WorldWideScience

Sample records for geological co2 sequestration

  1. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION

    Science.gov (United States)

    The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...

  2. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)

    Science.gov (United States)

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  3. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  4. CO2-Brine Displacement in Geological CO2 Sequestration: Microfluidic Flow Model Study

    Science.gov (United States)

    Cao, S. C.; Jung, J.

    2014-12-01

    Geological CO2 sequestration is a promising method to reduce atmospheric CO2 and deep saline aquifers is one of the most important options due to their capacity for CO2 storage. Thus, a better understanding of two immiscible brine-CO2 mobility and its saturation, including invading patterns in deep saline aquifers as CO2 storage sites is required. Lenormand (1990) explored the invading patterns of two immiscible fluids in porous media with a transition region and three dominant regions: capillary fingering, viscous fingering, and stable displacement. These are determined by two main aspect ratios Nm and Nc through experimental studies using micromodel. Micromodel provides the opportunity to discover unrecognized processes, and test existing theories and assumptions in fluid flow through porous media. In this study, the micromodel was used to explore the effects of the scCO2 injecting velocity and ionic strength on invading patterns in geological CO2 sequestration. When scCO2 was injected into the micromodel that has already saturated with brine, the brine in the micromodel was displaced by injected scCO2. Continuous scCO2 injection into the micromodel leaded the scCO2 to pass through the micromodel. And the scCO2-brine displacement distribution in the micromodel remained constant during additional 100 PV scCO2 injection after injecting scCO2 passed through micromodel. When scCO2 passed through the porous media, the scCO2-brine displacement distribution represented the maximum displacement ratio. Results showed that scCO2-brine displacement ratios increased with: elevated pressures in the range of 3MPa~8MPa, decreased ionic strength from 5M to 1M NaCl, and increased scCO2 injecting velocity up to 40 μL/min. Also, Nm and Nc obtained in this study are located in transition region of the invading patterns suggested by Lenormand (1990).

  5. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  6. Aluminosilicate Dissolution and Silicate Carbonation during Geologic CO2 Sequestration

    Science.gov (United States)

    Min, Yujia

    Geologic CO2 sequestration (GCS) is considered a promising method to reduce anthropogenic CO2 emission. Assessing the supercritical CO2 (scCO2) gas or liquid phase water (g, l)-mineral interactions is critical to evaluating the viability of GCS processes. This work contributes to our understanding of geochemical reactions at CO 2-water (g, l)-mineral interfaces, by investigating the dissolution of aluminosilicates in CO2-acidified water (l). Plagioclase and biotite were chosen as model minerals in reservoir rock and caprock, respectively. To elucidate the effects of brine chemistry, first, the influences of cations in brine including Na, Ca, and K, have been investigated. In addition to the cations, the effects of abundant anions including sulfate and oxalate were also examined. Besides the reactions in aqueous phase, we also examine the carbonation of silicates in water (g)-bearing supercritical CO2 (scCO2) under conditions relevant to GCS. For the metal carbonation, in particular, the effects of particle sizes, water, temperature, and pressure on the carbonation of wollastonite were systematically examined. For understanding the cations effects in brine, the impacts of Na concentrations up to 4 M on the dissolution of plagioclase and biotite were examined. High concentrations of Na significantly inhibited plagioclase dissolution by competing adsorption with proton and suppressing proton-promoted dissolution. Ca has a similar effect to Na, and their effects did not suppress each other when Na and Ca co-existed. For biotite, the inhibition effects of Na coupled with an enhancing effect due to ion exchange reaction between Na and interlayer K, which cracked the basal surfaces of biotite. The K in aqueous phase significantly inhibited the dissolution. If the biotite is equilibrated with NaCl solutions initially, the biotite dissolved faster than the original biotite and the dissolution was inhibited by Na and K in brine. The outcomes improve our current knowledge of

  7. Some geomechanical aspects of geological CO2 sequestration

    NARCIS (Netherlands)

    Orlic, B.

    2008-01-01

    Reservoir depletion and subsequent CO 2 injection into the depleted geological reservoir induce stress changes that may mechanically damage top seal and wells, or trigger existing faults, creating the leakage pathways for CO 2 escape from the reservoir. The role of geomechanics is to assess the

  8. Some geomechanical aspects of geological CO2 sequestration

    NARCIS (Netherlands)

    Orlic, B.

    2009-01-01

    Reservoir depletion and subsequent CO2 injection into the depleted geological reservoir induce stress changes that may mechanically damage top seal and wells, or trigger existing faults, creating the leakage pathways for CO2 escape from the reservoir. The role of geomechanics is to assess the

  9. Remote sensing of CO2 leakage from geologic sequestration projects

    Science.gov (United States)

    Verkerke, Joshua L.; Williams, David J.; Thoma, Eben

    2014-09-01

    Monitoring for leak hazards is an important consideration in the deployment of carbon dioxide geologic sequestration. Failure to detect and correct leaks may invalidate any potential emissions benefits intended by such projects. Presented is a review of remote sensing methods primed to serve a central role in any monitoring program due to their minimally invasive nature and potential for large area coverage in a limited timeframe or in real-time as a continuous monitoring program. Methods investigated were divided into those capable of indirect detection of carbon dioxide leakage, such as monitoring for vegetative stress and ground surface deformation, and those that directly detect gaseous and atmospheric compounds, by means of such tools as Open-Path Fourier Transform Infrared or Tunable Diode Lasers. Both direct and indirect methods present viable means of detecting a leak event, though ultimately, a robust approach will incorporate multiple monitoring tools that may include both direct and indirect remote sensing methods.

  10. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  11. Capture and geological sequestration of CO2: fighting against global warming

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2006-01-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO 2 sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO 2 emissions between today and 2050. The CO 2 capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  12. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  13. Strategies for CO2 Sequestration in Geologic Formations and the Role of Geophysics

    Science.gov (United States)

    Klara, S. M.; Cohen, K.; Byrer, C.; Srivastava, R. D.

    2003-12-01

    Among proposed options for CO2 emissions mitigation, capture and sequestration is a promising solution that has the advantage of being able to cope with the large volume of CO2 involved, which will increase because of a growing energy demand. Consequently, an important component of the United States Department of Energy's (DOE) research and development program is dedicated to reducing CO2 emissions from power plants by developing technologies for capturing CO2 and for subsequent utilization and/or sequestration. Capture technologies target novel, low-cost approaches for separation and capture of CO2 from energy production and conversion facilities. Injection of CO2 into geologic formations is being practiced today by the petroleum industry for enhanced oil recovery, but it is not yet possible to predict with confidence storage volume, formation integrity and storage permanence over long time periods. Many important issues dealing with geologic storage, monitoring, and verification of fluids (including CO2) in underground oil and gas reservoirs, coal beds, and saline formations are now being addressed. Preliminary field tests are being conducted to confirm practical considerations, such as economics, safety, stability, permanence, and public acceptance. This paper presents an overview of DOE's research program in the area of CO2 sequestration and storage in geologic formations and specifically addresses the status of new knowledge, improved tools and enhanced technology for cost optimization, monitoring, modeling and capacity estimation. This paper also highlights those fundamental and applied studies, including field tests, sponsored by DOE that are measuring the degree to which CO2 can be injected and remain safely and permanently sequestered in geologic formations while concurrently assuring no adverse long term ecological impacts. Field geophysical techniques are playing a major role in these demonstrations, such as the Weyburn project in North Dakota and Canada

  14. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    Science.gov (United States)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  15. Analysis of Geologic CO2 Sequestration at Farnham Dome, Utah, USA

    Science.gov (United States)

    Lee, S.; Han, W.; Morgan, C.; Lu, C.; Esser, R.; Thorne, D.; McPherson, B.

    2008-12-01

    The Farnham Dome in east-central Utah is an elongated, Laramide-age anticline along the northern plunge of the San Rafael uplift and the western edge of the Uinta Basin. We are helping design a proposed field demonstration of commercial-scale geologic CO2 sequestration, including injection of 2.9 million tons of CO2 over four years time. The Farnham Dome pilot site stratigraphy includes a stacked system of saline formations alternating with low-permeability units. Facilitating the potential sequestration demonstration is a natural CO2 reservoir at depth, the Jurassic-age Navajo formation, which contains an estimated 50 million tons of natural CO2. The sequestration test design includes two deep formations suitable for supercritical CO2 injection, the Jurassic-age Wingate sandstone and the Permian-age White Rim sandstone. We developed a site-specific geologic model based on available geophysical well logs and formation tops data for use with numerical simulation. The current geologic model is limited to an area of approximately 6.5x4.5 km2 and 2.5 km thick, which contains 12 stacked formations starting with the White Rim formation at the bottom (>5000 feet bgl) and extending to the Jurassic Curtis formation at the top of the model grid. With the detail of the geologic model, we are able to estimate the Farnham Dome CO2 capacity at approximately 36.5 million tones within a 5 mile radius of a single injection well. Numerical simulation of multiphase, non- isothermal CO2 injection and flow suggest that the injected CO2 plume will not intersect nearby fault zones mapped in previous geologic studies. Our simulations also examine and compare competing roles of different trapping mechanisms, including hydrostratigraphic, residual gas, solubility, and mineralization trapping. Previous studies of soil gas flux at the surface of the fault zones yield no significant evidence of CO2 leakage from the natural reservoir at Farnham Dome, and thus we use these simulations to

  16. TOUGH+CO 2: A multiphase fluid-flow simulator for CO 2 geologic sequestration in saline aquifers

    Science.gov (United States)

    Zhang, Keni; Moridis, George; Pruess, Karsten

    2011-06-01

    TOUGH+CO 2 is a new simulator for modeling of CO 2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat and up to 3 mass components, which are partitioned into three possible phases. In the code, the thermodynamics and thermophysical properties of H 2O-NaCl-CO 2 mixtures are determined based on system status and subdivided into six different phase combinations. By solving coupled mass and heat balance equations, TOUGH+CO 2 can model non-isothermal or isothermal CO 2 injection, phase behavior and flow of fluids and heat under typical conditions of temperature, pressure and salinity in CO 2 geologic storage projects. The code takes into account effects of salt precipitation on porosity and permeability changes, and the wettability phenomena. The new simulator inherits all capabilities of TOUGH2 in handling fractured media and using unstructured meshes for complex simulation domains. The code adds additional relative permeability and capillary pressure functions. The FORTRAN 95 OOP architecture and other new language features have been extensively used to enhance memory use and computing efficiency. In addition, a domain decomposition approach has been implemented for parallel simulation. All these features lead to increased computational efficiency, and allow applicability of the code to multi-core/processor parallel computing platforms with excellent scalability.

  17. Lessons Learned from Ongoing Field Tests of Geologic CO2 Sequestration

    Science.gov (United States)

    McPherson, B.; McColpin, G.; Rutledge, J.; Pawar, R.; Deo, M.; Rose, P.; Lee, S.; Han, W.; Lu, C.

    2008-12-01

    We present lessons learned - an attempt to describe what we know and do not know- based on ongoing field tests of geologic carbon sequestration. The Southwest Regional Partnership on Carbon Sequestration, funded by the U.S. Department of Energy and managed by DOE's National Energy Technology Laboratory, is conducting three separate field tests of geologic sequestration that include extensive monitoring and analysis of the fate of injected CO2. The CO2 injection sites include the Aneth oilfield in southern Utah, the coalbed "fairway" in the San Juan basin in northern New Mexico, and the SACROC oilfield in the Permian basin of west Texas. Results of the ongoing sequestration field tests are both encouraging and problematic. At the San Juan basin coalbed injection test, we forecasted coalbed swelling following injection to be detectable at the surface. Tiltmeter results indicated subsidence, not uplift, and poroelastic models of the site suggest that swelling is likely occurring, but cleat compaction may be responsible for the net subsidence. In a similar context, initial poroelastic models of the Aneth, Utah injection site suggested minimal rock strain would be induced by the 100,000 tons of CO2 injected over the past year, but this forecast is belied by daily microearthquakes recorded at the site (albeit very small events: M -1 to 0 ). On the other hand, our initial multiphase flow models of the Aneth site provided forecasts of CO2 migration that turned out to be extremely consistent with observed tracer test results, suggesting that our estimated permeability distributions and other model parameters were effective to some extent. These field tests suggest that probably the greatest challenges are (1) verification or confirmation of trapping mechanisms, and (2) monitoring of processes in the "intermediate zone," the section of strata above the sequestration formation topseal unit and below the upper 100 m of the section, (3) developing meaningful geologic

  18. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  19. Gas geochemistry of natural analogues for the studies of geological CO2 sequestration

    International Nuclear Information System (INIS)

    Voltattorni, N.; Sciarra, A.; Caramanna, G.; Cinti, D.; Pizzino, L.; Quattrocchi, F.

    2009-01-01

    Geological sequestration of anthropogenic CO 2 appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO 2 in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO 2 (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO 2 per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO 2 -dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO 2 degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.

  20. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  1. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    Han, Weon Shik; McPherson, Brian J.

    2009-01-01

    The purpose of this research is to present a best-case paradigm for geologic CO 2 storage: CO 2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO 2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO 2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO 2 , CO 2 -brine, and CO 2 -oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO 2 migration, and mobility ratio (M), which characterizes the impeded CO 2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO 2 injection in oil reservoirs vs. brine formations: (1) CO 2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO 2 migration is smaller in oil reservoirs because density contrast between oil and CO 2 is smaller than it between brine and oil (the approximate density contrast between CO 2 and crude oil is ∝100 kg/m 3 and between CO 2 and brine is ∝350 kg/m 3 ); (3) the increased density of oil and brine due to the CO 2 dissolution is not significant (about 7-15 kg/m 3 ); (4) the viscosity reduction of oil due to CO 2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing

  2. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.

    2009-04-23

    Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling has created millions of oil and gas wells. Models of CO 2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic framework is required. These models must be able to capture both the large-scale CO 2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and analytical models with a specific set of simplifying assumptions to produce an efficient numerical-analytical hybrid model. The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency for applications of risk analysis in many CO2 sequestration problems. © 2009 Springer Science+Business Media B.V.

  3. Numerical assessments of geological CO2 sequestration in the Changhua Coastal Industrial Park, Central Taiwan

    Science.gov (United States)

    Sung, R.; Li, M.

    2012-12-01

    Coal-fired power plants of the Taiwan Power Company are the main sources of CO2 emission in Taiwan. Due to the importation of coal mine and the need of cooling water circulation, power plants were built on the coast. Geological CO2 sequestration has been recognized as one of solutions for reducing anthropogenic CO2 emission by injecting CO2 captured from fossil fuel power plants into deep saline geologic formations. The Changhua Coastal Industrial Park (CCIP; 120.38° E, 24.11° N) in central Taiwan has been preliminary evaluated as one of potential sites for geological CO2 sequestration. The CCIP site has a sloping, layered heterogeneity formation with stagnant groundwater flow. Layers of sandstone and shale sequentially appeared to be the major components of geological formations with seaward transgression. Thickness of sedimentary formations gradually becomes thinner from east to west. Previous investigations [Chiao et al., 2010; Yu et al, 2011] did not find significant faults around this site. The TOUGHREACT/ECO2N model was employed with external mesh generator developed in this study to proceed to comprehensive assessments for CO2 injection into deep saline aquifers (salinity of 3%, pH of 7.2) at the CCIP site. A series of numerical experiments for investigating the physical, geochemical and its interactions included the deep saline-aquifer responses, CO2 plume migration, leakage risks, hydrogeochemistry processes, reservoir capacity and trapping mechanisms (i.e. hydrodynamics, capillarity, solubility, and mineral trapping) during and post CO2 injection were assessed. A 3-D lithological model applied in this study was conceptualized with two seismic profiles (along shore and cross shore) and one geological well nearby the study area. A total of 32 vertical layers was built with different porosities and permeabilities estimated from the TCDP-A borehole log samples adjusted with effects in geopressure differences. Cross-platform open source libraries of the CGAL

  4. Adhesion of CO2 on hydrated mineral surfaces and its implications to geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Clarens, A. F.; Tao, Z.; Persily, S. M.

    2013-12-01

    Most mineral surfaces are water wetting, which has important implications for the transport of non-aqueous phase liquids, such as CO2, through porous media. In this work, contact angle experiments were carried out wherein unusual wetting behavior was observed between mineral surfaces and liquid or supercritical CO2 under certain geochemical conditions. This behavior can be understood in the context of adhesion between the CO2 and the mineral surface. When adhesion occurs, the wettability characteristics of the surfaces are significantly altered. More importantly, the CO2 exhibits a strong affinity for the surface and is highly resistant to shear forces in the aqueous phase. A static pendant drop method was used on a variety of polished mineral surfaces to measure contact angles. The composition of the aqueous phase (e.g., pH, ionic strength) and the characteristics of the mineral surface (e.g., composition, roughness), were evaluated to understand their impact on the prevalence of adhesion. Pressure and temperature conditions were selected to represent those that would be prevalent in geologic carbon sequestration (GCS) or during leakage from target repositories. Adhesion was widely observed on phlogopite mica, silica, and calcite surfaces with roughness on the order of ~10 nanometers. CO2 exhibited no adhesion on mineral surfaces with higher roughness (e.g., quartz). On smoother surfaces, the CO2 is thought to have more effective contact area with the mineral, enabling the weak van der Waals forces that drive most adhesion processes. Brine chemistry also had an important role in controlling CO2 adhesion. Increases in CO2 partial pressure and ionic strength both increased the incidence of adhesion. The addition of strong acid or strong base permanently inhibited the development of adhesion. These results suggest that the development of adhesion between the CO2 and the mineral surface is dependent on the integrity and thickness of the hydration layer between the CO2

  5. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  6. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    OpenAIRE

    Mohammad Jafari; Jongwon Jung

    2017-01-01

    The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a r...

  7. Efficient parallel simulation of CO2 geologic sequestration in saline aquifers

    International Nuclear Information System (INIS)

    Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

    2007-01-01

    An efficient parallel simulator for large-scale, long-term CO2 geologic sequestration in saline aquifers has been developed. The parallel simulator is a three-dimensional, fully implicit model that solves large, sparse linear systems arising from discretization of the partial differential equations for mass and energy balance in porous and fractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics and thermophysical properties of H2O-NaCl- CO2 mixtures, modeling single and/or two-phase isothermal or non-isothermal flow processes, two-phase mixtures, fluid phases appearing or disappearing, as well as salt precipitation or dissolution. The new parallel simulator uses MPI for parallel implementation, the METIS software package for simulation domain partitioning, and the iterative parallel linear solver package Aztec for solving linear equations by multiple processors. In addition, the parallel simulator has been implemented with an efficient communication scheme. Test examples show that a linear or super-linear speedup can be obtained on Linux clusters as well as on supercomputers. Because of the significant improvement in both simulation time and memory requirement, the new simulator provides a powerful tool for tackling larger scale and more complex problems than can be solved by single-CPU codes. A high-resolution simulation example is presented that models buoyant convection, induced by a small increase in brine density caused by dissolution of CO2

  8. CO2-mineral Wettability and Implications for Understanding Leakage Processes from Geologic Carbon Sequestration Sites

    Science.gov (United States)

    Clarens, A. F.; Edwards, I.; Wang, S.

    2011-12-01

    In geological carbon sequestration (GCS), leakage events will be difficult to predict because parcels of CO2 will travel over long length scales and encounter a number of heterogeneous formations and endogenous brine in their rise to the surface. A constitutive model of a rising parcel of CO2 includes at least three main forces: 1) buoyant forces, 2) surface tension forces, and 3) shear drag forces. Of these, surface tension forces are of great significance, especially for predicting capillary and mineral trapping, and are affected by surface tension and the three-phase contact angle between CO2, brine, and the solid host mineral surfaces. Very limited experimental data on contact angles in GCS relevant systems has been reported in the academic literature. Here, the contact angle of several of the rock and clay species prevailing near GCS sites, e.g. quartz, feldspar, calcite, kaolinite, smectite and illite, were measured under a range of relevant temperature, pressure and ionic strength conditions. The measurements were made in a custom-built high-pressure view cell by introducing precisely controlled pendant CO2 droplets of constant volume to smooth and clean mineral surfaces after saturating the surrounding brine with CO2 and images were recorded using a high resolution digital camera. Images were processed and the contact angle measured using ImageJ software with a plug-in designed for this purpose. To measure the contact angle of CO2 on clay surfaces, ultra-pure microscope glass slides were coated with cleaned and particle-size-separated clay particles using hydrolyzed polyvinyl alcohol to ensure adhesion and a continuous coating on the surface. The uniform morphology of the surface was confirmed using electron microscopy. Preliminary results demonstrate differences in contact angle between the tested minerals, with calcite > quartz > feldspar. The absolute differences between the minerals were on the order of 3-7%. The results also demonstrate that under

  9. Supercritical Fluid Behavior at Nanoscale Interfaces: Implications for CO2 Sequestration in Geologic Formations

    Czech Academy of Sciences Publication Activity Database

    Cole, D.R.; Chialvo, A. A.; Rother, G.; Vlček, Lukáš; Cummings, P. T.

    2010-01-01

    Roč. 90, 17-18 (2010), s. 2329-2363 ISSN 1478-6435 Institutional research plan: CEZ:AV0Z40720504 Keywords : sequestration * nanostructures * supercritical CO2 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.302, year: 2010

  10. Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery

    NARCIS (Netherlands)

    Khosrokhavar, R.

    2014-01-01

    The work described in this thesis deals with a variety of aspects related to the storage of carbon dioxide in geological formations. In particular we focus on the transfer between the gas phase to a fluid (liquid) or solid phase. This thesis limits its interest to study the sequestration capacity of

  11. Bench-Scale Experiments to Evaluate ERT as a Monitoring Tool for Geologic CO2 Sequestration

    Science.gov (United States)

    Breen, S. J.; Detwiler, R. L.; Carrigan, C. R.

    2010-12-01

    Field-scale studies have shown Electrical Resistivity Tomography (ERT) to be an effective tool for imaging resistivity anomalies and monitoring changing saturations in the near subsurface. Despite the challenges of implementing ERT in the deep subsurface, it has potential as a surveying technology for visualizing sequestered CO2, in part because it can be localized within the target reservoir. Currently, the technology is being evaluated as part of a geologic sequestration project in Cranfield, MS, where supercritical CO2 is injected to ten thousand feet below the surface. In support of this field-scale activity, we have designed an analog bench-scale experimental system to further evaluate the ability of ERT to quantify both the volume and spatial distribution of gas injected into a saline aquifer. Our translucent sand chambers measure 58cm x 30cm x 1cm and are lined with twenty-one stainless steel electrodes on each long side, inserted into a nonconductive plastic gasket. We fill the chamber with quartz sand with different grain sizes with a filling procedure that generates small-scale layering within the injection zone, which is overlain by a fine-grained layer that serves as a capillary barrier. Prior to gas injection, the porous medium is saturated with a low resistivity salt solution. We then inject gas into the bottom of the injection zone. Buoyant forces drive gas migration into the chamber, resulting in a combination of small-scale trapping in horizontal layers, fingering between the horizontal layers, and large-scale trapping of the gas plume along the upper capillary barrier. During pauses in gas injection, a CCD camera captures high-resolution images, and an ERT data acquisition system scans the chamber. Quantitative visualization techniques are used to process the CCD images resulting in high-resolution measurements of the spatial distribution of the injected gas. These results are directly compared to resistivity fields that result from the inversion

  12. Characterisation, quantification and modelling of CO2 transport and interactions in a carbonate vadose zone: application to a CO2 diffusive leakage in a geological sequestration context

    International Nuclear Information System (INIS)

    Cohen, Gregory

    2013-01-01

    Global warming is related to atmospheric greenhouse gas concentration increase and especially anthropogenic CO 2 emissions. Geologic sequestration has the potential capacity and the longevity to significantly diminish anthropogenic CO 2 emissions. This sequestration in deep geological formation induces leakage risks from the geological reservoir. Several leakage scenarios have been imagined. Since it could continue for a long period, inducing environmental issues and risks for human, the scenario of a diffusive leakage is the most worrying. Thus, monitoring tools and protocols are needed to set up a near-surface monitoring plan. The present thesis deals with this problematic. The aims are the characterisation, the quantification and the modelling of transport and interactions of CO 2 in a carbonate unsaturated zone. This was achieved following an experimental approach on a natural pilot site in Saint-Emilion (Gironde, France), where diffusive gas leakage experiments were set up in a carbonate unsaturated zone. Different aspects were investigated during the study: natural pilot site description and instrumentation; the physical and chemical characterisation of carbonate reservoir heterogeneity; the natural functioning of the carbonate unsaturated zone and especially the set-up of a CO 2 concentrations baseline; the characterisation of gas plume extension following induced diffusive leakage in the carbonate unsaturated zone and the study of gas-water-rock interactions during a CO 2 diffusive leakage in a carbonate unsaturated zone through numerical simulations. The results show the importance of the carbonate reservoir heterogeneity characterisation as well as the sampling and analysing methods for the different phases. The baseline set-up is of main interest since it allows discrimination between the induced and the natural CO 2 concentrations variations. The transfer of CO 2 in a carbonate unsaturated zone is varying in function of physical and chemical properties

  13. Density-Driven Flow Simulation in Anisotropic Porous Media: Application to CO2 Geological Sequestration

    KAUST Repository

    Negara, Ardiansyah

    2014-04-21

    Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density is smaller than the hosting brine. This motivates an upward motion and eventually CO2 is trapped beneath the cap rock. The trapped CO2 slowly dissolves into the brine causing the density of the mixture to become larger than the host brine. This causes gravitational instabilities that is propagated and magnified with time. In this kind of density-driven flows, the CO2-rich brines migrate downward while the brines with low CO2 concentration move upward. With respect to the properties of the subsurface aquifers, there are instances where saline formations can possess anisotropy with respect to their hydraulic properties. Such anisotropy can have significant effect on the onset and propagation of flow instabilities. Anisotropy is predicted to be more influential in dictating the direction of the convective flow. To account for permeability anisotropy, the method of multipoint flux approximation (MPFA) in the framework of finite differences schemes is used. The MPFA method requires more point stencil than the traditional two-point flux approximation (TPFA). For example, calculation of one flux component requires 6-point stencil and 18-point stencil in 2-D and 3-D cases, respectively. As consequence, the matrix of coefficient for obtaining the pressure fields will be quite complex. Therefore, we combine the MPFA method with the experimenting pressure field technique in which the problem is reduced to solving multitude of local problems and the global matrix of coefficients is constructed automatically, which significantly reduces the complexity. We present several numerical scenarios of density-driven flow simulation in homogeneous, layered, and heterogeneous anisotropic porous media. The numerical results emphasize the

  14. TheU-Tube: A Novel System for Acquiring Borehole Fluid Samplesfrom a Deep Geologic CO2 Sequestration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.

    2005-03-17

    A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase (supercritical CO2-brine) fluid from 1.5 km depth. The datasets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydro-geochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-Tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-Tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.

  15. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    Science.gov (United States)

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  16. Leakage and Sepage of CO2 from Geologic Carbon SequestrationSites: CO2 Migration into Surface Water

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-06-17

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO{sub 2} may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO{sub 2} leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO{sub 2} and CH{sub 4} fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO{sub 2} and CH{sub 4} fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO{sub 2} overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO{sub 2} bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s{sup -1} at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s{sup -1}. Liquid CO{sub 2} bubbles rise slower in water than gaseous CO{sub 2} bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO

  17. Hydrogeochemical Impact of CO2 Leakage from Geological Sequestration on Shallow Potable Aquifers

    DEFF Research Database (Denmark)

    Cahill, Aaron Graham

    Climate change induced by anthropogenic CO2 emissions is widely accepted to be the greatest immediate threat faced by modern civilization. Carbon capture and geological storage (CCGS) is one of the most promising geoengineering technologies currently within reach by which to, at least partially....... During migration CO2 would dissolve into groundwater forming carbonic acid, induce water-rock reactions and thus change groundwater chemistry. Therefore prior to implementation of this potentially necessary technology, environmental risks associated with leakage must be understood. Over the past 10 years...... aquifers can be broadly divided into three types; carbonate dominated, silicate dominated and mixed. Each aquifer type showed distinct water chemistry evolution thus inherent risks vary. These studies also highlighted the complexity of risk assessment and detection caused by the range of formation types...

  18. Impact of Pressure and Brine Salinity on Capillary Pressure-Water Saturation Relations in Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jongwon Jung

    2016-01-01

    Full Text Available Capillary pressure-water saturation relations are required to explore the CO2/brine flows in deep saline aquifers including storage capacity, relative permeability of CO2/brine, and change to stiffness and volume. The study on capillary pressure-water saturation curves has been conducted through experimentation and theoretical models. The results show that as the pressure increases up to 12 MPa, (1 capillary pressure-water saturation curves shift to lower values at given water saturation, (2 after the drainage process, residual water saturation decreases, and (3 after the imbibition process, capillary CO2 trapping increases. Capillary pressure-water saturation curves above 12 MPa appear to be similar because of relatively constant contact angle and interfacial tension. Also, as brine salinity increases from 1 M to 3 M NaCl, (1 capillary pressure-water saturation curves shift to lower capillary pressure, (2 residual water saturation decreases, and (3 capillary CO2 trapping increases. The results show that pressure and brine salinity have an influence on the capillary pressure-water saturation curves. Also, the scaled capillary CO2 entry pressure considering contact angle and interfacial tension is inconsistent with atmospheric conditions due to the lack of wettability information. Better exploration of wettability alteration is required to predict capillary pressure-water saturation curves at various conditions that are relevant to geological CO2 sequestration.

  19. CO2 capture-sequestration

    International Nuclear Information System (INIS)

    Huffer, Elisabeth

    2008-01-01

    CO 2 capture-sequestration could be an acceptable temporary solution for the abatement of greenhouse gas releases to the atmosphere, before the implementation of new carbon-free power generation means. This paper briefly summarizes the principles of this technology: capture (post-combustion, oxi-combustion, pre-combustion); CO 2 transport and sequestration (deep saline aquifers, injection in depleted hydrocarbon reservoirs, injection in abandoned coal seams); examples of operations in progress

  20. Characterization of the Helderberg Group as a geologic seal for CO 2 sequestration

    Science.gov (United States)

    Lewis, J.E.; McDowell, R.R.; Avary, K.L.; Carter, K.M.

    2009-01-01

    The Midwest Regional Carbon Sequestration Partnership recognizes that both the Devonian Oriskany Sandstone and the Silurian Salina Group offer potential for subsurface carbon dioxide storage in northern West Virginia. The Silurian-Devonian Helderberg Group lies stratigraphically between these two units, and consequendy, its potential as a geologic seal must be evaluated. Predominantly a carbonate interval with minor interbedded siliciclastics and chert, the Helderberg Group was deposited in an ancient epeiric sea. Although most previous investigations of this unit have concentrated on outcrops in eastern West Virginia, new information is available from an injection well drilled along the Ohio River at First Energy's R. E. Burger electric power plant near Shadyside, Ohio. Geophysical, seismic, and core data from this well have been combined with existing outcrop information to evaluate the Helderberg Group's potential as a seal. The data collected suggest that only secondary porosity remains, and permeability, if it exists, most likely occurs along faults or within fractures. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  1. Impact of geological heterogeneity on CO2 sequestration: from outcrop to simulator

    OpenAIRE

    Senger, Kim

    2013-01-01

    Increased anthropogenic emission of carbon dioxide (CO2) into the Earth’s atmosphere since the industrial revolution has enhanced the greenhouse effect and contributed to global climate change. Controlling atmospheric CO2 emissions is thus essential to mitigate the environmental and socio-economic consequences related to these changes. Carbon capture and storage (CCS) was proposed as one possible option to control anthropogenic CO2 emissions, and is particularly viable at CO2 p...

  2. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making

  3. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  4. Wettability-Water/brine Film Thickness Relationship and the Effect of Supercritical CO2 Pre-contact for CO2/brine/mineral Systems under Geologic CO2 Sequestration Conditions: Insights from Molecular Dynamics Simulations

    Science.gov (United States)

    Chen, C.; Song, Y.; Li, W.

    2016-12-01

    Injection CO2 into deep saline aquifers is one of the main options for geologic carbon sequestration (GCS). A successful GCS in saline aquifers requires full knowledge about CO2/brine/mineral systems under sequestration conditions to reduce uncertainties during subsurface storage of CO2. Adsorbed water film thickness and wettability on mineral surfaces are two key characteristics for CO2/brine/mineral systems. Wettability and water/brine film thickness have been measured experimentally and predicted by molecular simulation (MD) studies. However, these studies only consider the films apart from contact angles. Investigations on wettability for CO2/brine/mineral systems only consider contact angles without measurements on film thickness. The relationship between film thicknesses with water contact angles is open to questions. In this paper, MD simulations have been performed to investigate the interrelationship between water film thicknesses and water contact angles. Three silica surfaces with different silanol group number densities (Q3, Q3-50%, Q3/Q4) were selected to represent silica surfaces with different wettabilities. We found that as water contact angle increases, the film thickness decreases. We also studied the effect of CO2-mineral pre-contact and found that: on Q3 surface, if a CO2 bubble was pre-contacted with the surface, it can remain on the surface without forming a water film; however, if a CO2 bubble was placed certain distances away from the surface, it formed a water film. Wettability analysis revealed that on the same surface, water contact angle was larger when there was no water film. These findings show that on some silica surfaces, water film may be destroyed by supercritical CO2 even the silica surfaces are hydrophilic. A water film rupture mechanism was propsed for CO2 adhesion on mineral surfaces [Wang (2013) Environ. Sci. Technol. 47, 11858; Zhang (2016) Environ. Sci. Technol. Lett. 10.1021/acs.estlett.5b00359]. The rupture of water film

  5. Reduction of the greenhouse effect by geological mineral in-situ sequestration of CO2 in basic rocks: bibliographic synthesis and possibilities in France. Final report

    International Nuclear Information System (INIS)

    Marechal, J.C.; Lachassagne, P.

    2004-01-01

    The report constitutes a first bibliographic study defining the environments the most adapted to the geological mineral in-situ sequestration of CO 2 . For each environment the lithology and the rocks permeability and porosity are analyzed. Thus the possible rocks and deposits in France are presented. (A.L.B.)

  6. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.

    2004-01-01

    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  7. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  8. Comparison of Pore-scale CO2-water-glass System Wettability and Conventional Wettability Measurement on a Flat Plate for Geological CO2 Sequestration

    Science.gov (United States)

    Jafari, M.; Cao, S. C.; Jung, J.

    2017-12-01

    Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying

  9. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  10. The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Oldenburg, Curtis M.; Benson, Sally M.

    2008-09-15

    Storage of large amounts of carbon dioxide (CO{sub 2}) in deep geological formations for greenhouse gas mitigation is gaining momentum and moving from its conceptual and testing stages towards widespread application. In this work we explore various optimization strategies for characterizing surface leakage (seepage) using near-surface measurement approaches such as accumulation chambers and eddy covariance towers. Seepage characterization objectives and limitations need to be defined carefully from the outset especially in light of large natural background variations that can mask seepage. The cost and sensitivity of seepage detection are related to four critical length scales pertaining to the size of the: (1) region that needs to be monitored; (2) footprint of the measurement approach, and (3) main seepage zone; and (4) region in which concentrations or fluxes are influenced by seepage. Seepage characterization objectives may include one or all of the tasks of detecting, locating, and quantifying seepage. Each of these tasks has its own optimal strategy. Detecting and locating seepage in a region in which there is no expected or preferred location for seepage nor existing evidence for seepage requires monitoring on a fixed grid, e.g., using eddy covariance towers. The fixed-grid approaches needed to detect seepage are expected to require large numbers of eddy covariance towers for large-scale geologic CO{sub 2} storage. Once seepage has been detected and roughly located, seepage zones and features can be optimally pinpointed through a dynamic search strategy, e.g., employing accumulation chambers and/or soil-gas sampling. Quantification of seepage rates can be done through measurements on a localized fixed grid once the seepage is pinpointed. Background measurements are essential for seepage detection in natural ecosystems. Artificial neural networks are considered as regression models useful for distinguishing natural system behavior from anomalous behavior

  11. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    DEFF Research Database (Denmark)

    Plampin, Michael R.; Lassen, Rune Nørbæk; Sakaki, Toshihiro

    2014-01-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is import......A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage...... concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than...

  12. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    Energy Technology Data Exchange (ETDEWEB)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  13. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  14. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  15. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    Energy Technology Data Exchange (ETDEWEB)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  16. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    Science.gov (United States)

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing

  17. The Sulcis Storage Project: Status of the First Italian Initiative for Pilot-Scale Geological Sequestration of CO2

    Science.gov (United States)

    Plaisant, A.; Maggio, E.; Pettinau, A.

    2016-12-01

    The deep aquifer located at a depth of about 1000-1500 m within fractured carbonate in the Sulcis coal basin (South-West Sardinia, Italy) constitutes a potential reservoir to develop a pilot-scale CO2 storage site. The occurrence of several coal mines and the geology of the basin also provide favourable condition to install a permanent infrastructures where advanced CO2 storage technologies can be developed. Overall, the Sulcis project will allow to characterize the Sulcis coal basin (South West Sardinia, Italy) and to develop a permanent infrastructure (know-how, equipment, laboratories, etc.) for advanced international studies on CO2 storage. The research activities are structured in two different phases: (i) site characterization, including the construction of an underground and a fault laboratories and (ii) the installation of a test site for small-scale injection of CO2. In particular, the underground laboratory will host geochemical and geophysical experiments on rocks, taking advantages of the buried environment and the very well confined conditions in the galleries; in parallel, the fault laboratory will be constructed to study CO2 leakage phenomena in a selected fault. The project is currently ongoing and some preliminary results will be presented in this work as well as the structure of the project as a whole. More in detail, preliminary activities comprise: (i) geochemical monitoring; (ii) the minero-petrographycal, physical and geophysical characterization of the rock samples; (iii) the development of both static and dynamic geological models of the reservoir; (iv) the structural geology and fault analysis; (v) the assessment of natural seismicity through a monitoring network (vi) the re-processing and the analysis of the reflection seismic data. Future activities will comprise: (i) the drilling of shallow exploration wells near the faults; (ii) the construction of both the above mentioned laboratories; (iii) drilling of a deep exploration well (1,500 m

  18. Geothermal energy combined with CO2 sequestration : An additional benefit

    NARCIS (Netherlands)

    Salimi, H.; Wolf, K.H.A.A.; Bruining, J.

    2012-01-01

    In this transition period from a fossil-fuel based society to a sustainable-energy society, it is expected that CO2 capture and subsequent sequestration in geological formations plays a major role in reducing greenhouse gas emissions. An alternative for CO2 emission reduction is to partially replace

  19. Detection of CO2 Leaked Associated with its Geological Sequestration using Uniformly and Randomly Located Monitoring Wells

    Science.gov (United States)

    Nogues, J. P.; Court, B.; Dobossy, M.; Nordbotten, J. M.; Celia, M. A.

    2009-12-01

    scenario randomly located wells were placed over the domain and the plumes and pulses detected were again analyzed. We observe that even spacing of wells performs better than randomly located wells. For example, for CO2 leakage on the order of 2.5% of the total amount of CO2 injected, it takes at least 10 evenly-spaced wells to detect leakage 50% of the time as opposed to 23 randomly located wells that are needed to reach the same leakage detection. We also see that use of direct detection of leaked CO2 is much less likely to detect leakage than is detection of pressure changes. We believe these kinds of results can lead to practical design strategies for leakage monitoring, including quantitative estimation of increased probability of leak detection per added observation well. These kinds of calculations can guide both economic and policy decisions for geological storage operations.

