WorldWideScience

Sample records for geologic thermometry

  1. Primary Tunnel Junction Thermometry

    International Nuclear Information System (INIS)

    Pekola, Jukka P.; Holmqvist, Tommy; Meschke, Matthias

    2008-01-01

    We describe the concept and experimental demonstration of primary thermometry based on a four-probe measurement of a single tunnel junction embedded within four arrays of junctions. We show that in this configuration random sample specific and environment-related errors can be avoided. This method relates temperature directly to Boltzmann constant, which will form the basis of the definition of temperature and realization of official temperature scales in the future

  2. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  3. Survey, applications, and prospects of Johnson noise thermometry

    International Nuclear Information System (INIS)

    Blalock, T.V.; Shepard, R.L.

    1981-01-01

    Significant progress in the field of Johnson noise thermometry has occurred since the 1971 survey of Kamper. This paper will review the foundation work of Johnson noise thermometry, survey the basic methods which do not utilize quantum devices for noise thermometry for industrial temperatures, and present some applications of noise thermometry in temperature scale metrology and process temperature instrumentation. 35 references

  4. Single-cell photoacoustic thermometry

    Science.gov (United States)

    Gao, Liang; Wang, Lidai; Li, Chiye; Liu, Yan; Ke, Haixin; Zhang, Chi

    2013-01-01

    Abstract. A novel photoacoustic thermometric method is presented for simultaneously imaging cells and sensing their temperature. With three-seconds-per-frame imaging speed, a temperature resolution of 0.2°C was achieved in a photo-thermal cell heating experiment. Compared to other approaches, the photoacoustic thermometric method has the advantage of not requiring custom-developed temperature-sensitive biosensors. This feature should facilitate the conversion of single-cell thermometry into a routine lab tool and make it accessible to a much broader biological research community. PMID:23377004

  5. Single-contact tunneling thermometry

    Science.gov (United States)

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  6. High Repetition Rate Thermometry System And Method

    KAUST Repository

    Chrystie, Robin

    2015-05-14

    A system and method for rapid thermometry using intrapulse spectroscopy can include a laser for propagating pulses of electromagnetic radiation to a region. Each of the pulses can be chirped. The pulses from the region can be detected. An intrapulse absorbance spectrum can be determined from the pulses. An instantaneous temperature of the region based on the intrapulse absorbance spectrum can be determined.

  7. High Repetition Rate Thermometry System And Method

    KAUST Repository

    Chrystie, Robin; Farooq, Aamir

    2015-01-01

    A system and method for rapid thermometry using intrapulse spectroscopy can include a laser for propagating pulses of electromagnetic radiation to a region. Each of the pulses can be chirped. The pulses from the region can be detected. An intrapulse absorbance spectrum can be determined from the pulses. An instantaneous temperature of the region based on the intrapulse absorbance spectrum can be determined.

  8. Fast thermometry for superconducting rf cavity testing

    International Nuclear Information System (INIS)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; Fermilab

    2007-01-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity

  9. Fast thermometry for superconducting rf cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Orris, Darryl; Bellantoni, Leo; Carcagno, Ruben H.; Edwards, Helen; Harms, Elvin Robert; Khabiboulline, Timergali N.; Kotelnikov, Sergey; Makulski, Andrzej; Nehring, Roger; Pischalnikov, Yuriy; /Fermilab

    2007-06-01

    Fast readout of strategically placed low heat capacity thermometry can provide valuable information of Superconducting RF (SRF) cavity performance. Such a system has proven very effective for the development and testing of new cavity designs. Recently, several resistance temperature detectors (RTDs) were installed in key regions of interest on a new 9 cell 3.9 GHz SRF cavity with integrated HOM design at FNAL. A data acquisition system was developed to read out these sensors with enough time and temperature resolution to measure temperature changes on the cavity due to heat generated from multipacting or quenching within power pulses. The design and performance of the fast thermometry system will be discussed along with results from tests of the 9 cell 3.9GHz SRF cavity.

  10. Signal processing method for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Kinser, Rpger

    2003-01-01

    The development of Johnson Noise Thermometry requires a high sensitive preamplifier circuit to pick up the temperature-related noise on the sensing element. However, the random noise generated in this amplification circuit causes a significant erroneous influence to the measurement. This paper describes signal processing mechanism of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. It adopts two identical amplifier channels and utilizes a digital signal processing technique to remove the independent noise of each channel. The CPSD(Cross Power Spectral Density) function is used to cancel the independent noise and the differentiation of narrow or single frequency peak from the CPSD data separates the common mode electromagnetic interference noise

  11. Nanometer scale thermometry in a living cell

    Science.gov (United States)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2014-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748

  12. Velocity navigator for motion compensated thermometry.

    Science.gov (United States)

    Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael

    2012-02-01

    Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.

  13. MR thermometry for monitoring tumor ablation

    International Nuclear Information System (INIS)

    Senneville, Baudouin D. de; Quesson, Bruno; Dragonu, Iulius; Moonen, Chrit T.W.; Mougenot, Charles; Grenier, Nicolas

    2007-01-01

    Local thermal therapies are increasingly used in the clinic for tissue ablation. During energy deposition, the actual tissue temperature is difficult to estimate since physiological processes may modify local heat conduction and energy absorption. Blood flow may increase during temperature increase and thus change heat conduction. In order to improve the therapeutic efficiency and the safety of the intervention, mapping of temperature and thermal dose appear to offer the best strategy to optimize such interventions and to provide therapy endpoints. MRI can be used to monitor local temperature changes during thermal therapies. On-line availability of dynamic temperature mapping allows prediction of tissue death during the intervention based on semi-empirical thermal dose calculations. Much progress has been made recently in MR thermometry research, and some applications are appearing in the clinic. In this paper, the principles of MRI temperature mapping are described with special emphasis on methods employing the temperature dependency of the water proton resonance frequency. Then, the prospects and requirements for widespread applications of MR thermometry in the clinic are evaluated. (orig.)

  14. Survey on Johnson noise thermometry for temperature instrumentation

    International Nuclear Information System (INIS)

    Hwang, I. K.; Kim, Y. K.; Kim, J. S.; Moon, B. S.

    2002-01-01

    Johnson Noise Thermometry is an drift-free temperature measurement method which is able to maintain the best accuracy without calibration for a long period. Resistance Temperature Detectors (RTDs) and Thermocouples used widely in power plants have the drift problem which causes a measurement error. Despite the advantage of Johnson Noise thermometry, it has not been used because it is very sensitive to electromagnetic noise and environment. It also requires more complicated signal processing methods. This paper presents the characteristics of Johnson Noise thermometry and various implementation method proposed over the past decades time period. The key factor in development of a noise thermometer is how to extract the tiny noise signal from the sensor and discriminate out the unnecessary noise interference from the environments. The new digital technology of fast signal processing skill will useful to challenge the existing problems fir commercialization of noise thermometry

  15. A Comparison of Surface Infrared with Rectal Thermometry in Dogs.

    Science.gov (United States)

    Omóbòwálé, T O; Ogunro, B N; Odigie, E A; Otuh, P I; Olugasa, B O

    2017-12-30

    Accurate determination of temperature is crucial in the diagnosis of febrile conditions. Although fewer techniques have proven as useful and reliable a predictor of core body temperature as the rectal thermometry, the process of obtaining the rectal temperature could be stressful in dogs. The infrared thermometry is a noncontact device used for measuring body temperature, with advantages which include speed, convenience, and reduced stress to the animals and reduced occupational risks to the animal handler. Therefore, there is the need to assess the consistency and agreement between non-contact infrared thermometry and traditional rectal thermometry in body temperature estimation. This study compared and assessed the sensitivity of non-contact infrared thermometer used on the forehead and nasal regions respectively with that of a rectal thermometer in dogs for body temperature estimation. One hundred and thirty (130) dogs presented for veterinary attention at the Veterinary Teaching Hospital (VTH), University of Ibadan, Nigeria were enrolled in this study during August to September 2014, irrespective of sex, age, breed or health status. Temperatures of dogs presented at the clinic were obtained using both multiple non-contact infrared thermometric measures obtained in the nasal and frontal head regions; and by rectal temperature. A multivariate cross-matrix analysis was used to assess the difference in measurements between the rectal thermometry and non-contact infrared thermometry. Descriptive statistics was used to compare variation and trend regularity of the nasal and fore-head infrared thermometry. A logistic regression of the difference in measurements was computed at 95% confidence interval and P<0.05. The mean difference revealed that the rectal temperature was 5.330C higher than the non-contact infrared forehead-based temperature and 7.570C higher than nasal-based temperature measurements respectively. The Bland-Altman (B-A) plot showed that the 95% limits

  16. Electronic thermometry in tunable tunnel junction

    Science.gov (United States)

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  17. Refractiry metal monocrystals in high temperature thermometry

    International Nuclear Information System (INIS)

    Kuritnyk, I.P.

    1988-01-01

    The regularities of changes in thermoelectric properties of refractory metals in a wide temperature range (300-2300 K) depending on their structural state and impurities, are generalized. It is found that the main reasons for changes in thermo-e.m.f. of refractory metals during their operation in various media are diffusion processes and local microvoltages appearing in nonhomogeneous thermoelectrodes. It is shown that microstructure formation and control of impurities in thermometric materials permit to improve considerably the metrologic parameters of thermal transformers. Tungsten and molybdenum with monocrystalline structure with their high stability of properties, easy to manufacture and opening new possibilities in high-temperature contact measurement are used in thermometry for the first time

  18. Noise thermometry - a new temperature measuring method

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Rittinghaus, K.F.

    1975-01-01

    The thermal Johnson-Niquist noise is the basis of noise thermometry. This temperature measuring method is, e.g., of interest insofar as the noise thermometer gives absolute values as a primary thermometer and is in principle extensively independent of environmental influences and material properties. The resistance values of the measuring probe are about 10 Ohm to a few kOhm. The demands of electronics are high, the self-noise of the measuring apparatus must be as small as possible; a comparative measuring method is advantageous. 1 to 2,500 K are given as a possible temperature range. An accuracy of 0.1% could be achieved in laboratory measurements. Temperature measurements to be used in operation in a few nuclear reactors are mentioned. (HP/LH) [de

  19. Polymer coated fiber Bragg grating thermometry for microwave hyperthermia.

    Science.gov (United States)

    Saxena, Indu Fiesler; Hui, Kaleo; Astrahan, Melvin

    2010-09-01

    Measuring tissue temperature distribution during electromagnetically induced hyperthermia (HT) is challenging. High resistance thermistors with nonmetallic leads have been used successfully in commercial HT systems for about three decades. The single 1 mm thick temperature sensing element is mechanically moved to measure tissue temperature distributions. By employing a single thermometry probe containing a fixed linear sensor array temperature, distributions during therapy can be measured with greater ease. While the first attempts to use fiber Bragg grating (FBG) technology to obtain multiple temperature points along a single fiber have been reported, improvement in the detection system's stability were needed for clinical applications. The FBG temperature sensing system described here has a very high temporal stability detection system and an order of magnitude faster readout than commercial systems. It is shown to be suitable for multiple point fiber thermometry during microwave hyperthermia when compared to conventional mechanically scanning probe HT thermometry. A polymer coated fiber Bragg grating (PFBG) technology is described that provides a number of FBG thermometry locations along the length of a single optical fiber. The PFBG probe developed is tested under simulated microwave hyperthermia treatment to a tissue equivalent phantom. Two temperature probes, the multiple PFBG sensor and the Bowman probe, placed symmetrically with respect to a microwave antenna in a tissue phantom are subjected to microwave hyperthermia. Measurements are made at start of HT and 85 min later, when a 6 degrees C increase in temperature is registered by both probes, as is typical in clinical HT therapy. The optical fiber multipoint thermometry probe performs highly stable, real-time thermometry updating each multipoint thermometry scan over a 5 cm length every 2 s. Bowman probe measurements are acquired simultaneously for comparison. In addition, the PFBG sensor's detection

  20. High temperature measurement by noise thermometry

    International Nuclear Information System (INIS)

    Decreton, M.C.

    1982-06-01

    Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible

  1. A thermocouple thermometry system for ultrasound hyperthermia

    International Nuclear Information System (INIS)

    Ozarka, M.; Gharakhani, A.; Magin, R.; Cain, C.

    1984-01-01

    A thermometry system designed to be used in the treatment of cancer by ultrasound hyperthermia is described. The system monitors tumor temperatures using 16 type T (copper-constantan) thermocouples and is controlled by a 12 MHz Intel 8031 microcomputer. An analog circuit board contains the thermocouple amplifiers, an analog multiplexer, scaling circuitry, and an analog to digital converter. A digital board contains the Intel 8031, program memory, data memory, as well as circuitry for control and data communications. Communication with the hyperthermia system control computer is serially by RS-232 with selectable baud rate. Since the thermocouple amplifiers may have slight differences in gain and offset, a calibrated offset is added to a lookup table value to obtain the proper display temperature to within +- 0.1 0 C. The calibration routine, implemented in software, loads a nonvolatile random access memory chip with the proper offset values based on the outputs of each thermocouple channel at known temperatures which bracket a range of interest

  2. Ultrasonic thermometry for nuclear power plants

    International Nuclear Information System (INIS)

    Saravana Kumar, S.; Arunraj, A.L.R.; Swaminathan, K.

    2013-01-01

    Ultrasonic transducer provides a method of measurement of temperature in industrial tanks and boilers containing different liquids with varied salt content. This method is used to measure the average temperature continuously where other traditional methods available do not offer. Traditional methods used for temperature measurement like infrared thermometers, thermocouples, measures temperature at a single location. Numerous thermocouples are to be fixed at various part of the boiler in order to measure the temperature of the entire boiler, which incurs high cost. Reliability of the system decreases, with increasing number of thermocouples. When they fail at a point, the time incurred in finding the faulty part or faulty thermocouple is high. Ultrasonic transducer provides continuous measurement for all different characteristic liquids with higher accuracy and lesser response time. Fault location and clearance time is also less in ultrasonic measurement method, since only a couple of transducers used for the entire boiler structure. Additionally ultrasonic thermometry along support measuring electronic system can be built of low cost. (author)

  3. Co-C and Pd-C Eutectic Fixed Points for Radiation Thermometry and Thermocouple Thermometry

    Science.gov (United States)

    Wang, L.

    2017-12-01

    Two Co-C and Pd-C eutectic fixed point cells for both radiation thermometry and thermocouple thermometry were constructed at NMC. This paper describes details of the cell design, materials used, and fabrication of the cells. The melting curves of the Co-C and Pd-C cells were measured with a reference radiation thermometer realized in both a single-zone furnace and a three-zone furnace in order to investigate furnace effect. The transition temperatures in terms of ITS-90 were determined to be 1324.18 {°}C and 1491.61 {°}C with the corresponding combined standard uncertainty of 0.44 {°}C and 0.31 {°}C for Co-C and Pd-C, respectively, taking into account of the differences of two different types of furnaces used. The determined ITS-90 temperatures are also compared with that of INRIM cells obtained using the same reference radiation thermometer and the same furnaces with the same settings during a previous bilateral comparison exercise (Battuello et al. in Int J Thermophys 35:535-546, 2014). The agreements are within k=1 uncertainty for Co-C cell and k = 2 uncertainty for Pd-C cell. Shapes of the plateaus of NMC cells and INRIM cells are compared too and furnace effects are analyzed as well. The melting curves of the Co-C and Pd-C cells realized in the single-zone furnace are also measured by a Pt/Pd thermocouple, and the preliminary results are presented as well.

  4. Comparison of Microchip Transponder and Noncontact Infrared Thermometry with Rectal Thermometry in Domestic Swine (Sus scrofa domestica)

    Science.gov (United States)

    Jara, Amanda L; Hanson, Jarod M; Gabbard, Jon D; Johnson, Scott K; Register, Emery T; He, Biao

    2016-01-01

    During disease outbreaks, core temperature is a useful health metric in swine, due to the presence of pyrexia especially during the acute phase of infection. Despite technologic advances in other facets of swine production and health management, rectal thermometry continues to be the ‘gold standard’ for measuring core body temperature. However, for various reasons, collecting rectal temperatures can be difficult and unsafe depending on the housing modality. In addition, the delay between insertion of the rectal thermometer and obtaining a reading can affect measurement accuracy, especially when the pig requires physical restraint. Clearly safer, faster, and more accurate and precise temperature acquisition methods that necessitate minimal or no handling of swine are needed. We therefore compared rectal thermometers, subcutaneous microchips, and an inexpensive handheld infrared thermometer by measuring the core body temperature of 24 male castrated piglets at random intervals over a 5-wk period. The core body temperature (mean ± 1 SD) was 39.3 ± 0.5 °C by rectal thermometry, 39.0 ± 0.7 °C by microchip transponder, and 34.3 ± 1.0 °C by infrared thermometry; these 3 values differed significantly. Although the readings obtain by using infrared thermometry were numerically lower than those from the other methods, it is arguably the safest method for assessing the core temperature of swine and showed strong relative correlation with rectal temperature. PMID:27657715

  5. Investigation of uncertainty components in Coulomb blockade thermometry

    International Nuclear Information System (INIS)

    Hahtela, O. M.; Heinonen, M.; Manninen, A.; Meschke, M.; Savin, A.; Pekola, J. P.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.

    2013-01-01

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin

  6. Investigation of uncertainty components in Coulomb blockade thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Hahtela, O. M.; Heinonen, M.; Manninen, A. [MIKES Centre for Metrology and Accreditation, Tekniikantie 1, 02150 Espoo (Finland); Meschke, M.; Savin, A.; Pekola, J. P. [Low Temperature Laboratory, Aalto University, Tietotie 3, 02150 Espoo (Finland); Gunnarsson, D.; Prunnila, M. [VTT Technical Research Centre of Finland, Tietotie 3, 02150 Espoo (Finland); Penttilä, J. S.; Roschier, L. [Aivon Oy, Tietotie 3, 02150 Espoo (Finland)

    2013-09-11

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  7. Live-cell thermometry with nitrogen vacancy centers in nanodiamonds

    Science.gov (United States)

    Jayakumar, Harishankar; Fedder, Helmut; Chen, Andrew; Yang, Liudi; Li, Chenghai; Wrachtrup, Joerg; Wang, Sihong; Meriles, Carlos

    The ability to measure temperature is typically affected by a tradeoff between sensitivity and spatial resolution. Good thermometers tend to be bulky systems and hence are ill-suited for thermal sensing with high spatial localization. Conversely, the signal resulting from nanoscale temperature probes is often impacted by noise to a level where the measurement precision becomes poor. Adding to the microscopist toolbox, the nitrogen vacancy (NV) center in diamond has recently emerged as a promising platform for high-sensitivity nanoscale thermometry. Of particular interest are applications in living cells because diamond nanocrystals are biocompatible and can be chemically functionalized to target specific organelles. Here we report progress on the ability to probe and compare temperature within and between living cells using nanodiamond-hosted NV thermometry. We focus our study on cancerous cells, where atypical metabolic pathways arguably lead to changes in the way a cell generates heat, and thus on its temperature profile.

  8. Thermometry of ultracold atoms by electromagnetically induced transparency

    Science.gov (United States)

    Peters, Thorsten; Wittrock, Benjamin; Blatt, Frank; Halfmann, Thomas; Yatsenko, Leonid P.

    2012-06-01

    We report on systematic numerical and experimental investigations of electromagnetically induced transparency (EIT) to determine temperatures in an ultracold atomic gas. The technique relies on the strong dependence of EIT on atomic motion (i.e., Doppler shifts), when the relevant atomic transitions are driven with counterpropagating probe and control laser beams. Electromagnetically induced transparency permits thermometry with satisfactory precision over a large temperature range, which can be addressed by the appropriate choice of Rabi frequency in the control beam. In contrast to time-of-flight techniques, thermometry by EIT is fast and nondestructive, i.e., essentially it does not affect the ultracold medium. In an experimental demonstration we apply both EIT and time-of-flight measurements to determine temperatures along different symmetry axes of an anisotropic ultracold gas. As an interesting feature we find that the temperatures in the anisotropic atom cloud vary in different directions.

  9. Thermometry system development for thermoradiotherapy of deep-seated tumours

    Science.gov (United States)

    Fadeev, A. M.; Ivanov, S. M.; Perelstein, E. A.; Polozov, S. M.

    2017-12-01

    Therapeutic hyperthermia (including RF hyperthermia) in combination with radiotherapy (called thermoradiotherapy) is one of widely used contemporary cancer treatment methods. The independent electron linac and RF system or their combinations are necessary for effective therapy. Whole-body hyperthermia is used for treatment of metastatic cancer that was spread throughout the body, regional one is used for treatment of part of the body (for instance leg or abdominal cavity). Local hyperthermia with characteristic size of heating volume of 20-100 mm permits to heat tumour without overheating of healthy tissues. The thermometry of deep suited tissues during the hyperthermia process is an important and complex task. Invasive methods as thermistors, optical sensors or thermo-couples can not be widely used because all of them are able to transport tumor cells to the healthy region of the patient body. Distant methods of the temperature measurement such, as radiothermometry and acoustic thermometry can not be used for tissues seated deeper than 5-7 cm. One of possible ways to solve the problem of temperature measurement of the deep suited tissues is discussed in this article: it was proposed to use the same electrodes for RF hyperthermia and thermometry. As known electrodynamics characteristics of tissues are sufficiently depends on temperature. It was proposed to use this effect for active radiothermometry in local hyperthermia. Two opposite RF dipoles can be used as generator and receiver of pick-up signal.

  10. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    Science.gov (United States)

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  11. Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates

    International Nuclear Information System (INIS)

    Gati, Rudolf; Hemmerling, Boerge; Foelling, Jonas; Albiez, Michael; Oberthaler, Markus K.

    2006-01-01

    Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics

  12. Noise thermometry with two weakly coupled Bose-Einstein condensates.

    Science.gov (United States)

    Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K

    2006-04-07

    Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.

  13. Significance of Zr-in-Rutile Thermometry for Deducing the Decompression P–T Path of a Garnet–Clinopyroxene Granulite in the Moldanubian Zone of the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Usuki, T.; Iizuka, Y.; Hirajima, T.; Svojtka, Martin; Lee, H.-Y.

    2017-01-01

    Roč. 58, č. 6 (2017), s. 1173-1198 ISSN 0022-3530 Grant - others:Program interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100131203 Program:Program interní podpory projektů mezinárodní spolupráce AV ČR Institutional support: RVO:67985831 Keywords : Bohemian Massif * P–T path * Zr-in-rutile thermometry * high-pressure granulite * continental collision * garnet–clinopyroxene barometry Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.280, year: 2016

  14. Fiber Optic Based Thermometry System for Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [Microxact Inc.

    2013-05-06

    Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

  15. Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the Boltzmann constant

    OpenAIRE

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; Di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-01-01

    We report on a new optical implementation of primary gas thermometry based on laser absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) $\

  16. Sub-picowatt/kelvin resistive thermometry for probing nanoscale thermal transport.

    Science.gov (United States)

    Zheng, Jianlin; Wingert, Matthew C; Dechaumphai, Edward; Chen, Renkun

    2013-11-01

    Advanced instrumentation in thermometry holds the key for experimentally probing fundamental heat transfer physics. However, instrumentation with simultaneously high thermometry resolution and low parasitic heat conduction is still not available today. Here we report a resistive thermometry scheme with ~50 μK temperature resolution and ~0.25 pW/K thermal conductance resolution, which is achieved through schemes using both modulated heating and common mode noise rejection. The suspended devices used herein have been specifically designed to possess short thermal time constants and minimal attenuation effects associated with the modulated heating current. Furthermore, we have systematically characterized the parasitic background heat conductance, which is shown to be significantly reduced using the new device design and can be effectively eliminated using a "canceling" scheme. Our results pave the way for probing fundamental nanoscale thermal transport processes using a general scheme based on resistive thermometry.

  17. Trade-off between information and disturbance in qubit thermometry

    Science.gov (United States)

    Seveso, Luigi; Paris, Matteo G. A.

    2018-03-01

    We address the trade-off between information and disturbance in qubit thermometry from the perspective of quantum estimation theory. Given a quantum measurement, we quantify information via the Fisher information of the measurement and disturbance via four different figures of merit, which capture different aspects (statistical, thermodynamical, geometrical) of the trade-off. For each disturbance measure, the efficient measurements, i.e., the measurements that introduce a disturbance not greater than any other measurement extracting the same amount of information, are determined explicitly. The family of efficient measurements varies with the choice of the disturbance measure. On the other hand, commutativity between the elements of the probability operator-valued measure (POVM) and the equilibrium state of the thermometer is a necessary condition for efficiency with respect to any figure of disturbance.

  18. Effect of frost on phosphorescence for thermographic phosphor thermometry

    Science.gov (United States)

    Kim, Dong; Kim, Mirae; Kim, Kyung Chun

    2017-12-01

    In this study, we analyzed phosphorescence lifetime and its accuracy by growing frost for thermographic phosphor thermometry in a low-temperature environment. Mg4FGeO6:Mn particles were coated on an aluminum plate and excited with a UV-LED to obtain phosphorescence signals. The surface temperature was maintained at  -20, -15, -10 °C, and the phosphorescence signal was acquired as the frost grew for 3700 s. The lifetime was calculated and compared with the calibration curve under no-frost conditions. The error of the measured lifetime was within 0.7% of that in the no-frost conditions. A 2D surface temperature profile of the target plate was successfully obtained with the frost formation.

  19. Zirconium metal-water oxidation kinetics. I. Thermometry

    International Nuclear Information System (INIS)

    Cathcart, J.V.; McElroy, D.L.; Pawel, R.E.; Perkins, R.A.; Williams, R.K.; Yurek, G.J.

    1976-02-01

    A description is given of the thermometry techniques used in the Zirconium Metal--Water Oxidation Kinetics Program. Temperature measurements in the range 900 to 1500 0 C are made in three experimental systems: two oxidation apparatuses and the annealing furnace used in a corollary study of the diffusion of oxygen in β-Zircaloy. Carefully calibrated Pt vs Pt--10 percent Rh thermocouples are employed in all three apparatuses, while a Pt--6 percent Rh vs Pt-- 30 percent Rh thermocouple and an optical pyrometer are used in addition in the annealing furnace. Features of the experimental systems pertaining to thermocouple installation, temperature control, emf measurements, etc. are described, and potential temperature-measurement error sources are discussed in detail. The accuracy of the temperature measurements is analyzed

  20. Magnon and phonon thermometry with inelastic light scattering

    Science.gov (United States)

    Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin

    2018-04-01

    Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.

  1. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-01

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  2. Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets

    International Nuclear Information System (INIS)

    Smith, Jared D.; Cappa, Christopher D.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2006-01-01

    Recent theoretical and experimental studies of evaporation have suggested that on average, molecules in the higher-energy tail of the Boltzmann distribution are more readily transferred into the vapor during evaporation. To test these conclusions, the evaporative cooling rates of a droplet train of liquid water injected into vacuum have been studied via Raman thermometry. The resulting cooling rates are fit to an evaporative cooling model based on Knudsen's maximum rate of evaporation, in which we explicitly account for surface cooling. We have determined that the value of the evaporation coefficient (γ e ) of liquid water is 0.62 ± 0.09, confirming that a rate-limiting barrier impedes the evaporation rate. Such insight will facilitate the formulation of a microscopic mechanism for the evaporation of liquid water

  3. Application of ultrasonic thermometry in LMFBR safety research

    International Nuclear Information System (INIS)

    Carlson, G.A.; Sullivan, W.H.; Plein, H.G.

    1977-01-01

    Ultrasonic thermometry has many potential applications in reactor safety research, where extremely high temperatures and lack of visual access may preclude the use of conventional diagnostics. An application (the in-core molten fuel pool experiment) will be described in which thoriated tungsten ultrasonic thermometers were used to measure temperatures in UO 2 to incipient melt (2860 0 ). Each thermometer included five sensor elements 10 mm long, providing five temperatures within the UO 2 at various axial locations. The 10 mm spatial resolution is about five times better than previous applications of the technique. Temperature resolution of +-10 0 C was indicated by calibration data. Besides providing temperature data approximately 1000 0 C higher than were obtained with thermocouples, the thermometer yielded valuable axial temperature profile data. Details of the sensors, exciting coils, and signal conditioning electronics will be given

  4. User's Manual: Routines for Radiative Heat Transfer and Thermometry

    Science.gov (United States)

    Risch, Timothy K.

    2016-01-01

    Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.

  5. Digital particle image thermometry/velocimetry: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, Dana [University of Washington, Department of Aeronautics and Astronautics, Seattle, WA (United States)

    2009-02-15

    Digital particle image thermometry/velocimetry (DPIT/V) is a relatively new methodology that allows for measurements of simultaneous temperature and velocity within a two-dimensional domain, using thermochromic liquid crystal tracer particles as the temperature and velocity sensors. Extensive research has been carried out over recent years that have allowed the methodology and its implementation to grow and evolve. While there have been several reviews on the topic of liquid crystal thermometry (Moffat in Exp Therm Fluid Sci 3:14-32, 1990; Baughn in Int J Heat Fluid Flow 16:365-375, 1995; Roberts and East in J Spacecr Rockets 33:761-768, 1996; Wozniak et al. in Appl Sci Res 56:145-156, 1996; Behle et al. in Appl Sci Res 56:113-143, 1996; Stasiek in Heat Mass Transf 33:27-39, 1997; Stasiek and Kowalewski in Opto Electron Rev 10:1-10, 2002; Stasiek et al. in Opt Laser Technol 38:243-256, 2006; Smith et al. in Exp Fluids 30:190-201, 2001; Kowalewski et al. in Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487-561, 2007), the focus of the present review is to provide a relevant discussion of liquid crystals pertinent to DPIT/V. This includes a background on liquid crystals and color theory, a discussion of experimental setup parameters, a description of the methodology's most recent advances and processing methods affecting temperature measurements, and finally an explanation of its various implementations and applications. (orig.)

  6. NRC Microwave Refractive Index Gas Thermometry Implementation Between 24.5 K and 84 K

    Science.gov (United States)

    Rourke, P. M. C.

    2017-07-01

    The implementation of microwave refractive index gas thermometry at the National Research Council between 24.5 K and 84 K is reported. A new gas-handling system for accurate control and measurement of experimental gas pressure has been constructed, and primary thermometry measurements have been taken using a quasi-spherical copper resonator and helium gas at temperatures corresponding to three defining fixed points of the International Temperature Scale of 1990 (ITS-90). These measurements indicate differences between the thermodynamic temperature T and ITS-90 temperature T_{90} of ( T - T_{90} ) = -0.60 ± 0.56 mK at T_{90} = 24.5561 K, ( T - T_{90} ) = -2.0 ± 1.3 mK at T_{90} = 54.3584 K, and ( T - T_{90} ) = -4.0 ± 2.9 mK at T_{90} = 83.8058 K. The present results at T_{90} = 24.5561 K and T_{90} = 83.8058 K agree with previously reported measurements from other primary thermometry techniques of acoustic gas thermometry and dielectric constant gas thermometry, and the result at T_{90} = 54.3584 K provides new information in a temperature region where there is a gap in other recent data sets.

  7. Thermometry in dielectrophoresis chips for contact-free cell handling

    International Nuclear Information System (INIS)

    Jaeger, M S; Mueller, T; Schnelle, T

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells

  8. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  9. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  10. Ultrasonic thermometry system for measuring very high temperatures in reactor safety experiments

    International Nuclear Information System (INIS)

    Carlson, G.A.; Sullivan, W.H.; Plein, H.G.; Kerley, T.M.

    1979-06-01

    Ultrasonic thermometry has many potential applications in reactor safety experiments, where extremely high temperatures and lack of visual access may preclude the use of conventional diagnostics. This report details ultrasonic thermometry requirements for one such experiment, the molten fuel pool experiment. Sensors, transducers, and signal processing electronics are described in detail. Axial heat transfer in the sensors is modelled and found acceptably small. Measurement errors, calculations of their effect, and ways to minimize them are given. A rotating sensor concept is discussed which holds promise of alleviating sticking problems at high temperature. Applications of ultrasonic thermometry to three in-core experiments are described. In them, five 10-mm-length sensor elements were used to measure axial temperatures in a UO 2 or UO 2 -steel system fission-heated to about 2860 0 C

  11. Elimination of noise peak for signal processing in Johnson noise thermometry development

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Jeong, J. E.; Jeo, Y. H.; Kisner, Roger A.

