Vents

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  10. Risk Assessment and Management for Long-Term Storage of CO2 in Geologic Formations — United States Department of Energy R&D

    Directory of Open Access Journals (Sweden)

    Dawn Deel

    2007-02-01

    . Subsurface risks, attributable to subsurface releases, arise from the displacement of fluids by the injected CO2 that could damage nearby hydrocarbon resources or trigger small seismic events. There is also the potential for sequestered CO2 to leak into non-saline formations, which could cause problems with potable uses of this water. However, overall, risks from CO2 sequestration are believed to be small. Implementation of CO2 sequestration is being approached in phases. The DOE is currently sponsoring a series of pilot tests to generate important data that will elucidate the risks involved in geologic sequestration and lead to the development of risk management protocols. This phased approach should ensure that potential sources of leakage are identified, consequences are quantified, events with the potential to cause harm are analyzed to estimate their frequency and associated risk, and safeguards are put in place to further reduce risks for an operation for which risks already appear to be low.

  11. Preliminary assessment of the radiological protection aspects of disposal of high-level waste in geologic formations

    International Nuclear Information System (INIS)

    Hill, M.D; Grimwood, P.D.

    1978-01-01

    The purpose of this study is to carry out a preliminary assessment of the potential radiological consequences of disposing of vitrified high-level radioactive waste in geologic formations. The events which could lead to the release of radioactivity from a geologic repository are reviewed and ingress of ground-water is identified as the principal mechanism by which radioactivity may be transported back to the biosphere. A mathematical model of radionuclide migration with ground-water is used to predict possible rates of release of radioactivity into fresh water from a hypothetical repository containing all the high-level waste which may be generated in the UK up to the year 2000. The individual and collective doses which could be received as a result of man's use of contaminated fresh water are evaluated. The numerical results of the study depend very much on the assumptions made and cannot be used to draw any detailed conclusions. The main result is the identification of areas where further studies are required in order to carry out a full evaluation of this disposal option. (author)

  12. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    Science.gov (United States)

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  13. High Precision Positioning at Field Camp: Using GNSS as the primary data source to answer geologic questions

    Science.gov (United States)

    Crosby, B. T.; Lauer, I. H.; Pratt-Sitaula, B.

    2017-12-01

    Thanks to the availability and accessibility of GPS/GNSS enabled consumer grade positioning devices, GNSS are nearly ubiquitous in both geologic field research and education. Though the devices offer sufficient precision to geotag images, digital field book entries or measurements, positions themselves are not precise enough to accomplish independent geodetic analysis. As a consequence, most students learn about GNSS at a tool that aids other forms of geologic data acquisition rather serving as the primary source itself. To resolve this, we developed and tested a three-unit teaching module within the GETSI - SERC curriculum framework that reinforces high precision positioning as a primary source of geologic data. Units focus on three core topics: GNSS Fundamentals, Kinematic GNSS and Static GNSS Methods. Module goals enable students to (a) design and conduct a GNSS survey to answer a geologic question, (b) justify why their GNSS technique is appropriate to their question and (c) to articulate how answering their question benefits society. Skill building is via quantitative and qualitative analysis, concept sketches, and both field and office based data acquisition and interrogation. Exercises are site-independent and include example datasets for those unable to travel. In the summer of 2017, we tested the module with 20 undergraduate students over two days at the ISU field geology course. Located in the Lost River Range of Idaho, positioned among active normal faults, we not only explored the use of static GNSS data for active tectonics but visited a station in person. For a summative assessment, we focused on kinematic GNSS, using RTK rovers to reoccupy leveling monuments spanning the active Lost River fault that ruptured in 1983 (M 7.0). The data collected by our class quantified aseismic deformation occurring in the 30+ years since that event. Displacements were significantly larger than the instrumental uncertainty, confirming that RTK was an appropriate tool

  14. Palaeogeographical peculiarities of the Pabdeh Formation (Paleogene) in Iran: New evidence of global diversity-determined geological heritage

    Science.gov (United States)

    Habibi, Tahereh; Nielsen, Jan K.; Ponedelnik, Alena A.; Ruban, Dmitry A.

    2017-11-01

    Unique palaeogeographical peculiarities of sedimentary formations are important for geological heritage conservation and use for the purposes of tourism. The heritage value of the Pabdeh Formation (Paleocene-Oligocene) of the Zagros Fold-Thrust Belt in Iran has been investigated. The uniqueness of its palaeogeographical peculiarities has been assessed on the basis of the literature, field studies of three representative sections in the Fars Province (Kavar, Zanjiran, and Shahneshin sections), and comparison with the similar features known in Iran and globally. The Pabdeh Formation reflects the process of mixed siliciclastic-carbonate ramp progradation and the onset of a typical carbonate platform. The other unique features include representation of mesopelagic palaeohabitat, specific trace fossil assemblages, prehistoric bituminous artefacts (production of which was linked to the Pabdeh deposits), etc. It is established that the palaeogeographical type of geological heritage of the Pabdeh Formation is represented by all known subtypes, namely facies, palaeoecosystem, ichnological, taphonomical, event, and geoarchaeological subtypes. Their rank varies between regional and global. The very fact of co-occurrence of these subtypes determines the global importance of the entire palaeogeographical type in the case of this formation. The establishment of geopark in the Zagros Fold-Thrust Belt will facilitate adequate use of the Pabdeh Formation for the purpose of geotourism development. The aesthetic properties (rocks of different colour and striped patterns of outcrops) increase the attractiveness of this geological body to visitors.