  20. CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr

    2004-04-01

    have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

  1. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr; Linda M. Curran

    2005-04-15

    -combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

  2. Effect of Flow Direction on Relative Permeability Curves in Water/Gas Reservoir System: Implications in Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Abdulrauf Rasheed Adebayo

    2017-01-01

    Full Text Available The effect of gravity on vertical flow and fluids saturation, especially when flow is against gravity, is not often a subject of interest to researchers. This is because of the notion that flow in subsurface formations is usually in horizontal direction and that vertical flow is impossible or marginal because of the impermeable shales or silts overlying them. The density difference between two fluids (usually oil and water flowing in the porous media is also normally negligible; hence gravity influence is neglected. Capillarity is also often avoided in relative permeability measurements in order to satisfy some flow equations. These notions have guided most laboratory core flooding experiments to be conducted in horizontal flow orientation, and the data obtained are as good as what the experiments tend to mimic. However, gravity effect plays a major role in gas liquid systems such as CO2 sequestration and some types of enhanced oil recovery techniques, particularly those involving gases, where large density difference exists between the fluid pair. In such cases, laboratory experiments conducted to derive relative permeability curves should take into consideration gravity effects and capillarity. Previous studies attribute directional dependence of relative permeability and residual saturations to rock anisotropy. It is shown in this study that rock permeability, residual saturation, and relative permeability depend on the interplay between gravity, capillarity, and viscous forces and also the direction of fluid flow even when the rock is isotropic. Rock samples representing different lithology and wide range of permeabilities were investigated through unsteady-state experiments covering drainage and imbibition in both vertical and horizontal flow directions. The experiments were performed at very low flow rates to capture capillarity. The results obtained showed that, for each homogeneous rock and for the same flow path along the core length

  3. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE

    Science.gov (United States)

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  4. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    Science.gov (United States)

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  5. Up-scaling of a two-phase flow model including gravity effect in geological heterogeneous media: application to CO2 sequestration

    International Nuclear Information System (INIS)

    Ngo, Tri-Dat

    2016-01-01

    This work deals with the mathematical modeling and the numerical simulation of the migration under gravity and capillarity effects of the supercritical CO 2 injected into a geological heterogeneous sequestration site. The simulations are performed with the code DuMux. Particularly, we consider the up-scaling, from the cell scale to the reservoir scale, of a two-phase (CO 2 -brine) flow model within a periodic stratified medium made up of horizontal low permeability barriers, continuous or discontinuous. The up-scaling is done by the two-scale asymptotic method. First, we consider perfectly layered media. An homogenized model is developed and validated by numerical simulation for different values of capillary number and the incident flux of CO 2 . The homogenization method is then applied to the case of a two-dimensional medium made up of discontinuous layers. Due to the gravity effect, the CO 2 accumulates under the low permeability layers, which leads to a non-standard local mathematical problem. This stratification is modeled using the gravity current approach. This approach is then extended to the case of semi-permeable strata taking into account the capillarity. The up-scaled model is compared with numerical simulations for different types of layers, with or without capillary pressure, and its limit of validity is discussed in each of these cases. The final part of this thesis is devoted to the study of the parallel computing performances of the code DuMux to simulate the injection and migration of CO 2 in three-dimensional heterogeneous media (layered periodic media, fluvial media and reservoir model SPE 10). (author) [fr

  6. Dynamic Behavior of CO2 in a Wellbore and Storage Formation: Wellbore-Coupled and Salt-Precipitation Processes during Geologic CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jize Piao

    2018-01-01

    Full Text Available For investigating the wellbore flow process in CO2 injection scenarios, coupled wellbore-reservoir (WR and conventional equivalent porous media (EPM models were compared with each other. In WR model, during the injection, conditions for the wellbore including pressure and temperature were dynamically changed from the initial pressure (7.45–8.33 MPa and temperature (52.0–55.9°C of the storage formation. After 3.35 days, the wellbore flow reached the steady state with adiabatic condition; temperature linearly increased from the well-head (35°C to the well-bottom (52°C. In contrast, the EPM model neglecting the wellbore process revealed that CO2 temperature was consistently 35°C at the screen interval. Differences in temperature from WR and EPM models resulted in density contrast of CO2 that entered the storage formation (~200 and ~600 kg/m3, resp.. Subsequently, the WR model causing greater density difference between CO2 and brine revealed more vertical CO2 migration and counterflow of brine and also developed the localized salt-precipitation. Finally, a series of sensitivity analyses for the WR model was conducted to assess how the injection conditions influenced interplay between flow system and the localized salt-precipitation in the storage formation.

  7. Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis

    International Nuclear Information System (INIS)

    Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F.

    2007-01-01

    This paper demonstrates the use of coupled fluid flow and geomechanical fault slip (fault reactivation) analysis to estimate the maximum sustainable injection pressure during geological sequestration of CO 2 . Two numerical modeling approaches for analyzing fault-slip are applied, one using continuum stress-strain analysis and the other using discrete fault analysis. The results of these two approaches to numerical fault-slip analyses are compared to the results of a more conventional analytical fault-slip analysis that assumes simplified reservoir geometry. It is shown that the simplified analytical fault-slip analysis may lead to either overestimation or underestimation of the maximum sustainable injection pressure because it cannot resolve important geometrical factors associated with the injection-induced spatial evolution of fluid pressure and stress. We conclude that a fully coupled numerical analysis can more accurately account for the spatial evolution of both in situ stresses and fluid pressure, and therefore results in a more accurate estimation of the maximum sustainable CO 2 injection pressure

  8. Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Scott Reeves; George Koperna

    2008-09-30

    The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale

  9. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-07-01

    In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

  10. Natural CO2 Analogs for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  11. Experimental study of chemical-mechanical coupling during percolation of reactive fluid through rocks under stress, in the context of the CO2 geological sequestration

    International Nuclear Information System (INIS)

    Le Guen, Y.

    2006-10-01

    CO 2 injection into geological repositories will induce chemical and mechanical instabilities. The study of these instabilities is based on experimental deformation of natural rock samples under stress, in the presence of fluids containing, or not, dissolved CO 2 . Triaxial cells used for the experiments permitted an independent control and measurement of stress, temperature, fluid pressure and composition. Vertical strains were measured during several months, with a resolution of 1.10 -12 s -1 on the strain rate. Simultaneously, fluids were analysed in order to quantify fluid-rock interactions. For limestone samples, percolation of CO 2 -rich fluids increases strain rate by a factor 1.7 up to 5; on the other hand, sandstone deformation remained almost the same. Increase in strain rate with limestone samples was explained by injected water acidification by the CO 2 which increases rock solubility and reaction kinetics. On the opposite, small effect of CO 2 on quartz explains the absence of deformation. X-ray observations confirmed the importance of rock composition and structure on the porosity evolution. Numerical simulations of rock elastic properties showed increasing shear stress into the sample. Measured deformation showed an evolution of reservoir rocks mechanical properties. It was interpreted as the consequence of pressure solution mechanisms both at grains contacts and on grain free surfaces. (author)

  12. Impact on the deep biosphere of CO2 geological sequestration in (ultra)mafic rocks and retroactive consequences on its fate

    Science.gov (United States)

    Ménez, Bénédicte; Gérard, Emmanuelle; Rommevaux-Jestin, Céline; Dupraz, Sébastien; Guyot, François; Arnar Alfreősson, Helgi; Reynir Gíslason, Sigurőur; Sigurőardóttir, Hólmfríiur

    2010-05-01

    Due to their reactivity and high potential of carbonation, mafic and ultramafic rocks constitute targets of great interest to safely and permanently sequestrate anthropogenic CO2 and thus, limit the potential major environmental consequences of its increasing atmospheric level. In addition, subsurface (ultra)mafic environments are recognized to harbor diverse and active microbial populations that may be stimulated or decimated following CO2 injection (± impurities) and subsequent acidification. However, the nature and amplitude of the involved biogeochemical pathways are still unknown. To avoid unforeseen consequences at all time scales (e.g. reservoir souring and clogging, bioproduction of H2S and CH4), the impact of CO2 injection on deep biota with unknown ecology, and their retroactive effects on the capacity and long-term stability of CO2 storage sites, have to be determined. We present here combined field and experimental investigations focused on the Icelandic pilot site, implemented in the Hengill area (SW Iceland) at the Hellisheidi geothermal power plant (thanks to the CarbFix program, a consortium between the University of Iceland, Reykjavik Energy, the French CNRS of Toulouse and Columbia University in N.Y., U.S.A. and to the companion French ANR-CO2FIX project). This field scale injection of CO2 charged water is here designed to study the feasibility of storing permanently CO2 in basaltic rocks and to optimize industrial methods. Prior to the injection, the microbiological initial state was characterized through regular sampling at various seasons (i.e., October '08, July '09, February '10). DNA was extracted and amplified from the deep and shallow observatory wells, after filtration of 20 to 30 liters of groundwater collected in the depth interval 400-980 m using a specifically developed sampling protocol aiming at reducing contamination risks. An inventory of living indigenous bacteria and archaea was then done using molecular methods based on the

  13. Exploration of public acceptance regarding CO2 underground sequestration technologies

    International Nuclear Information System (INIS)

    Uno, M.; Tokushige, K.; Mori, Y.; Furukawa, A.

    2005-01-01

    Mechanisms for gaining public acceptance of carbon dioxide (CO 2 ) aquifer sequestration were investigated through the use of questionnaires and focus group interviews. The study was performed as part of a CO 2 sequestration technology promotion project in Japan. The questionnaire portion of the study was conducted to determine public opinions and the extent of public awareness of CO 2 sequestration technologies. Questionnaires were distributed to undergraduate students majoring in environmental sociology. Participants were provided with newspaper articles related to CO 2 sequestration. The focus group study was conducted to obtain qualitative results to complement findings from the questionnaire survey. Results of the survey suggested that many participants were not particularly concerned about global warming, and had almost no knowledge about CO 2 sequestration. The opinions of some students were influenced by an awareness of similar types of facilities located near their homes. Attitudes were also influenced by the newspaper articles provided during the focus group sessions. However, many older participants did not trust information presented to them in newspaper format. Results suggested that many people identified afforestation as an alternative technology to CO 2 sequestration, and tended to think of CO 2 in negative terms as it contributed to global warming. Some participants assumed that CO 2 was harmful. The majority of respondents agreed with the development of CO 2 sequestration technologies as part of a program of alternative emissions abatement technologies. The provision of detailed information concerning CO 2 sequestration did not completely remove anxieties concerning the technology's potential negative impacts. It was concluded that a confident communications strategy is needed to persuade Japanese residents of the need to implement CO 2 sequestration technologies. 11 refs., 2 figs

  14. CO2 plume management in saline reservoir sequestration

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2011-01-01

    close to the injection well, compared to monitoring wells intended to measure CO2 saturation via fluid sampling or cased-hole well logs. If pressure monitoring wells become mandated, these wells could be used for managing the CO2 saturation and aquifer pressure distribution. To understand the relevance and effectiveness of producing and injecting brine to improve storage efficiency, direct the plume to specific pore space, and redistribute the pressure, numerical models of CO2 injection into aquifers are used. Simulated cases include various aquifer properties at a single well site and varying the number and location of surrounding wells for plume management. Strategies in terms of completion intervals can be developed to effectively contact more vertical pore space in relatively thicker geologic formations. Inter-site plume management (or cooperative) wells for the purpose of pressure monitoring and plume management may become the responsibility of a consortium of operators or a government entity, not individual sequestration site operators. ?? 2011 Published by Elsevier Ltd.

  15. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  16. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

    Science.gov (United States)

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G

    2016-06-01

    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Faults as Windows to Monitor Gas Seepage: Application to CO2 Sequestration and CO2-EOR

    Directory of Open Access Journals (Sweden)

    Ronald W. Klusman

    2018-03-01

    Full Text Available Monitoring of potential gas seepage for CO2 sequestration and CO2-EOR (Enhanced Oil Recovery in geologic storage will involve geophysical and geochemical measurements of parameters at depth and at, or near the surface. The appropriate methods for MVA (Monitoring, Verification, Accounting are needed for both cost and technical effectiveness. This work provides an overview of some of the geochemical methods that have been demonstrated to be effective for an existing CO2-EOR (Rangely, CA, USA and a proposed project at Teapot Dome, WY, USA. Carbon dioxide and CH4 fluxes and shallow soil gas concentrations were measured, followed by nested completions of 10-m deep holes to obtain concentration gradients. The focus at Teapot Dome was the evaluation of faults as pathways for gas seepage in an under-pressured reservoir system. The measurements were supplemented by stable carbon and oxygen isotopic measurements, carbon-14, and limited use of inert gases. The work clearly demonstrates the superiority of CH4 over measurements of CO2 in early detection and quantification of gas seepage. Stable carbon isotopes, carbon-14, and inert gas measurements add to the verification of the deep source. A preliminary accounting at Rangely confirms the importance of CH4 measurements in the MVA application.

  18. CO2 sequestration: Storage capacity guideline needed

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  19. Options for CO2 sequestration in Kuwait

    NARCIS (Netherlands)

    Neele, F.; Vandeweijer, V.; Mayyan, H.; Sharma, S.R.; Kamal, D.

    2017-01-01

    In preparation for future requirements to abate CO2 emission levels, a CO2 storage feasibility study was carried out for the country of Kuwait. At present, no definite plans exist to install capture facilities at the larger emission points in the country; the study presented is one of the first

  20. International Collaboration on CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter H. Israelsson; E. Eric Adams

    2007-06-30

    On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be

  1. Cost evaluation of CO2 sequestration by aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, Wouter J.J.; Comans, Rob N.J.; Witkamp, Geert-Jan

    2007-01-01

    A cost evaluation of CO 2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO 3 ) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a basic design was made for the major process equipment, and total investment costs were estimated with the help of the publicly available literature and a factorial cost estimation method. Finally, the sequestration costs were determined on the basis of the depreciation of investments and variable and fixed operating costs. Estimated costs are 102 and 77 EUR/ton CO 2 net avoided for wollastonite and steel slag, respectively. For wollastonite, the major costs are associated with the feedstock and the electricity consumption for grinding and compression (54 and 26 EUR/ton CO 2 avoided, respectively). A sensitivity analysis showed that additional influential parameters in the sequestration costs include the liquid-to-solid ratio in the carbonation reactor and the possible value of the carbonated product. The sequestration costs for steel slag are significantly lower due to the absence of costs for the feedstock. Although various options for potential cost reduction have been identified, CO 2 sequestration by current aqueous carbonation processes seems expensive relative to other CO 2 storage technologies. The permanent and inherently safe sequestration of CO 2 by mineral carbonation may justify higher costs, but further cost reductions are required, particularly in view of (current) prices of CO 2 emission rights. Niche applications of mineral carbonation with a solid residue such as steel slag as feedstock and/or a useful carbonated product hold the best prospects for an economically feasible CO 2 sequestration process. (author)

  2. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    H.J. Herzog; E.E. Adams

    2000-08-23

    The specific objective of our project on CO{sub 2} ocean sequestration is to investigate its technical feasibility and to improve the understanding of any associated environmental impacts. Our ultimate goal is to minimize any impacts associated with the eventual use of ocean carbon sequestration to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2001 off the Kona Coast of Hawaii. At GHGT-4 in Interlaken, we presented a paper detailing our plans. The purpose of this paper is to present an update on our progress to date and our plans to complete the project. The co-authors of this paper are members of the project's Technical Committee, which has been formed to supervise the technical aspects and execution of this project.

  3. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    H.J. Herzog; E.E. Adams

    1999-08-23

    The ocean represents the largest potential sink for anthropogenic CO{sub 2}. In order to better understand this potential, Japan, Norway, and the United States signed a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration in December 1997; since that time, Canada and ABB (Switzerland) have joined the project. The objective of the project is to investigate the technical feasibility of, and improve understanding of the environmental impacts from, CO{sub 2} ocean sequestration in order to minimize the impacts associated with the eventual use of this technique to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2000 off the Kona Coast of Hawaii. The implementing research organizations are the Research Institute of Innovative Technology for the Earth (Japan), the Norwegian Institute for Water Research (Norway), and the Massachusetts Institute of Technology (USA). The general contractor for the project will be the Pacific International Center for High Technology Research in Hawaii. A Technical Committee has been formed to supervise the technical aspects and execution of this project. The members of this committee are the co-authors of this paper. In this paper we discuss key issues involved with the design, ocean engineering, measurements, siting, and costs of this experiment.

  4. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    Science.gov (United States)

    Elliot, T R; Celia, M A

    2012-04-03

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.

  5. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  6. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  7. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-01-01

    Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist

  8. Sequestration of fermentation CO2 from ethanol production

    International Nuclear Information System (INIS)

    Kheshgi, Haroon S.; Prince, Roger C.

    2005-01-01

    Renewable energy from biomass is conventionally thought to avoid emissions of the greenhouse gas CO 2 by replacing the roles of fossil fuels. We show that if the off-gases produced during the fermentation of sugars to fuel-ethanol were captured and, for example, injected deep underground to keep them from the atmosphere, then the production of ethanol could lead to the net removal of CO 2 from the atmosphere in addition to avoiding gasoline-related CO 2 emissions by using the ethanol as a transportation fuel. We give estimates of net CO 2 emissions for current systems for the production of fuel-ethanol, these systems modified to sequester fermentation CO 2 , and gasoline-related CO 2 emission offsets. We consider future developments that might affect the scope and economic feasibility of the sequestration of fermentation CO 2

  9. Intermediate-Scale Experimental and Numerical Study of Multiphase CO2 Attenuation in Layered Shallow Aquifers During Leakage from Geologic Sequestration Site

    Science.gov (United States)

    Plampin, M. R.; Pawar, R.; Porter, M. L.; Illangasekare, T. H.

    2015-12-01

    In order to effectively predict and mitigate the potential risks from leakage of stored CO2, we must first understand the physicochemical processes that CO2 undergoes during migration through shallow aquifers, including dissolved phase advection and dispersion as well as gas phase exsolution, multiphase flow, and dissolution. Since field sites are inherently large-scale, heterogeneous, 3-D systems, large-scale experimental data is important to validate numerical models and to make confident predictions regarding CO2 migration. A large, highly instrumented, two-dimensional tank was built and packed with porous media to represent a portion of a layered shallow aquifer. Flow of water across the tank was established by applying a small difference in head between the two ends. A separate stream of water was then saturated with dissolved CO2 and injected into the bottom of the tank near the upstream end. Various saturation sensors measured the spatiotemporal pattern of gas phase evolution in the tank, while an external sensor and an Ion Chromatograph were used to monitor the dissolved CO2 concentrations at various locations in the system. The top of the tank was baffled into four sealed compartments, each of which was connected to a gas flow meter to monitor the spatiotemporal pattern of gas phase CO2 release to the atmosphere. Numerical simulations were also performed to better understand the fundamental physics that drove the observed CO2 evolution processes, and to help validate a widely used code using the experimental data. The simulations were performed with the Finite Element Heat and Mass Transfer (FEHM) software that was developed at Los Alamos National Laboratory. The model domain, porous media properties, and initial conditions were set up to match those of the experiment, and the boundary conditions were adjusted to investigate the mass transfer between the dissolved and gaseous phases of CO2 that developed within the system. Results from both the experiments

  10. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  11. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  12. Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations

    Energy Technology Data Exchange (ETDEWEB)

    Zoback, Mark D. [Stanford Univ., CA (United States); Kovscek, Anthony R. [Stanford Univ., CA (United States); Wilcox, Jennifer [Stanford Univ., CA (United States)

    2013-09-30

    This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

  13. Classification of CO2 Geologic Storage: Resource and Capacity

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2009-01-01

    The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of

  14. Capture and Sequestration of CO2 at the Boise White Paper Mill

    Energy Technology Data Exchange (ETDEWEB)

    B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

    2010-06-16

    This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporation’s Econamine Plus™ carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOE’s Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately

  15. Cost Evaluation of CO2 Sequestration by Aqueous Mineral Carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2007-01-01

    A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a

  16. Mineral CO2 sequestration by steel slag carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2005-01-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible

  17. Mineral CO2 sequestration in alkaline solid residues

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2004-12-01

    Mineral carbonation is a promising sequestration route for the permanent and safe storage of carbon dioxide. In addition to calcium- or magnesium-containing primary minerals, suitable alkaline solid residues can be used as feedstock. The use of alkaline residues has several advantages, such as their availability close to CO2 sources and their higher reactivity for carbonation than primary minerals. In addition, the environmental quality of residues can potentially be improved by carbonation. In this study, key factors of the mineral CO2 sequestration process are identified, their influence on the carbonation process is examined, and environmental properties of the reaction products with regard to their possible beneficial utilization are investigated. The use of alkaline solid residues forms a potentially attractive alternative for the first mineral sequestration plants

  18. Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine

    2006-06-30

    Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings

  19. Technological innovations on underground coal gasification and CO2 sequestration

    International Nuclear Information System (INIS)

    Da Gama, Carlos D; Navarro T, Vidal; Falcao N, Ana P

    2010-01-01

    A brief description of the underground coal gasification (UCG) process, combined with the possibility of CO 2 sequestration, is presented. Although nowadays there are very few active industrial UCG plants, a number of new projects are under way in different parts of the world aimed to produce regular gas fuel derived from in situ coal combustion, despite the environmental advantages resulting from this process. A brief review of those projects is included. The possibility of underground CO 2 storage, either with or without simultaneous UCG, is analyzed by taking into consideration the main challenges of its application and the risks associated with integrated solutions, thus requiring innovative solutions.

  20. CO2 sequestration by magnesium silicate mineral carbonation in Finland

    International Nuclear Information System (INIS)

    Zevenhoven, R.; Kohlmann, J.

    2001-01-01

    Fixation Of CO 2 from fossil fuel combustion in the form of solid carbonates appears to be a realistic option for the capture and storage of this greenhouse gas. Vast amounts of magnesium silicate minerals exist worldwide that may be carbonated, with magnesium carbonate as stable and environmentally harmless product. Also in Finland magnesium silicate resources exist that could support Finnish commitments under the Kyoto Protocol. This paper describes the option Of CO 2 sequestration with magnesium silicates in Finland. Addressed are mineral resources, mineral quality and the mineral carbonation process, including some experimental results on magnesium silicate carbonation kinetics

  1. Mineral CO2 sequestration by steel slag carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2005-12-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to react relatively rapidly with CO2 due to their chemical instability. Ground steel slag was carbonated in aqueous suspensions to study its reaction mechanisms. Process variables, such as particle size, temperature, carbon dioxide pressure, and reaction time, were systematically varied, and their influence on the carbonation rate was investigated. The maximum carbonation degree reached was 74% of the Ca content in 30 min at 19 bar pressure, 100C, and a particle size of <38 μm. The two must important factors determining the reaction rare are particle size (<2 mm to <38 μm) and reaction temperature (25-225C). The carbonation reaction was found to occur in two steps: (1) leaching of calcium from the steel slag particles into the solution; (2) precipitation of calcite on the surface of these particles. The first step and, more in particular, the diffusion of calcium through the solid matrix toward the surface appeared to be the rate-determining reaction step, The Ca diffusion was found to be hindered by the formation of a CaCO3-coating and a Ca-depleted silicate zona during the carbonation process. Research on further enhancement of the reaction rate, which would contribute to the development of a cost-effective CO2-sequestration process, should focus particularly on this mechanism

  2. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES; SEMIANNUAL

    International Nuclear Information System (INIS)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-01-01

    In order to plan for potential CO(sub 2) mitigation mandates, utilities need better information on CO(sub 2) mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO(sub 2) sequestration technologies and practices, both geologic storage of captured CO(sub 2) and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO(sub 2) sequestration, including captured CO(sub 2) storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO(sub 2) sequestration options. Designs and data collection are nearly complete for each of the CO(sub 2) sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO(sub 2). No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO(sub 2) sequestration options that differ in timing and permanence of CO(sub 2) sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget

  3. SANS from CO2-saturated coals at conditions relevant to subsurface sequestration

    Science.gov (United States)

    Melnichenko, Yuri; Radlinski, Andrzej; Cheng, Gang; Mastalerz, Maria; Wignall, George

    2008-03-01

    Carbon dioxide (CO2) is the greenhouse gas which makes the largest contribution to global warming and roughly one third of the United States' CO2 emissions are generated by fuel-burning power plants. Capture and storage of CO2 in underground geologic structures may significantly reduce CO2 emissions to the atmosphere. Sequestration of CO2 in unmineable deep coal seams is particularly attractive as many coal-burning power plants are located near sites potentially suitable for geological storage. It is widely assumed that CO2 can be captured and retained in coals by virtue of several of mechanisms, such as fluid trapping of an ``immobile phase'' inside the pore space, adsorption to the pore surface and chemical bonding inside the organic coal matrix in the vicinity of pore walls. We report the results of the first small-angle neutron scattering (SANS) studies of several coals saturated with CO2 at temperatures and pressures similar to those found in deep coal seams which are likely to be used for industrial-scale underground storage of CO2. We found that the porous coal matrix may work to create absorbed fluid phase with the physical density much exceeding the density of the bulk fluid at the same thermodynamic conditions. Fluid densification is different in different coals which may explain the observed differences in sorption capacity and migration rates.

  4. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  5. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  6. Peculiarities of CO2 sequestration in the Permafrost area

    Science.gov (United States)

    Guryeva, Olga; Chuvilin, Evgeny; Moudrakovski, Igor; Lu, Hailong; Ripmeester, John; Istomin, Vladimir

    2010-05-01

    Natural gas and gas-condensate accumulations in North of Western Siberia contain an admixture of CO2 (about 0.5-1.0 mol.%). Recently, the development and transportation of natural gas in the Yamal peninsula has become of interest to Russian scientists. They suggest liquifaction of natural gas followed by delivery to consumers using icebreaking tankers. The technique of gas liquefaction requires CO2 to be absent from natural gas, and therefore the liquefaction technology includes the amine treatment of gas. This then leads to a problem with utilization of recovered CO2. It is important to note, that gas reservoirs in the northern part of Russia are situated within the Permafrost zone. The thickness of frozen sediment reaches 500 meters. That is why one of the promising places for CO2 storage can be gas-permeable collectors in under-permafrost horizons. The favorable factors for preserving CO2 in these places are as follows: low permeability of overlying frozen sediments, low temperatures, the existence of a CO2 hydrate stability zone, and the possibility of sequestration at shallow depths (less then 800-1000 meters). When CO2 (in liquid or gas phase) is pumped into the under-permafrost collectors it is possible that some CO2 migrates towards the hydrate stability zone and hydrate-saturated horizons can be formed. This can result on the one hand in the increase of effective capacity of the collector, and on the other hand, in the increase of isolating properties of cap rock. Therefore, CO2 injection sometimes can be performed without a good cap rock. In connection with the abovementioned, to elaborate an effective technology for CO2 injection it is necessary to perform a comprehensive experimental investigation with computer simulation of different utilization schemes, including the process of CO2 hydrate formation in porous media. There are two possible schemes of hydrate formation in pore medium of sediments: from liquid CO2 or the gas. The pore water in the

  7. Public Acceptance for Geological CO2-Storage

    Science.gov (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  8. Southwestern Regional Partnership For Carbon Sequestration (Phase 2): Pump Canyon CO2-ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    2010-01-01

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO 2 sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO 2 -enhanced coalbed methane (CO 2 /ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO 2 sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO 2 was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO 2 movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO 2 . In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO 2 fluxes, and tracers were used to help in tracking the injected CO 2 . Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  9. Outcrop-based reservoir modeling of a naturally fractured siliciclastic CO 2 sequestration site, Svalbard, Arctic Norway

    NARCIS (Netherlands)

    Senger, K.; Ogata, K.; Tveranger, J.; Braathen, A.; Olaussen, S.

    2013-01-01

    We present a geological model of an unconventional siliciclastic reservoir projected for CO2 sequestration near Longyearbyen, Svalbard. The reservoir is characterized by a substantial sub-hydrostatic pressure regime, very low matrix porosity and -permeability values, extensive natural fracturing and

  10. Outcrop-based reservoir modeling of a naturally fractured siliciclastic CO2 sequestration site, Svalbard, Arctic Norway

    NARCIS (Netherlands)

    Senger, K.; Ogata, K.; Tveranger, J.; Braathen, A.; Olaussen, S.

    2013-01-01

    We present a geological model of an unconventional siliciclastic reservoir projected for CO2 sequestration near Longyearbyen, Svalbard. The reservoir is characterized by a substantial sub-hydrostatic pressure regime, very low matrix porosity and -permeability values, extensive natural fracturing and

  11. Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Ellsworth, William L.

    2015-01-01

    Sequestration of CO2 into subsurface reservoirs can play an important role in limiting future emission of CO2 into the atmosphere (e.g., Benson and Cole, 2008). For geologic sequestration to become a viable option to reduce greenhouse gas emissions, large-volume injection of supercritical CO2 into deep sedimentary formations is required. These formations offer large pore volumes and good pore connectivity and are abundant (Bachu, 2003; U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013). However, hazards associated with injection of CO2 into deep formations require evaluation before widespread sequestration can be adopted safely (Zoback and Gorelick, 2012). One of these hazards is the potential to induce seismicity on pre-existing faults or fractures. If these faults or fractures are large and critically stressed, seismic events can occur with magnitudes large enough to pose a hazard to surface installations and, possibly more critical, the seal integrity of the cap rock. The Decatur, Illinois, carbon capture and storage (CCS) demonstration site is the first, and to date, only CCS project in the United States that injects a large volume of supercritical CO2 into a regionally extensive, undisturbed saline formation. The first phase of the Decatur CCS project was completed in November 2014 after injecting a million metric tons of supercritical CO2 over three years. This phase was led by the Illinois State Geological Survey (ISGS) and included seismic monitoring using deep borehole sensors, with a few sensors installed within the injection horizon. Although the deep borehole network provides a more comprehensive seismic catalog than is presented in this paper, these deep data are not publically available. We contend that for monitoring induced microseismicity as a possible seismic hazard and to elucidate the general patterns of microseismicity, the U.S. Geological Survey (USGS) surface and shallow borehole network described below

  12. Making carbon dioxide sequestration feasible: Toward federal regulation of CO2 sequestration pipelines

    International Nuclear Information System (INIS)

    Mack, Joel; Endemann, Buck

    2010-01-01

    As the United States moves closer to a national climate change policy, it will have to focus on a variety of factors affecting the manner in which the country moves toward a future with a substantially lower carbon footprint. In addition to encouraging renewable energy, smart grid, clean fuels and other technologies, the United States will need to make substantial infrastructure investments in a variety of industries. Among the significant contributors to the current carbon footprint in the United States is the use of coal as a major fuel for the generation of electricity. One of the most important technologies that the United States can employ to reduce its carbon footprint is to sequester the carbon dioxide ('CO 2 ') from coal-fired power plants. This article focuses on the legal and policy issues surrounding a critical piece of the necessary sequestration infrastructure: CO 2 pipelines that will carry CO 2 from where it is removed from fuel or waste gas streams to where it will be sequestered. Ultimately, this article recommends developing a federally regulated CO 2 pipeline program to foster the implementation of carbon sequestration technology.

  13. Gravity monitoring of CO2 movement during sequestration: Model studies

    Energy Technology Data Exchange (ETDEWEB)

    Gasperikova, E.; Hoversten, G.M.

    2008-07-15

    We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic

  14. Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields

    International Nuclear Information System (INIS)

    Ferronato, Massimiliano; Gambolati, Giuseppe; Janna, Carlo; Teatini, Pietro

    2010-01-01

    Anthropogenic CO 2 sequestration in deep geological formations may represent a viable option to fulfil the requirements of the 1997 Kyoto protocol on the reduction of greenhouse gas emissions. Scenarios of CO 2 sequestration through three injection wells in an exploited gas field located in the Po sedimentary basin (Italy) are simulated with the final target to understand the geomechanical consequences of the injection of carbon dioxide. Investigated scenarios include, as a hypothetical case, the long-term injection of CO 2 until the initial reservoir pressure is exceeded by as much as 40% over a period of about 100 years. The process is analyzed from the geomechanical point of view using a finite element-interface element (FE-IE) model with the following main issues addressed: (1) prediction of the possible land vertical uplift and corresponding impact on the ground infrastructures; (2) evaluation of the stress state induced in the reservoir formation with the possible generation of fractures and (3) a risk analysis for the activation of existing faults. The geomechanical constitutive law of the Northern Adriatic basin relying on the radioactive marker interpretation is implemented into the FE model, while an elasto-plastic relationship based on the Mohr-Coulomb criterion is used for the IE reproducing the fault behaviour. The in situ stress prior to the gas field exploitation is compressive with the principal horizontal stress in the direction perpendicular to the major faults equal to the vertical stress. The results show that the ground surface rebound due to the overpressure generated by the CO 2 sequestration partially mitigates the land subsidence experienced by the area because of the previous gas field depletion with differential displacements that are confined within the safety bounds suggested in the literature for the surface infrastructures. Activation of a few faults lying close to the northern reservoir boundary points to a slip of a couple of

  15. Simplified Predictive Models for CO2 Sequestration Performance Assessment

    Science.gov (United States)

    Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis

    2014-05-01

    We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of

  16. Carbon dioxide sequestration by mineral carbonation. Feasibility of enhanced natural weathering as a CO2 emission reduction technology

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.

    2007-01-01

    A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonates. Potential advantages of mineral CO2 sequestration compared to, e.g., geological CO2 storage include (1) the permanent and inherently safe sequestration of CO2, due to the thermodynamic stability of the carbonate product formed and (2) the vast potential sequestration capacity, because of the widespread and abundant occurrence of suitable feedstock. In addition, carbonation is an exothermic process, which potentially limits the overall energy consumption and costs of CO2 emission reduction. However, weathering processes are slow, with timescales at natural conditions of thousands to millions of years. For industrial implementation, a reduction of the reaction time to the order of minutes has to be achieved by developing alternative process routes. The aim of this thesis is an investigation of the technical, energetic, and economic feasibility of CO2 sequestration by mineral carbonation. In Chapter 1 the literature published on CO2 sequestration by mineral carbonation is reviewed. Among the potentially suitable mineral feedstock for mineral CO2 sequestration, Ca-silicates, more particularly wollastonite (CaSiO3), a mineral ore, and steel slag, an industrial alkaline solid residue, are selected for further research. Alkaline Ca-rich residues seem particularly promising, since these materials are inexpensive and available near large industrial point sources of CO2. In addition, residues tend to react relatively rapidly with CO2 due to their (geo)chemical instability. Various process routes have been proposed for mineral carbonation, which often include a pre-treatment of the solid feedstock (e.g., size reduction and

  17. Serpentinite Carbonation in the Pollino Massif (southern Italy) for CO2 Sequestration

    Science.gov (United States)

    Carmela Dichicco, Maria; Mongelli, Giovanni; Paternoster, Michele; Rizzo, Giovanna

    2015-04-01

    Anthropogenic gas emissions are projected to change future climates with potentially nontrivial impacts (Keller et al., 2008 and references therein) and the impacts of the increased CO2 concentration are, among others, the greenhouse effect, the acidification of the surface of the ocean and the fertilization of ecosystems (e.g. Huijgen and Comans, 2003). Geologic Sequestration into subsurface rock formations for long-term storage is part of a process frequently referred to as "carbon capture and storage" or CCS. A major strategy for the in situ geological sequestration of CO2 involves the reaction of CO2 with Mg-silicates, especially in the form of serpentinites, which are rocks: i) relatively abundant and widely distributed in the Earth's crust, and ii) thermodynamically convenient for the formation of Mg-carbonates (e.g., Brown et al., 2011). In nature, carbonate minerals can form during serpentinization or during hydrothermal carbonation and weathering of serpentinites whereas industrial mineral carbonation processes are commonly represented by the reaction of olivine or serpentine with CO2 to form magnesite + quartz ± H2O (Power et al., 2013). Mineral carbonation occurs naturally in the subsurface as a result of fluid-rock interactions within serpentinite, which occur during serpentinization and carbonate alteration. In situ carbonation aims to promote these reactions by injecting CO2 into porous, subsurface geological formations, such as serpentinite-hosted aquifers. In the northern sector of the Pollino Massif (southern Italy) extensively occur serpentinites (Sansone et. al., 2012) and serpentinite-hosted aquifers (Margiotta et al., 2012); both serpentinites and serpentinite-hosted aquifers are the subject of a comprehensive project devoted to their possible use for in situ geological sequestration of CO2. The serpentinites derived from a lherzolitic and subordinately harzburgitic mantle, and are within tectonic slices in association with metadolerite dykes

  18. Terrestrial Sequestration of CO2 – An Assessment of Research Needs

    Energy Technology Data Exchange (ETDEWEB)

    Dove, Patricia [Georgia Inst. of Technology, Atlanta, GA (United States); Richter, Frank [University of Chicago, Chicago, IL; Rudnicki, John W [Northwestern Univ., Evanston, IL (United States); Harris, Jerry [Stanford Univ., CA (United States); Logan, John M. [Logan and Associates, Inc., Bandon, Oregon; Warpinski, Norman R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wawersik, Wolfgang R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, John L [New Mexico Institute of Mining and Technology; Wong, Teng-Fong [State University of New York; Ortoleva, Peter J [Indiana University, Bloomington, Indiana; Orr, Jr., Franklin M [Stanford Univ., CA (United States); Pyrak-Nolte, Laura [Purdue Univ., West Lafayette, IN (United States)

    1998-11-02

    Scientific debate about global warming prompted the Office of Basic Energy Sciences (OBES) of the U.S. Department of Energy to assess a broad range of research possibilities that might result in more efficient energy and reduce the amount of greenhouse gases emitted to the atmosphere. Therefore, in May 1998, the Geosciences Research Program of OBES invited eleven panelists to a workshop in order to address the potential for the sequestration of CO2 in geologic formations as part of a possible OBES initiative on climate change technology. Starting with knowledge gained from the industrial use of CO2 for enhanced oil recovery, the panelists were asked to identify the fundamental scientific and technical issues that would enhance the safety, efficiency and predictability of terrestrial CO2 sequestration. This report is the product of the May, 1998 workshop and subsequent discussions among the panelists. Although many of the problems discussed cut across traditional geoscience disciplines, the background of the workshop participants naturally lead to a paper with four sections representing the perspectives of geohydrology, geochemistry, geomechanics, and geophysics.

  19. Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

    International Nuclear Information System (INIS)

    Smekens, K.; Van der Zwaan, B.

    2004-03-01

    Geological carbon sequestration seems one of the promising options to address, in the near term, the global problem of climate change, since carbon sequestration technologies are in principle available today and their costs are expected to be affordable. Whereas extensive technological and economic feasibility studies rightly point out the large potential of this 'clean fossil fuel' option, relatively little attention has been paid so far to the detrimental environmental externalities that the sequestering of CO2 underground could entail. This paper assesses what the relevance might be of including these external effects in long-term energy planning and scenario analyses. Our main conclusion is that, while these effects are generally likely to be relatively small, carbon sequestration externalities do matter and influence the nature of future world energy supply and consumption. More importantly, since geological carbon storage (depending on the method employed) may in some cases have substantial external impacts, in terms of both environmental damage and health risks, it is recommended that extensive studies are performed to quantify these effects. This article addresses three main questions: (1) What may energy supply look like if one accounts for large-scale CO2 sequestration in the construction of long-term energy and climate change scenarios; (2) Suppose one hypothesizes a quantification of the external environmental costs of CO2 sequestration, how do then these supposed costs affect the evolution of the energy system during the 21st century; (3) Does it matter for these scenarios whether carbon sequestration damage costs are charged directly to consumers or, instead, to electricity producers?