    2003-01-01

    The internal and external noise is the most considering obstacle in development of Johnson Noise Thermometry system. This paper addresses an external noise elimination issue of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. Although internal random noise is canceled by Cross Power Spectral Density function, a continuous wave penetrating into the electronic circuit is eliminated by the difference of peaks between Johnson signal and external noise. The elimination logic using standard deviation of CPSD and energy leakage problem in discrete CPSD function are discussed in this paper

  12. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  13. CT thermometry for cone-beam CT guided ablation

    Science.gov (United States)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  14. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  15. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry

    International Nuclear Information System (INIS)

    Smith, Nadine Barrie; Buchanan, Mark T.; Hynynen, Kullervo

    1999-01-01

    Purpose: For potential localized hyperthermia treatment of tumors within the prostate, an ultrasound applicator consisting entirely of nonmagnetic materials for use with magnetic resonance imaging (MRI) has been developed and tested on muscle tissue ex vivo and in vivo. Methods and Materials: A partial-cylindrical intracavitary transducer consisting of 16 elements in a 4 x 4 pattern was constructed. It produced a radially propagating acoustic pressure field. Each element of this array (1.5 x 0.75 cm), operating at 1.5 MHz, could be separately powered to produce a desired energy deposition pattern within a target volume. Spatial and temporal temperature elevations were determined using the temperature-dependent proton resonant frequency (PRF) shift and phase subtraction of MR images acquired during ultrasonic heating. Four rabbits were exposed to the ultrasound to raise the local tissue temperature to 45 deg. C for 25 minutes. Six experiments compared thermocouple temperature results to PRF shift temperature results. Results: The tests showed that the multi-element ultrasound applicator was MRI-compatible and allowed imaging during sonication. The induced temperature distribution could be controlled by monitoring the RF power to each transducer element. Therapeutic temperature elevations were easily achieved in vivo at power levels that were about 16% of the maximum system power. From the six thermocouple experiments, comparison between the thermocouple temperature and the PRF temperature yielded an average error of 0.34 ± 0.36 deg. C. Conclusions: The MRI-compatible intracavitary applicator and driving system was able to control the ultrasound field and temperature pattern in vivo. MRI thermometry using the PRF shift can provide adequate temperature accuracy and stability for controlling the temperature distribution

  16. A new technique for direct traceability of contact thermometry Co-C eutectic cells to the ITS-90

    Energy Technology Data Exchange (ETDEWEB)

    Failleau, G.; Deuzé, T.; Bourson, F.; Briaudeau, S.; Sadli, M. [Laboratoire Commun de Métrologie LNE-Cnam, 61 rue du Landy 93210 La Plaine Saint Denis (France)

    2013-09-11

    The eutectic Co-C melting point is a promising system to serve as a thermometric fixed-point in the temperature range above 1084.62 °C (copper freezing point). During the last decade, LNE-Cnam has developed and characterized some fixed-point devices, based on eutectic Co-C alloy, for applications to contact and radiation thermometry. Above 962 °C, the ITS-90 is realized by radiation thermometry by the extrapolation from a Ag, Au or Cu fixed point using the Planck law for radiation. So the only way for assigning a temperature in the scale to a Co-C cell (∼1324 °C) is by radiation thermometry. An indirect method is commonly used to assign a temperature to a high-temperature fixed point (HTFP) cell designed for contact thermometry is to fill a pyrometric cell with the same mixture as the contact thermometry cell. In this case, the temperature assigned to the pyrometric cell is attributed to the contact cell. This paper describes a direct method allowing the determination of the melting temperature realized by a 'contact thermometry' Co-C cell by comparison to a 'radiation thermometry' Co-C cell whose melting temperature was assigned in accordance to the scale by extrapolation from the Cu point. In addition, the same Co-C cell is studied with a standard Pt/Pd thermocouple.

  17. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle

    DEFF Research Database (Denmark)

    De Poorter, J; De Wagter, C; De Deene, Y

    1995-01-01

    The noninvasive thermometry method is based on the temperature dependence of the proton resonance frequency (PRF). High-quality temperature images can be obtained from phase information of standard gradient-echo sequences with an accuracy of 0.2 degrees C in phantoms. This work was focused on the...

  18. Infrared thermometry of water-stressed crops - emerging methods and technologies

    Science.gov (United States)

    Infrared thermometry has shown potential to quantify water stress in crop canopy. This presentation will outline the limited irrigation experiments by the USDA-ARS in northern Colorado, which is used for a framework to evaluate canopy temperature. Recent methods have been introduced that may be accu...

  19. A self-reference PRF-shift MR thermometry method utilizing the phase gradient

    International Nuclear Information System (INIS)

    Langley, Jason; Potter, William; Phipps, Corey; Zhao Qun; Huang Feng

    2011-01-01

    In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature. (note)

  20. Noncontact surface thermometry for microsystems: LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Mark (Georgia Institute of Technology, Atlanta, GA); Beecham, Thomas (Georgia Institute of Technology, Atlanta, GA); Graham, Samuel (Georgia Institute of Technology, Atlanta, GA); Kearney, Sean Patrick; Serrano, Justin Raymond; Phinney, Leslie Mary

    2006-10-01

    We describe a Laboratory Directed Research and Development (LDRD) effort to develop and apply laser-based thermometry diagnostics for obtaining spatially resolved temperature maps on working microelectromechanical systems (MEMS). The goal of the effort was to cultivate diagnostic approaches that could adequately resolve the extremely fine MEMS device features, required no modifications to MEMS device design, and which did not perturb the delicate operation of these extremely small devices. Two optical diagnostics were used in this study: microscale Raman spectroscopy and microscale thermoreflectance. Both methods use a low-energy, nonperturbing probe laser beam, whose arbitrary wavelength can be selected for a diffraction-limited focus that meets the need for micron-scale spatial resolution. Raman is exploited most frequently, as this technique provides a simple and unambiguous measure of the absolute device temperature for most any MEMS semiconductor or insulator material under steady state operation. Temperatures are obtained from the spectral position and width of readily isolated peaks in the measured Raman spectra with a maximum uncertainty near {+-}10 K and a spatial resolution of about 1 micron. Application of the Raman technique is demonstrated for V-shaped and flexure-style polycrystalline silicon electrothermal actuators, and for a GaN high-electron-mobility transistor. The potential of the Raman technique for simultaneous measurement of temperature and in-plane stress in silicon MEMS is also demonstrated and future Raman-variant diagnostics for ultra spatio-temporal resolution probing are discussed. Microscale thermoreflectance has been developed as a complement for the primary Raman diagnostic. Thermoreflectance exploits the small-but-measurable temperature dependence of surface optical reflectivity for diagnostic purposes. The temperature-dependent reflectance behavior of bulk silicon, SUMMiT-V polycrystalline silicon films and metal surfaces is

  1. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  2. Ratiometric luminescence thermometry with different combinations of emissions from Eu3+ doped Gd2Ti2O7 nanoparticles

    International Nuclear Information System (INIS)

    Lojpur, Vesna; Ćulubrk, Sanja; Dramićanin, Miroslav D.

    2016-01-01

    Herein, Eu 3+ doped Gd 2 Ti 2 O 7 nanoparticles were tested for application in ratiometric luminescence thermometry. It is shown that two combinations of emissions: one that uses two emissions of Eu 3+ ions and one that uses one emission of Eu 3+ ions and trap emission of Gd 2 Ti 2 O 7 provide thermometry over the 303–423 K temperature range with relative sensitivities between 0.14% K −1 and 0.95% K −1 . Thermometry based on two Eu 3+ emissions from 5 D 0 to 5 D 1 levels has a higher relative sensitivity, but lower absolute sensitivity than thermometry based on one Eu 3+ emission and trap emission of Gd 2 Ti 2 O 7 . The tested material is prepared by Pechini-type polymerized complex route and is composed of agglomerated nanoparticles of ~30–50 nm in size with pure-phase cubic structure (space group Fd-3m) as evidenced from electron microscopy and X-ray diffraction measurements. - Highlights: • Eu 3+ doped Gd 2 Ti 2 O 7 nanoparticles can serve as probes for luminescence thermometry. • Gd 2 Ti 2 O 7 trap emission is an excellent internal standard for luminescence thermometry. • Temperature is measured over 303–423 K range with sensitivity ranging 0.14–0.95% K −1 .

  3. Ultrasonic Thermometry for In-Pile Temperature Detection

    International Nuclear Information System (INIS)

    Daw, J.E.; Rempe, J.L.; Wilkins, S.C.

    2002-01-01

    The Idaho National Laboratory has recently initiated a new effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing. Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependant on the temperature of the material. By introducing an acoustic pulse to the sensor and measuring the time delay of echoes, temperature may be derived. UTs have several advantages over other sensor types. UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made near the melting point of the sensor material, as no electrical insulation is required; and shunting effects are avoided. Most attractive, however, is the ability to introduce acoustic discontinuities to the sensor, as this enables temperature measurements at several points along the sensor length (allowing temperature profiling with a single sensor). A typical multi-sensor UT system, with key components identified, is shown in Figure 1. As indicated in this figure, a narrow ultrasonic pulse is generated in a magnetostrictive rod by an excitation coil. The ultrasonic pulse propagates to the sensor wire, where a fraction of the pulse energy is reflected at each discontinuity (notches or diameter change). Each reflected pulse is received by the excitation coil, transformed into an electrical signal, amplified and evaluated in a start/stop counter system. The time interval between two adjacent echoes is evaluated and compared to a calibration curve to give the average temperature in the corresponding sensor segment. When a number of notches are available on the wire sensor, the various measurements give access to a temperature profile along the probe. UTs have been used successfully for several applications; however, several problems have limited the success of these sensors. For

  4. MR thermometry for laser-induced thermotherapy at 1.5 tesla; MR-Thermometrie bei 1,5 Tesla zur thermischen Ablation mittels laserinduzierter Thermotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Meister, D.; Huebner, F.; Mack, M.; Vogl, T.J. [Frankfurt Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2007-05-15

    Purpose: Evaluation of thermometry with fast MR sequences for laser-induced interstitial laser therapy (LITT) and verification of the thermometric results with a fiber-optic thermometer. Method and Materials: In vitro experiments were conducted using an agarose gel mixture and pig liver lobes. MR-guided LITT was performed using a laser power between 3 and 15?watts. Thermometry was performed using longitudinal relaxation time T1 and proton resonance frequency shift (PRF) methods under acquisition of amplitude and phase shift images. PRF was measured with a fast spoiled GRE sequence. Four different sequences were used for T1 thermometry: gradient echo (GE), TrueFISP (TRUFI), Saturation Recovery Turbo-FLASH (SRTF) and Inversion Recovery Turbo-FLASH (IRTF) sequences. The temperature was controlled using a fiber-optic Luxtron device and correlated with the MR temperature. The range of applied and monitored temperatures exceeded 80 degrees Celsius. Results: The temperature dependence showed a good linear relationship up to 60 degrees Celsius. Calibration experiments for the T1 method delivered coefficients of determination from 0.977 to 0.997 for agarose and from 0.958 to 0.995 for the pig liver samples. The IRTF sequence had the highest temperature sensitivity (agarose 0.99, liver 1.19). During LITT the TRUE-FISP sequence exhibited a strong nonlinear relationship. R{sup 2} of this sequence was 0.809 in the agarose experiments. The average temperature errors when heated up to 80 degrees Celsius were 3.86 - 11.38 degrees Celsius for Agarose gel and 5.7 - 12.16 degrees Celsius for the liver tissue. SRTF and IRTF sequences exhibited the most linear relationship with temperature but were more dependent on tissue differences. (orig.)

  5. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  6. Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry.

    Science.gov (United States)

    Mei, Jie; Riedel, Nico; Grittner, Ulrike; Endres, Matthias; Banneke, Stefanie; Emmrich, Julius Valentin

    2018-02-23

    Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.

  7. Feasibility of Johnson Noise Thermometry based on Digital Signal Processing Techniques

    International Nuclear Information System (INIS)

    Hwang, In Koo; Kim, Yang Mo

    2014-01-01

    This paper presents an implementation strategy of noise thermometry based on a digital signal processing technique and demonstrates its feasibilities. A key factor in its development is how to extract the small thermal noise signal from other noises, for example, random noise from amplifiers and continuous electromagnetic interference from the environment. The proposed system consists of two identical amplifiers and uses a cross correlation function to cancel the random noise of the amplifiers. Then, the external interference noises are eliminated by discriminating the difference in the peaks between the thermal signal and external noise. The gain of the amplifiers is estimated by injecting an already known pilot signal. The experimental simulation results of signal processing methods have demonstrated that the proposed approach is an effective method in eliminating an external noise signal and performing gain correction for development of the thermometry

  8. New strategies invonving upconverting nanoparticles for determining moderate temperatures by luminescence thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Savchuk, Ol.A. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Carvajal, J.J., E-mail: joanjosep.carvajal@urv.cat [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Pujol, M.C.; Massons, J. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Haro-González, P. [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Martínez, O.; Jiménez, J. [GdS-Optronlab, Departamento Física Materia Condensada, Universidad de Valladolid, Edificio I+D, Paseo de Belén 11, 47011 Valladolid (Spain); Aguiló, M.; Díaz, F. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain)

    2016-01-15

    Here we analyze alternative luminescence thermometry techniques to FIR, such as intensity ratio luminescence thermometry between the emission arising from two electronic levels that are not necessarily thermally coupled, but that show different evolutions with temperature, and lifetime luminescence nanothermometry in (Ho,Tm,Yb):KLu(WO{sub 4}){sub 2} and (Er,Yb):NaY{sub 2}F{sub 5}O nanoparticles. (Ho,Tm,Yb):KLu(WO{sub 4}){sub 2} nanoparticles exhibited a maximum relative sensitivity of 0.61% K{sup −1}, similar to that achievable in Er-doped systems, which are the upconverting systems presenting the highest sensitivity. From another side, (Er,Yb):NaY{sub 2}F{sub 5}O nanocrystals show great potentiality as thermal sensors at the nanoscale for moderate temperatures due to the incorporation of additional non-radiative relaxation mechanisms that shorten the emission lifetime generated by the oxygen present in the structure when compared to (Er,Yb):NaYF{sub 4} nanoparticles exhibiting the highest upconversion efficiency. We used those nanoparticles for ex-vivo temperature determination by laser induced heating in chicken breast using lifetime-based thermometry. The results obtained indicate that these techniques might constitute alternatives to FIR with potential applications for the determination of moderate temperatures, with sensitivities comparable to those that can be achieved by FIR or even higher. - Highlights: • Other nanothermometry techniques than FIR proposed with upconversion nanoparticles. • Energy transfer between different lanthanide ions can be used for thermometry. • Lifetime measurements can constitute also a tool for temperature determination.

  9. Luminescence thermometry with Eu{sup 3+} doped GdAlO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lojpur, Vesna, E-mail: vesna.lojpur@yahoo.com; Ćulubrk, Sanja; Medić, Mina; Dramicanin, Miroslav

    2016-02-15

    Eu{sup 3+} doped GdAlO{sub 3} powder synthesized by solid state reaction was investigated for application in luminescence thermometry. Phase composition of material was confirmed by X-ray powder diffraction analysis. The photoluminescence emission spectra were collected under excitation of 399 nm, while elevating the temperature of the sample from the room temperature to 793 K. Emissions from {sup 5}D{sub 1}→{sup 7}F{sub 1} and {sup 5}D{sub 0}→{sup 7}F{sub 2} characteristic transitions of Eu{sup 3+} ions are selected for the temperature-dependence study using the fluorescence intensity ratio method. Emission decay curves measured at the strongest emission peak centered at 614 nm were recorded in a same temperature range. Data analysis showed that thermometry by fluorescence intensity ratio method can be used over the temperature region 293–793 K with the maximal relative sensitivity of 2.96% K{sup −1} (at 293 K). Temporal dependence of emission (lifetime) provides temperature sensing from 620 to 793 K with the maximal relative sensitivity of 2.28% K{sup −1}. - Highlights: • GdAlO{sub 3}: 4 at% of Eu{sup 3+} can be used for luminescence thermometry in the 293–793 K range. • Combined FIR and lifetime thermometry provide >0.5% K{sup −1} relative sensitivity. • Temperature dependence of lifetime is well described energy gap law model.

  10. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver

    International Nuclear Information System (INIS)

    Pandeya, G.D.; Klaessens, J.H.G.M.; Greuter, M.J.W.; Oudkerk, M.; Schmidt, B.; Flohr, T.; Hillegersberg, R. van

    2011-01-01

    To assess the feasibility of computed tomography (CT) based thermometry during interstitial laser heating in the bovine liver. Four freshly exercised cylindrical blocks of bovine tissue were heated using a continuous laser of Nd:YAG (wavelength: 1064 nm, active length: 30 mm, power: 10-30 W). All tissues were imaged at least once before and 7 times during laser heating using CT and temperatures were simultaneously measured with 5 calibrated thermal sensors. The dependency of the average CT numbers as a function of temperature was analysed with regression analysis and a CT thermal sensitivity was derived. During laser heating, the growing hypodense area was observed around the laser source and that area showed an increase as a function of time. The formation of hypodense area was caused by declining in CT numbers at increasing temperatures. The regression analysis showed an inverse linear dependency between temperature and average CT number with -0.65 ± 0.048 HU/ C (R 2 = 0.75) for the range of 18-85 C in bovine liver. The non-invasive CT based thermometry during interstitial laser heating is feasible in the bovine liver. CT based thermometry could be further developed and may be of potential use during clinical LITT of the liver. (orig.)

  11. Progress in Noise Thermometry at 505 K and 693 K Using Quantized Voltage Noise Ratio Spectra

    Science.gov (United States)

    Tew, W. L.; Benz, S. P.; Dresselhaus, P. D.; Coakley, K. J.; Rogalla, H.; White, D. R.; Labenski, J. R.

    2010-09-01

    Technical advances and new results in noise thermometry at temperatures near the tin freezing point and the zinc freezing point using a quantized voltage noise source (QVNS) are reported. The temperatures are derived by comparing the power spectral density of QVNS synthesized noise with that of Johnson noise from a known resistance at both 505 K and 693 K. Reference noise is digitally synthesized so that the average power spectra of the QVNS match those of the thermal noise, resulting in ratios of power spectra close to unity in the low-frequency limit. Three-parameter models are used to account for differences in impedance-related time constants in the spectra. Direct comparison of noise temperatures to the International Temperature Scale of 1990 (ITS-90) is achieved in a comparison furnace with standard platinum resistance thermometers. The observed noise temperatures determined by operating the noise thermometer in both absolute and relative modes, and related statistics together with estimated uncertainties are reported. The relative noise thermometry results are combined with results from other thermodynamic determinations at temperatures near the tin freezing point to calculate a value of T - T 90 = +4(18) mK for temperatures near the zinc freezing point. These latest results achieve a lower uncertainty than that of our earlier efforts. The present value of T - T 90 is compared to other published determinations from noise thermometry and other methods.

  12. High-temperature measurement techniques for the application in photometry, radiometry and thermometry

    International Nuclear Information System (INIS)

    Hartmann, Juergen

    2009-01-01

    Well characterised sources of thermal radiation are essential for photometry, radiometry, and thermometry. They serve as reference radiators for the calibration of detectors and radiance sources. Thermal radiation sources are advantageous for this purpose compared to other radiance sources such as lamps or LEDs because they possess a continuous spectrum of the emitted spectral radiance, which, for blackbody sources, can be calculated analytically using Planck's law of radiation. For application in thermometry, blackbody sources starting from temperatures near absolute zero to temperatures up to 3000 deg. C are needed for the calibration of radiation thermometers. For application in photometry and radiometry high intensity sources of radiation in the visible and UV region of the optical spectrum were required. This latter requirement is met by blackbody sources at temperatures well above 2000 deg. C. An ideal reference source should always emit the same amount of radiation at any time of use. This is realised by fixed-point radiators. Such radiators are based on a phase transition of a substance, at high temperatures the melting and freezing points of metals. However, current metal fixed-points are limited to relatively low temperatures. In the present work innovative techniques necessary for research into high-temperature thermal radiation sources are developed and thoroughly described. Starting with variable temperature blackbody sources the techniques required are: Precise apertures determination and detailed characterisation of the applied optical detectors. The described techniques are then used to undertake research into the development of high-temperature fixed-points above the copper fixed-point for application in photometry, radiometry, and thermometry. Applying these sophisticated techniques it was shown that these new high-temperature fixed-points are reproducible and repeatable to better than 100 mK at temperatures up to nearly 3200 K. Finally, a forward

  13. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  14. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tatebe, Ken, E-mail: Ken.Tatebe@gmail.com [Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Ramsay, Elizabeth; Kazem, Mohammad; Peikari, Hamed [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5 (Canada); Mougenot, Charles [Philips Healthcare, 281 Hillmount Road, Markham, Ontario L6C 2S3 (Canada); Bronskill, Michael [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5, Canada and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9 (Canada); Chopra, Rajiv [Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 (United States); Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5 (Canada); Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9 (Canada)

    2016-01-15

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry was investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device

  15. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    International Nuclear Information System (INIS)

    Tatebe, Ken; Ramsay, Elizabeth; Kazem, Mohammad; Peikari, Hamed; Mougenot, Charles; Bronskill, Michael; Chopra, Rajiv

    2016-01-01

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry was investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device

  16. Implementation of foot thermometry plus mHealth to prevent diabetic foot ulcers: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Lazo-Porras, Maria; Bernabe-Ortiz, Antonio; Sacksteder, Katherine A; Gilman, Robert H; Malaga, German; Armstrong, David G; Miranda, J Jaime

    2016-04-19

    Diabetic foot neuropathy (DFN) is one of the most important complications of diabetes mellitus; its early diagnosis and intervention can prevent foot ulcers and the need for amputation. Thermometry, measuring the temperature of the feet, is a promising emerging modality for diabetic foot ulcer prevention. However, patient compliance with at-home monitoring is concerning. Delivering messages to remind patients to perform thermometry and foot care might be helpful to guarantee regular foot monitoring. This trial was designed to compare the incidence of diabetic foot ulcers (DFUs) between participants who receive thermometry alone and those who receive thermometry as well as mHealth (SMS and voice messaging) over a year-long study period. This is an evaluator-blinded, randomized, 12-month trial. Individuals with a diagnosis of type 2 diabetes mellitus, aged between 18-80 years, having a present dorsalis pedis pulse in both feet, are in risk group 2 or 3 using the diabetic foot risk classification system (as specified by the International Working Group on the Diabetic Foot), have an operating cell phone or a caregiver with an operating cell phone, and have the ability to provide informed consent will be eligible to participate in the study. Recruitment will be performed in diabetes outpatient clinics at two Ministry of Health tertiary hospitals in Lima, Peru. participants in both groups will receive education about foot care at the beginning of the study and they will be provided with a thermometry device (TempStat™). TempStat™ is a tool that captures a thermal image of the feet, which, depending on the temperature of the feet, shows different colors. In this study, if a participant notes a single yellow image or variance between one foot and the contralateral foot, they will be prompted to notify a nurse to evaluate their activity within the previous 2 weeks and make appropriate recommendations. In addition to thermometry, participants in the intervention arm

  17. Measurement of body temperature in normothermic and febrile rats: Limitations of using rectal thermometry.

    Science.gov (United States)

    Dangarembizi, Rachael; Erlwanger, Kennedy H; Mitchell, Duncan; Hetem, Robyn S; Madziva, Michael T; Harden, Lois M

    2017-10-01

    Stress-induced hyperthermia following rectal thermometry is reported in normothermic rats, but appears to be muted or even absent in febrile rats. We therefore investigated whether the use of rectal thermometry affects the accuracy of temperature responses recorded in normothermic and febrile rats. Using intra-abdominally implanted temperature-sensitive radiotelemeters we measured the temperature response to rectal temperature measurement in male Sprague Dawley rats (~200g) injected subcutaneously with Brewer's yeast (20ml/kg of a 20% Brewer's yeast solution=4000mg/kg) or saline (20ml/kg of 0.9% saline). Rats had been pre-exposed to, or were naive to rectal temperature measurement before the injection. The first rectal temperature measurement was taken in the plateau phase of the fever (18h after injection) and at hourly intervals thereafter. In normothermic rats, rectal temperature measurement was associated with an increase in abdominal temperature (0.66±0.27°C) that had a rapid onset (5-10min), peaked at 15-20min and lasted for 35-50min. The hyperthermic response to rectal temperature measurement was absent in febrile rats. Exposure to rectal temperature measurement on two previous occasions did not reduce the hyperthermia. There was a significant positive linear association between temperatures recorded using the two methods, but the agreement interval identified that rectal temperature measured with a thermocouple probe could either be 0.7°C greater or 0.5°C lower than abdominal temperature measured with radiotelemeter. Thus, due to stress-induced hyperthermia, rectal thermometry does not ensure accurate recording of body temperature in short-spaced, intermittent intervals in normothermic and febrile rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Robust adaptive extended Kalman filtering for real time MR-thermometry guided HIFU interventions.

    Science.gov (United States)

    Roujol, Sébastien; de Senneville, Baudouin Denis; Hey, Silke; Moonen, Chrit; Ries, Mario

    2012-03-01

    Real time magnetic resonance (MR) thermometry is gaining clinical importance for monitoring and guiding high intensity focused ultrasound (HIFU) ablations of tumorous tissue. The temperature information can be employed to adjust the position and the power of the HIFU system in real time and to determine the therapy endpoint. The requirement to resolve both physiological motion of mobile organs and the rapid temperature variations induced by state-of-the-art high-power HIFU systems require fast MRI-acquisition schemes, which are generally hampered by low signal-to-noise ratios (SNRs). This directly limits the precision of real time MR-thermometry and thus in many cases the feasibility of sophisticated control algorithms. To overcome these limitations, temporal filtering of the temperature has been suggested in the past, which has generally an adverse impact on the accuracy and latency of the filtered data. Here, we propose a novel filter that aims to improve the precision of MR-thermometry while monitoring and adapting its impact on the accuracy. For this, an adaptive extended Kalman filter using a model describing the heat transfer for acoustic heating in biological tissues was employed together with an additional outlier rejection to address the problem of sparse artifacted temperature points. The filter was compared to an efficient matched FIR filter and outperformed the latter in all tested cases. The filter was first evaluated on simulated data and provided in the worst case (with an approximate configuration of the model) a substantial improvement of the accuracy by a factor 3 and 15 during heat up and cool down periods, respectively. The robustness of the filter was then evaluated during HIFU experiments on a phantom and in vivo in porcine kidney. The presence of strong temperature artifacts did not affect the thermal dose measurement using our filter whereas a high measurement variation of 70% was observed with the FIR filter.

  19. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    Science.gov (United States)

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  20. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    International Nuclear Information System (INIS)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; Di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-01-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν 1 +2ν 2 0 +ν 3 transition in CO 2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ∼1.6x10 -4

  1. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    Science.gov (United States)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-05-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν1+2ν20+ν3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ˜1.6×10-4.

  2. All-Optical Nanoscale Thermometry using Silicon-Vacancy Centers in Diamond

    Science.gov (United States)

    Nguyen, Christian; Evans, Ruffin; Sipahigil, Alp; Bhaskar, Mihir; Sukachev, Denis; Lukin, Mikhail

    2017-04-01

    Accurate thermometry at the nanoscale is a difficult challenge, but building such a thermometer would be a powerful tool for discovering and understanding new processes in biology, chemistry and physics. Applications include cell-selective treatment of disease, engineering of more efficient integrated circuits, or even the development of new chemical and biological reactions. In this work, we study how the bulk properties of the Silicon Vacancy center (SiV) in diamond depend on temperature, and use them to measure temperature with 100mK accuracy. Using SiVs in 200 nm nanodiamonds, we measure the temperature with 100 nm spatial resolution over a 10 μm area.

  3. Two-dimensional thermometry by using neutron resonance absorption spectrometer DOG

    International Nuclear Information System (INIS)

    Kamiyama, T.; Noda, H.; Kiyanagi, Y.; Ikeda, S.

    2001-01-01

    We applied the neutron resonance absorption spectroscopy to thermometry of a bulk object. The measurement was done by using the neutron resonance absorption spectrometer, DOG, installed at KENS, High Energy Accelerator Research Organization Neutron Source, which enables us to investigate effective temperature of a particular element by analyzing line width of resonance absorption spectrum. The effective temperature becomes consistence with the sample temperature above room temperature. For the analysis we applied the computed tomography method to reconstruct the temperature distribution on the object cross section. The results and the calculated distribution by the heat conducting equation are well agreed on the temperature difference inside the object. (author)

  4. A new method of liquid crystal thermometry excluding human color sensation

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Akino, Norio; Ueda, Masaharu.

    1987-01-01

    Some choresteric liquid crystals can be used as a thermometer because of their color changes with varying temperatures. However, it is impossible to employ human color sensation for precise quantitative evaluation of temperature from their color. Therefore, a new method of liquid crystal thermometry is developed using narrow band optical filters and an image processor to exclude the employment of human color sensation. Relations between filter wavelength and temperature were determined by calibration tests. Two dimensional temperature distributions on a heated plate were successfully measured by the present method. (author)

  5. Noncontact thermometry via laser pumped, thermographic phosphors: Characterization of systematic errors and industrial applications

    International Nuclear Information System (INIS)

    Gillies, G.T.; Dowell, L.J.; Lutz, W.N.; Allison, S.W.; Cates, M.R.; Noel, B.W.; Franks, L.A.; Borella, H.M.

    1987-10-01

    There are a growing number of industrial measurement situations that call for a high precision, noncontact method of thermometry. Our collaboration has been successful in developing one such method based on the laser-induced fluorescence of rare-earth-doped ceramic phosphors like Y 2 O 3 :Eu. In this paper, we summarize the results of characterization studies aimed at identifying the sources of systematic error in a laboratory-grade version of the method. We then go on to present data from measurements made in the afterburner plume of a jet turbine and inside an operating permanent magnet motor. 12 refs., 6 figs

  6. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  7. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  9. Measurement of Two-Phase Flow and Heat Transfer Parameters using Infrared Thermometry

    Science.gov (United States)

    Kim, Tae-Hoon; Kommer, Eric; Dessiatoun, Serguei; Kim, Jungho

    2012-01-01

    A novel technique to measure heat transfer and liquid film thickness distributions over relatively large areas for two-phase flow and heat transfer phenomena using infrared (IR)thermometry is described. IR thermometry is an established technology that can be used to measure temperatures when optical access to the surface is available in the wavelengths of interest. In this work, a midwave IR camera (3.6-5.1 microns) is used to determine the temperature distribution within a multilayer consisting of a silicon substrate coated with a thin insulator. Since silicon is largely transparent to IR radiation, the temperature of the inner and outer walls of the multilayer can be measured by coating selected areas with a thin, IR opaque film. If the fluid used is also partially transparent to IR, the flow can be visualized and the liquid film thickness can be measured. The theoretical basis for the technique is given along with a description of the test apparatus and data reduction procedure. The technique is demonstrated by determining the heat transfer coefficient distributions produced by droplet evaporation and flow boiling heat transfer.

  10. Multiwavelength Thermometry at High Temperature: Why It is Advantageous to Work in the Ultraviolet

    Science.gov (United States)

    Girard, F.; Battuello, M.; Florio, M.

    2014-07-01

    In principle, multiwavelength radiation thermometry allows one to correctly measure the temperature of surfaces of unknown and varying surface emissivity. Unfortunately, none of the practical realizations proposed in the past proved to be sufficiently reliable because of a strong influence of the errors arising from incorrect modeling of the emissivity and of the limited number of operating wavelengths. The use of array detectors allows a high degree of flexibility both in terms of number and spectral position of the working wavelength bands. In the case of applications at high temperatures, i.e., near 2000 C or above, an analysis of the theoretical measuring principles of multiwavelength thermometry, suggests the opportunity of investigating the possible advantages in extending the operating wavelengths toward the ultraviolet region. To this purpose, a simulation program was developed which allows investigation of the effect of different influencing parameters. This paper presents a brief theoretical introduction and practical analysis of the method. The best choices are derived in terms of the different influencing parameters and data relative to the simulation of both real materials and fictitious emissivity curves and have been studied and analyzed with different emissivity models to check the robustness of the method.

  11. Combined tunable diode laser absorption spectroscopy and monochromatic radiation thermometry in ammonium dinitramide-based thruster

    Science.gov (United States)

    Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong

    2018-02-01

    Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.

  12. Evidence of hemispheric specialization in marmosets (Callithrix penicillata using tympanic membrane thermometry

    Directory of Open Access Journals (Sweden)

    C. Tomaz

    2003-07-01

    Full Text Available Recent studies have employed tympanic thermometry to assess lateralization of cognitive and emotional functions in primates. However, no studies using this technique have investigated the possibility of hemispheric specialization in New World monkeys. Therefore, the aim of the present study was to investigate tympanic membrane (TM temperature asymmetries and their possible correlation with stress responses in marmosets (Callithrix penicillata. Infrared TM thermometry was completed bilaterally in 24 animals (14 males and 10 females during a stressful situation of capture and restraint. There were no significant differences between gender. A significant negative correlation was observed between TM temperature of the right ear and the number of captures (r = -0.633; P<0.001. Subjects with a more frequent previous history of captures (5 to 9 captures; N = 11 showed lower TM temperature when compared to those with fewer previous captures (1 to 4 captures; N = 13. No differences were observed for the left TM temperature. These results suggest that under intense emotional challenge (capture and restraint there is a stronger activation of the neural structures situated in the right brain hemisphere. Taken together, the data reveal for the first time evidence of hemispheric specialization in emotional physiological processing in a New World monkey.