  15. Geology of the Terre Adélie Craton (135 – 146˚ E)

    Science.gov (United States)

    Ménot, R.P.; Duclaux, G.; Peucat, J.J.; Rolland, Y.; Guillot, S.; Fanning, M.; Bascou, J.; Gapais, D.; Pêcher, A.

    2007-01-01

    More than 15 years of field and laboratory investigations on samples from Terre Adélie to the western part of George Vth Land (135 to 146°E) during the GEOLETA program allow a reassessment of the Terre Adélie Craton (TAC) geology. The TAC represents the largest exposed fragment of the East Antarctic Shield preserved from both Grenville and Ross tectono-metamorphic events. Therefore it corresponds to a well-preserved continental segment that developed from the Neoarchean to the Paleoproterozoic. Together with the Gawler Craton in South Australia, the TAC is considered as part of the Mawson continent, i.e. a striking piece of the Rodinia Supercontinent. However, this craton represents one of the less studied parts of the East Antarctic Shield. The three maps presented here clearly point out the extent of two distinct domains within the Terre Adélie Craton and suggest that the TAC was built up through a polyphased evolution during the Neoarchean-Siderian (c.a. 2.5Ga) and the Statherian (c.a. 1.7Ga) periods. These data support a complete re-assessment of the TAC geology and represent a valuable base for the understanding of global geodynamics changes during Paleoproterozoic times.

  16. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    Science.gov (United States)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  17. Characterizing Drought Events from a Hydrological Model Ensemble

    Science.gov (United States)

    Smith, Katie; Parry, Simon; Prudhomme, Christel; Hannaford, Jamie; Tanguy, Maliko; Barker, Lucy; Svensson, Cecilia

    2017-04-01

    Hydrological droughts are a slow onset natural hazard that can affect large areas. Within the United Kingdom there have been eight major drought events over the last 50 years, with several events acting at the continental scale, and covering the entire nation. Many of these events have lasted several years and had significant impacts on agriculture, the environment and the economy. Generally in the UK, due to a northwest-southeast gradient in rainfall and relief, as well as varying underlying geology, droughts tend to be most severe in the southeast, which can threaten water supplies to the capital in London. With the impacts of climate change likely to increase the severity and duration of drought events worldwide, it is crucial that we gain an understanding of the characteristics of some of the longer and more extreme droughts of the 19th and 20th centuries, so we may utilize this information in planning for the future. Hydrological models are essential both for reconstructing such events that predate streamflow records, and for use in drought forecasting. However, whilst the uncertainties involved in modelling hydrological extremes on the flooding end of the flow regime have been studied in depth over the past few decades, the uncertainties in simulating droughts and low flow events have not yet received such rigorous academic attention. The "Cascade of Uncertainty" approach has been applied to explore uncertainty and coherence across simulations of notable drought events from the past 50 years using the airGR family of daily lumped catchment models. Parameter uncertainty has been addressed using a Latin Hypercube sampled experiment of 500,000 parameter sets per model (GR4J, GR5J and GR6J), over more than 200 catchments across the UK. The best performing model parameterisations, determined using a multi-objective function approach, have then been taken forward for use in the assessment of the impact of model parameters and model structure on drought event

  18. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  19. Use of Geological Lineaments Results in Groundwater Exploration ...

    African Journals Online (AJOL)

    Locating aquifiers in Precambrian crystalline rocks offers major problems unless areas of intense weathering or fracturing are targeted. These normally occur along geological lineaments which can be identified during groundwater exploration. Major geological lineaments were identified in the Zomba area, southern Malawi ...

  20. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  1. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  2. Geomediations in the Anthropocene: Fictions of the Geologic Turn

    Directory of Open Access Journals (Sweden)

    Alla Ivanchikova

    2018-02-01

    Full Text Available In both literature and philosophy, geologic matter has been imagined as a vector of extending perception and analysis into the territory of not only the nonhuman, but also the non-living, challenging the very distinctions between life and non-life, agile and inert matter. Recently, the debates over the concept of the Anthropocene amplified our fascination with the geologic, bringing into view the inescapable bond of human and Earth’s history. The article probes the possibilities of the geologic turn through two short stories published in the era of the Anthropocene debates—Margaret Atwood’s ‘Stone Mattress’ (2013 and A.S. Byatt’s ‘A Stone Woman’ (2003. The stories’ interest in a geologic setting, their staging of human-mineral intimacies, and their geologically-infused aesthetics position these two stories as fictions of the geologic turn. I examine how these writers—through reconfiguring the relations between bios and geos, human and nonhuman—forge alternatives to an extractive relation to the geos, as well as refuse to accept the figure of Earth as either an inert object or a victim. In this reframing, they also exemplify feminist critique of the imagined unity of ‘Anthropos’ that is named by the Anthropocene thinkers.