  20. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  1. Applicability of aquifer impact models to support decisions at CO2 sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Elizabeth; Bacon, Diana; Carroll, Susan; Mansoor, Kayyum; Sun, Yunwei; Zheng, Liange; Harp, Dylan; Dai, Zhenxue

    2016-09-01

    The National Risk Assessment Partnership has developed a suite of tools to assess and manage risk at CO2 sequestration sites (www.netldoe.gov/nrap). This capability includes polynomial or look-up table based reduced-order models (ROMs) that predict the impact of CO2 and brine leaks on overlying aquifers. The development of these computationally-efficient models and the underlying reactive transport simulations they emulate has been documented elsewhere (Carroll et al., 2014, Dai et al., 2014, Keating et al., 2015). The ROMs reproduce the ensemble behavior of large numbers of simulations and are well-suited to applications that consider a large number of scenarios to understand parameter sensitivity and uncertainty on the risk of CO2 leakage to groundwater quality. In this paper, we seek to demonstrate applicability of ROM-based ensemble analysis by considering what types of decisions and aquifer types would benefit from the ROM analysis. We present four hypothetical four examples where applying ROMs, in ensemble mode, could support decisions in the early stages in a geologic CO2 sequestration project. These decisions pertain to site selection, site characterization, monitoring network evaluation, and health impacts. In all cases, we consider potential brine/CO2 leak rates at the base of the aquifer to be uncertain. We show that derived probabilities provide information relevant to the decision at hand. Although the ROMs were developed using site-specific data from two aquifers (High Plains and Edwards), the models accept aquifer characteristics as variable inputs and so they may have more broad applicability. We conclude that pH and TDS predictions are the most transferable to other aquifers based on the analysis of the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds). Guidelines are presented for determining the aquifer types for which the ROMs should be applicable.

  2. Potential for iron oxides to control metal releases in CO2 sequestration scenarios

    Science.gov (United States)

    Berger, P.M.; Roy, W.R.

    2011-01-01

    The potential for the release of metals into groundwater following the injection of carbon dioxide (CO2) into the subsurface during carbon sequestration projects remains an open research question. Changing the chemical composition of even the relatively deep formation brines during CO2 injection and storage may be of concern because of the recognized risks associated with the limited potential for leakage of CO2-impacted brine to the surface. Geochemical modeling allows for proactive evaluation of site geochemistry before CO2 injection takes place to predict whether the release of metals from iron oxides may occur in the reservoir. Geochemical modeling can also help evaluate potential changes in shallow aquifers were CO2 leakage to occur near the surface. In this study, we created three batch-reaction models that simulate chemical changes in groundwater resulting from the introduction of CO2 at two carbon sequestration sites operated by the Midwest Geological Sequestration Consortium (MGSC). In each of these models, we input the chemical composition of groundwater samples into React??, and equilibrated them with selected mineral phases and CO 2 at reservoir pressure and temperature. The model then simulated the kinetic reactions with other mineral phases over a period of up to 100 years. For two of the simulations, the water was also at equilibrium with iron oxide surface complexes. The first model simulated a recently completed enhanced oil recovery (EOR) project in south-central Illinois in which the MGSC injected into, and then produced CO2, from a sandstone oil reservoir. The MGSC afterwards periodically measured the brine chemistry from several wells in the reservoir for approximately two years. The sandstone contains a relatively small amount of iron oxide, and the batch simulation for the injection process showed detectable changes in several aqueous species that were attributable to changes in surface complexation sites. After using the batch reaction

  3. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.

    2012-07-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act over multiple spatial and temporal scales. One example involves centimeter-scale density instabilities in the dissolved CO 2 region leading to large-scale convective mixing that can be a significant driver for CO 2 dissolution. Another example is the potentially important effect of capillary forces, in addition to buoyancy and viscous forces, on the evolution of mobile CO 2. Local capillary effects lead to a capillary transition zone, or capillary fringe, where both fluids are present in the mobile state. This small-scale effect may have a significant impact on large-scale plume migration as well as long-term residual and dissolution trapping. Computational models that can capture both large and small-scale effects are essential to predict the role of these processes on the long-term storage security of CO 2 sequestration operations. Conventional modeling tools are unable to resolve sufficiently all of these relevant processes when modeling CO 2 migration in large-scale geological systems. Herein, we present a vertically-integrated approach to CO 2 modeling that employs upscaled representations of these subgrid processes. We apply the model to the Johansen formation, a prospective site for sequestration of Norwegian CO 2 emissions, and explore the sensitivity of CO 2 migration and trapping to subscale physics. Model results show the relative importance of different physical processes in large-scale simulations. The ability of models such as this to capture the relevant physical processes at large spatial and temporal scales is important for prediction and analysis of CO 2 storage sites. © 2012 Elsevier Ltd.

  4. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    International Nuclear Information System (INIS)

    Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H.

    2013-01-01

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO 2 in the atmosphere. Carbonation converts CO 2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO 2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO 2 . The pressure of CO 2 inside the vessel has an effect on the rate of CO 2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO 2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO 2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO 2 initial pressure gives higher on rates of CO 2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO 2 sequestered into fly ash

  5. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai

    2013-01-01

    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  6. A Review of CO2 Sequestration Projects and Application in China

    Science.gov (United States)

    Tang, Yong; Yang, Ruizhi; Bian, Xiaoqiang

    2014-01-01

    In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration. PMID:25302323

  7. A Review of CO2 Sequestration Projects and Application in China

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2014-01-01

    Full Text Available In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration.

  8. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.

    Science.gov (United States)

    Montes-Hernandez, G; Pérez-López, R; Renard, F; Nieto, J M; Charlet, L

    2009-01-30

    The increasing CO(2) concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ mineral sequestration (controlled industrial reactors) of CO(2). In the present study, we propose to use coal combustion fly-ash, an industrial waste that contains about 4.1 wt.% of lime (CaO), to sequester carbon dioxide by aqueous carbonation. The carbonation reaction was carried out in two successive chemical reactions, first, the irreversible hydration of lime. second, the spontaneous carbonation of calcium hydroxide suspension. A significant CaO-CaCO(3) chemical transformation (approximately 82% of carbonation efficiency) was estimated by pressure-mass balance after 2h of reaction at 30 degrees C. In addition, the qualitative comparison of X-ray diffraction spectra for reactants and products revealed a complete CaO-CaCO(3) conversion. The carbonation efficiency of CaO was independent on the initial pressure of CO(2) (10, 20, 30 and 40 bar) and it was not significantly affected by reaction temperature (room temperature "20-25", 30 and 60 degrees C) and by fly-ash dose (50, 100, 150 g). The kinetic data demonstrated that the initial rate of CO(2) transfer was enhanced by carbonation process for our experiments. The precipitate calcium carbonate was characterized by isolated micrometric particles and micrometric agglomerates of calcite (SEM observations). Finally, the geochemical modelling using PHREEQC software indicated that the final solutions (i.e. after reaction) are supersaturated with respect to calcium carbonate (0.7 index < or = 1.1). This experimental study demonstrates that 1 ton of fly-ash could sequester up to 26 kg of CO(2), i.e. 38.18 ton of fly-ash per ton of CO(2) sequestered. This confirms the possibility to use this alkaline residue for CO(2

  9. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  10. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    Science.gov (United States)

    Sridhara, Prathyusha

    transport properties with change in pressure and temperature due to the presence of the simple CO2-hydrate and mixed hydrates (mainly CH4-CO2 hydrate and CH4 -CO2-N2 hydrate) in the porous geologic media. These simulations on CO2/ CH4-CO2 hydrate reservoirs provided a basic insight to formulate and interpret a novel technological approach. This approach aims at prediction of enhanced gas production profiles from Class 2 hydrate accumulations by utilizing CO2 sequestration. The approach also offers a possibility to permanently store CO 2 in the geologic formation to a greater extent compared to a direct injection of CO2 into gas hydrate sediments. The production technique implies a three-stage approach using one vertical well design. In Stage I, the CO2 is injected into the underlying aquifer. In Stage II, the well is shut in and injected CO2 is allowed to be converted into immobile CO2 hydrate. Finally, during Stage III, decomposition of CH4 hydrate is induced by the depressurization method. The gas production potential is estimated over 15 years. The results reveal that methane production is increased together with simultaneous reduction of concomitant water production rate comparing to a conventional Class 2 reservoir production.

  11. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Witkamp, G.J.; Comans, R.N.J.

    2006-01-01

    The mechanisms of aqueous wollastonite carbonation as a possible carbon dioxide sequestration process were investigated experimentally by systematic variation of the reaction temperature, CO2 pressure, particle size, reaction time, liquid to solid ratio and agitation power. The carbonation reaction

  12. Energy consumption and net CO2 sequestration of aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.J.

    2006-12-01

    Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2 sequestration efficiency within the ranges of process conditions studied was 75% at 200C, 20 bar CO2, and a particle size of <38μm. The main energy-consuming process steps were the grinding of the feedstock and the compression of the CO2 feed. At these process conditions, a significantly lower efficiency was determined for steel slag (69%), mainly because of the lower Ca content of the feedstock. The CO2 sequestration efficiency might be improved substantially for both types of feedstock by, e.g., reducing the amount of process water applied and further grinding of the feedstock. The calculated energetic efficiencies warrant a further assessment of the (energetic) feasibility of CO2 sequestration by aqueous mineral carbonation on the basis of a pilot-scale process

  13. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-07-20

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  14. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  15. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  16. Experimental observation and numerical simulation of permeability changes in dolomite at CO2 sequestration conditions

    Science.gov (United States)

    Tutolo, B. M.; Luhmann, A. J.; Kong, X.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    Injecting surface temperature CO2 into geothermally warm reservoirs for geologic storage or energy production may result in depressed temperature near the injection well and thermal gradients and mass transfer along flow paths leading away from the well. Thermal gradients are particularly important to consider in reservoirs containing carbonate minerals, which are more soluble at lower temperatures, as well as in CO2-based geothermal energy reservoirs where lowering heat exchanger rejection temperatures increases efficiency. Additionally, equilibrating a fluid with cation-donating silicates near a low-temperature injection well and transporting the fluid to higher temperature may enhance the kinetics of mineral precipitation in such a way as to overcome the activation energy required for mineral trapping of CO2. We have investigated this process by subjecting a dolomite core to a 650-hour temperature series experiment in which the fluid was saturated with CO2 at high pressure (110-126 bars) and 21°C. This fluid was recirculated through the dolomite core, increasing permeability from 10-16 to 10-15.2 m2. Subsequently, the core temperature was raised to 50° C, and permeability decreased to 10-16.2 m2 after 289 hours, due to thermally-driven CO2 exsolution. Increasing core temperature to 100°C for the final 145 hours of the experiment caused dolomite to precipitate, which, together with further CO2 exsolution, decreased permeability to 10-16.4 m2. Post-experiment x-ray computed tomography and scanning electron microscope imagery of the dolomite core reveals abundant matrix dissolution and enlargement of flow paths at low temperatures, and subsequent filling-in of the passages at elevated temperature by dolomite. To place this experiment within the broader context of geologic CO2 sequestration, we designed and utilized a reactive transport simulator that enables dynamic calculation of CO2 equilibrium constants and fugacity and activity coefficients by incorporating

  17. Behavior of CO2/water flow in porous media for CO2geological storage.

    Science.gov (United States)

    Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen

    2017-04-01

    A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  19. Federal Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold W. [Univ. of Utah, Salt Lake City, UT (United States)

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  20. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  1. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  2. Uncertainty Analysis using Experimental Design Methods for Assessing CO2 Sequestration and Coal Bed Methane Production Potential of Subbituminous Coals of the Nenana Basin, Interior Alaska

    Science.gov (United States)

    Dixit, N.; Ahmadi, M.; Hanks, C.; Awoleke, O.

    2016-12-01

    Naturally fractured, unmineable coal seam reservoirs are attractive targets for geological sequestration of CO2 because of their high CO2-adsorption capacities and possible cost offsets from enhanced coal bed methane production (ECBM). In this study, we have investigated CO2 sequestration and CH4 production potential of the subbituminous Healy Creek Formation coals through preliminary sensitivity analyses, experimental design methods and fluid flow simulations. Our primary sensitivity analyses indicated that the total cumulative volumes of CO2 sequestered and CH4 produced from the Healy Creek coals are mostly sensitive to bottomhole injection pressure, coal matrix porosity, fracture porosity and permeability, and coal volumetric strain. The results of Plackett-Burman experimental design were used to further constrain the most influential reservoir parameters and generate proxy models for probabilistic reservoir forecasts. Our probabilistic estimates for the mature, subbituminous Healy Creek coals in the entire Nenana basin indicate that it is possible to sequestrate between 0.87 TCF (P10) and 0.2 TCF (P90) of CO2 while producing between 0.29 TCF (P10) and 0.1 TCF (P90) of CH4 at the end of 20-year forecast. Our study demonstrated application of experimental design methods and Monte Carlo analysis in reducing these uncertainties in reservoir properties and quantifying their effect on reservoir performance. In addition, the results of fluid flow scenarios show that the CO2 sequestration through a primary reservoir depletion method is the most effective way to inject CO2 in the coals of the Nenana basin. Including a horizontal well instead of the vertical well resulted in relatively high average gas production rates and subsequent faster production decline. Our CO2 buoyancy scenario suggested that the effect of CO2 buoyancy and the nature of the caprock should be considered when identifying potential geologic sites for CO2 sequestration and in CO2 storage capacity

  3. Managing geological uncertainty in CO2-EOR reservoir assessments

    Science.gov (United States)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  4. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have

  5. Commerical-Scale CO2 Capture and Sequestration for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Adolfo Garza

    2010-07-28

    On June 8, 2009, DOE issued Funding Opportunity Announcement (FOA) Number DE-FOA-000015 seeking proposals to capture and sequester carbon dioxide from industrial sources. This FOA called for what was essentially a two-tier selection process. A number of projects would receive awards to conduct front-end engineering and design (FEED) studies as Phase I. Those project sponsors selected would be required to apply for Phase II, which would be the full design, construction, and operation of their proposed technology. Over forty proposals were received, and ten were awarded Phase I Cooperative Agreements. One of those proposers was CEMEX. CEMEX proposed to capture and sequester carbon dioxide (CO2) from one of their existing cement plants and either sequester the CO2 in a geologic formation or use it for enhanced oil recovery. The project consisted of evaluating their plants to identify the plant best suited for the demonstration, identify the best available capture technology, and prepare a design basis. The project also included evaluation of the storage or sequestration options in the vicinity of the selected plant.

  6. Offsetting China's CO2 Emissions by Soil Carbon Sequestration

    International Nuclear Information System (INIS)

    Lal, R.

    2004-01-01

    Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool. Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25% of the annual fossil fuel emissions in China

  7. Sensitivity analysis of the impacts of operational and geologic conditions on Area of Review (AOR, Post Injection Site Care (PISC and Risk associated with CO2 Sequestration in South-region of United States

    Directory of Open Access Journals (Sweden)

    Danilo Andrés Arcentales Bastidas

    2017-12-01

    Full Text Available For anthropogenic carbon dioxide (CO2 capture is important to consider: gas storage’s formation capacity, saturation and pressure plume size after injection; including the risks associated with CO2 leakage and faults reactivation. A formation with a reasonable pore volume would be a good candidate for CO2 storage, however, not all high porosity formations have the ability to store large amounts of gas over a long period of time. That's the biggest concern when it refers to CO2 capture. Saturation and pressure plume size during CO2 injection as well as site monitoring after injection were simulated in this research, using CRD field reservoir models. The application of Pareto diagrams and surface responses allowed us to determine the most important parameters that affected the saturation and pressure plume, quantifying the correlation between different parameters of adjusted and dimensioned historical models.

  8. CO2 Sequestration Potential of Texas Low-Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

    2006-08-31

    Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0

  9. Feasibility of Large-Scale Ocean CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter Brewer; James Barry

    2001-09-30

    Direct ocean injection of CO{sub 2} is one of several approaches under consideration to sequester carbon dioxide in order to stabilize atmospheric CO{sub 2} near 550 ppm (2X preindustrial CO{sub 2} levels). Without significant efforts to stabilize greenhouse gas emissions, the Earth is expected to experience extreme climate warming consequences associated with the projected high ({approx}3-4X preindustrial) atmospheric CO{sub 2} levels in the next 100 to 200 years. Research funded by DOE-Office of Fossil Energy under this award is based on the development of novel experimental methods by MBARI to deploy small quantities (5-45 l) of liquid CO{sub 2} in the deep-sea for the purposes of investigating the fundamental science underlying the concepts of ocean CO{sub 2} sequestration. This project is linked closely with studies funded by the Office of Science and the Monterey Bay Aquarium Research Institute (MBARI). The objectives of studies in marine chemistry funded by the Office of Fossil Energy and MBARI are to: (1) Determine the long term fate of CO{sub 2} hydrate in the deep-sea, (2) Investigate the geochemical changes in marine sediments and pore waters associated with CO{sub 2} disposal, and (3) Investigate the transfer of CO{sub 2} from the hydrate phase to the oceanic water column as a boundary condition for ocean modeling of the fate of the released material. These activities extend the results of recent studies using the deep-sea CO{sub 2} deployment system, which characterized several features of liquid CO{sub 2} released into the sea, including hydrate formation and factors influencing dissolution rates of CO{sub 2}. Results from this project are relevant in determining the efficacy of carbon sequestration and the degree of perturbation of seawater chemistry. Biological studies, funded jointly by the Office of Science, Office of Fossil Energy, and MBARI, focus on the environmental consequences of CO{sub 2} release in the deep-sea. The specific objectives

  10. Dissolution of cemented fractures in gas bearing shales in the context of CO2 sequestration

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr

    2016-04-01

    Carbon dioxide has a stronger binding than methane to the organic matter contained in the matrix of shale rocks [1]. Thus, the injection of CO2 into shale formation may enhance the production rate and total amount of produced methane, and simultaneously permanently store pumped CO2. Carbon dioxide can be injected during the initial fracking stage as CO2 based hydraulic fracturing, and/or later, as a part of enhanced gas recovery (EGR) [2]. Economic and environmental benefits makes CO2 sequestration in shales potentially very for industrial-scale operation [3]. However, the effective process requires large area of fracture-matrix interface, where CO2 and CH4 can be exchanged. Usually natural fractures, existing in shale formation, are preferentially reactivated during hydraulic fracturing, thus they considerably contribute to the flow paths in the resulting fracture system [4]. Unfortunately, very often these natural fractures are sealed by calcite [5]. Consequently the layer of calcite coating surfaces impedes exchange of gases, both CO2 and CH4, between shale matrix and fracture. In this communication we address the question whether carbonic acid, formed when CO2 is mixed with brine, is able to effectively dissolve a calcite layer present in the natural fractures. We investigate numerically fluid flow and dissolution of calcite coating in natural shale fractures, with CO2-brine mixture as a reactive fluid. Moreover, we discuss the differences between slow dissolution (driven by carbonic acid) and fast dissolution (driven by stronger hydrochloric acid) of calcite layer. We compare an impact of the flow rate and geometry of the fracture on the parameters of practical importance: available surface area, morphology of dissolution front, time scale of the dissolution, and the penetration length. We investigate whether the dissolution is sufficiently non-uniform to retain the fracture permeability, even in the absence of the proppant. The sizes of analysed fractures

  11. Fluid characterization for miscible EOR projects and CO2 sequestration

    DEFF Research Database (Denmark)

    Jessen, Kristian; Stenby, Erling Halfdan

    2007-01-01

    to condition an EOS model before application in performance evaluation of miscible displacements. However, no clear understanding exists of the impact on the resultant accuracy of the selected characterization procedure when the fluid description is subsequently included in reservoir simulation. In this paper......, we present a detailed analysis of the quality of two different characterization procedures over a broad range of reservoir fluids (13 samples) for which experimental swelling-test and slinitube-displacement data are available. We explore the impact of including swelling-test and slimtube experiments......Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO, sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid...

  12. Fluid characterization for miscible EOR projects and CO2 sequestration

    DEFF Research Database (Denmark)

    Jessen, Kristian; Stenby, Erling Halfdan

    2007-01-01

    in the data reduction and demonstrate that for some gas/oil systems, swelling tests do not contribute to a more accurate prediction of multicontact miscibility. Finally, we report on the impact that use of EOS models based on different characterization procedures can have on recovery predictions from dynamic......Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO, sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid......, we present a detailed analysis of the quality of two different characterization procedures over a broad range of reservoir fluids (13 samples) for which experimental swelling-test and slinitube-displacement data are available. We explore the impact of including swelling-test and slimtube experiments...

  13. CO2 capture and sequestration: the association's point of view

    International Nuclear Information System (INIS)

    2009-01-01

    This document gives an overview of the opinion of the FNE (France Nature Environnement), a French association involved in the protection of the environment, about the idea of developing technologies enabling the capturing and sequestrating of carbon dioxide. It outlines that industries are considering such technologies as the adequate solution as they would allow a development of activities while limiting greenhouse gas releases. But the FNE has an opposite point of view; advantages and limitations of this technology are thus discussed (reduction of greenhouse gas emissions but with an increase of energy consumption, industrial hazards, mobilization of large financial resources). The principles under which such technologies could be used and financed in some specific situations and under precise conditions are then discussed. Notably, it stresses the importance of a limitation of public financing, of participation and communication, of judicial guarantees

  14. Enhanced transport phenomena in CO2 sequestration and CO2 EOR

    NARCIS (Netherlands)

    Farajzadeh, R.

    2009-01-01

    The results of this thesis give insight into the (mass)-transfer during flow of gases, especially CO2, in various gas-liquid systems. A number of experiments was performed to investigate the transport phenomena through interfaces with and without surfactant monolayers. The observed phenomena have

  15. CO2-ECBM and CO2 Sequestration in Polish Coal Seam – Experimental Study

    Directory of Open Access Journals (Sweden)

    Paweł Baran

    2014-01-01

    Originality/value: The results indicate successful sorption of carbon dioxide in each experiment. This provides the rationale to study the application of the coal tested to obtain methane genetic origin genetic methane with the use of the CO2 injection.

  16. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  17. Experimental observations of dolomite dissolution in geologic carbon sequestration conditions

    Science.gov (United States)

    Luhmann, A. J.; Kong, X.; Tutolo, B. M.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    One sequestration scenario proposed to reduce CO2 emissions involves injecting CO2 into saline formations or hydrocarbon reservoirs, where dolomite frequently occurs. To better understand fluid-mineral interactions in these sequestration settings, we have conducted a series of single-pass, flow-through experiments on dolomite core samples with CO2-bearing brine. An important component of the experimental design was to maintain the fabric of the rock so as to more accurately simulate fluid flow in natural dolomite-bearing systems. Seven experiments were conducted at 100°C and a pore-fluid pressure of 150 bars with a fluid containing 1 molal NaCl and 0.6 molal dissolved CO2. Flow rates ranged from 0.01 to 1 ml/min. Each experiment was terminated before dissolution breakthrough, but permeability increased by approximately an order of magnitude for all experiments. In general, Ca and Mg concentrations were initially high, but then decreased with reaction progress. We hypothesize that time-dependent changes in fluid chemistry reflect reduction in reactive surface area. Fluid chemistry also indicates preferential removal of Ba, Mn, and Sr with respect to Ca and Mg. In the extreme case, 70% of the Ba was removed from one core, while only 3% of the Ca, Mg, or the entire core mass was removed by dissolution. Ongoing work is focused on identifying elemental distributions throughout the rock to better understand the dissolution process. With fluid chemistry and BET surface area, we model dissolution rate as a function of core length using reactive transport simulations and compare our whole rock, far from equilibrium dissolution rates with analogous data reported in the literature. Finally, X-ray computed tomography images enable reconstructions of dissolution patterns, and they are being used to explore the effect of pore space heterogeneity on flow path development. Geologic carbon sequestration in dolomite will produce significant dissolution at the brine/CO2 interface

  18. FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter Brewer; Dr. James Barry

    2002-09-30

    We have continued to carry out creative small-scale experiments in the deep ocean to investigate the science underlying questions of possible future large-scale deep-ocean CO{sub 2} sequestration as a means of ameliorating greenhouse gas growth rates in the atmosphere. This project is closely linked to additional research funded by the DoE Office of Science, and to support from the Monterey Bay Aquarium Research Institute. The listing of project achievements here over the past year reflects these combined resources. Within the last project year we have: (1) Published a significant workshop report (58 pages) entitled ''Direct Ocean Sequestration Expert's Workshop'', based upon a meeting held at MBARI in 2001. The report is available both in hard copy, and on the NETL web site. (2) Carried out three major, deep ocean, (3600m) cruises to examine the physical chemistry, and biological consequences, of several liter quantities released on the ocean floor. (3) Carried out two successful short cruises in collaboration with Dr. Izuo Aya and colleagues (NMRI, Osaka, Japan) to examine the fate of cold (-55 C) CO{sub 2} released at relatively shallow ocean depth. (4) Carried out two short cruises in collaboration with Dr. Costas Tsouris, ORNL, to field test an injection nozzle designed to transform liquid CO{sub 2} into a hydrate slurry at {approx}1000m depth. (5) In collaboration with Prof. Jill Pasteris (Washington University) we have successfully accomplished the first field test of a deep ocean laser Raman spectrometer for probing in situ the physical chemistry of the CO{sub 2} system. (6) Submitted the first major paper on biological impacts as determined from our field studies. (7) Submitted a paper on our measurements of the fate of a rising stream of liquid CO{sub 2} droplets to Environmental Science & Technology. (8) Have had accepted for publication in Eos the first brief account of the laser Raman spectrometer success. (9) Have had two

  19. CO2 sequestration via dry catalytic reforming of CH4

    International Nuclear Information System (INIS)

    Blanchard, J.; Abatzoglou, N.

    2003-01-01

    Synthesis gas can be produced by a process known as dry-reforming of methane. However, the process is rarely used in industry due to its endothermicity and the technical challenges regarding carbon formation. This paper proposes that carbon formation be used to sequester carbon dioxide for the production of solid oxide fuel cells (SOFC) or as a raw material for chemical synthesis. The study focused on developing a catalytic process to allow for carbon deposition and carbon dioxide sequestration. The chemical reactions used in this study were presented along with the results of a theoretical thermodynamics study based on Gibbs minimization. At a temperature of 800 degrees C, a conversion of more than 98 and 97 per cent was noted for methane and carbon dioxide respectively. A reactor configuration was defined which allowed for continuous unloading of the deposited carbon. The reactor configuration also preserved the catalyst activity as for as long, and as high, as possible. Carbon can be retrieved with water and gas spray most readily when the catalyst is in monolith form. Current experiments are focusing on reaction kinetics and a commercial catalyst at a temperature range between 650 and 850 degrees C at atmospheric pressure. A thermodynamic prediction of the optimum operational conditions was presented along with preliminary results

  20. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    Science.gov (United States)

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  1. Microbial Communities in Terrestrial CO2 Springs: Insights into the Long-Term Effects of Carbon Sequestration on Subsurface Microorganisms

    Science.gov (United States)

    Santillan, E. F. U.; Major, J. R.; Bennett, P.

    2014-12-01

    communities at high PCO2 and suggest that while CO2 is one environmental stress that can lower diversity, many other environmental factors can also influence survival. Lavalleur, H.J., Colwell, F.S., 2013. Microbial characterization of basalt formation waters targeted for geological carbon sequestration. FEMS Microbiology Ecology 85, 62-73.

  2. Carbon Dioxide (CO2 Sequestration In Bio-Concrete, An Overview

    Directory of Open Access Journals (Sweden)

    Faisal Alshalif A.

    2017-01-01

    Full Text Available The emission of CO2 into atmosphere which has increased rapidly in the last years has led to global warming. Therefore, in order to overcome the negative impacts on human and environment, the researchers focused mainly on the reduction and stabilization of CO2 which represent the main contributor in the increasing global warming. The natural capturing and conversion of CO2 from atmosphere is taken place by biological, chemical and physical processes. However, these processes need long time to cause a significant reduction in CO2. Recently, scientists shifted to use green technologies that aimed to produce concrete with high potential to adsorb CO2 in order to accelerate the reduction of CO2. In the present review the potential of bio-concrete to sequestrate CO2 based on carbonation process and as a function of carbonic anhydrase (CA is highlighted. The factors affecting CO2 sequestration in concrete and bacterial species are discussed. It is evident from the literatures, that the new trends to use bio-concrete might contribute in the reduction of CO2 and enhance the strength of non-reinforced concrete.

  3. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  4. Molecular characterization of CO2sequestration and assimilation in microalgae and its biotechnological applications.

    Science.gov (United States)

    Zhu, Baojun; Chen, Gu; Cao, Xupeng; Wei, Dong

    2017-11-01

    Microalgae are renewable feedstock for sustainable biofuel production, cell factory for valuable chemicals and promising in alleviation of greenhouse gas CO 2 . However, the carbon assimilation capacity is still the bottleneck for higher productivity. Molecular characterization of CO 2 sequestration and assimilation in microalgae has advanced in the past few years and are reviewed here. In some cyanobacteria, genes for 2-oxoglytarate dehydrogenase was replaced by four alternative mechanisms to fulfill TCA cycle. In green algae Coccomyxa subellipsoidea C-169, alternative carbon assimilation pathway was upregulated under high CO 2 conditions. These advances thus provide new insights and new targets for accelerating CO 2 sequestration rate and enhancing bioproduct synthesis in microalgae. When integrated with conventional parameter optimization, molecular approach for microalgae modification targeting at different levels is promising in generating value-added chemicals from green algae and cyanobacteria efficiently in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Acute physiological impacts of CO2 ocean sequestration on marine animals

    International Nuclear Information System (INIS)

    Ishimatsu, A.; Hayashi, M.; Lee, K.S.; Murata, K.; Kumagai, E.

    2005-01-01

    The biological impacts of ocean carbon dioxide (CO 2 ) sequestration must be carefully considered before it is implemented as a mitigation strategy. This paper presented details of a study investigating the effects of high CO 2 concentrations on marine fish, lobster, and octopus. The influence of water temperature on the physiological effects of CO 2 was also discussed. In the first part of the study, eggs and larvae of red seabream were exposed to both CO 2 and HCI-acidified seawater at identical pH levels. Seabream in the CO 2 group showed a much higher mortality rate than fish in the HCI group. Other tests showed that Japanese Flounder died after complete recovery of pH in seawater equilibrated with 5 per cent CO 2 . Cardiac output was rapidly depressed in Yellowtail fish without significant changes in blood oxygen concentrations. Lower temperatures resulted in higher mortality and delayed pH recovery during hypercapnia in all fish. Western rock lobsters were the most tolerant to CO 2 among all species tested. The recovery of hemolymph pH was complete at exposure to CO 2 concentrations of 1 per cent. Changes in hemolymph bicarbonate concentrations indicated that acid-based regulatory mechanisms differed between fish and lobsters. Mortality rates for octopus were significant at CO 2 concentrations of 1 per cent. The results of all tests showed that aquatic animals are more susceptible to increases in ambient CO 2 levels than terrestrial animals. It was concluded that even slight elevations in CO 2 concentration levels adversely affected physiological functioning in the tested species. It was concluded that CO 2 sequestration in deeper, colder waters will have a more pronounced effect on aquatic animals due to the interactions between CO 2 and lower temperatures, as well as the fact that most deep-sea fish are less tolerant to environmental perturbations. 3 refs., 1 tab., 3 figs

  6. Water-rock interaction in CO2 sequestration in a depleted oil reservoir pilot test

    International Nuclear Information System (INIS)

    Pang, Zhonghe; Kong, Yanlong; Li, Yiman; Li, Jie

    2013-01-01

    A field test of CO 2 sequestration in the Neogene Minghuazhen Formation in the Bohai Bay Basin (BBB-Nm test) is presented, where the first Chinese pilot project of CO 2 storage in a depleted oil reservoir was implemented. A total of 305 t CO 2 was injected into the sandstone reservoir. The process of injection and pre/post-injection monitoring are described, especially for the geochemical monitoring in the field test. Results show that CO 2 flux monitoring successfully tracked the injected CO 2 . Chemical analyses of post-injection brine samples indicate brine may have not been affected by CO 2 injection during the monitoring period, which needs to be confirmed with further investigations before extending the results to deep saline aquifers. (authors)

  7. Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR): a supporting document of the assessment methodology for hydrocarbon recovery using CO2-EOR associated with carbon sequestration

    Science.gov (United States)

    Verma, Mahendra K.

    2015-01-01

    The objective of this report is to provide basic technical information regarding the CO2-EOR process, which is at the core of the assessment methodology, to estimate the technically recoverable oil within the fields of the identified sedimentary basins of the United States. Emphasis is on CO2-EOR because this is currently one technology being considered as an ultimate long-term geologic storage solution for CO2 owing to its economic profitability from incremental oil production offsetting the cost of carbon sequestration.

  8. Feasibility of Large-Scale Ocean CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter Brewer

    2008-08-31

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

  9. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    Science.gov (United States)

    Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris Maier; Karina V.R. Schafer; Heather McCarthy; George Hendrey; Steven G. McNulty; Gabriel G. Katul

    2001-01-01

    Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in...

  10. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2006-01-01

    Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, steel slag samples were carbonated to a varying extent. Leaching experiments and geochemical modeling were used to identify solubility-controlling processes of

  11. CO2 sequestration in two mediterranean dune areas subjected to a different level of anthropogenic disturbance

    Science.gov (United States)

    Bonito, Andrea; Ricotta, Carlo; Iberite, Mauro; Gratani, Loretta; Varone, Laura

    2017-09-01

    Coastal sand dunes are among the most threatened habitats, especially in the Mediterranean Basin, where the high levels of human pressure impair the presence of plant species, putting at risk the maintenance of the ecosystem services, such as CO2 sequestration provided by these habitats. The aim of this study was to analyze how disturbance-induced changes in plant species abundance patterns account for variations in annual CO2 sequestration flow (CS) of Mediterranean sand dune areas. Two sites characterized by a high (site HAD) and a lower (site LAD) anthropogenic disturbance level were selected. At both sites, plant species number, cover, height and CS based on net photosynthesis measurements were sampled. At the plant species level, our results highlighted that Ammophila arenaria and Pancratium maritimum, had a key role in CS. Moreover, the results revealed a patchy species assemblage in both sites. In particular, HAD was characterized by a higher extension of the anthropogenic aphytoic zone (64% of the total transect length) than LAD. In spite of the observed differences in plant species composition, there were not significant differences between HAD and LAD in structural and functional traits, such as plant height and net photosynthesis. As a consequence, HAD and LAD had a similar CS (443 and 421 Mg CO2 ha-1 y-1, respectively). From a monetary point of view, our estimates based on the social costs of carbon revealed that the flow of sequestered CO2 valued on an average 3181 ± 114 ha-1 year-1 (mean value for the two sites). However, considering also the value of the CO2 negative flow related to loss of vegetated area, the annual net benefit arising from CO2 sequestration amounted to 1641 and 1772 for HAD and LAD, respectively. Overall, the results highlighted the importance to maximize the efforts to preserve dune habitats by applying an effective management policy, which could allow maintaining also a regulatory ecosystem service such as CO2 sequestration.

  12. Supercritical CO 2 -philic nanoparticles suitable for determining the viability of carbon sequestration in shale

    KAUST Repository

    Xu, Yisheng

    2015-01-01

    © The Royal Society of Chemistry. A fracture spacing less than a decimeter is probably required for the successful sequestration of CO2 in shale. Tracer experiments using inert nanoparticles could determine if a fracturing this intense has been achieved. Here we describe the synthesis of supercritical CO2-philic nanoparticles suitable for this application. The nanoparticles are ~50 nm in diameter and consist of iron oxide (Fe3O4) and silica (SiO2) cores functionalized with a fluorescent polymeric corona. The nanoparticles stably disperse in supercritical carbon dioxide (scCO2) and are detectable to concentrations of 10 ppm. This journal is

  13. Multiphase modeling of geologic carbon sequestration in saline aquifers.

    Science.gov (United States)

    Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C

    2015-01-01

    Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. © 2015, National Ground Water Association.

  14. CO2 sequestration in deep coal seams: experimental characterization of the fundamental underlying mechanisms

    Science.gov (United States)

    Pini, R.; Mazzotti, M.

    2012-04-01

    The process of injecting and storing carbon dioxide (CO2) into suitable deep geological formations, such as saline aquifers, (depleted) oil or gas reservoirs, and unmineable coal seams, is referred to as CO2 sequestration. In little more than a decade, this technology has emerged as one of the most important options for reducing CO2 emissions. Among the different options, unmineable coal seams are not as broadly distributed as saline aquifers or oil/gas reservoirs, but their peculiarity resides in the proven capacity of retaining significant amount of gas (mainly methane, CH4) for a very long time. Additionally, the injection of CO2 into the coal reservoir would enhance the recovery of this natural gas, a source of energy that will most likely play a key role in the power sector over the next 20 years from now. This process is called Enhanced Coal Bed Methane (ECBM) recovery and, as for enhanced oil recovery, it allows in principle offsetting the costs associated to the storage operation. A study was undertaken aimed at the experimental characterization of the fundamental mechanisms that take place during the process of injection and storage in coal reservoirs, namely adsorption and swelling (Pini et al 2010), and of their effects on the coal's permeability (Pini et al. 2009), the property that plays a dominant role in controlling fluid transport in a porous rock. An apparatus has been built that allows measuring the permeability of rock cores under typical reservoir conditions (high pressure and temperature) by the so-called transient step method. For this study, a coal core from the Sulcis coal mine in Sardinia (Italy) has been used. In the experiments, an inert gas (helium) was used to investigate the effects of the effective pressure on the permeability of the coal sample, whereas two adsorbing gases (CO2 and N2) to quantify those of adsorption and swelling. The experiments have been interpreted by a one-dimensional model that describes the fluid transport

  15. Estimating maximum sustainable injection pressure duringgeological sequestration of CO2 using coupled fluid flow andgeomechanical fault-slip analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F.

    2006-10-17

    This paper demonstrates the use of coupled fluid flow andgeomechanical fault slip (fault reactivation) analysis to estimate themaximum sustainable injection pressure during geological sequestration ofCO2. Two numerical modeling approaches for analyzing faultslip areapplied, one using continuum stress-strain analysis and the other usingdiscrete fault analysis. The results of these two approaches to numericalfault-slip analyses are compared to the results of a more conventionalanalytical fault-slip analysis that assumes simplified reservoirgeometry. It is shown that the simplified analytical fault-slip analysismay lead to either overestimation or underestimation of the maximumsustainable injection pressure because it cannot resolve importantgeometrical factors associated with the injection induced spatialevolution of fluid pressure and stress. We conclude that a fully couplednumerical analysis can more accurately account for the spatial evolutionof both insitu stresses and fluid pressure, and therefore results in amore accurate estimation of the maximum sustainable CO2 injectionpressure.

  16. Caprock Breach: A Threat to Secure Geologic Sequestration

    Science.gov (United States)

    Selvadurai, A. P.; Dong, W.

    2013-12-01

    The integrity of caprock in providing a reliable barrier is crucial to several environmental geosciences endeavours related to geologic sequestration of CO2, deep geologic disposal of hazardous wastes and contaminants. The integrity of geologic barriers can be compromised by several factors. The re-activation of dormant fractures and development of new fractures in the caprock during the injection process are regarded as effects that can pose a threat to storage security. Other poromechanical influences of pore structure collapse due to chemically induced erosion of the porous fabric resulting in worm-hole type features can also contribute to compromising storage security. The assessment of the rate of steady or transient seepage through defects in the caprock can allow geoscientists to make prudent evaluations of the effectiveness of a sequestration strategy. While complicated computational simulations can be used to calculate leakage through defects, it is useful to explore alternative analytical results that could be used in providing preliminary estimates of leakage rates through defects in the caprock in a storage setting. The relevance of such developments is underscored by the fact that the permeability characteristics of the storage formation, the fracture and the surficial rocks overlying the caprock can rarely be quantified with certainty. This paper presents the problem of a crack in a caprock that connects to a storage formation and an overburden rock or surficial soil formation. The geologic media are maintained at constant far-field flow potentials and leakage takes place at either steady or transient conditions. The paper develops an analytical result that can be used to estimate the steady seepage through the crack. The analytical result can also be used to estimate the leakage through hydraulically non-intersecting cracks and leakage from caprock-well casing interfaces. The analytical result is used to estimate the accuracy of a computational

  17. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    Science.gov (United States)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still

  18. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-01-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  19. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  20. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping

    2014-05-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve natural minerals rich in magnesium/calcium silicates (serpentine), and the alkali generated by the same process was used to absorb CO2 and precipitate magnesium/calcium carbonates. The concentrations of Mg2+ and Ca2+ dissolved from serpentine increased 20 and 145 times by using the acid solution. Under optimal conditions, 24mg of CO2 was absorbed into the alkaline solution and 13mg of CO2 was precipitated as magnesium/calcium carbonates over a fed-batch cycle (24h). Additionally, the MEDCC removed 94% of the COD (initially 822mg/L) and achieved 22% desalination (initially 35g/L NaCl). These results demonstrate the viability of this process for effective CO2 sequestration using renewable organic matter and natural minerals. © 2014 Elsevier Ltd.