  13. Practical acoustic thermometry with twin-tube and single-tube sensors

    Energy Technology Data Exchange (ETDEWEB)

    De Podesta, M.; Sutton, G.; Edwards, G.; Stanger, L.; Preece, H. [National Physical Laboratory, Teddington, (United Kingdom)

    2015-07-01

    Accurate measurement of high temperatures in a nuclear environment presents unique challenges. All secondary techniques inevitably drift because the thermometric materials in thermocouples and resistance sensors are sensitive not just to temperature, but also their own chemical and physical composition. The solution is to use primary methods that rely on fundamental links between measurable physical properties and temperature. In the nuclear field the best known technique is the measurement of Johnson Noise in a resistor (See Paper 80 at this conference). In this paper we describe the measurement of temperature in terms of the speed of sound in a gas confined in a tube - an acoustic waveguide. Acoustic thermometry is the most accurate technique of primary thermometry ever devised with the best uncertainty of measurement below 0.001 C. In contrast, the acoustic technique described in this work has a much larger uncertainty, approximately 1 deg. C. But the cost and ease of use are improved by several orders of magnitude, making implementation eminently practical. We first describe the basic construction and method of operation of thermometers using twin-tubes and single tubes. We then present results using a twin-tube design showing that showing long term stability (i.e. no detectable drift) at 700 deg. C over periods of several weeks. We then outline how the technique may be developed for different nuclear applications. (authors)

  14. Johnson Noise Thermometry in the range 505 K to 933 K

    Science.gov (United States)

    Tew, Weston; Labenski, John; Nam, Sae Woo; Benz, Samuel; Dresselhaus, Paul; Martinis, John

    2006-03-01

    The International Temperature Scale of 1990 (ITS-90) is an artifact-based temperature scale, T90, designed to approximate thermodynamic temperature T. The thermodynamic errors of the ITS-90, characterized as the value of T-T90, only recently have been quantified by primary thermodynamic methods. Johnson Noise Thermometry (JNT) is a primary method which can be applied over wide temperature ranges, and NIST is currently using JNT to determine T-T90 in the range 505 K to 933 K, overlapping both acoustic gas-based and radiation-based thermometry. Advances in digital electronics have now made the computationally intensive processing required for JNT viable using noise voltage correlation in the frequency domain. We have also optimized the design of the 5-wire JNT temperature probes to minimize electromagnetic interference and transmission line effects. Statistical uncertainties under 50 μK/K are achievable using relatively modest bandwidths of ˜100 kHz. The NIST JNT system will provide critical data for T-T90 linking together the highly accurate acoustic gas-based data at lower temperatures with the higher-temperature radiation-based data, forming the basis for a new International Temperature Scale with greatly improved thermodynamic accuracy.

  15. MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an initial clinical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Streitparth, Florian; Walter, Thula; Bucourt, Maximilian de; Freyhardt, Patrick; Maurer, Martin; Renz, Diane; Gebauer, Bernhard; Hamm, Bernd; Teichgraeber, Ulf K.M. [Charite, Humboldt-University Medical School, Department of Radiology, Berlin (Germany); Hartwig, Tony; Putzier, Michael; Strube, Patrick [Charite, Humboldt-University, Center for Musculoskeletal Surgery, Berlin (Germany); Bretschneider, Tina [University of Magdeburg, Department of Radiology, Magdeburg (Germany)

    2013-10-15

    To assess the feasibility, safety and efficacy of real-time MR guidance and thermometry of percutaneous laser disc decompression (PLDD). Twenty-four discs in 22 patients with chronic low-back and radicular pain were treated by PLDD using open 1.0-T magnetic-resonance imaging (MRI). A fluoroscopic proton-density-weighted turbo spin-echo (PDw TSE) sequence was used to position the laser fibre. Non-spoiled gradient-echo (GRE) sequences were employed for real-time thermal monitoring based on proton resonance frequency (PRF). Radicular pain was assessed over 6 months with a numerical rating scale (NRS). PLDD was technically successful in all cases, with adequate image quality for laser positioning. The PRF-based real-time temperature monitoring was found to be feasible in practice. After 6 months, 21 % reported complete remission of radicular pain, 63 % at least great pain relief and 74 % at least mild relief. We found a significant decrease in the NRS score between the pre-intervention and the 6-month follow-up assessment (P < 0.001). No major complications occurred; the single adverse event recorded, moderate motor impairment, resolved. Real-time MR guidance and PRF-based thermometry of PLDD in the lumbar spine under open 1.0-T MRI appears feasible, safe and effective and may pave the way to more precise operating procedures. (orig.)

  16. MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an initial clinical investigation

    International Nuclear Information System (INIS)

    Streitparth, Florian; Walter, Thula; Bucourt, Maximilian de; Freyhardt, Patrick; Maurer, Martin; Renz, Diane; Gebauer, Bernhard; Hamm, Bernd; Teichgraeber, Ulf K.M.; Hartwig, Tony; Putzier, Michael; Strube, Patrick; Bretschneider, Tina

    2013-01-01

    To assess the feasibility, safety and efficacy of real-time MR guidance and thermometry of percutaneous laser disc decompression (PLDD). Twenty-four discs in 22 patients with chronic low-back and radicular pain were treated by PLDD using open 1.0-T magnetic-resonance imaging (MRI). A fluoroscopic proton-density-weighted turbo spin-echo (PDw TSE) sequence was used to position the laser fibre. Non-spoiled gradient-echo (GRE) sequences were employed for real-time thermal monitoring based on proton resonance frequency (PRF). Radicular pain was assessed over 6 months with a numerical rating scale (NRS). PLDD was technically successful in all cases, with adequate image quality for laser positioning. The PRF-based real-time temperature monitoring was found to be feasible in practice. After 6 months, 21 % reported complete remission of radicular pain, 63 % at least great pain relief and 74 % at least mild relief. We found a significant decrease in the NRS score between the pre-intervention and the 6-month follow-up assessment (P < 0.001). No major complications occurred; the single adverse event recorded, moderate motor impairment, resolved. Real-time MR guidance and PRF-based thermometry of PLDD in the lumbar spine under open 1.0-T MRI appears feasible, safe and effective and may pave the way to more precise operating procedures. (orig.)

  17. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  18. Real-time control of focused ultrasound heating based on rapid MR thermometry.

    Science.gov (United States)

    Vimeux, F C; De Zwart, J A; Palussiére, J; Fawaz, R; Delalande, C; Canioni, P; Grenier, N; Moonen, C T

    1999-03-01

    Real-time control of the heating procedure is essential for hyperthermia applications of focused ultrasound (FUS). The objective of this study is to demonstrate the feasibility of MRI-controlled FUS. An automatic control system was developed using a dedicated interface between the MR system control computer and the FUS wave generator. Two algorithms were used to regulate FUS power to maintain the focal point temperature at a desired level. Automatic control of FUS power level was demonstrated ex vivo at three target temperature levels (increase of 5 degrees C, 10 degrees C, and 30 degrees C above room temperature) during 30-minute hyperthermic periods. Preliminary in vivo results on rat leg muscle confirm that necrosis estimate, calculated on-line during FUS sonication, allows prediction of tissue damage. CONCLUSIONS. The feasibility of fully automatic FUS control based on MRI thermometry has been demonstrated.

  19. A high-resolution mK-calorimeter applying SQUID-thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, Andreas; Leps, Norman; Fleischmann, Andreas; Pies, Christian; Enss, Christian; Klingeler, Ruediger [Kirchhoff-Institut fuer Physik, Universitaet Heidelberg, INF 227,69120 Heidelberg (Germany)

    2012-07-01

    A new calorimeter for measuring single-crystalline samples of mg-size at ultra-low temperatures is described. Thermometry is done by means of a paramagnetic sensor material (Er-doped Au) in a low magnetic field. A temperature change results in a magnetization change which can be read out as change in magnetic flux by a superconducting quantum interference device (SQUID). This enables measurements in a wide temperature range (theoretically from 1 mK-1 K) with very high sensitivities. The bolometric design exhibits low addenda heat capacity and allows measurements of heat capacities from nJ/K to {mu}J/K by means of a temperature-relaxation method. The performance of the device is compared to a commercially available Quantum Design calorimeter in elsewise unchanged experimental settings in the temperature range from 15 mK to 500 mK.

  20. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  1. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  2. Mercury's Early Geologic History

    Science.gov (United States)

    Denevi, B. W.; Ernst, C. M.; Klima, R. L.; Robinson, M. S.

    2018-05-01

    A combination of geologic mapping, compositional information, and geochemical models are providing a better understanding of Mercury's early geologic history, and allow us to place it in the context of the Moon and the terrestrial planets.

  3. Low-temperature thermometry. Use of a gas thermometer as a calibration standard between 4 and 300 K

    International Nuclear Information System (INIS)

    Combarieu, A. de

    1978-01-01

    A constant volume gas thermometer was built to calibrate the various secondary thermometers used at low temperature. This gas thermometer is placed in a cryostat where any stable temperature between 4 and 300 K may be obtained. After some words about low temperature thermometry, the gas thermometer and its auxiliary equipment are described briefly; the corrections to be applied to the results are given and the article ends with a table showing the values obtained [fr

  4. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  5. Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies

    Science.gov (United States)

    Gaetani, G.A.; Cohen, A.L.; Wang, Z.; Crusius, John

    2011-01-01

    This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where

  6. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    Science.gov (United States)

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; Snead, Lance L.

    2016-03-01

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperature and removes possible user-introduced error while standardizing the analysis. This method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.

  7. A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source

    Science.gov (United States)

    Nam, S. W.; Benz, S. P.; Martinis, J. M.; Dresselhaus, P.; Tew, W. L.; White, D. R.

    2003-09-01

    Johnson Noise Thermometry (JNT) involves the measurement of the statistical variance of a fluctuating voltage across a resistor in thermal equilibrium. Modern digital techniques make it now possible to perform many functions required for JNT in highly efficient and predictable ways. We describe the operational characteristics of a prototype JNT system which uses digital signal processing for filtering, real-time spectral cross-correlation for noise power measurement, and a digitally synthesized Quantized Voltage Noise Source (QVNS) as an AC voltage reference. The QVNS emulates noise with a constant spectral density that is stable, programmable, and calculable in terms of known parameters using digital synthesis techniques. Changes in analog gain are accounted for by alternating the inputs between the Johnson noise sensor and the QVNS. The Johnson noise power at a known temperature is first balanced with a synthesized noise power from the QVNS. The process is then repeated by balancing the noise power from the same resistor at an unknown temperature. When the two noise power ratios are combined, a thermodynamic temperature is derived using the ratio of the two QVNS spectral densities. We present preliminary results where the ratio between the gallium triple point and the water triple point is used to demonstrate the accuracy of the measurement system with a standard uncertainty of 0.04 %.

  8. Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, B. R. [BP Research, Cleveland, OH (United States); Nielsen, D. C.; Shock, C. C.

    1992-10-15

    Infrared thermometry can be a valuable research and production tool for detecting and quantifying water stress in plants, as shown by a large volume of published research. Users of infrared thermometers (IRT) should be aware of the many equipment, environmental, and plant factors influencing canopy temperature measured by an IRT. The purpose of this paper is to describe factors influencing measured plant temperature, outline sampling procedures that will produce reliable Crop Water Stress Index (CWSI) values, and offer interpretations of CWSI and plant temperatures relative to crop production and other water stress parameters by reviewing previously conducted research. Factors that are considered are IRT condition, configuration, and position; psychrometer location; wind speed; solar radiation; time of day; leaf area and orientation; and appropriate non-water-stressed baseline equation. Standard sampling and CWSI calculation procedures are proposed. Use of CWSI with crops varying in type of response to water stress is described. Previously conducted research on plant temperatures or CWSI is tabulated by crop and water stress parameters measured. The paper provides valuable information to assist interested users of IRTs in making reliable water stress measurements. (author)

  9. Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation

    International Nuclear Information System (INIS)

    Gardner, B.R.; Nielsen, D.C.; Shock, C.C.

    1992-01-01

    Infrared thermometry can be a valuable research and production tool for detecting and quantifying water stress in plants, as shown by a large volume of published research. Users of infrared thermometers (IRT) should be aware of the many equipment, environmental, and plant factors influencing canopy temperature measured by an IRT. The purpose of this paper is to describe factors influencing measured plant temperature, outline sampling procedures that will produce reliable Crop Water Stress Index (CWSI) values, and offer interpretations of CWSI and plant temperatures relative to crop production and other water stress parameters by reviewing previously conducted research. Factors that are considered are IRT condition, configuration, and position; psychrometer location; wind speed; solar radiation; time of day; leaf area and orientation; and appropriate non-water-stressed baseline equation. Standard sampling and CWSI calculation procedures are proposed. Use of CWSI with crops varying in type of response to water stress is described. Previously conducted research on plant temperatures or CWSI is tabulated by crop and water stress parameters measured. The paper provides valuable information to assist interested users of IRTs in making reliable water stress measurements. (author)

  10. Measurement and Analysis of the Temperature Gradient of Blackbody Cavities, for Use in Radiation Thermometry

    Science.gov (United States)

    De Lucas, Javier; Segovia, José Juan

    2018-05-01

    Blackbody cavities are the standard radiation sources widely used in the fields of radiometry and radiation thermometry. Its effective emissivity and uncertainty depend to a large extent on the temperature gradient. An experimental procedure based on the radiometric method for measuring the gradient is followed. Results are applied to particular blackbody configurations where gradients can be thermometrically estimated by contact thermometers and where the relationship between both basic methods can be established. The proposed procedure may be applied to commercial blackbodies if they are modified allowing secondary contact temperature measurement. In addition, the established systematic may be incorporated as part of the actions for quality assurance in routine calibrations of radiation thermometers, by using the secondary contact temperature measurement for detecting departures from the real radiometrically obtained gradient and the effect on the uncertainty. On the other hand, a theoretical model is proposed to evaluate the effect of temperature variations on effective emissivity and associated uncertainty. This model is based on a gradient sample chosen following plausible criteria. The model is consistent with the Monte Carlo method for calculating the uncertainty of effective emissivity and complements others published in the literature where uncertainty is calculated taking into account only geometrical variables and intrinsic emissivity. The mathematical model and experimental procedure are applied and validated using a commercial type three-zone furnace, with a blackbody cavity modified to enable a secondary contact temperature measurement, in the range between 400 °C and 1000 °C.

  11. Thermometry of levitated nanoparticles in a hybrid electro-optical trap

    Science.gov (United States)

    Aranas, E. B.; Fonseca, P. Z. G.; Barker, P. F.; Monteiro, T. S.

    2017-03-01

    There have been recent rapid developments in stable trapping of levitated nanoparticles in high vacuum. Cooling of nanoparticles, from phonon occupancies of 107 down to ≃ 100{--}1000 phonons, have already been achieved by several groups. Prospects for quantum ground-state cooling seem extremely promising. Cavity-cooling without added stabilisation by feedback cooling remains challenging, but trapping at high vacuum in a cavity is now possible through the addition of a Paul trap. However, the Paul trap has been found to qualitatively modify the cavity output spectrum, with the latter acquiring an atypical ‘split-sideband’ structure, of different form from the displacement spectrum, and which depends on N, the optical well at which the particle localises. In the present work we investigate the N-dependence of the dynamics, in particular with respect to thermometry: we show that in strong cooling regions N≳ 100, the temperature may still be reliably inferred from the cavity output spectra. We also explain the N-dependence of the mechanical frequencies and optomechanical coupling showing that these may be accurately estimated. We present a simple ‘fast-cavity’ model for the cavity output and test all our findings against full numerical solutions of the nonlinear stochastic equations of motion for the system.

  12. Scour Monitoring System for Subsea Pipeline Based on Active Thermometry: Numerical and Experimental Studies

    Directory of Open Access Journals (Sweden)

    Jun Du

    2013-01-01

    Full Text Available A scour monitoring system for subsea pipeline based on active thermometry is proposed in this paper. The temperature reading of the proposed system is based on a distributed Brillouin optical fiber sensing technique. A thermal cable acts as the main component of the system, which consists of a heating belt, armored optical fibers and heat-shrinkable tubes which run parallel to the pipeline. The scour-induced free span can be monitored through different heat transfer behaviors of in-water and in-sediment scenarios during heating and cooling processes. Two sets of experiments, including exposing different lengths of the upper surface of the pipeline to water and creating free spans of various lengths, were carried out in laboratory. In both cases, the scour condition was immediately detected by the proposed monitoring system, which confirmed the system is robust and very sensitive. Numerical study of the method was also investigated by using the finite element method (FEM with ANSYS, resulting in reasonable agreement with the test data. This brand new system provides a promising, low cost, highly precise and flexible approach for scour monitoring of subsea pipelines.

  13. Flame thermometry using laser-induced-grating spectroscopy of nitric oxide

    Science.gov (United States)

    Luers, Andrew; Salhlberg, Anna-Lena; Hochgreb, Simone; Ewart, Paul

    2018-03-01

    A systematic study of laser-induced thermal-grating scattering (LITGS) using nitric oxide as an absorbing species is presented as a means of thermometry in air-fed combustion. The relative contributions to the scattered signal from degenerate four-wave mixing, DFWM, and from laser-induced thermal-grating scattering, LITGS, are studied in the time domain for NO in N2 buffer gas up to 4 bar, using a pulsed laser system to excite the (0,0) γ-bands of NO at 226.21 nm. LITGS signals from combustion-generated NO in a laminar, pre-mixed CH4/O2/N2 flame on an in-house constructed slot burner were used to derive temperature values as a function of O2 concentration and position in the flame at 1 and 2.5 bar total pressure. Temperature values consistent with the calculated adiabatic flame temperature were derived from averaged LITGS signals over 50-100 single shots at 10 Hz repetition rate in the range 1600-2400 K with a pressure-dependent uncertainty of ± 1.8% at 1 bar to ± 1.4% at 2.5 bar. Based on observed signal-to-noise ratios, the minimum detectable concentration of NO in the flame is estimated to be 80 ppm for a 5 s measurement time at 10 Hz repetition rate.

  14. Planar measurements of spray-induced wall cooling using phosphor thermometry

    Science.gov (United States)

    Dragomirov, Plamen; Mendieta, Aldo; Abram, Christopher; Fond, Benoît; Beyrau, Frank

    2018-03-01

    The wall cooling induced by spray impingement is investigated using phosphor thermometry. Thin coatings of zinc oxide (ZnO) phosphor were applied with a transparent chemical binder onto a steel surface. Instantaneous spatially resolved temperatures were determined using the spectral intensity ratio method directly after the injection of UV-grade hexane onto the surface using a commercial gasoline injector. The investigations showed that 2D temperature measurements with high spatial and shot-to-shot precision of, respectively, 0.5 and 0.6 K can be achieved, allowing the accurate resolution of the cooling induced by the spray. The presence of a liquid film over the phosphor coating during measurements showed no noticeable influence on the measured temperatures. However, in some cases a change in the intensity ratio at the spray impingement area, in the form of a permanent "stain", could be observed after multiple injections. The formation of this stain was less likely with increasing annealing time of the coating as well as lower plate operating temperatures during the injection experiments. Finally, the experimental results indicate a noticeable influence of the thickness of the phosphor coating on the measured spray-induced wall cooling history. Hence, for quantitative analysis, a compromise between coating thickness and measurement accuracy needs to be considered for similar applications where the heat transfer rates are very high.

  15. Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry

    International Nuclear Information System (INIS)

    Hobbs, M J; Tan, C H; Willmott, J R

    2013-01-01

    We report the evaluation of Si avalanche photodiodes (APDs) for use in radiation thermometry as an alternative to Si photodiodes. We compared their performance when operated under phase sensitive detection (PSD), where the signal is modulated, and direct detection (DD) methods. A Si APD was compared with a Si photodiode with reference black body temperatures of 275 to 600°C, in terms of the mean output voltage and signal-to-noise ratio (SNR), measured at different APD gain values. We found that using both PSD and DD methods, the high internal gain of the Si APD achieved a lower minimum detection temperature in order to satisfy a specific minimum output voltage of the detector-preamplifier combination employed. The use of PSD over DD for the Si APD allowed for improved performance of the thermometer, with a lower minimum measurable temperature, as well as improvement in the SNR. For instance we found that at 350°C, the Si APD biased at 150 V using PSD can provide ∼ 88 times enhancement in the system SNR over that of a Si photodiode using DD. A corresponding temperature error of ±0.05°C was achieved using the APD with PSD compared to an error of ±2.75°C measured using the Si photodiode with DD.

  16. Sensitivity Modulation of Upconverting Thermometry through Engineering Phonon Energy of a Matrix.

    Science.gov (United States)

    Suo, Hao; Guo, Chongfeng; Zheng, Jiming; Zhou, Bo; Ma, Chonggeng; Zhao, Xiaoqi; Li, Ting; Guo, Ping; Goldys, Ewa M

    2016-11-09

    Investigation of the unclear influential factors to thermal sensing capability is the only way to achieve highly sensitive thermometry, which is greatly needed to meet the growing demand for potential sensing applications. Here, the effect from the phonon energy of a matrix on the sensitivity of upconversion (UC) microthermometers is elaborately discussed using a controllable method. Uniform truncated octahedral YF 3 :Er 3+ /Yb 3+ microcrystals were prepared by a hydrothermal approach, and phase transformation from YF 3 to YOF and Y 2 O 3 with nearly unchanged morphology and size was successfully realized by controlling the annealing temperature. The phonon energies of blank matrixes were determined by FT-IR spectra and Raman scattering. Upon 980 nm excitation, phonon energy-dependent UC emitting color was finely tuned from green to yellow for three samples, and the mechanisms were proposed. Thermal sensing behaviors based on the TCLs ( 2 H 11/2 / 4 S 3/2 ) were evaluated, and the sensitivities gradually grew with the increase in the matrix's phonon energy. According to chemical bond theory and first-principle calculations, the most intrinsic factors associated with thermometric ability were qualitatively demonstrated through analyzing the inner relation between the phonon energy and bond covalency. The exciting results provide guiding insights into employing appropriate host materials with desired thermometric ability while offering the possibility of highly accurate measurement of temperature.

  17. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich Hochtemperatur- und Vakuumphysik; Hartmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Hochtemperaturskala; Gutschwager, B. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Infrarot-Strahlungsthermometrie; Struss, O. [HEITRONICS Infrarot Messtechnik GmbH (Germany)

    2007-09-15

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  18. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J.; Hartmann, J.; Gutschwager, B. [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Struss, O. [HEITRONICS Infrarot Messtechnik GmbH, Wiesbaden (Germany)

    2006-07-01

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  19. Measurement of the Boltzmann constant by Johnson noise thermometry using a superconducting integrated circuit

    Science.gov (United States)

    Urano, C.; Yamazawa, K.; Kaneko, N.-H.

    2017-12-01

    We report on our measurement of the Boltzmann constant by Johnson noise thermometry (JNT) using an integrated quantum voltage noise source (IQVNS) that is fully implemented with superconducting integrated circuit technology. The IQVNS generates calculable pseudo white noise voltages to calibrate the JNT system. The thermal noise of a sensing resistor placed at the temperature of the triple point of water was measured precisely by the IQVNS-based JNT. We accumulated data of more than 429 200 s in total (over 6 d) and used the Akaike information criterion to estimate the fitting frequency range for the quadratic model to calculate the Boltzmann constant. Upon detailed evaluation of the uncertainty components, the experimentally obtained Boltzmann constant was k=1.380 6436× {{10}-23} J K-1 with a relative combined uncertainty of 10.22× {{10}-6} . The value of k is relatively -3.56× {{10}-6} lower than the CODATA 2014 value (Mohr et al 2016 Rev. Mod. Phys. 88 035009).

  20. Digital signal processing for the Johnson noise thermometry: a time series analysis of the Johnson noise

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon; David, E. H.; Kisner, R.A.

    2004-06-01

    In this report, we first proved that a random signal obtained by taking the sum of a set of signal frequency signals generates a continuous Markov process. We used this random signal to simulate the Johnson noise and verified that the Johnson noise thermometry can be used to improve the measurements of the reactor coolant temperature within an accuracy of below 0.14%. Secondly, by using this random signal we determined the optimal sampling rate when the frequency band of the Johnson noise signal is given. Also the results of our examination on how good the linearity of the Johnson noise is and how large the relative error of the temperature could become when the temperature increases are described. Thirdly, the results of our analysis on a set of the Johnson noise signal blocks taken from a simple electric circuit are described. We showed that the properties of the continuous Markov process are satisfied even when some channel noises are present. Finally, we describe the algorithm we devised to handle the problem of the time lag in the long-term average or the moving average in a transient state. The algorithm is based on the Haar wavelet and is to estimate the transient temperature that has much smaller time delay. We have shown that the algorithm can track the transient temperature successfully

  1. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    Science.gov (United States)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  2. Estimation of wetland evapotranspiration in northern New York using infrared thermometry

    Science.gov (United States)

    Hwang, K.; Chandler, D. G.

    2016-12-01

    Evapotranspiration (ET) is an important component of the water budget and often regarded as a major water loss. In freshwater wetlands, cumulative annual ET can equal precipitation under well-watered conditions. Wetland ET is therefore an important control on contaminant and nutrient transport. Yet, quantification of wetland ET is challenged by complex surface characteristics, diverse plant species and density, and variations in wetland shape and size. As handheld infrared (IR) cameras have become available, studies exploiting the new technology have increased, especially in agriculture and hydrology. The benefits of IR cameras include (1) high spatial resolution, (2) high sample rates, (3) real-time imaging, (4) a constant viewing geometry, and (5) no need for atmosphere and cloud corrections. Compared with traditional methods, infrared thermometer is capable of monitoring at the scale of a small pond or localized plant community. This enables finer scale survey of heterogeneous land surfaces rather than strict dependence on atmospheric variables. Despite this potential, there has been a limited number of studies of ET and drought stress with IR cameras. In this study, the infrared thermometry-based method was applied to estimate ET over wetland plant species in St. Lawrence River Valley, NY. The results are evaluated with traditional methods to test applicability over multiple vegetation species in a same area.

  3. Fluorescent Molecular Rotor-in-Paraffin Waxes for Thermometry and Biometric Identification.

    Science.gov (United States)

    Jin, Young-Jae; Dogra, Rubal; Cheong, In Woo; Kwak, Giseop

    2015-07-08

    Novel thermoresponsive sensor systems consisting of a molecular rotor (MR) and paraffin wax (PW) were developed for various thermometric and biometric identification applications. Polydiphenylacetylenes (PDPAs) coupled with long alkyl chains were used as MRs, and PWs of hydrocarbons having 16-20 carbons were utilized as phase-change materials. The PDPAs were successfully dissolved in the molten PWs and did not act as an impurity that prevents phase transition of the PWs. These PDPA-in-PW hybrids had almost the same enthalpies and phase-transition temperatures as the corresponding pure PWs. The hybrids exhibited highly reversible fluorescence (FL) changes at the critical temperatures during phase transition of the PWs. These hybrids were impregnated into common filter paper in the molten state by absorption or were encapsulated into urea resin to enhance their mechanical integrity and cyclic stability during repeated use. The wax papers could be utilized in highly advanced applications including FL image writing/erasing, an array-type thermo-indicator, and fingerprint/palmprint identification. The present findings should facilitate the development of novel fluorescent sensor systems for biometric identification and are potentially applicable for biological and biomedical thermometry.

  4. Infrared thermometry and the crop water stress index. I. History, theory, and baselines

    International Nuclear Information System (INIS)

    Gardner, B.R.; Nielsen, D.C.; Shock, C.C.

    1992-01-01

    Development of portable infrared thermometers and the definition of the Crop Water Stress Index (CWSI) have led to widespread interest in infrared thermometry to monitor water stress and schedule irrigations. But the CWSI concept is still new and poorly understood by many. The purpose of this paper is to review the definition of CWSI, and the determination and interpretation of the non-water-stressed baselines used to compute CWSI. The non-water-stressed baseline equation normalizes the canopy minus air temperature differential for variations in vapor pressure deficit. Non-water-stressed baselines can be determined empirically from measurements of canopy and air temperatures and vapor pressure deficit, made diurnally on a single day, or at a single time of day over many days, on well-watered plants. The value of the maximum canopy minus air temperature differential under maximum water stress should also be determined empirically. Causes for CWSI values falling outside of the defined 0 to 10 unit range are reviewed. Non-water-stressed baselines may shift with plant growth stage. Effective use of CWSI is dependent on understanding the definition of CWSI, and the proper determination and use of non-water-stressed baselines. (author)

  5. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    Science.gov (United States)

    Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham

    2016-09-01

    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.

  6. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    Science.gov (United States)

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  8. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  9. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  10. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.

    Science.gov (United States)

    Viallon, Magalie; Terraz, Sylvain; Roland, Joerg; Dumont, Erik; Becker, Christoph D; Salomir, Rares

    2010-04-01

    MR thermometry based on the proton resonance frequency shift (PRFS) is the most commonly used method for the monitoring of thermal therapies. As the chemical shift of water protons is temperature dependent, the local temperature variation (relative to an initial baseline) may be calculated from time-dependent phase changes in gradient-echo (GRE) MR images. Dynamic phase shift in GRE images is also produced by time-dependent changes in the magnetic bulk susceptibility of tissue. Gas bubbles (known as "white cavitation") are frequently visualized near the RF electrode in ultrasonography-guided radio frequency ablation (RFA). This study aimed to investigate RFA-induced cavitation's effects by using simultaneous ultrasonography and MRI, to both visualize the cavitation and quantify the subsequent magnetic susceptibility-mediated errors in concurrent PRFS MR-thermometry (MRT) as well as to propose a first-order correction for the latter errors. RF heating in saline gels and in ex vivo tissues was performed with MR-compatible bipolar and monopolar electrodes inside a 1.5 T MR clinical scanner. Ultrasonography simultaneous to PRFS MRT was achieved using a MR-compatible phased-array ultrasonic transducer. PRFS MRT was performed interleaved in three orthogonal planes and compared to measurements from fluoroptic sensors, under low and, respectively, high RFA power levels. Control experiments were performed to isolate the main source of errors in standard PRFS thermometry. Ultrasonography, MRI and digital camera pictures clearly demonstrated generation of bubbles every time when operating the radio frequency equipment at therapeutic powers (> or = 30 W). Simultaneous bimodal (ultrasonography and MRI) monitoring of high power RF heating demonstrated a correlation between the onset of the PRFS-thermometry errors and the appearance of bubbles around the applicator. In an ex vivo study using a bipolar RF electrode under low power level (5 W), the MR measured temperature curves

  11. Geological-geochemical evidence for deep fluid action in Daqiaowu uranium deposit, Zhejiang province

    International Nuclear Information System (INIS)

    Qiu Linfei; Ou Guangxi; Zhang Jianfeng; Zhang Min; Jin Miaozhang; Wang Binghua

    2009-01-01

    Through the contrast study of petrography, micro thermometry and laser Raman ingredient analysis of fluid inclusion, this paper has verified the basic nature of ore-forming fluid (temperature, salinity and ingredient) in daqiaowu uranium deposit, discussed the origin of the ore-forming fluid with its structure character and geology-geochemistry character. The testing results indicats that ore-forming temperature of this deposit is between 200 degree C and 250 degree C in main metallogenetic period, which belongs to middle temperature hydrothermal. The ore-forming fluids are of middle-high salinity and rich in valatility suchas CO 2 , H 2 , CH 4 . To sum up, the deposit mineralization process should be affected by the deep fluid primarily, and the ore-forming fluid is mainly the mantle fluid.(authors)

  12. Application of structured illumination to gas phase thermometry using thermographic phosphor particles: a study for averaged imaging

    Science.gov (United States)

    Zentgraf, Florian; Stephan, Michael; Berrocal, Edouard; Albert, Barbara; Böhm, Benjamin; Dreizler, Andreas

    2017-07-01

    Structured laser illumination planar imaging (SLIPI) is combined with gas phase thermometry measurements using thermographic phosphor (TGP) particles. The technique is applied to a heated jet surrounded by a coflow which is operated at ambient temperature. The respective air flows are seeded with a powder of BaMgAl10O17:Eu2+ (BAM) which is used as temperature-sensitive gas phase tracer. Upon pulsed excitation in the ultraviolet spectral range, the temperature is extracted based on the two-color ratio method combined with SLIPI. The main advantage of applying the SLIPI approach to phosphor thermometry is the reduction of particle-to-particle multiple light scattering and diffuse wall reflections, yielding a more robust calibration procedure as well as improving the measurement accuracy, precision, and sensitivity. For demonstration, this paper focuses on sample-averaged measurements of temperature fields in a jet-in-coflow configuration. Using the conventional approach, which in contrast to SLIPI is based on imaging with an unmodulated laser light sheet, we show that for the present setup typically 40% of the recorded signal is affected by the contribution of multiply scattered photons. At locations close to walls even up to 75% of the apparent signal is due to diffuse reflection and wall luminescence of BAM sticking at the surface. Those contributions lead to erroneous temperature fields. Using SLIPI, an unbiased two-color ratio field is recovered allowing for two-dimensional mean temperature reconstructions which exhibit a more realistic physical behavior. This is in contrast to results deduced by the conventional approach. Furthermore, using the SLIPI approach it is shown that the temperature sensitivity is enhanced by a factor of up to 2 at 270 °C. Finally, an outlook towards instantaneous SLIPI phosphorescence thermometry is provided.

  13. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy

    Science.gov (United States)

    Crake, Calum; Meral, F. Can; Burgess, Mark T.; Papademetriou, Iason T.; McDannold, Nathan J.; Porter, Tyrone M.

    2017-08-01

    Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.