  3. Environmental changes close to the Lower-Middle Devonian boundary; the Basal Choteč Event in the Prague Basin (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Vodrážková, S.; Frýda, J.; Suttner, T. J.; Koptíková, Leona; Tonarová, P.

    2013-01-01

    Roč. 59, č. 2 (2013), s. 425-449 ISSN 0172-9179 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 Keywords : Basal Choteč Event * carbon isotope geochemistry * environmental changes * Lower-Middle Devonian * microfacies analysis * Prague Basin Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.338, year: 2013

  4. The Aristarchus-Harbinger region of the moon: Surface geology and history from recent remote-sensing observations

    Science.gov (United States)

    Zisk, S.H.; Hodges, C.A.; Moore, H.J.; Shorthill, R.W.; Thompson, T.W.; Whitaker, E.A.; Wilhelms, D.E.

    1977-01-01

    The region including the Aristarchus Plateau and Montes Harbinger is probably the most diverse, geologically, of any area of comparble size on the Moon. This part of the northwest quadrant of the lunar near side includes unique dark mantling material; both the densest concentration and the largest of the sinuous rilles; apparent volcanic vents, sinks, and domes; mare materials of various ages and colors; one of the freshest large craters (Aristarchus) with ejecta having unique colors and albedos; and three other large craters in different states of flooding and degradation (krieger, Herodotus, and Prinz). The three best-authenticated lunar transient phenomena were also observed here. This study is based principally on photographic and remote sensing observations made from Earth and Apollo orbiting space craft. Results include (1) delineation of geologic map units and their stratigraphic relationships; (2) discussion of the complex interrelationships between materials of volcanic and impact origin, including the effects of excavation, redistribution and mixing of previously deposited materials by younger impact craters; (3) deduction of physical and chemical properties of certain of the geologic units, based on both the remote-sensing information and on extrapolation of Apollo data to this area; and (4) development of a detailed geologic history of the region, outlining the probable sequence of events that resulted in its present appearance. A primary concern of the investigation has been anomalous red dark mantle on the Plateau. Based on an integration of Earth- and lunar orbit-based data, this layer seems to consist of fine-grained, block-free material containing a relatively large fraction of orange glass. It is probably of pyroclastic origin, laid down at some time during the Imbrian period of mare flooding. ?? 1977 D. Reidel Publishing Company.

  5. Proceedings of the 14. Symposium on Geology from Northeast

    International Nuclear Information System (INIS)

    1991-01-01

    Works on geology, including topics about sedimentology, stratigraphy, paleontology, geomorphology, environmental, hydrogeology, petrology, geochemistry, geochronology, geophysics, geotectonics and structural geology are described in this symposium. (C.G.C.)

  6. North Central Regional Geologic Characterization Report. Executive summary. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This Executive Summary of the final North Central Regional Geologic Characterization Report (RGCR) is issued primarily for public information purposes and provides a general overview of the report. The complete RGCR presents available regional geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Minnesota, Wisconsin, and the Upper Peninsula of Michigan. For each of the states within the North Central Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening

  7. Geological evidence of tsunamis and earthquakes at the Eastern Hellenic Arc: correlation with historical seismicity in the eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Gerassimos Papadopoulos

    2012-12-01

    Full Text Available Sedimentary stratigraphy determined by trenching in Dalaman, south-western Turkey, revealed three sand layers at a distance of approximately 240 m from the shoreline and at elevations of +0.30, +0.55 and +0.90 cm. Storm surge action does not explain the features of these deposits that show instead typical characteristics of tsunami deposition. The sand layers correlate with historical tsunamis generated by large earthquakes which ruptured the eastern Hellenic Arc and Trench in 1303, 1481 and 1741. Accelerator mass spectrometry 14C dating of a wood sample from layer II indicated deposition in AD 1473±46, which fits the 1481 event. From an estimated average alluvium deposition rate of approximately 0.13 cm/year, layers I and III were dated at 1322 and 1724, which may represent the large 1303 and 1741 tsunamis. The geological record of the 1303 key event is very poor; therefore, sand layer I perhaps represents an important geological signature of the 1303 tsunami. However, the strong tsunami reported to have been generated by the 1609 earthquake is missing from Dalaman stratigraphy: this underlines the sensitivity of tsunami geological signatures to various local factors. The 1303 earthquake ruptured the trench between the islands of Crete and Rhodes. For the earthquakes of 1481, 1609 and 1741 we suggested that they were very likely generated in the Rhodes Abyssal Plain where sea depths of up to approximately 4200 m, together with the thrust component of seismotectonics, favor tsunami generation. Sand dykes directed upwards from layer I to layer II indicated that the 1481 earthquake triggered liquefaction of sand layer I. The results substantially widen our knowledge about the historical earthquake and tsunami activity in the eastern Mediterranean basin.