  1. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Chu, Hsiao-Wen; Wang, Chu-Fang; Chiang, Pen-Chi

    2011-11-15

    Carbon dioxide (CO(2)) sequestration experiments using the accelerated carbonation of three types of steelmaking slags, i.e., ultra-fine (UF) slag, fly-ash (FA) slag, and blended hydraulic slag cement (BHC), were performed in an autoclave reactor. The effects of reaction time, liquid-to-solid ratio (L/S), temperature, CO(2) pressure, and initial pH on CO(2) sequestration were evaluated. Two different CO(2) pressures were chosen: the normal condition (700 psig) and the supercritical condition (1300 psig). The carbonation conversion was determined quantitatively by using thermo-gravimetric analysis (TGA). The major factors that affected the conversion were reaction time (5 min to 12h) and temperature (40-160°C). The BHC was found to have the highest carbonation conversion of approximately 68%, corresponding to a capacity of 0.283 kg CO(2)/kg BHC, in 12h at 700 psig and 160°C. In addition, the carbonation products were confirmed to be mainly in CaCO(3), which was determined by using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) to analyze samples before and after carbonation. Furthermore, reaction kinetics were expressed with a surface coverage model, and the carbon footprint of the developed technology in this investigation was calculated by a life cycle assessment (LCA). Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Hybrid modeling of CO2 sequestration processes using the lattice-Boltzmann method and PFLOTRAN

    Science.gov (United States)

    Porter, M. L.; Coon, E. T.; Kang, Q.; Lichtner, P. C.; Carey, J. W.

    2011-12-01

    Successful CO2 injection and sequestration requires fundamental understanding of many complex processes encountered in multiphase flow and reactive transport through porous media. Although these processes are inherently governed by microscopic interfacial phenomena, they must be described at much larger scales for many practical engineering applications. In this work we present a parallel hybrid modeling scheme that couples a lattice-Boltzmann (LB) simulator for porescale multiphase flow to PFLOTRAN for continuum (Darcy) scale multiphase flow and both continuum and porescale reactive transport. We discuss details regarding the LB method, PFLOTRAN, and the coupling of the two simulators. In addition, we present a number of simulations that validate and highlight both the porescale and hybrid modeling capabilities for applications involving CO2 sequestration.

  3. An equivalence factor between CO2 avoided emissions and sequestration. Description and applications in forestry

    International Nuclear Information System (INIS)

    Costa, P.M.; Wilson, C.

    2000-01-01

    Concern about the issue of permanence and reversibility of the effects of carbon sequestration has led to the need to devise accounting methods that quantify the temporal value of storing carbon that has been actively sequestered or removed from the atmosphere, as compared to carbon stored as a result of activities taken to avoid emissions. This paper describes a method for accounting for the atmospheric effects of sequestration-based land-use projects in relation to the duration of carbon storage. Firstly, the time period over which sequestered carbon should be stored in order to counteract the radiative forcing effect of carbon emissions was calculated, based on the residence time and decay pattern of atmospheric CO2, its Absolute Global Warming Potential. This time period was called the equivalence time, and was calculated to be approximately 55 years. From this equivalence time, the effect of storage of 1 t CO2 for 1 year was derived, and found to be similar to preventing the effect of the emission of 0.0182 t CO2. Potential applications of this tonne.year figure, here called the equivalence factor, are then discussed in relation to the estimation of atmospheric benefits over time of sequestration-based land use projects. 15 refs

  4. Geological Storage od CO2 in the Southern Baltic Sea

    Science.gov (United States)

    Vernon, Richard; O'Neill, Nick; Pasquali, Riccardo; Niemi, Auli

    2014-05-01

    Geological Storage of CO2 in the Southern Baltic Sea Region The BASTOR project identifies and characterises the potential CO2 storage sites in the southern Baltic Sea. A regional theoretical storage capacity of 16Gt of CO2 in the Middle Cambrian sandstone beneath 900 metres of cap rock was estimated. 1.9Gt of this storage potential is estimated in the Dalders Monocline with some 743Mt CO2 in individual hydrocarbon and saline aquifer structures located mainly offshore Latvia and 128Mt in the Dalders Structure. Although the study has established a relatively large theoretical storage capacity, there is no effective capacity proven within these totals. Dynamic modelling undertaken in the Southern Swedish sector suggests that the relatively poor permeability and porosity characteristics would limit the injection rate to 0.5Mt per well per annum and restrict the reservoir pressure increase to 50% above the hydrostatic pressure for an injection period of 50 years. The dynamic modelling for this area suggests that an injection strategy for this sector would be limited to 5 injection wells giving a total injection capacity of 2.5 Mt per annum. Based on these results, the potential of the Southern Swedish offshore sector to sustain injection rates of CO2 required for regional industrial capture, even when using horizontal wells, brine extraction and hydraulic fracturing, would appear to be very low. Areas to the north east of the Monocline, such as offshore Latvia have been identified as having better reservoir quality despite limited data being available. These areas could sustain higher rates of injection and prove suitable areas for commercial storage. Furthermore, the regional storage capacity assessment demonstrated that there are sweet spots in the Cambrian reservoir such as onshore Latvia, where there is commercial gas storage, and both onshore and offshore Kaliningrad, where there is ongoing hydrocarbon production. The potential for seal failure was investigated as

  5. Monitoring of environmental parameters for CO2 sequestration: a case study of Nagpur City, India.

    Science.gov (United States)

    Chaudhari, P R; Gajghate, D G; Dhadse, Sharda; Suple, Sonali; Satapathy, D R; Wate, S R

    2007-12-01

    Carbon dioxide concentration is an index of total amount of combustion and natural ventilation in an urban environment and therefore required more careful attention for assessment of CO(2) level in air environment. An attempt was made to monitor CO(2) levels in ambient air of Nagpur city at industrial, commercial and residential sites. In addition to this a remote sensing studies and biotic survey for floral biodiversity were carried out to study the green cover at respective sampling locations. The observations showed that the largest amount of CO(2) occurred at night due to absence of photosynthesis and lowest concentration of CO(2) was observed in the afternoon due to photosynthesis at its maximum level. The most pollution tolerant species found in Nagpur city are having higher Air Pollution Tolerance Index (APTI) value, which acts as a natural sink for CO(2) sequestration. In case of commercial site the CO(2) level is highest (366 ppm) because of lowest vegetation and vehicular pollution. The generation of database of CO(2) concentration and floral biodiversity along with percentage of green cover helps to formulate the strategy for prevention of global worming phenomenon.

  6. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP - REPORT ON GEOPHYSICAL TECHNIQUES FOR MONITORING CO2 MOVEMENT DURING SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Gasperikova, Erika; Gasperikova, Erika; Hoversten, G. Michael

    2005-10-01

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of CO{sub 2}. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  7. Utilization of the St. Peter Sandstone in the Illinois Basin for CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Will, Robert; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    This project is part of a larger project co-funded by the United States Department of Energy (US DOE) under cooperative agreement DE-FE0002068 from 12/08/2009 through 9/31/2014. The study is to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon Sandstone as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. This report evaluates the potential injectivity of the Ordovician St. Peter Sandstone. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data acquired through funding in this project as well as existing data from two additional, separately funded projects: the US DOE funded Illinois Basin – Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) Project funded through the American Recovery and Reinvestment Act (ARRA), which received a phase two award from DOE. This study addresses the question of whether or not the St. Peter Sandstone may serve as a suitable target for CO2 sequestration at locations within the Illinois Basin where it lies at greater depths (below the underground source of drinking water (USDW)) than at the IBDP site. The work performed included numerous improvements to the existing St. Peter reservoir model created in 2010. Model size and spatial resolution were increased resulting in a 3 fold increase in the number of model cells. Seismic data was utilized to inform spatial porosity distribution and an extensive core database was used to develop porosity-permeability relationships. The analysis involved a Base Model representative of the St. Peter at “in-situ” conditions, followed by the creation of two hypothetical models at in-situ + 1,000 feet (ft.) (300 m) and in-situ + 2,000 ft. (600 m) depths through systematic depthdependent adjustment of the Base Model

  8. Optimal Control of Partially Miscible Two-Phase Flow with Applications to Subsurface CO2 Sequestration

    KAUST Repository

    Simon, Moritz

    2013-01-01

    Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.

  9. Enhanced algal CO(2) sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond.

    Science.gov (United States)

    Ramanan, Rishiram; Kannan, Krishnamurthi; Deshkar, Ashok; Yadav, Raju; Chakrabarti, Tapan

    2010-04-01

    Biological CO(2) sequestration using algal reactors is one of the most promising and environmentally benign technologies to sequester CO(2). This research study was taken up to alleviate certain limitations associated with the technology such as low CO(2) sequestration efficiency and low biomass yields. The study demonstrates an increase in CO(2) sequestration efficiency by maneuvering chemically aided biological sequestration of CO(2). Chlorella sp. and Spirulina platensis showed 46% and 39% mean fixation efficiency, respectively, at input CO(2) concentration of 10%. The effect of acetazolamide, a potent carbonic anhydrase inhibitor, on CO(2) sequestration efficiency was studied to demonstrate the role of carbonic anhydrase in calcite deposition. Calcite formed by both species was characterized by scanning electron microscopy coupled electron dispersive spectroscopy and X-ray diffraction. The overall scheme of calcite deposition coupled CO(2) fixation with commercially utilizable biomass as a product seems a viable option in the efforts to sequester increasing CO(2) emissions. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Advanced emission control system: CO2 sequestration using algae integrated management system (AIMS)

    International Nuclear Information System (INIS)

    Syed Isa Syed Alwi; Mohd Norsham Che Yahya; Ruzanna Abdul Rahman

    2010-01-01

    One of the companies under Algae tech, Sasaran Bio fuel Sdn. Bhd. provides project management, technology transfer and technical expertise to develop a solution to minimize and mitigate Carbon Dioxide (CO 2 ) emissions through the diversion of the CO 2 to open algal ponds and enclosed photo-bioreactors as algal propagation technologies to consume CO 2 waste stream. The company is presently consulting a listed company from Indonesia to address the technology know-how and implementation of microalgae development from the flue gas of the Groups power plants. Nowadays, one of the aspects that contribute to the air pollution is the emission of flue gases from the factories. So, we provide a system that can reduce the emission of flue gas to the atmosphere and at the same time, cultivate certain strain of algae. With the technology, Algae Integrated Management System (AIMS), it will be for sure a new beginning for way to reduce air pollution. The utilization of power plant resources for growing selected microalgae at a low energy cost for valuable products and bio-fuels while providing CO 2 sequestering. In the same time, it also a low cost algae agriculture. By doing so, it provides all year algae production which can be an income. This residual energy used CO 2 produced from power stations and industrial plants to feed the process (CO 2 recycling and bio-fixation) in cultivation of algae. This will be a low cost flue gas (CO 2 ) to the developer. In a nutshell, CO 2 Sequestration by algae reactors is a potential to reduce greenhouse gas emission by using the CO 2 in the stack gases to produce algae. (author)

  11. Seismic interferometry using ghost reflections applied to laboratory measurements for monitoring supercritical CO2 sequestration

    Science.gov (United States)

    Draganov, D.; Ghose, R.; Kirichek, A.; Heller, K.

    2016-12-01

    The seismic method with active sources has proven to be a very valuable tool for CO2 sequestration monitoring. The seismic method can be used for extraction of reservoir quantities like saturation and pore pressure. But nonrepeatability in the positioning of the source and receiver during base and monitoring surveys can deteriorate the accuracy of the estimated changes in the reservoir parameters. Application of seismic interferometry (SI) to reflection recordings on permanent networks of seismic stations could help eliminate the monitoring errors due to the non-repeatability errors. Retrieving virtual sources at the positions of the stations eliminates the non-repeatability in the source positioning. SI is traditionally applied using crosscorrelation. We show results from application of SI to ultrasonic data of sequestration of supercritical CO2. The data are recorded on a two-layer sample consisting of epoxy (caprock) and Bentheimer sandstone (reservoir). We apply SI by crosscoherence, which has the potential to retrieve results with higher temporal resolution than SI by crosscorrelation. Our aim is to monitor layer-specific changes inside the reservoir during the displacement of brine by supercritical CO2 and during the displacement of supercritical CO2 by brine. To achieve layer-specific monitoring, we retrieve with SI non-physical reflections from the bottom of the sandstone as if source and receiver were placed at the top of the sandstone. The velocities we estimate from the non-physical reflections during injection of brine aiming to displace supercritical CO2 and during injection of supercritical CO2 aiming to displace brine indicate rather similar saturation for both injection cases. We confirm the latter by transmission measurements, but with lower resolution.

  12. Modeling and Simulation of Nanoparticle Transport in Multiphase Flows in Porous Media: CO2 Sequestration

    KAUST Repository

    El-Amin, Mohamed

    2012-09-03

    Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected CO2 plume buoyantly accumulates at the top part of the deep aquifer under a sealing cap rock, and some concern that the high-pressure CO2 could breach the seal rock. However, CO2 will diffuse into the brine underneath and generate a slightly denser fluid that may induce instability and convective mixing. Onset times of instability and convective mixing performance depend on the physical properties of the rock and fluids, such as permeability and density contrast. The novel idea is to adding nanoparticles to the injected CO2 to increase density contrast between the CO2-rich brine and the underlying resident brine and, consequently, decrease onset time of instability and increase convective mixing. As far as it goes, only few works address the issues related to mathematical and numerical modeling aspects of the nanoparticles transport phenomena in CO2 storages. In the current work, we will present mathematical models to describe the nanoparticles transport carried by injected CO2 in porous media. Buoyancy and capillary forces as well as Brownian diffusion are important to be considered in the model. IMplicit Pressure Explicit Saturation-Concentration (IMPESC) scheme is used and a numerical simulator is developed to simulate the nanoparticles transport in CO2 storages.

  13. Role of Geomechanics in Assessing the Feasibility of CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs

    Science.gov (United States)

    Fang, Zhi; Khaksar, Abbas

    2013-05-01

    Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal

  14. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration

    Science.gov (United States)

    Iglauer, Stefan; Pentland, C. H.; Busch, A.

    2015-01-01

    We review the literature data published on the topic of CO2 wettability of storage and seal rocks. We first introduce the concept of wettability and explain why it is important in the context of carbon geo-sequestration (CGS) projects, and review how it is measured. This is done to raise awareness of this parameter in the CGS community, which, as we show later on in this text, may have a dramatic impact on structural and residual trapping of CO2. These two trapping mechanisms would be severely and negatively affected in case of CO2-wet storage and/or seal rock. Overall, at the current state of the art, a substantial amount of work has been completed, and we find that:Sandstone and limestone, plus pure minerals such as quartz, calcite, feldspar, and mica are strongly water wet in a CO2-water system.Oil-wet limestone, oil-wet quartz, or coal is intermediate wet or CO2 wet in a CO2-water system.The contact angle alone is insufficient for predicting capillary pressures in reservoir or seal rocks.The current contact angle data have a large uncertainty.Solid theoretical understanding on a molecular level of rock-CO2-brine interactions is currently limited.In an ideal scenario, all seal and storage rocks in CGS formations are tested for their CO2 wettability.Achieving representative subsurface conditions (especially in terms of the rock surface) in the laboratory is of key importance but also very challenging.

  15. Recovery Act: Geologic Sequestration Training and Research

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Peter; Esposito, Richard; Theodorou, Konstantinos; Hannon, Michael; Lamplugh, Aaron; Ellison, Kirk

    2013-06-30

    Work under the project entitled "Geologic Sequestration Training and Research," was performed by the University of Alabama at Birmingham and Southern Company from December 1, 2009, to June 30, 2013. The emphasis was on training of students and faculty through research on topics central to further development, demonstration, and commercialization of carbon capture, utilization, and storage (CCUS). The project had the following components: (1) establishment of a laboratory for measurement of rock properties, (2) evaluation of the sealing capacity of caprocks, (3) evaluation of porosity, permeability, and storage capacity of reservoirs, (4) simulation of CO{sub 2} migration and trapping in storage reservoirs and seepage through seal layers, (5) education and training of students through independent research on rock properties and reservoir simulation, and (6) development of an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. Four graduate students and one undergraduate student participated in the project. Two were awarded Ph.D. degrees for their work, the first in December 2010 and the second in August 2013. A third graduate student has proposed research on an advanced technique for measurement of porosity and permeability, and has been admitted to candidacy for the Ph.D. The fourth graduate student is preparing his proposal for research on CCUS and solid waste management. The undergraduate student performed experimental measurements on caprock and reservoir rock samples and received his B.S.M.E. degree in May 2012. The "Caprock Integrity Laboratory," established with support from the present project, is fully functional and equipped for measurement of porosity, permeability, minimum capillary displacement pressure, and effective permeability to gas in the presence of wetting phases. Measurements are made at ambient temperature and under reservoir conditions, including supercritical CO{sub 2

  16. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Seleccion de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-07-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref.

  17. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Selecci0n de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-09-18

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs.

  18. Experimental multi-phase H2O-CO2 brine interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    Science.gov (United States)

    Rosenbauer, R.; Koksalan, T.

    2004-01-01

    The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.

  19. The sequestration switch. Removing industrial CO2 by direct ocean absorption

    International Nuclear Information System (INIS)

    Ametistova, Lioudmila; Briden, James; Twidell, John

    2002-01-01

    This review paper considers direct injection of industrial CO 2 emissions into the mid-water oceanic column below 500 m depth. Such a process is a potential candidate for switching atmospheric carbon emissions directly to long term sequestration, thereby relieving the intermediate atmospheric burden. Given sufficient research justification, the argument is that harmful impact in both the Atmosphere and the biologically rich upper marine layer could be reduced. The paper aims to estimate the role that active intervention, through direct ocean CO 2 storage, could play and to outline further research and assessment for the strategy to be a viable option for climate change mitigation. The attractiveness of direct ocean injection lies in its bypassing of the Atmosphere and upper marine region, its relative permanence, its practicability using existing technologies and its quantification. The difficulties relate to the uncertainty of some fundamental scientific issues, such as plume dynamics, lowered pH of the exposed waters and associated ecological impact, the significant energy penalty associated with the necessary engineering plant and the uncertain costs. Moreover, there are considerable uncertainties regarding related international marine law. Development of the process would require acceptance of the evidence for climate change, strict requirements for large industrial consumers of fossil fuel to reduce CO 2 emissions into the Atmosphere and scientific evidence for the overall beneficial impact of ocean sequestration

  20. Removal of Hg, As in FGD gypsum by different aqueous ammonia (amines) during CO2 sequestration.

    Science.gov (United States)

    Wenyi, Tan; Wenhui, Fan; Hongyi, Li; Zixin, Zhang; Yunkun, Zhu

    2017-12-01

    CO 2 sequestration by flue gas desulfurization gypsum (FGDG) has become a promising FGDG disposal technology due to simultaneous CO 2 emission reduction and FGDG conversion into calcium carbonate. In this paper, another merit of the novel technology, i.e., the removal of toxic elements (e.g., Hg and As) in FGDG, will be addressed for the first time. In three different aqueous ammonia (or amines) media, removal efficiencies of Hg and As in FGDG samples were evaluated during CO 2 sequestration. Higher than 90% and 20% removal efficiencies, respectively, for Hg and As are achieved at 40°C in aqueous ammonia media, but they decrease at elevated temperatures. Ammonia loss takes place at 80°C and pH varies greatly with temperatures in aqueous ammonia. This is disadvantageous for the formation of Hg-ammonia complexes and for the yield of carbonates, which are responsible for Hg or As re-adsorption. The sequential chemical extraction method suggests that the speciation changes of Hg are induced by FGDG carbonation, and that unstable Hg speciation in triethanolamine increases at elevated temperatures.

  1. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor

    International Nuclear Information System (INIS)

    Chang, E.-E.; Pan, Shu-Yuan; Chen, Yi-Hung; Chu, Hsiao-Wen; Wang, Chu-Fang; Chiang, Pen-Chi

    2011-01-01

    Highlights: → The aqueous carbonation of steelmaking slags in an autoclave reactor is feasible and results in a high conversion. → The product was identified as crystallized calcite based on SEM and XRD measurements. → The kinetics of this reaction were described using a surface coverage model and consistent with the predicted values. - Abstract: Carbon dioxide (CO 2 ) sequestration experiments using the accelerated carbonation of three types of steelmaking slags, i.e., ultra-fine (UF) slag, fly-ash (FA) slag, and blended hydraulic slag cement (BHC), were performed in an autoclave reactor. The effects of reaction time, liquid-to-solid ratio (L/S), temperature, CO 2 pressure, and initial pH on CO 2 sequestration were evaluated. Two different CO 2 pressures were chosen: the normal condition (700 psig) and the supercritical condition (1300 psig). The carbonation conversion was determined quantitatively by using thermo-gravimetric analysis (TGA). The major factors that affected the conversion were reaction time (5 min to 12 h) and temperature (40-160 o C). The BHC was found to have the highest carbonation conversion of approximately 68%, corresponding to a capacity of 0.283 kg CO 2 /kg BHC, in 12 h at 700 psig and 160 o C. In addition, the carbonation products were confirmed to be mainly in CaCO 3, which was determined by using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) to analyze samples before and after carbonation. Furthermore, reaction kinetics were expressed with a surface coverage model, and the carbon footprint of the developed technology in this investigation was calculated by a life cycle assessment (LCA).

  2. Development of a Method for Measuring Carbon Balance in Chemical Sequestration of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhongxian; Pan, Wei-Ping; Riley, John T.

    2006-09-09

    Anthropogenic CO2 released from fossil fuel combustion is a primary greenhouse gas which contributes to “global warming.” It is estimated that stationary power generation contributes over one-third of total CO2 emissions. Reducing CO2 in the atmosphere can be accomplished either by decreasing the rate at which CO2 is emitted into the atmosphere or by increasing the rate at which it is removed from it. Extensive research has been conducted on determining a fast and inexpensive method to sequester carbon dioxide. These methods can be classified into two categories, CO2 fixation by natural sink process for CO2, or direct CO2 sequestration by artificial processes. In direct sequestration, CO2 produced from sources such as coal-fired power plants, would be captured from the exhausted gases. CO2 from a combustion exhaust gas is absorbed with an aqueous ammonia solution through scrubbing. The captured CO2 is then used to synthesize ammonium bicarbonate (ABC or NH4HCO3), an economical source of nitrogen fertilizer. In this work, we studied the carbon distribution after fertilizer is synthesized from CO2. The synthesized fertilizer in laboratory is used as a “CO2 carrier” to “transport” CO2 from the atmosphere to crops. After biological assimilation and metabolism in crops treated with ABC, a considerable amount of the carbon source is absorbed by the plants with increased biomass production. The majority of the unused carbon source percolates into the soil as carbonates, such as calcium carbonate (CaCO3) and magnesium carbonate (MgCO3). These carbonates are environmentally benign. As insoluble salts, they are found in normal rocks and can be stored safely and permanently in soil. This investigation mainly focuses on the carbon distribution after the synthesized fertilizer is applied to soil. Quantitative examination of carbon distribution in an ecosystem is a challenging task since the carbon in the soil may come from various sources. Therefore synthesized 14C

  3. Multiphase Flow in Porous Media with Emphasis on Co2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Be, Alif

    2011-07-01

    Numerical simulation has been used to predict multiphase flow in porous media. It is of great importance to incorporate accurate flow properties to obtain a proper simulation result thus reducing the risk of making wrong decision. Relative permeability and capillary pressure are important key parameters in multiphase flow as they describe how different fluid will interact in porous media. It is even more important in the case of three-phase flow as there are more fluid phases interact in the system. In most of the three-phase flow studies, capillary pressure has been neglected due to the lack of measured data and assumption that its effect is negligible. In other cases, two-phase capillary pressure has been used instead to describe the process in the system. This study will try to show how significant the impact of three-phase capillary pressure using different rock wettability. The three-phase capillary pressure surfaces are generated using a network model. Prior research shows that rock wettability is altered during Co2 sequestration due to the formation of carbonic acid (H2CO3) which leads to lower ph. In this study the effect of wettability alteration is incorporated to assess the safety of Johansen formation which is a good candidate for Co2 sequestration project. In addition, the wettability alteration effect to different flow parameters such as heterogeneity, solubility and diffusion is investigated. This thesis consists of two parts; the first part presents a theoretical background for the work, and the second part is a collection of papers. The papers are grouped into two main topics. The first three papers are discussing about three-phase flow simulation in porous media. The rest are discussing about wettability alteration during Co2 sequestration. Chapter 2 and 3 of the theoretical background include definitions and descriptions of interfacial tension, wettability, capillary pressure, relative permeability and hysteresis. Network model and technique for

  4. Multiphase Flow in Porous Media with Emphasis on Co2 Sequestration

    International Nuclear Information System (INIS)

    Be, Alif

    2011-01-01

    Numerical simulation has been used to predict multiphase flow in porous media. It is of great importance to incorporate accurate flow properties to obtain a proper simulation result thus reducing the risk of making wrong decision. Relative permeability and capillary pressure are important key parameters in multiphase flow as they describe how different fluid will interact in porous media. It is even more important in the case of three-phase flow as there are more fluid phases interact in the system. In most of the three-phase flow studies, capillary pressure has been neglected due to the lack of measured data and assumption that its effect is negligible. In other cases, two-phase capillary pressure has been used instead to describe the process in the system. This study will try to show how significant the impact of three-phase capillary pressure using different rock wettability. The three-phase capillary pressure surfaces are generated using a network model. Prior research shows that rock wettability is altered during Co2 sequestration due to the formation of carbonic acid (H2CO3) which leads to lower ph. In this study the effect of wettability alteration is incorporated to assess the safety of Johansen formation which is a good candidate for Co2 sequestration project. In addition, the wettability alteration effect to different flow parameters such as heterogeneity, solubility and diffusion is investigated. This thesis consists of two parts; the first part presents a theoretical background for the work, and the second part is a collection of papers. The papers are grouped into two main topics. The first three papers are discussing about three-phase flow simulation in porous media. The rest are discussing about wettability alteration during Co2 sequestration. Chapter 2 and 3 of the theoretical background include definitions and descriptions of interfacial tension, wettability, capillary pressure, relative permeability and hysteresis. Network model and technique for

  5. The use of tracers to assess leakage from the sequestration of CO2 in a depleted oil reservoir, New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    Wells, A.W.; Diehl, J.R.; Bromhal, G.S.; Strazisar, B.R.; Wilson, T.H. (West Virginia University, Morgantown, WV); White, C.M. (Parsons Corp., South Park, PA)

    2007-05-01

    Geological sequestration of CO2 in depleted oil reservoirs is a potentially useful strategy for greenhouse gas management and can be combined with enhanced oil recovery. Development of methods to estimate CO2 leakage rates is essential to assure that storage objectives are being met at sequestration facilities. Perfluorocarbon tracers (PFTs) were added as three 12 h slugs at about one week intervals during the injection of 2090 tons of CO2 into the West Pearl Queen (WPQ) depleted oil formation, sequestration pilot study site located in SE New Mexico. The CO2 was injected into the Permian Queen Formation. Leakage was monitored in soil–gas using a matrix of 40 capillary adsorbent tubes (CATs) left in the soil for periods ranging from days to months. The tracers, perfluoro-1,2-dimethylcyclohexane (PDCH), perfluorotrimethylcyclohexane (PTCH) and perfluorodimethylcyclobutane (PDCB), were analyzed using thermal desorption, and gas chromatography with electron capture detection. Monitoring was designed to look for immediate leakage, such as at the injection well bore and at nearby wells, and to develop the technology to estimate overall CO2 leak rates based on the use of PFTs. Tracers were detected in soil–gas at the monitoring sites 50 m from the injection well within days of injection. Tracers continued to escape over the following years. Leakage appears to have emanated from the vicinity of the injection well in a radial pattern to about 100 m and in directional patterns to 300 m. Leakage rates were estimated for the 3 tracers from each of the 4 sets of CATs in place following the start of CO2 injection. Leakage was fairly uniform during this period. As a first approximation, the CO2 leak rate was estimated at about 0.0085% of the total CO2 sequestered per annum.

  6. Toward physical aspects affecting a possible leakage of geologically stored CO2 into the shallow subsurface

    DEFF Research Database (Denmark)

    Singh, Ashok; Delfs, Jens Olaf; Görke, Uwe Jens

    2014-01-01

    In geological formations, migration of CO2 plume is very complex and irregular. To make CO2 capture and storage technology feasible, it is important to quantify CO2 amount associated with possible leakage through natural occurring faults and fractures in geologic medium. Present work examines...

  7. An Overview of Geologic Carbon Sequestration Potential in California

    Energy Technology Data Exchange (ETDEWEB)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  8. Effect of elevated CO2 and temperature on abiotic and biologically-driven basalt weathering and C sequestration

    Science.gov (United States)

    Juarez, Sabrina; Dontsova, Katerina; Le Galliard, Jean-François; Chollet, Simon; Llavata, Mathieu; Massol, Florent; Cros, Alexis; Barré, Pierre; Gelabert, Alexandre; Daval, Damien; Corvisier, Jérôme; Troch, Peter; Barron-Gafford, Greg; Van Haren, Joost; Ferrière, Régis

    2016-04-01

    Weathering of primary silicates is one of the mechanisms involved in carbon removal from the atmosphere, affecting the carbon cycle at geologic timescales with basalt significantly contributing to the global weathering CO2 flux. Mineral weathering can be enhanced by microbiota and plants. Increase in both temperature and amount of CO2 in the atmosphere can directly increase weathering and can also affect weathering through impact on biological systems. This would result in possible negative feedback on climate change. The goal of this research was to quantify direct and indirect effects of temperature and elevated CO2 on basalt weathering and carbon sequestration. In order to achieve this goal we performed controlled-environment mesocosm experiments at Ecotron Ile-de-France (France). Granular basalt collected in Flagstaff (AZ, USA) was exposed to rainfall at equilibrium with two different CO2 concentrations in the air, ambient (400 ppm) and elevated (800 ppm); and kept at two climate regimes, with ambient and elevated (+ 4° C) temperature. Four biological treatments were superimposed on this design: a plant-free control; N-fixing grass (Alfalfa, Medicago sativa), N-fixing tree (Velvet mesquite, Prosopis velutina); and grass that does not form symbiotic relationships with N fixers (Green Sprangletop, Leptochloa dubia). All used basalt had native microbial community. Mesocosms were equipped with solution and gas samplers. To monitor biogenic and lithogenic weathering product concentrations, soil solution samples were collected under vacuum after each rainfall event and analyzed to determine pH, electrical conductivity, major and trace elements concentrations, anions concentrations, and aqueous phase organic matter chemistry. Soil gases were monitored for CO2 using porous Teflon gas samplers connected to the Vaisala probes. Plant biomass was collected at the end of the experiment to determine dry weight, as well as removal of N and lithogenic elements by the plants

  9. Does earlier snowmelt lead to greater CO2 sequestration in two low Arctic tundra ecosystems?

    Science.gov (United States)

    Humphreys, Elyn R.; Lafleur, Peter M.

    2011-05-01

    Some studies have reported that spring warming and earlier snowmelt leads to increased CO2 sequestration in Arctic terrestrial ecosystems. We measured tundra-atmosphere CO2 exchange via eddy covariance at two low Arctic sites (mixed upland tundra and sedge fen) in central Canada over multiple snow-free periods to assess this hypothesis. Both sites were net sinks for atmospheric CO2 in all years (2004-2010), but with high interannual variability. Despite a large range in snowmelt date (30 days), we did not find a statistically significant correlation between seasonal accumulated net ecosystem production (NEP) and snowmelt for either site. Although many factors can influence seasonal total NEP, our analysis shows that annual variations in photosynthetic capacity, likely driven by changes in leaf area, is a dominating control at these Arctic sites. At the upland tundra site, protection of overwintering buds by a longer duration of deep snow appears to be linked to greater photosynthetic capacity and NEP. Whereas at the fen site, sedge growth benefits from earlier snowmelt resulting in a strong correlation with early season NEP and an increase in total study period NEP with increasing growing degree days. These results highlight the complexity of interannual variation in ecosystem CO2 exchange in Arctic tundra and suggest that snowmelt date alone cannot predict seasonal, or annual, NEP.

  10. Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments

    Science.gov (United States)

    2017-01-01

    Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. PMID:28281750

  11. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca

    2012-01-01

    A rise in carbon dioxide levels from industrial emissions is contributing to the greenhouse effect and global warming. CO2 sequestration in saline aquifers is a strategy to reduce atmospheric CO2 levels. Scientists and researchers rely on numerical simulators to predict CO2 storage by modeling the fluid transport behaviour. Studies have shown that after CO2 is injected into a saline aquifer, undissolved CO2 rises due to buoyant forces and will spread laterally away from the injection site under an area of low permeability. CO2 from this ‘capped\\' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport is important to model since it predicts an enhanced storage capacity of the saline aquifer. This work incorporates the diffusive and convective transport processes into the transport modeling equation, and uses a self-generated code. Discretization of the domain is done with a cell-centered finite difference method. Cases are set up using similar parameters from published literature in order to compare results. Enhanced storage capacity is predicted in this work, similar to work done by others. A difference in the onset of convective transport between this work and published results is noticed and discussed in this paper. A sensitivity analysis is performed on the density model used in this work, and on the diffusivity value assumed. The analysis shows that the density model and diffusivity value is a key component on simulation results. Also, perturbations are added to porosity and permeability in order to see the effect of perturbations on the onset of convection, and results agree with similar findings by others. This work provides a basis for studying other cases, such as the impact of heterogeneity on the diffusion-convective transport. An extension of this work may involve the use of an equation of state to

  12. Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Hoversten, G. Michael; Gasperikova, Erika

    2003-10-31

    Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly

  13. What does CO2 geological storage really mean?

    International Nuclear Information System (INIS)

    2008-01-01

    It is now accepted that human activities are disturbing the carbon cycle of the planet. CO 2 , a greenhouse gas, has accumulated in the atmosphere where it contributes to climate change. Amongst the spectrum of short term measures that need to be urgently implemented to mitigate climate change, CO 2 capture and storage can play a decisive role as it could contribute 33% of the CO 2 reduction needed by 2050. This document aims to explain this solution by answering the following questions: where and how much CO 2 can we store underground, How can we transport and inject large quantities of CO 2 , What happens to the CO 2 once in the storage reservoir? Could CO 2 leak from the reservoir and if so, what might be the consequences? How can we monitor the storage site at depth and at the surface? What safety criteria need to be imposed and respected? (A.L.B.)

  14. Fluid Flow Simulation For CO2-EOR and Sequestration Utilizing Geomechanical Constraints - Teapot Dome Oil Field, Wyoming

    Science.gov (United States)

    Chiaramonte, L.; Zoback, M. D.; Friedmann, J.; Stamp, V.

    2007-12-01

    Mature oil and gas reservoirs are attractive targets for geological sequestration of CO2 because of their potential storage capacities and the possible cost offsets from enhanced oil recovery (EOR). In this work we develop a 3D reservoir model and fluid flow simulation of the Tensleep Formation using geomechanical constraints to evaluate the feasibility of a CO2-EOR injection project at Teapot Dome Oil Field, WY. The objective of this work is to model the migration of the injected CO2 as well as to obtain limits on the rates and volumes of CO2 that can be injected without compromising seal integrity. Teapot Dome is an elongated asymmetrical, basement-cored anticline with a north-northwest axis. It is part of the Salt Creek structural trend, located in the southwestern edge of the Powder River Basin. The Tensleep Fm. in this area consists of interdune deposits such as eolian sandstones, sabkha carbonates, evaporites (mostly anhydrite), and some very low permeability dolomicrites. The average porosity is 0.10 ranging from 0.05-0.20. The average permeability is 30 mD, ranging from 10 - 100 mD. The average reservoir thickness is 50 ft. The reservoir has strong aquifer drive. In the area under study, the Tensleep Fm. has its structural crest at 1675 m. It presents a 3-way closure trap against a NE-SW fault to the north. We previously carried out a geomechanical stability analysis and found this fault to be able to support the increase in pressure due to the CO2 to be injected, even if the structure was "filled-to-spill". In this work we combine our previous geomechanical analysis, geostatistical reservoir modeling and fluid flow simulations to investigate critical questions regarding the feasibility of a CO2-EOR project in the Tensleep Fm. The analysis takes into consideration the initial trapping and sealing mechanisms of the reservoir, the consequences of past and present oil production on the initial properties, and the potential effect of CO2 injection on both the

  15. Stratigraphy of Citronelle Oil Field, AL: Perspectives from Enhanced Oil Recovery and Potential CO2 Sequestration

    Science.gov (United States)

    Hills, D. J.; Pashin, J. C.; Kopaska-Merkel, D. C.; Esposito, R. A.

    2008-12-01

    The Citronelle Dome is a giant salt-cored anticline in the eastern Mississippi Interior Salt Basin of south Alabama. The dome forms an elliptical structural closure containing multiple opportunities for enhanced oil recovery (EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle Oil Field, which is on the crest of the dome, has produced more than 168 MMbbl of 42° gravity oil from marginal marine sandstone in the Lower Cretaceous Donovan Sand. Recently, EOR field tests have begun in the northeastern part of the oil field. Citronelle Unit B-19-10 #2 well (Alabama State Oil and Gas Board Permit No. 3232) will serve as the CO2 injector for the first field test. CO2 will be injected into the Upper Donovan 14-1 and 16-2 sandstone units. All well logs in the 4-square-mile area surrounding the test site have been digitized and used to construct a network of nineteen stratigraphic cross sections correlating Sands 12 through 20A in the Upper Donovan. Detailed study of Citronelle cores has shown that depositional environments in the Donovan Sand differed significantly from the earlier model that has guided past development of the Citronelle Field. The cross sections demonstrate the extreme facies heterogeneity of the Upper Donovan, and this heterogeneity is well expressed within the five-spot well pattern where the field test will be conducted. Many other features bearing on the performance of the CO2 injection test have been discovered. Of particular interest is the 16-2 sand, which is interpreted as a composite of two tiers of channel fills. Pay strata are typically developed in the lower tier, and this is where CO2 will be injected. The upper tier is highly heterogeneous and is interpreted to contain sandstone fills of variable reservoir quality, as well as mudstone plugs.

  16. Interactions between the Design and Operation of Shale Gas Networks, Including CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Sharifzadeh Mahdi

    2017-04-01

    Full Text Available As the demand for energy continues to increase, shale gas, as an unconventional source of methane (CH4, shows great potential for commercialization. However, due to the ultra-low permeability of shale gas reservoirs, special procedures such as horizontal drilling, hydraulic fracturing, periodic well shut-in, and carbon dioxide (CO2 injection may be required in order to boost gas production, maximize economic benefits, and ensure safe and environmentally sound operation. Although intensive research is devoted to this emerging technology, many researchers have studied shale gas design and operational decisions only in isolation. In fact, these decisions are highly interactive and should be considered simultaneously. Therefore, the research question addressed in this study includes interactions between design and operational decisions. In this paper, we first establish a full-physics model for a shale gas reservoir. Next, we conduct a sensitivity analysis of important design and operational decisions such as well length, well arrangement, number of fractures, fracture distance, CO2 injection rate, and shut-in scheduling in order to gain in-depth insights into the complex behavior of shale gas networks. The results suggest that the case with the highest shale gas production may not necessarily be the most profitable design; and that drilling, fracturing, and CO2 injection have great impacts on the economic viability of this technology. In particular, due to the high costs, enhanced gas recovery (EGR using CO2 does not appear to be commercially competitive, unless tax abatements or subsidies are available for CO2 sequestration. It was also found that the interactions between design and operational decisions are significant and that these decisions should be optimized simultaneously.

