Sample records for geologic structural analysis

  1. Remote geologic structural analysis of Yucca Flat

    Foley, M.G.; Heasler, P.G.; Hoover, K.A. (Pacific Northwest Lab., Richland, WA (United States)); Rynes, N.J. (Northern Illinois Univ., De Kalb, IL (United States)); Thiessen, R.L.; Alfaro, J.L. (Washington State Univ., Pullman, WA (United States))


    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

  2. Remote geologic structural analysis of Yucca Flat

    Foley, M.G.; Heasler, P.G.; Hoover, K.A. [Pacific Northwest Lab., Richland, WA (United States); Rynes, N.J. [Northern Illinois Univ., De Kalb, IL (United States); Thiessen, R.L.; Alfaro, J.L. [Washington State Univ., Pullman, WA (United States)


    The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.


    HanJinyan; YuZhiwei


    A surface spline function is used to fit a coal seam surface in structural analysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structural analysis, especially for recognition of the concealed structures. The detection of structures related to faulting is emphasized.



    <正>20122174 Bai Daoyuan ( Institute of Geological Survey of Hunan Province,Changsha 410011,China );Jia Baohua Neoproterozoic TectonicEvolution of the Xuefeng Orogenic Zone in Hunan Province ( Sedimentary Geology and Tethyan Geology,ISSN1009-3850,CN51-1593 / P,31 ( 3 ), 2011,p.78-87,2illus.,1 table,96refs. ) Key words:structural evolution,Neoproterozoic Era,Hunan Province This paper deals,on the basis of abundant lithogeochemical and geochronologic



    <正>20130642 Bai Daoyuan (Hunan Institute of Geology Survey , Mineral Exploration and Development of Hunan Province , Changsha 410011 , China); Jia Baohua Potential Genesis of the Trending Changes of Jinning Period and Caledonian Structural Lineamens in Middle-Southern Hunan Province (Journal of Geomechanics , ISSN1006-6616 ,



    <正>20140014Deng Lin(College of Resources and Environment,Southwest Petroleum University,Chengdu 610500,China)Structural Geometry and Structural Kinematics of the Jiulongshan Structure in the North Longmenshan Mountains(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,33(1),2013,p.1-2,11,1illus.,9refs.)Key words:plate geometry,structural analysis,Longmenshan Fault Zone



    <正>20110743 Bai Bin(State Key Laboratory of Enhanced Oil Recovery,PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China);Zhou Lifa Definition of Some Unconformities in the South Margin of Junggar Basin,NW China(Petroleum Exploration and Development,ISSN1000-0747,CN11-2360/TE,37(3),2010,p.270-280,9 illus.,31 refs.)Key words:unconformities,Junggar Basin The analysis of the south margin of the Junggar Basin and the rock lithologies and attitudes of 18 field geologic sections in its adjacent area reveals that 9 regional unconformities,dominantly angular unconformities exist.The occurrence of these unconformities is justified by geophysical evidences of logging curve and seismic profile and by geochemical evidences of trace elements and rare elements in mudstone samples,sandstone



    <正>20141912Cao Hui(State Key Laboratory for Continental Tectonics and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China)Gravitational Collapse and Folding during Orogenesis:A Comparative Study of FIA Trends and Fold Axial Plane Traces(Geology in China,ISSN1000-3657,CN11-1167/P,40(6),2013,p.1818-1828,9illus.,35refs.,with



    <正>20131382 Chen Tao(Key Laboratory of Active Tectonics and Volcano,Institute of Geology,China Earthquake Administration,Beijing 100029,China);Liu Yugang The Activity Age of Tarwan Fault and Genesis of the Topographic Scarp(Seismology and Geology,ISSN0253-4967,CN11-2192/P,34(3),



    <正>20050576 Li Sanzhong (College of Marine Geosciences, Ocean University of China, Qingdao 266003,China) ; Zhou Lihong Cenozoic Faulting and Basin Formation in the Eastern North China Plate (Marine Geology & Quaternary Geology, ISSN 0256 - 1492, CN37 -1117/P, 24(3), 2004, p. 57-66, 5 illus. , 33 refs. ) Key words: tectonic framework, North China



    <正>20072338 Bai Long(Guizhou Academy of Geology Survey,Guiyang,Guizhou 550005,China);Zhang Zhen Treatment of Discovery on Ductile Shear Belts in Yiwu,Xingjiang Province and Its Ore-Forming Geology Process(Guizhou Geology,ISSN1000-5943,CN52-1059/P,23(4),2006,p.286-291,295,3 illus.,9 refs.)Key words:ductile shear zones,metallogenesis,XinjiangOf ductile shear belts,deformation fabric considerably developed in Yiwu,



    <正>20141283 Bai Daoyuan(Hunan Institute of Geological Survey,Changsha 410016,China);Zhong Xiang Nature,Origin and Tectonic Setting of Jinzhou Basin in the South Segment of Xuefeng Orogen(Geology in China,ISSN1000-3657,CN11-1167/P,40(4),2013,p.1079-1091,10 illus.,47 refs.)Key words:foreland basins,strike-slip faults,Hunan Province



    <正>20102152 Bai Daoyuan(Hunan Institute of Geology Survey,Changsha 410011,China);Zhou Kejun Study on Quaternary Tectonic-Sedimentary Evolution of Lujiao Area,East Edge of Yuanjiang Sag,Dongting Basin(Journal of Geomechanics,ISSN1006-6616,CN11-3672/P,15(4),2009,p.409-420,7 illus.,1 table,23 refs.)Key words:basins,Dongtinghu BasinQuaternary Yuanjiang sag is an eastern one of the secondary tectonic units of the Dongting Basin.Detailed geologic mapping and bore data were taken to reveal the Quaternary tectonic,sedimentary and



    <正>20110016 Cheng Shoude(Xinjiang Institute of Geology and Mineral Recources,Urumqi 830000,China);Liu Tong The Brief Description of the Division of Tectonic Units in the Five-Countries in Central Asia(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,28(1),2010,p.16-21,1 illus.,21 refs.)Key words:tectonics,tectonic units,Central Asia The Five-Countries in Central-Asia border on Xinjiang in the West China,research have been performed in this area,the gists of the division of tectonic units are different from each other and the results are different in a thousand and one ways.According as the investigations of sedimentary formation,conformation,



    <正>20082072 Chen Bailin(Institute of Geome- chanics,Chinese Academy of Geological Sci- ences,Beijing 100081,China);Wu Ganguo Baldunzl-Xiaoxigong Ductile Shear Zone and Its Ore-Controlling Effect in the Southern Beishan Area,Gansu Province (Journal of Geomeehanics,ISSN 1006—6616,CN11—3672/P,13(2),2007,p.99—109,3 illus.,4 tables,26 refs.)



    20151407 Bai Daoyuan(Hunan Institute of Geology Survey,Changsha 410016,China);Zhong Xiang Study on the Deformation in the Southern Xuefeng Orogenic Belt(Geotectonica et Metallogenia,ISSN1001-1552,CN44-1595/P,38(3),2014,p.512-529,14illus.,71refs.,with English abstract)Key words:orogenic belts,tectonic deformation,Hunan Province



    <正>20080022 Bai Daoyuan(Hunan Institute of Geology Survey,Xiangtan 411100,China);Xong Yanwang Forming Ages and Uplift Size of the Middle Kunlun Mountain--Based on Study of Plantation Surface and Apatite Fission-Track Ages(Resources Survey & Environment,ISSN1671-4814,CN32-1640/N,28(1),2007,p.5-11,4 illus.,23 refs.)

  18. Geologic spatial analysis

    Thiessen, R.L.; Eliason, J.R.


    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  19. Structural Geology of the Mosier Creek Basin

    U.S. Geological Survey, Department of the Interior — A surficial and structural geologic map (SIR-2012-5002, fig. 2) was compiled to aid in the building of the three-dimensional geologic model. The map covers 327...

  20. The topology of geology 1: Topological analysis

    Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Ogarko, Vitaliy; Wellmann, J. Florian; Pakyuz-Charrier, Evren


    Topology has been used to characterise and quantify the properties of complex systems in a diverse range of scientific domains. This study explores the concept and applications of topological analysis in geology. We have developed an automatic system for extracting first order 2D topological information from geological maps, and 3D topological information from models built with the Noddy kinematic modelling system, and equivalent analyses should be possible for other implicit modelling systems. A method is presented for describing the spatial and temporal topology of geological models using a set of adjacency relationships that can be expressed as a topology network, thematic adjacency matrix or hive diagram. We define three types of spatial topology (cellular, structural and lithological) that allow us to analyse different aspects of the geology, and then apply them to investigate the geology of the Hamersley Basin, Western Australia.

  1. Advanced Differential Radar Interferometry (A-DInSAR) as integrative tool for a structural geological analysis

    Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.


    Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.

  2. Proposed Consistency c-value for Strain Ellipsoids in Geological Structure Analysis

    林, 大五郎; Hayashi,Daigoro


    I have performed the three dimensional strain analysis of the Kayo Formation, Kunchan Group around Ban-zaki, middle north of Okinawa-jima by means of the "least square method" and "average method". The least square method was called the "strain analysis technique 3" and the average method was called the "strain analysis technique 2" in my paper (Hayashi, 1994). The results of both methods are fairly different. The "c-value" is introduced to explain the difference. The difference between the s...

  3. Structure and data consistency of a GIS database for geological risk analysis in S. Miguel Island (Azores)

    Queiroz, G.; Goulart, C.; Gaspar, J. L.; Gomes, A.; Resendes, J. P.; Marques, R.; Gonçalves, P.; Silveira, D.; Valadão, P.


    The Geographic Information Systems (GIS) are becoming a major tool in the domain of geological hazard assessment and risk mitigation. When available, hazard and vulnerability data can easily be represented in a GIS and a great diversity of risk maps can be produced following the implementation of specific predicting models. A major difficulty for those that deal with GIS is to obtain high quality, well geo-referenced and validated data. This situation is particularly evident in the scope of risk analysis due to the diversity of data that need to be considered. In order to develop a coherent database for the geological risk analysis of the Azores archipelago it was decided to use the digital maps edited in 2001 by the Instituto Geográfico do Exército de Portugal (scale 1:25000), comprising altimetry, urban areas, roads and streams network. For the particular case of S. Miguel Island the information contained in these layers was revised and rectifications were made whenever needed. Moreover basic additional layers were added to the system, including counties and parishes administrative limits, agriculture and forested areas. For detailed studies all the edifices (e.g. houses, public buildings, monuments) are being individualized and characterized taking in account several parameters that can become crucial to assess their direct vulnerability to geological hazards (e.g. type of construction, number of floors, roof stability). Geological data obtained (1) through the interpretation of historical documents, (2) during recent fieldwork campaigns (e.g. mapping of volcanic centres and associated deposits, faults, dikes, soil degassing anomalies, landslides) and (3) by the existent monitoring networks (e.g. seismic, geodetic, fluid geochemistry) are also being digitised. The acquisition, storage and maintenance of all this information following the same criteria of quality are critical to guarantee the accuracy and consistency of the GIS database through time. In this

  4. Analysis on He coal No.2 mine field geologic structure regulation%鹤煤二矿井田地质构造规律分析

    王玉放; 杜良荣


    With the increase of mining depth, mining mechanization degree enhancedt, the geological structure prediction of work put forward higher request,all the more remarkable influence on coal mining geological structure factors,through a large number of data collection,sorting,system analysis was carried out on the field geological structure development characteristics, summarized its formation mechanism, distribution rule and the geological problems affecting the mine safety and efficient production,seek the countermeasures and measures to solve these problems,the right to guide the production security has the very vital significance.%随着煤炭开采深度的增加、采掘机械化程度的提高,地质构造对煤炭开采影响因素越显突出,对地质构造的预测工作提出了更高的要求,通过大量的资料收集、整理,对井田地质构造发育特征进行系统的分析,总结其成因机制、展布规律及影响矿井安全和高效生产的地质问题,寻求解决这些问题的对策及措施,对正确指导生产保证安全具有很重要的意义。

  5. Formal representation of 3D structural geological models

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle


    The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.

  6. Development of multiple source data processing for structural analysis at a regional scale. [digital remote sensing in geology

    Carrere, Veronique


    Various image processing techniques developed for enhancement and extraction of linear features, of interest to the structural geologist, from digital remote sensing, geologic, and gravity data, are presented. These techniques include: (1) automatic detection of linear features and construction of rose diagrams from Landsat MSS data; (2) enhancement of principal structural directions using selective filters on Landsat MSS, Spacelab panchromatic, and HCMM NIR data; (3) directional filtering of Spacelab panchromatic data using Fast Fourier Transform; (4) detection of linear/elongated zones of high thermal gradient from thermal infrared data; and (5) extraction of strong gravimetric gradients from digitized Bouguer anomaly maps. Processing results can be compared to each other through the use of a geocoded database to evaluate the structural importance of each lineament according to its depth: superficial structures in the sedimentary cover, or deeper ones affecting the basement. These image processing techniques were successfully applied to achieve a better understanding of the transition between Provence and the Pyrenees structural blocks, in southeastern France, for an improved structural interpretation of the Mediterranean region.

  7. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.


    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  8. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea


    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  9. Granites petrology, structure, geological setting, and metallogeny

    Nédélec, Anne; Bowden, Peter


    Granites are emblematic rocks developed from a magma that crystallized in the Earth’s crust. They ultimately outcrop at the surface worldwide. This book, translated and updated from the original French edition Pétrologie des Granites (2011) is a modern presentation of granitic rocks from magma genesis to their crystallization at a higher level into the crust. Segregation from the source, magma ascent and shapes of granitic intrusions are also discussed, as well as the eventual formation of hybrid rocks by mingling/mixing processes and the thermomechanical aspects in country rocks around granite plutons. Modern techniques for structural studies of granites are detailed extensively. Granites are considered in their geological spatial and temporal frame, in relation with plate tectonics and Earth history from the Archaean eon. A chapter on granite metallogeny explains how elements of economic interest are concentrated during magma crystallization, and examples of Sn, Cu, F and U ore deposits are presented. Mi...

  10. Advances in Structural Geology and Tectonics in the Late 20th Century: A Review


    Based on analyses of the share of documents of structural geology and tectonics in the GeoRef system over 100 years in the last century, and the historical change of international (31 years) and domestic (16 years) document counts of various topics in structural geology and tectonics, the position of structural geology and tectonics in the geosciences is evaluated and the major advaces in fields of plate tectonics, continental dynamics and global dynamics are reviewed. Our attention mainly focuses on the advances in studies of structural analysis, deformation mechanisms and rheology of rocks,contractional tectonics and late- and post-orogenic extensional collapse in orogens, large-scale strikeslip faults and indentation-extrusion tectonics, active tectonics and natural hazards. The relationships of structural geology and tectonics with petrology and geochronology are also discussed in terms of intersection of scientific disciplines. Finally, some suggestions are proposed for the further development of structural geology and tectonics in China.

  11. A 3D analysis of spatial relationship between geological structure and groundwater profile around Kobe City, Japan: based on ARCGIS 3D Analyst.

    Shibahara, A.; Tsukamoto, H.; Kazahaya, K.; Morikawa, N.; Takahashi, M.; Takahashi, H.; Yasuhara, M.; Ohwada, M.; Oyama, Y.; Inamura, A.; Handa, H.; Nakama, J.


    Kobe city is located on the northern side of Osaka sedimentary basin, Japan, containing 1,000-2,000 m thick Quaternary sediments. After the Hanshin-Awaji Earthquake (January 17, 1995), a number of geological and geophysical surveys were conducted in this region. Then high-temperature anomaly of groundwater accompanied with high Cl concentration was detected along fault systems in this area. In addition, dissolved He in groundwater showed nearly upper mantle-like 3He/4He ratio, although there were no Quaternary volcanic activities in this region. Some recent studies have assumed that these groundwater profiles are related with geological structure because some faults and joints can function as pathways for groundwater flow, and mantle-derived water can upwell through the fault system to the ground surface. To verify these hypotheses, we established 3D geological and hydrological model around Osaka sedimentary basin. Our primary goal is to analyze spatial relationship between geological structure and groundwater profile. In the study region, a number of geological and hydrological datasets, such as boring log data, seismic profiling data, groundwater chemical profile, were reported. We converted these datasets to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. Furthermore, we projected seismic profiling data into three dimensional space and calculated distance between faults and sampling points, using Visual Basic for Applications (VBA) scripts. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer. This research project has been conducted under the research contract with the Japan Nuclear Energy Safety Organization (JNES).

  12. Improvement of seismic imaging of complex geologic structures

    Duquet, B.


    Successful imaging of complex geologic structures by pre-stack depth migration requires a correct velocity model of the subsurface. In recent years, it has been proposed to use pre-stack depth migration of the cube of pre-stack depth migrated images and the subsequent use of the interpretation for velocity model update. However, in complex geologic structures, pre-stack depth migration does not yield results of sufficient quality for interpretation. We therefore propose a new wave-field imaging technique based on linearized inversion using the paraxial approximation of the wave equation. Using this technique we can remove the artifacts contaminating the individual depth images by integrating a priori information in the inverse problem. The application of the method to synthetic and real data shows that it allows us to largely improve the quality of the depth images at reasonable cost.We thus obtain an interpretable cube of depth images that makes migration velocity analysis feasible in complex structures. In 3D, due to the size of the problem there is still a large interest in using post stack techniques for velocity model determination. The quality of the results of such techniques relies on the quality of the stacking process. Classical data stacking techniques rely on simplifications that are not valid anymore in case of complex geologic structures. We propose a data stacking technique based on depth domain stacking after pre-stack depth migration, followed by explosive reflector modeling, to obtain the stacked seismic data. This method which is totally automatic yield 3 D stacked data that are suitable for 3D post stack velocity determination techniques.

  13. Fracture analysis for engineering geological utilization

    Choi, H.I.; Choi, P.Y.; Hong, S.H.; Chi, K.H.; Kim, J.Y.; Lee, S.R.; Lee, S.G.; Park, D.W.; Han, J.G. [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)


    The problem of geological hazards (earthquakes) and water or thermal resources urges us to understand the regional tectonic setting or recent tectonics. The Uisong Subbasin is located in one of the seismicity zones in Korea. Because the reactivity of the Gaeum Fault System is an important problem focussing on these faults, we studied their whole extension and timing of faulting in terms of tectonics. Fault tectonic analysis is so effective as to easily reconstruct the tectonic sequence and each stress state at each site, eventually in a region. One can get insights for faulting timing in terms of the restored tectonic sequence, and discriminating the active faults or the faults active in the last (present) tectonics. Examining the filling materials in tension gashes, one can get raw knowledge regarding the thermal states at each site. For this study, we first analyzed the topographic textures (lineament, drainage and circular structures) on the relief map produced based on the topographic maps of 1:100,000 scale. Through investigations of susceptible area along the faults, their existence and movement modes were studied, and we can get information about movement history and whole extension of the faults belonging to the WNW-ESE trending Gaeum Fault System. In order to reconstruct the tectonic sequence, we measured fault slip data, tension gashes and dikes, from which fault populations were classified and stress (and thermal) states were determined. Seven compressional tectonic events and six extensional events were reconstructed. Because coaxial events partially coexisted, we bundled these events in one, finally we get seven tectonic events. Determining the types of minerals filling the tension gashes, we suggested the possibility of investigation of geothermal resources with less efforts. (author). 162 refs., 14 tabs., 51 figs.

  14. U.S. Geological Survey Gap Analysis Program

    U.S. Geological Survey, Department of the Interior — The Gap Analysis Program (GAP) is an element of the U.S. Geological Survey (USGS). GAP helps to implement the Department of Interior?s goals of inventory,...

  15. Point and line geologic structure information in "Structure, outcrop, and subcrop of the geologic structure information for the Arapahoe and Laramie-Fox Hills aquifers.

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set consists of points and lines representing symbolization of geologic structure information for the Arapahoe and Laramie-Fox Hills...

  16. Geologic Framework Model Analysis Model Report

    R. Clayton


    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  17. Aeromagnetic data and geological structure of continental China: A review

    Xiong, Sheng-Qing; Tong, Jing; Ding, Yan-Yun; Li, Zhan-Kui


    We review the latest aeromagnetic geological data of continental China. We discuss the latest achievements in geological mapping and the newly detected features based on aeromagnetic data. Using aeromagnetic data collected for more than 50 years, a series of 1:5000000 and 1:1000000 aeromagnetic maps of continental China were compiled using state-of-the-art digital technology, and data processing and transformation. Guided by plate tectonics and continental dynamics, rock physical properties, and magnetic anomalies, we compiled maps of the depth of the magnetic basement of continental China and the major geotectonic units, and presented newly detected geological structures based on the aeromagnetic data.

  18. Geology

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  19. Deep geological disposal system development; mechanical structural stability analysis of spent nuclear fuel disposal canister under the internal/external pressure variation

    Kwen, Y. J.; Kang, S. W.; Ha, Z. Y. [Hongik University, Seoul (Korea)


    This work constitutes a summary of the research and development work made for the design and dimensioning of the canister for nuclear fuel disposal. Since the spent nuclear fuel disposal emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for spent fuel disposal should be securred. Usually this repository is expected to locate at a depth of 500m underground. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for spent nuclear fuel disposal in a deep repository in the crystalline bedrock, which entails an evenly distributed load of hydrostatic pressure from undergroundwater and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables array type of inner baskets and thicknesses of outer shell and lid and bottom are tried to be determined through the mechanical linear structural analysis, thicknesses of outer shell is determined through the nonlinear structural analysis, and the bentonite buffer analysis for the rock movement is conducted through the of nonlinear structural analysis Also the thermal stress effect is computed for the cast iron insert. The canister types studied here are one for PWR fuel and another for CANDU fuel. 23 refs., 60 figs., 23 tabs. (Author)

  20. Research on Geological Structure Mark of Coal and Gas Outbursts in Pingdingshan Mining Area

    郭德勇; 韩德馨; 姜光杰


    Based on the study of regional displaying rules of coal and gas outburst controlled by geological structure in Pingdingshan mining area, the geological structure features in outburst sites were investigated emphatically. The combination type, orientation and least seam thickness in outburst sites were put forward. This research provides a geological mark for forecasting gas outbursts in deep mining.

  1. Application of passive seismic to shallow geological structures in urban areas

    Mendecki Maciej Jan


    Full Text Available To study the shallow geological structure the Refraction Microtremor (ReMi method was applied. This technique uses seismic noise analysis where a source of this small vibrations is the human activity e.g.: traffic, production, factories. The surveys were carried out in selected urban areas in the region of the Upper Silesian Industrial District : Sosnowiec - Pogoń , Chorzów - Chorzow Stary and Bytom - Karb. Each area is characterized by the presence of nearby roads with a very high traffic. The results of passive seismic (ReMi were confronted with data obtained using Multichannel Analysis of Surface Waves (MASW and resistivity imaging (RI. Seismic surveys were performed by apparatus PASI with 24 channels using geophones of 4.5Hz. The results showed that passive seismic can be satisfactorily used in such urban conditions. The shallow geological structure interpreted by seismic methods have been well-correlated with resistivity studies.

  2. Framework system and research flow of uncertainty in 3D geological structure models


    Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of unce...

  3. Geological Structure and History of the Arctic Ocean

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny


    New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.