  8. MUSEUM GEOLOGI DAN PRASEJARAH DI MAKASSAR DENGAN PENDEKATAN ARSITEKTUR HIGH TECH

    Directory of Open Access Journals (Sweden)

    Saefullah Saefullah

    2015-12-01

    Full Text Available Abstrak—Indonesia kaya akan sumber daya geologi yang terdiri dari batuan, mineral dan bahan tambang. Berbicara mengenai geologi sangat erat kaitannya dengan zaman prasejarah.karena belum ditemukannya bukti-bukti tertulis dari zaman prasejarah tersebut, keterangan mengenai zaman ini diperoleh melalui bidang-bidang seperti paleontologi, astronomi, biologi, geologi, antropologi, dan arkeologi pentingnya melestarikan dan menjaga peninggalan-peninggalan prasejarah. Sehingga akan menumbuhkan rasa tanggungjawab terhadapnya. Hal ini sejalan dengan tugas Direktorat Jendral Kebudayaan Kementrian Pendidikan dan Kebudyaaan Indonesia dalam laporan kinerjanya .yang mengemukakan bahwa sisa-sisa peninggalan sejarah penting dipelihara sebagai pelajaran hidup bagi generasi berikutnya.Tujuan penelitian menyusun suatu landasan konseptual desain perancangan Museum Geologi dan prasejarah dengan pendekatan arsitektur high-tech, menerapkan system Double fasade, Ligth Pipe dan system fotovoltaic pada bangunan, mengaplikasikan intelegent system pada utilitas pada bangunan.Hasil Laporan ini adalah mendesain bangunan museum geologi dan prasejarah di Makassar dengan pendekatan arsitektur high-tech. Kata Kunci :Museum geologi, prasejarah, high-tech Abstract-Indonesia is rich geological resources consisting of rocks, minerals and minerals. Talking about the geology is very closely related to prehistoric times because of not finding written evidence from prehistoric times, the information concerning this age obtained through fields like paleontology, astronomy, biology, geology, anthropology, and archeology importance of preserving and maintaining prehistoric relics. So will foster a sense of responsibility to it. This is in line with the duties of the Directorate General of Culture Ministry of Education and Indonesian culture in its performance report which suggested that the remains of important historical remains preserved as a living lesson for the next generation. The

  9. Proceedings of the 7. Symposium on geology from southeastern Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents papers on the following subjects: regional geology of the proterozoic and fanerozoic, metallic and non metallic resources, tectoni-sedimentary evolution of the eastern margin Brazil basins and petroleum geology applied to the Santos, Campos and Espirito Santo basins, engineering and environmental geologies, ornamental rocks/building materials/mineral waters/industrial ores

  10. Environmental geology in the United States: Present practice and future training needs

    Science.gov (United States)

    Lundgren, Lawrence

    Environmental geology as practiced in the United States confronts issues in three large areas: Threats to human society from geologic phenomena (geologic hazards); impacts of human activities on natural systems (environmental impact), and natural-resource management. This paper illustrates present U.S. practice in environmental geology by sampling the work of 7 of the 50 state geological surveys and of the United States Geological Survey as well. Study of the work of these agencies provides a basis for identifying avenues for the training of those who will deal with environmental issues in the future. This training must deal not only with the subdisciplines of geology but with education to cope with the ethical, interdisciplinary, and public-communication aspects of the work of the environmental geologist.

  11. Study on synthesis of geological environment at Horonobe area. A technical review

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-03-01

    The objective of the Horonobe Under Ground Research Project includes enhancing reliability of disposal techniques and safety assessment methods which are based on data on deep underground geological environment obtained by surface explorations and models for geological environment developed using those data. In this study, through development of conceptual models of geological environment based on those data, the flows from data collection to modeling, which have been conducted independently for each geological environment of geology/geological structure, hydrogeology, geochemistry of groundwater and rock mechanics, were synthesized, and a systematic approach including processes from investigation of geological environment to its modeling was established, which is expected to ensure objectivity and traceability of the design and safety assessment of a disposal system. This study is also a part of a program that includes an iterative process in which geological models would be developed and revised repeatedly through the Horonobe Under Ground Research Project and development of geological environment investigation techniques. The results of the study are summarized as follows: (1) Models based on current knowledge were developed; conceptual geology/geological structural model, conceptual hydrogeological model, conceptual geochemical model of groundwater, and conceptual rock mechanical model, (2) Information of data flow and interpretation in the modeling process were synthesized into an data flow which includes knowledge on historical geology and palaeogeology in addition to four models shown above in terms of safety assessment, and (3) Based on modeling processes and syntheses of data flow shown above, tasks that should be considered were organized and suggestions of investigation program were provided for the next phase. (author)

  12. Geologic framework studies of South Carolina's Long Bay from Little River Inlet to Winyah Bay, 1999-2003: geospatial data release

    Science.gov (United States)

    Baldwin, W.E.; Denny, J.F.; Schwab, W.C.; Gayes, P.T.; Morton, R.; Driscoll, N.W.