  14. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  15. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  16. Magnetic Resonance–Guided High-Intensity Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, William, E-mail: William.Chu@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre and the University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Staruch, Robert M. [Clinical Sites Research Program, Philips Research, Cambridge, Massachusetts (United States); Pichardo, Samuel [Thunder Bay Regional Research Institute, Thunder Bay, Ontario (Canada); Physics and Electrical Engineering, Lakehead University, Thunder Bay, Ontario (Canada); Tillander, Matti; Köhler, Max O. [MR Therapy, Philips Healthcare, Vantaa (Finland); Huang, Yuexi [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Ylihautala, Mika [MR Therapy, Philips Healthcare, Vantaa (Finland); McGuffin, Merrylee [Department of Radiation Oncology, Sunnybrook Health Sciences Centre and the University of Toronto, Toronto, Ontario (Canada); Czarnota, Gregory [Department of Radiation Oncology, Sunnybrook Health Sciences Centre and the University of Toronto, Toronto, Ontario (Canada); Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada); Hynynen, Kullervo [Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario (Canada)

    2016-07-15

    Purpose: To evaluate the feasibility of magnetic resonance–guided high-intensity focused ultrasound (MR-HIFU) mild hyperthermia in deep tissue targets for enhancing radiation therapy and chemotherapy in the context of recurrent rectal cancer. A preclinical study was performed to evaluate the safety and performance of MR-HIFU mild hyperthermia. A prospective imaging study was performed in volunteers with rectal cancer to evaluate MR thermometry quality near the rectum and accessibility of rectal tumors using MR-HIFU. Methods and Materials: Mild hyperthermia was performed in pig thigh (9 sonications, 6 pigs) using a clinical MR-HIFU system. Targets near the rectal wall and deep thigh were evaluated. Thermal maps obtained in 6 planes every 3.2 seconds were used to control sonications in 18-mm diameter treatment regions at temperatures of 42°C to 42.5°C for 10 to 60 minutes. Volunteer imaging-only studies to assess the quality of MR thermometry (without heating) were approved by the institutional research ethics board. Anatomic and MR thermometry images were acquired in consenting volunteers with rectal cancer. In 3 of 6 study participants, rectal filling with saline was used to reduce motion-related MR thermometry artifacts near the tumor. Results: In pigs, mean target temperature matched the desired hyperthermia temperature within 0.2°C; temporal standard deviation ≤0.5°C. With optimized control thresholds, no undesired tissue damage was observed. In human volunteers, MR temperature measurements had adequate precision and stability, especially when rectal filling was used to reduce bowel motion. Conclusions: In pigs, MR-HIFU can safely deliver mild hyperthermia (41°C-43°C) to a targeted volume for 30 minutes. In humans, careful patient selection and preparation will enable adequate targeting for recurrent rectal cancers and sufficient MR temperature mapping stability to control mild hyperthermia. These results enable human trials of MR-HIFU hyperthermia.

  17. Global rainbow thermometry assessed by Airy and Lorenz-Mie theories and compared with phase Doppler anemometry.

    Science.gov (United States)

    van Beeck, Jeronimus Petrus Antonius Johannes; Grosges, Thomas; De Giorgi, Maria Grazia

    2003-07-01

    Global rainbow thermometry (GRT) measures the mean size and temperature of an ensemble of spray droplets. The domain of validity of the Airy theory for this technique is established through comparison with Lorenz-Mie theory. The temperature derivation from the inflection points of the Airy rainbow pattern appears to be independent of the type of spray dispersion. Measurements in a water spray are reported. The mean diameter obtained from the rainbow pattern lies between the arithmetic and the Sauter mean diameters measured by phase Doppler anemometry. The temperature measurement by GRT is shown to be accurate within a few degrees Celsius.

  18. Magnetic Resonance–Guided High-Intensity Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation

    International Nuclear Information System (INIS)

    Chu, William; Staruch, Robert M.; Pichardo, Samuel; Tillander, Matti; Köhler, Max O.; Huang, Yuexi; Ylihautala, Mika; McGuffin, Merrylee; Czarnota, Gregory; Hynynen, Kullervo

    2016-01-01

    Purpose: To evaluate the feasibility of magnetic resonance–guided high-intensity focused ultrasound (MR-HIFU) mild hyperthermia in deep tissue targets for enhancing radiation therapy and chemotherapy in the context of recurrent rectal cancer. A preclinical study was performed to evaluate the safety and performance of MR-HIFU mild hyperthermia. A prospective imaging study was performed in volunteers with rectal cancer to evaluate MR thermometry quality near the rectum and accessibility of rectal tumors using MR-HIFU. Methods and Materials: Mild hyperthermia was performed in pig thigh (9 sonications, 6 pigs) using a clinical MR-HIFU system. Targets near the rectal wall and deep thigh were evaluated. Thermal maps obtained in 6 planes every 3.2 seconds were used to control sonications in 18-mm diameter treatment regions at temperatures of 42°C to 42.5°C for 10 to 60 minutes. Volunteer imaging-only studies to assess the quality of MR thermometry (without heating) were approved by the institutional research ethics board. Anatomic and MR thermometry images were acquired in consenting volunteers with rectal cancer. In 3 of 6 study participants, rectal filling with saline was used to reduce motion-related MR thermometry artifacts near the tumor. Results: In pigs, mean target temperature matched the desired hyperthermia temperature within 0.2°C; temporal standard deviation ≤0.5°C. With optimized control thresholds, no undesired tissue damage was observed. In human volunteers, MR temperature measurements had adequate precision and stability, especially when rectal filling was used to reduce bowel motion. Conclusions: In pigs, MR-HIFU can safely deliver mild hyperthermia (41°C-43°C) to a targeted volume for 30 minutes. In humans, careful patient selection and preparation will enable adequate targeting for recurrent rectal cancers and sufficient MR temperature mapping stability to control mild hyperthermia. These results enable human trials of MR-HIFU hyperthermia.

  19. Laser induced fluorescence thermometry (LIF-T) as a non-invasive temperature measurement technique for thermal hydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Strack, J.; Leung, K.; Walker, A., E-mail: strackj@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    Laser induced fluorescence (LIF) is an experimental technique whereby a scalar field in a fluid system is measured optically from the fluorescence intensity of a tracer dye following excitation by laser light. For laser induced fluorescence thermometry (LIF-T), a temperature sensitive dye is used. Through the use of a temperature sensitive tracer dye, sheet laser optics, optical filters, and photography, a 2D temperature field can be measured non-invasively. An experiment to test the viability of using LIF-T for macroscopic thermal hydraulic experiments was developed and tested. A reference calibration curve to relate fluorescence measurements to temperature is presented. (author)

  20. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  1. Estimates of Eastern Equatorial Pacific Sea Surface Temperatures During the Pliocene From Carbonate 'Clumped Isotope' Thermometry

    Science.gov (United States)

    Thiagarajan, N.; Tripati, A.; Eiler, J.

    2007-12-01

    fine fraction of 5.6 Ma sediments show calcification temperatures of 20.4°C ± 2.3°C and seawater δ18O values of -1.4‰ ± 0.6‰. G. sacculifer (with sac) and mixed coccoliths from 1.4 Ma sediments yield calcification temperatures of 22.3°C ± 2.5°C and seawater δ18O values of 1.7‰ ± 0.7‰, and 19.4°C ± 1.8°C and seawater δ18O values of 0.4‰ ± 0.5‰, respectively. Our preliminary findings are consistent with the 'dynamical ocean thermostat' model. [1] Clement, A., et al., 1996, An Ocean Dynamical Thermostat, J. of Clim., 9, 2190-2196. [2] Cane, M., et al., 1997, Twentieth-Century Sea Surface Temperature Trends, Science, 957-960. [3] Fedorov, A., et al., 2006, The Pliocene Paradox (Mechanisms for a permanent El Nino), Science, 312, 1437-1443. [4] Rickaby, R. and Halloran, P., 2005, Cool La Nina during the warmth of the Pliocene?, Science, 307, 1948-1953. [5] Wara, M., et al. ,2005, Permanent El Nino-like conditions during the Pliocene Warm Period, Science, 309, 758-761. [6] Ghosh, P., et al., 2006, 13C-18O bonds in carbonate minerals: A new kind of paleothermometer, GCA, 70, 1439-1456. [7] Eiler, J. and Tripati, A., 2007, 'Clumped isotope' thermometry in benthic foraminifera and ostracods: A novel tool for reconstructing deep-ocean temperatures. Fall AGU. [8] Tripati, A., et al. 2007, 'Carbonate `clumped isotope' thermometry in planktonic foraminifera and coccoliths. Fall AGU.

  2. Sampling strategies for subsampled segmented EPI PRF thermometry in MR guided high intensity focused ultrasound

    Science.gov (United States)

    Odéen, Henrik; Todd, Nick; Diakite, Mahamadou; Minalga, Emilee; Payne, Allison; Parker, Dennis L.

    2014-01-01

    Purpose: To investigate k-space subsampling strategies to achieve fast, large field-of-view (FOV) temperature monitoring using segmented echo planar imaging (EPI) proton resonance frequency shift thermometry for MR guided high intensity focused ultrasound (MRgHIFU) applications. Methods: Five different k-space sampling approaches were investigated, varying sample spacing (equally vs nonequally spaced within the echo train), sampling density (variable sampling density in zero, one, and two dimensions), and utilizing sequential or centric sampling. Three of the schemes utilized sequential sampling with the sampling density varied in zero, one, and two dimensions, to investigate sampling the k-space center more frequently. Two of the schemes utilized centric sampling to acquire the k-space center with a longer echo time for improved phase measurements, and vary the sampling density in zero and two dimensions, respectively. Phantom experiments and a theoretical point spread function analysis were performed to investigate their performance. Variable density sampling in zero and two dimensions was also implemented in a non-EPI GRE pulse sequence for comparison. All subsampled data were reconstructed with a previously described temporally constrained reconstruction (TCR) algorithm. Results: The accuracy of each sampling strategy in measuring the temperature rise in the HIFU focal spot was measured in terms of the root-mean-square-error (RMSE) compared to fully sampled “truth.” For the schemes utilizing sequential sampling, the accuracy was found to improve with the dimensionality of the variable density sampling, giving values of 0.65 °C, 0.49 °C, and 0.35 °C for density variation in zero, one, and two dimensions, respectively. The schemes utilizing centric sampling were found to underestimate the temperature rise, with RMSE values of 1.05 °C and 1.31 °C, for variable density sampling in zero and two dimensions, respectively. Similar subsampling schemes

  3. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  4. Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry.

    Science.gov (United States)

    Petryshyn, V A; Lim, D; Laval, B L; Brady, A; Slater, G; Tripati, A K

    2015-01-01

    Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the (18)O/(16)O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water (18)O/(16)O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters. © 2014 John

  5. Optimising the Number of Replicate- Versus Standard Measurements for Carbonate Clumped Isotope Thermometry

    Science.gov (United States)

    Kocken, I.; Ziegler, M.

    2017-12-01

    Clumped isotope measurements on carbonates are a quickly developing and promising palaeothermometry proxy1-3. Developments in the field have brought down the necessary sample amount and improved the precision and accuracy of the measurements. The developments have included inter-laboratory comparison and the introduction of an absolute reference frame4, determination of acid fractionation effects5, correction for the pressure baseline6, as well as improved temperature calibrations2, and most recently new approaches to improve efficiency in terms of sample gas usage7. However, a large-scale application of clumped isotope thermometry is still hampered by required large sample amounts, but also the time-consuming analysis. In general, a lot of time is goes into the measurement of standards. Here we present a study on the optimal ratio between standard- and sample measurements using the Kiel Carbonate Device method. We also consider the optimal initial signal intensity. We analyse ETH-standard measurements from several months to determine the measurement regime with the highest precision and optimised measurement time management.References 1. Eiler, J. M. Earth Planet. Sci. Lett. 262, 309-327 (2007).2. Kelson, J. R., et al. Geochim. Cosmochim. Acta 197, 104-131 (2017).3. Kele, S. et al. Geochim. Cosmochim. Acta 168, 172-192 (2015).4. Dennis, K. J. et al. Geochim. Cosmochim. Acta 75, 7117-7131 (2011).5. Müller, I. A. et al. Chem. Geol. 449, 1-14 (2017).6. Meckler, A. N. et al. Rapid Commun. Mass Spectrom. 28, 1705-1715 (2014).7. Hu, B. et al. Rapid Commun. Mass Spectrom. 28, 1413-1425 (2014).

  6. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    Science.gov (United States)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  7. Methodology of hot nucleus calorimetry and thermometry produced by nuclear reactions around Fermi energies; Methodologie de la calorimetrie et de la thermometrie des noyaux chauds formes lors de collisions nucleaires aux energies de Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Vient, E

    2006-12-15

    This work deals with the calorimetry and thermometry of hot nuclei produced in collisions Xe + Sn between 25 and 100 MeV/u. The apparatus for hot nucleus physical characterization is the 4{pi} detector array Indra. This study was made by using the event generators Gemini, Simon and Hipse and a data-processing filter simulating the complete operation of the multi-detector. The first chapter presents the different ways of producing hot nuclei. In the second and third chapters, the author presents a critical methodological study of calorimetry and thermometry applied to hot nuclei, different methods are reviewed, their accuracy and application range are assessed. All the calorimetry methods rely on the assumption that we are able to discriminate decay products of the hot nucleus from evaporated particles. In the fourth chapter, the author gives some ways of improving calorimetry characterization of the hot nucleus. An alternative method of calorimetry is proposed in the fifth chapter, this method is based on the experimental determination of an evaporation probability that is deduced from the physical characteristics of the particles present in a restricted domain of the space of velocities.

  8. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  9. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  10. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices

    Science.gov (United States)

    Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho

    2018-04-01

    Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.

  11. All Fiber-Coupled OH Planar Laser-Induced-Fluorescence (OH-PLIF)-Based Two-Dimensional Thermometry.

    Science.gov (United States)

    Hsu, Paul S; Jiang, Naibo; Patnaik, Anil K; Katta, Vish; Roy, Sukesh; Gord, James R

    2018-04-01

    Two-color, planar laser-induced fluorescence (PLIF)-based two-dimensional (2D) thermometry techniques for reacting flows, which are typically developed in the laboratory conditions, face a stiff challenge in their practical implementation in harsh environments such as combustion rigs. In addition to limited optical access, the critical experimental conditions (i.e., uncontrolled humidity, vibration, and large thermal gradients) often restrict sensitive laser system operation and cause difficulties maintaining beam-overlap. Thus, an all fiber-coupled, two-color OH-PLIF system has been developed, employing two long optical fibers allowing isolation of the laser and signal-collection systems. Two OH-excitation laser beams (∼283 nm and ∼286 nm) are delivered through a common 6 m long, 400 µm core, deep ultraviolet (UV)-enhanced multimode fiber. The fluorescence signal (∼310 nm) is collected by a 3 m long, UV-grade imaging fiber. Proof-of-principle temperature measurements are demonstrated in atmospheric pressure, near adiabatic, CH 4 /O 2 /N 2 jet flames. The effects of the excitation pulse interval on fiber transmission are investigated. The proof-of-principle measurements show significant promise for thermometry in harsh environments such as gas turbine engine tests.

  12. A fundamental numerical analysis for noninvasive thermometry integrated in a heating applicator based on the reentrant cavity

    International Nuclear Information System (INIS)

    Ohwada, Hiroshi; Ishihara, Yasutoshi

    2010-01-01

    To improve the efficacy of hyperthermia treatment, a novel method of noninvasive measurement of body temperature change is proposed. The proposed technology, thermometry, is based on changes in the electromagnetic field distribution inside the heating applicator with temperature changes and the temperature dependence of the dielectric constant. In addition, an image of the temperature change distribution inside a body is reconstructed by applying a computed tomography (CT) algorithm. The proposed thermometry method can serve as a possible noninvasive method to monitor the temperature change distribution inside the body without the use of enormous thermometers such as in the case of magnetic resonance imaging (MRI). Furthermore, this temperature monitoring method can be easily combined with a heating applicator based on a cavity resonator, and the novel integrated treatment system can possibly be used to treat cancer effectively while noninvasively monitoring the heating effect. In this paper, the phase change distributions of the electromagnetic field with temperature changes are simulated by numerical analysis using the finite difference time domain (FDTD) method. Moreover, to estimate the phase change distributions inside a target body, the phase change distributions with temperature changes are reconstructed by a filtered back-projection. In addition, the reconstruction accuracy of the converted temperature change distribution from the phase change is evaluated. (author)

  13. Uruguayan South Geology

    International Nuclear Information System (INIS)

    Guillemain, H.

    1980-01-01

    This monograph is about the sedimentary geological formation in the southern of Uruguay. According to the previous Gondwana studies there are several concordances between the Uruguayan and Brazilian ground.

  14. Iowa Geologic Sampling Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Point locations of geologic samples/files in the IGS repository. Types of samples include well cuttings, outcrop samples, cores, drillers logs, measured sections,...

  15. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  16. Completion of Level 4 Milestone M4AT-15OR2301039 for the Johnson Noise Thermometry for Drift-free Temperature Measurements Work Package AT-15OR230103

    Energy Technology Data Exchange (ETDEWEB)

    Britton Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-14

    This memorandum constitutes our September 2015 level 4 milestone for the project entitled “Johnson Noise Thermometry for Drift-free Temperature Measurements” and satisfies the Milestone/Activity (Conclude HFIR field demonstration of JNT prototype). The progress summary describes the work performed to complete the subject milestone.

  17. Quality of MR thermometry during palliative MR-guided high-intensity focused ultrasound (MR-HIFU) treatment of bone metastases

    NARCIS (Netherlands)

    Lam, Mie K; Huisman, Merel; Nijenhuis, Robbert J; van den Bosch, Maurice; Viergever, Max A; Moonen, Chrit Tw; Bartels, LW

    2015-01-01

    BACKGROUND: Magnetic resonance (MR)-guided high-intensity focused ultrasound has emerged as a clinical option for palliative treatment of painful bone metastases, with MR thermometry (MRT) used for treatment monitoring. In this study, the general image quality of the MRT was assessed in terms of

  18. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  19. Advances in planetary geology

    International Nuclear Information System (INIS)

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed

  20. Development of a quantum dot mediated thermometry for minimally invasive thermal therapy

    Science.gov (United States)

    Hanson, Willard L.

    Thermally-related, minimally invasive therapies are designed to treat tumors while minimizing damage to the surrounding tissues. Adjacent tissues become susceptible to thermal injury to ensure the cancer is completely destroyed. Destroying tumor cells, while minimizing collateral damage to the surrounding tissue, requires the capacity to control and monitor tissue temperatures both spatially and temporally. Current devices measure the tumor's tissue temperature at a specific location leaving the majority unmonitored. A point-wise application can not substantiate complete tumor destruction. This type of surgery would be more effective if volumetric tissue temperature measurement were available. On this premise, the feasibility of a quantum dot (QD) assembly to measure the tissue temperature volumetrically was tested in the experiments described in this dissertation. QDs are fluorescence semiconductor nanoparticles having various superior optical properties. This new QD-mediated thermometry is capable of monitoring the thermal features of tissues non-invasively by measuring the aggregate fluorescence intensity of the QDs accumulated at the target tissues prior to and during the surgical procedure. Thus, such a modality would allow evaluation of tissue destruction by measuring the fluorescence intensity of the QD as a function of temperature. The present study also quantified the photoluminescence intensity and attenuation of the QD as a function of depth and wavelength using a tissue phantom. A prototype system was developed to measure the illumination through a tissue phantom as a proof of concept of the feasibility of a noninvasive thermal therapy. This prototype includes experimental hardware, software and working methods to perform image acquisition, and data reduction strategic to quantify the intensity and transport characteristics of the QD. The significance of this work is that real-time volumetric temperature information will prove a more robust tool for use

  1. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  2. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  3. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  4. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Science.gov (United States)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-11-01

    We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80-120%, with respect to the designed bias currents.

  5. Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry.

    Science.gov (United States)

    Du, Peng; Yu, Jae Su

    2018-03-23

    The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF 3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5 × 10 -3  K -1 at 619 K and can be applied over the 291-691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry. Graphical abstract Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF 3 nanoparticles with strongly temperature-dependent upconversion emission.

  6. Strategy for thermometry via Tm³⁺-doped NaYF₄ core-shell nanoparticles.

    Science.gov (United States)

    Zhou, Shaoshuai; Jiang, Guicheng; Li, Xinyue; Jiang, Sha; Wei, Xiantao; Chen, Yonghu; Yin, Min; Duan, Changkui

    2014-12-01

    Optical thermometers usually make use of the fluorescence intensity ratio of two thermally coupled energy levels, with the relative sensitivity constrained by the limited energy gap. Here we develop a strategy by using the upconversion (UC) emissions originating from two multiplets with opposite temperature dependences to achieve higher relative temperature sensitivity. We show that the intensity ratio of the two UC emissions, ³F(2,3) and ¹G₄, of Tm³⁺ in β-NaYF₄:20%Yb³⁺, 0.5%Tm³⁺/NaYF₄:1%Pr³⁺ core-shell nanoparticles under 980 nm laser excitation exhibits high relative temperature sensitivity between 350 and 510 K, with a maximum of 1.53%  K⁻¹ at 417 K. This demonstrates the validity of the strategy, and that the studied material has the potential for high-performance optical thermometry.

  7. Fiber-Optic Magnetometry and Thermometry Using Optically Detected Magnetic Resonance With Nitrogen-Vacancy Centers in Diamond

    Science.gov (United States)

    Blakley, Sean Michael

    Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.

  8. Design and thermometry of an intracavitary microwave applicator suitable for treatment of some vaginal and rectal cancers

    International Nuclear Information System (INIS)

    Li, D.J.; Luk, K.H.; Jiang, H.B.; Chou, C.K.; Hwang, G.Z.

    1984-01-01

    The construction of a modified coaxial cable as an intracavitary microwave applicator suitable for use in some vaginal and rectal cancers is presented. Thermometry is performed for microwave frequencies of 300, 400, 650, and 915 MHz. Temperature profiles in tissue phantoms were obtained with Vitek 101 temperature probes and thermography, and the data were compared with those obtained in dogs. The temperature profiles are dependent on the frequency of the microwaves and the insertion depth of the applicator. In addition, a lucite cylindrical spacer external to the applicator also altered the heating pattern. Therefore, with proper combinations of frequency, insertion depth, and spacer, the applicator can be used for heating tumors in some clinical situations. Two patients were treated with this intracavitary microwave applicator in conjunction with interstitial radiation therapy. Tolerance to such combined therapy was satisfactory in these preliminary trial treatments

  9. Design of a high speed, high resolution thermometry system for 1.5 GHz superconducting radio frequency cavities

    Science.gov (United States)

    Knobloch, Jens; Muller, Henry; Padamsee, Hasan

    1994-11-01

    Presented in this paper are the description and the test results of a new stationary thermometry system used to map the temperature of the outer surface of 1.5 GHz superconducting single-cell cavities during operation at 1.6 K. The system comprises 764 removable carbon thermometers whose signals are multiplexed and scanned by a Macintosh computer. A complete temperature map can be obtained in as little as 0.1 s at a temperature resolution of about 0.2 mK. Alternatively, it has been demonstrated that if the acquisition time is increased to several seconds, then a temperature resolution on the order of 30 μK is possible. To our knowledge, these are the fastest acquisition times so far achieved with L-band cavities at these resolutions.

  10. Design of an optical thermal sensor for proton exchange membrane fuel cell temperature measurement using phosphor thermometry

    Science.gov (United States)

    Inman, Kristopher; Wang, Xia; Sangeorzan, Brian

    Internal temperatures in a proton exchange membrane (PEM) fuel cell govern the ionic conductivities of the polymer electrolyte, influence the reaction rate at the electrodes, and control the water vapor pressure inside the cell. It is vital to fully understand thermal behavior in a PEM fuel cell if performance and durability are to be optimized. The objective of this research was to design, construct, and implement thermal sensors based on the principles of the lifetime-decay method of phosphor thermometry to measure temperatures inside a PEM fuel cell. Five sensors were designed and calibrated with a maximum uncertainty of ±0.6 °C. Using these sensors, surface temperatures were measured on the cathode gas diffusion layer of a 25 cm 2 PEM fuel cell. The test results demonstrate the utility of the optical temperature sensor design and provide insight into the thermal behavior found in a PEM fuel cell.

  11. A Determination of the Ratio of the Zinc Freezing Point to the Tin Freezing Point by Noise Thermometry

    Science.gov (United States)

    Labenski, J. R.; Tew, W. L.; Benz, S. P.; Nam, S. W.; Dresselhaus, P.

    2008-02-01

    A Johnson-noise thermometer (JNT) has been used with a quantized voltage noise source (QVNS), as a calculable reference to determine the ratio of temperatures near the Zn freezing point to those near the Sn freezing point. The temperatures are derived in a series of separate measurements comparing the synthesized noise power from the QVNS with that of Johnson noise from a known resistance. The synthesized noise power is digitally programed to match the thermal noise powers at both temperatures and provides the principle means of scaling the temperatures. This produces a relatively flat spectrum for the ratio of spectral noise densities, which is close to unity in the low-frequency limit. The data are analyzed as relative spectral ratios over the 4.8 to 450 kHz range averaged over a 3.2 kHz bandwidth. A three-parameter model is used to account for differences in time constants that are inherently temperature dependent. A drift effect of approximately -6 μK·K-1 per day is observed in the results, and an empirical correction is applied to yield a relative difference in temperature ratios of -11.5 ± 43 μK·K-1 with respect to the ratio of temperatures assigned on the International Temperature Scale of 1990 (ITS-90). When these noise thermometry results are combined with results from acoustic gas thermometry at temperatures near the Sn freezing point, a value of T - T 90 = 7 ± 30 mK for the Zn freezing point is derived.

  12. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  13. Geology and land use

    Science.gov (United States)

    Brown, R.D.

    1990-01-01

    Geologists' eyes are trained to find and trace such natural landmarks as flood plains, landslide scars, retreating shoreline bluffs, or surface traces of active earthquake faults. more and more often, in developing areas, we find these obvious signs of trouble being erased by urban development. A geological hazard concealed by landscaping or hosing is fully as dangerous as when it is visible.

  14. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  15. Geological impacts on nutrition

    Science.gov (United States)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  16. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  17. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  18. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  19. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  20. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  1. Feasibility Study on the Development of 2-channel Embedded Infrared Fiber-optic Sensor for Thermometry of Secondary Water System in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoo, W. J.; Jang, K. W.; Seo, J. K.; Moon, J.; Han, K. T.; Lee, B.; Park, B. G.

    2011-01-01

    Any warm object by measuring the emitted infrared (IR) radiation. The radiometers using infrared optical fibers are based on the relationship between the temperature of a heat source and the quality and the quantity of an IR radiation. To measure physical properties including a temperature, optical fiber-based sensor has many advantages, such as small size, low cost, high resolution, remote sensing and immunity to electromagnetic radiation over conventional electrical sensors. In this study, we carried out the feasibility study on the development of an embedded IR fiber-optic sensor for thermometry of the secondary water system in a nuclear power plant. The 2-channel embedded fiberoptic temperature sensor was fabricated using two identical IR optical fibers for accurate thermometry without complicated calibration processes. To decide accurate temperature of the water, we measured the difference between the IR radiations emitted from the two temperature sensing probes according to the temperature variation of the water

  2. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  3. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY: The National.... Geological Survey (703-648-6283, [email protected] ). Registrations are due by April 13, 2012. While the...

  4. Introduction to ore geology

    International Nuclear Information System (INIS)

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint

  5. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  6. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  7. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  8. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  9. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  10. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  11. Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T.

    Science.gov (United States)

    Chen, Yuping; Ge, Mengke; Ali, Rizwan; Jiang, Hejun; Huang, Xiaoyan; Qiu, Bensheng

    2018-04-10

    Noninvasive magnetic resonance thermometry (MRT) at low-field using proton resonance frequency shift (PRFS) is a promising technique for monitoring ablation temperature, since low-field MR scanners with open-configuration are more suitable for interventional procedures than closed systems. In this study, phase-drift correction PRFS with first-order polynomial fitting method was proposed to investigate the feasibility and accuracy of quantitative MR thermography during hyperthermia procedures in a 0.35 T open MR scanner. Unheated phantom and ex vivo porcine liver experiments were performed to evaluate the optimal polynomial order for phase-drift correction PRFS. The temperature estimation approach was tested in brain temperature experiments of three healthy volunteers at room temperature, and in ex vivo porcine liver microwave ablation experiments. The output power of the microwave generator was set at 40 W for 330 s. In the unheated experiments, the temperature root mean square error (RMSE) in the inner region of interest was calculated to assess the best-fitting order for polynomial fit. For ablation experiments, relative temperature difference profile measured by the phase-drift correction PRFS was compared with the temperature changes recorded by fiber optic temperature probe around the microwave ablation antenna within the target thermal region. The phase-drift correction PRFS using first-order polynomial fitting could achieve the smallest temperature RMSE in unheated phantom, ex vivo porcine liver and in vivo human brain experiments. In the ex vivo porcine liver microwave ablation procedure, the temperature error between MRT and fiber optic probe of all but six temperature points were less than 2 °C. Overall, the RMSE of all temperature points was 1.49 °C. Both in vivo and ex vivo experiments showed that MR thermometry based on the phase-drift correction PRFS with first-order polynomial fitting could be applied to monitor temperature changes during

  12. Okinawa, Japan: Geologic Battleground

    Science.gov (United States)

    Waymack, S. W.; Carrington, M. P.; Harpp, K. S.

    2005-12-01

    One of our main goals as instructors, particularly in introductory courses, is to impart students with an appreciation of how geology has influenced the course of human events. Despite the apparent accessibility of such topics, communicating this in a lively, relevant, and effective way often proves difficult. We use a series of historical events, the Pacific island hopping campaign of WWII, to engage students in an active, guided inquiry exercise to explore how terrain and the underlying geology of an area can shape historical events. Teams of students are assigned the role of planning either the defense or occupation of Okinawa Island, in the Ryukyu arc, in a theoretical version of the 1945 conflict. Students are given a package of information, including geologic and topographic maps, a list of military resources available to them at the time, and some historical background. Students also have access to "reconnaissance" images, 360o digital panoramas of the landscape of Okinawa, keyed to their maps. Each team has a week to plan their strategies and carry out additional research, which they subsequently bring to the table in the form of a written battle plan. With an instructor as arbiter, teams alternate drawing their maneuvers on a map of the island, to which the other team then responds. This continues one move at a time, until the instructor declares a victor. Throughout the exercise, the instructor guides students through analysis of each strategic decision in light of the island's structure and topography, with an emphasis on the appropriate interpretation of the maps. Students soon realize that an understanding of the island's terrain literally meant the difference between life and death for civilians and military participants alike in 1945. The karst landscape of Okinawa posed unique obstacles to both the Japanese and the American forces, including difficult landing sites, networks of natural caves, and sequences of hills aligned perpendicular to the

  13. Lectures in isotope geology

    International Nuclear Information System (INIS)

    Jaeger, E.; Hunziker, J.C.

    1979-01-01

    Designed for a introductory course in geochronology and the geochemistry of stable isotopes, this text has been written by recognized experts in the field. Emphasis is on the interpretation and on applications, and examples of these are offered along with each technique. Extraterrestrial applications have been avoided and the treatment of pure experimentation has been kept at a minimum. This text will be appreciated by geologists who want to learn more about methods used in isotope geology, how they can be applied, and how to gauge their usefulness. (orig.) [de

  14. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  15. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  16. Geologic environmental study

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ( 1 8O, 2 H, 1 3C, 3 4S, 8 7Sr, 1 5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  17. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  18. Metal Carbon Eutectics to Extend the Use of the Fixed-Point Technique in Precision IR Thermometry

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2008-06-01

    The high-temperature extension of the fixed-point technique for primary calibration of precision infrared (IR) thermometers was investigated both through mathematical simulations and laboratory investigations. Simulations were performed with Co C (1,324°C) and Pd C (1, 492°C) eutectic fixed points, and a precision IR thermometer was calibrated from the In point (156.5985°C) up to the Co C point. Mathematical simulations suggested the possibility of directly deriving the transition temperature of the Co C and Pd C points by extrapolating the calibration derived from fixed-point measurements from In to the Cu point. Both temperatures, as a result of the low uncertainty associated with the In Cu calibration and the high number of fixed points involved in the calibration process, can be derived with an uncertainty of 0.11°C for Co C and 0.18°C for Pd C. A transition temperature of 1,324.3°C for Co C was determined from the experimental verification, a value higher than, but compatible with, the one proposed by the thermometry community for inclusion as a secondary reference point for ITS-90 dissemination, i.e., 1,324.0°C.

  19. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-01-01

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  20. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takahiro, E-mail: yamada-takahiro@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Maezawa, Masaaki [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Urano, Chiharu [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Central 3, Umezono 1-1-1, Tsukuba, Ibaraki 305-8563 (Japan)

    2015-11-15

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  1. Examination of the suitability of noise thermometry for precise in situ calibration of thermocouples in technical processes

    International Nuclear Information System (INIS)

    Fechner, H.