  17. Precipitation of hydrated Mg carbonate with the aid of carbonic anhydrase for CO2 sequestration

    Science.gov (United States)

    Power, I. M.; Harrison, A. L.; Dipple, G. M.

    2011-12-01

    and water was sampled for dissolved inorganic carbon (DIC) and magnesium concentrations. Final precipitates were collected for X-ray powder diffraction and determination of the percent carbon. The presence of BCA increases the concentration of DIC, thus accelerating the rate-limiting step. In alkaline Mg-rich solutions, disordered hydrated magnesium carbonate, resembling dypingite, rapidly precipitated within hours to form micron-wide flakes. At concentrations of 200 and 100 mg BCA/L, the rates of carbon uptake were ~7 and ~4.4 times that of the control system during the first 24 hours, respectively. BCA is able to catalyze the hydration of CO2 thereby increasing concentrations of DIC relatively rapidly and allowing for the sequestration of atmospheric CO2 as hydrated Mg carbonate minerals.

  18. Microseismic Monitoring of CO2 Sequestration: A Case Study in the Michigan Basin

    Science.gov (United States)

    Bohnhoff, M.; Chiaramonte, L.; Zoback, M. D.; Gerst, J.; Gupka, N.

    2008-12-01

    In low permeability hydrocarbon or geothermal reservoirs, passive seismic monitoring of microseismicity induced through fluid-injection is a widely-used method to image fracture growth and permeability enhancement. Currently, similar techniques and approaches are being developed and tested to monitor underground storage of CO2 into different target formations such as saline reservoirs and depleted oil and gas reservoirs. Many saline reservoirs in the mid-continental U.S. appear to have declining porosity and permeability with increasing depth resulting in injectivity and storage challenges. Hence, permeability enhancement (in a manner similar to that used in low permeability hydrocarbon and geothermal reservoirs) may be needed to inject significant volumes of CO2 at acceptable pressures. This analysis is supported by the Global Climate and Energy Project (GCEP) in collaboration with the Midwest Regional Carbon Sequestration Partnership (MRCSP). The Otsego County Test Site in the Michigan Basin was proposed as a demonstration site for CO2 sequestration. A total of more than 10,000 metric tons of supercritical CO2 was injected over a period of 31 days into the target formation (Silurian age Bass Island dolomite -BILD) at 1050 m depth. The injected CO2 was separated from methane produced from the Antrim Shale gas at a nearby site. The injection experiment aimed at evaluating microseismic monitoring technologies and establishing the storage capacity and suitability of the BILD formation. Seismic monitoring of the injection was achieved by two downhole seismometer arrays that consisted of eight, three-component sensors each. The arrays were deployed in two nearby monitoring wells directly above the target horizon at 150 and 550 m lateral distance to the injection point, respectively. The sensor spacing was 15m. Calibration shots in the injection well were used to determine the orientation of the sensors at each depth in the two monitoring wells. The analysis of the

  19. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  20. Risk Assessment and Management for Long-Term Storage of CO2 in Geologic Formations — United States Department of Energy R&D

    Directory of Open Access Journals (Sweden)

    Dawn Deel

    2007-02-01

    Full Text Available Concern about increasing atmospheric concentrations of carbon dioxide (CO2 and other greenhouse gases (GHG and their impact on the earth's climate has grown significantly over the last decade. Many countries, including the United States, wrestle with balancing economic development and meeting critical near-term environmental goals while minimizing long-term environmental risks. One promising solution to the buildup of GHGs in the atmosphere, being pursued by the U.S. Department of Energy's (DOE National Energy Technology Laboratory (NETL and its industrial and academic partners, is carbon sequestration—a process of permanent storage of CO2 emissions in underground geologic formations, thus avoiding CO2 release to the atmosphere. This option looks particularly attractive for point source emissions of GHGs, such as fossil fuel fired power plants. CO2 would be captured, transported to a sequestration site, and injected into an appropriate geologic formation. However, sequestration in geologic formations cannot achieve a significant role in reducing GHG emissions unless it is acceptable to stakeholders, regulators, and the general public, i.e., unless the risks involved are judged to be acceptable. One tool that can be used to achieve acceptance of geologic sequestration of CO2 is risk assessment, which is a proven method to objectively manage hazards in facilities such as oil and natural gas fields, pipelines, refineries, and chemical plants. Although probabilistic risk assessment (PRA has been applied in many areas, its application to geologic CO2 sequestration is still in its infancy. The most significant risk from geologic carbon sequestration is leakage of CO2. Two types of CO2 releases are possible—atmospheric and subsurface. High concentrations of CO2 caused by a release to the atmosphere would pose health risks to humans and animals, and any leakage of CO2 back into the atmosphere negates the effort expended to sequester the CO2

  1. Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization

    Science.gov (United States)

    Feng, E. Y.; Koeve, W.; Keller, D. P.; Oschlies, A.

    2017-12-01

    The potential of coastal ocean alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature, and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 µm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 µm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim = 3.4) to 790 GtC (Ωlim = 9) and increase ocean carbon storage by 290 Gt (Ωlim = 3.4) to 913 Gt (Ωlim = 9) by year 2100.

  2. LIBS Sensor for Sub-surface CO2 Leak Detection in Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    Jinesh JAIN

    2017-07-01

    Full Text Available Monitoring carbon sequestration poses numerous challenges to the sensor community. For example, the subsurface environment is notoriously harsh, with large potential mechanical, thermal, and chemical stresses, making long-term stability and survival a challenge to any potential in situ monitoring method. Laser induced breakdown spectroscopy (LIBS has been demonstrated as a promising technology for chemical monitoring of harsh environments and hard to reach places. LIBS has a real- time monitoring capability and can be used for the elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of the probe design and the use of fiber- optics has made LIBS particularly suited for remote measurements. The paper focuses on developing a LIBS instrument for downhole high-pressure, high-temperature brine experiments, where CO2 leakage could result in changes in the trace mineral composition of an aquifer. The progress in fabricating a compact, robust, and simple LIBS sensor for widespread subsurface leak detection is presented.

  3. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  4. Seismic velocity tomography for CO2 monitor in subsurface geological structures

    Directory of Open Access Journals (Sweden)

    Wasiu O. Raji

    2018-01-01

    Full Text Available The storage of CO2 in depleted hydrocarbon reservoirs and saline water aquifers is a leading solution to Global Warming due to CO2 emission to the atmosphere. The capture of CO2 from major CO2-emitting plants and its storage in underground geological structures has a potential to reduce Global Warming by about 60%. A procedure for monitoring safe and secure storage of CO2 in underground geological structures is demonstrated in this study using seismic velocity tomography. The tomographic method uses first arrival traveltime to estimate velocity of geological structure along the ray path. The inversion procedure utilizes optimized objective function that consists of two parts: (i a part that minimizes the misfit between the observed and inverted data, and (ii a part that enforces the true shape and structure of the real geology. First, the method is applied to invert the velocity structure of a west Texas oilfield, and later to reconstruct the velocity structure of Marmousi models before and after CO2 injection. The results of the tests confirm the appropriateness of the procedure for CO2 monitoring. The inverted velocity tomogram for the post-injection stage shows velocity perturbation due to CO2 presence and the progression in CO2 front. Technology for monitoring CO2 in geological storages as demonstrated in this study is crucial to forestall CO2 leakages and its negative consequences on the environment.

  5. Geomechanical Characterization and Reservoir Simulation of a CO2-EOR and Sequestration Project in a Mature Oil Field, Teapot Dome, WY

    Science.gov (United States)

    Chiaramonte, L.; Zoback, M. D.; Friedmann, J.; Stamp, V.

    2008-12-01

    Mature oil and gas reservoirs are attractive targets for geological sequestration of CO2 because of their potential storage capacities and the possible cost offsets from enhanced oil recovery (EOR). In this work we develop a 3D reservoir model and fluid flow simulation of the Tensleep Formation using geomechanical constraints in advance of a proposed CO2-EOR injection experiment at Teapot Dome Oil Field, WY. The objective of this work is to model the migration of the injected CO2 as well as to obtain limits on the rates and volumes of CO2 that can be injected without compromising seal integrity. In the present work we combine our previous geomechanical analysis, geostatistical reservoir modeling and fluid flow simulations to investigate critical questions regarding the feasibility of a CO2-EOR project in the Tensleep Fm. The analysis takes in consideration the initial trapping and sealing mechanisms of the reservoir, the consequences of past and present oil production on these mechanisms, and the potential effect of the CO2 injection on the reservoir and the seal. Finally we also want to assess the long-term recovery of the injection site and what will happen in the system once the oil production stops. The CO2-EOR injection pilot will consist of the injection of 1 MMcfd of supercritical CO2 for six weeks. The preliminary simulation results indicate that the injected CO2 will rapidly rise to the top layers, above the main producing interval, and will accumulate in the fractures (almost none will get into the matrix). Design optimization will be needed to ensure adequate spatial distribution of the CO2 and sufficient time for CO2 miscibility.

  6. History Matching and Parameter Estimation of Surface Deformation Data for a CO2 Sequestration Field Project Using Ensemble-Based Algorithms

    Science.gov (United States)

    Tavakoli, Reza; Srinivasan, Sanjay; Wheeler, Mary

    2015-04-01

    The application of ensemble-based algorithms for history matching reservoir models has been steadily increasing over the past decade. However, the majority of implementations in the reservoir engineering have dealt only with production history matching. During geologic sequestration, the injection of large quantities of CO2 into the subsurface may alter the stress/strain field which in turn can lead to surface uplift or subsidence. Therefore, it is essential to couple multiphase flow and geomechanical response in order to predict and quantify the uncertainty of CO2 plume movement for long-term, large-scale CO2 sequestration projects. In this work, we simulate and estimate the properties of a reservoir that is being used to store CO2 as part of the In Salah Capture and Storage project in Algeria. The CO2 is separated from produced natural gas and is re-injected into downdip aquifer portion of the field from three long horizontal wells. The field observation data includes ground surface deformations (uplift) measured using satellite-based radar (InSAR), injection well locations and CO2 injection rate histories provided by the operators. We implement variations of ensemble Kalman filter and ensemble smoother algorithms for assimilating both injection rate data as well as geomechanical observations (surface uplift) into reservoir model. The preliminary estimation results of horizontal permeability and material properties such as Young Modulus and Poisson Ratio are consistent with available measurements and previous studies in this field. Moreover, the existence of high-permeability channels (fractures) within the reservoir; especially in the regions around the injection wells are confirmed. This estimation results can be used to accurately and efficiently predict and quantify the uncertainty in the movement of CO2 plume.

  7. History matching and parameter estimation of surface deformation data for a CO2 sequestration field project using ensemble-based algorithm

    Science.gov (United States)

    Ping, J.; Tavakoli, R.; Min, B.; Srinivasan, S.; Wheeler, M. F.

    2015-12-01

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. The application of ensemble-based algorithms for history matching reservoir models has been steadily increasing over the past decade. However, the majority of implementations in the reservoir engineering have dealt only with production history matching. During geologic sequestration, the injection of large quantities of CO2 into the subsurface may alter the stress/strain field which in turn can lead to surface uplift or subsidence. Therefore, it is essential to couple multiphase flow and geomechanical response in order to predict and quantify the uncertainty of CO2 plume movement for long-term, large-scale CO2 sequestration projects. In this work, we simulate and estimate the properties of a reservoir that is being used to store CO2 as part of the In Salah Capture and Storage project in Algeria. The CO2 is separated from produced natural gas and is re-injected into downdip aquifer portion of the field from three long horizontal wells. The field observation data includes ground surface deformations (uplift) measured using satellite-based radar (InSAR), injection well locations and CO2 injection rate histories provided by the operators. We implement ensemble-based algorithms for assimilating both injection rate data as well as geomechanical observations (surface uplift) into reservoir model. The preliminary estimation results of horizontal permeability and material properties such as Young Modulus and Poisson Ratio are consistent with available measurements and previous studies in this field. Moreover, the existence of high-permeability channels/fractures within the reservoir; especially in the regions around the injection wells are confirmed. This estimation results can be used to accurately and efficiently predict and monitor the movement of CO2 plume.

  8. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  9. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register... Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide AGENCY... greenhouse gas monitoring and reporting from facilities that conduct geologic sequestration of carbon dioxide...

  10. Carbon sequestration in soybean crop soils: the role of hydrogen-coupled CO2 fixation

    Science.gov (United States)

    Graham, A.; Layzell, D. B.; Scott, N. A.; Cen, Y.; Kyser, T. K.

    2011-12-01

    Conversion of native vegetation to agricultural land in order to support the world's growing population is a key factor contributing to global climate change. However, the extent to which agricultural activities contribute to greenhouse gas emissions compared to carbon storage is difficult to ascertain, especially for legume crops, such as soybeans. Soybean establishment often leads to an increase in N2O emissions because N-fixation leads to increased soil available N during decomposition of the low C:N legume biomass. However, soybean establishment may also reduce net greenhouse gas emissions by increasing soil fertility, plant growth, and soil carbon storage. The mechanism behind increased carbon storage, however, remains unclear. One explanation points to hydrogen coupled CO2 fixation; the process by which nitrogen fixation releases H2 into the soil system, thereby promoting chemoautotrophic carbon fixation by soil microbes. We used 13CO2 as a tracer to track the amount and fate of carbon fixed by hydrogen coupled CO2 fixation during one-year field and laboratory incubations. The objectives of the research are to 1) quantify rates of 13CO2 fixation in soil collected from a field used for long-term soybean production 2) examine the impact of H2 gas concentration on rates of 13CO2 fixation, and 3) measure changes in δ13C signature over time in 3 soil fractions: microbial biomass, light fraction, and acid stable fraction. If this newly-fixed carbon is incorporated into the acid-stable soil C fraction, it has a good chance of contributing to long-term soil C sequestration under soybean production. Soil was collected in the field both adjacent to root nodules (nodule soil) and >3cm away (root soil) and labelled with 13CO2 (1% v/v) in the presence and absence of H2 gas. After a two week labelling period, δ13C signatures already revealed differences in the four treatments of bulk soil: -17.1 for root, -17.6 for nodule, -14.2 for root + H2, and -6.1 for nodule + H2

  11. Microorganisms implication in the CO2 geologic storage processes

    International Nuclear Information System (INIS)

    Dupraz, S.

    2008-01-01

    A first result of this thesis is the building and validation of a circulation reactor named BCC (Bio-mineralization Control Cell). The reactor has the functionality of a biological reactor and allows a monitoring of physico-chemical characteristics such as Eh, pH, electrical conductivity, spectro-photochemical parameters. It also has a capability of percolation through rock cores. It is a first step toward an analogical modeling of interactions between injected CO 2 and deep bio-spheric components. Moreover, a new spectro-photochemical method for monitoring reduced sulfur species has been developed which allows efficient monitoring of sulfate-reducing metabolisms. In the thesis, we have tested four metabolisms relevant to bio-mineralisation or biological assimilation of CO 2 : a reference ureolytic aerobic strain, Bacillus pasteurii, a sulfate-reducing bacterium, Desulfovibrio longus, a sulfate-reducing consortium (DVcons) and an homoacetogenic bacterium, Acetobacterium carbinolicum. In the case of Bacillus pasteurii, which is considered as a model for non photosynthetic prokaryotic carbonate bio-mineralization, we have demonstrated that the biological basification and carbonate bio-mineralization processes can be modelled accurately both analogically and numerically under conditions relevant to deep CO 2 storage, using a synthetic saline groundwater. We have shown that salinity has a positive effect on CO 2 mineral trapping by this bacterium; we have measured the limits of the system in terms of CO 2 pressure and we have shown that the carbonates that nucleate on intracellular calcium phosphates have specific carbon isotope signatures. The studied deep-subsurface strains (Desulfovibrio longus and Acetobacterium carbinolicum) as well as the sulfate-reducing consortium also have capabilities of converting CO 2 into solid carbonates, much less efficient though than in the case of Bacillus pasteurii. However, once inoculated in synthetic saline groundwater and

  12. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, William

    2012-11-30

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  13. Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

    2009-11-01

    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

  14. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  15. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    Science.gov (United States)

    Rosenbauer, R.J.; Koksalan, T.; Palandri, J.L.

    2005-01-01

    Deep-saline aquifers are potential repositories for excess CO2, currently being emitted to the atmosphere from anthropogenic activities, but the reactivity of supercritical CO2 with host aquifer fluids and formation minerals needs to be understood. Experiments reacting supercritical CO2 with natural and synthetic brines in the presence and absence of limestone and plagioclase-rich arkosic sandstone showed that the reaction of CO2-saturated brine with limestone results in compositional, mineralogical, and porosity changes in the aquifer fluid and rock that are dependent on initial brine composition, especially dissolved calcium and sulfate. Experiments reacting CO2-saturated, low-sulfate brine with limestone dissolved 10% of the original calcite and increased rock porosity by 2.6%. Experiments reacting high-sulfate brine with limestone, both in the presence and absence of supercritical CO2, were characterized by the precipitation of anhydrite, dolomitization of the limestone, and a final decrease in porosity of 4.5%. However, based on favorable initial porosity changes of about 15% due to the dissolution of calcite, the combination of CO2 co-injection with other mitigation strategies might help alleviate some of the well-bore scale and formation-plugging problems near the injection zone of a brine disposal well in Paradox Valley, Colorado, as well as provide a repository for CO2. Experiments showed that the solubility of CO2 is enhanced in brine in the presence of limestone by 9% at 25 ??C and 6% at 120 ??C and 200 bar relative to the brine itself. The solubility of CO2 is enhanced also in brine in the presence of arkosic sandstone by 5% at 120 ??C and 300 bar. The storage of CO 2 in limestone aquifers is limited to only ionic and hydraulic trapping. However, brine reacted with supercritical CO2 and arkose yielded fixation and sequestration of CO2 in carbonate mineral phases. Brine desiccation was observed in all experiments containing a discrete CO2 phase

  16. Analysis of Geologic Parameters on the Performance of CO2-Plume Geothermal (CPG) Systems in a Multi-Layered Reservoirs

    Science.gov (United States)

    Garapati, N.; Randolph, J.; Saar, M. O.

    2013-12-01

    CO2-Plume Geothermal (CPG) involves injection of CO2 as a working fluid to extract heat from naturally high permeable sedimentary basins. The injected CO2 forms a large subsurface CO2 plume that absorbs heat from the geothermal reservoir and eventually buoyantly rises to the surface. The heat density of sedimentary basins is typically relatively low.However, this drawback is likely counteracted by the large accessible volume of natural reservoirs compared to artificial, hydrofractured, and thus small-scale, reservoirs. Furthermore, supercritical CO2has a large mobility (inverse kinematic viscosity) and expansibility compared to water resulting in the formation of a strong thermosiphon which eliminates the need for parasitic pumping power requirements and significantly increasing electricity production efficiency. Simultaneously, the life span of the geothermal power plant can be increased by operating the CPG system such that it depletes the geothermal reservoir heat slowly. Because the produced CO2 is reinjected into the ground with the main CO2 sequestration stream coming from a CO2 emitter, all of the CO2 is ultimately geologically sequestered resulting in a CO2 sequestering geothermal power plant with a negative carbon footprint. Conventional geothermal process requires pumping of huge amount of water for the propagation of the fractures in the reservoir, but CPG process eliminates this requirement and conserves water resources. Here, we present results for performance of a CPG system as a function of various geologic properties of multilayered systemsincludingpermeability anisotropy, rock thermal conductivity, geothermal gradient, reservoir depth and initial native brine salinity as well as spacing between the injection and production wells. The model consists of a 50 m thick, radially symmetric grid with a semi-analytic heat exchange and no fluid flow at the top and bottom boundaries and no fluid and heat flow at the lateral boundaries. We design Plackett

  17. Towards the generic conceptual and numerical framework for the simulation of CO 2 sequestration in different types of georeservoirs

    DEFF Research Database (Denmark)

    Görke, Uwe Jens; Taron, Joshua; Singh, Ashok

    2011-01-01

    mathematical models are of similar structure. Thus, the paper is mainly focused on a generic theoretical framework for the coupled processes under consideration. Within this context, CO 2 sequestration in georeservoirs of different type can be simulated (e.g., saline aquifers, (nearly) depleted hydrocarbon...

  18. Analytical solution of geological carbon sequestration under constant pressure injection into a horizontal radial reservoir

    Science.gov (United States)

    Jhang, R.; Liou, T.

    2013-12-01

    Carbon capture and sequestration (CCS) is believed to be an economically feasible technology to mitigate global warming by capturing carbon dioxide (CO2), the major component of greenhouse gases, from the atmosphere and injecting it into deep geological formations.Several mechanisms can help trap CO2 in the pore space of a geological reservoir, stratigraphic and structural trapping, hydrodynamic trapping, and geochemical trapping.Besides these trapping mechanisms, another important issue that deserves careful attention is the risk of CO2 leakage. The common ';constant injection rate' scenario may induce high pressure buildup that will endanger the mechanical integrity as well as the sealing capability of the cap rock. Instead of injecting CO2 at a constant mass rate, CO2 can be injected into the reservoir by fixing the pressure (usually the bottom-hole pressure) in the injection borehole. By doing so, the inevitable pressure buildup associated with the constant injection scheme can be completely eliminated in the constant pressure injection scheme. In this paper, a semi-analytical solution for CO2 injection with constant pressure was developed. For simplicity, structural and geochemical trapping mechanisms were not considered. Therefore, a horizontal reservoir with infinite radial extent was considered. Prior to injection, the reservoir is fully saturated with the formation brine. It is assumed that CO2 does not mix with brine such that a sharp interface is formed once CO2 invades the brine-saturated pores. Because of the density difference between CO2 and brine, CO2 resides above the interface. Additional assumptions were also made when building up the brine and CO2 mass balance equations: (1) both of the fluids and the geological formations are incompressible, (2) capillary pressure is neglected, (3)there is no fluid flow in the vertical direction, and the horizontal flow satisfies the Darcy's law.In order to solve for the height of brine-CO2 interface, the two

  19. Coupled Multi-physics analysis of Caprock Integrity and Fault Reactivation during CO2 Sequestration*

    Science.gov (United States)

    Newell, P.; Martinez, M. J.; Bishop, J.

    2012-12-01

    Structural/stratigraphic trapping beneath a low-permeable caprock layer is the primary trapping mechanism for long-term subsurface sequestration of CO2. Pre-existing fracture networks, injection induced fractures, and faults are of concern for possible CO2 leakage both during and after injection. In this work we model the effects of both caprock jointing and a fault on the caprock sealing integrity during various injection scenarios. The modeling effort uses a three-dimensional finite-element based coupled multiphase flow and geomechanics simulator. The joints within the caprock are idealized as equally spaced and parallel. Both the mechanical and flow behavior of the joint network are treated within an effective continuum formulation. The mechanical behavior of the joint network is linear elastic in shear and nonlinear elastic in the normal direction. The flow behavior of the joint network is treated using the classical cubic-law relating flow rate and aperture. The flow behavior is then upscaled to obtain an effective permeability. The fault is modeled as a finite-thickness layer with multiple joint sets. The joint sets within the fault region are modeled following the same mechanical and flow formulation as the joints within the caprock. Various injection schedules as well as fault and caprock jointing configurations within a proto-typical sequestration site have been investigated. The resulting leakage rates through the caprock and fault are compared to those assuming intact material. The predicted leakage rates are a strong nonlinear function of the injection rate. *This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of

  20. CO2 capture by biomimetic adsorption: enzyme mediated co2 absorption for post-combustion carbon sequestration and storage process

    NARCIS (Netherlands)

    Russo, M.E.; Olivieri, G.; Salatino, P.; Marzocchella, A.

    2013-01-01

    The huge emission of greenhouse gases from fossil-fuelled power plants is emphasizing the need for efficient Carbon Capture and Storage (CCS) technologies. The biomimetic CO2 absorption in aqueous solutions has been recently investigated as a promising innovative alternative for post-combustion CCS.

  1. Exergy Analysis of a Syngas-Fueled Combined Cycle with Chemical-Looping Combustion and CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Álvaro Urdiales Montesino

    2016-08-01

    Full Text Available Fossil fuels are still widely used for power generation. Nevertheless, it is possible to attain a short- and medium-term substantial reduction of greenhouse gas emissions to the atmosphere through a sequestration of the CO2 produced in fuels’ oxidation. The chemical-looping combustion (CLC technique is based on a chemical intermediate agent, which gets oxidized in an air reactor and is then conducted to a separated fuel reactor, where it oxidizes the fuel in turn. Thus, the oxidation products CO2 and H2O are obtained in an output flow in which the only non-condensable gas is CO2, allowing the subsequent sequestration of CO2 without an energy penalty. Furthermore, with shrewd configurations, a lower exergy destruction in the combustion chemical transformation can be achieved. This paper focus on a second law analysis of a CLC combined cycle power plant with CO2 sequestration using syngas from coal and biomass gasification as fuel. The key thermodynamic parameters are optimized via the exergy method. The proposed power plant configuration is compared with a similar gas turbine system with a conventional combustion, finding a notable increase of the power plant efficiency. Furthermore, the influence of syngas composition on the results is investigated by considering different H2-content fuels.

  2. Well materials durability in case of carbon dioxide and hydrogen sulphide geological sequestration

    International Nuclear Information System (INIS)

    Jacquemet, N.

    2006-01-01

    The geological sequestration of carbon dioxide (CO 2 ) and hydrogen sulphide (H 2 S) is a promising solution for the long-term storage of these undesirable gases. It consists in injecting them via wells into deep geological reservoirs. The steel and cement employed in the well casing can be altered and provide pathways for leakage with subsequent human and environmental consequences. The materials ageing was investigated by laboratory experiments in geologically relevant P-T conditions. A new experimental and analysis procedure was designed for this purpose. A numerical approach was also done. The cement and steel were altered in various fluid phases at 500 bar-120 C and 500 bar-200 C: a brine, a brine saturated with H 2 S-CO 2 , a mixture of brine saturated with H 2 S-CO 2 and of supercritical H 2 S-CO 2 phase, a dry supercritical H 2 S-CO 2 phase without liquid water. In all cases, two distinct reactions are observed: the cement carbonation by the CO 2 and the steel sulfidation by the H 2 S. The carbonation and sulfidation are respectively maximal and minimal when they occur within the dry supercritical phase without liquid water. The textural and porosity properties of the cement are weakly affected by all the treatments at 120 C. The porosity even decreases in presence of H 2 S-CO 2 . But these properties are affected at 200 C when liquid water is present in the system. At this temperature, the initial properties are only preserved or improved by the treatments within the dry supercritical phase. The steel is corroded in all cases and thus is the vulnerable material of the wells. (author)

  3. A data driven model for the impact of IFT and density variations on CO2 sequestration in porous media

    Science.gov (United States)

    Nomeli, Mohammad; Riaz, Amir

    2017-11-01

    CO2 storage in geological formations is one of the most promising solutions for mitigating the amount of greenhouse gases released into the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. A novel model is proposed to find the IFT of the systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a machine learning-assisted modeling of experimental data. The IFT between mineral surfaces and CO2/brine-salt solutions determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity are improved with reservoir depth.

  4. Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production

    Science.gov (United States)

    Ansari, Abeera A.; Khoja, Asif Hussain; Nawar, Azra; Qayyum, Muneeb; Ali, Ehsan

    2017-11-01

    Currently, the scientific community is keenly working on environmental-friendly processes for the production of clean energy and sustainable development. The study was conducted to cultivate microalgae in raw institutional wastewater for water treatment, enriched production of biomass and CO2 sequestration. The strains which were used in this study are Scenedesmus sp. and Chlorella sp. which were isolated from Kallar Kahar Lake, Pakistan. Both strains were cultivated in synthetic growth medium (Bold's Basal Medium) to enhance biomass production. Afterward, microalgae cultures were inoculated in wastewater sample in mixotrophic mode under ambient conditions. The impurities in wastewater were successfully removed from the original sample by the 7th day of operation. COD 95%, nitrate 99.7% and phosphate 80.5% were removed by applying Scenedesmus sp. Meanwhile, Chlorella sp. reduced 84.86% COD, 98.2% nitrate and 70% phosphate, respectively. Interestingly, sulfates were removed from wastewater completely by both strains. Besides being useful in wastewater remediation, these microalgae strains were subsequently harvested for lipid extraction and potential biofuel production was determined. Therefore, the applied method is an environmentally safe, cost-effective and alternative technology for wastewater treatment. Furthermore, the achieved biomass through this process can be used for the production of biofuels.

  5. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration.

    Science.gov (United States)

    Cárdenas-Escudero, C; Morales-Flórez, V; Pérez-López, R; Santos, A; Esquivias, L

    2011-11-30

    Industrial wet phosphoric acid production in Huelva (SW Spain) has led to the controversial stockpiling of waste phosphogypsum by-products, resulting in the release of significant quantities of toxic impurities in salt marshes in the Tinto river estuary. In the framework of the fight against global climate change and the effort to reduce carbon dioxide emissions, a simple and efficient procedure for CO(2) mineral sequestration is presented in this work, using phosphogypsum waste as a calcium source. Our results demonstrate the high efficiency of portlandite precipitation by phosphogypsum dissolution using an alkaline soda solution. Carbonation experiments performed at ambient pressure and temperature resulted in total conversion of the portlandite into carbonate. The fate of trace elements present in the phosphogypsum waste was also investigated, and trace impurities were found to be completely transferred to the final calcite. We believe that the procedure proposed here should be considered not only as a solution for reducing old stockpiles of phosphogypsum wastes, but also for future phosphoric acid and other gypsum-producing industrial processes, resulting in more sustainable production. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Environmental non-government organizations' perceptions of geologic sequestration

    International Nuclear Information System (INIS)

    Wong-Parodi, Gabrielle; Ray, Isha; Farrell, Alexander E

    2008-01-01

    Environmental non-governmental organizations (NGOs) have been influential in shaping public perceptions of environmental problems, their causes and potential solutions. Over the last decade, carbon capture and storage (CCS) has emerged as a potentially important technological response to climate change. In this paper we investigate how leading US NGOs perceive geologic sequestration, a potentially controversial part of CCS. We examine how and why their perceptions and strategies might differ, and if and how they plan to shape public perceptions of geologic sequestration. We approach these questions through semi-structured interviews with representatives from a range of NGOs, supplemented by content analysis of their documents. We find that while all the NGOs are committed to combating climate change, their views on CCS as a mitigation strategy vary considerably. We find that these views are correlated with NGOs' histories of activism and advocacy, as well as with their sources of funding. Overall, most of these NGOs accept the necessity of geologic sequestration, while only a small fraction do not

  7. Limitation of the CO2 emissions to fight the climatic change. Challenges, prevention at the source and sequestration

    International Nuclear Information System (INIS)

    Audibert, N.

    2003-01-01

    In the framework of a climatic change the CO 2 capture and sequestration is considered as an possible way of greenhouse effect gases impact decrease. Meanwhile many other actions in the energy production and consumption must also be implemented. The aim of this study is to offer a global aspect of the problem and a synthesis of bibliographic elements. The first part presents the context of the climatic change, the economical and political aspects. The second deals more specially with the actions possibilities, the energy recovery, the carbon sequestration. (A.L.B.)

  8. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    Energy Technology Data Exchange (ETDEWEB)

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T

  9. Modeling Kinetics of CO2 (Carbon Dioxide Mineral Sequestration in Heterogeneous Aqueous Suspensions Systems of Cement Dust

    Directory of Open Access Journals (Sweden)

    Henryk Świnder

    2013-01-01

    Full Text Available The necessity to reduce CO2 emission in the environment has encouraged people to search for solutions for its safe capture and storage. Known methods for carbon dioxide mineral sequestration are based primarily on the use of its binding reaction with metal oxides, mainly earth metals. Increasingly important, due to the availability and price, are processes based on the suspension of various wastes such as fly ash, cement dust or furnace slag. Due to the complexity of the mineral sequestration of CO2 in water-waste suspensions, an important issue is to determine the reaction mechanisms. This applies mainly to the initial period of the transformation phase of mineral wastes, and consequently with the occurrence of a number of transition states of ionic equilibria. The mechanisms and reaction rates in the various stages of the process of CO2 mineral sequestration in heterogeneous systems containing selected wastes are defined herein. This paper presents a method of modeling kinetics of this type of process, developed on the basis of the results of the absorption of CO2 thanks to the aqueous suspension of fly ash and cement dust. This allowed for the transfer of obtained experimental results into the mathematical formula, using the invariant function method, used to describe the processes.

  10. 75 FR 18575 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-04-12

    ...: Injection and Geologic Sequestration of Carbon Dioxide; Proposed Rule #0;#0;Federal Register / Vol. 75 , No...: Injection and Geologic Sequestration of Carbon Dioxide AGENCY: Environmental Protection Agency (EPA). ACTION.... \\4\\ DOE. 2008. Carbon Sequestration Atlas of the United States and Canada (Atlas II). Available at...

  11. Reduction of emissions and geological storage of CO2. Innovation an industrial stakes

    International Nuclear Information System (INIS)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B.

    2005-01-01

    An international symposium on the reduction of emissions and geological storage of CO 2 was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO 2 emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO 2 and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO 2 emissions. The global and regional scenarios: Alternative scenarios for energy use and CO 2 emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO 2 emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO 2 emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO 2 capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO 2 emission reductions in the energy and transport sectors. Reducing CO 2 emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO 2 emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO 2 emissions in the transport sector: Sustainable transport systems by P. Wiederkehr (EST International), The prospects for reducing

  12. ULtimateCO2 : A FP7 European project dedicated to the understanding of the long term fate of geologically stored CO2

    NARCIS (Netherlands)

    Audigane, P.; Brown, S.; Dimier, A.; Frykman, P.; Gherardi, F.; Gallo, Y.L.; Maurand, N.; Cremer, H.; Pearce, J.; Rütters, H.; Spiers, C.; Yalamas, T.

    2013-01-01

    ULTimateCO2 will assess the long-term CO2 storage behaviour in terms of efficiency and security. The project is dedicated to studying the main physical processes needed to develop a better, quantitative understanding of the longterm geological storage of CO2, namely: (i) reservoir trapping, (ii)

  13. State and Regional Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Durrant, Marie [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  14. Recovery Act: Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Domenico

    2013-05-31

    The main objective of this project is to provide training opportunities for two graduate students in order to improve the human capital and skills required for implementing and deploying carbon capture and sequestration (CCS) technologies. The graduate student effort will be geared towards the formulation and implementation of an integrated simulation-optimization framework to provide a rigorous scientific support to the design CCS systems that, for any given site: (a) maximize the amount of carbon storage; (b) minimize the total cost associated with the CCS project; (c) minimize the risk of CO2 upward leakage from injected formations. The framework will stem from a combination of data obtained from geophysical investigations, a multiphase flow model, and a stochastic multi-objective optimization algorithm. The methodology will rely on a geostatistical approach to generate ensembles of scenarios of the parameters that are expected to have large sensitivities and uncertainties on the model response and thus on the risk assessment, in particular the permeability properties of the injected formation and its cap rock. The safety theme will be addressed quantitatively by including the risk of CO2 upward leakage from the injected formations as one the objectives that should be minimized in the optimization problem. The research performed under this grant is significant to academic researchers and professionals weighing the benefits, costs, and risks of CO2 sequestration. Project managers in initial planning stages of CCS projects will be able to generate optimal tradeoff surfaces and with corresponding injection plans for potential sequestration sites leading to cost efficient preliminary project planning. In addition, uncertainties concerning CCS have been researched. Uncertainty topics included Uncertainty Analysis of Continuity of Geological Confining Units using Categorical Indicator Kriging (CIK) and the Influence of Uncertain Parameters on the Leakage of CO2 to

  15. Capture and geological storage of CO2. Innovation, industrial stakes and realizations

    International Nuclear Information System (INIS)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th.

    2007-01-01

    : the ULCOS program; CO 2 capture technologies: road-maps and potential cost abatement; membranes: oxygen production and hydrogen separation; CO2GeoNet: integration of European research for the establishment of confidence in CO 2 geologic storage; CO2SINK, CO 2 geologic storage test at the European pilot site of Ketzin (Germany); storage in aquifers for European industrial projects: AQUA CO2; the US approach: US standards for the qualification of a CO 2 storage in agreement with federal and state regulations; legal and regulatory aspects; societal acceptation; CO 2 capture, geologic storage and carbon market; economic aspects of CO 2 capture and storage; an experience of implementation of 'clean development mechanisms' in an industrial strategy; closing talk. (J.S.)

  16. Hydrothermal Valorization of Steel Slags—Part I: Coupled H2 Production and CO2 Mineral Sequestration

    Directory of Open Access Journals (Sweden)

    Camille Crouzet

    2017-10-01

    Full Text Available A new process route for the valorization of BOF steel slags combining H2 production and CO2 mineral sequestration is investigated at 300°C (HT under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and PCO2 on a time-resolved basis. CO2 uptake under RT and HT are, respectively, 243 and 327 kg CO2/t of fresh steel slag, which add up with the 63 kg of atmospheric CO2 per ton already uptaken by the starting steel slag on the storage site. The CO2 gained by the sample at HT is bounded to the carbonation of brownmillerite. H2 yield decreased by about 30% in comparison to the same experiment performed without added CO2, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO2-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO2 partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1 RT carbonation prior to hydrothermal oxidation, (2 RT carbonation after hydrothermal treatment, and (3 combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  17. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  18. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping

    2014-03-24

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  19. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2

    International Nuclear Information System (INIS)

    Fernandez Bertos, M.; Simons, S.J.R.; Hills, C.D.; Carey, P.J.

    2004-01-01

    Moist calcium silicate minerals are known to readily react with carbon dioxide (CO 2 ). The reaction products can cause rapid hardening and result in the production of monolithic materials. Today, accelerated carbonation is a developing technology, which may have potential for the treatment of wastes and contaminated soils and for the sequestration of CO 2 , an important greenhouse gas. This paper reviews recent developments in this emerging technology and provides information on the parameters that control the process. The effects of the accelerated carbonation reaction on the solid phase are discussed and future potential applications of this technology are also considered

  20. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    DEFF Research Database (Denmark)

    Patil, Ravi; Colls, Jeremy J; Steven, Michael D

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response...... detection field facility developed at the University of Nottingham was used to inject CO2 gas at a controlled flow rate (1 l min-1) into soil to simulate build-up of soil CO2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO2...