  4. Auscultamiento de estructuras geológicas en la cuenca chacoparanense a partir de la aplicación de métodos potenciales Analysis of geologic structures in the Chacoparanense basin based on the application of potential methods

    M.E. Gimenez


    Full Text Available Se presenta en el área de la cuenca Chacopampeana, noroeste de Argentina, un análisis preliminar geológico - geofísico, basado en los métodos potenciales.El área de estudio se ubica hacia el noreste de la ciudad de Santiago del Estero y parte noroeste de la provincia de Chaco, entre los 25° y 27° S de latitud y 61° a 63° O de longitud. Se relevaron aproximadamente 1.000 nuevos puntos gravimétricos, que fueron agregados a la base de datos del Instituto de Física de Rosario, Universidad Nacional de Rosario y del Instituto Geofísico Sismológico Volponi, Universidad Nacional de San Juan. Con los datos obtenidos se preparó una carta de anomalías de Bouguer. La carta de anomalías, fue filtrada y procesada para separar efectos gravimétricos y se confeccionó un modelo cortical para una sección A-A´. El modelo cortical, indica la presencia de una estructura ubicada en la corteza superior. Este modelo justifica la residual de Bouguer.El área de estudio, posee características geológicas adecuadas de presencia de hidrocarburos, pero hasta el momento no se han descubierto estructuras geológicas de interés económico. En el presente estudio, mostramos una anomalía de Bouguer positiva, sin evidencias superficiales que podría interpretarse como una estructura geológica con potencial económico.A preliminary geological-geophysical analysis of the Chacopampeana area of north-eastern Argentina is presented from the application of potential field methods. The study area is located mostly in the north-east of the province of Santiago del Estero, and partly in north-west of the province of Chaco, between latitudes 25° S and 27° S and longitudes 61° W to 63° W. We obtained approximately 1,000 new gravity points, that were added to the database of the Instituto de Física de Rosario, Universidad Nacional de Rosario and of the Instituto Geofísico Sismológico Volponi, Universidad Nacional de San Juan. A Bouguer anomaly map has been

  5. Quantitative assessment of the complexity of geological structures in terms of seismic propagators


    How a wave interacts with heterogeneous media has been pursued by many geophysicists.The complexity of subsurface heterogeneities is seismologically a relative concept to wavelengths of seismic waves.A growing perception is that velocity variations,propagation angles,and computational accuracies are closely related at a variety of scales.A tentative strategy to quantitatively evaluate the complexity of subsurface heterogeneous media is presented in this article to see what scales of geological heterogeneities to be captured by waves.We express complex subsurface structures as the slowness-and angularheterogeneity spectra to quantify velocity contrasts and dipping-angle distributions of complex geological structures.On the other hand,the scaling characteristics of a propagator are measured through dispersion analysis by its angular spectra plotted against refractive indexes and propagation angles,respectively.A parameter termed as imaging efficiency is introduced by associating the geological heterogeneity spectra with the propagator’s angular spectra to understand the coherent interference between the medium’s heterogeneity and the propagator’s scaling characteristics.Furthermore,a complexity coefficient can be defined to evaluate geological complexities in terms of propagators.The application of this strategy is demonstrated to the SEG/EAEG salt model.

  6. Geologic structure in California: Three studies with ERTS-1 imagery

    Lowman, P. D., Jr.


    Results are presented of three early applications of imagery from the NASA Earth Resources Technology Satellite to geologic studies in California. In the Coast Ranges near Monterey Bay, numerous linear drainage features possibly indicating unmapped fracture zones were mapped within one week after launch of the satellite. A similar study of the Sierra Nevada near Lake Tahoe revealed many drainage features probably formed along unmapped joint or faults in granitic rocks. The third study, in the Peninsular Ranges, confirmed existence of several major faults not shown on published maps. One of these, in the Sawtooth Range, crosses in Elsinore fault without lateral offset; associated Mid-Cretaceous structures have also been traced continuously across the fault without offset. It therefore appears that displacement along the Elsinore fault has been primarily of a dip-slip nature, at least in this area, despite evidence for lateral displacement elsewhere.

  7. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image


    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  8. The stress state of geological structure and mining dynamic disaster in Fuxin basin

    HAN Jun; WANG Hai-bing; ZHU Guang-zong; LIU Ting-bo


    Further evidences show that most mining dynamic disasters are mainly occurred nearby NNE and near SN geological structures.In-situ stress measurement in Fuxin basin shows that the orientation of major compressed stress is near EW.At this stress field,geological structures with deferent strike have deferent stress state and displace mode.NNE and near SN geological structures are compressed to thrust and come into being high stress zone.NWW and NEE geological structures are tensile to separate and not prone to being low stress zone.NW structure is intervenient of them.So NEE and near SN structures are easy to occurre mining dynamic disasters and NWW and NEE structures is "safety" comparatively.The mining dynamic disaster is controlled by stress state of geologic structure,which is determined by its strike.

  9. Stochastic Simulation and Analysis of Geological Corrosion Defects in Dam Foundation

    王超; 张社荣; 于茂


    Uncertainty in geological structural modeling, especially geological corrosion(a kind of karst cave), is a bottleneck that restricts the development and application of geological computer modeling and effect estimation. To solve this issue, a stochastic modeling method based on the random field theory is proposed in comparison with the deterministic geometric modeling method. Then the constraint random field modeling method and the random field modeling method without constrained parameters are compared and analyzed. A case study shows that the novel stochastic simulation method is an effective tool to describe the distribution characteristics of corrosion pa-rameters and reflect the updated geological prospecting information. The influence of geological corrosion on the dam behavior can also be better analyzed by using the stochastic simulation method. At the same time, the uncon-fined random field ignores the sample location information and may lead to higher variability. Therefore, the con-straint random field modeling method can provide a useful reference for the numerical analysis under complex geo-logical conditions.

  10. Geologic spatial analysis. 1988 performance report, August 30, 1987--January 30, 1989

    Thiessen, R.L.; Eliason, J.R.


    This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

  11. Geological-structural interpretation using products of remote sensing in the region of Carrancas, Minas Gerais, Brazil

    Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Barbosa, M. P.; Veneziani, P.


    The efficiency of some criteria developed for the utilization of small scale and low resolution remote sensing products to map geological and structural features was demonstrated. Those criteria were adapted from the Logical Method of Photointerpretation which consists of textural qualitative analysis of landforms and drainage net patterns. LANDSAT images of channel 5 and 7, 4 LANDSAT-RBV scenes, and 1 radar mosiac were utilized. The region of study is characterized by supracrustal metassediments (quartzites and micaschist) folded according to a "zig-zag" pattern and gnaissic basement. Lithological-structural definition was considered outstanding when compared to data acquired during field work, bibliographic data and geologic maps acquired in larger scales.



    20152392 Geng Shufang(Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China);Liu Ping Deep Geological Structure Constraints on Shallow Geology and Mineralization:A Study in the Land and Sea Areas of East China(Marine Geology&Quaternary Geology,ISSN0256-1492,CN37-1117/P,34(6),2014,p.49-61,8illus.,13refs.,with English abstract)



    <正>20101490 Chen Yuwei (Earthquake Administration of Anhui Province, Hefei 230031, China); Huang Xianliang Analysis of Impact of Source Region Structure on Seismology Parameter Scan Results (Seismology and Geology, ISSN0253-4967, CN11-2192/P, 31(3), 2009, p.433-440, 2 illus., 4 tables, 12 refs.)

  14. The Effect of Geologic Structures on the Control of Floods in the Middle Yangtze River Valley


    This paper discusses the role of geologic structures in the occurrence of floods and how to prevent flood in the middle reaches of the Yangtze River, and gives the author's suggestion that the Luoshan Qiakou be expanded and the land reclaimed from Dongting Lake be returned to the lake in compliance with the law of geology.

  15. A mathematical formulation for large strain analysis of geologic continua

    Chaudhary, A.B.; Vakili, J.E.; Hume, H.R.


    A solution method is presented for finite-deformation analysis of geologic materials. The principle of virtual work is used to state the equations of equilibrium in a weak form. These equations are linearized about the last-established equilibrium configuration. A material constitutive relationship between the Green-Naghdi stress rate and the rate-of-deformation tensor is used to obtain the current stresses. The finite-element governing equations are expressed in a form suitable for an iterative solution strategy. The obtained gradient matrix contains the effects of both material and geometric nonlinearities. The primary application area of this formulation is the analysis of long-term deformation response of the region adjoining the mining shafts and the waste emplacement rooms within a nuclear waste repository. In this region, the strains are expected to be large, and the infinitesimal strain analysis would introduce inaccuracies in the solution. 19 refs., 6 figs.

  16. Analysis of anions in geological brines using ion chromatography

    Merrill, R.M.


    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  17. Multivariate Analysis Of Ground Water Characteristics Of Geological Formations Of Enugu State Of Nigeria



    Full Text Available Abstract The chemometric data mining techniques using principal factor analysis PFA and hierarchical cluster analysis CA was employed to evaluate and to examine the borehole characteristics of geological formations of Enugu State of Nigeria to determine the latent structure of the borehole characteristics and to classify 9 borehole parameters from 49 locations into borehole groups of similar characteristics. PFA extracted three factors which accounted for a large proportion of the variation in the data 77.305 of the variance. Out of nine parameters examined the first PFA had the highest number of variables loading on a single factor where four borehole parameters borehole depth borehole casing static water level and dynamic water level loaded on it with positive coefficient as the most significant parameters responsible for variation in borehole characteristics in the study. The CA employed in this study to identified three clusters. The first cluster delineated stations that characterise Awgu sandstone geological formation while the second cluster delineated Agbani sandstone geological formation. The third cluster delineated Ajali sandstone formation. The CA grouping of the borehole parameters showed similar trend with PFA hence validating the efficiency of chemometric data mining techniques in grouping of variations in the borehole characteristics in the geological zone of the study area.

  18. Structural Geology and Exhumation of the Paleogene Southern Sivas Fold and Thrust Belt, Central Anatolia, Turkey

    Darin, M. H.; Umhoefer, P. J.; Lefebvre, C.; Thomson, S. N.


    The Anatolian plate (Turkey) was formed during the late Miocene-Pliocene transition from contractional strain in central and eastern Anatolia (collision) to localized strike-slip faulting along inherited collisional structures (escape tectonics). Structural inheritance undoubtedly played a role in this major plate boundary reorganization, although its significance is not well understood. Considerable uncertainty also exists regarding the timing and kinematics of Tauride-Eurasia collision, initial Arabia-Eurasia collision, and the terminal closure of the Neotethys Ocean. The Sivas Basin is a ~E-W-elongate collisional forearc basin located between the Tauride micro-continent in the south and the Pontide Arc along the southern Eurasian margin in the north. Well-exposed contractional structures in Paleocene-Eocene marine strata of the Southern Sivas fold and thrust belt (SSFTB) provide an excellent opportunity to investigate the timing and kinematics of both Tauride and Arabian collisions and their potential roles in localizing strain and facilitating tectonic escape. We use detailed geologic mapping, structural analysis and detrital geo/thermochronology to investigate the magnitude, style, and timing of collision-related crustal shortening across the SSFTB. The structural geology of the SSFTB is characterized by ENE- to ESE-trending, gently plunging fault propagation folds with slight asymmetry towards the north. Vergence on thrust faults is mainly towards the north, although a few previously unmapped faults are south-vergent. Detrital apatite fission track data from Paleocene-Eocene strata reveal a single phase of rapid exhumation ca. ~36-31 Ma, which may be related to either Tauride or initial Arabian collision. We propose that structural growth of the SSFTB at this time played a major role in marine basin isolation and early Oligocene evaporite deposition. In the central and northern Sivas Basin where salt was likely thickest, salt tectonics was initiated by

  19. Grasping bed rock geological structures more concretely; Ganban no chishitsu kozo wo yori gutaiteki ni haaku

    Uchida, Y. [Newjec Inc., Osaka (Japan)


    Reported herein is an investigatory analysis system capable of combining the results of plural geophysical explorations (locations of fault, fracture zone, and aquifer, and the identification of geological structures such as the classification of natural ground) and of converting them rationally into ground properties that are required for designing. Also, this conversion technique is verified by use of geological data observed during the tunneling of a water channel at an S point. The elastic wave velocity determined by elastic wave exploration and the resistivity determined by electric/electromagnetic exploration are different physical quantities. However, there are formulas proposed for both of them in which the base rock gap rate {phi} and saturation rate S are the parameters. The rate {phi} and rate S may be determined by solving the formulas as simultaneous equations. As for the quantitative evaluation of ground properties which are necessary for designing underground structures, the rock classification may be estimated from the rate {phi} and the location of gushing water from the deposit moisture content ({phi}timesS). These may be effectively utilized for the examination of timbering and measures against gushing water. Work records for a 500m section in the S point water channel tunnel are compared with the results of conversion, and it is found that there is rough agreement between the two. 8 figs., 1 tab.

  20. Geological Hazards analysis in Urban Tunneling by EPB Machine (Case study: Tehran subway line 7 tunnel

    Hassan Bakhshandeh Amnieh


    Full Text Available Technological progress in tunneling has led to modern and efficient tunneling methods in vast underground spaces even under inappropriate geological conditions. Identification and access to appropriate and sufficient geological hazard data are key elements to successful construction of underground structures. Choice of the method, excavation machine, and prediction of suitable solutions to overcome undesirable conditions depend on geological studies and hazard analysis. Identifying and investigating the ground hazards in excavating urban tunnels by an EPB machine could augment the strategy for improving soil conditions during excavation operations. In this paper, challenges such as geological hazards, abrasion of the machine cutting tools, clogging around these tools and inside the chamber, diverse work front, severe water level fluctuations, existence of water, and fine-grained particles in the route were recognized in a study of Tehran subway line 7, for which solutions such as low speed boring, regular cutter head checks, application of soil improving agents, and appropriate grouting were presented and discussed. Due to the presence of fine particles in the route, foam employment was suggested as the optimum strategy where no filler is needed.

  1. Geological correlations with the interior density structure of Venus

    Herrick, Robert R.; Phillips, Roger J.


    The paper develops a geophysical model for Venus that allows separation of topography supported by shallow density anomalies, e.g., crustal thickening, from that interpreted to be caused by mantle convection, and produces estimates of the planforms of lithospheric density anomalies and the mantle convection pattern. The topography caused by these two planforms is compared to several global data sets compiled from analysis of Magellan data. The mantle convection pattern agrees qualitatively with numerical simulations by Bercovici et al. (1989) and shows isolated upwellings amidst a network of downwellings. Crustal thickening does not exhibit a similar pattern. Impact crater density is nearly uniform and does not correlate with either crustal thickening or the mantle convection patterns. Large volcanic structures exhibit a good but imperfect correlation with mantle upwellings. Coronae locations are anticorrelated with large upwellings and large downwellings. A scenario is proposed for global tectonics on Venus and its relationship to mantle convection.

  2. A three-dimensional gravity model of the geologic structure of Long Valley caldera

    Carle, S.F.; Goldstein, N.E.


    Several attempts to define and interpret this anomaly have been made in the past using 2-D and 3-D models. None of the previous interpretations have yielded definitive results, but in fairness, the interpretation here has benefited from a larger gravity data base and more subsurface control than available to previous workers. All published 3-D models simplistically assumed constant density of fill. All 2-D models suffered from the inherent three-dimensionality of the complicated density structure of Long Valley caldera. In addition, previous interpreters have lacked access to geological data, such as well lithologies and density logs, seismic refraction interpretations, suface geology, and structural geology interpretations. The purpose of this study is to use all available gravity data and geological information to constrain a multi-unit, 3-D density model based on the geology of Long Valley caldera and its vicinity. Insights on the geologic structure of the caldera fill can help other geophysical interpretations in determining near-surface effects so that deeper structure may be resolved. With adequate control on the structure of the caldera fill, we are able to examine the gravity data for the presence of deeper density anomalies in the crust. 20 refs., 7 figs.

  3. Improving Student Understanding of Geological Rates via Chronotopographic Analysis

    Linneman, S. R.; Clark, D. H.; Buly, P.


    We are investigating the value of incorporating chronotopographic analysis into undergraduate geology courses using terrestrial laser scanning (TLS) to improve student understanding of the rates and styles of geomorphic processes. Repeat high-resolution TLS surveys can track the evolution of active landscapes, including sites of active faulting, glaciation, landslides, fluvial systems and coastal dynamics. We hypothesize that geology students who collect and analyze such positional data for local active landscapes will develop a better sense of the critical (and non-steady) geomorphic processes affecting landscape change and develop a greater interest in pursuing opportunities for geology field work. We have collected baseline TLS scans of actively evolving landscapes identified in cooperation with land-use agencies. The project team is developing inquiry activities for each site and assessing their impact. For example, our faculty partners at 2-year colleges are interested in rapid retreat of coastal bluffs near their campuses. In this situation, TLS will be part of a laboratory activity in which students compare historic air photos to predict areas of the most active long-term bluff retreat; join their instructor to collect TLS data at the site (replicating the baseline scan); sketch outcrops in the field and suggest areas of the site for higher resolution scanning; and in the following class compare their predictions to the deformation maps that are the output of the repeated TLS scans. A brief two question assessment instrument was developed to address both the content and attitudinal targets. It was given WWU Geomorphology classes in 3 sequential quarters of the 2009/2010 academic year, 2 which did not work with the TLS technology (pre treatment) and one that did participate in the redesigned activities (post treatment). Additionally focus group interviews were conducted with the post students so they could verbalize their experience with the TLS. The content

  4. Using Grand Challenges For Innovative Teaching in Structural Geology, Geophysics, and Tectonics

    McDaris, J. R.; Tewksbury, B. J.; Wysession, M. E.


    An innovative approach to teaching involves using the "Big Ideas" or "Grand Challenges" of a field, as determined by the research community in that area, as the basis for classroom activities. There have been several recent efforts in the areas of structural geology, tectonics, and geophysics to determine these Grand Challenges, including the areas of seismology ("Seismological Grand Challenges in Understanding Earth's Dynamic Systems"), mineral physics ("Unlocking the Building Blocks of the Planet"), EarthScope-related science ("Unlocking the Secrets of the North American Continent: An EarthScope Science Plan for 2010-2020"), and structural geology and tectonics (at the Structural Geology and Tectonics Forum held at Williams College in June, 2012). These research community efforts produced frameworks of the essential information for their fields with the aim of guiding future research. An integral part of this, however, is training the next generation of scientists, and using these Big Ideas as the basis for course structures and activities is a powerful way to make this happen. When activities, labs, and homeworks are drawn from relevant and cutting-edge research topics, students can find the material more fascinating and engaging, and can develop a better sense of the dynamic process of scientific discovery. Many creative ideas for incorporating the Grand Challenges of structural geology, tectonics, and geophysics in the classroom were developed at a Cutting Edge workshop on "Teaching Structural Geology, Geophysics, and Tectonics in the 21st Century" held at the University of Tennessee in July, 2012.

  5. Comparison of structural and least-squares lines for estimating geologic relations

    Williams, G.P.; Troutman, B.M.


    Two different goals in fitting straight lines to data are to estimate a "true" linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating "true" straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal-predicting the dependent variable-OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples. ?? 1990 International Association for Mathematical Geology.

  6. Analysis of the U.S. geological survey streamgaging network

    Scott, A.G.


    This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U.S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3,493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the streamflow records and the operating budget. The weighted standard error for all stations, with current operating procedures, was 19.9 percent. By altering field activities, as determined by the analyses, this could be reduced to 17.8 percent. The existing streamgaging networks in four Districts were further analyzed to determine the impacts that satellite telemetry would have on the cost effectiveness. Satellite telemetry was not found to be cost effective on the basis of hydrologic data collection alone, given present cost of equipment and operation.This paper summarizes the results from the first 3 years of a 5-year cost-effectiveness study of the U. S. Geological Survey streamgaging network. The objective of the study is to define and document the most cost-effective means of furnishing streamflow information. In the first step of this study, data uses were identified for 3,493 continuous-record stations currently being operated in 32 States. In the second step, evaluation of alternative methods of providing streamflow information, flow-routing models, and regression models were developed for estimating daily flows at 251 stations of the 3, 493 stations analyzed. In the third step of the analysis, relationships were developed between the accuracy of the



    <正>20091383 Cui Yiwen(First Geology and Mineral Resources Prospecting Team of Qinghai Province,Ping’an 810600,China);Zhang Liling Quaternary Three-Dimensional Model of Geological Structures of Changchun City(Jilin Geology,ISSN1001-2427,CN22 -1099/P,27(2),2008,p.125-130,10 illus.,4 tables,14 refs.,with English abstract)

  8. Forecast of Geological Gas Hazards for "Three-Soft" Coal Seams in Gliding Structural Areas


    Gas outbursts from "three-soft" coal seams (soft roof, soft floor and soft coal) constitute a very serious problem in the Ludian gliding structure area in western Henan.By means of theories and methods of gas geology, structural geology, coal petrology and rock tests, we have discussed the effect of control of several physical properties of soft roof on gas preservation and proposed a new method of forecasting gas geological hazards under open structural conditions.The result shows that the areas with type Ⅲ or Ⅳ soft roofs are the most dangerous areas where gas outburst most likely can take place.Therefore, countermeasures should be taken in these areas to prevent gas outbursts.

  9. Integration of Geophysical Data into Structural Geological Modelling through Bayesian Networks

    de la Varga, Miguel; Wellmann, Florian; Murdie, Ruth


    Structural geological models are widely used to represent the spatial distribution of relevant geological features. Several techniques exist to construct these models on the basis of different assumptions and different types of geological observations (e.g. Jessell et al., 2014). However, two problems are prevalent when constructing models: (i) observations and assumptions, and therefore also the constructed model, are subject to uncertainties, and (ii) additional information, such as geophysical data, is often available, but cannot be considered directly in the geological modelling step. In our work, we propose the integration of all available data into a Bayesian network including the generation of the implicit geological method by means of interpolation functions (Mallet, 1992; Lajaunie et al., 1997; Mallet, 2004; Carr et al., 2001; Hillier et al., 2014). As a result, we are able to increase the certainty of the resultant models as well as potentially learn features of our regional geology through data mining and information theory techniques. MCMC methods are used in order to optimize computational time and assure the validity of the results. Here, we apply the aforementioned concepts in a 3-D model of the Sandstone Greenstone Belt in the Archean Yilgarn Craton in Western Australia. The example given, defines the uncertainty in the thickness of greenstone as limited by Bouguer anomaly and the internal structure of the greenstone as limited by the magnetic signature of a banded iron formation. The incorporation of the additional data and specially the gravity provides an important reduction of the possible outcomes and therefore the overall uncertainty. References Carr, C. J., K. R. Beatson, B. J. Cherrie, J. T. Mitchell, R. W. Fright, C. B. McCallum, and R. T. Evans, 2001, Reconstruction and representation of 3D objects with radial basis functions: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 67-76. Jessell, M

  10. The geological structure background and the crustal structure in the northeastern margin of the Qinghai-Tibetan plateau

    ZHOU Min-du; Lü Tai-yi; ZHANG Yuan-sheng; RUAN Ai-guo


    The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geological data. The main results are summarized as follows: j The geotectonic subdivisions and the characteristics of main deep and large faults in the northeastern margin of the Qinghai-Tibetan plateau are presented; k The general features of the Moho are obtained mainly based on artificial seismic sounding data; l There exists well corresponding relation between surface faults and some features of the Moho, which suggests that such complex crustal structure might be the preparation environment of strong earthquakes.

  11. U.S. Geological Survey Gap Analysis Program Species Ranges

    U.S. Geological Survey, Department of the Interior — GAP species range data show a coarse representation of the total areal extent of a species or the geographic limits within which a species can be found (Morrison...

  12. U.S. Geological Survey Gap Analysis Program Species Ranges

    U.S. Geological Survey, Department of the Interior — GAP species range data show a coarse representation of the total areal extent of a species or the geographic limits within which a species can be found (Morrison and...

  13. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Thomas H A Haverkamp

    Full Text Available Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm sediment communities are affected by local conditions within the sediment.

  14. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S


    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  15. Structural geology of Amazonian-aged layered sedimentary deposits in southwest Candor Chasma, Mars

    Okubo, C.H.


    The structural geology of an outcropping of layered sedimentary deposits in southwest Candor Chasma is mapped using two adjacent high-resolution (1 m/pixel) HiRISE digital elevation models and orthoimagery. Analysis of these structural data yields new insight into the depositional and deformational history of these deposits. Bedding in non-deformed areas generally dips toward the center of west Candor Chasma, suggesting that these deposits are basin-filling sediments. Numerous kilometer-scale faults and folds characterize the deformation here. Normal faults of the requisite orientation and length for chasma-related faulting are not observed, indicating that the local sediments accumulated after chasma formation had largely ceased in this area. The cause of the observed deformation is attributed to landsliding within these sedimentary deposits. Observed crosscutting relationships indicate that a population of sub-vertical joints are the youngest deformational structures in the area. The distribution of strain amongst these joints, and an apparently youthful infill of sediment, suggests that these fractures have been active in the recent past. The source of the driving stress acting on these joints has yet to be fully constrained, but the joint orientations are consistent with minor subsidence within west Candor Chasma.