    1988-12-01

    The aim was to determine the achievable accuracy of the noise thermometer developed at the KFA in the range from 0 to 1000 0 C under laboratory conditions. Precision noise temperature measurements at fixed temperature points (triple point of water, freezing point of zinc and silver) were carried out. The fixed point technique and the conventional precision resistance thermometry, which is required to operate the fixed points, were established in accordance with the requirements of accurate (and thus longer lasting) noise temperature measurements. The analysis of all possible sources of error ensured that all systematic or random errors were in the range of a few 10 -5 . The further developed KFA noise thermometers, which can be used under industrial conditions, achieve under laboratory conditions a measuring error of about ±2.5 10 -4 - relative to the thermodynamic temperature scale - in the temperature range from 273.16 K (0.01 0 C) to 1234.894 K (961.744 0 C). Assuming that the individual measured values display a normal distribution, the noise measurements at the zinc and silver point are combined to a mean value, it becomes apparent that the average noise temperatures only deviate by +2 10 -5 (zinc) or +4 10 -5 (silver) from the respective thermodynamic temperature. (orig./HP) [de

  2. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  3. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  4. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming

    2018-01-08

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced by placing SF11 glass disks with thicknesses of 10 mm or 20 mm in the optical path for these beams. The magnitude of the chirp in the probe beam was much greater and was induced by placing a 30-cm rod of SF10 glass in the beam path. The temperature measurements were performed in hydrogen/air non-premixed flames stabilized on a Hencken burner at equivalence ratios of 0.3, 0.5, 0.7, and 1.0. We performed measurements with no disks in pump and Stokes beam paths, and then with disks of 10 mm and 20 mm placed in both beam paths. The spectrum of the nonresonant background four-wave mixing signal narrowed considerably with increasing pump and Stokes chirp, while the resonant CARS signal was relatively unaffected. Consequently, the interference of the nonresonant background with the resonant CARS signal in the frequency-spread dephasing region of the spectrum was minimized. The increased rate of decay of the resonant CARS signal with increasing temperature was thus readily apparent. We have started to analyze the CPP fs CARS thermometry data and initial results indicate improved accuracy and precision are obtained due to moderate chirp in the pump and Stokes laser pulses.

  5. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  6. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  7. Geology of National Parks

    Science.gov (United States)

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  8. Geological terrain models

    Science.gov (United States)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.

    1981-01-01

    The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.

  9. Radon as geological tracer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, T.; Anjos, R.M. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Valladares, D.L.; Rizzotto, M.; Velasco, H.; Ayub, J. Juri [Universidad Nacional de San Luis (Argentina). Inst. de Matematica Aplicada San Luis (IMASL); Silva, A.A.R. da; Yoshimura, E.M. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This work presents measurements of {sup 222}Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of {sup 40}K, {sup 232}Th and {sup 23}'8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using {sup 222}Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m{sup -3} recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  10. Radon as geological tracer

    International Nuclear Information System (INIS)

    Lacerda, T.; Anjos, R.M.; Silva, A.A.R. da; Yoshimura, E.M.

    2012-01-01

    Full text: This work presents measurements of 222 Rn levels performed in La Carolina gold mine and Los Condores tungsten mine at the province of San Luis, Argentina, today used for tourist visitation, and can evaluate the potential use of such radioactive noble gas as tracer or marker for geological processes in underground environments. By concentrations of 40 K, 232 Th and 23 '8U were also measured in the walls of tunnels were determined the rocks mineral composition, what indicated that the mines have the same composition. In this sense, we used nuclear trace plastic detectors CR-39, gamma spectrometry of rock samples and Geiger-Muller (GM) monitors The patterns of radon gas transportation processes revealed that La Carolina could be interpreted through a model based on a radioactive gas confined into a single entrance tube, with constant cross section and air velocity. Los Condores, which has a second main entrance, could be interpreted through a model based on a radioactive gas confined into a two entrance tube, allowing a chimney effect for air circulation. The results showed the high potential of using 222 Rn as a geological tracer. In what concerns the occupational hazard, in summer (time of more intense tourist activity in the mine) La Carolina presented a mean concentration of the radioactive noble gas that exceeds in four times the action level of 1,5 kBq m -3 recommended by the International Commission of Radiological Protection (ICRP). The chimney effect shows the low mean concentration of radon in Los Condores. (author)

  11. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  12. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  13. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  14. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  15. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  16. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  17. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  18. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  19. On the Geologic Time Scale

    NARCIS (Netherlands)

    Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J.

    2012-01-01

    This report summarizes the international divisions and ages in the Geologic Time Scale, published in 2012 (GTS2012). Since 2004, when GTS2004 was detailed, major developments have taken place that directly bear and have considerable impact on the intricate science of geologic time scaling. Precam

  20. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  1. Detrital rutile geochemistry and thermometry from the Dabie orogen: Implications for source-sediment links in a UHPM terrane

    Science.gov (United States)

    Liu, Lei; Xiao, Yilin; Wörner, G.; Kronz, A.; Simon, K.; Hou, Zhenhui

    2014-08-01

    This study explores the potential of detrital rutile geochemistry and thermometry as a provenance tracer in rocks from the Central Dabie ultrahigh-pressure metamorphic (UHPM) zone in east-central China that formed during Triassic continental collision. Trace element data of 176 detrital rutile grains selected from local river sediments and 91 rutile grains from distinct bedrocks in the Shuanghe and Bixiling areas, obtained by both electron microprobe (EMP) and in situ LA-ICP-MS analyses, suggest that geochemical compositions and thermometry of detrital rutiles are comparable to those from their potential source rocks. After certification of the Cr-Nb discrimination method for the Central Dabie UHPM zone, we show that 29% of the detrital rutiles in the Shuanghe area were derived from metamafic sources whereas in the Bixiling area that it is up to 76%. Furthermore, the proportion of distinct types of detrital rutiles combined with modal abundances of rutile in metapelites and metamafic bedrocks can be used to estimate the proportion of different source lithologies. Based on this method the proportion of mafic source rocks was estimated to ∼10% at Shuanghe and >60% at Bixiling, respectively, which is consistent with the proportions of eclogite (the major rutile-bearing metamafic rock) distribution in the field. Therefore, the investigation of detrital rutiles is a potential way to evaluate the proportion of metamafic rocks and even to prospect for metamafic bodies in UHPM terranes. Zr-in-rutile temperatures were calculated at different pressures and compared with temperatures derived from rock-in rutiles and garnet-clinopyroxene Fe-Mg thermometers. Temperatures calculated for detrital rutiles range from 606 °C to 707 °C and 566 °C to 752 °C in Shuanghe and Bixiling, respectively, at P = 3 GPa with an average temperatures of ca. 630 °C for both areas. These temperature averages and ranges are similar to those calculated for rutiles from surrounding source rocks

  2. Direct in situ thermometry: Variations in reciprocal-lattice vectors and challenges with the Debye–Waller effect

    International Nuclear Information System (INIS)

    Cremons, Daniel R.; Flannigan, David J.

    2016-01-01

    Conventional in situ transmission electron microscopy (TEM) enables the atomic-scale study of dynamic materials processes on millisecond time scales. Specimen holders capable of being heated to over 1000 °C have provided insight into myriad processes, including nanoscale thermal transport, structural phase transitions, and catalytic reactions. In order for such studies to be accurate and precise, direct determination of the specimen temperature – rather than the heating-element temperature – is critical. Further, such methods should be versatile in that any temperature across a wide range may be measured, irrespective of single-indicator properties specific to the specimen (e.g., first-order phase transition, melting point, etc.). Here, we describe a rigorous approach to direct, in situ thermometry of TEM specimens that exploits lattice thermal expansion and the resultant decrease in diffraction-vector magnitude in reciprocal space. Via sub-pixel measurement of reciprocal-lattice-vector magnitudes, picometer increases in lattice parameters are measured over a continuous temperature range and compared to those expected from the coefficient of thermal expansion. Statistical treatment of several experimental trials conducted on nanostructured aluminum thin films shows excellent agreement with both theory and (indirect) measurement of the in situ heating holder. Additionally, we illustrate how uncontrolled, thermally-induced variation in single-crystal orientation leads to modulation of the excitation error and, therefore, the Bragg-spot intensities resulting in a convolution of heating and tilting effects, thus complicating temperature determination via the Debye–Waller effect. - Highlights: • A method for direct in situ determination of specimen temperature is described. • Specimen temperature is determined via reciprocal-lattice-vector contraction. • Statistical treatment agrees with the in situ heating-holder thermocouple reading. • Thermally

  3. Exploring the potential of clumped isotope thermometry on coccolith-rich sediments as a sea surface temperature proxy

    Science.gov (United States)

    Drury, Anna Joy; John, Cédric M.

    2016-10-01

    Understanding past changes in sea surface temperatures (SSTs) is crucial; however, existing proxies for reconstructing past SSTs are hindered by unknown ancient seawater composition (foraminiferal Mg/Ca and δ18O) or reflect subsurface temperatures (TEX86) or have a limited applicable temperature range (U37k'). We examine clumped isotope (Δ47) thermometry to fossil coccolith-rich material as an SST proxy, as clumped isotopes are independent of original seawater composition and applicable to a wide temperature range and coccolithophores are widespread and dissolution resistant. The Δ47-derived temperatures from 63 μm fraction removes most nonmixed layer components; however, the Δ47-derived temperatures display an unexpected slight decreasing trend with decreasing size fraction. This unexpected trend could partly arise because larger coccoliths (5-12 μm) are removed during the size fraction separation process. The c1 and <63 μm c2 Δ47-derived temperatures are comparable to concurrent U37k' SSTs. The <20, <10, and 2-5 μm c2 Δ47-derived temperatures are consistently cooler than expected. The Δ47-U37k' temperature offset is probably caused by abiotic/diagenetic calcite present in the c2 2-5 μm fraction (˜53% by area), which potentially precipitated at bottom water temperatures of ˜6°C. Our results indicate that clumped isotopes on coccolith-rich sediment fractions have potential as an SST proxy, particularly in tropical regions, providing that careful investigation of the appropriate size fraction for the region and time scale is undertaken.

  4. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  5. NAGRADATA. Code key. Geology

    International Nuclear Information System (INIS)

    Mueller, W.H.; Schneider, B.; Staeuble, J.

    1984-01-01

    This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)

  6. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  7. Radon in geological medium

    Energy Technology Data Exchange (ETDEWEB)

    Hricko, J [GEOCOMPLEX, a.s., Bratislava (Slovakia)

    1996-12-31

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a{sub v} has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km{sup 2}. The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a{sub v} > 50 kBq/m{sup 3}). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs.

  8. Geology and seismology

    International Nuclear Information System (INIS)

    Schneider, J.F.; Blanc, B.

    1980-01-01

    For the construction of nuclear power stations, comprehensive site investigations are required to assure the adequacy and suitability of the site under consideration, as well as to establish the basic design data for designing and building the plant. The site investigations cover mainly the following matters: geology, seismology, hydrology, meteorology. Site investigations for nuclear power stations are carried out in stages in increasing detail and to an appreciable depth in order to assure the soundness of the project, and, in particular, to determine all measures required to assure the safety of the nuclear power station and the protection of the population against radiation exposure. The aim of seismological investigations is to determine the strength of the vibratory ground motion caused by an expected strong earthquake in order to design the plant resistant enough to take up these vibrations. In addition, secondary effects of earthquakes, such as landslides, liquefaction, surface faulting, etc. must be studied. For seashore sites, the tsunami risk must be evaluated. (orig.)

  9. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  10. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  11. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  12. Age determination and geological studies

    International Nuclear Information System (INIS)

    Stevens, R.D.; Delabio, R.N.; Lachance, G.R.

    1982-01-01

    Two hundred and eight potassium-argon age determinations carried out on Canadian rocks and minerals are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in brief outline and the constants used in the calculation of ages are listed. Two geological time-scales are reproduced in tabular form for ready reference and an index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference

  13. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  14. Oxygen isotope thermometry of quartz-Al2SiO5veins in high-grade metamorphic rocks on Naxos island (Greece)

    Science.gov (United States)

    Putlitz, Benita; Valley, John; Matthews, Alan; Katzir, Yaron

    2002-04-01

    Diffusion models predict that peak metamorphic temperatures are best recorded by the oxygen isotope fractionation between minerals in a bi-mineralic rock in which a refractory accessory mineral with slow oxygen diffusion rate is modally minor to a mineral with a faster diffusion rate. This premise is demonstrated for high-grade metamorphism on the island of Naxos, Greece, where quartz-kyanite oxygen isotope thermometry from veins in high-grade metamorphic pelites gives temperatures of 635-690 °C. These temperatures are in excellent agreement with independent thermometry for the regional M2 peak metamorphic conditions and show that the vein minerals isotopically equilibrated at the peak of metamorphism. Quartz-sillimanite fractionations in the same veins give similar temperatures (680+/-35 °C) and suggest that the veins grew near to the kyanite-sillimanite boundary, corresponding to pressures of 6.5 to 7.5 kbar for temperatures of 635-685 °C. By contrast, quartz-kyanite and quartz-biotite pairs in the host rocks yield lower temperature estimates than the veins (590-600 and 350-550 °C, respectively). These lower apparent temperatures are also predicted from calculations of diffusional resetting in the polyphase host-rock system. The data demonstrate that bimineralic vein assemblages can be used as accurate thermometers in high-temperature rocks whereas retrograde exchange remains a major problem in many polymineralic rocks.

  15. The Europa Global Geologic Map

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D. A.; Collins, G. C.

    2018-06-01

    The Europa Global Geologic Map reveals three periods in Europa's surface history as well as an interesting distribution of microchaos. We will discuss the mapping and the interesting implications of our analysis of Europa's surface.

  16. Terrestrial and Lunar Geological Terminology

    Science.gov (United States)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  17. The geological map of Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.; Ferrando, L.; Fernandez, A.; Elizalde, G.; Morales, H.; Ledesma, J.; Carballo, E.; Medina, E.; Ford, I.; Montana, J.

    1975-01-01

    The geological map of Uruguay is about the morphological characteristics of the soil such as rocks, sediments and granites belong to different periods. These periods are the proterozoic, paleozoic, permian, mesozoic, jurassic, cretaceous, cenozoic and holocene.

  18. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  19. NCEI Marine Geology Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine Geologic data compilations and reports in the NCEI archive are from academic and government sources around the world. Over ten terabytes of analyses,...

  20. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  1. Geological mapping of the moon

    Science.gov (United States)

    Markov, M. S.; Sukhanov, A. L.; Trifonov, V. G.; Florenskiy, P. V.; Shkerin, L. M.

    1974-01-01

    Compilation and labelling of geological and morphological charts on a scale of 1:1,000,000 are discussed with emphasis on the regions of Maria Tranquilitatis, Crisium, Fecunditatis, Humorum and Nukium as well as certain prominent craters.

  2. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  3. Geological myths and reality

    Science.gov (United States)

    Ostrihansky, Lubor

    2014-05-01

    Myths are the result of man's attempts to explain noteworthy features of his environment stemming from unfounded imagination. It is unbelievable that in 21st century the explanation of evident lithospheric plates movements and origin of forces causing this movement is still bound to myths, They are the myth about mantle convection, myth about Earth's expansion, myth about mantle heterogeneities causing the movement of plates and myth about mantle plumes. From 1971 to 1978 I performed extensive study (Ostřihanský 1980) about the terrestrial heat flow and radioactive heat production of batholiths in the Bohemian Massive (Czech Republic). The result, gained by extrapolation of the heat flow and heat production relationship, revealed the very low heat flow from the mantle 17.7mW m-2 close to the site of the Quarterly volcano active only 115,000 - 15,000 years ago and its last outbreak happened during Holocene that is less than 10,000 years ago. This volcano Komorní Hůrka (Kammerbühls) was known by J. W. Goethe investigation and the digging of 300 m long gallery in the first half of XIX century to reach the basaltic plug and to confirm the Stromboli type volcano. In this way the 19th century myth of neptunists that basalt was a sedimentary deposit was disproved in spite that famous poet and scientist J.W.Goethe inclined to neptunists. For me the result of very low heat flow and the vicinity of almost recent volcanoes in the Bohemian Massive meant that I refused the hypothesis of mantle convection and I focused my investigation to external forces of tides and solar heat, which evoke volcanic effects, earthquakes and the plate movement. To disclose reality it is necessary to present calculation of acting forces using correct mechanism of their action taking into account tectonic characteristics of geologic unites as the wrench tectonics and the tectonic of planets and satellites of the solar system, realizing an exceptional behavior of the Earth as quickly rotating

  4. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  5. Geology Field Trips as Performance Evaluations

    Science.gov (United States)

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  6. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  7. Study of the functional state of peripheral vessels in fingers of rheumatological patients by means of laser Doppler flowmetry and cutaneous thermometry measurements

    Science.gov (United States)

    Zherebtsova, Angelina I.; Zherebtsov, Evgeny A.; Dunaev, Andrey V.; Podmasteryev, Konstantin V.; Pilipenko, Olga V.; Krupatkin, Alexander I.; Khakhicheva, Lyudmila S.; Muradyan, Vadim F.

    2016-04-01

    Vasospastic disorders are a common class of rheumatic disease. These include syndromes such as vegetative dystonia, Raynaud's syndrome, vibration disease and rheumatoid arthritis among others. The aim of this work is to develop an original method of diagnosing the functional state of peripheral vessels of the fingers, based on the simultaneous recording of LDF- and thermograms during the occlusion test, for determining vascular disorders of rheumatological patients. A diagnostic method was developed for assessing the functional state of the peripheral vessels of fingers, based on carrying out occlusion test in a thermally stabilized environment, with simultaneous recording of signals of laser Doppler flowmetry and skin thermometry. To verify the diagnostic value of the proposed method, a series of experiments were carried out on 41 rheumatological patients: 5 male and 36 females (average age 56.0+/-12.2 years). The most common diagnoses in the patient group were rheumatoid arthritis, arthrosis, gout and systemic lupus erythematosus. The laser analyser of blood microcirculation "LAKK-02" (SPE "LAZMA" Ltd, Russia) and a custom developed multi-channel thermometry device for low inertia thermometry were used for experimental measurements. The measurements of cutaneous temperature and the index of microcirculation were performed on the distal phalanx of the third finger of the right hand. Occlusion tests were performed with water baths at 25 and 42 °C and a tonometer cuff with a pressure of 200-220 mmHg for 3 min on the upper arm. The results of experimental studies are presented and interpreted. These data indicate a violation of the blood supply regulation in the form of a pronounced tendency towards microvascular vasoconstriction in the fingers. Thus, the response displaying a tendency toward angiospasm among patients in the rheumatological diseases profile group was observed mainly in the most severe cases (49 % of this group). The prospects of the developed

  8. Geological aspects of acid deposition

    International Nuclear Information System (INIS)

    Bricker, O.P.

    1984-01-01

    The general pattern of rain falling on the earth and reacting with the materials of the lithosphere (the weathering reactions so familiar to every beginning geology student) began soon after the earth was formed and has continued to the present. Anthropogenic additions to the natural acidic components of the atmosphere have increased since the time of the industrial revolution until they now rival or exceed those of the natural system. The severity of the environmental perturbations caused by these anthropogenic additions to the atmosphere has become a hotly debated topic in scientific forums and in the political arena. The six chapters in this book address various aspects of the acid deposition phenomenon from a geological perspective. It is hoped that the geological approach will be useful in bringing the problem more clearly into focus and may shed light on the geochemical processes that modify the chemical composition of acid deposition after it encounters and reacts with the materials of the lithosphere

  9. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  10. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  11. A SKOS-based multilingual thesaurus of geological time scale for interopability of online geological maps

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.

    2011-01-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a

  12. A new experimental apparatus for emissivity measurements of steel and the application of multi-wavelength thermometry to continuous casting billets

    Science.gov (United States)

    Wang, Peng; Hu, Zhenwei; Xie, Zhi; Yan, Ming

    2018-05-01

    An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 μm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.

  13. Clumped Isotope Thermometry Reveals Variations in Soil Carbonate Seasonal Biases Over >4 km of Relief in the Semi-Arid Andes of Central Chile

    Science.gov (United States)

    Burgener, L. K.; Huntington, K. W.; Hoke, G. D.; Schauer, A. J.; Ringham, M. C.; Latorre Hidalgo, C.; Díaz, F.

    2015-12-01

    The application of carbonate clumped isotope thermometry to soil carbonates has the potential to shed new light on questions regarding terrestrial paleoclimate. In order to better utilize this paleoclimate tool, outstanding questions regarding seasonal biases in soil carbonate formation and the relationship between soil carbonate formation temperatures (T(Δ47)) and surface temperatures must be resolved. We address these questions by comparing C, O, and clumped isotope data from Holocene/modern soil carbonates to modern meteorological data. The data were collected along a 170 km transect with >4 km of relief in central Chile (~30°S). Previous studies have suggested that soil carbonates should record a warm season bias and form in isotopic equilibrium with soil water and soil CO2. We identify two discrete climate zones separated by the local winter snow line (~3200 m). Below this boundary, precipitation falls as rain and soil carbonate T(Δ47) values at depths >40 cm resemble summer soil temperatures; at higher elevations, precipitation falls as snow and T(Δ47) values resemble mean annual soil temperatures. Soil carbonates from the highest sample site (4700 m), which is devoid of vegetation and located near perennial snow fields, yield anomalous δ18O, δ13C, and T(Δ47) values, indicative of kinetic isotope effects that we attribute to cryogenic carbonate formation. Our results suggest that soil carbonates from depths temperature and precipitation, and should not be used as paleotemperature proxies. These findings (1) highlight the role of soil moisture in modulating soil carbonate formation and the resulting T(Δ47) values, (2) underscore the importance of understanding past soil moisture conditions when attempting to reconstruct paleotemperatures using carbonate clumped isotope thermometry, and (3) suggest that soil carbonates from high elevation or high latitude sites may form under non-equilibrium conditions.

  14. Geologic data on atmospheric history

    NARCIS (Netherlands)

    Rutten, M.G.

    1966-01-01

    Attention is focussed on the possible existence of an anoxygenic, primeval atmosphere and on the history of atmospheric O2 and CO2. For this purpose, geologic data can be divided into those on fossil remains, on biogenic deposits formed by early life, on “chemicofossils”, and on deposits formed

  15. A Computerized Petroleum Geology Package.

    Science.gov (United States)

    Moser, Louise E.

    1983-01-01

    Describes a package of computer programs developed to implement an oil exploration game that gives undergraduate students practical experience in applying theoretical principles of petroleum geology. The programs facilitate management of the game by the instructor and enhance the learning experience. (Author/MBR)

  16. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  17. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  18. Geology on a Sand Budget

    Science.gov (United States)

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  19. Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies

    Science.gov (United States)

    Bindeman, Ilya; Valley, John

    2002-07-01

    Products of voluminous pyroclastic eruptions with eruptive draw-down of several kilometers provide a snap-shot view of batholith-scale magma chambers, and quench pre-eruptive isotopic fractionations (i.e., temperatures) between minerals. We report analyses of oxygen isotope ratio in individual quartz phenocrysts and concentrates of magnetite, pyroxene, and zircon from individual pumice clasts of ignimbrite and fall units of caldera-forming 0.76 Ma Bishop Tuff (BT), pre-caldera Glass Mountain (2.1-0.78 Ma), and post-caldera rhyolites (0.65-0.04 Ma) to characterize the long-lived, batholith-scale magma chamber beneath Long Valley Caldera in California. Values of δ18O show a subtle 1‰ decrease from the oldest Glass Mountain lavas to the youngest post-caldera rhyolites. Older Glass Mountain lavas exhibit larger ( 1‰) variability of δ18O(quartz). The youngest domes of Glass Mountain are similar to BT in δ18O(quartz) values and reflect convective homogenization during formation of BT magma chamber surrounded by extremely heterogeneous country rocks (ranging from 2 to +29‰). Oxygen isotope thermometry of BT confirms a temperature gradient between "Late" (815 °C) and "Early" (715 °C) BT. The δ18O(quartz) values of "Early" and "Late" BT are +8.33 and 8.21‰, consistent with a constant δ18O(melt)=7.8+/-0.1‰ and 100 °C temperature difference. Zircon-melt saturation equilibria gives a similar temperature range. Values of δ18O(quartz) for different stratigraphic units of BT, and in pumice clasts ranging in pre-eruptive depths from 6 to 11 km (based on melt inclusions), and document vertical and lateral homogeneity of δ18O(melt). Worldwide, five other large-volume rhyolites, Lava Creek, Lower Bandelier, Fish Canyon, Cerro Galan, and Toba, exhibit equal δ18O(melt) values of earlier and later erupted portions in each of the these climactic caldera-forming eruptions. We interpret the large-scale δ18O homogeneity of BT and other large magma chambers as evidence

  20. Hydromechanical coupling in geologic processes

    Science.gov (United States)

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  1. Thermometry in 3He

    International Nuclear Information System (INIS)

    Richardson, R.C.

    1977-01-01

    Some of the methods used in measuring the temperatures of the transitions in 3 He are reviewed. Although noise thermometers, γ-ray anisotropy thermometers and even Pt NMR thermometers are satisfactory for furnishing temperature standards, they are not satisfactory secondary thermometers. The susceptibility of CMN and various 3 He properties make more precise and quicker thermometric indications. (Auth.)

  2. Thermometry for the LHC

    International Nuclear Information System (INIS)

    Buhler, S.; Junquera, T.; Thermeau, J.P.

    1999-01-01

    The LHC project will use about 8000 thermometers to control the temperature of magnets. These thermometers will be operated at a temperature ranging from 1.6 K to 300 K and their calibration should be better than 0.25%. A small cryogenic thermometer calibration facility has been designed and tested. To select the cryogenic temperature sensors, an irradiation program is being performed to expose at high neutron fluences (>10 15 n/cm 2 ) the following thermometers: carbon resistors, Ge, thin film, RhFe and Pt. The resistance shifts under radiation of the different sensors at liquid helium are presented. (authors)

  3. Geology and engineering geology of roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-07-01

    Full Text Available zone of the Limpopo Belt, South Africa, South African Journal of Geology, Vol 101 (3), pp 201-214. [3] Partridge, T. 1975. Some geomorphic factors influencing the formation and engineering properties of soil materials in South Africa. Proc 5th... land. 2003. Pretoria: Council for Geosciences and South African Institute of Engineering and Environmental Geologists. [23] Varnes, DJ. 1978. Slope movement types and processes. In: Landslides: analysis and control. Edited by RL Schuster and RJ...

  4. USGS National Geologic Map Database Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. According to...

  5. Use of space applications for geologic research

    Energy Technology Data Exchange (ETDEWEB)

    Presnukhin, V I

    1981-01-01

    Overview of literature published in USSR during 1969-1977 shows broad potential and effectiveness for using satellite imaging of earth in the geologic sciences: geomorphology, tectonics, engineering geology, and searh for useful ore and minerals.

  6. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  7. The geology of the Falkland Islands

    OpenAIRE

    Aldiss, D.T.; Edwards, E.J.

    1999-01-01

    This report is complementary to the 1:250 000 scale geological map of the Falkland Islands compiled in 1998. The report and map are products of the Falkland Islands Geological Mapping Project (1996-1998). Geological observation and research in the Islands date from 1764. The Islands were visited during two pioneering scientific cruises in the 19th century. Subsequently, many scientists visited en route to the Antarctic or Patagonia. Geological affinities to other parts of the sout...

  8. Stratigraphy and geologic history of Mercury

    Science.gov (United States)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  9. 49 CFR 801.59 - Geological records.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Geological records. 801.59 Section 801.59... PUBLIC AVAILABILITY OF INFORMATION Exemption From Public Disclosure § 801.59 Geological records. Pursuant to 5 U.S.C. 552(b)(9), records concerning geological wells are exempt from public disclosure. ...

  10. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activities and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities wihtin the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  11. Shock compression of geological materials

    International Nuclear Information System (INIS)

    Kirk, S; Braithwaite, C; Williamson, D; Jardine, A

    2014-01-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  12. Personnel monitoring in geologic fields

    International Nuclear Information System (INIS)

    Romanova, I.N.; Seredin, Yu.V.

    1981-01-01

    State of radiation safety for the personnel of geologic crews carrying out neutron logging of wells using Po-Be sources has been evaluated. Given are results of development of methods for the evaluation of individual radiation loads for personnel when working with Po-Be neutron sources useful for the application in practice by a geologic logging crew as well as a quantitative evaluation of profissional radiation loads during this kind of work. The following methods are recommended for personnel monitoring: 1) calculation of whole-body irradiation doses and hands from averaged values of radiation dose rate; 2) calculational tabulated determination of irradiation doses during recharging of shanks of well instruments. Personnel monitoring by means of instrumental methods is not necessary in the considered case [ru

  13. Quality assurance for geologic investigations

    International Nuclear Information System (INIS)

    Delvin, W.L.; Gustafson, L.D.

    1983-01-01

    A quality assurance handbook was written to provide guidance in the application of quality assurance to geologic work activities associated with the National Waste Terminal Storage (NWTS) Program. It is intended to help geoscientists and NWTS program managers in applying quality assurance to their work activitie and projects by showing how technical and quality assurance practices are integrated to provide control within those activities and projects. The use of the guidance found in this handbook should help provide consistency in the interpretation of quality assurance requirements across the various geologic activities within the NWTS Program. This handbook also can assist quality assurance personnel in understanding the relationships between technical and quality assurance practices. This paper describes the handbook

  14. Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise

    NARCIS (Netherlands)

    Gunnink, J.J.; Maljers, D.; Hummelman, J.

    2010-01-01

    Uncertainty quantification of geological models that are constructed with additional geological expert-knowledge is not straightforward. To construct sound geological 3D layer models we use a lot of additional knowledge, with an uncertainty that is hard to quantify. Examples of geological expert

  15. Geology

    International Nuclear Information System (INIS)

    Eyde, T.H.

    1977-01-01

    Uranium, base metals, and precious metals exploration is surveyed, and Government role in activities is scrutinized. A review of recent mineral discoveries reveals that several new discoveries can be credited to independent geologists and exploration organizations. Most of these groups develop the exploration programs and then operate them on a fee plus incentive basis for major companies. The high cost of maintaining a large exploration staff often cannot be justified by many large natural resources companies. As a result the exploration companies fulfill the function of a company exploration department at a much reduced cost

  16. Muon Tomography for Geological Repositories.

    Science.gov (United States)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  17. Portable counter for geological research

    Energy Technology Data Exchange (ETDEWEB)

    Russell, O J

    1949-05-01

    A portable counter which has been developed for prospecting for radio-active uranium and thorium minerals, for general geological investigations, and as an ultra-sensitive detector of lost or mislaid radium, is described. The aforementioned general usage includes the identification of changes in strata by means of the investigation of the slight amount of residual activity pressent in most minerals. The apparatus, which consists essentially of a scaled-down version of a standard laboratory Geiger-Muller counter, is highly sensitive since a variation equivalent to 4% of the cosmic ray background can be detected by a three-minute count.

  18. Geological Factors and Health Problems

    Directory of Open Access Journals (Sweden)

    Francisco Prieto García

    2013-06-01

    Full Text Available Geological factors, such as damages, can cause health determinants in people, which were a little-studied and if they have been raised on occasion, usually referred to no communicable diseases. The aim of this work, which is a more or less updated bibliography, has been to develop a holistic idea for a better understanding of a problem and force latent or potential risk that they can carry and consider scientific basis infectious diseases especially complex.  In essence, the focus of ecosystem health that should be considered in terrestrial ecosystems. It also provides the basic elements for the development of new research in this field.

  19. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  20. Geology of the North Sea and Skagerrak

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O. [ed.

    1995-12-31

    The Marine Geology Unit of the Department of Earth Sciences organized the second Marine Geology symposium at Aarhus University, 7-8 October 1993. The intention was to bring together people working especially with the geology of the North Sea and Skagerrak. Approximately 60 people from different Danish and Norwegian institutions attended the symposium. 28 oral presentations were given and 2 posters presented. A large range of geological topics was covered, embracing biostratigraphy, sequence stratigraphy, sedimentology and structural geology. The majority of the presentations dealt with Quaternary geology and Cenozoic sequence stratigraphy, but also Jurassic and Lower Cretaceous stratigraphy was treated. Studies from the major part of the Danish sector were presented, spanning from Bornholm to the central North Sea, and further into the Norwegian North Sea sector. (au)

  1. NAGRA - Sites for geological repositories - Geological surveys for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the aims involved in the selection of sites for deep geological repositories for nuclear wastes in Switzerland. Various methods involved in their implementation are described. These include 3D-seismology, deep probe drillings, shallow drillings as well as field studies, gravimetric measurements and the study of the electrical properties of the ground and rock involved. These factors are discussed in detail. Maps are presented of the locations that are to be surveyed and details of the selected perimeters are shown. Also, the layout of a sample drilling site is presented. A timescale for the various surveys and work to be done is presented

  2. The geologic evolution of the planet Mars

    International Nuclear Information System (INIS)

    Masson, P.

    1982-01-01

    A brief summary of our knowledge on the Martian geology is presented here based on the results published by the members of Mariner 9 and Viking Orbiter Imaging Teams, the NASA Planetary Geology Principal Investigators and the scientists involved in the Mars Data Analysis Program. A special emphasis is given to the geologic evolution (volcanism and tectonism) related to our knowledge on the internal structure of the planet

  3. County digital geologic mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  4. County digital geologic mapping. Final report

    International Nuclear Information System (INIS)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-01-01

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included

  5. Geology of Cardiff and Faraday Townships

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, D F

    1960-12-31

    The area described in this report lies at the centre of the Haliburton-Bancroft uranium district in Ontario, where prospecting and mining have been carried out for over 50 years. The report describes the area`s physiography, natural resources, general geology (Precambrian metasedimentary, plutonic, and granitic and syenitic rocks), structural geology, and economic geology. The latter section includes descriptions of occurrences, claims, mines, and mineral properties, including the principal uranium properties in the area.