    2007-01-01

    The northern South Carolina coast is a heavily developed region that supports a thriving tourism industry, large local populations and extensive infrastructure (Figure 1). The economic stability of the region is closely tied to the health of its beaches: primarily in providing support for local tourism and protection from storm events. Despite relatively low long-term shoreline erosion rates, and the implied stability of the beaches, the economic impact of storm events to coastal communities has been costly. For example, Hurricane Hugo made landfall on the central South Carolina coast in 1989. High winds and storm surge inflicted roughly $6 billion in property loss and damages, and Hugo remains the costliest storm event in South Carolina history. Localized erosion, commonly occurring around tidal inlets and erosion "hot spots", has also proved costly. Construction and maintenance of hard structures and beach nourishment, designed to mitigate the effects of erosion, have become annual or multi-annual expenditures. Providing a better understanding of the physical processes controlling coastal erosion and shoreline change will allow for more effective management of coastal resources. In 1999, the U.S. Geological Survey (USGS), in partnership with the South Carolina Sea Grant Consortium (SCSGC), began a study to investigate inner continental shelf and shoreface processes. The objectives of the USGS/SCSGC cooperative program are: 1) to provide a regional synthesis of the shallow geologic framework underlying the shoreface and inner continental shelf, and to define its role in coastal evolution and modern beach behavior; 2) to identify and model the physical processes affecting coastal ocean circulation and sediment transport, and to define their role in shaping the modern shoreline; and 3) to identify sediment sources and transport pathways in order to develop a regional sediment budget. This report contains the geospatial data used to define the geologic framework

  13. One perspective on spatial variability in geologic mapping

    Science.gov (United States)

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  14. Preliminary Geological Survey on the Proposed Sites for the New Research Reactor

    International Nuclear Information System (INIS)

    Lim, In Cheol; Ha, J. J.; Oh, K. B.

    2010-12-01

    · Performing the preliminary geological survey on the proposed sites for the new research reactor through the technical service · Ordering a technical service from The Geological Society of Korea · Contents of the geological survey - Confirmation of active fault - Confirmation of a large-scale fracture zone or weak zone - Confirmation of inappropriate items related to the underground water - Confirmation of historical seismicity and instrumental earthquakes data · Synthesized analysis and holding a report meeting · Results of the geological survey - Confirmation of the geological characteristics of the sites and drawing the requirements for the precise geological survey in the future

  15. Uncertainties in the geological disposal for high-level radioactive waste

    International Nuclear Information System (INIS)

    Liu Xiaodong; Wang Changxuan

    2008-01-01

    Geological disposal, referring to the disposal of high-level solid radioactive waste in a facility located underground in a stable geological formation, was considered the most favourable methods to provide long term isolation of the radionuclides in the waste from the biosphere, and was adopted by IAEA and the developed nations with nuclear facilities. Over 50 years studies have been proved the technical feasibility of geological disposal for radioactive waste. However, there are many subjective and objective uncertainties on development, operation and closure of a geological disposal facility. For providing flexibility in responding to new technical information, advances in waste management and materials technologies, and in enabling social, economic and political aspects to be addressed, it is necessary to evaluate the uncertainties for all the R and D steps of a geological disposal program. (authors)

  16. Information collection and analysis of geological characterization and evaluation technology and application to geological characterization study

    International Nuclear Information System (INIS)

    Kawamura, Hideki; Noda, Masaru; Nishikawa, Naohito; Sato, Shoko; Tanaka, Tatsuya

    2003-03-01

    Tono Geoscience Center (TGC) of Japan Nuclear Cycle Development Institute has been conducting the Regional Groundwater Investigation and Mizunami Underground Laboratory (MIU) Project in order to develop investigation technologies and evaluation methods of geological environment. At present, towards the next progress reporting on research and development for geological disposal of HLW in Japan, based on the existing research and development results, the projects which are conducted by TGC are required for promoting smoothly and efficiently with regard to the current Japanese HLW program. According to such situation, for planning of the geological environment investigation and research at TGC and the next progress reporting, this study has investigated and summarizes overseas environmental impact assessments for final disposal, overseas site characterization and site selection, and overseas research plan of underground research laboratories. Based on the results of investigation, some technologies which have possibility to be applied to the MIU Project have been studied. Also overseas quality assurance programs have been investigated, and examples of the application of their concepts to MIU project have been considered. (author)

  17. Optimal sampling schemes applied in geology

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2010-05-01

    Full Text Available Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology UP 2010 2 / 47 Outline 1 Introduction to hyperspectral remote... sensing 2 Objective of Study 1 3 Study Area 4 Data used 5 Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology...

  18. Safety analysis of geologic containment of long life radioactive wastes. Critical assessment of existing methods and proposition of prospective approach

    International Nuclear Information System (INIS)

    Masure, P.; Gedefroy, P.; Imauven, C.

    1983-01-01

    Existing methods of risk analysis applied to disposal of long-lived radioactive waste in geologic formations are rewieved. A prospective analysis method for containment performances is proposed, deduced in the burial system from the combination of interaction between wastes, repository, host rock, surrounding geosphere, of natural evolution of each component of the system, sudden or chance events that could break waste containment. The method is based on the elaboration of four basic schemes graded in difficulties to facilitate comparisons

  19. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  20. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  1. Site selection under the underground geologic store plan. Procedures of selecting underground geologic stores as disputed by society, science, and politics. Site selection rules

    International Nuclear Information System (INIS)

    Aebersold, M.