  16. The main goal of engineering geology for designing and construction complex structures in urban areas

    Drago Ocepek


    Full Text Available Work for designing complex structures in urban areas consists of geological-geotechnical investigations and analysis of the quality of rocks, soft rocks and hard soils in the construction area. Urban areas limited the space for designing cutting slopes in stable inclination without reinforcement. In this paper will be presented designing and excavation works with different reinforcement of two different areas in Slovenia built of heterogeneous mixed hard to soft rock masses (Triassic dolomite, limestone and Eocene flysch sediments.Before the start of excavations work and after establishing the retaining measures, the analysis results are checked by monitoring. This monitoring will continue in the phase of exploitation of the objects. Since the cost of these additional investigations and precise analysis with monitoring (SIST - EN 7 - 2004 and measurements is negligible – in comparison with the costs of the permanent reinforcement – if variable conditions are not to intensive, we were able to reduce effectively the investment value of the object.

  17. Probability analysis of geological processes: a useful tool for the safety assessment of radioactive waste disposal

    D' Alessandro, M.; Murray, C.N.; Bertozzi, G.; Girardi, F.


    In the development of methods for the assessment of the risk associated with the disposal of radioactive wastes over periods up to 10/sup 6/ years, much discussion has occurred on the use of probability analysis for geological processes. The applicability and limitations of this concept are related to the proper use of the geological data-base and the critical interpretation of probability distributions. The interpretation of geological phenomena in terms of probability is discussed and an example of application to the determination of faulting probability is illustrated. The method has been used for the determination of failure probability of geological segregation of a waste repository in a clay formation.



    <正>20071202 Bai Fu(Second Prospecting Insti- tute of Geology and Mineral Resources of the Gansu Bureau of Geology and Mineral Re- sources,Lanzhou 730020,China);Ma Genxi Analysis of the Occurrence of the Geother- mal Resources in Lanzhou,Gansu Province (Hydrogeology & Engineering Geology,

  19. Insights into the Structure and Surface Geology of Isla Socorro, Mexico, from Airborne Magnetic and Gamma-Ray Surveys

    Paoletti, V.; Gruber, S.; Varley, N.; D'Antonio, M.; Supper, R.; Motschka, K.


    The island of Socorro is located in the eastern Pacific Ocean, 650 km off the coast of Mexico. It is a rare example of an oceanic volcanic island whose above sea level volume is made up mostly of peralkaline trachytes and rhyolites, with subordinate mafic rocks. Subaerial volcanism started several hundred thousand years ago and continues until recent times. We present an investigation of surface and subsurface geology of the island, based on the first detailed extensive geophysical survey on the island. Acquired airborne magnetic and gamma-ray data were compared to existing geological information and supplemented with field investigations and satellite imagery. Magnetic data show a wide minimum in the central part of the island, possibly connected to a high-temperature zone in the deeper central portion of the volcano, likely to be due to a still hot magma body. The data also depict two parallel edges possibly suggesting the existence of a nested caldera. Analysis on upward continued magnetic data by recent imaging techniques highlighted two deep sources located around 5 km b.s.l., interpreted as feeding structures that are now filled with crystalline rocks. Gamma-ray data have been interpreted through integration with the geological survey results. Several previously known volcanic deposits have been identified based on radioelement distribution, and others have been redefined based on field evidence. A new succession of volcanic members is proposed, to be verified through more detailed geological mapping, geochemical analyses of rock samples and radiometric dating.

  20. Structural geology practice and learning, from the perspective of cognitive science

    Shipley, Thomas F.; Tikoff, Basil; Ormand, Carol; Manduca, Cathy


    Spatial ability is required by practitioners and students of structural geology and so, considering spatial skills in the context of cognitive science has the potential to improve structural geology teaching and practice. Spatial thinking skills may be organized using three dichotomies, which can be linked to structural geology practice. First, a distinction is made between separating (attending to part of a whole) and combining (linking together aspects of the whole). While everyone has a basic ability to separate and combine, experts attend to differences guided by experiences of rock properties in context. Second, a distinction is made between seeing the relations among multiple objects as separate items or the relations within a single object with multiple parts. Experts can flexibly consider relations among or between objects to optimally reason about different types of spatial problems. Third, a distinction is made between reasoning about stationary and moving objects. Experts recognize static configurations that encode a movement history, and create mental models of the processes that led to the static state. The observations and inferences made by a geologist leading a field trip are compared with the corresponding observations and inferences made by a cognitive psychologist interested in spatial learning. The presented framework provides a vocabulary for discussing spatial skills both within and between the fields of structural geology and cognitive psychology.

  1. Simulation analysis on geological structure detection of collapse column in coal roadway excavation%煤巷掘进中陷落柱地质构造探测仿真及结果分析



    To detect the collapse column geological structure hidden behind the excavation face, dual-frequency induced polarization ahead-detecting technology ( DIPAT ) is applied, physical model of collapse column is built, which is simplified into equivalent circuit, according to the electrical parameters. The induced polarization model of collapse column is established based on Simulink, obtaining the resistivity and the PFE value curves. According to the consistency of the simulation detection results and the preinstalled parameters of the induced polarization model, the correctness of the simulation detection model is proved.%为了探测掘进面前方隐伏的陷落柱地质构造,采用双频激电法煤巷综掘超前探测技术,建立了陷落柱地质构造物理模型,根据其电性参数将物理模型简化为相应的等效电路,通过Simulink平台构建了陷落柱地质构造的激电模型并进行模拟测试,得出了该激电模型的视电阻率值和视频散率PFE值的变化曲线。仿真探测结果与激电模型预设的电性参数基本一致,验证了该仿真探测模型对陷落柱地质异常预报的有效性,为下一步开发该技术的配套探测仪器提供了必要的参考依据。

  2. Reliable Classification of Geologic Surfaces Using Texture Analysis

    Foil, G.; Howarth, D.; Abbey, W. J.; Bekker, D. L.; Castano, R.; Thompson, D. R.; Wagstaff, K.


    Communication delays and bandwidth constraints are major obstacles for remote exploration spacecraft. Due to such restrictions, spacecraft could make use of onboard science data analysis to maximize scientific gain, through capabilities such as the generation of bandwidth-efficient representative maps of scenes, autonomous instrument targeting to exploit targets of opportunity between communications, and downlink prioritization to ensure fast delivery of tactically-important data. Of particular importance to remote exploration is the precision of such methods and their ability to reliably reproduce consistent results in novel environments. Spacecraft resources are highly oversubscribed, so any onboard data analysis must provide a high degree of confidence in its assessment. The TextureCam project is constructing a "smart camera" that can analyze surface images to autonomously identify scientifically interesting targets and direct narrow field-of-view instruments. The TextureCam instrument incorporates onboard scene interpretation and mapping to assist these autonomous science activities. Computer vision algorithms map scenes such as those encountered during rover traverses. The approach, based on a machine learning strategy, trains a statistical model to recognize different geologic surface types and then classifies every pixel in a new scene according to these categories. We describe three methods for increasing the precision of the TextureCam instrument. The first uses ancillary data to segment challenging scenes into smaller regions having homogeneous properties. These subproblems are individually easier to solve, preventing uncertainty in one region from contaminating those that can be confidently classified. The second involves a Bayesian approach that maximizes the likelihood of correct classifications by abstaining from ambiguous ones. We evaluate these two techniques on a set of images acquired during field expeditions in the Mojave Desert. Finally, the

  3. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    Wagoner, J; Myers, S


    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface

  4. Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis

    Sumintadireja, Prihadi; Irawan, Dasapta E; Irawan, Diky; Fadillah, Ahmad


    The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at prospect zones, which identified by the previous method, to have a more exact and in depth local scale structural interpretation. Both methods are directed to pin point appropriate locations for geothermal pilot hole drilling and testing. We used four scenes of Landsat Enhanced Thematic Mapper or ETM+ data to estimate the surface manifestation of a geothermal system. Temporal analysis of Land Surface Temperature or LST was applied and coupled with field temperature measurement at seven locations. By combining the TTM with ...

  5. A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis.

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James


    The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

  6. U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2

    U.S. Geological Survey, Department of the Interior — This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis...

  7. An engineering geological appraisal of the Chamshir dam foundation using DMR classification and kinematic analysis, southwest of Iran

    Torabi Kaveh Mehdi


    Full Text Available This paper describes the results of engineering geological  investigations and rock mechanics studies carried out at the proposed Chamshir dam site. It is proposed that a 155 m high solid concrete gravity-arc dam be built across the Zuhreh River to the southeast of the city of Gachsaran in south-western Iran. The dam and its associated structures are mainly located on the Mishan formation. Analysis consisted of rock mass classification and a kinematic
    analysis of the dam foundation's rock masses. The studies were carried out in the field and the laboratory. The field studies included geological mapping, intensive discontinuity surveying, core drilling and sampling for laboratory testing. Rock mass classifications were made in line with RMR and DMR classification for the dam foundation. Dam foundation analysis regarding stability using DMR classification and kinematic analysis indicated that the left abutment's rock foundation (area 2 was unstable for planar, wedge and toppling failure modes.


    T. D. Tran


    Full Text Available The study area is bordered on the East China Sea, the Philippine Sea, and the Australian-Indo plate in the Northeast, in the East and in the South, respectively. It is a large area with the diversely complicated conditions of geological structure. In spite of over the past many years of investigation, marine geological structure in many places have remained poorly understood because of a thick seawater layer as well as of the sensitive conflicts among the countries in the region. In recent years, the satellite altimeter technology allows of enhancement the marine investigation in any area. The ocean surface height is measured by a very accurate radar altimeter mounted on a satellite. Then, that surface can be converted into marine gravity anomaly or bathymetry by using the mathematical model. It is the only way to achieve the data with a uniform resolution in acceptable time and cost. The satellite altimetry data and its variants are essential for understanding marine geological structure. They provide a reliable opportunity to geologists and geophysicists for studying the geological features beneath the ocean floor. Also satellite altimeter data is perfect for planning the more detailed shipboard surveys. Especially, it is more meaningful in the remote or sparsely surveyed regions. In this paper, the authors have effectively used the satellite altimetry and shipboard data in combination. Many geological features, such as seafloor spreading ridges, fault systems, volcanic chains as well as distribution of sedimentary basins are revealed through the 2D, 3D model methods of interpretation of satellite-shipboard-derived data and the others. These results are improved by existing boreholes and seismic data in the study area.

  9. Contribution of Satellite Altimetry Data in Geological Structure Research in the South China Sea

    Dung Tran, Tuan; Ho, Thi Huong Mai


    The study area is bordered on the East China Sea, the Philippine Sea, and the Australian-Indo plate in the Northeast, in the East and in the South, respectively. It is a large area with the diversely complicated conditions of geological structure. In spite of over the past many years of investigation, marine geological structure in many places have remained poorly understood because of a thick seawater layer as well as of the sensitive conflicts among the countries in the region. In recent years, the satellite altimeter technology allows of enhancement the marine investigation in any area. The ocean surface height is measured by a very accurate radar altimeter mounted on a satellite. Then, that surface can be converted into marine gravity anomaly or bathymetry by using the mathematical model. It is the only way to achieve the data with a uniform resolution in acceptable time and cost. The satellite altimetry data and its variants are essential for understanding marine geological structure. They provide a reliable opportunity to geologists and geophysicists for studying the geological features beneath the ocean floor. Also satellite altimeter data is perfect for planning the more detailed shipboard surveys. Especially, it is more meaningful in the remote or sparsely surveyed regions. In this paper, the authors have effectively used the satellite altimetry and shipboard data in combination. Many geological features, such as seafloor spreading ridges, fault systems, volcanic chains as well as distribution of sedimentary basins are revealed through the 2D, 3D model methods of interpretation of satellite-shipboard-derived data and the others. These results are improved by existing boreholes and seismic data in the study area.

  10. Theory of Geological Anomaly in Remote Sensing


    Geological anomaly is geological body or complex body with obviously different compositions, structures or orders of genesis as compared with those in the surrounding areas. Geological anomaly, restrained by the geological factors closely associated with ore-forming process, is an important clue to ore deposits. The geological anomaly serves as a geological sign to locate ore deposits. Therefore, it is very important to study how to define the characteristics of geological anomaly and further to locate the changes in these characteristics. In this paper, the authors propose the geological anomaly based on the remote-sensing images and data, and expound systematically such image features as scale, size, boundary, morphology and genesis of geological anomalies. Then the authors introduce the categorization of the geological anomalies according to their geneses. The image characteristics of some types of geological anomalies, such as the underground geological anomaly, are also explained in detail. Based on the remote-sensing interpretation of these geological anomalies, the authors conclude that the forecasting and exploration of ore deposits should be focused on the following three aspects: (1) the analysis of geological setting and geological anomaly; (2) the analysis of circular geological anomaly, and (3) the comprehensive forecasting of ore deposits and the research into multi-source information.

  11. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    Sana, Furrukh


    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  12. Three-dimensional morphological analysis method for geologic bodies and its parallel implementation

    Mao, Xiancheng; Zhang, Bin; Deng, Hao; Zou, Yanhong; Chen, Jin


    It has been found that the spatial locations and distributions of orebodies, especially for certain hydrothermal mineral deposits, are closely related to the shape of intrusive geologic bodies. For complex and large-scale geologic bodies, however, it is challenging to achieve rigorous and quantitative morphological analysis by standard geological surface reconstruction and trend-surface analysis methods. This paper presents a novel, quantitative morphological analysis method for general geologic bodies of closed 2-manifold surface based on mathematical morphology. Through the processes of morphological filtering, set operations and three-dimensional Euclidean distance transform (3D-EDT), the global trend shape, local convex and concave zones as well as degree of surface undulation of a geologic body are extracted respectively. All of the three analysis phases are speeded up via parallel algorithms implemented by using the message passing interface (MPI) standard. The proposed method is tested with a case study of the Xinwuli intrusion with complex shape in Fenghuangshan deposit of the Tongling district, China. The results demonstrate that the method is an effective and efficient way to achieve quantitative morphological analysis, thereby decreasing the time necessary to find the association between morphological parameters of geologic bodies and mineralization.

  13. Influence of Geological Structure on Coal and Gas Outburst Occurrences in Turkish Underground Coal Mines

    Esen, Olgun; Özer, Samet Can; Fişne, Abdullah


    Coal and gas outbursts are sudden and violent releases of gas and in company with coal that result from a complex function of geology, stress regime with gas pressure and gas content of the coal seam. The phenomena is referred to as instantaneous outbursts and have occurred in virtually all the major coal producing countries and have been the cause of major disasters in the world mining industry. All structures from faults to joints and cleats may supply gas or lead to it draining away. Most geological structures influence the way in which gas can drain within coal seams. From among all the geological factors two groups can be distinguished: parameters characterising directly the occurrence and geometry of the coal seams; parameters characterising the tectonic disturbances of the coal seams and neighbouring rocks. Also dykes may act as gas barriers. When the production of the coal seam is advanced in mine working areas, these barriers are failed mostly in the weak and mylonitized zones. Geology also plays a very important role in the outburst process. Coal seams of complex geological structure including faults, folds, and fractured rocks are liable to outbursts if coal seams and neighbouring rocks have high gas content level. The purpose of the study is to enlighten the coal industry in Turkey to improving mine safety in underground coal production and decrease of coal and gas outburst events due to increasing depth of mining process. In Turkey; the years between 1969 and 2013, the number of 90 coal and gas outbursts took place in Zonguldak Hard Coal Basin in both Kozlu and Karadon Collieries. In this study the liability to coal and gas outburst of the coal seams are investigated by measuring the strength of coal and the rock pressure. The correlation between these measurements and the event locations shows that the geological structures resulted in 52 events out of 90 events; 19 events close to the fault zones, 25 events thorough the fault zones and 8 events in



    <正>20070721 Dong Yaosong (National Key La-boratory of Geological Process and Mineral resources, Institute of Mathematical Geology and Remote Sensing, China University of Geosciences, Wuhan 430074, China); Yang Yanchen Mutual Compensation of Nerval Net and Characteristic Analysis in Mineral Resources Exploration (Mineral Resources and Geology, ISSN1001-5663, CN45-1174/TD, 20(1), 2006, p.1-6, 3 illus., 6 tables, 5 refs.) Key words: prospecting and exploration of mineral, neural network systems



    <正>20102798 Gao Shengxiang(School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Ye Rongzhang Establishment of Complex Geological Body FLAC3D Model by Using MATLAB Interface Program(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,37(5),2009,p.51-53,5 illus.,4 refs.,with English abstract)Key words:FLAC3D,computer programs20102799 Li Xiuzhen(Key Laboratory of Mountain Hazards and Surface Processes,Chinese Academy of Sciences,Chengdu 610041,China);Wang Chenghua Potential Landslide Identification Model Based on Fisher Discrimination Analysis Method and Its Application(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2825/P,20(4),2009,p.23-26,40,2 tables,11 refs.)Key words:mathematical models,landslidesAiming at ancient(old)landslides,four kinds of discrimination indexes which included nine secondary indexes for potential landslides,such as landform character,slip surface character,landslide body structure and recent activities characters,were presented.Then according to Fisher Discrimination theory,Fisher Discrimination model for the potential landslides was built.The re

  16. Integrated interpretation of a geological structure based on the combination of well logging, VSP and seismic methods

    Wachi, Noboru; Asakura, Natsuo; Ota, Yoichi; Ikawa, Takeshi; Iwaki, Yumio


    An integrated analysis procedure is given for a reliable interpretation of geological structure using the combination of well log, VSP (Vertical Seismic Profiling) and seismic records. Survey records are analyzed for 4 distinct high porosity layers following the procedure. The VSP records contained information about various effects caused by the characteristics of the layers, and the wave forms resembled more closely to the records obtained by seismic methods. The synthetic seismogram of VSP showed a better agreement with the seismic record than that of sonic log, and VSP method was confirmed to be effective for a reliable structure interpretation of oil and gas layers. Also, long spacing sonic log analysis showed a significant attenuations of elastic waves corresponding to high porosity layers. (19 figs, 7 refs)

  17. Integrated analysis of remote sensing products from basic geological surveys. [Brazil

    Dasilvafagundesfilho, E. (Principal Investigator)


    Recent advances in remote sensing led to the development of several techniques to obtain image information. These techniques as effective tools in geological maping are analyzed. A strategy for optimizing the images in basic geological surveying is presented. It embraces as integrated analysis of spatial, spectral, and temporal data through photoptic (color additive viewer) and computer processing at different scales, allowing large areas survey in a fast, precise, and low cost manner.

  18. Geological and structural interpretation of Peninsular Malaysia by marine and aeromagnetic data: Some preliminary results

    Bahrudin, Nurul Fairuz Diyana Binti; Hamzah, Umar


    Magnetic data were processed to interpret the geology of Peninsular Malaysia especially in delineating the igneous bodies and structural lineament trends by potential field geophysical method. A total of about 32000 magnetic intensity data were obtained from Earth Magnetic Anomaly Grid (EMAG2) covering an area of East Sumatra to part of South China Sea within 99° E to 105° E Longitude and 1° N to 7°N Latitude. These data were used in several processing stages in generating the total magnetic intensity (TMI), reduce to equator (RTE), total horizontal derivative (THD) and total vertical derivative (TVD). Values of the possible surface and subsurface magnetic sources associated to the geological features of the study area. The magnetic properties are normally corresponding to features like igneous bodies and faults structures. The anomalies obtained were then compared to the geological features of the area. In general, the high magnetic anomalies of the TMI-RTE are closely matched with major igneous intrusion of Peninsular Malaysia such as the Main Range, Eastern Belt and the Mersing-Johor Bahru stretch. More dense lineaments of magnetic structures were observed in the THD and TVD results indicating the presence of more deep and shallow magnetic rich geological features. The positions of Bukit Tinggi, Mersing and Lepar faults are perfectly matched with the magnetic highs while the presence of Lebir and Bok Bak faults are not clearly observed in the magnetic results. The high magnetic values of igneous bodies may have concealed and obscured the magnetic values representing these faults.

  19. Reexamination of the geological structure of the North German Basin in Lower Saxony

    Rienäcker, Julia; Sattler, Sabine


    The North German Basin (NGB), as part of the Southern Permian Basin in Europe, extends from the North Sea, across Denmark, the Netherlands through Northern Germany, to Poland. It contains sediments from the Lower Permian to the Quaternary, and experienced a minimum subsidence of 2000 m from the Permian to the Mesozoic. This was followed by uplift during Late Cretaceous-Early Cenozoic inversion. The hundreds of meters thick and mobile Zechstein salt of Late Permian was remobilized in several phases to form complex salt structures. The salt moved laterally and vertically thus creating salt pillows and tall asymmetrical salt diapirs, some of which broke through the overburden until they were exposed at the paleo-surface. Salt structures influenced both the sedimentation and structural style throughout the NGB. Within the joint project TUNB (Deeper Underground North German Basin), 2-D/3-D seismic datasets, borehole data, structural maps and the existing 3-D geological model of Lower Saxony, will be used to create a new, detailed, geological 3-D model of the Lower Saxony part of the NGB. This allows new insights into the interplay between salt tectonics, sedimentation and tectonic movement, and in particular may help to resolve issues regarding the influence of the Zechstein salt on the sediment distribution. We show the different structural styles of important reservoir formations for, e.g., hydrocarbons, geothermal energy and gas storage, such as the Middle Buntsandstein, Rhaetkeuper, Middle Jurassic, and Lower Cretaceous, especially related to salt structures.

  20. Geological structure of central Java, Indonesia from ambient seismic noise tomography

    Zulhan, Z.; Saygin, E.; Cummins, P. R.; Widiyantoro, S.; Nugraha, A. D.


    Geological structure in the region of central Java is very important for understanding its tectonic setting. The presence of several active volcanoes such as Mt. Merapi, Mt. Sumbing and Mt. Lawu, as well as the Kendeng Basin and Opak fault all contribute to the complex geology of central Java. Understanding some of the characteristics of the geological structure can be improved using a geophysical approach such as seismic tomography. In this study we show the image of the subsurface in central Java obtained from ambient seismic noise tomography. We use simultaneously operated 134 short period and broadband seismometers from the Merapi Amphibious Experiment (MERAMEX) network covering a region of 150 x 200 km around central Java and Yogyakarta. More than 5000 Rayleigh wave component of the Green's function are extracted from cross-correlations of available station pairs. We filter the retrieved Green's functions with a phase-matched filter to measure Rayleigh wave group dispersion at periods between 0.5 and 20 s. We apply a 2-D nonlinear iterative tomographic method for inverting the measured travel times. The results are then used to create group velocity perturbation maps. The velocity perturbation maps show a high correlation with local tectonic features. The Kendeng basin and active volcanoes in the central part of central Java are clearly imaged with lower group velocities and the southern part has the carbonate region is marked with higher group velocities.

  1. Geological Investigation and analysis in response to Earthquake Induced Landslide in West Sumatra

    Karnawati, D.; Wilopo, W.; Salahudin, S.; Sudarno, I.; Burton, P.


    Substantial socio-economical loss occurred in response to the September 30. 2009 West Sumatra Earthquake with magnitude of 7.6. Damage of houses and engineered structures mostly occurred at the low land of alluvium sediments due to the ground amplification, whilst at the high land of mountain slopes several villages were buried by massive debris of rocks and soils. It was recorded that 1115 people died due to this disasters. Series of geological investigation was carried out by Geological Engineering Department of Gadjah Mada University, with the purpose to support the rehabilitation program. Based on this preliminary investigation it was identified that most of the house and engineered structural damages at the alluvial deposits mainly due to by the poor quality of such houses and engineered structures, which poorly resist the ground amplification, instead of due to the control of geological conditions. On the other hand, the existence and distribution of structural geology (faults and joints) at the mountaineous regions are significant in controlling the distribution of landslides, with the types of rock falls, debris flows and debris falls. Despite the landslide susceptibility mapping conducted by Geological Survey of Indonesia, more detailed investigation is required to be carried out in the region surrounding Maninjau Lake, in order to provide safer places for village relocation. Accordingly Gadjah Mada University in collaboration with the local university (Andalas University) as well as with the local Government of Agam Regency and the Geological Survey of Indonesia, serve the mission for conducting rather more detailed geological and landslide investigation. It is also crucial that the investigation (survey and mapping) on the social perception and expectation of local people living in this landslide susceptible area should also be carried out, to support the mitigation effort of any future potential earthquake induced landslides.