  6. Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry and Water and Methanol Masers in IC 342, NGC 6946, and NGC 2146

    Science.gov (United States)

    Gorski, Mark; Ott, Jürgen; Rand, Richard; Meier, David S.; Momjian, Emmanuel; Schinnerer, Eva

    2018-04-01

    The Survey of Water and Ammonia in Nearby galaxies (SWAN) studies atomic and molecular species across the nuclei of four star-forming galaxies: NGC 253, IC 342, NGC 6946, and NGC 2146. As part of this survey, we present Karl G. Jansky Very Large Array molecular line observations of three galaxies: IC 342, NGC 6946, and NGC 2146. NGC 253 is covered in a previous paper. These galaxies were chosen to span an order of magnitude in star formation rates and to select a variety of galaxy types. We target the metastable transitions of ammonia NH3(1, 1) to (5, 5), the 22 GHz water (H2O) (616–523) transition, and the 36.1 GHz methanol (CH3OH) (4‑1–30) transition. We use the NH3 metastable lines to perform thermometry of the dense molecular gas. We show evidence for uniform heating across the central kiloparsec of IC 342 with two temperature components for the molecular gas, similar to NGC 253, of 27 and 308 K, and that the dense molecular gas in NGC 2146 has a temperature 36 GHz CH3OH masers in IC 342 and NGC 6946. For the four external galaxies the total CH3OH luminosity in each galaxy suggests a correlation with galactic star formation rate, whereas the morphology of the emission is similar to that of HNCO, a weak shock tracer.

  7. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massacret, N.; Jeannot, J. P. [DEN/DTN/STPA/LIET, CEA Cadarache, Saint Paul Lez Durance (France); Moysan, J.; Ploix, M. A.; Corneloup, G. [Aix-Marseille Univ, LMA UPR 7051 CNRS, site LCND, 13625 Aix-en-Provence (France)

    2013-01-25

    In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  8. Multi-gradient echo MR thermometry for monitoring of the near-field area during MR-guided high intensity focused ultrasound heating.

    Science.gov (United States)

    Lam, Mie K; de Greef, Martijn; Bouwman, Job G; Moonen, Chrit T W; Viergever, Max A; Bartels, Lambertus W

    2015-10-07

    The multi-gradient echo MR thermometry (MGE MRT) method is proposed to use at the interface of the muscle and fat layers found in the abdominal wall, to monitor MR-HIFU heating. As MGE MRT uses fat as a reference, it is field-drift corrected. Relative temperature maps were reconstructed by subtracting absolute temperature maps. Because the absolute temperature maps are reconstructed of individual scans, MGE MRT provides the flexibility of interleaved mapping of temperature changes between two arbitrary time points. The method's performance was assessed in an ex vivo water bath experiment. An ex vivo HIFU experiment was performed to show the method's ability to monitor heating of consecutive HIFU sonications and to estimate cooling time constants, in the presence of field drift. The interleaved use between scans of a clinical protocol was demonstrated in vivo in a patient during a clinical uterine fibroid treatment. The relative temperature measurements were accurate (mean absolute error 0.3 °C) and provided excellent visualization of the heating of consecutive HIFU sonications. Maps were reconstructed of estimated cooling time constants and mean ROI values could be well explained by the applied heating pattern. Heating upon HIFU sonication and subsequent cooling could be observed in the in vivo demonstration.

  9. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  10. Provincial geology and the Industrial Revolution.

    Science.gov (United States)

    Veneer, Leucha

    2006-06-01

    In the early nineteenth century, geology was a new but rapidly growing science, in the provinces and among the gentlemen scientists of London, Oxford and Cambridge. Industry, particularly mining, often motivated local practical geologists, and the construction of canals and railways exposed the strata for all to see. The most notable of the early practical men of geology was the mineral surveyor William Smith; his geological map of England and Wales, published in 1815, was the first of its kind. He was not alone. The contributions of professional men, and the provincial societies with which they were connected, are sometimes underestimated in the history of geology.

  11. Complex geologic characterization of the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Harper, T R [British Petroleum Research Center, Sunberry, England; Szymanski, J S

    1982-01-01

    The present basis for characterizing geological environments is identified in this paper, and the additional requirements imposed by the need to isolate high-level waste safely are discussed. Solutions to these additional requirements are proposed. The time scale of concern and the apparent complexity of the required multidisciplinary approach are identified. It is proposed that an increased use of the geologic record, together with a recognition that all geologic processes operate within an interdependent system, be a key feature in geologic characterization of deep repositories.

  12. Geocongress 84: 20. Geological congress of the Geological Society of South Africa. Abstracts: Pt. 1. General

    International Nuclear Information System (INIS)

    1984-01-01

    Various aspects of the geology, geochemistry and geophysics of the geologic deposits in South Africa are dealt with. Uranium and thorium resources are included in this. There are also chapters on stratigraphy, petrology and petrochemistry

  13. Geologic mapping using LANDSAT data

    Science.gov (United States)

    Siegal, B. S.; Abrams, M. J.

    1976-01-01

    The feasibility of automated classification for lithologic mapping with LANDSAT digital data was evaluated using three classification algorithms. The two supervised algorithms analyzed, a linear discriminant analysis algorithm and a hybrid algorithm which incorporated the Parallelepiped algorithm and the Bayesian maximum likelihood function, were comparable in terms of accuracy; however, classification was only 50 per cent accurate. The linear discriminant analysis algorithm was three times as efficient as the hybrid approach. The unsupervised classification technique, which incorporated the CLUS algorithm, delineated the major lithologic boundaries and, in general, correctly classified the most prominent geologic units. The unsupervised algorithm was not as efficient nor as accurate as the supervised algorithms. Analysis of spectral data for the lithologic units in the 0.4 to 2.5 microns region indicated that a greater separability of the spectral signatures could be obtained using wavelength bands outside the region sensed by LANDSAT.

  14. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  15. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  16. Siting of geological disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. This Safety Guide defines the process to be used and guidelines to be considered in selecting sites for deep geological disposal of radioactive wastes. It reflects the collective experience of eleven Member States having programmes to dispose of spent fuel, high level and long lived radioactive waste. In addition to the technical factors important to site performance, the Safety Guide also addresses the social, economic and environmental factors to be considered in site selection. 3 refs

  17. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  18. Geological factors of deposit formation

    International Nuclear Information System (INIS)

    Grushevoj, G.V.

    1980-01-01

    Geologic factors of hydrogenic uranium deposit formation are considered. Structural, formation and lithological-facies factors of deposit formation, connected with zones of stratal oxidation, are characterized. Peculiarities of deposit localization, connected with orogenic structures of Mesozoic and lenozoic age, are described. It is noted that deposits of anagenous group are widely spread in Paleozoic formations, infiltration uranium deposits are localized mainly in Cenozoic sediments, while uranium mineralization both anagenous and infiltration groups are widely developed in Mesozoic sediments. Anagenous deposits were formed in non-oxygen situation, their age varies from 200 to 55 mln years. Infiltration deposit formation is determined by asymmetric oxidation zonation, their age varies from 10 - 40 mln years to dozens of thousand years [ru

  19. Homo Sapiens as Geological Agents

    Science.gov (United States)

    Holloway, T.; Bedsworth, L. W.; Caldeira, K.; Rosenzweig, C.; Kelley, G.; Rosenzweig, C.; Caldeira, K.; Bedsworth, L. W.; Holloway, T.; Purdy, J. S.; Vince, G.; Syvitski, J. A.; Bondre, N. R.; Kelly, J.; Vince, G.; Seto, K. C.; Steffen, W.; Oreskes, N.

    2015-12-01

    In the 18th and 19th centuries, earth scientists came to understand the magnitude and power of geological and geophysical processes. In comparison, the activities of humans seemed paltry if not insignificant. With the development of radiometric dating in the 20th century, scientists realized that human history was but a miniscule part of Earth history. Metaphors to this effect abounded, and filled textbooks: If Earth history were a 24-hour day, human history would not occupy even the final second. If Earth history were a yardstick, the human portion would not even be visible to the naked eye. Generations of scientists were taught that one of the principal contributions of geology, qua science, was the demonstration of our insignificance. The Anthropocene concept disrupts this. To affirms its existence is to insist that human activities compete in scale and significance with other Earth processes, and may threaten to overwhelm them. It also inverts our relation to normative claims. For more than a century earth scientists and evolutionary biologists insisted that their theories were descriptive and not normative—that there was no moral conclusion to be drawn from either planetary or human evolution. Now, we confront the suggestion that there is a moral component to our new paradigm: we can scarcely claim that humans are disrupting the climate, destroying biodiversity, and acidifying the oceans without implying that there is something troubling about these developments. Thus, the Anthropocene concept suggests both a radical redefinition of the scope of Earth science, and a radical reconsideration of the place of normative judgments in scientific work.

  20. Report on geologic exploration activities

    International Nuclear Information System (INIS)

    Breslin, J.; Laughon, R.B.; Hall, R.J.; Voss, J.W.

    1980-01-01

    This report provides an overview of the geological exploration activities being carried out as part of the National Waste Terminal Storage (NWTS) Program, which has been established by the US Department of Energy (DOE) to develop the technology and provide the facilities for the safe, environmentally acceptable isolation of civilian high-level and transuranic nuclear wastes, including spent fuel elements, for which the Federal government is responsible. The principal programmatic emphasis is on disposal in mined geologic repositories. Explorations are being conducted or planned in various parts of the country to identify potential sites for such repositories. The work is being undertaken by three separate but coordinated NWTS project elements. Under the Basalt Waste Isolation Project (BWIP), basalt formations underlying DOE's Hanford Reservation are being investigated. Granite, tuff, and shale formations at the DOE Nevada Test Site (NTS) are being similarly studied in the Nevada Nuclear Waste Storage Investigations (NNWSI). The Office of Nuclear Waste Isolation (ONWI) is investigating domed salt formations in several Gulf Coast states and bedded salt formations in Utah and Texas. The ONWI siting studies are being expanded to include areas overlying crystalline rocks, shales, and other geohydrologic systems. The current status of these NWTS efforts, including the projected budgets for FY 1981, is summarized, and the criteria and methodology being employed in the explorations are described. The consistency of the overall effort with the recommendations presented in the Report to the President by the Interagency Review Group on Nuclear Waste Management (IRG), as well as with documents representing the national technical consensus, is discussed

  1. Geology and religion in Portugal

    Science.gov (United States)

    Carneiro, Ana; Simoes, Ana; Diogo, Maria Paula; Mota, Teresa Salomé

    2013-01-01

    This paper addresses the relationship between geology and religion in Portugal by focusing on three case studies of naturalists who produced original research and lived in different historical periods, from the eighteenth to the twentieth century. Whereas in non-peripheral European countries religious themes and even controversies between science and religion were dealt with by scientists and discussed in scientific communities, in Portugal the absence of a debate between science and religion within scientific and intellectual circles is particularly striking. From the historiographic point of view, in a country such as Portugal, where Roman Catholicism is part of the religious and cultural tradition, the influence of religion in all aspects of life has been either taken for granted by those less familiar with the national context or dismissed by local intellectuals, who do not see it as relevant to science. The situation is more complex than these dichotomies, rendering the study of this question particularly appealing from the historiographic point of view, geology being by its very nature a well-suited point from which to approach the theme. We argue that there is a long tradition of independence between science and religion, agnosticism and even atheism among local elites. Especially from the eighteenth century onwards, they are usually portrayed as enlightened minds who struggled against religious and political obscurantism. Religion—or, to be more precise, the Roman Catholic Church and its institutions—was usually identified with backwardness, whereas science was seen as the path to progress; consequently men of science usually dissociated their scientific production from religious belief.

  2. Report on geologic exploration activities

    International Nuclear Information System (INIS)

    1980-01-01

    This report provides an overview of the geological exploration activities being carried out as part of the National Waste Terminal Storage (NWTS) Program, which has been established by the US Department of Energy (DOE) to develop the technology and provide the facilities for the safe, environmentally acceptable isolation of civilian high-level and transuranic nuclear wastes, including spent fuel elements, for which the Federal government is reponsible. The principal programmatic emphasis is on disposal in mined geologic repositories. Explorations are being conducted or planned in various parts of the country to identify potential sites for such repositories. The work is being undertaken by three separate but coordinated NWTS project elements. Under the Basalt Waste Isolation Project (BWIP), basalt formations underlying DOE's Hanford Reservation are being investigated. Granite, tuff, and shale formations at the DOE Nevada Test Site (NTS) are being similarly studied in the Nevada Nuclear Waste Storage Investigations (NNWSI). The Office of Nuclear Waste Isolation (ONWI) is investigating domed salt formations in several Gulf Coast states and bedded salt formations in Utah and Texas. Th ONWI siting studies are being expanded to include areas overlying crystalline rocks, shales, and other geohydrologic systems. The current status of these NWTS efforts, including the projected budgets for FY 1981, is summarized, and the criteria and methodology being employed in the explorations are described. The consistency of the overall effort with the recommendations presented in the Report to the President by the Interagency Review Group on Nuclear Waste Management (IRG), as well as with documents representing the national technical consensus, is discussed

  3. Operation environment construction of geological information database for high level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Wang Peng; Gao Min; Huang Shutao; Wang Shuhong; Zhao Yongan

    2014-01-01

    To fulfill the requirements of data storage and management in HLW geological disposal, a targeted construction method for data operation environment was proposed in this paper. The geological information database operation environment constructed by this method has its unique features. And it also will be the important support for HLW geological disposal project and management. (authors)

  4. Israel Geological Society, annual meeting 1994

    International Nuclear Information System (INIS)

    Amit, R.; Arkin, Y.; Hirsch, F.

    1994-02-01

    The document is a compilation of papers presented during the annual meeting of Israel Geological Society. The document is related with geological and environmental survey of Israel. It discusses the technology and instruments used to carry out such studies. Main emphasis is given to seismology, geochemical analysis of water, water pollution and geophysical survey of rocks

  5. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  6. Publications - Geospatial Data | Alaska Division of Geological &

    Science.gov (United States)

    from rocks collected in the Richardson mining district, Big Delta Quadrangle, Alaska: Alaska Division Island 2009 topography: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication , Geologic map of portions of the Livengood B-3, B-4, C-3, and C-4 quadrangles, Tolovana mining district

  7. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  8. Historical foundations of chemical geology and geochemistry

    NARCIS (Netherlands)

    Manten, A.A.

    1966-01-01

    Roughly, the name chemical geology has been used for as long as chemistry has been applied in geology; the name geochemistry was introduced by Schönbein, in 1838. Whereas initially the names were often regarded as synonymous, in our century there is a tendency to make a distinction between the two

  9. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  10. Archives: Journal of Mining and Geology

    African Journals Online (AJOL)

    Items 1 - 13 of 13 ... Archives: Journal of Mining and Geology. Journal Home > Archives: Journal of Mining and Geology. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 13 of 13 ...

  11. Popularizing Geological Education among Civil Engineering Students

    Science.gov (United States)

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  12. Bedrock Geologic Map of Woodstock, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG06-4 Thompson, P. J., 2006, Bedrock Geologic Map of Woodstock, Vermont: VGS Open-File Report VG06-4, scale 1:24,000. The bedrock geologic map...

  13. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  14. Digital Geologic Map of New Mexico - Formations

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP...

  15. Site investigation SFR. Bedrock geology

    International Nuclear Information System (INIS)

    Curtis, Philip; Markstroem, Ingemar; Petersson, Jesper; Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan

    2011-12-01

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of the

  16. Site investigation SFR. Bedrock geology

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of

  17. Solid-liquid equilibrium data acquisitions for paraffin systems through thermometry and thermodynamic modeling with modified UNIFAC; Obtencao de dados de equilibrio solido-liquido para sistemas parafinicos via termometria e modelagem termodinamica com UNIFAC modificado

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa Junior, Wellington; Queiroga, Renan Nobrega Gadelha; Nascimento, Mairon Antonio Hosannah do; Souza, Carlson Pereira de; Chiavone-Filho, Osvaldo [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Engenharia Quimica]. E-mail: wbjunior@eq.ufrn.br

    2003-07-01

    In the petroleum industry a great problem found is the formation of solids during the production, transport and the storage, which are mainly paraffins. It was mainly used the thermometry for determination of paraffin formation, or the solubility of paraffin in the other hydrocarbon solvent as function of the composition. The gas chromatography was used to determine if the system light hydrocarbon and paraffin form solid solution, applying a simplified analytical method with thermostatized filtration and glass syringe. The experimental data obtained was used with the aid of the modified UNIFAC model for representing both the liquid and solid solution phases in equilibrium. (author)

  18. Global Warming in Geologic Time

    International Nuclear Information System (INIS)

    Archer, David

    2008-01-01

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  19. Geology of Lofn Crater, Callisto

    Science.gov (United States)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  20. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2005-01-01

    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  1. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  2. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    International Nuclear Information System (INIS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V; Lempert, Walter R

    2010-01-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ∼ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  3. Geology and Design: Formal and Rational Connections

    Science.gov (United States)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  4. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  5. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  6. Developing medical geology in Uruguay: a review.

    Science.gov (United States)

    Mañay, Nelly

    2010-05-01

    Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population's exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  7. Developing Medical Geology in Uruguay: A Review

    Directory of Open Access Journals (Sweden)

    Nelly Mañay

    2010-04-01

    Full Text Available Several disciplines like Environmental Toxicology, Epidemiology, Public Health and Geology have been the basis of the development of Medical Geology in Uruguay during the last decade. The knowledge and performance in environmental and health issues have been improved by joining similar aims research teams and experts from different institutions to face environmental problems dealing with the population’s exposure to metals and metalloids and their health impacts. Some of the Uruguayan Medical Geology examples are reviewed focusing on their multidisciplinary approach: Lead pollution and exposed children, selenium in critically ill patients, copper deficiency in cattle and arsenic risk assessment in ground water. Future actions are also presented.

  8. Evaluations for draft reports on geological disposal

    International Nuclear Information System (INIS)

    Maekawa, Keisuke; Igarashi, Hiroshi

    2002-10-01

    This report summarizes the results of the technical evaluations on two reports which are named as 'Overview of the Geological Disposal Facility' and Considerable Factors on Selection of Potential Sites for Geological Disposal' drafted by NUMO (Nuclear Waste Management Organization of Japan). The review of each draft report has been referred to committee (held on 9th September, 2002) and working group (held on 1st October, 2002) which were organized in order to confirm a progress of implementation of geological disposal by government. (author)

  9. Geological evidence of smectite longevity

    International Nuclear Information System (INIS)

    Pusch, R.; Karnland, O.

    1988-12-01

    Search is going on for geological evidence of natural smectite clay materials that have been exposed to conditions that are similar to those radioactive in repositories. Cases in which heating to 90 degree C or more for long periods has taken place, are of particular interest. The report describes two bentonite layers, one of Miocenic age located at central Sardinia (Busachi), and the other of Ordovician age, forming a basal stratum of southern Gotland, (Hamra), Sweden. They both serve as excellent examples of the survival potential of montmorillonite-rich clays. The more than 10 m thick Sardinian bentonite bed was very significantly heated when the magma moved in and covered it. The upper meter was heated to more than 200 degree C for several days, while at more than 4 m depth, the temperature did note exceed 80 degree C. The test show that the smectite content was not reduced to less than 60 percent in any part of the layer sequence, while slight cementation was caused by precipitation of heat-released silica in the uppermost layer. The 0.3 m thick bed on Gotland is presently located at 515 m depth. Various investigations indicate that it has been exposed to an effective pressure of 300 MPa and a temperature of 110 degree C for several million years due to burial under almost 3 km of Devonian sediments. The content of smectite is around 25 percent of the bulk material, and 30-40 percent of the clay fraction. Illite appears to have been neoformed in small voids of the smectite matrix and the identified apparent I/S material is suggested to consist of mixed-layer minerals with hydrous mica and Ca or Na locked in instead of K, which would be the conventional interpretation. The earlier developed alteration model appears to be valid and it is extended in the present report on the basis of the findings. (28 illustrations, 9 tables)

  10. Marine Geology Reports in the NGDC Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historic Marine Geologic data reports available are from academia, government, and non-U.S. sources. These reports were originally in paper or film form and were...

  11. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-01-01

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence

  12. Geologic Mapping Investigations of Alba Mons, Mars

    Science.gov (United States)

    Crown, D. A.; Berman, D. C.; Scheidt, S. P.; Hauber, E.

    2018-06-01

    Geologic mapping of the summit region and western flank of Alba Mons at 1:1M-scale is revealing sequences of volcanic, tectonic, impact, and degradation processes that have formed and modified the northernmost of the Tharsis volcanoes.

  13. Global Journal of Geological Sciences: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof . Barth N. Ekwueme MANAGING EDITOR Global Journal Series Department of Geology, University of Calabar, P. O. Box 3561 Unical P.O. Calabar Cross River State Nigeria Email: bachudo@yahoo.com ...

  14. A new algorithm for coding geological terminology

    Science.gov (United States)

    Apon, W.

    The Geological Survey of The Netherlands has developed an algorithm to convert the plain geological language of lithologic well logs into codes suitable for computer processing and link these to existing plotting programs. The algorithm is based on the "direct method" and operates in three steps: (1) searching for defined word combinations and assigning codes; (2) deleting duplicated codes; (3) correcting incorrect code combinations. Two simple auxiliary files are used. A simple PC demonstration program is included to enable readers to experiment with this algorithm. The Department of Quarternary Geology of the Geological Survey of The Netherlands possesses a large database of shallow lithologic well logs in plain language and has been using a program based on this algorithm for about 3 yr. Erroneous codes resulting from using this algorithm are less than 2%.

  15. Geomorphology in North American Geology Departments, 1971

    Science.gov (United States)

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  16. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  17. The geological record of ocean acidification

    NARCIS (Netherlands)

    Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; Kiessling, W.; Ries, J.; Zachos, J.C.; Royer, D.L.; Barker, S.; Marchitto Jr., T.M.; Moyer, R.; Pelejero, C.; Ziveri, P.; Foster, G.L.; Williams, B.

    2012-01-01

    Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record

  18. A geological and geophysical data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, T.; Afzulpurkar, S.

    A geological and geophysical data collection system using a Personal Computer is described below. The system stores data obtained from various survey systems typically installed in a charter vessel and can be used for similar applications on any...

  19. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  20. The basic concept for the geological surveys

    International Nuclear Information System (INIS)

    Deguchi, Akira; Takahashi, Yoshiaki

    1998-01-01

    Before the construction of high level radioactive waste repository, the implementing entity will go through three siting stages for the repository. In each of those three stages, the implementing entity will carry out geological surveys. In this report, the concept for the geological surveys is described, on the basic of 'The policies for the high level radioactive waste disposal (a tentative draft)' issued by the Atomic Energy Commission in July, 1997. (author)

  1. Modelling geological uncertainty for mine planning

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M

    1980-07-01

    Geosimplan is an operational gaming approach used in testing a proposed mining strategy against uncertainty in geological disturbance. Geoplan is a technique which facilitates the preparation of summary analyses to give an impression of size, distribution and quality of reserves, and to assist in calculation of year by year output estimates. Geoplan concentrates on variations in seam properties and the interaction between geological information and marketing and output requirements.

  2. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group (EEG) is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant (WIPP). As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, titled Geotechnical Considerations for Radiological Hazard Assessment of WIPP on January 17-18, 1980. During this conference, it was realized that a field trip to the site would further clarify the different views on the geological processes active at the site. The field trip of June 16-18, 1980 was organized for this purpose. This report provides a summary of the field trip activities along with the participants post field trip comments. Important field stops are briefly described, followed by a more detailed discussion of critical geological issues. The report concludes with EEG's summary and recommendations to the US Department of Energy for further information needed to more adequately resolve concerns for the geologic and hydrologic integrity of the site

  3. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  4. The development of safeguards for geological repositories

    International Nuclear Information System (INIS)

    Van der Meer, K.

    2009-01-01

    Traditionally, research and development on geological repositories for High Level Waste (HLW) focuses on the short- and long-term safety aspects of the repository. If the repository will also be used for the disposal of spent fuel, safeguards aspects have to be taken into account. Safety and safeguards requirements may be contradictory; the safety of a geological repository is based on the non-intrusion of the geological containment, while safeguards require regular inspections of position and amount of the spent fuel. Examples to reconcile these contradictory requirements are the use of information required for the safety assessment of the geological repository for safeguards purposes and the adaptation of the safeguards approach to use non-intrusive inspection techniques. The principles of an inspection approach for a geological repository are now generally accepted within the IAEA. The practical applicability of the envisaged inspection techniques is still subject to investigation. It is specifically important for the Belgian situation that an inspection technique can be used in clay, the geological medium in which Belgium intends to dispose its HLW and spent fuel. The work reported in this chapter is the result of an international cooperation in the framework of the IAEA, in which SCK-CEN participates

  5. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  6. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  7. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  8. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  9. Andra's geologic repository monitoring strategy

    International Nuclear Information System (INIS)

    Buschaert, S.; Lesoille, S.; Bertrand, J.; Landais, P.

    2012-01-01

    Document available in extended abstract form only. After having concluded a feasibility study of deep geological disposal for high-level and long-lived radioactive waste in 2005, Andra was charged by the Planning Act no. 2006-739 to design and create an industrial site for geological disposal called Cigeo which must be reversible for at least a century-long period. The French Safety Guide recommends that Andra develop a monitoring program to be implemented at repository construction and conducted until closure, and possibly after closure, with the aim to confirming prior expectations and enhancing knowledge of relevant processes. This abstract focuses on underground structure monitoring. The monitoring system is based on a combination of in-situ instrumentation and nondestructive methods to obtain the required level of reliable performance. To optimize the device distribution, we take into account both the repetitive design of disposal cells and the homogeneity of the rock properties. This resulted in distinguishing pilot disposal cells that are highly instrumented and standard disposal cells where the instrumentation density could be reduced; monitoring will rely mostly on robotic nondestructive evaluations. If monitoring technologies do not comply with all monitoring objectives, real withdrawal tests of high level wastes in some pilot disposal cells are also planned to provide the possibility of carrying out visual inspection, destructive analyses and samplings on construction materials. Such cells are planned to be dismantled because of the potential disturbance of their component performances from the testing process. Based on this overall strategy, Andra has analyzed the technical requirements that must be met by its monitoring equipment. First, these must be able to provide information on key THMCR (Thermal- Hydraulic-Mechanical-Chemical and Radiological) processes, to provide a three-dimensional image of a disposal component's behavior and thus to understand

  10. Geological setting of silica in Dehnow-Abid region (Eshghabad northeast using fluid inclusions studies

    Directory of Open Access Journals (Sweden)

    Omid Yazdanpanah

    2017-02-01

    Full Text Available Introduction Dehnow-Abid area is a part of the geological map of Eshghabad with scale 1:100000 (Aghanabati, 1994 that is located about 20 kilometers northeast of Eshghabad and in the coordinates of 57° 6´ 0" to 57° 10´ 0" eastern longitude and 34° 28´ 0" to 34 21´ 0" northern latitude. The Dehnow-Abid area is located in Tabas block and east of central Iran structural zone. The small continent east central Iran (Takin, 1972 includes blocks: Loot, Tabas and Yazd that constitute Iran's eastern part (Davoudzadeh and Schmidt, 1982. In geology, we can acquire more information about temperature forming minerals and rocks, pressure, density of the fluid and the chemical composition of the ore bearing fluids by fluid inclusions studies. Properties as well as their role in our understanding of the sources and evolution of ore bearing hydrothermal fluids and genesis of mineral deposits are very important (Rodder, 1979. In this study, we tried to use both field and laboratory studies, including petrography and thermometry studies of fluid inclusions, environment formation of quartz in the specified Dehno-Abid. Materials and methods At first, in order to identify the area, the 1:100000 map of Eshghabad was used. Then, for a complete cognition of mentioned area, after a few field visits and sampling of outcrops of quartz, we prepared 16 double polishing sections from some crystalline and milky quartz. Then, 10 thin sections of sandstones of that area were prepared for identification the host rock. Microscopic examinations on fluid inclusions were done by a LEICA DMLSP polarizing light microscope. Fluid inclusion micro-thermometry studies were done by using a Linkam THM S600 heating and freezing stage and with a TMS94 controller. Also, a cooling LNP which is mounted on an Olympus BX-41 microscope in Laboratory Fluid inclusion of Earth Sciences, Damghan University was used. Discussion and results Lithology of the Dehnow-Abid area included dark shale

  11. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  12. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    Science.gov (United States)

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  13. GDA (Geologic Data Assistant), an ArcPad extension for geologic mapping: code, prerequisites, and instructions

    Science.gov (United States)

    ,

    2006-01-01

    GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.

  14. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  15. Bureau of Economic Geology. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

  16. Wave Propagation in Jointed Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Antoun, T

    2009-12-17

    Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

  17. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  18. Impact, and its implications for geology

    International Nuclear Information System (INIS)

    Marvin, U.B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe

  19. Medical Geology: a globally emerging discipline

    Energy Technology Data Exchange (ETDEWEB)

    Bunnell, J.E.; Finkelman, R.B.; Centeno, J.A.; Selinus, O. [Armed Forces Institute of Pathology, Washington, DC (United States)

    2007-07-01

    Medical Geology, the study of the impacts of geologic materials and processes on animal and human health, is a dynamic emerging discipline bringing together the geoscience, biomedical, and public health communities to solve a wide range of environmental health problems. Among the Medical Geology described in this review are examples of both deficiency and toxicity of trace element exposure. Goiter is a widespread and potentially serious health problem caused by deficiency of iodine. In many locations the deficiency is attributable to low concentrations of iodine in the bedrock. Similarly, deficiency of selenium in the soil has been cited as the principal cause of juvenile cardiomyopathy and muscular abnormalities. Overexposure to arsenic is one of the most widespread Medical Geology problems affecting more than one hundred million people in Bangladesh, India, China, Europe, Africa and North and South America. The arsenic exposure is primarily due to naturally high levels in groundwater but combustion of mineralized coal has also caused arsenic poisoning. Dental and skeletal fluorosis also impacts the health of millions of people around the world and, like arsenic, is due to naturally high concentrations in drinking water and, to a lesser extent, coal combustion. Other Medical Geology issues described include geophagia, the deliberate ingestion of soil, exposure to radon, and ingestion of high concentrations of organic compounds in drinking water. Geoscience and biomedical/public health researchers are teaming to help mitigate these health problems as well as various non-traditional issues for geoscientists such as vector-borne diseases.

  20. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  1. A Geospatial Information Grid Framework for Geological Survey

    OpenAIRE

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of ...

  2. Digital geologic map in the scale 1:50 000

    International Nuclear Information System (INIS)

    Kacer, S.; Antalik, M.

    2005-01-01

    In this presentation authors present preparation of new digital geologic map of the Slovak Republic. This map is prepared by the State Geological Institute of Dionyz Stur as a part of the project Geological information system GeoIS. One of the basic information geologic layers, which will be accessible on the web-site will be digital geologic map of the Slovak Republic in the scale 1: 50 000

  3. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  4. The Geologic History of Seawater

    Science.gov (United States)

    Holland, H. D.

    2003-12-01

    following account of his unsuccessful attempt to do so (Birch, 1756 and Black, 1966):Mr. Winthrop's letter written from Boston to Mr. Oldenburg was read, giving an account of the trials made by him at sea with the instrument for sounding of depths without a line, and with the vessel for drawing water from the bottom of the sea; both which proved successless, the former by reason of too much wind at the time of making soundings; the latter, on account of the leaking of the vessel. Capt. Taylor being to go soon to Virginia, and offering himself to make the same experiments, the society recommended to him the trying of the one in calm weather, and of the other with a stanch vessel.Mr. Hooke mentioning, that a better way might be suggested to make the experiment above-mentioned, was desired to think farther upon it, and to bring in an account thereof at the next meeting.A little more than one hundred years later, in the 1780s, John Walker (1966) lectured at Edinburgh on the saltness of the oceans. He marshaled all of the available data and concluded that "these reasons seem all to point to this, that the water of the ocean in respect to saltness is pretty much what it ever has been."In this opinion he disagreed with Halley (1715), who suggested that the salinity of the oceans has increased with time, and that the ratio of the total salt content of the oceans to the rate at which rivers deliver salt to the sea could be used to ascertain the age of the Earth. The first really serious attempt to measure geologic time by this method was made by Joly (1899). His calculations were refined by Clarke (1911), who inferred that the age of the ocean, since the Earth assumed its present form, is somewhat less than 100 Ma. He concluded, however, that "the problem cannot be regarded as definitely solved until all available methods of estimation shall have converged on one common conclusion." There was little appreciation in his approach for the magnitude of: (i) the outputs of salt from the

  5. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  6. A Geology Sampling System for Small Bodies

    Science.gov (United States)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  7. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  8. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  9. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  10. The geology of Piz Pian Grand

    International Nuclear Information System (INIS)

    Huber, M.; Staeuble, J.

    1987-01-01

    Nagra has identified four potential sites for a repository for low- and intermediate-level waste. Exploration work is already underway at Oberbauenstock (UR) and Piz Pian Grand (GR). As part of the investigations in the Piz Pian Grand area, geological surface mapping was carried out between 1984 and 1987. Since the data obtained is still being evaluated, it would be premature to draw any interpretative conclusions at this stage. On the other hand, some of the most significant observations of this work can be summarised here. As a first step, the geological framework in which these investigations are to be seen should be defined. Observations will then be made on the rock content (lithology) and geometric structure (structural geology) of the area. (author) 6 figs

  11. Determining probabilities of geologic events and processes

    International Nuclear Information System (INIS)

    Hunter, R.L.; Mann, C.J.; Cranwell, R.M.