  1. On CO2 Behavior in the Subsurface, Following Leakage from aGeologic Storage Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten

    2006-02-09

    The amounts of CO2 that would need to be injected intogeologic storage reservoirs to achieve a significant reduction ofatmospheric emissions are very large. A 1000 MWe coal-fired power plantemits approximately 30,000 tonnes of CO2 per day, 10 Mt per year(Hitchon, 1996). When injected underground over a typical lifetime of 30years of such a plant, the CO2 plume may occupy a large area of order 100km2 or more, and fluid pressure increase in excess of 1 bar(corresponding to 10 m water head) may extend over an area of more than2,500 km2 (Pruess, et al., 2003). The large areal extent expected for CO2plumes makes it likely that caprock imperfections will be encountered,such as fault zones or fractures, which may allow some CO2 to escape fromthe primary storage reservoir. Under most subsurface conditions oftemperature and pressure, CO2 is buoyant relative to groundwaters. If(sub-)vertical pathways are available, CO2 will tend to flow upward and,depending on geologic conditions, may eventually reach potablegroundwater aquifers or even the land surface. Leakage of CO2 could alsooccur along wellbores, including pre-existing and improperly abandonedwells, or wells drilled in connection with the CO2 storage operations.The pressure increases accompanying CO2 injection will give rise tochanges in effective stress that could cause movement along faults,increasing permeability and potential for leakage.Escape of CO2 from aprimary geologic storage reservoir and potential hazards associated withits discharge at the land surface raise a number of concerns, including(1) acidification of groundwater resources, (2) asphyxiation hazard whenleaking CO2 is discharged at the land surface, (3) increase inatmospheric concentrations of CO2, and (4) damage from a high-energy,eruptive discharge (if such discharge is physically possible). In orderto gain public acceptance for geologic storage as a viable technology forreducing atmospheric emissions of CO2, it is necessary to address theseissues

  2. Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2007-05-31

    Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

  3. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Science.gov (United States)

    Plaksina, Tatyana; Kanfar, Mohammed

    2017-11-01

    With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3) approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  4. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Directory of Open Access Journals (Sweden)

    Plaksina Tatyana

    2017-01-01

    Full Text Available With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3 approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  5. Responses of Mycorrhizal Symbioses to Deliberate Leaks from AN Experimental CO2 Sequestration Field: the Zert Site

    Science.gov (United States)

    Apple, M. E.; Rowe, J. O.; Zhou, X.; Jewell, S.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2012-12-01

    Carbon sequestration is a means of reducing the concentration of atmospheric CO2 . It is important to monitor carbon sequestration fields for surface detection of possible leaks of CO2 . At The Zero Emissions Research Technology (ZERT) site, CO2 is injected at 0.15 tonnes/day increased to 0.3 tonnes/day into the soil through a shallow horizontal injection well with deliberate zones of leaking CO2 , which wells up through the soil and reaches concentrations of 16% w/v. The ZERT site is an experimental facility designed for developing means of surface detection of leaking CO2 and for determining the responses of plants to very high soil CO2 . Within 1 - 2 weeks of CO2 injections, dandelions and grasses begin to form circular zones of leaf dieback called hot spots. While the hotspots are visually apparent, the responses of the underground mycorrhizal symbioses to very high soil CO2 at the ZERT site are as yet undetermined. To examine the effects of leaking CO2 on mycorrhizae, we collected soil and root samples between and at the hotspots before CO2 was injected, then inoculated the rhizosphere with mycorrhizal inoculum containing spores of Glomus and Gigaspora sp., and resampled the soil and roots after three weeks of CO2 injection. We then evaluated the samples for percent mycorrhizal colonization via the line-intercept method in cleared roots in which fungal structures were stained with India-ink. Plants with mycorrhizal fungi benefit by improved P uptake, so we hypothesize that where plants have increased anthocyanin production, a symptom of P deficiency, mycorrhizal colonization would be reduced. In previous summers of the ZERT experiments, leaves have turned red/purple with CO2 exposure, and as of August, 2012, current year leaves appear to have increased anthocyanin above hotspots. Plant roots exude organic carbon into the soil, where it is used by mycorrhizal fungi. Mycorrhizal symbioses are key in the carbon dynamics of soil and in linking the above and below

  6. Impact of organic pig production systems on CO2 emission, C sequestration and nitrate pollution

    DEFF Research Database (Denmark)

    Halberg, Niels; Hermansen, John Erik; Kristensen, Ib Sillebak

    2010-01-01

    these had an estimated net soil carbon sequestration. When carbon sequestration was included in the LCA then the organic systems had lower greenhouse gas emissions compared with conventional pig production. Eutrophication in nitrate equivalents per kg pig was 21-65% higher in the organic pig systems...

  7. Short Term CO2 Enrichment Increases Carbon Sequestration of Air-Exposed Intertidal Communities of a Coastal Lagoon

    Directory of Open Access Journals (Sweden)

    Amrit K. Mishra

    2018-01-01

    Full Text Available In situ production responses of air-exposed intertidal communities under CO2 enrichment are reported here for the first time. We assessed the short-term effects of CO2 on the light responses of the net community production (NCP and community respiration (CR of intertidal Z. noltei and unvegetated sediment communities of Ria Formosa lagoon, when exposed to air. NCP and CR were measured in situ in summer and winter, under present and CO2 enriched conditions using benthic chambers. Within chamber CO2 evolution measurements were carried out by a series of short-term incubations (30 min using an infra-red gas analyser. Liner regression models fitted to the NCP-irradiance responses were used to estimate the seasonal budgets of air-exposed, intertidal production as determined by the daily and seasonal variation of incident photosynthetic active radiation. High CO2 resulted in higher CO2 sequestration by both communities in both summer and winter seasons. Lower respiration rates of both communities under high CO2 further contributed to a potential negative climate feedback, except in winter when the CR of sediment community was higher. The light compensation points (LCP (light intensity where production equals respiration of Z. noltei and sediment communities also decreased under CO2 enriched conditions in both seasons. The seasonal community production of Z. noltei was 115.54 ± 7.58 g C m−2 season−1 in summer and 29.45 ± 4.04 g C m−2 season−1 in winter and of unvegetated sediment was 91.28 ± 6.32 g C m−2 season−1 in summer and 25.83 ± 4.01 g C m−2 season−1 in winter under CO2 enriched conditions. Future CO2 conditions may increase air-exposed seagrass production by about 1.5-fold and unvegetated sediments by about 1.2-fold.

  8. Tagging CO2 to Enable Quantitative Inventories of Geological Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Klaus; Matter, Juerg; Park, Ah-Hyung; Stute, Martin; Carson, Cantwell; Ji, Yinghuang

    2014-06-30

    In the wake of concerns about the long term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. Our project aimed to demonstrate the feasibility of a system designed to tag CO2 with carbon isotope 14C immediately prior to sequestration to a level that is normal on the surface (one part per trillion). Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon from anthropogenic injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we have developed a 14C tagging system suitable for use at the part-per-trillion level. This system consists of a gas-exchange apparatus to make disposable cartridges ready for controlled injection into a fast flowing stream of pressurized CO2. We built a high-pressure injection and tagging system, and a 14C detection system. The disposable cartridge and injection system have been successfully demonstrated in the lab with a high-pressure flow reactor, as well as in the field at the CarbFix CO2 sequestration site in Iceland. The laser-based 14C detection system originally conceived has been shown to possess inadequate sensitivity for ambient levels. Alternative methods for detecting 14C, such as saturated cavity absorption ringdown spectroscopy and scintillation counting, may still be suitable. KEYWORDS

  9. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    NARCIS (Netherlands)

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane.

  10. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.

    Science.gov (United States)

    Franks, Peter J; Beerling, David J

    2009-06-23

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.

  11. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time

    Science.gov (United States)

    Franks, Peter J.; Beerling, David J.

    2009-01-01

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO2 between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO2 (gcmax) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO2, the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO2 over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest gcmax values required to counter CO2“starvation” at low atmospheric CO2 concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO2 impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO2 regimes. Selection for small S was crucial for attaining high gcmax under falling atmospheric CO2 and, therefore, may represent a mechanism linking CO2 and the increasing gas-exchange capacity of land plants over geologic time. PMID:19506250

  12. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    quantify leakages from the subsurface, to improve storage efficiency, and for other storage characterizations [5-8]. In this presentation, the latest regulatory and methodological updates are provided regarding atmospheric monitoring of the injected CO2 behavior using flux stations. These include 2013 improvements in methodology, as well as the latest literature, including regulatory documents for using the method and step-by-step instructions on implementing it in the field. Updates also include 2013 development of a fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CO2 emission rates in a similar manner as a standard weather station outputs weather parameters. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [8] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia, 40C: 329-336; 2013.

  13. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Davidson, Eric [Univ. of Arizona, Tucson, AZ (United States); Finzi, Adrien [Boston Univ., MA (United States); Wehr, Richdard [Harvard Univ., Cambridge, MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States)

    2016-01-28

    1. Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2). 2. Highlights Accomplishments: • Our isotopic eddy flux record has completed its 5th full year and has been used to independently estimate ecosystem-scale respiration and photosynthesis. • Soil surface chamber isotopic flux measurements were carried out during three growing seasons, in conjunction with a trenching manipulation. Key findings to date (listed by objective): A. Partitioning of Net Ecosystem Exchange: 1. Ecosystem respiration is lower during the day than at night—the first robust evidence of the inhibition of leaf respiration by light (the “Kok effect”) at the ecosystem scale. 2. Because it neglects the Kok effect, the standard NEE partitioning approach overestimates ecosystem photosynthesis (by ~25%) and

  14. On leakage and seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  15. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    OpenAIRE

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane. For every two molecules of CO2 injected, roughly one molecule of methane is produced. The work included an investigation of the potential CBM reserves in the Dutch underground and the related CO2 s...

  16. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR

  17. Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

    International Nuclear Information System (INIS)

    Jo, Ho Young; Ahn, Joon-Hoon; Jo, Hwanju

    2012-01-01

    Highlights: ► A conceptual in-situ mineral carbonation method using a coal ash pond is proposed. ► CO 2 uptake occurred by carbonation reaction of CO 2 with Ca 2+ ions from coal fly ash. ► The CO 2 sequestration capacity was affected by the solid dosage. ► Seawater can be used as a solvent for mineral carbonation of coal fly ash. - Abstract: An in-situ CO 2 sequestration method using coal ash ponds located in coastal regions is proposed. The CO 2 sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100–330 g/L, CO 2 flow rate: 20–80 mL/min, solvent type: deionized (DI) water, 1 M NH 4 Cl solution, and seawater). The CO 2 sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO 2 sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO 2 flow rate. A 1 M NH 4 Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO 2 sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO 2 /g CFA under the test conditions (solid dosage: 333 g/L, CO 2 flow rate: 40 mL/min, and solvent: seawater).

  18. A Machine-Learning and Filtering Based Data Assimilation Framework for Geologic Carbon Sequestration Monitoring Optimization

    Science.gov (United States)

    Chen, B.; Harp, D. R.; Lin, Y.; Keating, E. H.; Pawar, R.

    2017-12-01

    Monitoring is a crucial aspect of geologic carbon sequestration (GCS) risk management. It has gained importance as a means to ensure CO2 is safely and permanently stored underground throughout the lifecycle of a GCS project. Three issues are often involved in a monitoring project: (i) where is the optimal location to place the monitoring well(s), (ii) what type of data (pressure, rate and/or CO2 concentration) should be measured, and (iii) What is the optimal frequency to collect the data. In order to address these important issues, a filtering-based data assimilation procedure is developed to perform the monitoring optimization. The optimal monitoring strategy is selected based on the uncertainty reduction of the objective of interest (e.g., cumulative CO2 leak) for all potential monitoring strategies. To reduce the computational cost of the filtering-based data assimilation process, two machine-learning algorithms: Support Vector Regression (SVR) and Multivariate Adaptive Regression Splines (MARS) are used to develop the computationally efficient reduced-order-models (ROMs) from full numerical simulations of CO2 and brine flow. The proposed framework for GCS monitoring optimization is demonstrated with two examples: a simple 3D synthetic case and a real field case named Rock Spring Uplift carbon storage site in Southwestern Wyoming.

  19. Transport of Perfluorocarbon Tracers in the Cranfield Geological Carbon Sequestration Project

    Science.gov (United States)

    Moortgat, J.; Soltanian, M. R.; Amooie, M. A.; Cole, D. R.; Graham, D. E.; Pfiffner, S. M.; Phelps, T.

    2017-12-01

    A field-scale carbon dioxide (CO2) injection pilot project was conducted by the Southeast Regional Sequestration Partnership (SECARB) at Cranfield, Mississippi. Two associated campaigns in 2009 and 2010 were carried out to co-inject perfluorocarbon tracers (PFTs) and sulfur hexafluoride (SF6) with CO2. Tracers in gas samples from two observation wells were analyzed to construct breakthrough curves. We present the compiled field data as well as detailed numerical modeling of the flow and transport of CO2, brine, and introduced tracers. A high-resolution static model of the formation geology in the Detailed Area Study (DAS) was used in order to capture the impact of connected flow pathways created by fluvial channels on breakthrough curves and breakthrough times of PFTs and SF6 tracers. We use the cubic-plus-association (CPA) equation of state, which takes into account the polar nature of water molecules, to describe the phase behavior of CO2-brine-tracer mixtures. We show how the combination of multiple tracer injection pulses with detailed numerical simulations provide a powerful tool in constraining both formation properties and how complex flow pathways develop over time.

  20. Environmental considerations for subseabed geological storage of CO2: A review

    Science.gov (United States)

    Carroll, A. G.; Przeslawski, R.; Radke, L. C.; Black, J. R.; Picard, K.; Moreau, J. W.; Haese, R. R.; Nichol, S.

    2014-07-01

    Many countries are now using or investigating offshore geological storage of CO2 as a means to reduce atmospheric CO2 emissions. Although associated research often focuses on deep-basin geology (e.g. seismic, geomagnetics), environmental data on the seabed and shallow subseabed is also crucial to (1) detect and characterise potential indicators of fluid seeps and their potential connectivity to targeted storage reserves, (2) obtain baseline environmental data for use in future monitoring, and (3) acquire information to facilitate an improved understanding of ecosystem processes for use in impact prediction. This study reviews the environmental considerations, including potential ecological impacts, associated with subseabed geological storage of CO2. Due to natural variations in CO2 levels in seafloor sediments, baseline CO2 measurements and knowledge of physical-chemical processes affecting the regional distribution of CO2 and pH are critical for the design of appropriate monitoring strategies to assess potential impacts of CO2 seepage from subseabed storage reservoirs. Surficial geological and geophysical information, such as that acquired from multibeam sonar and sub-bottom profiling, can be used to investigate the connectivity between the deep reservoirs and the surface, which is essential in establishing the reservoir containment properties. CO2 leakage can have a pronounced effect on sediments and rocks which in turn can have carryover effects to biogeochemical cycles. The effects of elevated CO2 on marine organisms are variable and species-specific but can also have cascading effects on communities and ecosystems, with marine benthic communities at some natural analogue sites (e.g. volcanic vents) showing decreased diversity, biomass, and trophic complexity. Despite their potential applications, environmental surveys and data are still not a standard and integral part of subseabed CO2 storage projects. However, the habitat mapping and seabed characterisation

  1. Deriving Geomechanical Constraints from Microseismic Monitoring Demonstrated with Data from the Decatur CO2 Sequestration Site

    Science.gov (United States)

    Goertz-Allmann, B. P.; Oye, V.

    2015-12-01

    The occurrence of induced and triggered microseismicity is of increasing concern to the general public. The underlying human causes are numerous and include hydrocarbon production and geological storage of CO2. The concerns of induced seismicity are the potential hazards from large seismic events and the creation of fluid pathways. However, microseismicity is also a unique tool to gather information about real-time changes in the subsurface, a fact generally ignored by the public. The ability to detect, locate and characterize microseismic events, provides a snapshot of the stress conditions within and around a geological reservoir. In addition, data on rapid stress changes (i.e. microseismic events) can be used as input to hydro-mechanical models, often used to map fluid propagation. In this study we investigate the impact of microseismic event location accuracy using surface seismic stations in addition to downhole geophones. Due to signal-to-noise conditions and the small magnitudes inherent in microseismicity, downhole systems detect significantly more events with better precision of phase arrival times than surface networks. However, downhole systems are often limited in their ability to obtain large enough observational apertures required for accurate locations. We therefore jointly locate the largest microseismic events using surface and downhole data. This requires careful evaluation in the weighting of input data when inverting for the event location. For the smaller events only observed on the downhole geophones, we define event clusters using waveform cross-correlation methods. We apply this methodology to microseismic data collected in the Illinois Basin-Decatur Project. A previous study revealed over 10,000 events detected by the downhole sensors. In our analysis, we include up to 12 surface sensors, installed by the USGS. The weighting scheme for this assembly of data needs to take into account significant uncertainties in the near-surface velocity

  2. Use of comparative assessment framework for comparison of geological nuclear waste and CO2 disposal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia

    2010-09-15

    Comparative assessment of few future energy and climate change mitigation options for Lithuania in 2020 performed indicated that nuclear and combined cycle gas turbine technologies are very similar energy options in terms of costs taking into account GHG emission reduction costs. Comparative assessment of these energy options requires evaluation of the potentials and costs for geological CO2 and nuclear waste storage as the main uncertainties in comparative assessment of electricity generation technologies are related with these back-end technologies. The paper analyses the main characteristics of possible geological storage of CO2 and NW options in Lithuania.

  3. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the

  4. PICOREF: carbon sequestration in geological reservoirs in France.Map of the unknown ''ground motion''. Final report

    International Nuclear Information System (INIS)

    Rohmer, J.; Lembezat, C.

    2006-01-01

    in the framework of the PICOREF project, ''CO 2 sequestration in geological reservoirs in France'', two main objectives are decided: the characterization of french adapted sites and the redaction of a document to ask for the storage authorization, including a methodology to survey and study the storage site. This report aims to define the unknown ground motion which the impact should present a risk for the surface installations. The project is presented, as the geological context and the proposed methodology. (A.L.B.)

  5. Comprehensive analysis of pipeline transportation systems for CO2 sequestration. Thermodynamics and safety problems

    International Nuclear Information System (INIS)

    Witkowski, Andrzej; Rusin, Andrzej; Majkut, Mirosław; Rulik, Sebastian; Stolecka, Katarzyna

    2013-01-01

    Highlights: • Comprehensive analysis of the efficiency and safety strategies of transport CO 2 . • Selection of safety zones around pipelines transporting CO 2 . • Optimization of CO 2 pipeline transportation conditions. - Abstract: The aim of this paper is to analyze CO 2 compression and transportation processes with safety issues for post-combustion CO 2 capture applications for basic technological concepts of a 900 MW pulverized coal-fired power plant. Four various types of compressors including a conventional multistage centrifugal compressor, an integrally geared centrifugal compressor, a supersonic shock wave compressor, and pump machines were used. This study emphasizes that total compression power is a strong function of the thermodynamic process and is not only determined by the compressor efficiency. The compressor increases the CO 2 pressure from normal pressure to critical pressure and the boosting pump continues to increase the pressure to the required pressure for the pipeline inlet. Another problem analyzed in this study is the transport of CO 2 by pipeline from the compressor outlet site to the disposal site under heat transfer conditions. Simulations were made to determine maximum safe pipeline distance to subsequent booster stations depending on inlet pressure, environmental temperature, the thermal insulation thickness and the ground level heat transfer conditions. From the point of view of environmental protection, the most important problem is to identify the hazards which indirectly affect CO 2 transportation in a strict and reliable manner. This identification is essential for effective hazard management. A failure of pipelines is usually caused by corrosion, material defects, ground movement or third party interference. After the rupture of the pipeline transporting liquid CO 2 , a large pressure drop will occur. The pressure will continue to fall until the liquid becomes a mixture of saturated vapour/liquid. In the vicinity of the

  6. FY12 ARRA-NRAP Report – Studies to Support Risk Assessment of Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Shao, Hongbo; Thompson, C. J.; Zhong, Lirong; Jung, Hun Bok; Um, Wooyong

    2011-09-27

    This report summarizes results of research conducted during FY2012 to support the assessment of environmental risks associated with geologic carbon dioxide (CO2) sequestration and storage. Several research focus areas are ongoing as part of this project. This includes the quantification of the leachability of metals and organic compounds from representative CO2 storage reservoir and caprock materials, the fate of metals and organic compounds after release, and the development of a method to measure pH in situ under supercritical CO2 (scCO2) conditions. Metal leachability experiments were completed on 6 different rock samples in brine in equilibrium with scCO2 at representative geologic reservoir conditions. In general, the leaching of RCRA metals and other metals of concern was found to be limited and not likely to be a significant issue (at least, for the rocks tested). Metals leaching experiments were also completed on 1 rock sample with scCO2 containing oxygen at concentrations of 0, 1, 5, and 10% to simulate injection of CO2 originating from the oxy-fuel combustion process. Significant differences in the leaching behavior of certain metals were observed when oxygen is present in the CO2. These differences resulted from oxidation of sulfides, release of sulfate, ferric iron and other metals, and subsequent precipitation of iron oxides and some sulfates such as barite. Experiments to evaluate the potential for mobilization of organic compounds from representative reservoir materials and cap rock and their fate in porous media (quartz sand) have been conducted. Results with Fruitland coal and Gothic shale indicate that lighter organic compounds were more susceptible to mobilization by scCO2 compared to heavier compounds. Alkanes demonstrated very low extractability by scCO2. No significant differences were observed between the extractability of organic compounds by dry or water saturated scCO2. Reaction equilibrium appears to have been reached by 96 hours. When

  7. Mineral CO2 sequestration in basalts and ultra-basic rocks: impact of secondary silicated phases on the carbonation process

    International Nuclear Information System (INIS)

    Sissmann, Olivier

    2013-01-01

    The formation of carbonates constitutes a stable option for carbon dioxide (CO 2 ) geological sequestration, and is prone to play a significant role in reducing emissions of anthropic origin. However, our comprehension of the carbonation mechanism, as well as of the kinetics limitations encountered during this chemical reaction, remains poorly developed. Though there is a large number of studies focusing on the dissolution kinetics of basic silicates and on the precipitation of carbonates, few have inquired about the impact that the formation of non-carbonated secondary phases can have on these reaction's kinetics. It is the approach chosen here, as only solid knowledge of the global carbonation mechanism can make this process predictive and efficient. Experimental data on dissolution and carbonation have therefore been determined in batch reactors, on relevant minerals and rocks. Firstly, we studied the carbonation of olivine (a major phase within peridotites and minor within basalts) at 90 deg. C and under pCO 2 of 280 bars. The dissolution of San Carlos olivine (Mg 1.76 Fe 0.24 SiO 4 ) is slowed down by the formation of a surface silica gel, when the fluid reaches equilibrium with amorphous silica. The transport of species to the reactive medium becomes the limiting step of the process, slowing down the dissolution process of San Carlos olivine by 5 orders of magnitude. However, this passivation doesn't occur during the alteration of Ca-olivine (Ca 2 SiO 4 ), though a surface silica layer does form. This comparison suggests that it isn't the structure of the silicate but its chemical composition, which controls the transport properties through the interfacial layer. The second part explores the effects of organic ligands and of temperature variations on the formation of those phases. The addition of citrate at 90 deg. C increases the kinetics of San Carlos olivine by one order of magnitude, and allows the release of enough Mg in the aqueous medium to form

  8. High-resolution Fracture Characterization of a Siliciclastic Aquifer Targeted for CO2 Sequestration, Svalbard, Norway

    NARCIS (Netherlands)

    Ogata, Kei; Senger, Kim; Braathen, Alvar; Olaussen, Snorre; Tveranger, Jan

    2013-01-01

    SUMMARY The target siliciclastic aquifer investigated by the Longyearbyen CO2 Lab as a possible test-scale CO2 storage unit is a dual-permeability reservoir characterized by fractured, tight lithologies. By integrating borehole and outcrop data, the reservoir section has been subdivided in intervals

  9. Experimental Investigation of the Influence of Small Scale Geological Heterogeneity on Capillary Trapping of CO2 Using Engineered Beadpacks

    Science.gov (United States)

    Ganesan Krishnamurthy, P.; Trevisan, L.; Meckel, T. A.

    2017-12-01

    During geologic CO2 sequestration, most of the storage domain far from the injection sites is likely to be dominated by buoyancy and capillary forces. Under such flow regimes, small scale geological heterogeneities have been shown to dampen plume migration rates and cause trapping beneath capillary barriers. To understand the impact of such heterogeneities on CO2 trapping processes experimentally, many core-scale and lab scale flow studies have been conducted. Reservoir cores are limited by the scale of investigation possible and most lab experiments are conducted in macroheterogeneous media constructed by arranging homogeneous units to represent heterogeneity. However, most natural sedimentary facies display heterogeneity at a hierarchy of scales, and heterogeneity at the mesoscale (mm to decimeters) goes unrepresented in laboratory experiments due to the difficulty in reproducibility. This work presents results from buoyancy driven migration experiments conducted at the meter scale using glass beads packed in a quasi 2D glass cell and complementary reduced physics simulations. We demonstrate a novel automated technique to build beadpacks with 2D heterogeneous sedimentary features in a reproducible manner. A fluid pair that mimics the phase density and viscosity contrasts, and interfacial tension of CO2-Brine at reservoir pressures and temperatures is employed for the flow experiments. Light transmission technique is used for visualization, and to calibrate and quantify saturation of the trapped non-wetting fluid during the experiments. Invasion Percolation is used to simulate the buoyancy driven flow. With the ability to generate different types of heterogeneous structures in a reproducible manner, and by comparing experiments and simulations, a systematic investigation of the effect of heterogeneity on capillary trapping becomes possible.

  10. Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization

    Science.gov (United States)

    Chiaramonte, Laura; Zoback, Mark D.; Friedmann, Julio; Stamp, Vicki

    2008-06-01

    This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ˜10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ˜1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.

  11. Sequestration of CO2 in Mixtures of Bauxite and Saline Waste Water

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, R.M.; Soong, Y.; Griffith, C.; Allen, D.E.; Hedges, S.W.; Frommell, E.A.; Fu, J.K.; Dobbs, C.L.; Zhu, C.

    2007-05-01

    Batch and semi-batch experiments were conducted to assess feasibility of utilizing mixtures of caustic bauxite residue slurry and produced brine from the Oriskany sandstone formation to sequester CO2 • Bauxite residue/brine mixture of 90/10 by volume sequestered 9.5 g of CO2 per liter of mixture (100 psig of CO2 at 20 ºC) • Carbon trapping is accomplished primarily through solubilization • Solution of the product mixture was neutralized following carbonation • Flow-through carbonation at 25 ºC and 1 atm. demonstrates that carbonation rates are acceptable for proposed process applications

  12. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  13. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    Science.gov (United States)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  14. Offshore Membrane Enclosure for Growing Algai (Omega) System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    Science.gov (United States)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinity gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. The concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  15. Offshore Membrane Enclosures for Growing Algae (OMEGA: A System for Biofuel Production, Wastewater Treatment, and CO2 Sequestration

    Science.gov (United States)

    Trent, Jonathan; Embaye, Tsegereda; Buckwalter, Patrick; Richardson, Tra-My; Kagawa, Hiromi; Reinsch, Sigrid; Martis, Mary

    2010-01-01

    We are developing Offshore Membrane Enclosures for Growing Algae (OMEGA). OMEGAs are closed photo-bioreactors constructed of flexible, inexpensive, and durable plastic with small sections of semi-permeable membranes for gas exchange and forward osmosis (FO). Each OMEGA modules is filled with municipal wastewater and provided with CO2 from coastal CO2 sources. The OMEGA modules float just below the surface, and the surrounding seawater provides structural support, temperature control, and mixing for the freshwater algae cultures inside. The salinit7 gradient from inside to outside drives forward osmosis through the patches of FO membranes. This concentrates nutrients in the wastewater, which enhances algal growth, and slowly dewaters the algae, which facilitates harvesting. Thy concentrated algal biomass is harvested for producing biofuels and fertilizer. OMEGA system cleans the wastewater released into the surrounding coastal waters and functions as a carbon sequestration system.

  16. Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security

    Science.gov (United States)

    Pawar, R.

    2017-12-01

    Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.

  17. A novel CO2 sequestration system for environmentally producing hydrogen from fossil-fuels

    International Nuclear Information System (INIS)

    Eucker IV, W.

    2007-01-01

    Aqueous monoethanolamine (MEA) scrubbers are currently used to capture carbon dioxide (CO 2 ) from industrial flue gases in various fossil-fuel based energy production systems. MEA is a highly volatile, corrosive, physiologically toxic, and foul-smelling chemical that requires replacement after 1000 operational hours. Room temperature ionic liquids (RTILs), a novel class of materials with negligible vapor pressures and potentiality as benign solvents, may be the ideal replacement for MEA. Ab initio computational modeling was used to investigate the molecular interactions of ILs with CO 2 . The energetic and thermodynamic parameters of the RTILs as CO 2 solvents are on par with MEA. As viable competitors to the present CO 2 separation technology, RTILs may economize the fossil-fuel decarbonization process with the ultimate aim of realizing a green hydrogen economy

  18. Applications of geological labs on chip for CO2 storage issues

    International Nuclear Information System (INIS)

    Morais, Sandy

    2016-01-01

    CO 2 geological storage in deep saline aquifers represents a mediation solution for reducing the anthropogenic CO 2 emissions. Consequently, this kind of storage requires adequate scientific knowledge to evaluate injection scenarios, estimate reservoir capacity and assess leakage risks. In this context, we have developed and used high pressure/high temperature micro-fluidic tools to investigate the different mechanisms associated with CO 2 geological storage in deep saline aquifers. The silicon-Pyrex 2D porous networks (Geological Labs On Chips) can replicate the reservoir p,T conditions (25 ≤ T ≤ 50 C, 50 ≤ p ≤ 10 MPa), geological and topological properties. This thesis manuscript first highlights the strategies developed during this work to fabricate the GLoCs and to access to global characteristics of our porous media such as porosity and permeability, which are later compared to numerical modelling results. The carbon dioxide detection in GLoCs mimicking p,T conditions of geological reservoirs by using the direct integration of optical fiber for IR spectroscopy is presented. I then detail the strategies for following the dissolution of carbonates in GLoCs with X-rays laminography experiments.Then, the manuscript focuses on the use of GLoCs to investigate each CO 2 trapping mechanism at the pore scale. The direct optical visualization and image processing allow us to follow the evolution of the injected CO 2 /aqueous phase within the reservoir, including displacement mechanisms and pore saturation levels. Eventually, I present the ongoing works such as experiments with reactive brines and hydrates formations in porous media [fr

  19. CO 2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage

    KAUST Repository

    Espinoza, D. Nicolas

    2017-10-23

    Small pores in high specific surface clay-rich caprocks give rise to high capillary entry pressures and high viscous drag that hinder the migration of buoyant carbon dioxide CO2. We measured the breakthrough pressure and ensuing CO2 permeability through sediment plugs prepared with sand, silt, kaolinite and smectite, and monitored their volumetric deformation using high-pressure oedometer cells. The data show water expulsion and volumetric contraction prior to CO2 breakthrough, followed by preferential CO2 flow thereafter. Our experimental results and data gathered from previous studies highlight the inverse relationship between breakthrough pressure and pore size, as anticipated by Laplace’s equation. In terms of macro-scale parameters, the breakthrough pressure increases as the sediment specific surface increases and the porosity decreases. The breakthrough pressure is usually lower than the values predicted with average pore size estimations; it can reach ∼6.2MPa in argillaceous formations, and 11.2MPa in evaporites. The CO2 permeability after breakthrough is significantly lower than the absolute permeability, but it may increase in time due to water displacement and desiccation. Leakage will be advection-controlled once percolation takes place at most storage sites currently being considered. Diffusive and advective CO2 leaks through non-fractured caprocks will be minor and will not compromise the storage capacity at CO2 injection sites. The “sealing number” and the “stability number” combine the initial fluid pressure, the buoyant pressure caused by the CO2 plume, the capillary breakthrough pressure of the caprock, and the stress conditions at the reservoir depth; these two numbers provide a rapid assessment of potential storage sites. Unexpected CO2 migration patterns emerge due to the inherent spatial variability and structural discontinuities in geological formations; sites with redundant seal layers should be sought for the safe and long

  20. Using improved technology for widespread application of a geological carbon sequestration study

    Science.gov (United States)

    Raney, J.

    2013-12-01

    The Kansas Geological Survey is part of an ongoing collaboration between DOE-NETL, academia, and the petroleum industry to investigate the feasibility of carbon utilization and storage in Kansas. Latest findings in the 25,000 mi2 study area in southern Kansas estimate CO2 storage capacity ranges from 8.8 to 75.5 billion metric tons in a deep Lower Orodovican-age Arbuckle saline aquifer. In addition, an estimated 100 million tonnes of CO2 could be used for extracting additional oil from Kansas' fields, making transitions to carbon management economic. This partnership has a rare opportunity to synchronize abundant, yet previously disseminated knowledge into a cohesive scientific process to optimize sequestration site selection and implementation strategies. Following a thorough characterization, a small-scale CO2 injection of 70,000 tonnes will be implemented in Wellington Field in Sumner County, including a five-plot miscible CO2-EOR flood of a Mississippian reservoir followed by the underlying Arbuckle saline aquifer. Best practices and lessons learned from the field study will improve estimates on CO2 storage capacity, plume migration models, and identify potential leakage pathways to pursue safe and effective geological carbon sequestration at commercial scales. A highly accessible and multifunctional online database is being developed throughout the study that integrates all acquired geological, physical, chemical, and hydrogeologic knowledge. This public database incorporates tens of thousands of data points into easily viewable formats for user downloads. An Interactive Project Map Viewer is a key mechanism to present the scientific research, and will delineate compartment candidates and reservoirs matching reference criteria or user defined attributes. This tool uses a familiar pan and zoom interface to filter regional project data or scale down to detailed digitized information from over 3,300 carefully selected preexisting Kansas wells. A Java-based log

  1. Geoelectrical image of the subsurface for CO2 geological storage in the Changhua site, Taiwan

    Science.gov (United States)

    Chiang, C. W.; Chiao, C. H.; Yang, M. W.; Yu, C. W.; Yang, C. H.; Chen, C. C.

    2016-12-01

    Global warming has recently become an important worldwide issue. Reduction of carbon dioxide (CO2) emission is recommended by Intergovernmental Panel on Climate Change, which geological storage is one of possible way to reduce the CO2 issue. The Taichung Power Plant is a coal-fired power plant operated by the Taiwan Power Company in Taichung, Taiwan, which is the largest coal-fired power station in the world. The power plant emits approximately 40 million tons annually which is also the world's largest CO2 emitter. Geophysical techniques are presented as the most useful tool to characterize the reservoir. The electrical resistivity tool was carried out applying audio-magnetotelluric (AMT) method, which could provide the depth resolution for evaluating the subsurface. A first survey of 20 AMT soundings was acquired to study the viability of the method to characterize the subsurface. Stations were deployed at approximately 500 m intervals and the data were recorded in the frequency range of 104-100 Hz. The dimensionality analysis proved the validity of the 1-D or 2-D assumption. The visualized model shows a layered electrical resistivity structure from shallow to depth of 3000 m. The preliminary result corresponds to seismic reflection and geological investigations that suggests a simple geological structure without complex geological processes in the area. It could be a suitable site for geological storage.

  2. Coupled Model for CO2 Leaks from Geological Storage: Geomechanics, Fluid Flow and Phase Transitions

    Science.gov (United States)

    Gor, G.; Prevost, J.

    2013-12-01

    Deep saline aquifers are considered as a promising option for long-term storage of carbon dioxide. However, risk of CO2 leakage from the aquifers through faults, natural or induced fractures or abandoned wells cannot be disregarded. Therefore, modeling of various leakage scenarios is crucial when selecting a site for CO2 sequestration and choosing proper operational conditions. Carbon dioxide is injected into wells at supercritical conditions (t > 31.04 C, P > 73.82 bar), and these conditions are maintained in the deep aquifers (at 1-2 km depth) due to hydrostatic pressure and geothermal gradient. However, if CO2 and brine start to migrate from the aquifer upward, both pressure and temperature will decrease, and at the depth of 500-750 m, the conditions for CO2 will become subcritical. At subcritical conditions, CO2 starts boiling and the character of the flow changes dramatically due to appearance of the third (vapor) phase and latent heat effects. When modeling CO2 leaks, one needs to couple the multiphase flow in porous media with geomechanics. These capabilities are provided by Dynaflow, a finite element analysis program [1]; Dynaflow has already showed to be efficient for modeling caprock failure causing CO2 leaks [2, 3]. Currently we have extended the capabilities of Dynaflow with the phase transition module, based on two-phase and three-phase isenthalpic flash calculations [4]. We have also developed and implemented an efficient method for solving heat and mass transport with the phase transition using our flash module. Therefore, we have developed a robust tool for modeling CO2 leaks. In the talk we will give a brief overview of our method and illustrate it with the results of simulations for characteristic test cases. References: [1] J.H. Prevost, DYNAFLOW: A Nonlinear Transient Finite Element Analysis Program. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ. http://www.princeton.edu/~dynaflow/ (last update 2013

  3. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra; Lopano, Christina L.; Rimstidt, J. Donald; Brantley, Susan L.

    2013-03-01

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the

  4. Pilot inquiry on the perception of the CO2 capture and sequestration technology in France

    International Nuclear Information System (INIS)

    Minh, Ha-Duong; Mardon, G.

    2007-06-01

    We led a communication experiment on the perception of carbon capture and sequestration, an emergent climate change mitigation technology. We tested the sensitivity of the approbation level to the effects of 1/ Additional information on the risks and 2/ Semantics (Storage versus Sequestration). We collected about 600 answers using on-line self-selected survey. Results reveals that semantics can have a significant effect on the level of appreciation. The survey also shows the opinion is not firmly anchored, as an additional information has a significant effect. The information about risks led respondents to decrease their level of appreciation. Admittedly, this method does not allow to control well the sample biases. The results only allow to reject the hypothesis 'Semantic and additional information are neutral'. This pilot allowed us to elaborate a full-scale experiment, given to a representative sample of the French population in April 2007. (authors)

  5. The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Elizabeth [Los Alamos National Laboratory; Fessenden, Julianna [Los Alamos National Laboratory; Kanjorski, Nancy [NON LANL; Koning, Dan [NM BUREAU OF GEOLOGY AND MINERAL RESOURCES; Pawar, Rajesh [Los Alamos National Laboratory

    2008-01-01

    In a natural analog study of risks associated with carbon sequestration, impacts of CO{sub 2} on shallow groundwater quality have been measured in a sandstone aquifer in New Mexico, USA. Despite relatively high levels of dissolved CO{sub 2}, originating from depth and producing geysering at one well, pH depression and consequent trace element mobility are relatively minor effects due to the buffering capacity of the aquifer. However, local contamination due to influx of saline waters in a subset of wells is significant. Geochemical modeling of major ion concentrations suggests that high alkalinity and carbonate mineral dissolution buffers pH changes due to CO{sub 2} influx. Analysis oftrends in dissolved trace elements, chloride, and CO2 reveal no evidence of in-situ trace element mobilization. There is clear evidence, however, that As, U, and Pb are locally co-transported into the aquifer with CO{sub 2}-rich saline water. This study illustrates the role that local geochemical conditions will play in determining the effectiveness of monitoring strategies for CO{sub 2} leakage. For example, if buffering is significant, pH monitoring may not effectively detect CO2 leakage. This study also highlights potential complications that CO{sub 2}carrier fluids, such as saline waters, pose in monitoring impacts ofgeologic sequestration.

  6. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  7. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2003-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started the first full scale carbon sequestration tests with propane combustion gases. Aquasearch started to model the costs associated with biomass harvest from different microalgal strains. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  8. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-10-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  9. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  10. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  11. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Steven M. Masutani

    2001-08-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  12. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  13. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-07-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  14. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura

    2003-05-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, PSI conducted preparation work on direct feeding of coal combustion gas to microalgae and developed a design concept for photobioreactors for biofixation of CO{sub 2} and photovoltaic power generation. Aquasearch continued their effort on characterization of microalgae suitable for CO{sub 2} sequestration and preparation for pilot scale demonstration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  15. Effects of elevated atmospheric CO2on dissolution of geological fluorapatite in water and soil.

    Science.gov (United States)

    Li, Zhen; Su, Mu; Tian, Da; Tang, Lingyi; Zhang, Lin; Zheng, Yangfan; Hu, Shuijin

    2017-12-01

    Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO 2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO 2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO 2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO 2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO 2 rise. This study sheds the light on understanding the geological cycle of phosphorus. Copyright © 2017. Published by Elsevier B.V.

  16. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    Science.gov (United States)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed

  17. Status of Geological Storage of CO2 as Part of Negative Emissions Strategy

    Science.gov (United States)

    Benson, S. M.