  2. Effects of geological structures on groundwater flow and quality in hardrock regions of northern Tirunelveli district, southern India

    M Senthilkumar; R Arumugam; D Gnanasundar; D S C Thambi; E Sampath Kumar


    Geological and structural influences on groundwater flow and quality were evaluated in the present study in the hardrock regions of Tirunelveli District, southern India. Groundwater is a major source of freshwater in this region to cater to the requirements of domestic and agricultural activity, as there are no surface water resources. Geologically, the area is characterized by charnockites and garnetiferous biotite gneiss. Groundwater in this region is found to occur in the weathered portion under unconfined condition and in fractured/fissured portions under unconfined to semi-confined condition. Existence of deep-seated fractures are minimal. Lineaments/dykes play a major role in the occurrence and movement of groundwater in the region. Lineaments/dykes of the study area can be broadly divided into two types: north–south and west–east oriented structures. Analysis and field observations revealed that the north–south dykes act as a barrier of groundwater while the west–east oriented structures behave as a carrier of groundwater. Both quality and quantity of groundwater is different on the upstream and downstream sides of the dyke. Hence, it is conclusive that the west–east oriented dykes in this region are highly potential and act as a conduit for groundwater movement from recharge areas to the discharge area.



    <正>20131925 Chen Ning(State Key Laboratory of Geological Hazards Prevention,Chengdu University of Technology,Chengdu 610059,China);Wang Yunsheng Features and Chains Genesis Analysis of Earthquake Geo-Hazards in Yuzi Stream of Wenchuan County(Journal of Engineering Geology,ISSN1004-9665,CN11-3249/P,20(3),2012,p.340-349,4

  4. Orthogonal Matching Pursuit for Enhanced Recovery of Sparse Geological Structures With the Ensemble Kalman Filter

    Sana, Furrukh


    Estimating the locations and the structures of subsurface channels holds significant importance for forecasting the subsurface flow and reservoir productivity. These channels exhibit high permeability and are easily contrasted from the low-permeability rock formations in their surroundings. This enables formulating the flow channels estimation problem as a sparse field recovery problem. The ensemble Kalman filter (EnKF) is a widely used technique for the estimation and calibration of subsurface reservoir model parameters, such as permeability. However, the conventional EnKF framework does not provide an efficient mechanism to incorporate prior information on the wide varieties of subsurface geological structures, and often fails to recover and preserve flow channel structures. Recent works in the area of compressed sensing (CS) have shown that estimating in a sparse domain, using algorithms such as the orthogonal matching pursuit (OMP), may significantly improve the estimation quality when dealing with such problems. We propose two new, and computationally efficient, algorithms combining OMP with the EnKF to improve the estimation and recovery of the subsurface geological channels. Numerical experiments suggest that the proposed algorithms provide efficient mechanisms to incorporate and preserve structural information in the EnKF and result in significant improvements in recovering flow channel structures.

  5. Analysis of the Geomorphology and Environmental Geological Problems of Huzhou on the Yangtze River Delta

    JIANG Yuehua; WANG Jingdong; YUAN Xueyin; WANG Runhua


    Geomorphically, Huzhou, which is on the Yangtze River delta is characterized mainly by plains, with small hills. This paper presents a detailed analysis of the environmental geological hazards both natural and those incurred by human activities in different morphologic units. The authors point out that most of the regional environmental geological problems in the natural geologic-morphologic conditions, such as crustal stability, foundation of soft soil, soil waterlogging and soil erosion, have insignificant effects to the society, or related countermeasures of prevention and control have been adopted. But environmental geological problems incurred by human being's economic activities become more and more severe, for example, water and soil pollution and land subsidence in plain areas resulting from overexploitation of groundwater, and landslides, karst collapses and water and soil loss etc. caused by quarrying in hilly areas.

  6. Gas hydrates and magnetism : comparative geological settings for diagenetic analysis

    Esteban, L.; Enkin, R.J. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Hamilton, T. [Camosun College, Victoria, BC (Canada)


    Geophysical and geochemical methods assist in locating and quantifying natural gas hydrate deposits. They are also useful in understanding these resources, their climate impacts and their potential role in geohazards. In order to understand the mechanisms of gas hydrate formation and its natural distribution in sediments, magnetic studies were conducted on cores from three different geological settings. This paper presented the results of a detailed magnetic investigation, as well as petrological observations, that were conducted on cores from a permafrost setting in the Mackenzie Delta located in the Canadian Northwest Territories Mallik region, and two marine settings, from the Cascadia margin off Vancouver Island and the Indian National Gas Hydrate Program from the Bengal Fan. The paper provided background information on the permafrost setting in Mallik region of the Mackenzie Delta as well as the Cascadia margin. The magnetic properties of gas hydrate bearing sediments were found to be a combination of the original detrital content and the diagenetic transformations of iron minerals caused by the unique environment produced by gas hydrate formation. The availability of methane to provide food for bacteria coupled with the concentration of solutes outside gas hydrate accumulation zones led to the creation of iron sulphides. These new minerals were observable using magnetic techniques, which help in delineating the gas hydrate formation mechanism and may be developed into new geophysical methods of gas hydrate exploration. 7 refs., 7 figs.

  7. Automated grid generation from models of complex geologic structure and stratigraphy

    Gable, C.; Trease, H.; Cherry, T.


    The construction of computational grids which accurately reflect complex geologic structure and stratigraphy for flow and transport models poses a formidable task. With an understanding of stratigraphy, material properties and boundary and initial conditions, the task of incorporating this data into a numerical model can be difficult and time consuming. Most GIS tools for representing complex geologic volumes and surfaces are not designed for producing optimal grids for flow and transport computation. We have developed a tool, GEOMESH, for generating finite element grids that maintain the geometric integrity of input volumes, surfaces, and geologic data and produce an optimal (Delaunay) tetrahedral grid that can be used for flow and transport computations. GEOMESH also satisfies the constraint that the geometric coupling coefficients of the grid are positive for all elements. GEOMESH generates grids for two dimensional cross sections, three dimensional regional models, represents faults and fractures, and has the capability of including finer grids representing tunnels and well bores into grids. GEOMESH also permits adaptive grid refinement in three dimensions. The tools to glue, merge and insert grids together demonstrate how complex grids can be built from simpler pieces. The resulting grid can be utilized by unstructured finite element or integrated finite difference computational physics codes.

  8. Structural analysis for diagnosis

    Izadi-Zamanabadi, Roozbeh; Blanke, M.


    Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential tech-nique to obtain redundant information for diagnosis, is reconsidered in this paper. Matching is reformulated as a problem...

  9. Structural analysis for Diagnosis

    Izadi-Zamanabadi, Roozbeh; Blanke, M.


    Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential technique to obtain redundant information for diagnosis, is re-considered in this paper. Matching is re-formulated as a problem...

  10. Engineering Geological Mapping and Land-Capability Analysis in Tangshan City


    Geological environment in Tangshan City is under investigation with reference to the Tangshan Urban Earth Science, geo-hazards maps. The expected loss for urban land utilization is calculated by employing relevant economic mathematic models. Quantitative analysis and comprehensive evaluation are then exercised for the capability of land utilization and a series of charts for the analysis of land-use capability are worked out to provide the basis for the formulation of controlling measures for urban planning and to ensure the utmost conformity between land-use and geological environment in urban planning.

  11. Structural analysis of DAEs

    Poulsen, Mikael Zebbelin


    analysis of DAE is original in the sense that it is based on a new matrix representation of the structural information of a general DAE system instead of a graph oriented representation. Also the presentation of the theory is found to be more complete compared to other presentations, since it e.g. proves....... The methodology is mainly based on strutural index analysis which is not limited by the index of the DAE as other methodologies. As a result of structural index analysis one can perform index reduction of the DAE and obtain the so-called augmented underlying ODE. It is also described, how to use the augmented......, by the implementation of the Simpy tool box. This is an object oriented system implemented in the Python language. It can be used for analysis of DAEs, ODEs and non-linear equation and uses e.g. symbolic representations of expressions and equations. The presentations of theory and algorithms for structural index...

  12. Research about the Control of Geological Structure on Karst Groundwater system in Zhangfang, Beijing,China.

    Qiao, X.


    Carbonate formations are intensively distributed throughout Zhangfang, fangshan, in West Mountain area in Beijing. Karst groundwater exits among the geological fracture network which is characterized by the different arrangements and levels in different types of fracture networks and structures. The influence of the tectonic environment on the dynamic change rule and the enrichment regulation of karst system is significant for the exploitation and protection of karst groundwater resources. From the control function of fault and fracture point of view, based on the developmental and distribution pattern of multi-episodic tectonism, this study analyzed fractures in the three-fold structural units characterized by NE-NW and NS trends and discussed the influence of multi-episodic tectonism on the groundwater flow system and rich water zones. The results showed that the geological fracture underwent two episodes of tectonism, thrusting nappe in the Jurassic and extension in the Cretaceous. The overprint of two episodes resulted in a number of faults with high hydraulic conductivity, which serve as conduits. The superiority joints groups are in the NE and NW directions, with conjugated characteristics. The high-angle or vertical dips directly benefit infiltration. The fractures in the intersection areas have formed groundwater runoff channels and strong space, controlling water-rich zones such as Baidai, Ganchi-Changgou and Gaozhuang-Shiwo. Magmatic rock and the aquiclude also contribute to the rich water zones and the location of springs, all of which have important significance for water supply. Keywords: system of Karst groundwater, geological structure, fracture network, hydrogeological flow field, Zhangfang karst area

  13. Scientific Journals as Fossil Traces of Sweeping Change in the Structure and Practice of Modern Geology

    Fratesi, Sarah E.; Vacher, H. L.


    In our attempts to track changes in geological practice over time and to isolate the source of these changes, we have found that they are largely connected with the germination of new geologic subdisciplines. We use keyword and title data from articles in 68 geology journals to track the changes in influence of each subdiscipline on geology over…

  14. Geology and structure of the Malpaso caldera and El Ocote ignimbrite, Aguascalientes, Mexico

    Nieto-Obregón, Jorge; Aguirre-Díaz, Gerardo


    A new caldera, named Malpaso, is reported west of the city of Aguascalientes, Mexico. The Malpaso caldera is a volcano-tectonic depression, highly fractured and faulted, and was filled by voluminous pyroclastic products related to the caldera collapse. Due to these characteristics it as a graben caldera. It is truncated by younger normal faults of the Calvillo and Aguascalientes grabens. In this work we present a summary of the geologic and structural observations on this caldera, as well as a description of the main caldera product, the high-grade El Ocote ignimbrite.

  15. HCMM: Soil moisture in relation to geologic structure and lithology, northern California

    Rich, E. I. (Principal Investigator)


    Some HCMM images of about 80,000 sq km in northern California were qualitatively evaluated for usefulness in regional geologic investigations of structure and lithology. The thermal characteristics recorded vary among the several geomorphic provinces and depends chiefly on the topographic expression and vegetation cover. Identification of rock types, or groups of rock types, was most successfully carried out within the semi-arid parts of the region; however, extensive features, such as faults, folds and volcanic fields could be delineated. Comparisons of seasonally obtained HCMM images were limited value, except in semi-arid regions.

  16. Structural geology and geophysics as a support to build a hydrogeologic model of granite rock

    Martinez-Landa, Lurdes; Carrera, Jesús; Pérez-Estaún, Andrés; Gómez, Paloma; Bajos, Carmen


    A method developed for low-permeability fractured media was applied to understand the hydrogeology of a mine excavated in a granitic pluton. This method includes (1) identifying the main groundwater-conducting features of the medium, such as the mine, dykes, and large fractures, (2) implementing this factors as discrete elements into a three-dimensional numerical model, and (3) calibrating these factors against hydraulic data . A key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole sampling, geophysics, hydrogeochemistry, and local hydraulic tests aided in locating all structures. Integration of these data yielded a conceptual model of the site. A preliminary calibration of the model was performed against short-term (pumping tests, which facilitated the characterization of some of the fractures. The hydraulic properties were then used for other fractures that, according to geophysics and structural geology, belonged to the same families. Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded excellent agreement with the observations. Model results confirmed the sparsely fractured nature of the pluton, which has not been subjected to glacial loading-unloading cycles and whose waters are of Na-HCO3 type.

  17. Nasa's Planetary Geologic Mapping Program: Overview

    Williams, D. A.


    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  18. Probabilistic Structural Analysis Program

    Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.


    NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.

  19. 3D gravity imaging of deep geological structure of Huangling Anticline in Three Gorges area, China

    Zhang, Y.; Chen, C.


    Three Gorges Dam is the largest hydraulic project in the world. Previous studies showed that Huangling Anticline is one of the main geological units in this area and has great influence on the safety of the dam, so it is important to investigate deep geological structure and evaluate stability of Huangling Anticline. Huangling Anticline locates in northern margin of Yangtze Block. It is surrounded by a few faults, and two of them are Xiannushan Fault and Yuan’an Fault, with NNW direction. There are also two main faults named Xinhua Fault and Yuyangguan-Tumen Fault with NNE and NE direction. These faults are regional faults with different sizes and cutting depth, and take charge of the development of geological structures in Three Gorges area with a long time. Two main arguments about the ability of inducing earthquakes of these faults were presented. One of the arguments suggested that these faults has weak or no enough activity to induce strong earthquakes, their key evidence is the thermoluminescence (TL) dating with some geological characteristics; the other was just opposite, in their opinion, Xiannushan Fault and Yuan’an Fault has deep cutting depth with great activity to induce strong earthquakes. However, they can not provide the evidences of deep geological structures and cutting depth of these faults. In our paper, 3D density structure of upper and middle crust beneath Three Gorges Dam and its adjacent regions is reconstructed by gravity imaging, using the Bouguer gravity anomaly and surface density constraints. Results of gravity imaging indicate that Huangling Anticline is a relatively high density zone. (1) Horizontally, Huangling Anticline is a huge U-shaped crystal rock controlled by Xiannushan Fault and Yuan’an Fault along NNW direction. In the southeast, Yuyangguan-Tumen Fault becomes the boundary of the anticline, and in the west, Xinhua Fault and Xiannushan Fault separate Huangling Anticline from Zigui basin; (2) From vertical profiles of

  20. Factorial kriging analysis applied to geological data from petroleum exploration

    Jaquet, O.


    A regionalized variable, thickness of the reservoir layer, from a gas field is decomposed by factorial kriging analysis. Maps of the obtained components may be associated with depositional environments that are favorable for petroleum exploration.

  1. Investigation of the geologic and tectonic structures of Bafa Lake and Akbuk Gulf (terrestrial and marine areas) by means of gravity and magnetic methods

    Edremit, Şüheda; Özel, Erdeniz


    Geologic units of Bafa Lake and Akbuk Gulf, which have very importance in point of geologic and tectonic structure, are generally are classified by high-grade metamorphic units of the Menderes Core Complex, Cycladic Complex (schist, marble, eclogite), Afyon zone meta sedimentary and Pan-African basement rocks, Neogene volcanic-sedimentary rocks and alluvium. As for tectonic structures of study areas are; Izmir-Balikesir Transfer Zone also affected the Buyuk Menderes Graben, Bornova Flysch Zone, Menderes Massif and Lycian Nappes. Regional researches were studied to reveal using Turkey Bouguer Anomaly and Turkey Aeromagnetic regional map with gravity method used for geologic structures analysis and magnetic method used to explain main structure, tectonic conditions of underground. General geologic structure and tectonic lineaments of region were examined and interpretated compatibility with gravity and magnetic values. When the geologic and tectonic structures on the terrestrial areas are generally investigated, graben systems and linearities are clearly seen on the Bouguer Anomaly map. Positive values are seen in the Bornova Flysch Zone and Menderes Massif areas at the north of study areas arising from high-density ophiolitic and metamorphic units. Graben areas in the Menderes Massif are observed negative gravity values on the low-density young alluviums. Positive gravity values are increased up to 50-60 mgal on the metamorphic rocks that are named Cycladic Complex located southwest of study areas. At the aeromagnetic regional magnetic map, gamma values about -100 observed on the Menderes Massif region are indicated metagranite rocks that are Paleozoic crystalline structure. Gamma values, which are changed between -100 and +100 at the transition areas granite with schists, are obviously revealed this transition region. Located northwest of study areas Upper Miocene-Pliocene aged from sedimentary rocks on the terrestrial carbonates and nonsegregated terrestrial

  2. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean


    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  3. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    K. Jourde


    Full Text Available This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas – called acquisition kernels – and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.

  4. Geological structures control on earthquake ruptures: The Mw7.7, 2013, Balochistan earthquake, Pakistan

    Vallage, A.; Klinger, Y.; Lacassin, R.; Delorme, A.; Pierrot-Deseilligny, M.


    The 2013 Mw7.7 Balochistan earthquake, Pakistan, ruptured the Hoshab fault. Left-lateral motion dominated the deformation pattern, although significant vertical motion is found along the southern part of the rupture. Correlation of high-resolution (2.5 m) optical satellite images provided horizontal displacement along the entire rupture. In parallel, we mapped the ground rupture geometry at 1:500 scale. We show that the azimuth of the ground rupture distributes mainly between two directions, N216° and N259°. The direction N216° matches the direction of preexisting geologic structures resulting from penetrative deformation caused by the nearby Makran subduction. Hence, during a significant part of its rupture, the 2013 Balochistan rupture kept switching between a long-term fault front and secondary branches, in which existence and direction are related to the compressional context. It shows unambiguous direct interactions between different preexisting geologic structures, regional stress, and dynamic-rupture stress, which controlled earthquake propagation path.

  5. High-energy proton beam analysis of geological materials

    Halden, Norman M.


    Partitioning of trace elements between mineral phases reflects the physical, chemical and kinetic conditions of crystallization. Variations in environmental conditions during growth often result in complex and small-scale chemical zoning in minerals. The low abundance of trace elements and their spatial inhomogeneity on a μm scale makes their analysis by a muprobe technique essential for addressing many petrological problems. μ-PIXE (2-3 MeV) has been successfully applied to many mineralogical problems and is rapidly becoming a routine analytical tool for geologists. High-energy PIXE (40-60 MeV) provides a new dimension in mineralogical analysis. The K X-rays for many petrologically important trace elements occur in the 25-90 keV region, here the X-rays are not affected by interference from the X-rays of more abundant geochemically coherent elements. Furthermore, the K X-ray spectrum for an element is less complex than its corresponding L X-ray spectrum so data reduction is simplified. The use of high energy protons for elemental analysis makes high-energy PIGE accessible, here on-line emission of γ-rays can be used to provide information on element (or in some cases isotope) concentrations. For the analysis of chemically complex materials such as rocks and minerals it is necessary to thoroughly characterize the material beforehand such that likely proton induced reactions can be predicted. Nuclear reactions produced by proton interaction with mineral samples occur during on-line exposure of the sample. The by-products of such reactions may have significant half-lives which will make them amenable to off-line analysis. One such case is where Pt undergoes (p, xn) reactions to form Au which then decays back to Pt via electron capture. The off-line spectrum after such a run contains Au X-rays and the background to such spectra is low, which raises the possibility that this form of analysis will provide low detection limits. This is the proton analogue of neutron

  6. Landslides analysis using geological, geotechnical and geophysical data from experimental measurements in Prahova County

    Marius Stoica


    Full Text Available The landslide that is the subject of this paper occurred inPrahova County. The present work was carried out to study the spatialinfluence of geological and morphological factors upon landslideoccurrence on a local scale by using geotechnical and geophysical methods in order to determine local trigger parameters. The input data for the slopestability analysis were collected from topographic investigations, geological mapping. In addition, soil geotechnical parameters were collated from a series of in situ tests. A geophysical survey was applied by using vertical electrical soundings in order to detect the existence and continuity of a potential sliding surface.

  7. Maps Showing Geology, Structure, and Geophysics of the Central Black Hills, South Dakota

    Redden, Jack A.; DeWitt, Ed


    This 1:100,000-scale digital geologic map details the complex Early Proterozoic granitic rocks, Early Proterozoic supracrustal metamorphic rocks, and Archean crystalline basement of the Black Hills. The granitic rocks host pegmatite deposits renowned for their feldspar, mica, spodumene, and beryl. The supracrustal rocks host the Homestake gold mine, which produced more than 40 million ounces of gold over a 125-year lifetime. The map documents the Laramide deformation of Paleozoic and Mesozoic cover rocks; and shows the distribution of Laramide plutonic rocks associated with precious-metals deposits. Four 1:300,000-scale maps summarize Laramide structures; Early Proterozoic structures; aeromagnetic anomalies; and gravity anomalies. Three 1:500,000-scale maps show geophysical interpretations of buried Early Proterozoic to Archean rocks in western South Dakota and eastern Wyoming.

  8. Using AutoCAD for descriptive geometry exercises. in undergraduate structural geology

    Jacobson, Carl E.


    The exercises in descriptive geometry typically utilized in undergraduate structural geology courses are quickly and easily solved using the computer drafting program AutoCAD. The key to efficient use of AutoCAD for descriptive geometry involves taking advantage of User Coordinate Systems, alternative angle conventions, relative coordinates, and other aspects of AutoCAD that may not be familiar to the beginning user. A summary of these features and an illustration of their application to the creation of structure contours for a planar dipping bed provides the background necessary to solve other problems in descriptive geometry with the computer. The ease of the computer constructions reduces frustration for the student and provides more time to think about the principles of the problems.

  9. Geology Structure Identification based on Polarimetric SAR (PolSAR) Data and Field Based Observation at Ciwidey Geothermal Field

    Pradipta, R. A.; Saepuloh, A.; Suryantini


    Geological structure observation is difficult to be conducted at Quaternary volcanic field due to the classical problem at tropical region such as intensive erosion, dense vegetation covers, and rough terrain. The problem hampers the field observation especially for geological structures mapping. In order to overcome the problems, an active remote sensing technology based on Polarimetric Synthetic Aperture Radar (PolSAR) data was used in this study. The longer wavelength of microwave than optical region caused the SAR layer penetration higher than optics. The Ciwidey Geothermal Field, Indonesia was selected as study area because of the existence of surface manifestations with lack information about the control of geological structures to the geothermal system. Visual interpretation based on composite polarization modes was applied to identify geological structures at study area. The color composite Red-Green-Blue for HV-HH-VV polarizations provided highest texture and structural features among the other composite combination. The Linear Features Density (LFD) map was also used to interpret the fractures zones. The calculated LFD showed high anomaly about 3.6 km/km2 with two strike directions NW-SE and NE-SW. Interestingly, the surface geothermal manifestation agreed with the low anomaly of LFD. The geological structures consisted of ten faults were successfully detected and mapped. The faults type mainly are oblique-slip with strike directions NE-SW and NW-SE.

  10. Geological structure guided well log interpolation for high-fidelity full waveform inversion

    Chen, Yangkang; Chen, Hanming; Xiang, Kui; Chen, Xiaohong


    Full waveform inversion (FWI) is a promising technique for inverting a high-resolution subsurface velocity model. The success of FWI highly depends on a fairly well initial velocity model. We propose a method for building a good initial velocity model that can be put into the FWI framework for inverting a nearly perfect velocity structure. We use a well log interpolated velocity model as a high-fidelity initial model for the subsequent FWI. The interpolation problem is solved via a least-squares method with a geological structural regularization. In order to obtain the geological structure of subsurface reflectors, an initial reverse time migration (RTM) with a fairly realistic initial velocity model is conducted, and the local slope of subsurface structure is roughly calculated from the RTM image. The well log interpolated initial velocity model can be very close to the true velocity while containing a small velocity anomaly or oversmoothing caused by the imperfect velocity interpolation. The anomaly and oversmoothing effect can be compensated during the subsequent FWI iterations. We use a relatively simple-layered model and the more complicated Marmousi velocity model to demonstrate the applicability of the proposed approach. We start from a very smooth velocity model and obtain a nearly perfect FWI result which is much better than the traditional FWI result without the velocity interpolation. The migrated images from the RTM method using different velocity models are also compared to further confirm the effectiveness of the proposed framework. Regarding the field deployment, we suggest that future drilling of exploration wells can be seismic-oriented, which can help fully utilize the information of well logs for building initial subsurface velocity model and will facilitate a wide application of the proposed methodology.

  11. Geologic structure of the Yucaipa area inferred from gravity data, San Bernardino and Riverside Counties, California

    Mendez, Gregory O.; Langenheim, V.E.; Morita, Andrew; Danskin, Wesley R.