    1985-01-01

    The Environmental Protection Agency has recently published a probabilistic standard for releases of high-level radioactive waste from a mined geologic repository. The standard sets limits for contaminant releases with more than one chance in 100 of occurring within 10,000 years, and less strict limits for releases of lower probability. The standard offers no methods for determining probabilities of geologic events and processes, and no consensus exists in the waste-management community on how to do this. Sandia National Laboratories is developing a general method for determining probabilities of a given set of geologic events and processes. In addition, we will develop a repeatable method for dealing with events and processes whose probability cannot be determined. 22 refs., 4 figs

  12. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  13. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  14. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1992-01-01

    This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling

  15. Application of underwater radon measurements in geology

    Energy Technology Data Exchange (ETDEWEB)

    Varhegyi, A.; Baranyi, I.; Gerzson, I. (Mecsek Ore Mining Enterprise, Pecs (Hungary)); Somogyi, G.; Hakl, J.; Hunyadi, I. (Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete)

    1988-01-01

    Based on the observed phenomenon of geogas migration in microbubble form from deeper regions, the authors have developed a new model for the vertical transport of radon released from deeper sources. The physical properties of the rock relating to the upflow of microbubbles below the groundwater level are considered and the radon transport parameter of rocks is introduced. The vertical distribution of radon concentration in the case of a multi-layered geological model is given and the penetration depth of underwater radon measurements is examined. Aspects of underwater radon detection by the nuclear track detector technique are analyzed. The radon transport model gives a new theoretical basis for several applications of radon measurements in geology. The advantages of underwater radon detection have already been proved in uranium exploration. Further geological applications are proposed in earthquake prediction, in volcanology, in the survey of active faults and thermal waters. (author).

  16. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  17. OneGeology Web Services and Portal as a global geological SDI - latest standards and technology

    Science.gov (United States)

    Duffy, Tim; Tellez-Arenas, Agnes

    2014-05-01

    The global coverage of OneGeology Web Services (www.onegeology.org and portal.onegeology.org) achieved since 2007 from the 120 participating geological surveys will be reviewed and issues arising discussed. Recent enhancements to the OneGeology Web Services capabilities will be covered including new up to 5 star service accreditation scheme utilising the ISO/OGC Web Mapping Service standard version 1.3, core ISO 19115 metadata additions and Version 2.0 Web Feature Services (WFS) serving the new IUGS-CGI GeoSciML V3.2 geological web data exchange language standard (http://www.geosciml.org/) with its associated 30+ IUGS-CGI available vocabularies (http://resource.geosciml.org/ and http://srvgeosciml.brgm.fr/eXist2010/brgm/client.html). Use of the CGI simpelithology and timescale dictionaries now allow those who wish to do so to offer data harmonisation to query their GeoSciML 3.2 based Web Feature Services and their GeoSciML_Portrayal V2.0.1 (http://www.geosciml.org/) Web Map Services in the OneGeology portal (http://portal.onegeology.org). Contributing to OneGeology involves offering to serve ideally 1:1000,000 scale geological data (in practice any scale now is warmly welcomed) as an OGC (Open Geospatial Consortium) standard based WMS (Web Mapping Service) service from an available WWW server. This may either be hosted within the Geological Survey or a neighbouring, regional or elsewhere institution that offers to serve that data for them i.e. offers to help technically by providing the web serving IT infrastructure as a 'buddy'. OneGeology is a standards focussed Spatial Data Infrastructure (SDI) and works to ensure that these standards work together and it is now possible for European Geological Surveys to register their INSPIRE web services within the OneGeology SDI (e.g. see http://www.geosciml.org/geosciml/3.2/documentation/cookbook/INSPIRE_GeoSciML_Cookbook%20_1.0.pdf). The Onegeology portal (http://portal.onegeology.org) is the first port of call for anyone

  18. History Matching: Towards Geologically Reasonable Models

    DEFF Research Database (Denmark)

    Melnikova, Yulia; Cordua, Knud Skou; Mosegaard, Klaus

    This work focuses on the development of a new method for history matching problem that through a deterministic search finds a geologically feasible solution. Complex geology is taken into account evaluating multiple point statistics from earth model prototypes - training images. Further a function...... that measures similarity between statistics of a training image and statistics of any smooth model is introduced and its analytical gradient is computed. This allows us to apply any gradientbased method to history matching problem and guide a solution until it satisfies both production data and complexity...

  19. X-ray fluorescence in geology

    International Nuclear Information System (INIS)

    Dutra, C.V.; Gomes, C.B.

    1990-01-01

    This work is about the X-ray fluorescence aplication in geology. It's showing the X-ray origin and excitation. About the instrumentation this work shows the following: X-ray tubes, colimators, analysers crystals, detectors, amplifiers, pulse height selector, and others electronic components. By X-ray fluorescente are done quantitative and qualitative geological analysis and this work shows this analysis and its detection limits. The problems determination is the example. In this work was done yet the comparative analysis of the various instrumental methods in geochemistry. (C.G.) [pt

  20. Optimal sampling schemes applied in geology

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2010-05-01

    Full Text Available Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology UP 2010 2 / 47 Outline 1 Introduction to hyperspectral remote... sensing 2 Objective of Study 1 3 Study Area 4 Data used 5 Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology...

  1. The carbon dioxide capture and geological storage

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO 2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO 2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO 2 transport options, the geological storage of the CO 2 and Total commitments in the domain. (A.L.B.)

  2. Geologic disposal of radioactive waste, 1983

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1983-10-01

    Geologic repositories for radioactive waste are evolving from conceptualization to the development of specific designs. Estimates of long-term hazards must be based upon quantitative predictions of environmental releases over time periods of hundreds of thousands of years and longer. This paper summarizes new techniques for predicting the long-term performance of repositories, it presents estimates of future environmental releases and radiation doses that may result for conceptual repositories in various geologic media, and it compares these predictions with an individual dose criterion of 10 -4 Sv/y. 50 references, 11 figures, 6 tables

  3. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26

  4. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  5. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  6. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  7. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    Science.gov (United States)

    House, P. K.

    2008-12-01

    The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an

  8. The French geological disposal project CIGEO

    Energy Technology Data Exchange (ETDEWEB)

    Ouzounian, G. [ANDRA, Chatenay-Malabry cedex (France)

    2015-07-01

    This paper discusses the major management options for high level waste in France. Safety of the population and protection of the environment is the first priority. Reprocessing of used fuel and reuse of valuable material is considered. Reversible geological disposal (Cigéo Project) is the reference solution for the high-level waste.

  9. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Soldat, J.K.; Napier, B.A.; Strenge, D.L.; Schreckhise, R.G.; Zimmerman, M.G.

    1981-01-01

    The program for Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) is managed through PNL's Water and Land Resources Department and is funded through the Battelle Office of Nuclear Waste Isolation (ONWI). The Ecological Sciences Department was involved in two subtasks under AEGIS: Dose Methodology Development and Reference Site Initial Analysis (RSIA) for a Salt Dome

  10. The geology of the Olkiluoto area

    International Nuclear Information System (INIS)

    Anttila, P.; Paulamaeki, S.; Lindberg, A.; Paananen, M.; Koistinen, T.; Front, K.; Pitkaenen, P.

    1992-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel from the Olkiluoto nuclear power plant deep in the Finnish bedrock. An area close to the power plant at Olkiluoto, Eurajoki, was one of the five areas selected in 1987 for the preliminary site investigations. A summary of the geological conditions at the Olkiluoto site is presented in the report

  11. 939 Department of Geology and Mineral Science

    African Journals Online (AJOL)

    USER

    2015-11-12

    Nov 12, 2015 ... Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria P.M.B. 1515, Ilorin, Nigeria. 2. Department of Petroleum Engineering and Geosciences, Petroleum Training Institute, P.M.B.. 20, Effurun, Delta State, Nigeria. Abstract. Hydrochemical investigation of thirty groundwater samples ...

  12. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  13. RANCH, Radionuclide Migration in Geological Media

    International Nuclear Information System (INIS)

    Patry, J.; Hadermann, J.

    1991-01-01

    1 - Description of problem or function: One-dimensional transport of radionuclide chains through layered geological media, taking into account longitudinal dispersion, convection and retention. 2 - Method of solution: Semi-analytical solution by Laplace transform. Convolution integrals. 3 - Restrictions on the complexity of the problem: Maximum 4 nuclides and 10 layers. Peclet number large compared to 1

  14. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  15. Journal of Mining and Geology: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Journal of Mining and Geology is the scientific publication of the Nigerian Mining and Geosciences Society. Its scope covers the fields of the geosciences, mining, metallurgy, materials science and geoenvironmental studies. Section Policies. Articles. Checked Open Submissions, Checked Indexed ...

  16. Geology of the 241-C Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  17. Geology of the 241-TY Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the ERDA Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  18. Geology of the 241-SX Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  19. Geology of the 241-S Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  20. Geology of the 241-T Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  1. Geology of the 241-TX Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps have been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  2. Geology of the 241-U Tank Farm

    International Nuclear Information System (INIS)

    Price, W.H.; Fecht, K.R.

    1976-04-01

    A series of maps has been compiled to document the structure and stratigraphy of the sediments underlying the high-level radioactive waste storage tank farms located within the Energy Research and Development Administration Hanford Reservation. The primary purpose of these maps is to provide basic geologic information to be utilized to evaluate the impact of suspected and confirmed tank leaks

  3. Geologic processes and sedimentary system on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A S

    1988-01-01

    The subject is covered under following headings: (1) morphology and processes at the martian surface (impact craters, water and ice, landslide, aeolian processes, volcanism, chemical weathering); (2) the sedimentary system (martian geologic documentation, sedimentary balance, regolith, pyroclastics, erosion phenomena, deposit and loss of sediments) as well as (3) summary and final remarks. 72 refs.

  4. Bedrock Geologic Map of Vermont - Dikes

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  5. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  6. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    In this work the use of fractal scaling exponents for geological mapping was first investigated using theoretical models, and results from the analysis showed that the scaling exponents mapped isolated bodies but did not properly resolve bodies close to each other. However application on real data (the Mamfe basin, the ...

  7. Hydrogeological evaluation of geological formations in Ashanti ...

    African Journals Online (AJOL)

    This study, therefore, employed Geographical Information System to assess some of these hydrogeological parameters in the Ashanti Region using the ordinary kriging interpolation method. Data on 2,788 drilled boreholes in the region were used and the assessment focused on the various geological formations in the ...

  8. Geological mapping using fractal technique | Lawal | Nigerian ...

    African Journals Online (AJOL)

    ... in Nigeria) showed good correlation with the geological maps of the areas. The results also indicated that basement rocks can generally be represented by scaling exponents with values ranging between -3.0 and -2.0. Keywords: Fractal, dimension, susceptibility, spectra, scaling exponent. Nigerian Journal of Physics Vol.

  9. Geologically ancient DNA: fact or artefact?

    DEFF Research Database (Denmark)

    Hebsgaard, Martin Bay; Phillips, Matthew J.; Willerslev, Eske

    2005-01-01

    Studies continue to report ancient DNA sequences and viable microbial cells that are many millions of years old. In this paper we evaluate some of the most extravagant claims of geologically ancient DNA. We conclude that although exciting, the reports suffer from inadequate experimental setup and...

  10. How many geologic repositories will be needed

    International Nuclear Information System (INIS)

    Evans, T.J.; Halstead, R.J.

    1987-01-01

    DOE's postponement of site-specific work on the second repository program had rekindled debate over the number of geologic repositories needed for disposal of high level radioactive waste. The multiple repository approach grew out of the March, 1979 IRG report, which recommended co-disposal of civilian and defense HLW in a system of regional repositories. The multiple repository approach was adopted by DOE, and incorporated in the Nuclear Waste Policy Act passed by Congress in December, 1982. Since the late 1970's, the slower than anticipated growth of the nuclear power industry has substantially reduced earlier estimates of the amount of civilian spent fuel which will require geologic disposal. Reactors currently in operation (78.5 GWe) and reactors in the construction pipeline (28 GWe) are expected to discharge about 103,200 MTU of spent fuel by the year 2036, assuming no increase in fuel burnup rate. By the year 2020, defense high level radioactive wastes equivalent to as much as 27,000 MTU could require geologic disposal. Small amounts of high level waste from other sources will also require geologic disposal. Total disposal requirements appear to be less than 140,000 MTU. The five sites nominated for the first repository, as well as hypothetical sites in granite, the host rock under primary consideration for the second repository, all appear capable of accommodating up to 140,000 MTU

  11. Goethe's Italian Journey and the geological landscape

    Science.gov (United States)

    Coratza, Paola; Panizza, Mario

    2015-04-01

    Over 220 years ago Johann Wolfgang von Goethe undertook a nearly two-years long and fascinating journey to Italy, a destination dreamed for a long time by the great German writer. During his journey from Alps to Sicily Goethe reflects on landscape, geology, morphology of "Il Bel Paese", sometimes providing detailed descriptions and acute observations concerning the great and enduring laws by which the earth and all within it are governed. He was an observer, with the eye of the geologist and landscape painter, as he himself stated, and therefore he had a 360 degree focus on all parts of the territory. From the Brenner Pass to Sicily, Goethe reflects on landscape, contrasting morphologies, the genesis of territories, providing detailed descriptions useful for reconstructing the conditions of the territory and crops of the late 18th century. His diary is a description of the impressions he received from the country and its people, mingled with reflections upon art, science and literature. Goethe studied mineralogical and geological phenomena and drew up notes on the life of the people, the climate and the plants. On various scientific occasions and, in particular, within the framework of the Italian Association "Geologia & Turismo", of the Working Group "Geomorphosites" of the International Association of Geomorphologists and the International Year of Planet Earth, the opportunity to re-examine Goethe's travels in Italy from a geological viewpoint was recognised. In the present paper an attempt was made to reproduce the geotourism itinerary ante litteram of the writer to Italy, one of the most important tourist destination worldwide, thanks to its rich cultural and natural heritage and the outstanding aesthetic qualities of the complex natural landscape. This project was essentially conceived with a twofold purpose. First of all, an attempt was made to reproduce the journey of a great writer, as an example of description of landscape perceived and described as

  12. Infrared thermometry to schedule irrigation of common bean Termometria ao infravermelho na programação da irrigação de feijoeiro

    Directory of Open Access Journals (Sweden)

    Francisco de Almeida Lobo

    2004-02-01

    Full Text Available The objective of this work was to determine the critical irrigation time for common bean (Phaseolus vulgaris L. cv. Carioca using infrared thermometry. Five treatments were analyzed. Canopy temperature differences between plants and a well-watered control about 1, 2, 3, 4, and 5±0.5ºC were tested. Physiological variables and plant growth were analyzed to establish the best time to irrigate. There was a significant linear correlation between the index and stomatal resistance, transpiration rate, and leaf water potential. Although significant linear correlation between the index and mean values of total dry matter, absolute growth rate, and leaf area index was found, no correlation was found with other growth index like relative growth rate, net assimilation rate, and leaf area ratio. Plants irrigated when their canopy temperature was 3±0.5ºC above the control had their relative growth rate mean value increased up to 59.7%, yielding 2,260.2 kg ha-1, with a reduction of 38.0% in the amount of water used. Plants irrigated when their canopy temperature was 4±0.5ºC yielded 1,907.6 kg ha-1, although their relative growth rate mean value was 4.0% below the control. These results show that the best moment to irrigate common bean is when their canopy temperature is between 3ºC and 4±0.5ºC above the control.O objetivo deste trabalho foi determinar o momento crítico para efetuar a irrigação do feijoeiro (Phaseolus vulgaris L. cv. Carioca utilizando a termometria ao infravermelho. Foram analisados cinco tratamentos. As diferenças entre a temperatura foliar das plantas e a de um controle mantido bem irrigado testadas foram de 1, 2, 3, 4 e 5±0,5ºC. Foram analisadas variáveis fisiológicas e de crescimento para identificar o melhor momento de irrigação. Encontrou-se uma correlação linear significativa entre o índice empregado e a resistência estomática, a taxa transpiratória e o potencial hídrico foliar. Embora tenha-se verificado uma

  13. VOSGES, a long and rich geologic history

    Science.gov (United States)

    Dominique, Carteaux; Cyrille, Delangle; Sophie, Demangel

    2015-04-01

    The study of geology in scientific classes is often too theoretical and abstract for the pupils. How can teachers make the link between some samples of rocks observed in a practical class and the geologic story of the region? There's nothing better than outdoor education to establish a relationship between the rock observed in macroscopic and microscopic scale in the classroom,with the outcrop scale and the landscape scale in the field: all of them are the result of a fascinating geologic history.Our pupils are lucky enough to live at the heart of a modest mountain massif that has a very rich geologic story: the massif from Vosges situated in the east of France. During two expeditions we show the students all the following tectonic processes: Accretion at the scale of the landscape with the Rhenish Ditch (tectonic and volcanic markers) Obductionis observed due to ophiolites found in the massive of Thalhorn (peridotite, gabbro and sedimentary marine rocks of great depth). Collisionis illuminated with numerous sites like the schists of Steige, the phyllite of Villé, the gneisses of Climont. Subductionis captured bystudying the outcrops of magmatic rocks within the continental crust (andesite, diorite, granodiorite). At each of the stops we have the students, from a hand sample, to findits story in a more global context. So the theory becomes reality. A study of thin slides of rocks observed on the ground finishes these exits and so various scales of understanding are approached. The long and rich geologic history of Vosges maybe reconstituted on hundreds of million years, allowing certainly giving another aspect to the living environment of our pupils.

  14. Charles Lyell and scientific thinking in geology

    Science.gov (United States)

    Virgili, Carmina

    2007-07-01

    Charles Lyell (1797-1875) was born at Kinnordy, Scotland. His father, an amateur botanist, and his grandfather, a navigator, gave him very soon a taste for the observation of the Nature. He went to the Oxford University to study classical literature, but he also followed the geological course of William Buckland. After having been employed as jurist for some years, in 1827 he decided on a career of geologist and held the chair of geology of the King's College of London, from 1831 on. He was a contemporary of Cuvier, Darwin, von Humboldt, Hutton, Lavoisier, and was elected 'membre correspondant' of the 'Académie des sciences, France', in January 1862. Charles Lyell is one of the eminent geologists who initiated the scientific thinking in geology, in which his famous volumes of the Principles of Geology were taken as the authority. These reference volumes are based on multiple observations and field works collected during numerous fieldtrips in western Europe (principally Spain, France, and Italy) and North America. To his name are attached, among others: ( i) the concept of uniformitarism (or actualism), which was opposed to the famous catastrophism, in vogue at that time, and which may be summarized by the expression "The present is the key to the past"; ( ii) the division of the Tertiary in three series denominated Eocene, Miocene, and Pliocene, due to the study of the age of strata by fossil faunas; ( iii) the theory according to which the orogenesis of a mountain chain, as the Pyrenees, results from different pulsations on very long time scales and was not induced by a unique pulsation during a short and intense period. The uniformity of the laws of Nature is undeniably a principle Charles Lyell was the first to state clearly and to apply to the study of the whole Earth's crust, which opened a new era in geology.

  15. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    Science.gov (United States)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  16. Economic geology of the Bingham mining district, Utah, with a section on areal geology, and an introduction on general geology

    Science.gov (United States)

    Boutwell, J.M.; Keith, Arthur; Emmons, S.F.

    1905-01-01

    The field work of which this report represents the final results was first undertaken in the summer of the year 1900. This district had long been selected by the writer as worthy of special economic investigation, as well on account of the importance of its products as because of its geological structure and the peculiar relations of its ore deposits. It was not, however, until the summer mentioned above that the means at the disposal of the Survey, both pecuniary and scientific, justified its undertaking. As originally planned, the areal or surface geology was to have been worked out by Mr. Keith, who had already spent many years in unraveling the complicated geological structure of the Appalachian province, while Mr. Boutwell, who had more recently become attached to the Survey, was to have charge of the underground geology, or a study of the ore deposits, under the immediate supervision of the writer. When the time came for actually taking the field, it was found that the pressure of other work would not permit Mr. Keith to carry out fully the part allotted to him, and in consequence a part of his field work has fallen to Mr. Boutwell. Field work was commenced by the writer and Mr. Boutwell early in July, 1900. Mr. Keith joined the party on August 10, but was obliged to leave for other duties early in September. Mr. Boutwell carried on his field work continuously from July until December, taking up underground work after the snowfall had rendered work on the surface geology impracticable. The geological structure had proved to be unexpectedly intricate and complicated, so that, on the opening of the field season of 1901, it was found necessary to make further study in the light of results already worked out, and Mr. Boutwell spent some weeks in the district in the early summer of 1901. His field work that year, partly in California and partly in Arizona, as assistant to Mr. Waldemar Lindgren, lasted through the summer and winter and well into the spring of 1902

  17. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  18. Database system of geological information for geological evaluation base of NPP sites(I)

    International Nuclear Information System (INIS)

    Lim, C. B.; Choi, K. R.; Sim, T. M.; No, M. H.; Lee, H. W.; Kim, T. K.; Lim, Y. S.; Hwang, S. K.

    2002-01-01

    This study aims to provide database system for site suitability analyses of geological information and a processing program for domestic NPP site evaluation. This database system program includes MapObject provided by ESRI and Spread 3.5 OCX, and is coded with Visual Basic language. Major functions of the systematic database program includes vector and raster farmat topographic maps, database design and application, geological symbol plot, the database search for the plotted geological symbol, and so on. The program can also be applied in analyzing not only for lineament trends but also for statistic treatment from geologically site and laboratory information and sources in digital form and algorithm, which is usually used internationally

  19. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  20. Coral Sr-U Thermometry

    Science.gov (United States)

    DeCarlo, T. M.; Gaetani, G. A.; Cohen, A. L.; Foster, G. L.; Alpert, A.; Stewart, J.

    2016-12-01

    Coral skeletons archive the past two millennia of climate variability in the oceans with unrivaled temporal resolution. However, extracting accurate temperature information from coral skeletons is confounded by "vital effects", which often override the temperature dependence of geochemical proxies. Here, we present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. We conducted laboratory experiments to test the temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater, and we modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, Sr-U. We tested the model predictions with measured Sr/Ca and U/Ca ratios of fourteen Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. We calibrated Sr-U to instrumental temperature records and found that it captures 93% of mean annual variability (26-30 °C) and predicts temperature within 0.5 °C (1 σ). Conversely, Sr/Ca alone has an error of prediction of 1 °C and often diverges from observed temperature by 3 °C or more. Many of the problems afflicting Sr/Ca - including offsets among neighboring corals and decouplings from temperature during coral stress events - are reconciled by Sr-U. By accounting for the influence of the coral biomineralization process, the Sr-U thermometer may offer significantly improved reliability for reconstructing ocean temperatures from coral skeletons.

  1. Noise thermometry in nuclear reactors

    International Nuclear Information System (INIS)

    Hoewener, H.

    1985-08-01

    Since in nuclear reactors the measuring sensor cannot be easily replaced, the value of the sensor resistance, as well as the selection of transmission lines with respect to good transmission characteristics of the whole arrangement and minimizing the correlative error terms, must already be optimized when designing a noise thermometer arrangement. The TRARAU computer program was developed for this purpose enabling the influences of the lines to be computed by taking into consideration all the effects occurring through the lines, such as transmission errors and correlative error terms. In order to check the accuracy of the TRARAU computer program a series of laboratory measurements were implemented enabling both the pure transmission behaviour of the line arrangement with respect to the measuring signal to be detected, as well as the overall line error. In all cases this resulted in a very good agreement of the measured values with the computed values. The transmission behaviour of noise thermometer arrangements occuring in practice were studied with the example of two reactor experiments. In both cases it was possible to demonstrate successfully the potential of the computer program TRARAU. As the parametric studies have shown, optimum matching over unlimited band widths is not feasible in principle. By reducing the upper band limit, however, the line error can practically always be kept sufficiently small. With good matching larger band widths can also be used. (orig./HP) [de

  2. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  3. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  4. Assessment of effectiveness of geologic isolation systems: the AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.; Petrie, G.M.

    1981-02-01

    Assessment of the post-closure performance of a nuclear waste repository has two basic components: the identification and analysis of potentially disruptive sequences and the pattern of geologic events and processes causing each sequence, and the identification and analysis of the environmental consequences of radionuclide transport and interactions subsequent to disruption of a repository. The AEGIS Scenario Analysis Task is charged with identifying and analyzing potenially disruptive sequences of geologic events and processes. The Geologic Simulation Model (GSM) was developed to evaluate the geologic/hydrologic system surrounding an underground repository, and describe the phenomena that alone, or in concert, could perturb the system and possibly cause a loss of repository integrity. The AEGIS approach is described in this report. It uses an integrated series of models for repository performance analysis; the GSM for a low-resolution, long-term, comprehensive evaluation of the geologic/hydrologic system, followed by more detailed hydrogeologic, radionuclide transport, and dose models to more accurately assess the consequences of disruptive sequences selected from the GSM analyses. This approach is felt to be more cost-effective than an integrated one because the GSM can be used to estimate the likelihoods of different potentially disruptive future evolutionary developments within the geologic/hydrologic system. The more costly consequence models can then be focused on a few disruptive sequences chosen for their representativeness and effective probabilities

  5. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  6. Surficial Geologic Map of the Town of Randolph, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG10-2 Wright, S., Larsen, F., and Springston, G., 2010,�Surficial Geologic Map of the Town of Randolph, Vermont: Vermont Geological Survey...

  7. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  8. Geologic-SURFICIAL62K-Sand and gravel pits

    Data.gov (United States)

    Vermont Center for Geographic Information — The GeologicSurficial_SURFICIAL data consists of surficial geologic features as digitized from the 1:62,500 15 minute series USGS quadrangle map sheets, compiled by...

  9. Proceedings of the 14. Symposium on Geology from Northeast

    International Nuclear Information System (INIS)

    1991-01-01

    Works on geology, including topics about sedimentology, stratigraphy, paleontology, geomorphology, environmental, hydrogeology, petrology, geochemistry, geochronology, geophysics, geotectonics and structural geology are described in this symposium. (C.G.C.)

  10. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  11. Aniakchak National Monument and Preserve: Geologic resources inventory report

    Science.gov (United States)

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  12. 3. South American symposium on isotope geology. Extended abstracts

    International Nuclear Information System (INIS)

    2001-10-01

    This publication include papers in the fields on Methodology, thermochronology, and geochronology; Evolution of cratonic South America; Magmatic processes; Environmental geology, hydrogeology, isotopic stratigraphy and paleoclimatology; Economic Geology and Evolution of the Andean margin of South America

  13. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  14. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  15. Bedrock geologic map of the town of Williston, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG07-4, Kim, J., Gale, M., Thompson, P.J. and Derman, K., 2007, Bedrock geologic map of the town of Williston, Vermont: Vermont Geological Survey...

  16. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  17. Does geology help in the final disposal of radioactive wastes?

    International Nuclear Information System (INIS)

    Schaer, U.

    1987-01-01

    High-level radioactive wastes have to be stored safely for thousands of years in deep geological formations. The question discussed is whether or not a geological prognosis over this span of time is possible. The main problem is groundwater

  18. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  19. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  20. CHUVARDINSKY’S ANTIGLACIAL (GENERALIZED GEOLOGICAL CONCEPTION

    Directory of Open Access Journals (Sweden)

    P. K. Skufyin

    2016-12-01

    Full Text Available Based on the analytical study of V. G. Chuvardinsky’s monographs on the revision of the generally accepted glacial theory, the authors of the review concluded that there was convincing evidence of a fault-tectonic origin of ‘ice-exaration’ relief of the Baltic Shield. Developed by Chuvardinsky, a radically new methodology of boulder prospecting of ore deposits not only refuted the old glacial theory, but also led to the discovery of copper-nickel deposits, a new apatite alkaline massif, promising manifestation of copper-nickel ore, platinum group metals, native gold, chromite and other mineral resources. A thorough drilling of ice sheets in Greenland and Antarctica for the international project determined the absence of boulder material over the entire thickness of the ice, only pulverulent and fine particles (mainly volcanic ash were found in the ice. Bottom ice layers are immobilised, their function is preservation of the geological surface. V. G. Chuvardinsky far outstripped western and Russian scientists in the field of Earth Sciences. His field studies on the Baltic Shield not only refuted the mighty glacial theory, but also created and substantiated a new geological concept instead. Professor V. Z. Negrutsa was quite right when he wrote in his review on Chuvardinsky’s work (journal Geomorfologiya, 2003, no. 1, ‘Evidence of Chuvardinsky about tectonic origin of geological and geomorphological features traditionally associated with the Quaternary glaciation is so obvious and reproducible both by field observations and by geological modeling that is presented irrefutable and undeniable in its essence’. In general, assessing the scientific significance of V. G. Chuvardinsky’s works, it can be stated that his work would have done honour to research institutes of geological and geographical orientation according to the level of study of the geological material and the value of his field studies. His books present the material for

  1. Working towards a European Geological Data Infrastructure

    Science.gov (United States)

    van der Krogt, Rob; Hughes, Richard; Pedersen, Mikael; Serrano, Jean-Jacques; Lee, Kathryn A.; Tulstrup, Jørgen; Robida, François

    2013-04-01

    The increasing importance of geological information for policy, regulation and business needs at European and international level has been recognized by the European Parliament and the European Commission, who have called for the development of a common European geological knowledge base. The societal relevance of geoscience data/information is clear from many current issues such as shale gas exploration (including environmental impacts), the availability of critical mineral resources in a global economy, management and security with regard to geohazards (seismic, droughts, floods, ground stability), quality of (ground-)water and soil and societal responses to the impacts of climate change. The EGDI-Scope project responds to this, aiming to prepare an implementation plan for a pan-European Geological Data Infrastructure (EGDI), under the umbrella of the FP7 e- Infrastructures program. It is envisaged that the EGDI will build on geological datasets and models currently held by the European Geological Surveys at national and regional levels, and will also provide a platform for datasets generated by the large number of relevant past, ongoing and future European projects which have geological components. With European policy makers and decision makers from (international) industry as the main target groups (followed by research communities and the general public) stakeholder involvement is imperative to the successful realization and continuity of the EGDI. With these ambitions in mind, the presentation will focus on the following issues, also based on the first results and experiences of the EGDI-Scope project that started mid-2012: • The organization of stakeholder input and commitment connected to relevant 'use cases' within different thematic domains; a number of stakeholder representatives is currently involved, but the project is open to more extensive participation; • A large number of European projects relevant for data delivery to EGDI has been reviewed

  2. A Study of the Education of Geology

    Science.gov (United States)

    Berglin, R. S.; Baldridge, A. M.; Buxner, S.; Crown, D. A.

    2013-12-01

    An Evaluation and Assessment Method for Workshops in Science Education and Resources While many professional development workshops train teachers with classroom activities for students, Workshops in Science Education and Resources (WISER): Planetary Perspectives is designed to give elementary and middle school teachers the deeper knowledge necessary to be confident teaching the earth and space science content in their classrooms. Two WISER workshops, Deserts of the Solar System and Volcanoes of the Solar System, place an emphasis on participants being able to use learned knowledge to describe or 'tell the story of' a given rock. In order to understand how participants' knowledge and ability to tell the story changes with instruction, we are investigating new ways of probing the understanding of geologic processes. The study will include results from both college level geology students and teachers, focusing on their understanding of geologic processes and the rock cycle. By studying how new students process geologic information, teachers may benefit by learning how to better teach similar information. This project will help to transfer geologic knowledge to new settings and assess education theories for how people learn. Participants in this study include teachers participating in the WISER program in AZ and introductory level college students at St. Mary's College of California. Participants will be videotaped drawing out their thought process on butcher paper as they describe a given rock. When they are done, they will be asked to describe what they have put on the paper and this interview will be recorded. These techniques will be initially performed with students at St. Mary's College of California to understand how to best gather information. An evaluation of their prior knowledge and previous experience will be determined, and a code of their thought process will be recorded. The same students will complete a semester of an introductory college level Physical

  3. Some problems on remote sensing geology for uranium prospecting

    International Nuclear Information System (INIS)

    Yang Tinghuai.

    1988-01-01

    Remote sensing is a kind of very effective method which can be used in all stages of geological prospecting. Geological prospecting with remote sensing method must be based on different genetic models of ore deposits, characteristics of geology-landscape and comprehensive analysis for geophysical and geochemical data, that is, by way of conceptual model prospecting. The prospecting results based on remote sensing geology should be assessed from three aspects such as direct, indirect and potential ones

  4. Proceedings of the 7. Symposium on geology from southeastern Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents papers on the following subjects: regional geology of the proterozoic and fanerozoic, metallic and non metallic resources, tectoni-sedimentary evolution of the eastern margin Brazil basins and petroleum geology applied to the Santos, Campos and Espirito Santo basins, engineering and environmental geologies, ornamental rocks/building materials/mineral waters/industrial ores

  5. 36 CFR 902.59 - Geological and geophysical information.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  6. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  7. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  8. 10 CFR 51.67 - Environmental information concerning geologic repositories.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental information concerning geologic repositories... information concerning geologic repositories. (a) In lieu of an environmental report, the Department of Energy... connection with any geologic repository developed under Subtitle A of Title I, or under Title IV, of the...