    2014-12-01

    Recent analyses show that many GHG stabilization scenarios require technologies that permanently extract CO2 from the atmosphere -so-called "net negative emissions." Among the most promising negative emissions approaches is bioenergy with carbon capture and storage (BECCS). The most mature options for CO2 storage are in sedimentary rocks located in thick sedimentary basins. Within those basins, CO2 can be stored either in depleted or depleting hydrocarbon formations or in so-called saline aquifers. In addition to the economic costs of bioenergy with CO2 capture, key to the success of and scale at which BECCS can contribute to negative emissions is the ability to store quantities on the order of 1 Gt per year of CO2. Today, about 65 Mt of CO2 per year are injected underground for the purposes of enhancing oil recovery (CO2-EOR) or for CO2 storage, the vast majority being for CO2-EOR. Achieving 1 Gt per year of negative emissions will require a 15-fold scale up of the current injection operations. This paper will review the conditions necessary for storage at this scale, identify what has been learned from nearly 2 decades of experience with CO2 storage that provides insight into the feasibility of CO2 storage on this scale, and identify critical issues that remain to be resolved to meet these ambitious negative emissions targets. Critical technological issues include but are not limited to: the amount of CO2 storage capacity that is available and where it is located in relation to biomass energy resources; identification of sustainable injection rates and how this depends on the properties of the geological formation; the extent to which water extraction will be required to manage the magnitude of pressure buildup; identification of regions at high risk for induced seismicity that could damage structures and infrastructure; and selection of sites with a adequate seals to permanently contain CO2. Social, economic and political issues are also important: including the

  18. A Dynamic Programming Model for Optimizing Frequency of Time-Lapse Seismic Monitoring in Geological CO2 Storage

    Science.gov (United States)

    Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.

    2005-12-01

    Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic

  19. Southern Adriatic sea as a potential area for CO2 geological storage

    International Nuclear Information System (INIS)

    Volpi, V.; Forlin, F.; Donda, F.; Civile, D.; Facchin, L.; Sauli, L.; Merson, B.; Sinza-Mendieta, K.; Shams, A.

    2015-01-01

    The Southern Adriatic Sea is one of the five prospective areas for CO 2 storage being evaluated under the three year (FP7) European SiteChar project dedicated to the characterization of European CO 2 storage sites. The potential reservoir for CO 2 storage is represented by a carbonate formation, the wackstones and packstones of the Scaglia Formation (Upper Cretaceous-Paleogene). In this paper, we present the geological characterization and the 3D modeling that led to the identification of three sites, named Grazia, Rovesti and Grifone, where the Scaglia Formation, with an average thickness of 50 m, reveals good petrophysical characteristics and is overlain by an up to 1 200 thick cap-rock. The vicinity of the selected sites to the Enel - Federico II power plant (one of the major Italian CO 2 emitter) where a pilot plant for CO 2 capture has been already started in April 2010, represents a good opportunity to launch the first Carbon Capture and Storage (CCS) pilot project in Italy and to apply this technology at industrial level, strongly contributing at the same time at reducing the national CO 2 emissions. (authors)

  20. Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers

    Science.gov (United States)

    Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.

    2016-01-01

    Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock’s flow characteristics. Sandstone samples were first exposed for 1.5 years to a mixture of brine and super-critical CO2 (scCO2), then tested to determine their altered geochemical and mineralogical properties. Changes caused uniquely by CO2 were identified by comparison with samples exposed over a similar period to either plain brine or brine saturated with N2. The results show that long-term reaction with CO2 causes a significant pH drop in the saline pore fluid, clearly due to carbonic acid (as dissolved CO2) in the brine. Free H+ ions released into the pore fluid alter the mineralogical structure of the rock formation, through the dissolution of minerals such as calcite, siderite, barite, and quartz. Long-term CO2 injection also creates a significant CO2 drying-out effect and crystals of salt (NaCl) precipitate in the system, further changing the pore structure. Such mineralogical alterations significantly affect the saline aquifer’s permeability, with important practical consequences for the sequestration process. PMID:26785912

  1. An experimental study on mineral sequestration of CO2 in basics and ultra basics rocks

    International Nuclear Information System (INIS)

    Dufaud, F.

    2006-11-01

    The first part of the thesis is dedicated to dissolution data of siderite FeCO 3 and magnetite Fe 3 O 4 which have been monitored in situ on the FAME beamline of the european synchrotron radiation facility in Grenoble. Iron in solution close to siderite single crystals is shown to be divalent hydrated. The small size of the experimentally investigated volume of solution (200 *400 micrometer and 3 mm height) allowed to work with single crystals in well defined geometries. No specific interaction was observed between iron (II) and dissolved inorganic carbon, suggesting that modelling siderite evolution under high CO 2 pressures by using CO 2 -less very acidic (pH 1-2) solutions is adequate. Using initial reaction rates, we get an activation energy for siderite dissolution of 62 kJ.mol -1 , consistent with existing literature data. Such a value is suggestive of a mineral/solution interface mechanism.. Data from this study and from literature are consistent over a temperature range 25 C - 125 C and a pH range pH 1-7 with an empirical law: pk = pH + E a /(ln(10)*RT(K)) - log(S/V) - 10,5 where E a = 62 kJ.mol -1 and S/V is the ratio between solid surface S and fluid volume V. A value of activation energy of 73.5 kJ.mol -1 is obtained in the case of magnetite, also consistent with mineral/solution processes. The second and major part of the thesis work is the realization of analogical experiments for simulating carbonation of basic and ultra basic minerals. Experiments were carried out on consolidated rock cores at 90 C and 280 bar of CO 2 (low temperature experiments) and on powders contained in metallic capsules at 400-500 C and 1000-1700 bars of CO 2 (high temperature experiments). The rate of mineral storage of CO 2 was defined as the molar ratio of solid carbonate formed over total CO 2 injected. It is of about 1% in three months in low temperature experiments whereas it reaches several tens of percents per hour in high temperature experiments. In all cases

  2. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Takashi Nakamura

    2003-09-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, PSI delivered its coal reactor to Aquasearch. Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started their effort on economic analyses of commercial scale photobioreactor. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  3. Long-term performance of the steel-cement interface in CO2 sequestration wells

    Science.gov (United States)

    Carey, J. W.; Han, J.

    2011-12-01

    Long-term performance of CO2 storage reservoirs will require that wells (injection, monitoring, and pre-existing) continue to provide isolation of the buoyant CO2 plume. Short-term leakage concerns are driven by the quality of the well completions, particularly placement of Portland cement. However, operational and CO2-injection induced stresses in the reservoir may introduce small defects in the well isolation system, allowing migration of small quantities of CO2 and brine. Evidence for such leaks has been observed in a CO2-enhanced oil recovery well (Carey et al. 2007) and in a natural CO2 reservoir (Crow et al. 2010). The key question in long-term performance is whether these leaks will grow as wellbore materials degrade or whether carbonate precipitation reactions will self-heal the defects. In this study, we focus on the interface between steel casing and Portland cement. In a properly completed well, Portland cement provides a protective, alkaline environment for carbon steel that precludes the possibility of external corrosion. The protective cement can be damaged either by the formation of small gaps at the interface, known as microannuli, or by the carbonation of cement which eliminates cement alkalinity. To investigate these issues, we conducted experiments on cement-steel composites at conditions ranging from atmospheric to high-pressure to determine the susceptibility of steel to corrosion in the presence of well-bonded cement, carbonated cement, and cement separated from the steel by varying gap distances. The presence of cement greatly reduces corrosion rates of steel because an iron carbonate scale forms rapidly and provides a mass-transfer barrier. Similarly, a small gap at the cement-steel interface provides a mass-transfer barrier. Our results show that scale formation provides a more significant barrier to corrosion and that even small gaps (International Journal of Greenhouse Gas Control, Vol. 1, pp. 75-85. Crow, W, Carey, J.W., et al. (2010

  4. A fast and robust TOUGH2 module to simulate geological CO2 storage in saline aquifers

    Science.gov (United States)

    Shabani, Babak; Vilcáez, Javier

    2018-02-01

    A new TOUGH2 module to simulate geological CO2 storage (GCS) in saline aquifers is developed based on the widely employed ECO2N module of TOUGH2. The newly developed TOUGH2 module uses a new non-iterative fugacity-activity thermodynamic model to obtain the partitioning of CO2 and H2O between the aqueous and gas phases. Simple but robust thermophysical correlations are used to obtain density, viscosity, and enthalpy of the gas phase. The implementation and accuracy of the employed thermophysical correlations are verified by comparisons against the national institute of standards and technology (NIST) online thermophysical database. To assess the computation accuracy and efficiency, simulation results obtained with the new TOUGH2 module for a one-dimensional non-isothermal radial and a three-dimensional isothermal system are compared against the simulation results obtained with the ECO2N module. Treating salt mass fraction in the aqueous phase as a constant, along with the inclusion of a non-iterative fugacity-activity thermodynamic model, and simple thermophysical correlations, resulted in simulations much faster than simulations with ECO2N module, without losing numerical accuracy. Both modules yield virtually identical results. Additional field-scale simulations of CO2 injection into an actual non-isothermal and heterogeneous geological formation confirmed that the new module is much faster than the ECO2N module in simulating complex field-scale conditions. Owing to its capability to handle CO2-CH4-H2S-N2 gas mixtures and its compatibility with TOUGHREACT, this new TOUGH2 module offers the possibility of developing a fast and robust TOUGHREACT module to predict the fate of CO2 in GCS sites under biotic conditions where CO2, CH4, H2S, and N2 gases can be formed.

  5. Simulation of an Integrated Gasification Combined Cycle with Chemical-Looping Combustion and CO2 sequestration

    OpenAIRE

    Jiménez Alvaro, Ángel; López Paniagua, Ignacio; González Fernández, M. Celina; Rodríguez Martín, Javier; Nieto Carlier, Rafael

    2014-01-01

    Chemical-looping combustion allows an integration of CO2 capture in a thermal power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. This paper focus on the study of the energetic performance of this concept of combustion in an integrated gasification combined cycle power plant when synthesis gas is used as fuel for the gas turbines. After thermodynamic modelling and optimi...

  6. Geological storage of CO2: risks analysis, monitoring and measures. Final report

    International Nuclear Information System (INIS)

    Abou Akar, A.; Audibert, N.; Audigane, P.; Baranger, P.; Bonijoly, D.; Carnec, C.; Czernichowski, I.; Debeglia, N.; Fabriol, H.; Foerster, E.; Gaus, I.; Le Nindre, Y.; Michel, K.; Morin, D.; Roy, S.; Sanjuan, B.; Sayedi, D.

    2005-01-01

    To use the CO 2 geological storage as a coherent solution in the greenhouse gases reduction it needs to answer to safety and monitoring conditions. In this framework the BRGM presents this study in six chapters: risks analysis, the monitoring methods (geochemistry, geophysics, aerial monitoring, biochemistry, hydrogeology), the metrology, the corrosion problems, the thermal, hydrodynamical, geochemical and mechanical simulation and the today and future regulations. (A.L.B.)

  7. 3D seismic analysis of the Collyhurst Sandstone: implications for CO2 sequestration in the East Irish Sea Basin

    Science.gov (United States)

    Gamboa, Davide; Williams, John; Kirk, Karen; Gent, Christopher; Bentham, Michelle; Fellgett, Mark; Schofield, David

    2016-04-01

    orientation of 155±10°. Under the regional stress conditions, east dipping faults show the highest slip tendencies and leakage risk, especially when present within shallower structures. The highest storage potential for the Collyhurst Sandstone Formation is observed within the basin grabens where its greater depth of occurrence favours the injection of supercritical CO2 and mitigates the risk of geomechanically-induced fault leakage. The results of this work further expand the understanding of prospective areas for CO2 sequestration in the East Irish Sea Basin in locations where the primary Sherwood Sandstone Formation is either too shallow, discontinuous or eroded.

  8. Carbon sequestration.

    Science.gov (United States)

    Lal, Rattan

    2008-02-27

    Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6PgCyr-1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.

  9. Relationship between sea level and climate forcing by CO2 on geological timescales.

    Science.gov (United States)

    Foster, Gavin L; Rohling, Eelco J

    2013-01-22

    On 10(3)- to 10(6)-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO(2) and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO(2) in determining Earth's climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO(2) and sea level we describe portrays the "likely" (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO(2) stabilized at 400-450 ppm (as required for the frequently quoted "acceptable warming" of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO(2) should be reduced to levels similar to those of preindustrial times.

  10. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    Science.gov (United States)

    Zheng, Y.; Yang, Y.; Rogowska, M.; Gundlach, C.

    2017-09-01

    To achieve the 2°C target made in the 2016 Paris Agreement, it is essential to reduce the emission of CO2 into the atmosphere. Carbon Capture and Storage (CCS) has been given increasing importance over the last decade. One of the suggested methods for CCS is to inject CO2 into geologic settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection. The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk.

  11. Crucial thermophysical mechanisms for the safety of CO2 geological storage

    International Nuclear Information System (INIS)

    Chiquet, P.

    2006-09-01

    CO 2 underground storage as an option for reducing greenhouse gases emissions consists of trapping industrial CO 2 and injecting it into deep geological formations such as saline aquifers and hydrocarbons reservoirs. This study aims at assessing leakage processes and evaluating storage capacities. To this end, two leakage phenomena were considered, cap-rock capillary breakthrough and diffusional transport. The former involves interfacial properties of the brine/CO 2 /mineral system: brine/CO 2 interfacial tension and rock wettability under dense CO 2 . Chapter one presents a series of IFT measurements performed at temperatures and pressures up to 4 5 MPa-110 C. Results show a great decrease of IFT with pressure in the 0-to-20 MPa range beyond what it tends to stabilize at values in the order of 25-30 mN.m -1 . Chapter two deals with rock wettability. Dynamic contact angles were measured on muscovite mica and quartz up to 10 MPa. Results highlight an alteration of wettability with pressure that was accounted for by means of a DLVO based model. Direct capillary entry pressures on a clay stone sample are proposed in chapter three. Diffusion, is treated in chapter four. We used the Taylor dispersion method to measure D up to 40 MPa. Results indicate low values in the order of 2.10 -9 m 2 .s -1 . Chapter five discusses the consequences of the previous parameters in terms of storage capacity. (author)

  12. Mixing and trapping of dissolved CO2 in deep geologic formations with shale layers

    Science.gov (United States)

    Agartan, Elif; Cihan, Abdullah; Illangasekare, Tissa H.; Zhou, Quanlin; Birkholzer, Jens T.

    2017-07-01

    For dissolution trapping, the spatial variability of the geologic properties of naturally complex storage formations can significantly impact flow patterns and storage mechanisms of dissolved CO2. The significance of diffusive mixing that occurs in low permeability layers embedded between relatively higher permeability materials was highlighted by Agartan et al. (2015) using a highly controlled laboratory experimental study on trapping of dissolved CO2 in multilayered systems. In this paper, we present a numerical modeling study on the impacts of low permeability layers on flow and storage of dissolved CO2 in realistic field-scale settings. The simulator of variable-density flow used in this study was first verified using the experimental data in Agartan et al. (2015) to capture the observed processes. The simulator was then applied to a synthetic, field-scale multilayered system, with 19 sensitivity cases having variable permeability and thickness of the shale layers as well as the source strength and geometry of the source zone of dissolved CO2. Simulation results showed that the presence of continuous shale layers in the storage system disrupts the convective mixing by enhancing lateral spreading of dissolved CO2 in sandstone layers and retarding the vertical mixing of dissolved CO2. The effectiveness of trapping of dissolved CO2 depends on the physical properties of the shale layers and configurations of the source zone. The comparison to homogeneous cases with effective vertical permeability shows that it is important to capture these continuous thin shale layers in a storage formation and include them in the models to enhance dissolution trapping.

  13. The Certification Framework: Risk Assessment for Safety and Effectiveness of Geologic Carbon Sequestration

    Science.gov (United States)

    Oldenburg, C. M.; Nicot, J.; Bryant, S. L.

    2008-12-01

    Motivated by the dual objectives of (1) encouraging geologic carbon sequestration (GCS) as one of several strategies urgently needed to reduce CO2 emissions, and (2) protecting the environment from unintended CO2 injection-related impacts, we have developed a simple and transparent framework for certifying GCS safety and effectiveness at individual sites. The approach we developed, called the Certification Framework (CF), is proposed as a standard way for project proponents, regulators, and the public to analyze and understand risks and uncertainties of GCS. In the CF, we relate effective trapping to CO2 leakage risk, where we use the standard definition of risk involving the two factors (1) probability of a particular leakage scenario, and (2) impact of that leakage scenario. In short, if the CO2 leakage risk as calculated by the CF is below threshold values for the life of the project, then effective trapping is predicted and the site can be certified. The concept of effective trapping is more general than traditional "no migration" approaches to underground injection regulation. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) five compartments to represent where impacts can occur (underground sources of drinking water, hydrocarbon and mineral resources, near-surface environment, health and safety, and emission credits and atmosphere), (3) modeled CO2 fluxes and concentrations as proxies for impact to compartments, (4) broad ranges of storage formation properties to generate a catalog of simulated CO2 plumes, and (5) probabilities of intersection of the CO2 plume with the conduits and compartments. In a case study application of the CF for a saline formation GCS site in the Texas Gulf Coast, analysis with the CF suggested the overall leakage risk to be very small, with the largest contribution coming from risk to the near-surface environment due to potential leakage up abandoned wells, depending on the

  14. Relative stability and significance of dawsonite and aluminum minerals in geologic carbon sequestration

    Science.gov (United States)

    Kaszuba, John P.; Viswanathan, Hari S.; Carey, J. William

    2011-04-01

    Computer simulations predict dawsonite, NaAlCO3(OH)2, will provide long-term mineral sequestration of anthropogenic CO2 whereas dawsonite rarely occurs in nature or in laboratory experiments that emulate a carbon repository. Resolving this discrepancy is important to determining the significance of dawsonite mineralization to the long-term security of geologic carbon sequestration. This study is an equilibrium-based experimental and modeling evaluation of underlying causes for inconsistencies between predicted and observed dawsonite stability. Using established hydrothermal methods, 0.05 molal NaHCO3 aqueous solution and synthetic dawsonite were reacted for 18.7 days (449.2 hours) at 50°C, 20 MPa. Temperature was increased to 75°C and the experiment continued for an additional 12.3 days (295.1 hours). Incongruent dissolution yielded a dawsonite-gibbsite-nordstrandite assemblage. Geochemical simulations using Geochemist's Workbench and the resident database thermo.com.V8.R6+ incorrectly predicted a dawsonite-diaspore assemblage and underestimated dissolved aluminum by roughly 100 times. Higher aqueous aluminum concentrations in the experiment suggest that dawsonite or diaspore is less stable than predicted. Simulations employing an alternate database, thermo.dat, correctly predict dawsonite and dawsonite-gibbsite assemblages at 50 and 75°C, respectively, although dissolved aluminum concentrations are still two to three times lower than experimentally measured values. Correctly reproducing dawsonite solubility in standard geochemical simulations requires an as yet undeveloped internally consistent thermodynamic database among dawsonite, gibbsite, boehmite, diaspore, aqueous aluminum complexes and other Al-phases such as albite and kaolinite. These discrepancies question the ability of performance assessment models to correctly predict dawsonite mineralization in a sequestration site.

  15. Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation

    Energy Technology Data Exchange (ETDEWEB)

    George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

    2006-08-14

    Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, <37 {micro}m, but this is a very energy-intensive process. Previous work in our laboratory showed that chemical surface activation helps to dissolve magnesium from the serpentine (of particle size {approx} 100 {micro}m) and that the carbonation reaction can be conducted under mild conditions (20 C and 4.6 MPa) compared to previous studies that required >185 C, >13 MPa, and <37 {micro}m particle size. This work also showed that over 70% of the magnesium can be extracted at ambient temperature, leaving an amorphous silica with surface area of about 330 m{sup 2}/g. The overall objective of this research program is to optimize the active carbonation

  16. Shale-Gas Experience as an Analog for Potential Wellbore Integrity Issues in CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Carey, James W. [Los Alamos National Laboratory; Simpson, Wendy S. [Los Alamos National Laboratory; Ziock, Hans-Joachim [Los Alamos National Laboratory

    2011-01-01

    Shale-gas development in Pennsylvania since 2003 has resulted in about 19 documented cases of methane migration from the deep subsurface (7,0000) to drinking water aquifers, soils, domestic water wells, and buildings, including one explosion. In all documented cases, the methane leakage was due to inadequate wellbore integrity, possibly aggravated by hydrofracking. The leakage of methane is instructive on the potential for CO{sub 2} leakage from sequestration operations. Although there are important differences between the two systems, both involve migrating, buoyant gas with wells being a primary leakage pathway. The shale-gas experience demonstrates that gas migration from faulty wells can be rapid and can have significant impacts on water quality and human health and safety. Approximately 1.4% of the 2,200 wells drilled into Pennsylvania's Marcellus Formation for shale gas have been implicated in methane leakage. These have resulted in damage to over 30 domestic water supplies and have required significant remediation via well repair and homeowner compensation. The majority of the wellbore integrity problems are a result of over-pressurization of the wells, meaning that high-pressure gas has migrated into an improperly protected wellbore annulus. The pressurized gas leaks from the wellbore into the shallow subsurface, contaminating drinking water or entering structures. The effects are localized to a few thousands of feet to perhaps two-three miles. The degree of mixing between the drinking water and methane is sufficient that significant chemical impacts are created in terms of elevated Fe and Mn and the formation of black precipitates (metal sulfides) as well as effervescing in tap water. Thus it appears likely that leaking CO{sub 2} could also result in deteriorated water quality by a similar mixing process. The problems in Pennsylvania highlight the critical importance of obtaining background data on water quality as well as on problems associated with

  17. Establishing MICHCARB, a geological carbon sequestration research and education center for Michigan, implemented through the Michigan Geological Repository for Research and Education, part of the Department of Geosciences at Western Michigan University

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, David A. [Western Michigan Univ., Kalamazoo MI (United States); Harrison, William B. [Western Michigan Univ., Kalamazoo MI (United States)

    2014-01-28

    The Michigan Geological Repository for Research and Education (MGRRE), part of the Department of Geosciences at Western Michigan University (WMU) at Kalamazoo, Michigan, established MichCarb—a geological carbon sequestration resource center by: • Archiving and maintaining a current reference collection of carbon sequestration published literature • Developing statewide and site-specific digital research databases for Michigan’s deep geological formations relevant to CO2 storage, containment and potential for enhanced oil recovery • Producing maps and tables of physical properties as components of these databases • Compiling all information into a digital atlas • Conducting geologic and fluid flow modeling to address specific predictive uses of CO2 storage and enhanced oil recovery, including compiling data for geological and fluid flow models, formulating models, integrating data, and running the models; applying models to specific predictive uses of CO2 storage and enhanced oil recovery • Conducting technical research on CO2 sequestration and enhanced oil recovery through basic and applied research of characterizing Michigan oil and gas and saline reservoirs for CO2 storage potential volume, injectivity and containment. Based on our research, we have concluded that the Michigan Basin has excellent saline aquifer (residual entrapment) and CO2/Enhanced oil recovery related (CO2/EOR; buoyant entrapment) geological carbon sequestration potential with substantial, associated incremental oil production potential. These storage reservoirs possess at least satisfactory injectivity and reliable, permanent containment resulting from associated, thick, low permeability confining layers. Saline aquifer storage resource estimates in the two major residual entrapment, reservoir target zones (Lower Paleozoic Sandstone and Middle Paleozoic carbonate and sandstone reservoirs) are in excess of 70-80 Gmt (at an overall 10% storage efficiency factor; an approximately

  18. Development of an Intelligent Monitoring System for Geological Carbon Sequestration (GCS) Systems

    Science.gov (United States)

    Sun, A. Y.; Jeong, H.; Xu, W.; Hovorka, S. D.; Zhu, T.; Templeton, T.; Arctur, D. K.

    2016-12-01

    To provide stakeholders timely evidence that GCS repositories are operating safely and efficiently requires integrated monitoring to assess the performance of the storage reservoir as the CO2 plume moves within it. As a result, GCS projects can be data intensive, as a result of proliferation of digital instrumentation and smart-sensing technologies. GCS projects are also resource intensive, often requiring multidisciplinary teams performing different monitoring, verification, and accounting (MVA) tasks throughout the lifecycle of a project to ensure secure containment of injected CO2. How to correlate anomaly detected by a certain sensor to events observed by other devices to verify leakage incidents? How to optimally allocate resources for task-oriented monitoring if reservoir integrity is in question? These are issues that warrant further investigation before real integration can take place. In this work, we are building a web-based, data integration, assimilation, and learning framework for geologic carbon sequestration projects (DIAL-GCS). DIAL-GCS will be an intelligent monitoring system (IMS) for automating GCS closed-loop management by leveraging recent developments in high-throughput database, complex event processing, data assimilation, and machine learning technologies. Results will be demonstrated using realistic data and model derived from a GCS site.

  19. Bioleaching of ultramafic tailings by acidithiobacillus spp. for CO2 sequestration.

    Science.gov (United States)

    Power, Ian M; Dipple, Gregory M; Southam, Gordon

    2010-01-01

    Bioleaching experiments using various acid-generating substances, i.e., metal sulfides and elemental sulfur, were conducted to demonstrate the accelerated dissolution of chrysotile tailings collected from an asbestos mine near Clinton Creek, Yukon, Canada. Columns, possessing an acid-generating substance colonized with Acidithiobacillus sp., produced leachates with magnesium concentrations that were an order of magnitude greater than mine site waters or control column leachates. In addition, chrysotile tailings were efficient at neutralizing acidity, which resulted in the immobilization of metals (Fe, Cu, Zn) associated with the metal sulfide mine tailings that were used to generate acid. This suggests that tailings from acid mine drainage environments may be utilized to enhance chrysotile dissolution without polluting "downstream" ecosystems. These results demonstrate that the addition of an acid-generating substance in conjunction with a microbial catalyst can significantly enhance the release of magnesium ions, which are then available for the precipitation of carbonate minerals. This process, as part of a carbon dioxide sequestration program, has implications for reducing net greenhouse gas emissions in the mining industry.

  20. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  1. Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO2 Capture and Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Max Christie; Rick Victor; Bart van Hassel; Nagendra Nagabushana; Juan Li; Joseph Corpus; Jamie Wilson

    2007-03-31

    The purpose of the advanced boilers and process heaters program is to assess the feasibility of integrating Oxygen Transport Membranes (OTM) into combustion processes for cost effective CO{sub 2} capture and sequestration. Introducing CO{sub 2} capture into traditional combustion processes can be expensive, and the pursuit of alternative methods, like the advanced boiler/process heater system, may yield a simple and cost effective solution. In order to assess the integration of an advanced boiler/process heater process, this program addressed the following tasks: Task 1--Conceptual Design; Task 2--Laboratory Scale Evaluation; Task 3--OTM Development; Task 4--Economic Evaluation and Commercialization Planning; and Task 5--Program Management. This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-01NT41147 during the period from January 2002-March 2007. This report outlines accomplishments for the following tasks: conceptual design and economic analysis, oxygen transport membrane (OTM) development, laboratory scale evaluations, and program management.

  2. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. C.L. Senior

    2001-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period from 1 October to 31 December 2000. During this period planning of chemostat experiments at Aquasearch was initiated. These experiments will be used to select microalgae for the photobioreactor demonstrations. An initial survey of techniques for removing CO{sub 2} from coal-fired flue gas was begun. Chemical adsorption using MEA is the most mature technology and looks to be the most economically viable in the near future.

  3. Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification

    Science.gov (United States)

    Hassenkam, T.; Johnsson, A.; Bechgaard, K.; Stipp, S. L. S.

    2011-01-01

    Coccoliths are micrometer scale shields made from 20 to 60 individual calcite (CaCO3) crystals that are produced by some species of algae. Currently, coccoliths serve as an important sink in the global carbon cycle, but decreasing ocean pH challenges their stability. Chalk deposits, the fossil remains of ancient algae, have remained remarkably unchanged by diagenesis, the process that converts sediment to rock. Even after 60 million years, the fossil coccolith crystals are still tiny (one day old crystals can be 10 times larger, which raises the question if the biogenic nature of coccolith calcite gives it different properties than inorganic calcite? And if so, can these properties protect coccoliths in CO2 challenged oceans? Here we describe a new method for tracking dissolution of individual specimens, at picogram (10-12 g) resolution. The results show that the behavior of modern and fossil coccoliths is similar and both are more stable than inorganic calcite. Organic material associated with the biogenic calcite provides the explanation. However, ancient and modern coccoliths, that resist dissolution in Ca-free artificial seawater at pH > 8, all dissolve when pH is 7.8 or lower. Ocean pH is predicted to fall below 7.8 by the year 2100, in response to rising CO2 levels. Our results imply that at these conditions the advantages offered by the biogenic nature of calcite will disappear putting coccoliths on algae and in the calcareous bottom sediments at risk. PMID:21551094

  4. Isotopic tracers of sources, wells and of CO2 reactivity in geological reservoirs

    International Nuclear Information System (INIS)

    Assayag, N.

    2006-12-01

    The aim of this research works consisted in studying the behaviour of the carbonate system (dissolved inorganic carbon: DIC) following a CO 2 injection (artificial or natural), in geological reservoirs. One part of the study consisted in improving an analytical protocol for the measurement of δ 13 C DIC and DIC, using a continuous flow mass spectrometer. As a first study, we have focused our attention on the Pavin Lake (Massif Central, France). Owing to its limnologic characteristics (meromictic lake) and a deep volcanic CO 2 contribution, it can be viewed as a natural analogue of reservoir storing important quantities of CO 2 in the bottom part. Isotopic measurements (δ 18 O, δ 13 C DIC) allowed to better constrain the dynamics of the lake (stratification, seasonal variations), the magnitudes of biological activities (photosynthesis, organic matter decay, methane oxidation, methano-genesis), carbon sources (magmatic, methano-genetic), and the hydrological budgets (sub-lacustrine inputs). The second study was conducted on the Lamont-Doherty test well site (NY, USA). It includes an instrumental borehole which cuts through most of the section of the Palisades sill and into the Newark Basin sediments. Single well push-pull tests were performed: a test solution containing conservative tracers and a reactive tracer (CO 2 ) was injected at a permeable depth interval located in basaltic and meta sedimentary rocks. After an incubation period, the test solution/groundwater mixture was extracted from the hydraulically isolated zone. Isotopic measurements (δ 18 O, δ 13 C DIC) confronted to chemical data (major elements) allowed to investigate the extent of in-situ CO 2 -water-rock interactions: essentially calcite dissolution and at a lesser extend silicate dissolution...and for one of the test, CO 2 degassing. (author)

  5. Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage

    Science.gov (United States)

    Basirat, Farzad; Yang, Zhibing; Niemi, Auli

    2017-11-01

    Wetting properties of reservoir rocks and caprocks can vary significantly, and they strongly influence geological storage of carbon dioxide in deep saline aquifers, during which CO2 is supposed to displace the resident brine and to become permanently trapped. Fundamental understanding of the effect of wettability on CO2-brine displacement is thus important for improving storage efficiency and security. In this study, we investigate the influence of wetting properties on two-phase flow of CO2 and brine at the pore scale. A numerical model based on the phase field method is implemented to simulate the two-phase flow of CO2-brine in a realistic pore geometry. Our focus is to study the pore-scale fluid-fluid displacement mechanisms under different wetting conditions and to quantify the effect of wettability on macroscopic parameters such as residual brine saturation, capillary pressure, relative permeability, and specific interfacial area. Our simulation results confirm that both the trapped wetting phase saturation and the normalized interfacial area increase with decreasing contact angle. However, the wetting condition does not appear to influence the CO2 breakthrough time and saturation. We also show that the macroscopic capillary pressures based on the pressure difference between inlet and outlet can differ significantly from the phase averaging capillary pressures for all contact angles when the capillary number is high (log Ca > -5). This indicates that the inlet-outlet pressure difference may not be a good measure of the continuum-scale capillary pressure. In addition, the results show that the relative permeability of CO2 can be significantly lower in strongly water-wet conditions than in the intermediate-wet conditions.

  6. The effect of CO2 on the mechanical properties of the Captain Sandstone: Geological storage of CO2 at the Goldeneye field (UK)

    NARCIS (Netherlands)

    Hangx, Suzanne|info:eu-repo/dai/nl/30483579X; van der Linden, A.; Marcelis, F.; Bauer, A.

    2013-01-01

    Geological storage of CO2 in clastic reservoirs is expected to have a variety of coupled chemical-mechanical effects, which may damage the overlying caprock and/or the near-wellbore area. We performed conventional triaxial creep experiments, combined with fluid flow-through experiments (brine and

  7. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    Science.gov (United States)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15 concentration of NaCl up to 6 mol/kgH2O. The EoS allows us to predict equilibrium composition in both liquid and vapor phases, fugacity coefficients of components, and phase densities. Predictions show that inclusion of H2S in CO2 streams may lead to two-phase flow in pipelines. For H2S-CO2 mixtures at a given temperature the bubble and dew pressures decrease with increasing H2S content, while the mass density increases at low pressures and decreases at high pressures. Furthermore, the EoS can be incorporated into reservoir simulators so that the dynamic development of mixed fluid plumes in the reservoir can be simulated. Accurate modeling of fluid-mineral interactions must confront unresolved uncertainties of silicate dissolution - precipitation reaction kinetics. Most prominent among these uncertainties is the well-known lab-field apparent discrepancy in dissolution rates. Although reactive transport models that simulate the interactions between reservoir rocks and brine, and their attendant effects on porosity and permeability changes, have proliferated, whether these results have acceptable uncertainties are unknown. We have conducted a series of batch experiments at elevated temperatures and numerical simulations of coupled dissolution and precipitation reactions. The results show that taking into account of reaction coupling is able

  8. DEVELOPMENT OF A CO2 SEQUESTRATION MODULE BY INTEGRATING MINERAL ACTIVATION AND AQUEOUS CARBONATION

    Energy Technology Data Exchange (ETDEWEB)

    M. Mercedes Maroto-Valer; John M. Andresen; George Alexander

    2004-11-15

    Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw minerals, the permanent storage of CO{sub 2} in solid form as carbonates, and the overall reaction being exothermic. However, the primary drawback to mineral carbonation is the reaction kinetics. To accelerate the reaction, aqueous carbonation processes are preferred, where the minerals are firstly dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface controlled. In order to accelerate the dissolution process, the serpentine can be ground to very fine particle size (<37 {micro}m), but this is a very energy intensive process. Alternatively, magnesium could be chemically extracted in aqueous solution. Phase I showed that chemical surface activation helps to dissolve the magnesium from the serpentine minerals (particle size {approx}100 {micro}m), and furthermore, the carbonation reaction can be conducted under mild conditions (20 C and 650 psig) compared to previous studies that required >185 C, >1850 psig and <37 {micro}m particle size. Phase I also showed that over 70% of the magnesium can be extracted at ambient temperature leaving amorphous SiO{sub 2} with surface areas {approx} 330m{sup 2}/g. The overall objective of Phase 2 of this research program is to optimize the active carbonation process developed in Phase I in order to design an integrated CO{sub 2} sequestration module. During the current reporting period, Task 1 ''Mineral activation'' was initiated and focused on a parametric study to optimize the operation conditions for the mineral activation, where serpentine and sulfuric acid were reacted, as following the results from Phase 1. Several experimental factors were outlined as having a potential influence on the mineral activation. This study has focused to date on the effects of varying the acid

  9. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.

    Science.gov (United States)

    Yadav, Geetanjali; Karemore, Ankush; Dash, Sukanta Kumar; Sen, Ramkrishna

    2015-09-01

    In the present study, carbon-dioxide capture from in situ generated flue gas was carried out using Chlorella sp. in bubble column photobioreactors to develop a cost effective process for concomitant carbon sequestration and biomass production. Firstly, a comparative analysis of CO2 sequestration with varying concentrations of CO2 in air-CO2 and air-flue gas mixtures was performed. Chlorella sp. was found to be tolerant to 5% CO2 concentration. Subsequently, inhibitory effect of pure flue gas was minimized using various strategies like use of high initial cell density and photobioreactors in series. The final biofixation efficiency was improved by 54% using the adopted strategies. Further, sequestered microalgal biomass was analyzed for various biochemical constituents for their use in food, feed or biofuel applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    Science.gov (United States)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ 1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low injection rates; most industrial-scale injection

  11. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    Science.gov (United States)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    2014-05-01

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and

  12. SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Linda Denton; Hana Lorethova; Tomasz Wiltowski; Court Moorefield; Parag Kulkarni; Vladimir Zamansky; Ravi Kumar

    2003-12-01

    This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of

  13. Probabilistic modelling of rock damage: application to geological storage of CO2

    International Nuclear Information System (INIS)

    Guy, N.

    2010-01-01

    The storage of CO 2 in deep geological formations is considered as a possible way to reduce emissions of greenhouse gases in the atmosphere. The condition of the rocks constituting the reservoir is a key parameter on which rely both storage safety and efficiency. The objective of this thesis is to characterize the risks generated by a possible change of mechanical and transfer properties of the material of the basement after an injection of CO 2 . Large-scale simulations aiming at representing the process of injection of CO 2 at the supercritical state into an underground reservoir were performed. An analysis of the obtained stress fields shows the possibility of generating various forms of material degradation for high injection rates. The work is devoted to the study of the emergence of opened cracks. Following an analytical and simplified study of the initiation and growth of opened cracks based on a probabilistic model, it is shown that the formation of a crack network is possible. The focus is then to develop in the finite element code Code Aster a numerical tool to simulate the formation of crack networks. A nonlocal model based on stress regularization is proposed. A test on the stress intensity factor is used to describe crack propagation. The initiation of new cracks is modeled by a Poisson-Weibull process. The used parameters are identified by an experimental campaign conducted on samples from an actual geological site for CO 2 storage. The model developed is then validated on numerical cases, and also against experimental results carried out herein. (author)

  14. Experimental investigation of the Heletz shale caprocks sealing capacity: implication for CO2 geological storage integrity

    Science.gov (United States)

    Abdoulghafour, Halidi; Gouze, Philippe; Luquot, Linda; Arif, Mohamed; Iglauer, Stefan

    2017-04-01

    Using a combination of core flooding experiments and wettability measurements, we evaluate the sealing efficiency of Heletz caprock under CO2 sequestration conditions. The flow through experiments consisted of flowing CO2 enriched fluid into two micro-fractured cylindrical cores (15 mm length - 9 mm diameter, with hydraulic aperture: 2.7 µm for the sample named H18A and 13 µm for sample named H18B) and monitoring the permeability changes, the evolution of the chemistry from the inlet and outlet fluid. The changes in microstructures and mineralogy were also studied using an environmental scanning electrons microscope (ESEM) and X-ray micro-tomography (XRMT) images. The fracture permeability was found to decrease significantly in the two experiments from 14.1×10-12 m2 to 5.0×10-12 m2 for experiment H18B and from 6.5×10-13 m2 to 2.8×10-13 m2 for experiment H18A. Calcite dissolution and reconversion of k-feldspar to illite and kaolinite were the main reaction on sample H18B while "calcite precipitation" in batch condition was the dominant reaction on sample H18A. Accordingly, the decrease in permeability was induced by the dispersion of dissolution products and the re-organization of clay particles within the fracture for sample H18B as shown by micro-tomography and ESEM images. The fracture healing due to the calcite and clay mineral precipitation along the fracture was attested by ESEM image for sample H18A. The results of capillary pressure breakthrough calculated by applying the Washburn equation and the reservoir scaling method from intrusion of mercury are approximately 380 kPa and 310 kPa for H18B and H18A respectively. Although, these values are sensibly different but close to each other and in good agreement to indicate the weak storage capacity of the heletz caprock. Subsequently less than 90 m of CO2 column height can be efficiently stored in the Heletz reservoir. Thus the self-mitigation of the CO2 leakage is expected only when few quantity of CO2

  15. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  16. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    Science.gov (United States)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These

  17. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2006-01-23

    As part of the Department of Energy's (DOE) initiative on developing new technologies for storage of carbon dioxide in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, The Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the October through December 2005 period of the project. As discussed in the following report, the main field activity was reservoir testing in the Copper Ridge ''B-zone'' in the AEP No.1 well. In addition reservoir simulations were completed to assess feasibility of CO{sub 2} injection for the Mountaineer site. These reservoir testing and computer simulation results suggest that injection potential may be substantially more than anticipated for the Mountaineer site. Work also continued on development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase project is proceeding according to plans.