    In the spring of 2009, the U.S. Geological Survey, in cooperation with the San Bernardino Valley Municipal Water District, began working on a gravity survey in the Yucaipa area to explore the three-dimensional shape of the sedimentary fill (alluvial deposits) and the surface of the underlying crystalline basement rocks. As water use has increased in pace with rapid urbanization, water managers have need for better information about the subsurface geometry and the boundaries of groundwater subbasins in the Yucaipa area. The large density contrast between alluvial deposits and the crystalline basement complex permits using modeling of gravity data to estimate the thickness of alluvial deposits. The bottom of the alluvial deposits is considered to be the top of crystalline basement rocks. The gravity data, integrated with geologic information from surface outcrops and 51 subsurface borings (15 of which penetrated basement rock), indicated a complex basin configuration where steep slopes coincide with mapped faults―such as the Crafton Hills Fault and the eastern section of the Banning Fault―and concealed ridges separate hydrologically defined subbasins.Gravity measurements and well logs were the primary data sets used to define the thickness and structure of the groundwater basin. Gravity measurements were collected at 256 new locations along profiles that totaled approximately 104.6 km (65 mi) in length; these data supplemented previously collected gravity measurements. Gravity data were reduced to isostatic anomalies and separated into an anomaly field representing the valley fill. The ‘valley-fill-deposits gravity anomaly’ was converted to thickness by using an assumed, depth-varying density contrast between the alluvial deposits and the underlying bedrock.To help visualize the basin geometry, an animation of the elevation of the top of the basement-rocks was prepared. The animation “flies over” the Yucaipa groundwater basin, viewing the land surface

  12. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala); Estudios geologico-estructurales y geofisicos en Mina Ratones (Pluton de Albala)

    Perez-Estaun, A.; Carbonell, R.; Marti, D.; Flecha, I. [Instituto de Ciencias de la Tierra Jaume Almera. Barcelona (Spain); Escuder Viruete, J. [Universidad complutense de Madrid. Madrid (Spain)


    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  13. First Paleomagnetic Map of the Easternmost Mediterranean Derived from Combined Geophysical-Geological Analysis

    Eppelbaum, Lev; Katz, Youri


    he easternmost Mediterranean is a tectonically complex region evolving in the long term and located in the midst of the progressive Afro-Eurasian collision (e.g., Ben-Avraham, 1978; Khain, 1984). Both rift-oceanic systems and terrane belts are known to have been formed in this collision zone (Stampfli et al., 2013). Despite years of investigation, the geological-geophysical structure of the easternmost Mediterranean is not completely known. The formation of its modern complex structure is associated with the evolution of the Neotethys Ocean and its margins (e.g., Ben-Avraham and Ginzburg, 1990; Robertson et al., 1991; Ben-Avraham et al., 2002). The easternmost Mediterranean was formed during the initial phase of the Neotethys in the Early and Late Permian (Golonka and Ford, 2000; Stampfli et al., 2013). At present this block of the ocean crust situated in the northern part of the Sinai plate (Ben-Avraham, 1978; Eppelbaum et al., 2012, 2014) is object of our investigation. The easternmost Mediterranean region has attracted increasing attention in connection with the recent discoveries of significant hydrocarbon deposits in this region (e.g., Montadert et al., 2010; Schenk et al., 2010; Eppelbaum et al., 2012). For example, Schenk et al. (2010) consider that more than 4 trillion m3 of recoverable gas is available in the Levant Basin (which located in the central part of the easternmost Mediterranean). Currently seismic prospecting is the main tool used in hydrocarbon deposit discovery. However, even sophisticated seismic data analysis (e.g., Hall et al., 2005; Roberts and Peace, 2007; Gardosh et al., 2010; Marlow et al., 2011; Lazar et al., 2012), fails to identify the full complex structural-tectonic mosaic of this region, and more importantly, is unable to clarify its baffling complex tectonic evolution. This highlights the need for combined analysis of geophysical data associated with the paleomagnetic and paleobiogeographic conditions that can yield deep

  14. Thermal Performance Analysis of a Geologic Borehole Repository

    Reagin, Lauren [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of two WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to

  15. Thermal Performance Analysis of a Geologic Borehole Repository

    Reagin, Lauren [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of two WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used and results obtained from the thermal analyses were close to being



    <正>20102475 Chen Shiliang(No.4 Geological Party of Fujian Province,Ningde 352100,China)A Brief Analysis on Geothermy in the Nantai Isle of Fuzhou Municipality,Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,28(4),2009,p.310-314,1 illus.,1 table,3 refs.)Key words:geothermal exploration,Fujian ProvinceBased on the geochemistry and geophysical

  17. Structural dynamics analysis

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.


    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  18. Relating Gestures and Speech: An analysis of students' conceptions about geological sedimentary processes

    Herrera, Juan Sebastian; Riggs, Eric M.


    Advances in cognitive science and educational research indicate that a significant part of spatial cognition is facilitated by gesture (e.g. giving directions, or describing objects or landscape features). We aligned the analysis of gestures with conceptual metaphor theory to probe the use of mental image schemas as a source of concept representations for students' learning of sedimentary processes. A hermeneutical approach enabled us to access student meaning-making from students' verbal reports and gestures about four core geological ideas that involve sea-level change and sediment deposition. The study included 25 students from three US universities. Participants were enrolled in upper-level undergraduate courses on sedimentology and stratigraphy. We used semi-structured interviews for data collection. Our gesture coding focused on three types of gestures: deictic, iconic, and metaphoric. From analysis of video recorded interviews, we interpreted image schemas in gestures and verbal reports. Results suggested that students attempted to make more iconic and metaphoric gestures when dealing with abstract concepts, such as relative sea level, base level, and unconformities. Based on the analysis of gestures that recreated certain patterns including time, strata, and sea-level fluctuations, we reasoned that proper representational gestures may indicate completeness in conceptual understanding. We concluded that students rely on image schemas to develop ideas about complex sedimentary systems. Our research also supports the hypothesis that gestures provide an independent and non-linguistic indicator of image schemas that shape conceptual development, and also play a role in the construction and communication of complex spatial and temporal concepts in the geosciences.



    <正>20091465 Cai Xuelin(College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China);Cao Jiamin Preliminary Study on the 3-D Crust Structure for the Longmen Lithosphere and the Genesis of the Huge Wenchuan Earthquake,Sichuan Province,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,35(4),2008,p.357-365,8 illus.,39 refs.)Key words:deep-seated structures,large earthquakes,Longmenshan Fracture ZoneBased on a structural analysis of many seismic sounding profiles,there are two fault systems in Longmen collisional orogenic belt,Sichuan Province,China.They are both different obviously and correlative closely.One is shallow fault system composed mainly of brittle shear zones in surface crust,and the other is deep fault system composed mainly of crust-mantle ductile shear zones cutting Moho discontinuity.Based on the result of researching geological structure and seismic sounding profiles,

  20. Fluid Flow through Porous Sandstone with Overprinting and Intersecting Geological Structures of Various Types

    Zhou, X.; Karimi-Fard, M.; Durlofsky, L.; Aydin, A.


    Impact of a wide variety of structural heterogeneities on fluid flow in an aeolian sandstone in the Valley of Fire State Park (NV), such as (1) dilatant fractures (joints), (2) shear fractures (faults), and (3) contraction/compaction structures (compaction bands), are considered. Each type of these structures has its own geometry, spacing, distribution, connectivity, and hydraulic properties, which either enhance or impede subsurface fluid flow. Permeability of these structures may, on average, be a few orders of magnitude higher or lower than those of the corresponding matrix rocks. In recent years, the influence of a single type of these heterogeneities on fluid flow has been studied individually, such as joints, compaction bands or faults. However, as different types of geological structures are commonly present together in the same rock volume, their combined effect requires a more detailed assessment. In this study, fluid flow simulations are performed using a special finite-volume discretization technique that was developed by Karimi-Fard et al. (2004; 2006). Using this approach, thin features such as fractures and compaction bands are represented as linear elements in unstructured 2D models and as planar elements in 3D models, which significantly reduces the total number of cells and simplifies grid generation. The cell geometric information and the cell-to-cell transmissibility obtained from this discretization technique are input to Stanford’s General Purpose Research Simulator (GPRS) for fluid flow simulation. To account for the effects of the various geological structures on subsurface flow, we perform permeability upscaling over regions corresponding to large-scale simulation grid blocks in order to obtain equivalent permeability components in two principal directions. We will focus on the following problems: (1) compaction bands of multisets; (2) compartmentalization of compaction bands of high-angle, low-angle and horizontal; (3) joints overprinting

  1. North African petroleum geology: regional structure and stratigraphic overview of a hydrocarbon-rich cratonic area

    O' Connor, T.E.; Kanes, W.H.


    North Africa, including Sinai, contains some of the most important hydrocarbon-producing basins in the world. The North African Symposium is devoted to examining the exploration potential of the North African margin in light of the most recent and promising exploration discoveries. The geologic variety of the region is extraordinary and can challenge any exploration philosophy. Of primary interest are the Sirte basin of Libya, which has produced several billion barrels of oil, and the Gulf of Suez, a narrow, evaporite-capped trough with five fields that will produce more than 5 billion bbl. Both are extensional basins with minimal lateral movement and with good source rocks in direct proximity to reservoirs. Structural models of these basins give firm leads for future exploration. More difficult to evaluate are the Tethyan realm basins of the northern Sinai, and the Western Desert of Egypt, the Cyrenaican Platform of Libya, and the Tunisia-Sicily shelf area, where there are only limited subsurface data. These basins are extensional in origin also, but have been influenced by lateral tectonics. Favorable reservoirs exist, but source rocks have been a problem locally. Structural models with strong stratigraphic response offer several favorable play concepts. The Paleozoic Ghadames basin in Libya, Tunisia, and Algeria has the least complex structural history, and production appears to be limited to small structures. A series of stratigraphic models indicates additional areas with exploration potential. The Paleozoic megabasin of Morocco, with its downfaulted Triassic grabens, remains an untested but attractive area.

  2. 构造地质学词汇特征及翻译%Characteristics and Translation of Structural Geological Vocabulary

    田丽贤; 邱亮; 朱蔓


    In English study and work about structural geology, it is important to have a good command of vocabulary, which is a difficult part. This paper first analyzes the word formation of structural geological vocabulary from morphology, namely compound, derivation and acronym. Then it puts forward the characteristics of structural geological vocabulary, that is, professional, vivid and exact. At last it discusses the translation of structural geological vocabulary from phonetic, free, literal, and semantic transliteration. It aims at facilitating the study of structural geological vocabulary and improves the quality of thesis on structural geology.%在构造地质学专业英语学习和相关工作中,词汇的掌握和运用是关键,但也是难点。本文首先从形态学的角度对构造地质学专业英语词汇的构词进行分析,分别是复合、派生和缩略法,并提出构造地质学词汇的特点即专业性、形象性和简洁性,构造地质学词汇的翻译,可大致分为音译词、意译词、直译词、音意兼顾词。从而利于构造地质学专业英语词汇的学习,提高构造地质学英语论文的质量。

  3. Interpretation of remote sensing of geological structures and prediction of gold mineralization in Mohe area and its adjacent region


    The authors took the ETM+ multi-spectra data as the data information and correlation coefficient for each band and carried out their information volume statistics. According to certain criteria, the authors also determined the optimum band-combined image. The image clarity is improved by various enhancements and fusions method. Based on remote sensing geological interpretation in detail, the relationship between remote sensing geological characters and gold mine were analyzed systemically. Using all kinds of remote sensing structure information, combining other research data, the authors determined mainly ore-controlling ore structure. Several prospective areas of gold ores were determined and furthermore significant finding mine target areas was confirmed.



    <正>20102127 S.L.Shvartsev(Tomsk Department,Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of the RAS)Self-Organizing Abiogenic Dissipative Structures in the Geologic History of the Earth(Earth Science Frontiers,ISSN1005-2321,CN11-3370/P,16(6),2009,p.257-275,3 illus.,4 tables,53 refs.)Key words:abiogenic,water-rock interaction,dissipative structureIt is shown that since the appearance of water on the Earth,a stationary disequilibrium-equilibrium

  5. Multiple data sets converge on a geologic structural model for Glass Buttes, Oregon geothermal prospect

    Walsh, P.; Martini, B.; Lide, C.; Boschmann, D.; Dilles, J. H.; Meigs, A.


    Geologic field work is being combined with multiple remote sensing and geophysical tools to model fault structure at the Glass Buttes geothermal prospect in central Oregon. Glass Buttes are a Pliocene volcanic center that sits near the junction of the Abert Rim and Brothers Fault Zones. West-northwest-striking faults, which typify the Brothers Fault Zone, bound Glass Buttes. Individual faults and fault intersections are anticipated to provide permeability for utility scale geothermal development in central Oregon. Existing temperature data reveal a maximum of 90° C measured at 600 m, with ~160° C/km bottom hole temperature gradient. High temperature surface alteration, abundant WNW-oriented faulting, and reported drilling mud losses indicate likely commercial temperatures and fracture-controlled permeability at depth. LiDAR, hyperspectral mineral mapping, and field mapping constrain near-surface structure and volcanic contacts; aeromagnetic data constrain surface to intermediate (<1000 m) structure; and gravity data constrain deeper structure (surface-2000 m). Data sets agree reasonably well in some areas, although gravity data reflect a few deep-seated faults more than the densely faulted surface structure. On the east side of the prospect, these interpreted faults trend ENE, nearly perpendicular to observed surface structures. To the north of Glass Buttes, a curvilinear gravity high and topographic low indicate that Glass Buttes sits on the southern end of a previously unidentified buried caldera or graben. Interpretation of subsurface and gravity data do not uniquely distinguish between these alternative interpretations. Exploratory drilling will target intersections of surface faults with deeper gravity-defined features.

  6. Scientific Journals as Fossil Traces of Sweeping Change in the Structure and Practice of Modern Geology

    H. L. Vacher


    Full Text Available In our attempts to track changes in geological practice over time and to isolate the source of these changes, we have found that they are largely connected with the germination of new geologic subdisciplines. We use keyword and title data from articles in 68 geology journals to track the changes in influence of each subdiscipline on geology over all. Geological research has shifted emphasis over the study period, moving away from economic geology and petroleum geology, towards physics- and chemistry-based topics. The Apollo lunar landings had as much influence on the topics and practice of geological research as the much-cited plate-tectonics revolution. These results reflect the barely-tangible effects of the changes in vocabulary and habit of thought that have pervaded the substance of geology. Geological literature has increased in volume and specialization, resulting in a highly fragmentary literature. However, we infer that "big science," characterized by large amounts of funding, collaboration, and large logistical investments, makes use of this specialization and turns "twigging" into a phenomenon that enhances, rather than inhibits, the enterprise of research.

  7. Numerical Verification Of Geotechnical Structure In Unfavourable Geological Conditions – Case Study

    Drusa Marián


    Full Text Available Numerical modelling represents a powerful tool not only for special geotechnical calculations in cases of complicated and difficult structure design or their foundation conditions, but also for regular tasks of structure foundation. Finite element method is the most utilized method of numerical modelling. This method was used for calculations of the retaining wall monitored during 5 years after construction. Retaining wall of the parking lot with the facing from gabion blocks was chosen for numerical model. Besides the unfavourable geological conditions, a soft nature of the facing was also a difficult part of the modelling. This paper presents the results of the modelling when exact geometry, material characteristics and construction stages were simulated. The results capture the trend of displacements even though the basic material models were utilized. The modelling proved the ability of the finite element method to model the retaining structure with sufficient accuracy as well as reasonable demand on quality and quantity of input data. This method can then be used as a regular design tool during project preparation.

  8. Geologic mapping of Indonesian rain forest with analysis of multiple SIR-B incidence angles

    Ford, J. P.; Sabins, F. F., Jr.; Asmoro, P., Jr.


    The discrimination and mapping capabilities are to be evaluated for shuttle imaging radar-B (SIR-B) images of geologic features in Indonesia that are covered by equatorial rain forest canopy. The SIR-B backscatter from the rain forest at L-band is to be compared to backscatter acquired by the SEASAT scatterometer system at Ku-band ever corresponding areas. The approach for data acquisition, handling, and analysis and the expected results of the investigation are discussed.

  9. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    Morris, J P; Johnson, S M


    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  10. Deep structure study of the salt body of Jbel Rheouis (central tunisia) from geological and gravity data

    Bouzid, Wajih; Abbes, Chedly; Gabtni, Hakim; Hassine, Mouna


    Jbel Rheouis situated in south west of Sidi Bouzid, central Tunisia, is a complex structure located at a tectonic node between N-S, NE-SW and NW-SE corridors. It was considered as a diapir containing the most complete series of The Upper Triassic formation in Central Tunisia. The good quality of preserved fossils markers especially at the limestone levels made it possible for Burollet (1952) to propose a lithostratigraphic description of the Rheouis Formation. This stratigraphy was clarified by Soussi and Abbes (2004) basing on new paleontological, palynological and outcrops detailed mapping data. Thus, they assigned the base of this outcrops series to Carnian and its top to Rhaetian. Using these geological and lithostratigraphic data we suspects that the base of the Rheouis formation formed by black limestone can be correlated to the Rehach limestone in the South of Tunisia where this level is laying on a clayey sandstones level identified as the Lower Triassic outcrops. In this concept, this study intend to investigate the Rheouis structure and to identify it's nature basing on the intra salt structures identification and the nature of the Lower Triassic sediments buried beneath the Black limestones, using a combination of geological, lithostratigraphic and geophysical (gravity) data. The gravity data used in this work were obtained from the ONM with a mesh of 1Km /1Km. All the data were merged and reduced using the 1967 International gravity formula. Free air and Bouguer gravity correction were made using sea level as a datum and 2.4 g/cm³ as a reduction density. The Bouguer anomaly map shows a variation in anomaly values range from -12.5 mGal to -4.5 mGal with a contrasted anomaly distribution. This map present 5 gravity maxima and 4 gravity minima where the major direction of those maxima and minima are N-S, NE-SW and NW-SE. The presence of a relative positive anomaly concentrated J.Rheouis can be explained by a mass excess probably due to the uplift of the

  11. Quantification of layered patterns with structural anisotropy: a comparison of biological and geological systems.

    Smolyar, I; Bromage, T; Wikelski, M


    Large-scale patterns evident from satellite images of aeolian landforms on Earth and other planets; those of intermediate scale in marine and terrestrial sand ripples and sediment profiles; and small-scale patterns such as lamellae in the bones of vertebrates and annuli in fish scales are each represented by layers of different thicknesses and lengths. Layered patterns are important because they form a record of the state of internal and external factors that regulate pattern formation in these geological and biological systems. It is therefore potentially possible to recognize trends, periodicities, and events in the history of the formation of these systems among the incremental sequences. Though the structures and sizes of these 2-D patterns are typically scale-free, they are also characteristically anisotropic; that is, the number of layers and their absolute thicknesses vary significantly during formation. The aim of the present work is to quantify the structure of layered patterns and to reveal similarities and differences in the processing and interpretation of layered landforms and biological systems. To reach this goal we used N-partite graph and Boolean functions to quantify the structure of layers and plot charts for "layer thickness vs. layer number" and "layer area vs. layer number". These charts serve as a source of information about events in the history of formation of layered systems. The concept of synchronization of layer formation across a 2-D plane is introduced to develop the procedure for plotting "layer thickness vs. layer number" and "layer area vs. layer number", which takes into account the structural anisotropy of layered patterns and increase signal-to-noise ratio in charts. Examples include landforms on Mars and Earth and incremental layers in human and iguana bones.

  12. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.


    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best…

  13. Google Earth Mapping Exercises for Structural Geology Students--A Promising Intervention for Improving Penetrative Visualization Ability

    Giorgis, Scott


    Three-dimensional thinking skills are extremely useful for geoscientists, and at the undergraduate level, these skills are often emphasized in structural geology courses. Google Earth is a powerful tool for visualizing the three-dimensional nature of data collected on the surface of Earth. The results of a 5 y pre- and posttest study of the…



    20150599Chen Gang(Nanjing Center,China Geological Survey,Nanjing 210016,China);Yao Zhongyou Mineral Database Construction and Analysis of Oceania Region(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,33(2),2014,p.164-171,13illus.,6refs.)Key words:mineral localities,data bases Based on the database of the standards,construction process,data quality control measures and methods and processes,the authors constructed the databases of Fe,Mn,Cu,Al,Au,Ni,U and REE mineral resources for Oceanian region.Through a comprehensive analysis of the multi-source data information of geology and mineral resources,

  15. Structural Geology and Tectonics in Marine Science:Perspectives in the Research of Deep Sea and Deep Interior

    LI Sanzhong; YU Shan; JIN Chong; SUO Yanhui; M.Santosh; DAI Liming; LIU Xin; MA Yun; WANG Xiaofei; ZHANG Bingkun


    The fields of structural geology and tectonics have witnessed great progress over the last decade and are poised for further expansion in the future.One of the significant breakthroughs is the establishment of the ‘Beyond Plate Tectonics Theory’where a combination of conceptual models and numerical modeling on plume tectonics and plate tectonics has enabled new insights into the structural and tectonic architecture and processes in the deep interior and deep sea.This paper Synthesizes developments of structural geology and tectonics from a macroscopic perspective in deep interior and deep sea.Four key techniques are also reviewed:satellite altimetry for surface structures in deep-sea multi-beam sea-floor mapping;tomography for tectonics of the deep interior;diverse modeling approaches and software for unfolding dynamic evolution;and techniques for HT/HP experiments on material rheology and in situ component measurements.

  16. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis

    Kubala-Kukuś, A.; Banaś, D.; Braziewicz, J. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Dziadowicz, M.; Kopeć, E. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Majewska, U. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Mazurek, M.; Pajek, M.; Sobisz, M.; Stabrawa, I. [Institute of Physics, Jan Kochanowski University, ul. Świetokrzyska 15, 25-406 Kielce (Poland); Wudarczyk-Moćko, J. [Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Góźdź, S. [Holycross Cancer Center, ul. Artwińskiego 3, 25-734 Kielce (Poland); Institute of Public Health, Jan Kochanowski University, IX Wieków Kielc 19, 25-317 Kielce (Poland)


    A particular subject of X-ray fluorescence analysis is its application in studies of the multielemental sample of composition in a wide range of concentrations, samples with different matrices, also inhomogeneous ones and those characterized with different grain size. Typical examples of these kinds of samples are soil or geological samples for which XRF elemental analysis may be difficult due to XRF disturbing effects. In this paper the WDXRF technique was applied in elemental analysis concerning different soil and geological samples (therapeutic mud, floral soil, brown soil, sandy soil, calcium aluminum cement). The sample morphology was analyzed using X-ray microtomography technique. The paper discusses the differences between the composition of samples, the influence of procedures with respect to the preparation of samples as regards their morphology and, finally, a quantitative analysis. The results of the studies were statistically tested (one-way ANOVA and correlation coefficients). For lead concentration determination in samples of sandy soil and cement-like matrix, the WDXRF spectrometer calibration was performed. The elemental analysis of the samples was complemented with knowledge of chemical composition obtained by X-ray powder diffraction.



    <正>20082275 He Longqing(Yichang Institute of Geology and Mineral Resources,Yichang 443003,China);Ji Wei Ore-Controlling Effect of Nappe Structure in the East Ore Zone of the Baiyangping Area,Lanping Basin,Yunnan Province(Journal of Geome- ehanics,ISSN1006—6616,CN11—3672/P, 13(2),2007,p.110—118,6 illus.,2 tables,28 refs.) Key words:nappes,structural controls, Yunnan Province



    <正>20091163 Jiang Huichao(Tongji University College of Ocean and Earth Science,Shanghai 200092,China);Xiao Yongjun Analysis of Cenozoic Subsurface Temperatures of the Jiyang Depression,Shandong Province(Geology in China,ISSN1000-3657,CN11- 1167/P,35(2),2008,p.273-278,3 illus.,2 tables,15 refs.)



    <正>20071835 Chen Xifeng(China University of Geosciences,Beijing 100083,China);Peng Runmin Analysis on the Necessity and Significance of Concealed Deposits Exploration(Gansu Geology,ISSN1004-4116,CN62-1191/P,15(2),2006,p.1-4,1 table,7 refs.)Key words:blind deposits,China



    <正>20140332 Jiang Lin(School of Earth and Space Sciences,Peking University,Beijing100871,China);Ji Jianqing Geologic Analysis on the Prospects of the Enhanced Geothermal System(EGS)in the Bohaiwan Basin(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,49(1),2013,p.167-178,5illus.,4tables,41refs.)Key words:geothermal systems,Bohaiwan Basin Great amounts of thermal energy is stored ubiquitously in rocks with high tempera-

  1. Destination: Geology?

    Price, Louise


    to the Canary Islands and Japan. The Great Britain Sasakawa Foundation, provided additional funding to support the recent visit to Japan, which enabled visits to Mount Fuji as well as investigating structural geology in Kobe and Tokyo. "The opportunity to visit Japan really broadened my understanding of geology and sharing that experience with fellow students helped me to reinforce my knowledge of the subject." Jack, geology student, Age 18.