    2008-01-01

    The new Nuclear Power Act and the Nuclear Power Ordinance of 2005 are used in Switzerland to select a site of an underground geologic store for radioactive waste in a substantive planning procedure. The ''Underground Geologic Store Substantive Plan'' is to ensure the possibility to build underground geologic stores in an independent, transparent and fair procedure. The Federal Office for Energy (BFE) is the agency responsible for this procedure. The ''Underground Geologic Store'' Substantive Plan comprises these principles: - The long term protection of people and the environment enjoys priority. Aspects of regional planning, economics and society are of secondary importance. - Site selection is based on the waste volumes arising from the five nuclear power plants currently existing in Switzerland. The Substantive Plan is no precedent for or against future nuclear power plants. - A transparent and fair procedure is an indispensable prerequisite for achieving the objectives of a Substantive Plan, i.e., finding accepted sites for underground geologic stores. The Underground Geologic Stores Substantive Plan is arranged in two parts, a conceptual part defining the rules of the selection process, and an implementation part documenting the selection process step by step and, in the end, naming specific sites of underground geologic stores in Switzerland. The objective is to be able to commission underground geologic stores in 25 or 35 years' time. In principle, 2 sites are envisaged, one for low and intermediate level waste, and one for high level waste. The Swiss Federal Council approved the conceptual part on April 2, 2008. This marks the beginning of the implementation phase and the site selection process proper. (orig.)

  2. Reply to comment on "Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event" by Vannucchi et al. (Earth Planet. Sci. Lett. 409 (2015) 168-174)

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.

    2015-04-01

    Our paper (Vannucchi et al., 2015) focuses on geologic evidence for shock metamorphism found at the epicentral region of the 1908 Tunguska event. None of the currently proposed bolide explanations for the 1908 event can produce the shock pressures indicated by the geological evidence described in Vannucchi et al. (2015). If the 1908 event would have generated these pressures over the epicentral region, an observable crater should have also formed. The comment by Melott and Overholt discusses the possibility that a 1908 cometary bolide strike in Tunguska cannot be excluded because of the absence of a detectable 14C increase at this site. They dispute the findings of a recent Liu et al.'s (2014) study that an East Asian comet impact recorded by eyewitness accounts in 773 AD was coincident with a detectable 14C increase in regional South China Sea corals that grew at that time. Their point, whether true or not, is fairly peripheral to our study because the bolide hypothesis for the 1908 Tunguska event, no matter the nature of the bolide itself, does not provide a viable explanation for the geological evidence of shock metamorphism found at the 1908 Tunguska site. Furthermore, as we discuss in our paper, the probability of a prior large impact-shock event having occurred at the site of the 1908 event is extremely low, suggesting that a terrestrial shock-generating mechanism may be linked to the resolution of the Tunguska enigma. Our preferred resolution is that a terrestrial hyper-explosive gas release event, a Verneshot (Morgan et al., 2004), created the large shock-event during the emplacement of the Siberian Traps. In this scenario, the 1908 Tunguska event was due to a much smaller gas-burst that re-used the lithospheric weakness created by the ancient Verneshot. Melott and Overholt's discussion regarding the existence and size of regional and global 14C anomalies related to cometary impacts seems, therefore, to be better addressed in response to the work of Liu et

  3. Creating Geologically Based Radon Potential Maps for Kentucky

    Science.gov (United States)

    Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.

    2017-12-01

    Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.

  4. Geology and engineering geology of roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-07-01

    Full Text Available zone of the Limpopo Belt, South Africa, South African Journal of Geology, Vol 101 (3), pp 201-214. [3] Partridge, T. 1975. Some geomorphic factors influencing the formation and engineering properties of soil materials in South Africa. Proc 5th... land. 2003. Pretoria: Council for Geosciences and South African Institute of Engineering and Environmental Geologists. [23] Varnes, DJ. 1978. Slope movement types and processes. In: Landslides: analysis and control. Edited by RL Schuster and RJ...

  5. Standardization of mapping practices in the British Geological Survey

    Science.gov (United States)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  6. Geological impacts on nutrition

    Science.gov (United States)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  7. Tracing of variabilities within a geological barrier by molecular organic geochemistry

    International Nuclear Information System (INIS)

    Hautevelle, Yann; Michels, Raymond; Malartre, Fabrice; Elie, Marcel; Trouiller, Alain

    2007-01-01

    The Callovo-Oxfordian claystones located at 500 m depth at Bure (Meuse, France) are currently being investigated by Andra (the French National Radioactive Waste Management Agency) for testing the feasibility of long-term and deep geological nuclear waste disposal. In order to evaluate its potential as a geological barrier, it is very important to study, assess and describe its physico-chemical variability. The molecular biomarker composition of 150 samples of these claystones and their surrounding limestones carry diverse information on the sources of the sedimentary organic matter, the chemistry of the depositional environment, the preservation and diagenesis conditions. It also allows assessing the degree of lateral and vertical variability of the organic matter within these sedimentary series. The abundance of unsaturated biomarkers, the distribution of steroids and hopanoids and CPI values >2 prove the thermal immaturity of the organic matter. The co-occurrence of plankton, bacteria and land plant biomarkers indicate that the organic matter is a mixture of marine and continental contributions. The data also reveal that the organic matter was deposited under oxic and open-sea conditions except for a brief event of photic zone anoxia at the beginning of the Middle Callovian. In the claystones, the geosynthesis of diasterenes is favored to the detriment of the formation of steranes, especially in smectite-rich levels, and the organic matter is rapidly isolated from oxidizing then reducing conditions after the deposition due to the protective effect of clays. On the scale investigated, the claystones are characterized by a unique molecular facies and are thus homogenous from their organic content point of view. Yet, detailed investigation of specific molecular families indicates changes related to major claystone-limestone transitions. The homogeneity of these claystones can be explained by the paleogeographic position of their depositional setting and the plane

  8. Developing Connectivist Schemas for Geological and Geomorphological Education

    Science.gov (United States)

    Whalley, B.