  9. Predictive geology in nuclear-waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1982-01-01

    The present situation at a specific site on the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes of the minimum average spacing of conductive zones in subsurface rocks of low-hydraulic conductivity, is based on a combination of the binomial and Poisson distributions, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attention is given to the preservation of tectonic blocks of large rock volumes with low-hydraulic conductivity throughout the present cratonic stage, whereas intermittent movement can be traced in marked fault zones bordering the Shield and three different orogenies affected the surrounding regions. Rock mechanical, stochastic, and deterministic approaches are utilized to predict future effects from this basis. (author)

  10. Geology of Joshua Tree National Park geodatabase

    Science.gov (United States)

    Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.

    2015-09-16

    The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges

  11. Geology and coal potential of Somaliland

    Energy Technology Data Exchange (ETDEWEB)

    M.Y. Ali [Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-07-01

    Geological field mapping along with available geological and drilling data suggest that Somaliland (Northwestern Somalia) has favourable stratigraphy and structure for coal deposits. Lignitic to sub-bituminous coal deposits with ages from Jurassic to Oligocene-Miocene occur in various locations across the country including Hed-Hed valley south of Onkhor, Guveneh hills north of Las Dureh and Daban Basin southeast of Berbera. However, the coal occurrence at Hed-Hed has both the greatest thickness and highest quality. These deposits have the potential to provide an important alternative fuel resource which could alleviate the growing shortage of traditional fuels and assist in reducing the country's dependence on imported energy. However, further investigation, including drilling and laboratory analyses, still needs to be carried out, particularly on the Upper Cretaceous coal seams to evaluate the quality and resource potential of the deposits.

  12. Uranium ore deposits: geology and processing implications

    International Nuclear Information System (INIS)

    Belyk, C.L.

    2010-01-01

    There are fifteen accepted types of uranium ore deposits and at least forty subtypes readily identified around the world. Each deposit type has a unique set of geological characteristics which may also result in unique processing implications. Primary uranium production in the past decade has predominantly come from only a few of these deposit types including: unconformity, sandstone, calcrete, intrusive, breccia complex and volcanic ones. Processing implications can vary widely between and within the different geological models. Some key characteristics of uranium deposits that may have processing implications include: ore grade, uranium and gangue mineralogy, ore hardness, porosity, uranium mineral morphology and carbon content. Processing difficulties may occur as a result of one or more of these characteristics. In order to meet future uranium demand, it is imperative that innovative processing approaches and new technological advances be developed in order that many of the marginally economic traditional and uneconomic non-traditional uranium ore deposits can be exploited. (author)

  13. Geological-genetic classification for uranium deposits

    International Nuclear Information System (INIS)

    Terentiev, V.M.; Naumov, S.S.

    1997-01-01

    The paper describes a system for classification uranium deposits based on geological and genetic characteristics. The system is based on the interrelation and interdependence of uranium ore formation processes and other geological phenomena including sedimentation, magmatism and tectonics, as well as the evolution of geotectonic structures. Using these aspects, deposits are classified in three categories: endogenic - predominately hydrothermal and hydrothermal-metasomatic; exogenic - sedimentary diagenetic, biogenic sorption, and infiltrational; and polygenetic or composite types. The latter complex types includes: sedimentary/metamorphic and metamorphic and sedimentary/hydrothermal, where different ore generating processes have prevailed over a rock unit at different times. The 3 page classification is given in both the English and Russian languages. (author). 3 tabs

  14. The Geologic Story of the Uinta Mountains

    Science.gov (United States)

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  15. Mined Geologic Disposal System Requirements Document

    International Nuclear Information System (INIS)

    1993-01-01

    This Mined Geologic Disposal System Requirements document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) and commercial and defense high level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The development and control of the MGDS-RD is quality-affecting work and is subject to the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements Document (QARD). As part of the technical requirements baseline, it is also subject to Baseline Management Plan controls. The MGDS-RD and the other program-level requirements documents have been prepared and managed in accordance with the Technical Document Preparation Plan (TDPP) for the Preparation of System Requirements Documents

  16. The need for the geologic hazard analysis

    International Nuclear Information System (INIS)

    Mingarro, E.

    1984-01-01

    The parameters which are considered in the hazard analysis associated with the movements of the Earth Crust are considered. These movements are classified as: fast movements or seismic movements, which are produced in a certain geologic moment at a speed measured in cm/sg, and slow movements or secular movements, which take place within a long span of time at a speed measured by cm/year. The relations space/time are established after Poisson and Gumbel's probabilistic models. Their application is analyzed according to the structural gradient fields, which fall within Matteron's geostatistics studies. These statistic criteria should be analyzed or checked up in each geo-tectonic environment. This allows the definition of neotectonic and seismogenetic zones, because it is only in these zones where the probabilistic or deterministic criteria can be applied to evaluate the hazard and vulnerability, that is, to know the geologic hazard of every ''Uniform'' piece of the Earth Crust. (author)

  17. Predictive geology in nuclear waste management

    International Nuclear Information System (INIS)

    Brotzen, O.

    1980-07-01

    The present situation at a specific site in the Baltic Shield is viewed in the light of its geologic history. Prediction, at a given level of confidence and from a limited number of drillholes, of the minimum average spacing of conductive zones in subsurface rocks of low hydraulic conductivity is based on a combination of the binomial and Poisson distribution, regarding the holes as a profile sampling and assuming a cubic pattern of fractures. The data provide an empirical basis for linking the nature and frequency of past geologic events to their local effects. Special attenetion is given to the preservation of tectonic blocks of large rock-volumes with very low hydraulic conductivity throughout the present cratonic stage, during which intermittent movement took place in marked fault-zones bordering the Shield, and three different orogenies affected the surrounding regions. Rock-mechanical, stochastic and deterministic approaches are utilized to predict future effects from this basis. (Author)

  18. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  19. Signed distance function implicit geologic modeling

    Directory of Open Access Journals (Sweden)

    Roberto Mentzingen Rolo

    Full Text Available Abstract Prior to every geostatistical estimation or simulation study there is a need for delimiting the geologic domains of the deposit, which is traditionally done manually by a geomodeler in a laborious, time consuming and subjective process. For this reason, novel techniques referred to as implicit modelling have appeared. These techniques provide algorithms that replace the manual digitization process of the traditional methods by some form of automatic procedure. This paper covers a few well established implicit methods currently available with special attention to the signed distance function methodology. A case study based on a real dataset was performed and its applicability discussed. Although it did not replace an experienced geomodeler, the method proved to be capable in creating semi-automatic geological models from the sampling data, especially in the early stages of exploration.

  20. Natural climate variations in a geological perspective

    International Nuclear Information System (INIS)

    Mikkelsen, N.; Kuijpers, A.

    2001-01-01

    The climate is constantly changing, and it has been changing throughout the geological history of the Earth. These natural changes have shown a variability with frequencies from millions of years to just a few hundreds or tens of years. Some of the variations have been rather dramatic - shifting from globally uniform and hot climates to regular ice ages - whereas other changes have been less spectacular. All natural climate variations have an impact on the physical and biological systems of the Earth - and on mankind and culture during the last hundred thousand years. In this chapter we shall discuss the natural climate changes that has taken place during the geological history of the Earth and comment on the impact of these changes on the cultural evolution of mankind with special emphasis on Greenland. (LN)

  1. A new classification of geological resources

    International Nuclear Information System (INIS)

    Mata Perello, Josep M; Mata Lleonart, Roger; Vintro Sanchez, Carla

    2011-01-01

    The traditional definition of the geological resource term excludes all those elements or processes of the physical environment that show a scientific, didactic, or cultural interest, but do not offer, in principle, an economic potential. The so called cultural geo-resources have traditionally not been included within a classification that puts them in the same hierarchical and semantic ranking than the rest of the resources, and there has been no attempt to define a classification of these resources under a more didactic and modern perspective. Hence, in order to catalogue all those geological elements that show a cultural, patrimonial, scientific, or didactic interest as a resource, this paper proposes a new classification in which geo-resources stand in the same hierarchical and semantic ranking than the rest of the resources traditionally catalogued as such.

  2. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  3. Worldwide databases in marine geology: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    such as image capturing, multimedia and geographic information system (GIS) should be utilized. Information managers need to collaborate with subject experts in order to maintain the high quality of the databases. 1. Introduction With the advent of computer...-DOS and Macintosh $ 56 MS-DOS P. D. KunteJMarine Geology 122 (1995) 263-275 coordination between the information providers and management centres. Within the databases there is no uniformity in the structure, storage and operating systems. Every producer...

  4. Thermal loading effects on geological disposal

    International Nuclear Information System (INIS)

    Come, B.; Venet, P.

    1984-01-01

    A joint study on the thermal loading effects on geological disposal was carried out within the European Community Programme on Management and Storage of Radioactive Waste by several laboratories in Belgium, France and the Federal Republic of Germany. The purpose of the work was to review the thermal effects induced by the geological disposal of high-level wastes and to assess their consequences on the 'admissible thermal loading' and on waste management in general. Three parallel studies dealt separately with the three geological media being considered for HLW disposal within the CEC programme: granite (leadership: Commissariat a l'energie atomique (CEA), France), salt (leadership: Gesellschaft fuer Strahlen- und Umweltforschung (GSF), Federal Republic of Germany), and clay (leadership: Centre d'etude de l'energie nucleaire (CEN/SCK), Belgium). The studies were based on the following items: only vitrified high-level radioactive waste was considered; the multi-barrier confinement concept was assumed (waste glass, container (with or without overpack), buffer material, rock formation); the disposal was foreseen in a deep mined repository, in an 'in-land' geological formation; only normal situations and processes were covered, no 'accident' scenario being taken into account. Although reasonably representative of a wide variety of situations, the data collected and the results obtained are generic for granite, formation-specific for salt (i.e. related to the north German Zechstein salt formation), and site-specific for clay (i.e. concentrated on the Boom clay layer at the Mol site, Belgium). For each rock type, realistic temperature limits were set, taking into account heat propagation, thermo-mechanical effects inside the rock formations, induced or modified groundwater or brine movement, effects on the buffer material as well as effects on the waste glass and canister, and finally, nuclide transport

  5. Sicily in its Mediterranean geological frame

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, P.

    2016-10-01

    The Island of Sicily is generally considered to be the geological link between the North African Fold Belt and the Appennines, in Italy. This comes from a cylindristic meaning and is only partly exact. As a matter of fact, Sicily is essentially Greek; Ionian. Up to Middle Cretaceous time, the Sicilian area was a submerged shoal in the sea or the Panormide area, bordering the Ionian Ocean. This shoal lay between the future North African Fold Belt and the Appennines, forming an intermediate link between the Appenninic, Apulian, Panormian and Tunisian platforms. It was only during the Middle to Upper Cretaceous that the Atlantic and Ligure Oceans merged, making a continuous relationship between the Appenninic, Sicilian and North African sedimentary series. The key time periods are the Permian, Cretaceous and Oligo-Miocene periods leading to the formation of the actual Calabro-Sicilian arc. From the Permian to the present, the Sicilian geological history pertains to three oceanic domains: Ionian, Ligurian and Atlantic, of which the Ionian and Ligurian were under the influence of Tethys (Neo and Paleo-Tethys). The Tethysian identity of Sicily constitutes the major aspect of its geological history. However, the European and African plate tectonic movements complicated its structure. During the Middle Miocene subduction, southern Sicily became African, meanwhile its north-eastern part became, in Pliocene time, Maghrebian by accretion. Sicily is thus a truly geological patchwork, but its main section remains Ionian and now constitutes a link between North Africa and the Appennines. With older data, but also by means of recent results, we will replace Sicily in its Mediterranean frame, giving the mean stages of its paleogeographical and then its tectonic evolution. We will review the calabro-sicilian arc evolution from the Oligocene, developing the actual context and recalling the main fundamental play of the Numidian flysch. (Author)

  6. Mathematical geology studies of deposit prospect types

    International Nuclear Information System (INIS)

    Liu Guangping

    1998-08-01

    Exact certainty prospect type of uranium deposit, not only can assure the quality of deposit prospects, but also increase economic benefits. Based on the standard of geological prospect of uranium deposit, the author introduces a method of Fuzzy Synthetical Comment for dividing prospect type of uranium deposit. The practical applications demonstrate that the regression accuracy, discriminated by Zadeh operator, of 15 known deposits is 100%

  7. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant. As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, on January 17-18, 1980. On the basis of the January conference and the June field trip, EEG has formed the following conclusions: (1) it has not been clearly established that the site or the surrounding area has been attacked by deep dissolution to render it unsuitable for the nuclear waste pilot repository; (2) the existence of an isolated breccia pipe at the site unaccompanied by a deep dissolution wedge, is a very remote possibility; (3) more specific information about the origin and the nature of the brine reservoirs is needed. An important question that should be resolved is whether each encounter with artesian brine represents a separate pocket or whether these occurrences are interconnected; (4) Anderson has postulated a major tectonic fault or a fracture system at the Basin margin along the San Simon Swale; (5) the area in the northern part of the WIPP site, identified from geophysical and bore hole data as the disturbed zone, should be further investigated to cleary understand the nature and significance of this structural anomaly; and (6) a major drawback encountered during the discussions of geological issues related to the WIPP site is the absence of published material that brings together all the known information related to a particular issue

  8. Processing of space images and geologic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, V S

    1981-01-01

    Using data for standard sections, a correlation was established between natural formations in geologic/geophysical dimensions and the form they take in the imaging. With computer processing, important data can be derived from the image. Use of the above correlations has allowed to make a number of preliminary classifications of tectonic structures, and to determine certain ongoing processes in the given section. The derived data may be used for search of useful minerals.

  9. Mine layout, geological features and seismic hazard.

    CSIR Research Space (South Africa)

    Van Aswegen, G

    1993-01-01

    Full Text Available – Applied Structure Stability Analysis .................................................27 4.2. Modelled System Stiffness ...........................................................................................28 4.2.1. Instability and System Stiffness... with the potential for large(r) dynamic rockmass instability in response to deep level mining, e.g.: • tectonic stresses, depth, mechanical strength of intact rock, • the existence and the frequency of intermediate and larger geological features, specifically...

  10. Russian geological education in the world market (the case of Russian State Geological Prospecting University

    Directory of Open Access Journals (Sweden)

    Vasily Ivanovich Lisov

    2016-12-01

    Full Text Available Higher geological education in Russia and in MSGPI-RSGPU specific. It - engineering. The mineral deposits determine the development of the global industry and foreign trade. Growing global demand for the profession of geologists and mining engineers. Training of foreign students in Russia has its own geopolitical and economic importance. In Russia a strong resource-based economy. It attracts students from developing countries. MGRI-RSGPU is the leading universities training specialists for mining. The article presents data about the University and types of education. Shown scientific and educational problems in higher education. This article discusses the prospects for the promotion of Russian higher geological education at the world market of educational services. The increasing role of new scientific and technological achievements in mining, enhanced environmental as well as staff requirements is revealed. Given that the leading schools in the mining industry, in addition to Russia, are formed in Canada, Germany, USA, Australia, Great Britain, many developing countries rich in natural resources, have begun to form their own national centers for training in this area. Under such competitive conditions Russian geological education maintains its own niche. Recognition of this is the active participation of Russian universities in the creation and development of the World Forum of sustainable development of mineral universities (WFURS, described in the article. The main factors of competitiveness that led to leading positions of Russian State Geological Prospecting University in system of the Russian geological education are described. Particular attention is paid to the international activities of Russian higher educational institutions including Geological Prospecting University. The basic statistics (both in the context of the country, and in the field of foreign undergraduate and graduate students enrolled at this university is provided. The

  11. Geological events in submerged areas: attributes and standards in the EMODnet Geology Project

    Science.gov (United States)

    Fiorentino, A.; Battaglini, L.; D'Angelo, S.

    2017-12-01

    EMODnet Geology is a European Project which promotes the collection and harmonization of marine geological data mapped by various national and regional mapping projects and recovered in the literature, in order to make them freely available through a web portal. Among the several features considered within the Project, "Geological events and probabilities" include submarine landslides, earthquakes, volcanic centers, tsunamis, fluid emissions and Quaternary faults in European Seas. Due to the different geological settings of European sea areas it was necessary to elaborate a comprehensive and detailed pattern of Attributes for the different features in order to represent the diverse characteristics of each occurrence. Datasets consist of shapefiles representing each event at 1:250,000 scale. The elaboration of guidelines to compile the shapefiles and attribute tables was aimed at identifying parameters that should be used to characterize events and any additional relevant information. Particular attention has been devoted to the definition of the Attribute table in order to achieve the best degree of harmonization and standardization according to the European INSPIRE Directive. One of the main objectives is the interoperability of data, in order to offer more complete, error-free and reliable information and to facilitate exchange and re-use of data even between non-homogeneous systems. Metadata and available information collected during the Project is displayed on the Portal (http://www.emodnet-geology.eu/) as polygons, lines and points layers according to their geometry. By combining all these data it might be possible to elaborate additional thematic maps which could support further research as well as land planning and management. A possible application is being experimented by the Geological Survey of Italy - ISPRA which, in cooperation with other Italian institutions contributing to EMODnet Geology, is working at the production of an update for submerged areas

  12. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  13. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  14. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  15. Geological problems in radioactive waste isolation

    International Nuclear Information System (INIS)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, ''Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately

  16. Environmental geology of Nampo, Puyo, Sochon, Hamyol

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Han, Dae Suk; Kim, Yoon Jong; Yu, Il Hyun; Lee, Bong Joo; Jeong, Gyo Cheol; Kim, Kyeong Su [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    An environmental geology map at a scale of 1:100,000 was produced to provide information on land use potential within the area of over 1,300 km{sup 2} consisting of Nampo, Puyo , Sochon and Hamyol. Land use potentiality was quantitatively assigned in accordance with the environmental geologic index(EI) derived from such factors as landslide frequency, engineering geological unit, topography and density of lineament length, being classified into 4 units. Also produced was a landslide susceptibility map at the same scale as the above map, showing five different grades of susceptibility based on hazard index(HI). Besides the above mentioned mapping, an investigation on the soils, rocks and natural aggregates throughout the study area was undertaken to assess their utilization potential as construction materials. Also carried out were the analysis of erosion and sedimentation in/around the Keum river, a geotechnical engineering investigation on the reclaimed tidal zone south of the Taechon beach, and the stability analysis of the cut slopes along the national roads. All the results of the investigations and analyses are presented in the paper. It is expected that the maps and accompanying information could be utilized in formulating regional land-use planning for variable projects. (author). 51 refs., 60 figs., 62 tabs., 3 maps.

  17. Submarine geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hollister, C.D.; Corliss, B.H.; Anderson, D.R.

    1980-01-01

    Site suitability characteristics of submarine geological formations for the disposal of radioactive wastes include the distribution coefficient of the host medium, permeability, viscoelastic nature of the sediments, influence of organic material on remobilization, and effects of thermal stress. The submarine geological formation that appears to best satisfy these criteria is abyssal ''red'' clay. Regions in the ocean that have coarse-grained deposits, high or variable thermal conductivity, high organic carbon content, and sediment thickness of less than 50 m are not being considered at this time. The optimum geological environment should be tranquil and have environmental predictability over a minimum of 10 5 years. Site selection activities for the North Atlantic and North Pacific are reviewed and future activities which include international cooperation are discussed. A paleoenvironmental model for Cenozoic sedimentation in the central North Pacific is presented based on studies of a long core from the Mid-Plate Gyre MPG-1 area, and is an example of the type of study that will be carried out in other seabed study areas. The data show that the MPG-1 region has been an area of slow, continuous accumulation during the past 65 million years. (author)

  18. Geologic distributions of US oil and gas

    International Nuclear Information System (INIS)

    1992-01-01

    This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail than has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study

  19. Geological problems in radioactive waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A. (ed.)

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  20. A Geospatial Information Grid Framework for Geological Survey.

    Science.gov (United States)

    Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong

    2015-01-01

    The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.

  1. Preliminary geological suitability assessment for LILW disposal

    International Nuclear Information System (INIS)

    Tomse, P.; Mele, I.

    2001-01-01

    Due to the growing need for a final disposal of LILW, the final solution for the short-lived LILW is the key issue of radioactive waste management in Slovenia at the moment. ARAO - the Slovenian Agency for Radwaste Management - is intensely involved in the re-initiated site selection process for a LILW repository. In this new process we are trying to combine as best as possible the technical, geologically-led and the advocacy-site selection processes. By a combination of technical and volunteer approach to the site selection we wish to guarantee high public involvement and sufficient flexibility of the process to adapt to specific conditions or new circumstances while the project is ongoing. In the technical phase, our tendency is to retain a larger number of potential areas/sites. We also keep open the possibility of choosing the type of repository. The decision between the surface and underground option will be made only once the site has been defined. In accordance with the IAEA recommendations the site selection process is divided into four stages: the conceptual and planning stage, area survey stage, site characterisation stage and site confirmation stage. Last year the area survey stage was started. In the preliminary geological suitability assessment the required natural predisposition of Slovene territory was assessed in order to locate geologically suitable formations. The assessment of natural conditions of the system was based on consideration of the main geological, hydro-geological and seismotectonic conditions. It was performed with ARC/INFO technology. The results are compiled in a map, showing potential areas for underground and surface disposal of LILW in Slovenia. It has been established that there is a potential suitability for both surface and underground disposal on about 10 000 km 2 of the Slovenian territory, which represents almost half of the entire Slovenian territory. These preliminary results are now being carefully re-examined. As an

  2. Digital Geological Mapping for Earth Science Students

    Science.gov (United States)

    England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm

    2010-05-01

    This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the

  3. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  4. Study on radon geological potential of Beijing city

    International Nuclear Information System (INIS)

    Liu Qingcheng; Wu Xinmin; Liu Yujuan; Yang Yaxin; Zhang Ye

    2009-01-01

    According to elemental geochemistry in Beijing, the uranium content in the area was measured, and distribution of radon concentration was predicted. Based on the uranium-radium equilibrium coefficient, porosity and diffusion coefficient, which were either measured or calculated, the radon geological potential of Beijing city was studied using γ-ray spectroscopy or mass spectroscopy and certain models were used to calculate the relation between radon geological potential and lithology and geological structure. The results showed that radon geological potential of Beijing city could be divided into four zones, tend of every zone coincides with the main structure, and the potential values nearly relate with geological factors. (authors)

  5. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  6. Geological and geotechnical limitations of radioactive waste retrievability in geologic disposals

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon-Vargas, Rocio; Mintzlaff, Volker; Treidler, Ann-Kathrin [TU Braunschweig (Germany). Inst. for Soil Mechanics and Foundation Engineering

    2015-07-01

    The capability of retrieving radioactive waste emplaced in deep geological formations is nowadays in discussion in many countries. Based on the storage of high-level radioactive waste (HAW) in deep geological repositories there is a number of possible scenarios for their retrieval. Measurements for an improved retrieving capability may impact on the geotechnical and geological barriers, e.g. keeping open the access drifts for a long period of time can result in a bigger evacuation damage zone (EDZ) in the host rock which implies potential flow paths for ground water. Nevertheless, to limit the possible scenarios associated to the retrieval implementation, it is necessary to take in consideration which criteria will be used for an efficient monitoring program, while clearly determining the performance reliability of the geotechnical barriers. In addition, the integrity of the host rock as geological barrier has to be verified. Therefore, it is important to evaluate different design solutions and the most appropriate measurement methods to improve the retrievability process of wastes from a geological repository. A short presentation of the host rocks is given is this paper.

  7. Engineering Geological Conditions of the Ignalina NPP Region

    International Nuclear Information System (INIS)

    Buceviciute, S.

    1996-01-01

    During engineering geological mapping, the upper part (to 15-20 m depths) of the lithosphere was investigated at the Ignalina Nuclear Power Plant (INPP) for physical rock characteristics and recent exogenic geological processes and phenomena. The final result of engineering geological mapping was the division of the area into engineering geological regions. In this case five engineering geological regions have been distinguished. The Fig. shows a scheme of engineering geological regionalization of the area and the typical sections of the engineering geological regions. The sections show genesis, age, soil type, thickness of stratigraphic genetical complex for the rocks occurring in the zone of active effect of engineering buildings, as well as the conical strength and density of the distinguished soils. 1 fig., 1 tab

  8. Geology and development: proceedings of the 40. Brazilian congress on geology; EXPOGEO 98 - Brazilian exposition of Geology. Abstracts

    International Nuclear Information System (INIS)

    1998-01-01

    The proceedings of the 40. Brazilian Congress on Geology register relevant papers on the nuclear and energy areas. The papers devoted to the nuclear area covers the following subjects: geochronology; stratigraphy; geochemistry; age estimation; isotope dating; litogeochemistry; mineralization; uranium deposits; crystallization; environmental impacts related to the uranium mines and the non nuclear mining industries; petrogenesis; paleoclimatology; natural radioactivity; spectrometry; and the uranium extraction. The articles on the energy area are referent to the petroleum, coal and natural gas exploration; environmental impacts related to the oil spilling; and the history and the perspectives of the petroleum exploration in Brazil

  9. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  10. Maps showing geology, oil and gas fields, and geological provinces of South America

    Science.gov (United States)

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  11. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  12. Nagra technical report 14-02, geological basics - Dossier III - Long-term geological developments

    International Nuclear Information System (INIS)

    Schnellmann, M.; Madritsch, H.

    2014-01-01

    This dossier is the third of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. Dossier III takes a look at long-term geological developments. Developments in the topography and river networks of northern Switzerland over the past five million years are looked at. Data and information derived from high-resolution models and compilations of gravel deposition, glacier developments and moraines are reviewed. Tectonic developments, seismological aspects and erosion are discussed. Their consequences for the long-term geological developments in the proposed depository areas are looked at

  13. Quaternary Magmatism in the Cascades - Geologic Perspectives

    Science.gov (United States)

    Hildreth, Wes

    2007-01-01

    Foreward The Cascade magmatic arc is a belt of Quaternary volcanoes that extends 1,250 km from Lassen Peak in northern California to Meager Mountain in Canada, above the subduction zone where the Juan de Fuca Plate plunges beneath the North American Plate. This Professional Paper presents a synthesis of the entire volcanic arc, addressing all 2,300 known Quaternary volcanoes, not just the 30 or so visually prominent peaks that comprise the volcanic skyline. Study of Cascade volcanoes goes back to the geological explorers of the late 19th century and the seminal investigations of Howel Williams in the 1920s and 1930s. However, major progress and application of modern scientific methods and instrumentation began only in the 1970s with the advent of systematic geological, geophysical, and geochemical studies of the entire arc. Initial stimulus from the USGS Geothermal Research Program was enhanced by the USGS Volcano Hazards Program following the 1980 eruption of Mount St. Helens. Together, these two USGS Programs have provided more than three decades of stable funding, staffing, and analytical support. This Professional Paper summarizes the resultant USGS data sets and integrates them with the parallel contributions of other investigators. The product is based upon an all-encompassing and definitive geological database, including chemical and isotopic analyses to characterize the rocks and geochronology to provide the critical time constraints. Until now, this massive amount of data has not been summarized, and a systematic and uniform interpretation firmly grounded in geological fact has been lacking. Herein lies the primary utility of this Cascade volume. It not only will be the mandatory starting point for new workers, but also will provide essential geological context to broaden the perspectives of current investigators of specific Cascade volcanoes. Wes Hildreth's insightful understanding of volcanic processes and his uncompromising scientific integrity make him

  14. Desert wetlands in the geologic record

    Science.gov (United States)

    Pigati, Jeff S.; Rech, Jason A.; Quade, Jay; Bright, Jordon; Edwards, L.; Springer, A.

    2014-01-01

    Desert wetlands support flora and fauna in a variety of hydrologic settings, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Over time, eolian, alluvial, and fluvial sediments become trapped in these settings by a combination of wet ground conditions and dense plant cover. The result is a unique combination of clastic sediments, chemical precipitates, and organic matter that is preserved in the geologic record as ground-water discharge (GWD) deposits. GWD deposits contain information on the timing and magnitude of past changes in water-table levels and, therefore, are a potential source of paleohydrologic and paleoclimatic information. In addition, they can be important archeological and paleontological archives because desert wetlands provide reliable sources of fresh water, and thus act as focal points for human and faunal activities, in some of the world's harshest and driest lands. Here, we review some of the physical, sedimentological, and geochemical characteristics common to GWD deposits, and provide a contextual framework that researchers can use to identify and interpret geologic deposits associated with desert wetlands. We discuss several lines of evidence used to differentiate GWD deposits from lake deposits (they are commonly confused), and examine how various types of microbiota and depositional facies aid in reconstructing past environmental and hydrologic conditions. We also review how late Quaternary GWD deposits are dated, as well as methods used to investigate desert wetlands deeper in geologic time. We end by evaluating the strengths and limitations of hydrologic and climatic records derived from GWD deposits, and suggest several avenues of potential future research to further develop and utilize these unique and complex systems.

  15. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  16. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  17. INTURGEO: The international uranium geology information system

    International Nuclear Information System (INIS)

    1988-09-01

    The International Uranium Geology Information System (INTURGEO) is an international compilation of data on uranium deposits and occurrences. The purpose of INTURGEO is to provide a clearinghouse for uranium geological information that can serve for the better understanding of the worldwide distribution of uranium occurrences and deposits. The INTURGEO system is by no means complete for all regions of the world. Data have been available principally from the WOCA countries. INTURGEO currently covers 6,089 occurrences and deposits in 96 countries of which 4,596 occurrences in 92 countries are presented here. The information presented in this publication is a very brief, one line synopsis of deposits and occurrences, and has been collected from literature and through questionnaires sent directly to IAEA Member States. None of the information contained in the INTURGEO database was derived from confidential sources although there are many entries which come from the internal files of Member States and are not directly available in the general literature. The uniformity of the INTURGEO data presented in this report has depended heavily on the data provided by Member States. Basic information includes the deposit or occurrence name, the mining district, the tectonic setting, the geological type, status, size, host-rock type, age of mineralization and bibliographic references. The data contained in the maps of the atlas include all reported occurrences of uranium above the anomaly level. The categories of occurrence and deposit status includes: Anomaly; occurrences of unknown status; occurrences; prospects; developed prospects; subeconomic deposits; economic deposits; mines; inactive mines; depleted mines. A microcomputer version of INTURGEO on 21 Megabyte Bernoulli disks is available. 5 tabs, 102 maps

  18. Geology and radiometry of West Macedonia (Greece)

    International Nuclear Information System (INIS)

    Minatidis, Demetrios G.

    1984-10-01

    Car borne scintillometry survey in W. Macedonia (Greece) showed that the granitic rocks of the area, the zone centered on the Tertiary volcanic rocks of Almopia zone and a large part of adjacent sediments constitute the most promising geological formations for further uranium exploration. Some Tertiary volcanic rocks in the general area centered on the Aegean plate are associated with uranium mineralization and high radioactivity. An attempt has been made to evaluate young Alpine volcanic rocks from uranium exploration point of view on a regional scale by using arithmetic mean radioactivity data from the car borne survey coverage of W. Macedonia, as well as other geological and geochemical data from numerous similar volcanic rocks of the area and other neighbouring areas. In connection with this further exploration of the Tertiary volcanic rocks of W. Macedonia is expected to reveal new uranium deposits in the area. Horizontal or gently dipping sedimentary rocks adjacent to the above mentioned volcanics have a statistical radioactivity higher than that in normal sediments, a fact that may give evidence of the existence or uranium mineralization in deeper horizons in these sediments. To make a comparison with this the existence of 134 ppm of leachable U in sediments of W. Crete Island, 20 to 30 meters below the surface, is reported where the overlying sediments exhibit also a radioactivity higher than in normal sediments. Some structural contacts, in particular the contact between the granite of Florina and the limestones of Krystallopigi (west of Florina), have locally a very high radioactivity. Also an open fault in the Achlada-Papadia area (Florina) exhibits locally a high radioactivity and a high U content. All the above mentioned geological formations are, therefore, proposed for further U exploration. (author)

  19. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  20. Robust record preservation system on geological repository

    International Nuclear Information System (INIS)

    Ohuchi, J.; Torata, S.; Tsuboya, T.

    2004-01-01

    Long-term record preservation system on geological disposal of High Level Radioactive Wastes (HLW) has been investigated as the institutional control by RWMC, Japan. Geological disposal of HLW, being based on the passive safe concept, has been considered not to necessitate the human controls to maintain its long-term safety. However how to complement the safety case on geological disposal is an important issue in each countries to progress the repository program with the step-wise decisions process during the long-term period up to several hundreds years. Although we cannot predict the future society, we need to realize the robust and redundant system for preserving records, which should be accessible, retrievable and understandable for the unpredicted future generations. First of all, we held a Rome workshop in January 2003 to exchange views on the matter, resulted in the suggestion directing the discussion on the record management and long-term preservation and retrieval of information regarding radioactive waste. Second, we considered the balance of active and passive system to strengthen the robustness. Another significance of long-term record preservation is to send current generation an implicit message, 'doing our best for future generations', in addition to aiming at both warning and their own decision-making. We call it 'meta-signal' to current generation. Thirdly, we demonstrated the laser-engraving technology to have converted five hundreds pages of an A4 sized report with human readable font sizes to 42 square silicon carbide plates, 10cm x10cm and 1mm in thickness. Silicon carbide would be an alternative to paper and might be possible to be an alternative to microfilm utilized as digital recording media. Another case study is the future generations' accessibility to the preserved records. (author)