  18. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere

    Science.gov (United States)

    Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis

    2006-01-01

    Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...

  19. ULTimateCO2 - State of the art report. Dealing with uncertainty associated with long-term CO2 geological storage

    International Nuclear Information System (INIS)

    2014-01-01

    ULTimateCO2, a four-year collaborative project financed by the 7. Framework Programme and coordinated by BRGM, aims to shed more light on the long-term processes associated with the geological storage of CO 2 . ULTimateCO2 unites 12 partners (research institutes, universities, industrialists) and a varied panel of experts (NGOs, national authority representatives, IEAGHG,...). Based on a multidisciplinary approach, and bringing together laboratory experiments, numerical modelling and natural analogue field studies, ULTimateCO2 will increase our understanding of the long-term effects of CO 2 Capture and Storage (CCS) in terms of hydrodynamics, geochemistry, mechanics of the storage formations and their vicinity. The report contains the partners' pooled knowledge and provides a view of the current state-of-the-art for the issues addressed by this project: - The long-term reservoir trapping efficiency (WP3); - The long-term sealing integrity of faulted and fractured cap-rock (WP4); - The near-well leakage characterisation and chemical processes (WP5); - The long-term behavior of stored CO 2 looking at the basin scale (WP2); - Uncertainty assessment (WP6). Each chapter is divided into two sections: (i) a summary which explains in 'simple words' the main issues and objectives of the WP, and (ii) a current state of the art section which provides a more sound review on the specific studied processes. The aim is to provide answers to pertinent questions from a variety of users, particularly project owners, site operators and national authorities, about their exposure to uncertainty downstream of closure of a CO 2 geological storage site

  20. A Framework to Estimate CO2 Leakage associated with Geological Storage in Mature Sedimentary Basins

    Science.gov (United States)

    Celia, M. A.; Bachu, S.; Gasda, S.

    2002-12-01

    Geological storage of carbon dioxide requires careful risk analysis to avoid unintended consequences associated with the subsurface injection. Most negative consequences of subsurface injection are associated with leakage of the injected CO2 out of the geological formation into which it is injected. Such leakage may occur through natural geological features, including fractures and faults, or it may occur through human-created pathways such as existing wells. Possible leakage of CO2 through existing wells appears to be especially important in mature sedimentary basins that have been explored intensively and exploited for hydrocarbon production. In the Alberta Basin of western Canada, more than 300,000 oil and gas wells have been drilled, while in the state of Texas in the United States, more than 1,500,000 wells have been drilled. Many of these wells have been abandoned, and the information available to describe their current state is highly variable and sometimes nonexistent. Because these wells represent possible direct conduits from the injection zone to the land surface, a comprehensive assessment of leakage potential associated with these wells needs to be pursued. Analysis of leakage potential associated with existing wells must combine a data mining component with a multi-level modeling effort to assess leakage potential in a probabilistic framework. Information available for existing wells must be categorized and analyzed, and general leakage characteristics associated with wells of varying properties must be quantified. One example of a realistic target formation is the Viking Formation in Alberta, which is overlain by a thick shale layer and contains hydrocarbon in some locations. The existence of hydrocarbon in the formation indicates that the overlying shale layer is an effective barrier to flow, and therefore this is a good candidate formation for CO2 storage. However, the formation and its cap rock are punctured by approximately 180,000 wells, with

  1. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  2. Responses of Gmelina arborea, a tropical deciduous tree species, to elevated atmospheric CO2: growth, biomass productivity and carbon sequestration efficacy.

    Science.gov (United States)

    Rasineni, Girish K; Guha, Anirban; Reddy, Attipalli R

    2011-10-01

    The photosynthetic response of trees to rising CO(2) concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO(2) responses in trees have either doubled the gas concentration (>700 μmol mol(-1)) or used single large addition of CO(2) (500-600 μmol mol(-1)). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO(2) concentration (460 μmol mol(-1)). Net photosynthetic rate of Gmelina was ~30% higher in plants grown in elevated CO(2) compared with ambient CO(2)-grown plants. The elevated CO(2) concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in F(V)/F(M), ABS/CSm, ET(0)/CSm and RuBPcase activity. The study also revealed that elevated CO(2) conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ~2100 g tree(-1) carbon after 120 days of treatment when compared to ambient CO(2)-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmo lmol(-1) CO(2). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. A Workflow for Subsurface Pressure Control in Geological CO2 Storage: Optimization of Brine Extraction

    Science.gov (United States)

    Birkholzer, J. T.; Gonzalez-Nicolas, A.; Cihan, A.

    2017-12-01

    Industrial-scale injection of CO2 into the subsurface increases the fluid pressure in the reservoir, sometimes to the point that the resulting stress increases must be properly controlled to prevent potential damaging impacts such as fault activation, leakage through abandoned wells, or caprock fracturing. Brine extraction is one approach for managing formation pressure, effective stress, and plume movement in response to CO2 injection. However, the management of the extracted brine adds cost to the carbon capture and sequestration operations; therefore optimizing (minimizing) the extraction volume of brine is of great importance. In this study, we apply an adaptive management approach that optimizes extraction rates of brine for pressure control in an integrated optimization framework involving site monitoring, model calibration, and optimization. We investigate the optimization performance as affected by initial site characterization data and introduction of newly acquired data during the injection phase. More accurate initial reservoir characterization data reduce the risk of pressure buildup damage with better estimations of initial extraction rates, which results in better control of pressure during the overall injection time periods. Results also show that low frequencies of model calibration and optimization with the new data, especially at early injection periods, may lead to optimization problems, either that pressure buildup constraints are violated or excessively high extraction rates are proposed. These optimization problems can be eliminated if more frequent data collection and model calibration are conducted, especially at early injection time periods. Approaches such as adaptive pressure management may constitute an effective tool to manage pressure buildup under uncertain and unknown reservoir conditions by minimizing the brine extraction volumes while not exceeding critical pressure buildups of the reservoir.

  4. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    2006-02-23

    Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture

  5. Reactive Transport at the Pore Scale with Applications to the Dissolution of Carbonate Rocks for CO2 Sequestration Operations

    Science.gov (United States)

    Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.

    2014-12-01

    In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and

  6. Geological investigation for CO2 storage: from seismic and well data to storage design

    Science.gov (United States)

    Chapuis, Flavie; Bauer, Hugues; Grataloup, Sandrine; Leynet, Aurélien; Bourgine, Bernard; Castagnac, Claire; Fillacier, Simon; Lecomte, Antony; Le Gallo, Yann; Bonijoly, Didier

    2010-05-01

    Geological investigation for CO2 storage: from seismic and well data to storage design Chapuis F.1, Bauer H.1, Grataloup S.1, Leynet A.1, Bourgine B.1, Castagnac C.1, Fillacier, S.2, Lecomte A.2, Le Gallo Y.2, Bonijoly D.1. 1 BRGM, 3 av Claude Guillemin, 45060 Orléans Cedex, France, f.chapuis@brgm.fr, d.bonijoly@brgm.fr 2 Geogreen, 7, rue E. et A. Peugeot, 92563 Rueil-Malmaison Cedex, France, ylg@greogreen.fr The main purpose of this study is to evaluate the techno-economical potential of storing 200 000 tCO2 per year produced by a sugar beat distillery. To reach this goal, an accurate hydro-geological characterisation of a CO2 injection site is of primary importance because it will strongly influence the site selection, the storage design and the risk management. Geological investigation for CO2 storage is usually set in the center or deepest part of sedimentary basins. However, CO2 producers do not always match with the geological settings, and so other geological configurations have to be studied. This is the aim of this project, which is located near the South-West border of the Paris Basin, in the Orléans region. Special geometries such as onlaps and pinch out of formation against the basement are likely to be observed and so have to be taken into account. Two deep saline aquifers are potentially good candidates for CO2 storage. The Triassic continental deposits capped by the Upper Triassic/Lower Jurassic continental shales and the Dogger carbonate deposits capped by the Callovian and Oxfordian shales. First, a data review was undertaken, to provide the palaeogeographical settings and ideas about the facies, thicknesses and depth of the targeted formations. It was followed by a seismic interpretation. Three hundred kilometres of seismic lines were reprocessed and interpreted to characterize the geometry of the studied area. The main structure identified is the Étampes fault that affects all the formations. Apart from the vicinity of the fault where drag

  7. High Throughput Strontium Isotope Method for Monitoring Fluid Flow Related to Geological CO2 Storage

    Science.gov (United States)

    Capo, R. C.; Wall, A. J.; Stewart, B. W.; Phan, T. T.; Jain, J. C.; Hakala, J. A.; Guthrie, G. D.

    2012-12-01

    Natural isotope tracers, such as strontium (Sr), can be a unique and powerful component of a monitoring strategy at a CO2 storage site, facilitating both the quantification of reaction progress for fluid-rock interactions and the tracking of brine migration caused by CO2 injection. Several challenges must be overcome, however, to enable the routine use of isotopic tracers, including the ability to rapidly analyze numerous aqueous samples with potentially complex chemical compositions. In a field situation, it might be necessary to analyze tens of samples over a short period of time to identify subsurface reactions and respond to unexpected fluid movement in the host formation. These conditions require streamlined Sr separation chemistry for samples ranging from pristine groundwaters to those containing high total dissolved solids, followed by rapid measurement of isotope ratios with high analytical precision. We have optimized Sr separation chemistry and MC-ICP-MS methods to provide rapid and precise measurements of isotope ratios in geologic, hydrologic, and environmental samples. These improvements will allow an operator to independently prepare samples for Sr isotope analysis off-site using fast, low cost chemical separation procedures and commercially available components. Existing vacuum-assisted Sr separation procedures were modified by using inexpensive disposable parts to eliminate cross contamination. Experimental results indicate that the modified columns provide excellent separation of Sr from chemically complex samples and that Sr can be effectively isolated from problematic matrix elements (e.g., Ca, Ba, K) associated with oilfield brines and formation waters. The separation procedure is designed for high sample throughput in which batches of 24 samples can be processed in approximately 2 hours, and are ready for Sr isotope measurements by MC-ICP-MS immediately after collection from the columns. Precise Sr isotope results can be achieved by MC

  8. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  9. Shallow groundwater monitoring at the SACROC oilfield, Scurry County, TX: good news for geologic storage of CO2 despite a complex hydrogeologic and geochemical setting (Invited)

    Science.gov (United States)

    Smyth, R. C.; Romanak, K.; Yang, C.; Hovorka, S.

    2009-12-01

    The SACROC water study is the first comprehensive research project with application to geologic storage (GS) of CO2 that focuses on collection and interpretation of field measurements of groundwater (water level and water chemistry data). CO2 has been injected for enhanced oil recovery at the SACROC oilfield in Scurry County, TX since 1972. Hence, we have a perfect natural laboratory and an analog for monitoring future commercial CO2 sequestration sites. Kinder Morgan currently operates the SACROC oilfield where over 150 million metric tons (MMT) of CO2 has been injected for EOR at ~2 km depth; over 75 MMT of the CO2 has been produced and re-injected. CO2 is assumed to be trapped in the deep subsurface at SACROC. The goals of monitoring shallow groundwater over CO2 injection sites are to (1) confirm that CO2 has remained in the deep subsurface and (2) assess impacts to water quality if CO2 were to migrate upward along conduit flow paths (e.g. leaking well bores). We collected groundwater and stratigraphic data within an ~3,000 km2 area centered on SACROC to establish regional variability prior to assessing potential impacts to groundwater from CO2 injection. Groundwater data include results from five sampling trips between June 2006 and November 2008, and a compilation of historical data from the Texas Water Development Board database, dating back to 1936. Sources of complexity that contribute to data interpretation challenges include: (1) regional historic oilfield activity, (2) multiple freshwater-bearing strata in the regional Dockum aquifer, (3) sampled wells screened in shallowest (30 m), deepest (150 m), or across both water-bearing zones, (4) variable discharge rate of sampled wells (250 gpm), (5) groundwater flow divide that bisects SACROC, (6) variable aquifer recharge mechanisms, (7) temporal variability in groundwater levels and chemistry, (8) cation exchange, (9) presence of biogenically-produced CO2 in aquifer, and (10) incongruent dissolution of

  10. Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l'effet de serreThe role of CO2 capture and sequestration in mitigation of climate change

    Science.gov (United States)

    Jean-Baptiste, Philippe; Ducroux, René

    2003-06-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2. Technical solutions exist to reduce CO 2 emission and stabilise atmospheric CO 2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO 2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO 2 (forests, soils, etc.), and last but not least, sequester CO 2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO 2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO 2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).

  11. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for

  12. Metamodeling-based approach for risk assessment and cost estimation: Application to geological carbon sequestration planning

    Science.gov (United States)

    Sun, Alexander Y.; Jeong, Hoonyoung; González-Nicolás, Ana; Templeton, Thomas C.

    2018-04-01

    Carbon capture and storage (CCS) is being evaluated globally as a geoengineering measure for significantly reducing greenhouse emission. However, long-term liability associated with potential leakage from these geologic repositories is perceived as a main barrier of entry to site operators. Risk quantification and impact assessment help CCS operators to screen candidate sites for suitability of CO2 storage. Leakage risks are highly site dependent, and a quantitative understanding and categorization of these risks can only be made possible through broad participation and deliberation of stakeholders, with the use of site-specific, process-based models as the decision basis. Online decision making, however, requires that scenarios be run in real time. In this work, a Python based, Leakage Assessment and Cost Estimation (PyLACE) web application was developed for quantifying financial risks associated with potential leakage from geologic carbon sequestration sites. PyLACE aims to assist a collaborative, analytic-deliberative decision making processes by automating metamodel creation, knowledge sharing, and online collaboration. In PyLACE, metamodeling, which is a process of developing faster-to-run surrogates of process-level models, is enabled using a special stochastic response surface method and the Gaussian process regression. Both methods allow consideration of model parameter uncertainties and the use of that information to generate confidence intervals on model outputs. Training of the metamodels is delegated to a high performance computing cluster and is orchestrated by a set of asynchronous job scheduling tools for job submission and result retrieval. As a case study, workflow and main features of PyLACE are demonstrated using a multilayer, carbon storage model.

  13. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide

    International Nuclear Information System (INIS)

    Holloway, S.; Pearce, J.M.; Hards, V.L.; Ohsumi, T.; Gale, J.

    2007-01-01

    Carbon dioxide (CO 2 ) capture and storage has the potential to reduce CO 2 emissions from fossil fuel combustion. Although leakage from monitored CO 2 injection sites has been minimal to non-existent, experience from the natural gas storage industry suggests that, if it becomes a widely deployed technology, leaks may be expected from some storage sites. Natural occurrences of CO 2 in the geosphere, some of which have been exploited, provide insights into the types of emissions that might be expected from anthropogenic CO 2 storage sites. CO 2 emission sites are commonly found in clusters in CO 2 -prone geological provinces: the most common natural emissions sites in sedimentary basins consist of carbonated springs and mofettes. These represent at worst only a local hazard. In volcanic and hydrothermal provinces, more energetic emissions may occur due to active supply from degassing magma. These include rare, sudden emissions from fissures and craters that have caused fatalities. It is unlikely that such provinces would be considered for CO 2 storage. Major lake overturn events such as occurred at Lake Nyos in 1986 are considered highly unlikely to occur as a result of CO 2 storage, not least because CO 2 levels in lake waters can be monitored and remediated. Natural CO 2 fields indicate that under favourable conditions CO 2 can be retained in the subsurface for millions of years. The main risk from man-made CO 2 storage sites that does not have any close analogy in nature is considered to be a well blowout. A blowout that took place at a natural CO 2 field provides some indication of the likely hazard. (author)

  14. Uncertainty studies and risk assessment for CO2 storage in geological formations

    International Nuclear Information System (INIS)

    Walter, Lena Sophie

    2013-01-01

    Carbon capture and storage (CCS) in deep geological formations is one possible option to mitigate the greenhouse gas effect by reducing CO 2 emissions into the atmosphere. The assessment of the risks related to CO 2 storage is an important task. Events such as CO 2 leakage and brine displacement could result in hazards for human health and the environment. In this thesis, a systematic and comprehensive risk assessment concept is presented to investigate various levels of uncertainties and to assess risks using numerical simulations. Depending on the risk and the processes, which should be assessed, very complex models, large model domains, large time scales, and many simulations runs for estimating probabilities are required. To reduce the resulting high computational costs, a model reduction technique (the arbitrary polynomial chaos expansion) and a method for model coupling in space are applied. The different levels of uncertainties are: statistical uncertainty in parameter distributions, scenario uncertainty, e.g. different geological features, and recognized ignorance due to assumptions in the conceptual model set-up. Recognized ignorance and scenario uncertainty are investigated by simulating well defined model set-ups and scenarios. According to damage values, which are defined as a model output, the set-ups and scenarios can be compared and ranked. For statistical uncertainty probabilities can be determined by running Monte Carlo simulations with the reduced model. The results are presented in various ways: e.g., mean damage, probability density function, cumulative distribution function, or an overall risk value by multiplying the damage with the probability. If the model output (damage) cannot be compared to provided criteria (e.g. water quality criteria), analytical approximations are presented to translate the damage into comparable values. The overall concept is applied for the risks related to brine displacement and infiltration into drinking water

  15. Mobilization of metals from Eau Claire siltstone and the impact of oxygen under geological carbon dioxide sequestration conditions

    Science.gov (United States)

    Shao, Hongbo; Kukkadapu, Ravi K.; Krogstad, Eirik J.; Newburn, Matt K.; Cantrell, Kirk J.

    2014-09-01

    To investigate the impact of O2 as an impurity co-injected with CO2 on geochemical interactions, especially trace metal mobilization from a geological CO2 sequestration (GCS) reservoir rock, batch studies were conducted with Eau Claire siltstone collected from CO2 sequestration sites. The rock was reacted with synthetic brines in contact with either 100% CO2 or a mixture of 95 mol% CO2-5 mol% O2 at 10.1 MPa and 75 °C. Both microscopic and spectroscopic measurements, including 57Fe-Mössbauer spectroscopy, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, powder X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, and chemical extraction were combined in this study to investigate reaction mechanisms. The Eau Claire siltstone contains quartz (52 wt%), fluorapatite (40%), and aluminosilicate (5%) as major components, and dolomite (2%), pyrite (1%), and small-particle-/poorly-crystalline Fe-oxides as minor components. With the introduction of CO2 into the reaction vessel containing rock and brine, the leaching of small amounts of fluorapatite, aluminosilicate, and dolomite occurred. Trace metals of environmental concern, including Pb, As, Cd, and Cu were detected in the leachate with concentrations up to 400 ppb in the CO2-brine-rock reaction system within 30 days. In the presence of O2, the oxidation of Fe(II) and the consequent changes in the reaction system, including a reduction in pH, significantly enhanced the mobilization of Pb, Cd, and Cu, whereas As concentrations decreased, compared with the reaction system without O2. The presence of O2 resulted in the formation of secondary Fe-oxides which appear to be Fe(II)-substituted P-containing ferrihydrite. Although the rock contained only 1.04 wt% total Fe, oxidative dissolution of pyrite, leaching and oxidation of structural Fe(II) in fluorapatite, and precipitation of Fe-oxides significantly decreased the pH in brine with O2 (pH 3.3-3.7), compared with the reaction

  16. Preliminary Safety and Risk HSE Assessment. Application to the Potential Locations of a CO2 Geological Storage Pilot

    International Nuclear Information System (INIS)

    Recreo, F.; Eguilior, S.; Ruiz, C.; Lomba, L.; Hurtado, A.

    2015-01-01

    The location of a site safe and able to sequester CO2 for long periods of time is essential to gain public acceptance. This requires a long-term safety assessment developed in a robust and reliable framework. Site selection is the first step and requires specific research. This paper describes the application of the Selection and Classification Method of Geological Formations (SCF) developed to assess the potential of geological formations to CO2 storage. This assessment is based in the analysis of risks to Health, Safety and Environment (HSE) derived from potential CO2 leakage. Comparisons of the results obtained from a number of potential sites can help to select the best candidate for CO2 injection. The potential impact will be related to three key potential features of CO2 geological storage: the potential of the target geological formation for long term CO2 containment; the potential for secondary containment on containment failure of the target formation; and the site's potential to mitigate and/or disperse CO2 leakage if the primary and secondary containments fail. The methodology assesses each of these three characteristics through an analysis and assessment of properties of certain attributes of them. Uncertainty will remain as an input and output value of the methodology due to the usual lack of data in most site selection processes. The global uncertainty reports on the trust on the knowledge of the site characteristics. Therefore, the methodology enables comparing sites taking into account both the HSE risk expectation and the estimation of the quality of knowledge concerning such risk. The objective is to contribute to the selection of potential sites for a CO2 injection pilot plant in the Iberian Peninsula from the perspective of Safety and Risk Analysis.

  17. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee

    2015-08-19

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  18. Accounting for geochemical alterations of caprock fracture permeability in basin-scale models of leakage from geologic CO2 reservoirs

    Science.gov (United States)

    Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.

    2012-12-01

    Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2

  19. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  20. Inverse Problem for 3D coupled Flow-Geomechanics Models and Induced Seismicity: Application to Subsurface Characterization and Seismicity Forecasting in Geologic CO2 Storage

    Science.gov (United States)

    Castineira, D.; Jha, B.; Juanes, R.

    2016-12-01

    Carbon Capture and Sequestration (CCS) is regarded as a promising technology to mitigate rising CO2 concentrations in the atmosphere from industrial emissions. However, as a result of the inherent uncertainty that is present in geological structures, assessing the stability of geological faults and quantifying the potential for induced seismicity is a fundamental challenge for practical implementation of CCS. Here we present a formal framework for the solution of the inverse problem associated with coupled flow and geomechanics models of CO2 injection and subsurface storage. Our approach builds from the application of Gaussian Processes, MCMC and posterior predictive analysis to evaluate relevant earthquake attributes (earthquake time, location and magnitude) in 3D synthetic models of CO2 storage under geologic, observational and operational uncertainty. In our approach, we first conduct hundreds of simulations of a high-fidelity 3D computational model for CO2 injection into a deep saline aquifer, dominated by an anticline structure and a fault. This ensemble of realizations accounts for uncertainty in the model parameters (including fault geomechanical and rock properties) and observations (earthquake time, location and magnitude). We apply Gaussian processes (GP) to generate a valid surrogate that closely approximates the behavior of the high fidelity (and computationally intensive) model, and apply hyperparameter optimization and cross-validation techniques in the solution of this multidimensional data-fit problem. The net result of this process is the generation of a fast model that can be effectively used for Bayesian analysis. We then implement Markov chain Monte Carlo (MCMC) to determine the posterior distribution of the model uncertain parameters (given some prior distributions for those parameters and given the likelihood defined in this case by the GP model). Our results show that the resulting posterior distributions correctly converge towards the "true

  1. Rock Physics of Geologic Carbon Sequestration/Storage

    Energy Technology Data Exchange (ETDEWEB)

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  2. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    , respectively) than under CT treatment (399 g C-CO2 m-2 yr-1) in site 2. Tillage operations had a rapid but short-lived effect on soil CO2 efflux rates, with no significant influence on the annual soil CO2 emissions. The larger amounts of plant biomass incorporated into soil annually in the reduced tillage treatments compared to the conventional tillage treatment promoted soil aggregation and the physico-chemical soil organic carbon stabilization while soil CO2 emissions did not significantly increase. According to our results, reduced-tillage is strongly recommended as a beneficial SLM strategy for mitigating atmospheric CO2 increase through soil carbon sequestration and stabilization in semiarid Mediterranean agroecosystems.

  3. Coupled multiphase reactive flow and mineral dissolution-precipitation kinetics: Examples of long-term CO2 sequestration in Utsira Sand, Norway and Mt. Simon Formation, Midwest USA

    Science.gov (United States)

    Zhang, Y.; Zhang, G.; Lu, P.; Hu, B.; Zhu, C.

    2017-12-01

    : Calibration to seismic data for the uppermost layer and model sensitivity analysis. International Journal of Greenhouse Gas Control, 43, 233-246. 3Zhang, G., Lu, P., Zhang, Y., Wei, X., Zhu, C. (2015). Effects of rate law formulation on predicting CO2 sequestration in sandstone formations. International Journal of Energy Research, 39(14), 1890-1908.

  4. A data driven model for the impact of IFT and density variations on CO2 storage capacity in geologic formations

    Science.gov (United States)

    Nomeli, Mohammad A.; Riaz, Amir

    2017-09-01

    Carbon dioxide (CO2) storage in depleted hydrocarbon reservoirs and deep saline aquifers is one of the most promising solutions for decreasing CO2 concentration in the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. Though we focus on the effect of IFT in this study as a factor influencing sealing efficiency or storage capacity, other factors such as interfacial interactions, wettability, pore radius and interfacial mass transfer also affect the mobility and storage capacity of CO2 phase in the pore space. The study of the variation of IFT is however important because the pressure needed to penetrate a pore depends on both the pore size and the interfacial tension. Hence small variations in IFT can affect flow across a large population of pores. A novel model is proposed to find the IFT of the ternary systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a multi-variant non-linear regression of experimental data. The method uses a general empirical model for the quaternary system CO2/brine-salts that can be made to coincide with experimental data for a variety of solutions. We introduce correction parameters into the model, which compensates for uncertainties, and enforce agreement with experimental data. The results for IFT show a strong dependence on temperature, pressure, and salinity. The model has been found to describe the experimental data in the appropriate parameter space with reasonable precision. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity increases with reservoir depth.

  5. Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations

    NARCIS (Netherlands)

    Wollenweber, J.; Alles, S.a.; Kronimus, A.; Busch, A.; Stanjek, H.; Krooss, B.M.

    2009-01-01

    A comprehensive set of experimental and analytical methods has been used to characterise the sealing and fluid -transport properties of fine-grained (pelitic) sedimentary rocks under the pressure and temperature conditions of geological CO2 storage. The flow experiments were carried out on

  6. Could a geological storage of the CO2 emissions from Romanian power plants become a joint implementation project?

    International Nuclear Information System (INIS)

    Matei, Magdalena; Ene, Simona; Necula, Catalina; Matei, Lucian; Marinescu, Mihai

    2006-01-01

    Full text: Emissions trading is a solution that is most compatible with deregulated electricity markets. The Directive 2003/87/CE referring to CO 2 emission trading within Europe entered into force and till 31 March 2004 all the countries had to present to the Commission their national plan to comply with Directive's rules. Recent predictions of the Intergovernmental Panel on Climate Change indicate that global warming will accelerate within this century. CO 2 emitted by the burning of fossil fuels is thought to be a main driving factor of climate change. With the potential to produce power without releasing CO 2 into the atmosphere, CO 2 capturing may become an important part of the post- Kyoto strategies of many countries. Underground storage of CO 2 seems to be one of the most attractive alternative. Potential targets for CO 2 injection are: - depleted oil reservoirs, possibly in combination with enhanced oil recovery - former gas fields, possibly with additional gas production - deep aquifers containing saline, non-drinkable water - deep and unminable coal seams (exchange of absorbed methane by CO 2 with simultaneous gas production) - geothermal wells, after heat extraction from the aquifers - residual volumes of former deep coal and salt mines. An environmental political decision about the option of CO 2 underground storage has to consider forecasts about developments of global climate, societies, and economics. Due to the forthcoming emission trading there is a growing interest in underground storage options for CO 2 in Europe now. Flexible mechanisms agreed by Kyoto Protocol, namely the Project-based Joint Implementation (Art. 6) and the Emission Trading (Art. 17) could help Romania to attract investment with a long term impact on emissions reduction. The brief identification of major CO 2 emissions sources and of possible CO 2 geological storage capacities (coal mines, aquifers, geothermal wells, oil and gas fields) shows that it is very probable to

  7. Risks attributable to water quality changes in shallow potable aquifers from geological carbon sequestration leakage into sediments of variable carbonate content

    DEFF Research Database (Denmark)

    Cahill, Aaron Graham; Jakobsen, Rasmus; Mathiesen, Tina Bay

    2013-01-01

    The consequences of CO2 leakage from geological sequestration into shallow aquifers must be fully understood before such geo-engineering technology can be implemented. A series of CO2 exposure batch reactor experiments were conducted utilizing 8 sediments of varying composition obtained from across...... Denmark including; siliceous, carbonate and clay materials. Sediments were exposed to CO2 and hydro-geochemical effects were observed in order to improve general understanding of trace metal mobility, quantify carbonate influence, assess risks attributable to fresh water resources from a potential leak...... and aid monitoring measurement and verification (MMV) program design. Results demonstrate control of water chemistry by sediment mineralogy and most significantly carbonate content, for which a potential semi-logarithmic relationship with pH and alkalinity was observed. In addition, control of water...

  8. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part II: Impact of Geological CO2 Storage Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.

    2016-07-01

    Full Text Available Some key points still prevent the full development of geological carbon sequestration in underground formations, especially concerning the assessment of the integrity of such storage. Indeed, the consequences of gas injection on chemistry and petrophysical properties are still much discussed in the scientific community, and are still not well known at either laboratory or field scale. In this article, the results of an experimental study about the mobilization of Trace Elements (TE during CO2 injection in a reservoir are presented. The experimental conditions range from typical storage formation conditions (90 bar, supercritical CO2 to shallower conditions (60 and 30 bar, CO2 as gas phase, and consider the dissolution of the two carbonates, coupled with the sorption of an initial concentration of 10−5 M of Zn(II, and the consequent release in solution of Mn(II and Sr(II. The investigation goes beyond the sole behavior of TE in the storage conditions: it presents the specific behavior of each element with respect to the pressure and the natural carbonate considered, showing that different equilibrium concentrations are to be expected if a fluid with a given concentration of TE leaks to an upper formation. Even though sorption is evidenced, it does not balance the amount of TE released by the dissolution process. The increase in porosity is clearly evidenced as a linear function of the CO2 pressure imposed for the St-Emilion carbonate. For the Lavoux carbonate, this trend is not confirmed by the 90 bar experiment. A preferential dissolution of the bigger family of pores from the preexisting porosity is observed in one of the samples (Lavoux carbonate while the second one (St-Emilion carbonate presents a newly-formed family of pores. Both reacted samples evidence that the pore network evolves toward a tubular network type.

  9. Roles of Nano- and Micro-Scale Subsurface Geochemical Reactions on Environmentally Sustainable Geologic Carbon Dioxide Sequestration

    Science.gov (United States)

    Hu, Yandi

    Geologic CO2 sequestration (GCS) is a promising approach to reduce anthropogenic CO2 emissions into the atmosphere. At GCS sites, injected CO2 is kept in formation rock by an overlying low permeability caprock. During and after CO2 injection, geochemical reactions can affect the porosity, permeability, and pollutant transport in aquifers. Despite their importance, nano- and micro-scale subsurface geochemical reactions are far from well-understood. Clay mobilization has been reported to decrease aquifer permeability during water flooding, and clay minerals are abundant in caprock. Thus, we studied CO2-brine-clay interactions under varied conditions relevant to different GCS sites (at 35-95°C and under 35-120 atm CO2, in water, NaCl, MgCl2, or CaCl2 solutions). Biotite, Fe-bearing mica, was used as a model clay mineral. We observed numerous fibrous illite precipitates on mica after reaction for only 3 h, which had not been previously reported. A few hours later, the mica surface cracked and fibrous illite detached. The mobilization of fibrous illite can decrease the aquifer's permeability greatly and affect the safety and efficiency of GCS. Mechanisms related to ion exchange, mica swelling, and CO2 intercalation were explored. Oriented aggregation of illite nanoparticles forming the fibrous illite was directly observed, suggesting a new mechanism for fibrous illite formation. Interestingly, besides the pH effect, aqueous CO2 enhances mica cracking over N2. These findings can help to achieve safer subsurface operations. At GCS field sites, Fe concentration increased near the injection sites and originally adsorbed pollutants were released. As the brine flows, Fe re-precipitated because of pH increase. To better predict the fate and transport of aqueous pollutants, the nucleation and growth of Fe(III) (hydr)oxides were studied. New information about sizes and volumes of the Fe(III) (hydr)oxide nanoparticles precipitated in solution and on quartz, mica, and sapphire

  10. Climate change and CO2 emission reductions

    International Nuclear Information System (INIS)

    Ha Duong, M.; Campos, A.S.

    2007-04-01

    This paper presents the results of an opinion poll performed on a representative sample of 1000 persons about their sensitivity to climate change and to environment protection, their knowledge about technologies which are useful for environment protection, their opinion about geological CO 2 sequestration, and technologies to be developed to struggle against climate warming

  11. FY 2000 report on the results of the R and D of the prediction technology for environmental effects of CO2 ocean sequestration. Ocean survey and development of the assessment technology for capacity of CO2 sequestration; 2000 nendo nisanka tanso no kaiyo kakuri ni tomonau kankyo eikyo yosoku gijutsu kenkyu kaihatsu seika hokokusho. Kaiyo chosa oyobi CO2 kakuri noryoku hyoka gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Assuming the dissolution/sequestration of CO2 at the medium-depth sea area around Japan (depth: 1,000-2,000m), the development was being proceeded with of the assessment technology for capacity of CO2 ocean sequestration and the prediction technology of environmental effects at the point of CO2 discharge. In FY 2000, conducted were the ocean survey and the development of assessment technology for CO2 sequestration capacity. In the investigational study, the following three were carried out: 1) survey/observation of the flow field on the line of 165 degrees of east longitude, and acquisition of various data such as the distribution of carbonic acid base substances and the speed of carbon transport; 2) study of the amount of existence of organisms and kind/composition of the medium-depth plankton at the typical observation points; 3) test/experiment actually conducted in the sea area for the experimental equipment for CaCO3 dissolution experimental equipment for studying interactions between the CO2 and CaCO3 dissolved into the medium-depth sea. As to the development of the assessment technology, carried out were the heightening of accuracy of medium-depth ocean circulation models using the inverse method already developed and the estimation of the flow field using the observation data. At the same time, the estimation of the flow field, etc. were conducted using large circulation ocean models. (NEDO)

  12. The European FP7 ULTimateCO2 project: A comprehensive approach to study the long term fate of CO2 geological storage sites

    Science.gov (United States)

    Audigane, P.; Brown, S.; Dimier, A.; Pearce, J.; Frykman, P.; Maurand, N.; Le Gallo, Y.; Spiers, C. J.; Cremer, H.; Rutters, H.; Yalamas, T.

    2013-12-01

    The European FP7 ULTimateCO2 project aims at significantly advance our knowledge of specific processes that could influence the long-term fate of geologically stored CO2: i) trapping mechanisms, ii) fluid-rock interactions and effects on mechanical integrity of fractured caprock and faulted systems and iii) leakage due to mechanical and chemical damage in the well vicinity, iv) brine displacement and fluid mixing at regional scale. A realistic framework is ensured through collaboration with two demonstration sites in deep saline sandstone formations: the onshore former NER300 West Lorraine candidate in France (ArcelorMittal GeoLorraine) and the offshore EEPR Don Valley (former Hatfield) site in UK operated by National Grid. Static earth models have been generated at reservoir and basin scale to evaluate both trapping mechanisms and fluid displacement at short (injection) and long (post injection) time scales. Geochemical trapping and reservoir behaviour is addressed through experimental approaches using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions and through geochemical simulations. Collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland) (OPA), an analogue for caprock well investigated in the past for nuclear waste disposal purpose: - Characterization of elastic parameters in intact samples by measuring strain during an axial experiment, - A recording of hydraulic fracture flow properties by loading and shearing samples in order to create a 'realistic

  13. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time

    OpenAIRE

    Franks, Peter J.; Beerling, David J.

    2009-01-01

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO2 between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO2 (gcmax) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO2, the crucial significance of similarly large variations in S has been over...

  14. Clayey cap-rocks reactivity in presence of CO2 in deep geological storage conditions: experimentation/modeling integrated approach

    International Nuclear Information System (INIS)

    Credoz, A.

    2009-10-01

    CO 2 capture, transport and geological storage is one of the main solutions considered in the short and medium term to reduce CO 2 and others greenhouse gases emissions towards the atmosphere, by storing CO 2 in deeper geological reservoirs during 100 to 10 000 years. This Ph-D study offers a multi-scale vision of complex clayey cap-rocks reactivity and evolution. These formations are identified for the CO 2 containment and sealing into the reservoir. From the experimental scale on purified clay minerals to integrative modeling at high space and time scales, the strategy developed allowed identifying the main geochemical processes, to check the good agreement between experiment and modeling, and to lay emphasis the operational impacts on long-term cap-rocks integrity. Carbonated cements alteration is likely to open cap-rock porosity and to create preferential reactive pathway for reactive fluid flow. Besides, this could alter the cap-rock structure and the global geo-mechanic properties. Clay minerals alteration, including the illitization process, reduces the clay fraction volume but considerably limits the porosity increase. The illitization process in acidic conditions determined experimentally and by modeling at low and high scale, is coupled with silica precipitation. The final porosity increase control results of these two reactive processes balance. By a fundamental side, this study reveals new kinetic parameters of clay minerals and highlights new structural transformations. By an operational side, this study contributes to the acquisition of qualitative data (long-term reactive pathways of clayey cap-rocks, coupled reactivity carbonates/clays) and quantitative data (CO 2 penetration distance into the cap-rock) to partly answer to the performance and safety assessment CO 2 capture and geological storage. (author)

  15. Selective CO2 Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers.

    Science.gov (United States)

    Saeed, Adnan M; Rewatkar, Parwani M; Majedi Far, Hojat; Taghvaee, Tahereh; Donthula, Suraj; Mandal, Chandana; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2017-04-19

    Polymeric aerogels (PA-xx) were synthesized via room-temperature reaction of an aromatic triisocyanate (tris(4-isocyanatophenyl) methane) with pyromellitic acid. Using solid-state CPMAS 13 C and 15 N NMR, it was found that the skeletal framework of PA-xx was a statistical copolymer of polyamide, polyurea, polyimide, and of the primary condensation product of the two reactants, a carbamic-anhydride adduct. Stepwise pyrolytic decomposition of those components yielded carbon aerogels with both open and closed microporosity. The open micropore surface area increased from capacity for CO 2 (up to 4.9 mmol g -1 ), and selectivity toward other gases (via Henry's law). The selectivity for CO 2 versus H 2 (up to 928:1) is suitable for precombustion fuel purification. Relevant to postcombustion CO 2 capture and sequestration (CCS), the selectivity for CO 2 versus N 2 was in the 17:1 to 31:1 range. In addition to typical factors involved in gas sorption (kinetic diameters, quadrupole moments and polarizabilities of the adsorbates), it is also suggested that CO 2 is preferentially engaged by surface pyridinic and pyridonic N on carbon (identified with XPS) in an energy-neutral surface reaction. Relatively high uptake of CH 4 (2.16 mmol g -1 at 0 °C/1 bar) was attributed to its low polarizability, and that finding paves the way for further studies on adsorption of higher (i.e., more polarizable) hydrocarbons. Overall, high CO 2 selectivities, in combination with attractive CO 2 adsorption capacities, low monomer cost, and the innate physicochemical stability of carbon render the materials of this study reasonable candidates for further practical consideration.

  16. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    Science.gov (United States)

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. FY 1999 report on the results of the R and D project on the industrial technology for the global environment. R and D of the prediction technology of environmental effects brought by CO2 ocean sequestration (Ocean survey and development of evaluation technology for CO2 sequestration ability); 1999 nendo chikyu kankyo sangyo gijutsu kenkyu kaihatsu jigyo NEDO seika hokokusho. Nisankatanso no kaiyo kakuri ni tomonau kankyo eikyo yosoku gijutsu kenkyu kaihatsu (Kaiyo chosa oyobi CO2 kakuri noryoku hyoka gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Assuming the melting and sequestration of CO