  2. Application of PALSAR-2 remote sensing data for structural geology and topographic mapping in Kelantan river basin, Malaysia

    Beiranvand Pour, Amin; Hashim, Mazlan


    Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.



    The methods of deformation analysis and modeling at single point are realized easily now,but available approaches do not make full use of the information from monitoring points and can not reveal integrated deformation regularity of a deformable body.This paper presents a fuzzy clusetering method to analyze the correlative relations of multiple points in space,and then the spatial model for a practical dangerous rockmass in the area of Three Gorges,Yangtze River is established,in which the correlation of six points in space is analyzed by geological investigation and fuzzy set theory.

  4. Visible Geology - Interactive online geologic block modelling

    Cockett, R.


    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  5. 2D resistivity survey in complex geological structure area. Application to the volcanic area; Fukuzatsuna chishitsu kozo chiiki ni okeru hiteiko nijigen tansa. Kazangan chiiki deno tekiorei

    Asakawa, S.; Ikuma, T.; Tanifuji, R. [DIA Consultants Co. Ltd., Tokyo (Japan)


    Introduced herein is an application of 2D resistivity survey to a volcanic rock area where the survey result is difficult to interpret because of its complex geological structure. In a dam site survey, main problems involve the permeability of water through faults and weathered, altered zones. At this site, a 2D resistivity survey was conducted, a 2D geological structure was deduced from the resistivity section, and the result was examined. It was found that resistivity distribution was closely related to hydrographic factors, but no obvious correlation was detected between rock classes and R, Q, and D. In conducting investigations into a section planned for a highway tunnel, it was learned that the problem was a volcanic ash layer to collapse instantly upon absorbing water, and the distribution of the ash layer, not to be disclosed by boring, was subjected to a 2D resistivity survey. The survey was conducted into the structure above where the tunnel would run, and further into the face, and studies were made about what layer was reflected by the resistivity distribution obtained by analysis. The result of the analysis agreed with the details of the layer that was disclosed afterward. 4 figs., 1 tab.

  6. SG2PS (structural geology to postscript converter) - A graphical solution for brittle structural data evaluation and paleostress calculation

    Sasvári, Ágoston; Baharev, Ali


    The aim of this work was to create an open source cross platform application to process brittle structural geological data with seven paleostress inversion algorithms published by different authors and formerly not available within a single desktop application. The tool facilitates separate processing and plotting of different localities, data types and user made groups, using the same single input file. Simplified data input is supported, requiring as small amount of data as possible. Data rotation to correct for bedding tilting, rotation with paleomagnetic declination and k-means clustering are available. RUP and ANG stress estimators calculation and visualization, resolved shear direction display and Mohr circle stress visualization are available. RGB-colored vector graphical outputs are automatically generated in Encapsulated PostScript and Portable Document Format. Stereographical displays on great circle or pole point plot, equal area or equal angle net and upper or lower hemisphere projections are implemented. Rose plots displaying dip direction or strike, with dip angle distribution of the input data set are available. This tool is ideal for preliminary data interpretation on the field (quick processing and visualization in seconds); the implemented methods can be regularly used in the daily academic and industrial work as well. The authors' goal was to create an open source and self-contained desktop application that does not require any additional third party framework (such as .NET) or the Java Virtual Machine. The software has a clear and highly modular structure enabling good code portability, easy maintainability, reusability and extensibility. A Windows installer is publicly available and the program is also fully functional on Linux. The Mac OS X port should be feasible with minimal effort. The install file with test and demo data sets, detailed manual, and links to the GitHub repositories are available on the regularly updated website

  7. The geological structure and gas presence of the southeastern part of the Mrakovskiy depression

    Barykin, I.V.; Chistilin, G.M.; Kamaletdinov, R.A.; Shelenin, A.Sh.


    The tectonic structure of the gas promising territory of the Mrakovskiy depresion combined under the name of the Saratov Berkutovskiy gas bearing zone, which can be traced for a distance of up to 120 kilometers, is examined. Analysis of the materials shows the qualitative correspondence of the structural planes of the marking levels of the Carboniferous and the lower Permian inside the allochthonous and autochthonous complexes. The effect of barite on the productive levels, the basic types of collectors and the required complex of oil field and geophysical studies is examined.

  8. The Oasis impact structure, Libya: geological characteristics from ALOS PALSAR-2 data interpretation

    van Gasselt, Stephan; Kim, Jung Rack; Choi, Yun-Soo; Kim, Jaemyeong


    Optical and infrared remote sensing may provide first-order clues for the identification of potential impact structures on the Earth. Despite the free availability of at least optical image data at highest resolution, research has shown that remote sensing analysis always remains inconclusive and extensive groundwork is needed for the confirmation of the impact origin of such structures. Commonly, optical image data and digital terrain models have been employed mainly for such remote sensing studies of impact structures. With the advent of imaging radar data, a few excursions have been made to also employ radar datasets. Despite its long use, capabilities of imaging radar for studying surface and subsurface structures have not been exploited quantitatively when applied for the identification and description of such features due to the inherent complexity of backscatter processes. In this work, we make use of higher-level derived radar datasets in order to gain clearer qualitative insights that help to describe and identify potential impact structures. We make use of high-resolution data products from the ALOS PALSAR-1 and ALOS PALSAR-2 L-band sensors to describe the heavily eroded Oasis impact structure located in the Libyan Desert. While amplitude radar data with single polarization have usually been utilized to accompany the suite of remote sensing datasets when interpreting impact structures in the past, we conclude that the integration of amplitude data with HH/HV/HH-HV polarization modes in standard and, in particular, in Ultra-Fine mode, as well as entropy-alpha decomposition data, significantly helps to identify and discriminate surface units based on their consolidation. Based on the overarching structural pattern, we determined the diameter of the eroded Oasis structure at 15.6 ± 0.5 km.

  9. Structural Geology of Daba Shan and its Tectonic Relationships with the Sichuan Basin and Central China Orogen, China

    Guo, X.; Kusky, T.; Li, Z.


    Daba Shan is a fold-and-thrust belt located on the northeastern margin of the Sichuan Basin, central China orogen. It is the transitional zone between the Sichuan Basin and Qinling orogenic belt, and it is located in the middle part of the Mianlu suture zone which is the boundary between the Qinling orogenic belt and Yangtze block. Numerous faults and fault-related folds are well preserved in Daba Shan. It is a natural laboratory to carry out fold-thrust belt research on relationships between the Qingling orogen and subsidence in the Sichuan basin. In this talk, I will introduce the general geologic background about and around Daba Shan, including the geologic history of the central China orogen, the formation and development of the Mianlue suture, and the most popular ideas about the geodynamic evolution of Daba Shan, as well as its geologic position between the Sichuan Basin and North China craton and its relative geodynamic relationship with Mianlue suture zone. Field investigations have shown the different fault-related structure styles, e.g. fault-bend fold, fault-propagation fold, duplex structure across the orogen. In addition, a major extensional detachment fault, the Chengkou fault, crops out in the center of the orogen and dips beneath northern Daba Shan fold-thrust belt and Mianlue suture. It is so impressive of the typical and complex geological structure scenarios there, which were mostly caused by the collisional and post-collisional activities between Qinling micro-continent and Yangtze block since mid-Triassic time. Daba Shan has very important tectonic and economic significance in China. Although geoscientists have been working on the Sichuan Basin and central China orogen for many years, Daba Shan has gained little attention. These years, with gas and oil exploration development in foreland basin and fold-thrust belt areas, especially after the discovery of carbonate strata in Daba Shan, its economic potential has become more prominent. This

  10. Spatial distribution of geological resources in northwestern Serbia, Jadar block terrene, and its relation to tectonic structures

    Filipović Ivan


    Full Text Available This work presents new information about the interconnection between diverse geological resources and tectonic structures framing the Jadar block terrene. Deep fault zones are found to have been principal bearers of geothermal, thermo mineral and metallic ore resources. Increased bitumen and hydrocarbon concentrations in pre-Tertiary deposits, which may be potential oil/gas zones, are also associated with these areas.

  11. Shallow seismic reflection profiles and geological structure in the Benton Hills, southeast Missouri

    Palmer, J.R.; Hoffman, D.; Stephenson, W.J.; Odum, J.K.; Williams, R.A.


    During late May and early June of 1993, we conducted two shallow, high-resolution seismic reflection surveys (Mini-Sosie method) across the southern escarpment of the Benton Hills segment of Crowleys Ridge. The reflection profiles imaged numerous post-late Cretaceous faults and folds. We believe these faults may represent a significant earthquake source zone. The stratigraphy of the Benton Hills consists of a thin, less than about 130 m, sequence of mostly unconsolidated Cretaceous, Tertiary and Quaternary sediments which unconformably overlie a much thicker section of Paleozoic carbonate rocks. The survey did not resolve reflectors within the upper 75-100 ms of two-way travel time (about 60-100 m), which would include all of the Tertiary and Quaternary and most of the Cretaceous. However, the Paleozoic-Cretaceous unconformity (Pz) produced an excellent reflection, and, locally a shallower reflector within the Cretaceous (K) was resolved. No coherent reflections below about 200 ms of two-way travel time were identified. Numerous faults and folds, which clearly offset the Paleozoic-Cretaceous unconformity reflector, were imaged on both seismic reflection profiles. Many structures imaged by the reflection data are coincident with the surface mapped locations of faults within the Cretaceous and Tertiary succession. Two locations show important structures that are clearly complex fault zones. The English Hill fault zone, striking N30??-35??E, is present along Line 1 and is important because earlier workers indicated it has Pleistocene Loess faulted against Eocene sands. The Commerce fault zone striking N50??E, overlies a major regional basement geophysical lineament, and is present on both seismic lines at the southern margin of the escarpment. The fault zones imaged by these surveys are 30 km from the area of intense microseismicity in the New Madrid seismic zone (NMSZ). If these are northeast and north-northeast oriented fault zones like those at Thebes Gap they are



    20151782 Ding Zhaoqin(Institute of Geophysical Exploration of Jilin Province,Changchun130012,China);Xu Zhihe The Possibility of Structure and Occurrence Geothermal Resources in Dunhua-Mishan Fault Zone(Huinan Section)(Jilin Geology,ISSN1001-2427,CN22-1099/P,33(2),2014,p.98-102,5illus.,1table,4refs.)Key words:geothermal resources,fracture

  13. Strategies for Mars remote Laser-Induced Breakdown Spectroscopy analysis of sulfur in geological samples

    Dyar, M. Darby, E-mail: [Department of Astronomy, Mount Holyoke College, 50 College St., South Hadley, MA 01075 (United States); Tucker, Jonathan M., E-mail: [Department of Astronomy, Mount Holyoke College, 50 College St., South Hadley, MA 01075 (United States); Humphries, Seth, E-mail: [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Clegg, Samuel M., E-mail: [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wiens, Roger C., E-mail: [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Lane, Melissa D., E-mail: [Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719 (United States)


    The key to understanding the sulfur history on Mars is to identify and determine sulfate and sulfide compositions and then to draw from them geologic clues about their environments of formation. To lay a foundation for use of remote LIBS to sulfur analysis in planetary exploration, we have undertaken a focused study of sulfur LIBS in geological samples in a simulated Mars atmosphere, with experimental parameters replicating the ChemCam LIBS instrument. A suite of twelve samples was selected, including rocks rich in minerals representative of sulfates and sulfides that might be encountered on Mars. Univariate analysis of sulfur emission lines did not provide quantitative information. Partial least squares (PLS) analysis was successful at modeling sulfur concentrations for a subset of samples with similar matrices. Sulfide minerals were identified on the basis of other siderophile or chalcophile peaks, such as those arising from Zn and Cu. Because the S lines are very weak compared to those of other elements, optimal PLS results were obtained by restricting the wavelength range to channels close to the most intense sulfur lines {approx} 540-570 nm. Principal components analysis was attempted on the dataset, but did not differentiate the samples into meaningful groups because the sulfur lines are not strong enough. However, areas of the relatively weak S, H, and O peaks may be used to correctly classify all samples. Based on these outcomes, a flowchart that outlines a possible decision tree for identification and quantification of sulfur in remote LIBS analysis was constructed. Results suggest that LIBS data acquired under Mars conditions can meet the science requirements for the ChemCam instrument.

  14. Attempt to approach geological interpretation using integrate well-logging curve analysis method

    Yalin, F.


    In recent years, people widely use various well-logging curves to determine geological horizon, lithology, hydrocarbon content, etc. and have reaped some effects. The integrate well-logging curve analysis method described here adopts five types of well-logging curves: microlog curve, resistivity-logging curve, induced-current-log curve, spontaneous-potential curve and sonic-logging curve, which are used to form ''ladder diagram'' and ''spider diagram'' for the analysis. Logging curves taken from some wells in west Baxian depression are used to discuss how they analyse lithology and hydrocarbon content of formation. This method favors the comprehensive interpretation of anticline and lithology.

  15. Geological features of the northeastern Canadian Arctic margin revealed from analysis of potential field data

    Anudu, Goodluck K.; Stephenson, Randell A.; Macdonald, David I. M.; Oakey, Gordon N.


    The northeastern Canadian Arctic margin is bordered to the north by Alpha Ridge, a dominantly magmatic complex within the Amerasia Basin of the Arctic Ocean, which forms part of the High Arctic Large Igneous Province (HALIP). The characteristics of the gravity and magnetic anomaly fields change notably along the Arctic margin, with two main segments recognised. Aeromagnetic and gravity data in the transition zone between these contrasting domains of the Canadian Arctic margin are analysed here in detail. Results obtained using a variety of edge enhancement (derivative) methods highlight several magnetic domains and a major offshore sedimentary basin as well as some known and a number of previously unknown tectonic and magmatic elements. A magmatic intrusion distribution map derived from the edge enhanced magnetic anomaly maps reveals that magmatic rocks are much more widespread in the relatively shallow subsurface than implied by surface geological mapping. Magmatic intrusions (mainly dykes) and other geological structures have NW-SE, NE-SW and N-S major trends. Broad gravity and pseudogravity lows across most of the Sverdrup Basin region are due to thick, less dense sedimentary succession and low magnetised crust. Magnetic and pseudogravity highs observed over Alpha Ridge indicate high crustal magnetisation associated with the occurrence of extensive and voluminous crustal magmatic bodies. Absence of these volcanic and intrusive rocks in the imaged sedimentary basin beneath the northeast Canadian Arctic margin region suggests that the basin probably formed after the cessation of HALIP magmatism.

  16. The Geology Robot: A Collaborative Effort for improving Outcrop Visualization and Analysis

    Fredrick, K. C.; Valoski, M. P.; Rodi, A. F.


    Geologic mapping is one of the most important skills a geologist will attempt to master during their education and well into their career. Mapping requires the ability to identify rocks and minerals, an understanding of geologic principles of history, deformation, and tectonics, as well as the ability to access the geology in question. As a student, the first two items are cognitive, and generally gained through education and experience. However, the third involves external, especially physical factors, often outside of a student’s control. Mapping and outcrop analysis can be difficult in areas of especially varied terrain depending on one’s will and physical ability. In our area of southwestern Pennsylvania, steep terrain and dense vegetation dominate the landscape. Road cuts are often the only options for identifying local bedrock. Many outcrops are avoided based on their sheer size or integrity, which can pose risks of physical harm. In order to address some of these concerns, we have developed a robot, able to scale and image rocks in the vertical. The principle behind the robot’s capabilities is to reach steep or over-steep cliff faces to view and measure rock type and stratigraphic relationships. The robot carries a movable camera, allowing the operator a clear view of the rock face in an area that he or she wouldn’t normally be able to access. The robot is suspended from climbing rope over the cliff edge and connected to a power source and video monitor. The current prototype is operated with a handheld remote control including independent camera manipulation. Future development may include detachable wheel tracks for navigating less than vertical surfaces and a coring bit for sampling. Potential uses exist beyond visualization for classroom instruction, including detailed mapping, evaluating geological engineering challenges, viewing down-well conditions in large-bore wells, etc. We believe this robot will allow students (and possibly professionals

  17. Structures and their analysis

    Fuchs, Maurice Bernard


    Addressing structures, this book presents a classic discipline in a modern setting by combining illustrated examples with insights into the solutions. It is the fruit of the author’s many years of teaching the subject and of just as many years of research into the design of optimal structures. Although intended for an advanced level of instruction it has an undergraduate course at its core. Further, the book was written with the advantage of having massive computer power in the background, an aspect which changes the entire approach to many engineering disciplines and in particular to structures. This paradigm shift has dislodged the force (flexibility) method from its former prominence and paved the way for the displacement (stiffness) method, despite the multitude of linear equations it spawns. In this book, however, both methods are taught: the force method offers a perfect vehicle for understanding structural behavior, bearing in mind that it is the displacement method which does the heavy number crunch...

  18. 2005 dossier: granite. Tome: safety analysis of the geologic disposal; Dossier 2005: granite. Tome analyse de surete du stockage geologique



    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the safety aspects of the geologic disposal of high-level and long-lived (HLLL) radioactive wastes in granite formations. Content: 1 - safety approach: context and general goal, references, design approach by safety functions, safety approach during the construction-exploitation-observation-closure phase, safety analysis during the post-closure phase; 2 - general description: HLLL wastes, granitic environment, general structure of the architecture of a disposal facility; 3 - safety functions and disposal design: general context, safety functions of the long-term disposal, design dispositions retained to answer the functions; 4 - operational safety: people's protection, radiological risks during exploitation, risk analysis in accident situation; 5 - qualitative safety analysis: methodology, main results of the analysis of the features, events and processes (FEP) database; 6 - disposal efficiency evaluation during post-closure phase: calculation models, calculation tools used for the modeling of radionuclides transport, calculation results and main lessons. (J.S.)

  19. A multidisciplinary geological and geophysical approach to define structural and hydrogeological implications of the Molinaccio spring (Spello, Italy)

    Ercoli, Maurizio; Pauselli, Cristina; Forte, Emanuele; Di Matteo, Lucio; Mazzocca, Massimiliano; Frigeri, Alessandro; Federico, Costanzo


    In this paper, a multidisciplinary geological and geophysical approach has been applied in the complex area of Molinaccio spring (Spello, Umbria, Central Italy) to: 1) understand the large-scale geologic and tectonic structure of the area; 2) define the hydrogeological behavior of the various formations in relationship with the identified structural elements; 3) highlight at small-scale the tectonic structures and their relationships with the water caption tunnel, which is the draining structure of a still working, ancient Roman aqueduct giving water to the village of Spello and to the surrounding plain. Our approach includes different techniques like Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), direct geological investigations, archaeological studies, GIS data collection and integration. The GPR data revealed, in the area of the water-caption tunnel, two main tectonic structures, both also confirmed by ERT data: the presence of a zone (maximum 2 m wide), interpreted as a normal fault area and an overthrust that puts in contact the permeable Scaglia Rossa limestone (Early Turonian-Middle Eocene), and the Scaglia Variegata-Cinerea marly limestones (Middle Eocene-Upper Oligocene) on the footwall, characterized by lower hydraulic permeability. Using some rough information available on the sub-surface path of the tunnel, that shows a sharp bend after a long straight course, together with the geophysical images, was possible to describe how Romans built the tunnel: they probably followed the wet outcropping rock during the excavation, and changed abruptly the dig direction when they intercepted the normal fault area, aligning then the excavation along its strike. This latter result is important also because recently a multidisciplinary project has been developed to restore and exploit the entire water supply structure, which is not only a well-preserved example of Roman remains with high archaeological value, but also a vital



    <正>20041200 Peng Yujing (Regional Geology and Mineral Resources Survey of Jilin Province, Changchun, Jilin); Chen Erzhen A Preliminary Study on the Ore -Forming Geologic Events (Jilin Geology, ISSN 1001-2427, CN22-1099/P, 22(3), 2003, p. 1 -11, 23, 1 illus. , 38 refs. ) Key words: geological eventAn ore - forming geologic event, as a

  1. Determination of the Strike and Dip of Planar Geological Structures: A Computer Solution.

    Pizarro, Antonio


    Explains the use of the 3-dimensional analytic geometry method to find values for a field geology problem. Gives a description of the mathematical theory for this method which can be applied to data obtained by drilling as well as open surfaces, and a computer program. (RT)

  2. The geological structure of the Netherlands continental shelf - Results of a detailed mapping project

    Veen, J.H. ten; Doornenbal, J.C.; Dulk, M. den; Gessel, S.F. van; Witmans, N.


    In 2011, TNO-GDN concluded a 5 year geological mapping of the Netherlands Continental Shelf. In this project all public data from hydrocarbon exploration were used resulting in a major update of the dataset and a variety of deliverables available at www.NLOG.NL. The stratigraphy of more than 400 wel

  3. Quantification of rock heterogeneities by structural geological field studies combined with laboratory analyses

    Reyer, Dorothea; Afsar, Filiz; Philipp, Sonja


    Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical in sedimentary successions. The knowledge of in-situ mechanical rock properties is crucial for a better understanding of processes such as fracturing and fluid transport in fractured reservoirs. To estimate in situ rock properties at different depths it is important to understand how rocks from outcrops differ from rocks at depth, for example due to alteration and removal of the overburden load. We aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses of outcrop samples and drill-cores. The field studies focus on 1) fault zone infrastructure and 2) host rock fracture systems in two different study areas with different lithologies, the North German and the Bristol Channel Basin. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems. The field studies are complemented by systematic sampling to obtain the parameters Young's modulus, compressive and tensile strengths and elastic strain energy (also referred to as destruction work) from which we estimate rock and fracture toughnesses. The results show that in rocks with distinctive layering fractures are often restricted to individual layers, that is, stratabound. The probability of arrest seems to depend on the stiffness contrast between two single layers as well as on the thickness of the softer layer. The results also show that there are clear differences between fault zones in the different lithologies in terms of damage zone thicknesses and fracture system parameters. The results of laboratory analyses show that the mechanical properties vary considerably and for many samples there are clear directional differences. That is, samples taken perpendicular to layering commonly have higher stiffnesses and strengths than those taken parallel to layering. We combine the results of

  4. Structured Analysis - IDEF0

    Larsen, Michael Holm


    that require a modelling technique for the analysis, development, re-engineering, integration, or acquisition of information systems; and incorporate a systems or enterprise modelling technique into a business process analysis or software engineering methodology.This note is a summary of the Standard...