    2012-12-01

    Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named 'things' is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from 'known' through 'need to know' to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg's 'thinking styles' and Siemens' connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson's (2006) 'learning for' framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, 'Virtorial' provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of 'Materials' (rock, sediments etc), Processes (slope, glacial processes etc) and

  9. Semantic Web-based digital, field and virtual geological

    Science.gov (United States)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer

  10. The graptolite, conodont and sedimentary record through the late Ludlow Kozlowskii Event (Silurian) in the shale-dominated succession of Bohemia

    Czech Academy of Sciences Publication Activity Database

    Manda, Š.; Štorch, Petr; Slavík, Ladislav; Frýda, J.; Kříž, J.; Tasáryová, Z.

    2012-01-01

    Roč. 149, č. 3 (2012), s. 507-531 ISSN 0016-7568 R&D Projects: GA ČR GA205/09/0703; GA ČR GAP210/10/2351 Institutional research plan: CEZ:AV0Z30130516 Keywords : graptolites * conodonts * Silurian * biostratigraphy * Kozlowskii Event * extinction * peri-Gondwana Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.270, year: 2012

  11. Geological storage of nuclear wastes: Insights following the Fukushima crisis

    International Nuclear Information System (INIS)

    Gallardo, Adrián H.; Matsuzaki, Tomose; Aoki, Hisashi

    2014-01-01

    The geological storage of high-level nuclear wastes (HLW) has been in the agenda of Japan for several years. Nevertheless, all the research can become meaningless without understanding the public feelings about the disposal. The events at Fukushima in 2011 altered the perception towards nuclear-waste storage in the country. This work investigates the attitude of young Japanese towards the construction of a repository following the Fukushima crisis, and examines how public perception changed after the event. A survey among 545 university students from different regions of Japan addressed three main variables: dread, trust and acceptance. The results suggest that the economy of the country is still the most concerning issue, but there was a dramatic increase of attention towards everything n uclear . Radiation leakage and food contamination are major concerns as well. The distrust towards the government deepened after Fukushima, although more than half of the respondents would accept the repository. In a clear phenomenon of NIMBY (not in my back yard), the acceptance drops to less than 20% if the repository is to be installed near the respondents' residency. Financial incentives would increase the acceptability of the siting, although only a substantial compensation might minimise the NIMBY in potential host communities. - Highlights: • Major factors influencing the attitude towards nuclear waste disposal were examined. • The opinion of the Japanese youth before and after the Fukushima events was compared. • Unemployment and earthquakes are now at the upper end of the thought of dread. • The government and scientists are highly distrusted by the Japanese youth. • People might still accept the repository though the NIMBY phenomenon remains high

  12. Geomorphological and geological property of short active fault in fore-arc region of Japan

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Inoue, Daiei; Ueta, Keiichi; Miyakoshi, Katsuyoshi

    2009-01-01

    The important issue in the earthquake magnitude evaluation method is the classification of short active faults or lineaments. It is necessary to determine the type of active fault to be included in the earthquake magnitude evaluation. The particular group of fault is the surface earthquake faults that are presumed to be branched faults of large interplate earthquakes in subduction zones. We have classified short lineaments in two fore-arc regions of Japan through geological and geomorphological methods based on field survey and aerial photograph interpretation. The first survey is conducted at Enmeiji Fault in Boso Peninsula. The fault is known to have been displaced by 1923 Taisho Kanto earthquake. The altitude distributions of marine terrace surfaces are different on both sides of the fault. In other words, this fault has been displaced repeatedly by the large interplate earthquakes in the past. However, the recurrent interval of this fault is far longer than the large interplate earthquake calculated by the slip rate and the displacement per event. The second survey is conducted in the western side of Muroto Peninsula, where several short lineaments are distributed. We have found several fault outcrops along the few, particular lineaments. The faults in the region have similar properties to Enmeiji Fault. On the other hand, short lineaments are found to be structural landforms. The comparison of the two groups enables us to classify the short lineaments based on the geomorphological property and geological cause of these faults. Displacement per event is far larger than displacement deduced from length of the active fault. Recurrence interval of the short active fault is far longer than that of large interplate earthquake. Displacement of the short active fault has cumulative. The earthquake magnitude of the faults have these characters need to be evaluated by the plate boundary fault or the long branched seismogenic fault. (author)

  13. Safety and sensitivity analyses of a generic geologic disposal system for high-level radioactive waste

    International Nuclear Information System (INIS)