  5. GEMAS results from the Pannonian Basin - geochemical signatures in a transnational geological structure

    Haslinger, Edith; Jordan, Gyozo; Slaninka, Igor; Sorsa, Ajka; Gulan, Aleksandra; Gosar, Mateja; Hratovic, Hazim; Klos, Volodymyr


    The Pannonian Basin, also referred to as Carpathian Basin, has its geological origins in the Pannonian Sea which was part of the Parathetys Sea, from which it was separated around 10 Ma ago. It spreads over large part of the southeastern part of Central Europe. The centre of the Pannonian Basin is located in Hungary and extends to the adjoining countries Austria, Slovakia, Romania, Ukraine, Croatia, Serbia, Slovenia and Bosnia-Herzegovina. The basin is surrounded by the Carpathian Mountains, the Alps, the Dinarides and the Balkan mountains. The Pannonian Basin is filled by Molasse sediments, which were deposited during the Alpine orogenesis and originating from the rising Alpine and Carpathian Mountain chains. The orogenesis continued during the sedimentation into the Molasse basin. The tectonic movements resulted in several cycles of trans- and regressions of the Parathetys, the sedimentation of marine and freshwater sediments as well as a multitude of fractures and cleavages during the orogensis and the subsidence of different parts of the basin. Even if the Pannonian Basin was formed during a complex orogenesis, it can be regarded as a geo- and hydrodynamic unit. In accordance with the geological history, the soils in the Pannonian Basin developed on loose sediments - including significant loess deposits - and are dominated by soil types which also reflect the continental and steppe climate in this area - Planosols, Luvisols, Cambisols, Calcisols, Chernozems and Phaeozems. The basin is extensively used for agricultural purposes. The geochemical patterns Pannonian Basin are considerably different compared to its surroundings due to its geological development. The spatial distribution of some elements (REE (La, Ce), Y, Th, V, Cd, Pb) are clearly different inside and outside the basin area. For this transnational geological and geographical area, the GEMAS results are compiled and multivariate statistics are applied to find common geochemical signatures in relation

  6. Study of Correlation of Logging Parameters Obtained from the Wells Drilled on Two Nearby Areas with the Same Geological Structure. An Example of Counties Russell and Ellis, Kansas State, USA

    P. R. Shiryaev


    Full Text Available Based on the data shared by Kansas geological survey, the analysis of logging parameters from the wells located in nearby Counties Russell and Ellis located in the Kansas State, USA was performed. These counties have the similar geological structure. Data obtained in Kansas geological survey were processed to delete the gaps and other inconsistent readings. Then the correlation matrixes were calculated showing correlation between shallow, medium and deep logging in each well. Correlation matrixes demonstrated significant correlation between medium and deep logging, and medium and shallow logging because of similar geological structure. Ellis County is located at higher elevation than Russell County hence well top in Ellis County is at the higher elevation than well top in Russell County. We determined the depth shift, for which the maximum correlation between logging parameters in both wells (in Russell and Ellis Counties was observed. In addition, the correlation coefficients for the same logging parameters in two wells were received. The strongest correlation coefficient of up to 0.425 was obtained between medium logging in two wells. The results of study show that if the geological structures are similar the logging parameters obtained from the wells in these areas are also similar.

  7. Sinkholes and caves related to evaporite dissolution in a stratigraphically and structurally complex setting, Fluvia Valley, eastern Spanish Pyrenees. Geological, geomorphological and environmental implications

    Gutiérrez, Francisco; Fabregat, Ivan; Roqué, Carles; Carbonel, Domingo; Guerrero, Jesús; García-Hermoso, Fernando; Zarroca, Mario; Linares, Rogelio


    Evaporite karst and sinkhole development is analysed in a geologically complex area of NE Spain, including four evaporite units with different characteristics and affected by compressional and extensional tectonic structures. The exposed paleosinkholes, including remarkable Early Pleistocene paleontological sites, provide valuable information on the subsidence mechanisms and reveal the significant role played by interstratal karstification in the area. These gravitational deformation structures, including hectometre-scale bending folds and oversteepened normal faults, strongly suggest that the present-day compressional regime inferred in previous studies may be largely based on the analysis of non-tectonic structures. Two gypsum caves ca. 1 km long show that passages with restricted cross-sectional area may produce large breccia pipes and sinkholes thanks to the removal of breakdown boulders by high-competence episodic floods. Moreover, the upward progression of cave ceilings by paragenesis and condensation dissolution contributes to increase the probability of sinkhole occurrence. An inventory of 135 sinkholes together with their geological and geomorphological context has been developed. This data base has been used to infer several properties of the sinkholes with practical implications: a magnitude and frequency scaling relationship, spatial distribution patterns, dominant controlling factors and risk implications.

  8. The Beaverhead impact structure, SW Montana and Idaho: Implications for the regional geology of the western U.S.

    Fiske, P.S.; Hargaves, R.B.


    The Beaverhead impact structure in SW Montana and Idaho is an allochthonous fragment of a large impact structure ({approximately} 100 km diameter) that was transported some distance eastward during the Cretaceous Sevier orogeny. It is the first tectonic fragment of a large impact structure identified in the geologic record. The present evidence for impact consists of shatter cones, pseudotachylites, and planar deformation features in quartz. The age of the impact is not well constrained but is estimated to be Neoproterozoic to Cambrian (1000-500 Ma). The Beaverhead impact event must have created other features that may be preserved, elsewhere in western Montana and Idaho. These include proximal and distal ejecta (which may be misinterpreted as diamictites and/or tuff horizons) and other fragments of the crater floor containing shatter cones and pseudotachylite. A large circular gravity, magnetic and topographic anomaly, which could be the root of the impact structure, has been identified near Challis, Idaho. An enigmatic lithic tuff, identified in drill cores from the Challis area and an intraformational quartzite breccia in the Leaton Gulch area may be impact-related deposits, but no definitive evidence of shock metamorphism has been observed in these materials. The discovery of more pieces of the Beaverhead puzzle, as well as the recognition of other large impacts in the geologic record, are likely once the regional geologic community grows to accept the incidence of such events and becomes more familiar with the features of shock metamorphism in the field. To that end, the community of geologists in this area should integrate the Beaverhead structure into their research and teaching curriculum.

  9. Platinum stable isotope analysis of geological standard reference materials by double-spike MC-ICPMS

    Creech, John Benjamin; Baker, J. A.; Handler, M. R.


    We report a method for the chemical purification of Pt from geological materials by ion-exchange chromatography for subsequent Pt stable isotope analysis by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using a Pt-Pt double-spike to correct for instrumental mass bias...... (Creech et al., 2013, J. Anal. At. Spectrom. 28, 853-865). The reproducibility in natural samples is evaluated by processing multiple replicates of four standard reference materials, and is conservatively taken to be ca. ±0.088 (2sd). Pt stable isotope data for the full set of reference materials have....... Double-spiking of samples was carried out prior to digestion and chemical separation to correct for any mass-dependent fractionation that may occur due to incomplete recovery of Pt. Samples were digested using a NiS fire assay method, which pre-concentrates Pt into a metallic bead that is readily...

  10. The seismic characterization of the geological cut from the Cuban sliding belt. The new structures for the hydrocarbons searching; Caracterizacion sismica del corte geologico en el cinturon sobrecorrido cubano. Nuevas estructuras para la busqueda de hidrocarburos

    Lopez, Sofia; Socorro, Rafael [Digicupet Empresa de Geofisica, La Habna (Cuba)


    This work shows how the detailed interpretation of the seismic materials (attribute analysis, older surveys reprocessing) and the integration of all the available geological-geophysical data, allows the characterization of the seismic image - response for the different rock sequences since the oldest until the Tertiary deposits, and to separate and mapping the different structures that have been formed in the Cuban Archipelago. It also presents methodological recommendations to the seismic works during the data acquisition and processing, aiming to improve the image in the seismic cuts in the new exploration surveys to this area and the zones of similar geology.

  11. Bedrock geologic and structural map through the western Candor Colles region of Mars

    Okubo, Chris H.


    The Candor Colles are a population of low, conical hills along the southeast flank of Ceti Mensa, in west Candor Chasma, within the Valles Marineris system of Mars (fig. 1). Ceti Mensa and the adjacent Candor Mensa are mounds of layered sedimentary deposits and are the most prominent landforms within west Candor Chasma. Prior to the arrival of the Mars Reconnaissance Orbiter (MRO) in orbit around Mars in 2006 (Zurek and Smrekar, 2007), geologic maps of the area utilized the relatively low resolution Viking Orbiter photomosaics (20–150 m/pixel). Geologic maps covering west Candor Chasma were created at scales of 1:15,000,000 for the western equatorial region of Mars (Scott and Tanaka, 1986), 1:2,000,000 for the Valles Marineris region (Witbeck and others, 1991), and 1:500,000 for the far eastern part of west Candor Chasma (Mars Transverse Mercator quadrangle–05072; Lucchitta, 1999). 

  12. On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study

    Zhao, Zhanfeng; Illman, Walter A.; Berg, Steven J.


    This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.

  13. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.


    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  14. Integrated geophysical survey for the geological structural and hydrogeothermal study of the North-western Gargano promontory (Southern Italy

    D. Schiavone


    Full Text Available A multimethodological geophysical survey was performed in the north-western part of the Gargano promontory to study the geological structural setting and the underground fluid flow characteristics. The area has a complex tectonics with some magmatic outcrops and shallow low-enthalpy waters. Electrical, seismic reflection, gravimetric and magnetic surveys were carried out to reconstruct the geological structures; and in order to delineate the hydrogeothermal characteristics of the area, the self-potential survey was mainly used. Moreover magnetic and self-potential measurements were also performed in the Lesina lake. The joint three-dimensional interpretation of the geophysical data disclosed a large horst and graben structure covering a large part of the area. In the central part of the horst a large ramified volcanic body was modelled. The models show some intrusions rising from it to or near to the surface. The main structures are well deep-seated in the Crust and along them deep warm fluids rise as the SP data interpretation indicates.

  15. Collapse Analysis of Timber Structures

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard


    A probabilistic based collapse analysis has been performed for a glulam frame structure supporting the roof over the main court in a Norwegian sports centre. The robustness analysis is based on the framework for robustness analysis introduced in the Danish Code of Practice for the Safety...... of Structures and a probabilistic modelling of the timber material proposed in the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS). Due to the framework in the Danish Code the timber structure has to be evaluated with respect to the following criteria where at least one shall...... be fulfilled: a) demonstrating that those parts of the structure essential for the safety only have little sensitivity with respect to unintentional loads and defects, or b) demonstrating a load case with „removal of a limited part of the structure‟ in order to document that an extensive failure...

  16. A virtual environment for the accurate geologic analysis of Martian terrain

    Traxler, Christoph; Paar, Gerhard; Gupta, Sanjeev; Hesina, Gerd; Sander, Kathrin; Barnes, Rob; Nauschnegg, Bernhard; Muller, Jan-Peter; Tao, Yu


    Remote geology on planetary surfaces requires immersive presentation of the environment to be investigated. Three-dimensional (3D) processing of images from rovers and satellites enables to reconstruct terrain in virtual space on Earth for scientific analysis. In this paper we present a virtual environment that allows to interactively explore 3D-reconstructed Martian terrain and perform accurate measurements on the surface. Geologists do not only require line-of-sight measurements between two points but much more the projected line-of-sight on the surface between two such points. Furthermore the tool supports to define paths of several points. It is also important for geologists to annotate the terrain they explore, especially when collaborating with colleagues. The path tool can also be used to separate geological layers or surround areas of interest. They can be linked with a text label directly positioned in 3D space and always oriented towards the viewing direction. All measurements and annotations can be maintained by a graphical user interface and used as landmarks, i.e. it is possible to fly to the corresponding locations. The virtual environment is fed with 3D vision products from rover cameras, placed in the 3D context gained from satellite images (digital elevations models and corresponding ortho images). This allows investigations in various scales from planet to microscopic level in a seamless manner. The modes of exploitation and added value of such an interactive means are manifold. The visualisation products enable us to map geological surfaces and rock layers over large areas in a quantitative framework. Accurate geometrical relationships of rock bodies especially for sedimentary layers can be reconstructed and the relationships between superposed layers can be established. Within sedimentary layers, we can delineate sedimentary faces and other characteristics. In particular, inclination of beds which may help ascertain flow directions can be

  17. Thai Rhetorical Structure Analysis

    Sinthupoun, Somnuk


    A rhetorical structure tree (RS tree) is a representation of discourse relations among elementary discourse units (EDUs). A RS tree is very useful to many text processing tasks employing relationships among EDUs such as text understanding, summarization, and question answering. Thai language with its unique linguistic characteristics requires a unique RS tree construction technique. This paper proposes an approach for Thai RS tree construction which consists of three major steps: EDU segmentation, Thai RS tree construction, and discourse relation (DR) identification. Two hidden markov models derived from grammatical rules are used to segment EDUs, a clustering technique with its similarity measure derived from Thai semantic rules is used to construct a Thai RS tree, and a decision tree whose features extracted from the rules is used to determine the DR between EDUs. The proposed technique is evaluated using three Thai corpora. The results show the Thai RS tree construction and the DR identification effectiven...

  18. To the Application of LiDAR to Detect the Geological Structures in Sulphurets Property, British Columbia, Canada

    Koohzare, A.; Rezaeian, M.; McIntosh, A.


    The Kerr Sulphurets property in North Western British Columbia has been explored primarily as a placer gold holding since the 1880s; and, potentially includes one of Canada's largest gold deposits (e.g. the Mitchell Zone). The Sulphurets camp has been classified by Taylor in 2007 as a prominent global epithermal high-sulphidation subtype with 10 million tonnes of ore (reserves + production) containing approximately 10 g/t gold. The geological and geophysical observations of this deposit indicate intrusion- related mineralized veins which are known to overlap as the result of structural complexities. Faulting predates mineralization and alteration and dramatically dominates the location of the mineralization for this porphyry- epithermal high-sulphidation deposit (Britton and Alldrick 1988, British Columbia Ministry of Energy, Mines and Petroleum Resources, 1992; Margolis, 1993). However, the surface trace of these structures and lineaments within the site is obscured by vegetation, glacial cover and steep topographic relief. We used high resolution LiDAR airborne bare-earth sensing (vegetative data deleted) in an effort to detect the surface geological features and lineaments in the Kerr Sulphurets site. The LiDAR flight was designed to acquire high density data with 2 points per square meter using a 150 kHz multipulse system. High resolution LiDAR data provides a level of detail not achievable by other digital terrain modelling techniques, whether extracted from aerial photography, low-resolution topographic contour maps, 10-30 meter USGS, or SRTM digital elevation models. LiDAR bare-earth data spectacularly revealed hidden geological structures within the property district, which in turn assisted in identifying the high potential zones for mineralization in Sulphurets.

  19. Structural and stratigraphic evolution of the central Mississippi Canyon area: Interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards

    Brand, John Richard

    Approximately 720 square miles of digital 3-dimensional seismic data covering the eastern Mississippi Canyon area, Gulf of Mexico, continental shelf was used to examine the structural and stratigraphic evolution of the geology in the study area. The analysis focused on salt tectonics and sequence stratigraphy to develop a geologic model for the study area and its potential impact on engineering and geologic hazards. Salt in the study area was found to be established structural end-members derived from shallow-emplaced salt sheets. The transition from regional to local salt tectonics was identified through structural deformation of the stratigraphic section on the seismic data and occurred no later than ˜450,000 years ago. From ˜450,000 years to present, slope depositional processes have become the dominant geologic process in the study area. Six stratigraphic sequences (I-VI) were identified in the study area and found to correlate with sequences previously defined for the Eastern Mississippi Fan. Condensed sections were the key to the correlation. The sequence stratigraphy for the Eastern Mississippi Fan can be extended ˜28 miles west, adding another ˜720 square miles to the interpreted Fan. A previously defined channel within the Eastern Fan was identified in the study area and extended the channel ˜28 miles west. Previous work on the Eastern Fan identified the source of the Fan to be the Mobile River; however, extending the channel west suggests the sediment source to be from the Mississippi River, not the Mobile River. Further evidence for this was found in ponded turbidites whose source has been previously established as the Mississippi River. Ages of the stratigraphic sequences were compared to changes in eustatic sea level. The formation stratigraphic sequences appear decoupled from sea level change with "pseudo-highstands" forming condensed sections during pronounced Pleistocene sea level lowstands. Miocene and Pleistocene depositional analogues




    Faultage geological structure will influence stability of road bed seriously which passes through waste area,thesis study that faultage geological structure“activate”influenced by coal mining to effect stability of road bed in waste area,which uses nonlinear plasticity finite element technology,to study faultage“activate”,distortion of road bed and instability of road bed,seeking a method to prevent and cure discontinuous deformation and sink of road bed surface,to offer technological basis for rational design.%断层地质构造严重影响采空区高速公路路基的稳定性,针对断层构造采空区复杂条件,利用更能反映实际问题的三维数值模拟方法,运用非线性弹塑性有限元技术,分析矿区开采、交通动荷载等引起断层地质构造采空区“活化”,研究采空区“活化”、断层地质构造对采空区路基失稳的影响,研究复杂条件下高填路基病害机制、变形和地基不稳定性,探讨复杂条件下修筑高填路基而出现的变形与失稳问题,为寻找防治路基路面出现不连续变形、沉陷,确定合理设计提供理论依据。



    <正>20140958 Mei Huicheng(No.915GeologicalBrigade,Jiangxi Bureau of Geology and Mineral Resources,Nanchang 330002,China);Li Zhongshe Geological Features and Causes of the Huihuang Geotherm in Xiushui,Jiangxi Province(Journal of Geological Hazards and



    <正>20090700 Chen Anshu(Tianjin Institute of Geology and Mineral Resources,China Geological Survey,Tianjin 300170,China);Li Xiaoguang 1:250 000-Scale Regional Geological Map Spatial Database(Geological Survey and Research,ISSN1672-4135,CN12-1353/P,31(1),2008,p.64-69,2 illus.,2 tables,5 refs.)



    <正>20140805Fan Baocheng(Xi’an Center of Geological Survey,China Geology Survey,Xi’an710054,China);Meng Guanglu The Geological Evolution and Metallization of TalasKalatawu Block in Northern Tianshan,Kyrgyzstan(Northwestern Geology,ISSN1009-6248,CN61-1149/P,46(2),2013,p.54-



    <正>20110001 Chi Han (State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China); Li Chusi Shock-Metamorphosed Zircons in the Fragments of the Sudbury Breccias, Ontario, Canada (Earth Science Frontiers, ISSN1005-2321, CN11-3370/P, 17(1), 2010, p.86-92, 5 illus., 42 refs.)Key words: meteorite impacts, suevite, Canada It is widely accepted that the Sudbury structure formed by large bolide impact. To find more supporting evidences, the authors used elec



    <正>20071510 Chen Ge(No.282 Geological Par- ty,Geological Bureau of Sichuan Nuclear In- dustry,Deyang,Sichuan 618000)Assess- ment of Geological Hazards in the Sichuan Sector of the Nanchong-Wanzhou 500 KV Transmisson Line Engineering(Acta Geolog- ica Sichuan,ISSN 1006-0995,CN 51- 1273/P,26(2),2006,p.88-93,2 tables) Key words:geologic hazards,construction field,Sichuan Province Possibility of inducing and intensifying geological hazards by the Nanhong- Wanzhou 500 KV transmission line engineer- ing,geological hazards which probably occur

  6. Mathematical and geological approaches to minimizing the data requirements for statistical analysis of hydraulic conductivity. Technical completion report

    Phillips, F.M.; Wilson, J.L.; Gutjahr, A.L.; Love, D.W.; Davis, J.M.; Lohmann, R.C.; Colarullo, S.J.; Gotkowitz, M.B.


    Field scale heterogeneity has been recognized as a dominant control on solute dispersion in groundwater. Numerous random field models exist for quantifying heterogeneity and its influence on solute transport. Minimizing data requirements in model selection and subsequent parameterization will be necessary for efficient application of quantitative models in contaminated subsurface environments. In this study, a detailed quantitative sedimentological study is performed to address the issue of incorporating geologic information into the geostatistical characterization process. A field air-minipermeameter is developed for rapid in-situ measurements. The field study conducted on an outcrop of fluvial/interfluvial deposits of the Pliocene- Pleistocene Sierra Ladrones Formation in the Albuquerque Basin of central New Mexico. Architectural element analysis is adopted for mapping and analysis of depositional environment. Geostatistical analysis is performed at two scales. At the architectural element scale, geostatistical analysis of assigned mean log-permeabilities of a 0.16 km{sup 2} peninsular region indicates that the directions of maximum and minimum correlation correspond to the directions of the large-scale depositional processes. At the facies scale, permeability is found to be adequately represented as a log-normal process. Log-permeability within individual lithofacies appears uncorrelated. The overall correlation structure at the facies scale is found to be a function of the mean log-permeability and spatial distribution of the individual lithofacies. Based on field observations of abrupt spatial changes in lithology and hydrologic properties, an algorithm for simulating multi-dimensional discrete Markov random fields. Finally, a conceptual model is constructed relating the information inferred from dimensional environment analysis to the various random fields of heterogeneity.

  7. 2D Modelling of the Gorkha earthquake through the joint exploitation of Sentinel 1-A DInSAR measurements and geological, structural and seismological information

    De Novellis, Vincenzo; Castaldo, Raffaele; Solaro, Giuseppe; De Luca, Claudio; Pepe, Susi; Bonano, Manuela; Casu, Francesco; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Tizzani, Pietro


    A Mw 7.8 earthquake struck Nepal on 25 April 2015 at 06:11:26 UTC, killing more than 9,000 people, injuring more than 23,000 and producing extensive damages. The main seismic event, known as the Gorkha earthquake, had its epicenter localized at ~82 km NW of the Kathmandu city and the hypocenter at a depth of approximately 15 km. After the main shock event, about 100 aftershocks occurred during the following months, propagating toward the south-east direction; in particular, the most energetic shocks were the Mw 6.7 and Mw 7.3 occurred on 26 April and 12 May, respectively. In this study, we model the causative fault of the earthquake by jointly exploiting surface deformation retrieved by the DInSAR measurements collected through the Sentinel 1-A (S1A) space-borne sensor and the available geological, structural and seismological information. We first exploit the analytical solution performing a back-analysis of the ground deformation detected by the first co-seismic S1A interferogram, computed by exploiting the 17/04/2015 and 29/04/2015 SAR acquisitions and encompassing the main earthquake and some aftershocks, to search for the location and geometry of the fault plane. Starting from these findings and by benefiting from the available geological, structural and seismological data, we carry out a Finite Element (FE)-based 2D modelling of the causative fault, in order to evaluate the impact of the geological structures activated during the seismic event on the distribution of the ground deformation field. The obtained results show that the causative fault has a rather complex compressive structure, dipping northward, formed by segments with different dip angles: 6° the deep segment and 60° the shallower one. Therefore, although the hypocenters of the main shock and most of the more energetic aftershocks are located along the deeper plane, corresponding to a segment of the Main Himalayan Thrust (MHT), the FE solution also indicates the contribution of the shallower

  8. Geological structure of Osaka basin and characteristic distributions of structural damage caused by earthquake; Osaka bonchi kozo to shingai tokusei

    Nakagawa, K.; Shiono, K.; Inoue, N.; Senda, S. [Osaka City University, Osaka (JP. Faculty of Science); Ryoki, K. [Osaka Polytechnic Collage, Osaka (Japan); Shichi, R. [Nagoya University, Nagoya (Japan). Faculty of Science


    The paper investigates relations between the damage caused by the Hyogo-ken Nanbu earthquake and the deep underground structures. A characteristic of the earthquake damage distribution is that the damage concentrated near faults. Most of the damages were seen on the side of faults` relatively falling rather than right above the faults and of their slightly slanting to the seaside. Distribution like this seems to be closely related to underground structures. Therefore, a distribution map of the depth of basement granite in Osaka sedimentary basin was drawn, referring to the data on basement rock depth obtained from the distribution map of gravity anomaly and the result of the survey using the air gun reflection method. Moreover, cubic underground structures were determined by 3-D gravity analysis. The result was concluded as follows: when observing the M7 zone of the low land, in particular, where the damage was great from an aspect of gravity anomaly, the basement rock below the zone declined near the cliff toward the sea, which indicates a great possibility of its being a fault. There is a high possibility that the zone suffered mostly from the damage caused by focusing by refraction and total reflection of seismic wave rays. 3 refs., 8 figs.


    Wahju Krisna H


    Full Text Available Geological conditions at Tembalang areas and surround, Semarang, as a Undulating – Hillockymorphological. That’s can be representation lithological and structural conditions. This surveysused the Geoelectrical sounding and combined with geological surface mapping. There are 15points sounding of Geoelectrical, after interpreted with geological surface mapping, can beconclusion the Breccias lithologic overlay on the upper of Limestones lithologic and finding thereverse fault in the part north of areas survey.

  10. Geologic Reconnaissance and Lithologic Identification by Remote Sensing

    remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.

  11. Computer Modelling of 3D Geological Surface

    Kodge, B G


    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  12. Analysis on the use of engineered barriers for geologic isolation of spent fuel in a reference salt site repository

    Cloninger, M.O.; Cole, C.R.; Washburn, J.F.