    Kimura, Hideo; Takahashi, Tomoyuki; Shima, Shigeki; Matsuzuru, Hideo

    1994-11-01

    This report describes safety and sensitivity analyses of a generic geologic disposal system for HLW, using a GSRW code and an automated sensitivity analysis methodology based on the Differential Algebra. An exposure scenario considered here is based on a normal evolution scenario which excludes events attributable to probabilistic alterations in the environment. The results of sensitivity analyses indicate that parameters related to a homogeneous rock surrounding a disposal facility have higher sensitivities to the output analyzed here than those of a fractured zone and engineered barriers. The sensitivity analysis methodology provides technical information which might be bases for the optimization of design of the disposal facility. Safety analyses were performed on the reference disposal system which involve HLW in amounts corresponding to 16,000 MTU of spent fuels. The individual dose equivalent due to the exposure pathway ingesting drinking water was calculated using both the conservative and realistic values of geochemical parameters. In both cases, the committed dose equivalent evaluated here is the order of 10 -7 Sv, and thus geologic disposal of HLW may be feasible if the disposal conditions assumed here remain unchanged throughout the periods assessed here. (author)

  14. A reappraaisal of the geology, geochemistry, structures and ...

    African Journals Online (AJOL)

    The largest segment of the Neoproterozoic Mozambique belt in Kenya occurs east of the north-south oriented Rift system. Geological works carried out in the country during the last few decades have progressively revealed the complexity of the geology, structures and tectonics of the Mozambique belt in the region.

  15. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activities and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities wihtin the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  16. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activitie and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities within the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  17. Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt

    Czech Academy of Sciences Publication Activity Database

    Carmichael, A.; Waters, J. A.; Batchelor, C. J.; Coleman, D. M.; Suttner, T. J.; Kido, E.; Moore, L. M.; Chadimová, Leona

    2016-01-01

    Roč. 32, 1 April (2016), s. 213-231 ISSN 1342-937X Institutional support: RVO:67985831 Keywords : Central Asian Orogenic Belt * chemostratigraphy * Devonian-Carboniferous * Hangenberg Event * West Junggar Subject RIV: DB - Geology ; Mineralogy Impact factor: 6.959, year: 2016

  18. Geologic studies of the Columbia Plateau: a status report

    International Nuclear Information System (INIS)

    Myers, C.W.; Price, S.M.

    1979-10-01

    The results of recent geologic studies of the Columbia Plateau, with emphasis on work completed under the Basalt Waste Isolation Project, Rockwell Hanford Operations, are summarized in this report. Geologic studies were performed mostly during the period from 1977 to 1979. The major objective of these studies was to examine the feasibility of using deep underground tunnels mined into Columbia River basalt beneath the Hanford Site for final storage of nuclear waste. The results are presented in four chapters: Introduction; Regional Geology; Pasco Basin Geology; and Seismicity and Tectonics. Results from surface mapping and remote sensing studies in the Washington State portion of the Columbia Plateau are presented in the Regional Geology chapter. Results from surface mapping, borehole studies, and geophysical surveys in the Pasco Basin are presented in the Pasco Basin Geology chapter. Results that relate to the tectonic stability of the Pasco Basin and Columbia Plateau and discussion of findings from earthquake monitoring in the region for the past ten years are summarized in the Seismicity and Tectonics chapter. A volume of Appendices is included. This volume contains a description of study tasks, a description of the methodology used in geophysical surveys the geophysical survey results, a summary of earthquake records in eastern Washington, a description of tectonic provinces, and a preliminary description of the regional tectonic setting of the Columbia Plateau

  19. Status Report on the Geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D., Jr.

    1992-01-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. A detailed reported on hydrogeology is being produced in parallel to this one. An important element of this work is the construction of a modern detailed geologic map of the ORR containing subdivisions of all mappable rock units and displaying mesoscopic structural data. Understanding the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. This interim report is the result of cooperation between geologists in two Oak Ridge National Laboratory (ORNL) divisions, Environmental Sciences and Energy, and is a major part of one doctoral dissertation in the Department of Geological Sciences at The University of Tennessee--Knoxville. Major long-term goals of geologic investigations in the ORR are to determine what interrelationships exist between fractures systems in individual rock or tectonic units and the fluid flow regimes, to understand how regional and local geology can be used to help predict groundwater movement, and to formulate a structural-hydrologic model that for the first time would enable prediction of the movement of groundwater and other subsurface fluids in the ORR. Understanding the stratigraphic and structural framework and how it controls fluid flow at depth should be the first step in developing a model for groundwater movement. Development of a state-of-the-art geologic and geophysical framework for the ORR is therefore essential for formulating an integrated structural-hydrologic model. This report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the data that establish the need for additional geologic mapping and geohydrologic studies. An additional intended

  20. Proceedings of the 39. Brazilian congress on geology. v. 1

    International Nuclear Information System (INIS)

    1996-01-01

    The book presents the 39. Brazilian Congress on Geology works, occurred in Salvador, Bahia, during the period of September 1 to 6, 1996. The meeting main subject - geology and society - reflects the current change epoch. The symposiums revealed the more important actions about geosciences applications to the society in the country. The round tables, structured for the polemical subjects debates that involves the geosciences and the mineral sector crisis aspects, were achieved by several invited participants completely embraced with the subject. During the congress activities development there were some courses, technical excursions and external actions in Salvador, aiming to to show the geosciences role to the social welfare. The works were presented the following symposiums: the social value of the environment study; urban geology and geology risks; degraded areas recovery; coastal erosion; global paleoregisters; and carstic terranes geology