    A perspective on the potential durability and effectiveness requirements for the waste form, container and other engineered barriers for geologic disposal of spent nuclear fuel has been developed. This perspective is based on calculated potential doses to individuals who may be exposed to radioactivity released from a repository via a groundwater transport pathway. These potential dose commitments were calculated with an integrated geosphere transport and bioshpere transport model. A sensitivity analysis was accomplished by varying four important system parameters, namely the waste radionuclide release rate from the repository, the delay prior to groundwater contact with the waste (leach initiation), aquifer flow velocity and flow path length. The nuclide retarding capacity of the geologic media, a major determinant of the isolation effectiveness, was not varied as a parameter but was held constant for a particular reference site. This analysis is limited to looking only at engineered barriers whose net effect is either to delay groundwater contact with the waste form or to limit the rate of release of radionuclides into the groundwater once contact has occurred. The analysis considers only leach incident scenarios, including a water well intrusion into the groundwater near a repository, but does not consider other human intrusion events or catastrophic events. The analysis has so far been applied to a reference salt site repository system and conclusions are presented.Basically, in nearly all cases, the regional geology is the most effective barrier to release of radionuclides to the biosphere; however, for long-lived isotopes of carbon, technetium and iodine, which were poorly sorbed on the geologic media, the geology is not very effective once a leach incident is initiated.

  13. Satellite geological and geophysical remote sensing of Iceland: Preliminary results from analysis of MSS imagery

    Williams, R. S., Jr.; Boedvarsson, A.; Fridriksson, S.; Palmason, G.; Rist, S.; Sigtryggsson, H.; Thorarinsson, S.; Thorsteinsson, I.


    A binational, multidisciplinary research effort in Iceland is directed at an analysis of MSS imagery from ERTS-1 to study a variety of geologic, hydrologic, oceanographic, and agricultural phenomena. A preliminary evaluation of available MSS imagery of Iceland has yielded several significant results - some of which may have direct importance to the Icelandic economy. Initial findings can be summarized as follows: (1) recent lava flows can be delineated from older flows at Askja and Hekla; (2) MSS imagery from ERTS-1 and VHRR visible and infrared imagery from NOAA-2 recorded the vocanic eruption on Heimaey, Vestmann Islands; (3) coastline changes, particularly changes in the position of bars and beaches along the south coast are mappable; and (4) areas covered with new and residual snow can be mapped, and the appearance of newly fallen snow on ERTS-1, MSS band 7 appears dark where it is melting. ERTS-1 imagery provides a means of updating various types of maps of Iceland and will permit the compilation of special maps specifically aimed at those dynamic environmental phenomena which impact on the Icelandic economy.

  14. Trace Elements Analysis of Geological Samples by Laser Ablation Inductively Coupled Plasma Mass Spectrometry


    This paper describes recent work applying a taser ablation system (LSX-200) hyphenated with POEMS Ⅲ inductively coupled plasma mass spectrometry (LA-ICP-MS) for the in situ analysis of 22 trace elements of solid geological materials. It demonstrates the potential of LA-ICP-MS for the determination of geochemically important trace and ultra-trace elements following XRF routine sample preparation. Signal drift, difference in transport efficiency and sampling yield are well corrected with NIST SRM 612 as external calibration standard and Ca as internal standard. The obtained results agree to the recommended values with relative error better than 15 % and RSD less than 15 % for most determined trace elemems. LOD ranges from 0.021 × 10-6 to 0. 23 × 10-6 and less than 0.10 × 10-6 for majority trace elements determined. In addition, home-made macro functions including filter and calculator compiled by VBA language under Excel software greatly enhanced off-line data reduction efficiency.``

  15. High-heat geodynamic setting during the Palaeozoic evolution of the Mount Painter Province, SA, Australia: evidence from combined field structural geology and potential-field inversions

    Armit, R. J.; Ailleres, L.; Betts, P. G.; Schaefer, B. F.; Blaikie, T. N.


    A method for subsurface recognition of blind geological bodies is presented using combined surface constraints and 3-D structural modelling that incorporates constraints from detailed mapping, and potential-field inversion modelling. This method is applied to the Mount Painter Province and demonstrates that addition of low density material is required to reconcile the gravity signature of the region. This method may be an effective way to construct 3-D models in regions of excellent structural control, and can be used to assess the validity of surface structures with 3-D architecture. Combined geological and potential-field constrained inversion modelling of the Mount Painter Province was conducted to assess the validity of the geological models of the region. Magnetic susceptibility constrained stochastic property inversions indicates that the northeast to southwest structural trend of the relatively magnetic meta-sedimentary rocks of the Radium Creek Group in the Mount Painter Inlier is reconcilable with the similar, northeast to southwest trending positive magnetic anomalies in the region. Radium Creek Group packages are the major contributor of the total magnetic response of the region. However field mapping and the results of initial density constrained stochastic property inversion modelling do not correlate with a large residual negative gravity anomaly central to the region. Further density constrained inversion modelling indicates that an additional large body of relatively low density material is needed within the model space to account for this negative density anomaly. Through sensitivity analysis of multiple geometrical and varied potential-field property inversions, the best-fitting model records a reduction in gravity rms misfit from 21.9 to 1.69 mGal, representing a reduction from 56 to 4.5 per cent in respect to the total dynamic range of 37.5 mGal of the residual anomaly. This best-fitting model incorporates a volumetrically significant source

  16. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    Prothro, L.B., Townsend, M.J.; Drellack, S.L. Jr. [and others


    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1.

  17. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay


    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  18. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    Paulamaeki, S.; Paananen, M.; Elo, S. [Geological Survey of Finland (Finland)


    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  19. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    Paulamaeki, S.; Paananen, M.; Elo, S. [Geological Survey of Finland (Finland)


    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  20. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.


    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform

  1. U.S. Geological Survey Gap Analysis Program Species Distribution Models

    U.S. Geological Survey, Department of the Interior — GAP distribution models represent the areas where species are predicted to occur based on habitat associations. GAP distribution models are the spatial arrangement...

  2. Integral analysis of geological and field data for selection of oilfield development strategy

    Milke, A. A.; Tsivelev, K. V.


    The reservoir development plan is a complex process and should be analysed from different points of view. The process was analysed in terms of geology, petrophysics, modelling, production technology and economics. Therefore, different methods should be used for the project.

  3. Structural-geological models of the Ketzin CO2 storage pilot site used for site evaluation, dynamic reservoir simulations, and monitoring purposes

    Norden, Ben; Kling, Christian; Frykman, Peter; Krawczyk, Charlotte M.


    fluviatile facies distribution pattern: sandy rocks of the channel facies are embedded in muddy rocks of the floodplain facies. The facies distribution and its hydraulic parameterization were modeled using a stochastic approach. After the processing of the 3D seismic data acquired in 2005, and the drilling of three boreholes in Ketzin in 2007, the need of a re-interpretation of the geological models was given to account for the higher resolution of the new input data. In the revised models it was possible to map the main faults at the site with good accuracy. In addition, seismic facies analysis was performed by applying a spectral decomposition technique to the 3D seismic data. Thereby, subsurface features could be identified, which may indicate to some degree the distribution of the fluvial channel facies of the reservoir formation. This data was then also used to guide the stochastic reservoir modeling of the Stuttgart Formation. In addition, the interpretation of seismic CO2 monitoring data gives further evidence of the mean CO2 distribution in the subsurface and could partly guide the structural interpretation. This data enables a local deterministic refinement of the stochastic reservoir model. Finally, another well drilled into the storage formation in 2012 serves as an additional input to the geological models.



    <正>20141243Chen Ge(Hangzhou Research Institute of Petroleum Geology,PetroChina,Hangzhou 310023,China);Si Chunsong Study on Sedimentary Numerical Simulation Method of Fan Delta Sand Body(Journal of Geology,

  5. The seabed geomorphology and geological structure of the Firth of Lorn, western Scotland, UK

    Howe, John; Arosio, Riccardo; Dove, Dayton; Anderton, Roger; Bradwell, Tom


    We present recently collected swath bathymetry from the Firth of Lorn. 553km2 of data were collected during 2012-2013 as part of the INIS Hydro project (Ireland, Northern Ireland and Scotland Hydrographic Survey). The inshore waters covered by this survey represent a priority area for the renewable industry, shipping and tourism and encompass a number of Special Areas of Conservation (SAC) including for rocky reef habitat. Surprisingly, given this interest, this project is the first comprehensive bathymetric survey of the area. This region of near shore continental shelf is revealed as a predominantly bedrock-dominated seabed, characterised by a series of narrow, stratigraphically constrained basins eroded into the Proterozoic and Palaeozoic-age bedrock. The principal basement of the region is composed of deformed Dalradian-age metasediments overlain unconformably by ?Silurian-age Old Red Sandstones and lavas. The resistant, uneroded igneous extrusives have formed raised rock platforms. Most strikingly the central region of the Firth of Lorn is dominated by an up to 150m high vertical cliff extending for approximately 20km. The origin of this prominent feature, here termed the Insh Fault, is not well understood however it may have resulted from a combination of Dalradian-age faulting and erosion of exposed softer metasediments in the central basin. Extensive seabed faulting also occurs; possibly as Dalradian-age syn-sedimentary faults. Carboniferous and Tertiary-age minor intrusives are common throughout the region in particular the Tertiary-age dolerite dyke swarms can be traced for many kilometres, exposed on the sediment-free bedrock surfaces. The survey region includes the Corryvreckan Whirlpool and Great Race, beneath the tidal flows of which there are active submarine sand dunes. Evidence for past glaciation is widespread and well preserved in the Firth of Lorn with preserved moraines and over-deepened basins common across the area. Initial geological and

  6. Digital bedrock mapping at the Geological Survey of Norway: BGS SIGMA tool and in-house database structure

    Gasser, Deta; Viola, Giulio; Bingen, Bernard


    Since 2010, the Geological Survey of Norway has been implementing and continuously developing a digital workflow for geological bedrock mapping in Norway, from fieldwork to final product. Our workflow is based on the ESRI ArcGIS platform, and we use rugged Windows computers in the field. Three different hardware solutions have been tested over the past 5 years (2010-2015). (1) Panasonic Toughbook CE-19 (2.3 kg), (2) Panasonic Toughbook CF H2 Field (1.6 kg) and (3) Motion MC F5t tablet (1.5 kg). For collection of point observations in the field we mainly use the SIGMA Mobile application in ESRI ArcGIS developed by the British Geological Survey, which allows the mappers to store georeferenced comments, structural measurements, sample information, photographs, sketches, log information etc. in a Microsoft Access database. The application is freely downloadable from the BGS websites. For line- and polygon work we use our in-house database, which is currently under revision. Our line database consists of three feature classes: (1) bedrock boundaries, (2) bedrock lineaments, and (3) bedrock lines, with each feature class having up to 24 different attribute fields. Our polygon database consists of one feature class with 38 attribute fields enabling to store various information concerning lithology, stratigraphic order, age, metamorphic grade and tectonic subdivision. The polygon and line databases are coupled via topology in ESRI ArcGIS, which allows us to edit them simultaneously. This approach has been applied in two large-scale 1:50 000 bedrock mapping projects, one in the Kongsberg domain of the Sveconorwegian orogen, and the other in the greater Trondheim area (Orkanger) in the Caledonian belt. The mapping projects combined collection of high-resolution geophysical data, digital acquisition of field data, and collection of geochronological, geochemical and petrological data. During the Kongsberg project, some 25000 field observation points were collected by eight

  7. Northward extension of Carolina slate belt stratigraphy and structure, South-Central Virginia: Results from geologic mapping

    Hackley, P.C.; Peper, J.D.; Burton, W.C.; Horton, J.W.


    Geologic mapping in south-central Virginia demonstrates that the stratigraphy and structure of the Carolina slate belt extend northward across a steep thermal gradient into upper amphibolite-facies correlative gneiss and schist. The Neoproterozoic greenschist-facies Hyco, Aaron, and Virgilina Formations were traced northward from their type localities near Virgilina, Virginia, along a simple, upright, northeast-trending isoclinal syncline. This syncline is called the Dryburg syncline and is a northern extension of the more complex Virgilina synclinorium. Progressively higher-grade equivalents of the Hyco and Aaron Formations were mapped northward along the axial trace of the refolded and westwardly-overturned Dryburg syncline through the Keysville and Green Bay 7.5-minute quadrangles, and across the northern end of the Carolina slate belt as interpreted on previous geologic maps. Hyco rocks, including felsic metatuff, metawacke, and amphibolite, become gneisses upgrade with areas of local anatexis and the segregation of granitic melt into leucosomes with biotite selvages. Phyllite of the Aaron Formation becomes garnet-bearing mica schist. Aaron Formation rocks disconformably overlie the primarily felsic volcanic and volcaniclastic rocks of the Hyco Formation as evidenced by repeated truncation of internal contacts within the Hyco on both limbs of the Dryburg syncline at the Aaron-Hyco contact. East-northeast-trending isograds, defined successively by the first appearance of garnet, then kyanite ?? staurolite in sufficiently aluminous rocks, are superposed on the stratigraphic units and synclinal structure at moderate to high angles to strike. The textural distinction between gneisses and identifiable sedimentary structures occurs near the kyanite ?? staurolite-in isograd. Development of the steep thermal gradient and regional penetrative fabric is interpreted to result from emplacement of the Goochland terrane adjacent to the northern end of the slate belt during

  8. Surficial Geology of the Mosier Creek Basin

    U.S. Geological Survey, Department of the Interior — A surficial and structural geologic map (SIR-2012-5002, fig. 2) was compiled to aid in the building of the three-dimensional geologic model. The map covers 327...

  9. Structural Characteristics of Paleozoic and Geological Significance of Oil and Gas of Dongpu Depression



    The Dongpu depression has experienced a complicated evolution of structure since Mesozoic. The Paleozoic carbonate rock has been strongly reformed and the buried hills with different characteristics of structure are developed in the depression. There exist lots of groups of fault structures with strikes of NNE(or NE),NW, near NS and EW etc., of which the faults with strikes of NNE and NW play an important controlling role on present-day structural framework of the depression. The faults with near NS-striking and EW-striking deeply affect the establishment of structural framework of basement of the depression. Although most of the fractures are filled by calcite and other minerals, under the action of later structural stress, the earlier fractures could change their features into tensional ones. Therefore, much attention should be paid to the exploration and exploitation of Paleozoic oil and gas in Dongpu depression.

  10. Comparison of seismic sources for imaging geologic structures on the Oak Ridge Reservation, Tennessee

    Doll, W.E. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Miller, R.D.; Xia, J. [Kansas Geological Survey, Lawrence, KS (United States)


    In this study, five non-invasive swept sources, three non-invasive impulsive sources and one invasive impulsive source were compared. Previous shallow seismic source tests (Miller and others, 1986, 1992, 1994) have established that site characteristics should be considered in determining the optimal source. These studies evaluated a number of invasive sources along with a few non-invasive impulsive sources. Several sources (particularly the high frequency vibrators) that were included in the ORR test were not available or not practical during previous tests, cited above. This study differs from previous source comparisons in that it (1) includes many swept sources, (2) is designed for a greater target depth, (3) was conducted in a very different geologic environment, and (4) generated a larger and more diverse data set (including high fold CMP sections and walkaway vertical seismic profiles) for each source. The test site is centered around test injection well HF-2, between the southern end of Waste Area Grouping 5 (WAG 5) and the High Flux Isotope Reactor (HFIR).

  11. Exploring the "what if?" in geology through a RESTful open-source framework for cloud-based simulation and analysis

    Klump, Jens; Robertson, Jess


    combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions. Faults happen in real world networks. Future work will investigate the effect of failure on dynamic sensor networks and the impact on the predictive capability of machine learning algorithms.

  12. Multi-Scale Scratch Analysis in Qinghai-Tibet Plateau and its Geological Implications

    Sun, Yanyun; Yang, Wencai; Yu, Changqing


    Multi-scale scratch analysis on a regional gravity field is a new data processing system for depicting three-dimensional density structures and tectonic features. It comprises four modules including the spectral analysis of potential fields, multi-scale wavelet analysis, density distribution inversion, and scratch analysis. The multi-scale scratch analysis method was applied to regional gravity data to extract information about the deformation belts in the Qinghai-Tibet Plateau, which can help reveal variations of the deformation belts and plane distribution features from the upper crust to the lower crust, provide evidence for the study of three-dimensional crustal structures, and define distribution of deformation belts and mass movement. Results show the variation of deformation belts from the upper crust to the lower crust. The deformation belts vary from dense and thin in the upper crust to coarse and thick in the lower crust, demonstrating that vertical distribution of deformation belts resembles a tree with a coarse and thick trunk in the lower part and dense and thin branches at the top. The dense and thin deformation areas in the upper crust correspond to crustal shortening areas, while the thick and continuous deformation belts in the lower crust indicate the structural framework of the plateau. Additionally, the lower crustal deformation belts recognized by the multi-scale scratch analysis coincide approximately with the crustal deformation belts recognized using single-scale scratch analysis. However, deformation belts recognized by the latter are somewhat rough while multi-scale scratch analysis can provide more detailed and accurate results.



    20160639Cai Wutian(Center for Hydrogeology a nd Environmental Geology Survey,China Geological Survey,Baoding071051,China)Several Issues on Contaminated Sites(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,42(1),2015,p.123



    <正>20142560Hu Hongxia(Regional Geological and Mineral Resources Survey of Jilin Province,Changchun 130022,China);Dai Lixia Application of GIS Map Projection Transformation in Geological Work(Jilin Geology,ISSN1001-2427,CN22-1099/P,32(4),2013,p.160-163,4illus.,2refs.)



    <正>20081307 Cao Xiping(Geological Museum of China,Beijing 100034)Discussion on the Digitization of Geological Specimen Information and Digital Geological Museum Construction(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,28(2),2007,p.205-208,1 illus.,1 table,4 refs.)



    20152086 Liu Lei(Shandong Zhengyuan Geo-logical Exploration Institute,China Metallurgical Geology Bureau,Jinan 250101,China)Comparison of Gridding Effect of MapGIS Software(Contributions to Geology and Mineral Resources Research,ISSN1001-1412,CN12



    <正>20132393 Lü Guxian(Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081,China);Li Xiuzhang Research and Development of Orefield Geology(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,48(6),2012,p.1143-1150,3illus.,1table,46refs.)Key words:study of mineral deposit



    20150901Dai Chuangu(Guizhou Academy of Geologic Survey,Guiyang550005,China);Zheng Qiqian Geological Background Study of Metallogenic in Haixi-Yanshan Tectonic Cycle in Guizhou Province(Guizhou Geology,ISSN1000-5943,CN52-1059/P,31(2),2014,p.82-88,3illus.,2tables,13refs.)Key words:metallogenesis,metallogenic area,



    20160938Gao Xiaowei(Wuhan Center of Geo-logical Survey,China Geological Survey,Wuhan 430223,China);Wu Xiurong Two Types of Terrain and Regional Mineralization in Sumatra,Indonesia(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,34



    20160276Jiang Hanbing(Xi’an Institute of Geology and Mineral Resources,Xi’an710054,China);Yang Hequn The Metallogenic Series Family of Geological Formation in Dunhuang Metallogenetic Belt(Northwestern Geology,ISSN1009-6248,CN61-1149/P,48(1),2015,p.63-71,2illus.,2tables,28refs.)

  1. Seismic response of the geologic structure underlying the Roman Colosseum and a 2-D resonance of a sediment valley

    P. Labak


    Full Text Available The seismic response of the geologic structure beneath the Colosseum is investigated using a two-dimensional modeling for a vertically incident plane SH wave. Computations indicate that the southern part of the Colosseum may be exposed to a seismic ground motion with significantly larger amplitudes, differential motion and longer duration than the northern part. because the southern part of the Colosseum is underlain by a sedimentfilled valley created by sedimentary filling of the former tributary of the River Tiber. A 2-D resonance may develop in the valley. Unlike the previous theoretical studies on 2-D resonance in sediment-filled valleys, an effect of heterogeneous valley surroundings on the resonance is partly investigated. A very small sensitivity of the maximum spectral amplifications connected with the fundamental and first higher modes to the presence of a horizontal surface layer (with an intermediate velocity in the valley surroundings is observed in the studied models.

  2. Tectonic structure and post-Hercynian evolution of the Serre, Calabrian Arc, southern Italy: Geological, petrological and radiometric evidences

    Moro, Aldo Del; Paglionico, Antonio; Piccarreta, Giuseppe; Rottura, Alessandro


    Conflicting opinions exist concerning the structure and the post-Hercynian evolution of the Serre. The present paper deals with these topics on the basis of new geological, petrological and radiometric evidence. The composition of the so-called Stilo and Polia-Copanello units has been redefined. The above domains—former sections of upper and lower Palaeozoic continental crust respectively—came into contact, due to transcurrent movements 130-140 Ma ago. A significant vertical component during the transcurrent movements, probably, exhumed the former section of lower crust. The above domains, juxtaposed, were successively involved as a single kinematic body in the Alpine orogenesis. The results enable us to make inferences for the Calabrian Arc evolution and call attention to similarities between an Austro-Alpine element (Stilo + Polia-Copanello) of the Calabrian chain and a South-Alpine sector of the Alps (Ivrea + Ceneri zones).

  3. Structural Analysis of Plate Based Tensegrity Structures

    Hald, Frederik; Kirkegaard, Poul Henning; Damkilde, Lars


    Plate tensegrity structures combine tension cables with a cross laminated timber plate and can then form e.g. a roof structure. The topology of plate tensegrity structures is investigated through a parametric investigation. Plate tensegrity structures are investigated, and a method...... for determination of the structures pre-stresses is used. A parametric investigation is performed to determine a more optimized form of the plate based tensegrity structure. Conclusions of the use of plate based tensegrity in civil engineering and further research areas are discussed....

  4. The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: The Ischia Island case study

    di Napoli, R.; Martorana, R.; Orsi, G.; Aiuppa, A.; Camarda, M.; de Gregorio, S.; Gagliano Candela, E.; Luzio, D.; Messina, N.; Pecoraino, G.; Bitetto, M.; de Vita, S.; Valenza, M.


    The complexity of volcano-hosted hydrothermal systems is such that thorough characterization requires extensive and interdisciplinary work. We use here an integrated multidisciplinary approach, combining geological investigations with hydrogeochemical and soil degassing prospecting, and resistivity surveys, to provide a comprehensive characterization of the shallow structure of the southwestern Ischia's hydrothermal system. We show that the investigated area is characterized by a structural setting that, although very complex, can be schematized in three sectors, namely, the extra caldera sector (ECS), caldera floor sector (CFS), and resurgent caldera sector (RCS). This contrasted structural setting governs fluid circulation. Geochemical prospecting shows, in fact, that the caldera floor sector, a structural and topographic low, is the area where CO2-rich (>40 cm3/l) hydrothermally mature (log Mg/Na ratios 150 g m-2 d-1), is clearly captured by electrical resistivity tomography (ERT) and transient electromagnetic (TEM) surveys as a highly conductive (resistivity 10,000 mg/l) and poorly conductive meteoric-derived (TDS Ischia's hydrothermal system.

  5. Efficient Analysis of Complex Structures

    Kapania, Rakesh K.


    Last various accomplishments achieved during this project are : (1) A Survey of Neural Network (NN) applications using MATLAB NN Toolbox on structural engineering especially on equivalent continuum models (Appendix A). (2) Application of NN and GAs to simulate and synthesize substructures: 1-D and 2-D beam problems (Appendix B). (3) Development of an equivalent plate-model analysis method (EPA) for static and vibration analysis of general trapezoidal built-up wing structures composed of skins, spars and ribs. Calculation of all sorts of test cases and comparison with measurements or FEA results. (Appendix C). (4) Basic work on using second order sensitivities on simulating wing modal response, discussion of sensitivity evaluation approaches, and some results (Appendix D). (5) Establishing a general methodology of simulating the modal responses by direct application of NN and by sensitivity techniques, in a design space composed of a number of design points. Comparison is made through examples using these two methods (Appendix E). (6) Establishing a general methodology of efficient analysis of complex wing structures by indirect application of NN: the NN-aided Equivalent Plate Analysis. Training of the Neural Networks for this purpose in several cases of design spaces, which can be applicable for actual design of complex wings (Appendix F).

  6. The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz

    French, B.M.; Cordua, W.S.; Plescia, J.B.


    The Rock Elm structure in southwest Wisconsin is an anomalous circular area of highly deformed rocks, ???6.5 km in diameter, located in a region of virtually horizontal undeformed sedimentary rocks. Shock-produced planar microstructures (PMs) have been identified in quartz grains in several lithologies associated with the structure: sandstones, quartzite pebbles, and breccia. Two distinct types of PMs are present: P1 features, which appear identical to planar fractures (PFs or cleavage), and P2 features, which are interpreted as possible incipient planar deformation features (PDFs). The latter are uniquely produced by the shock waves associated with meteorite impact events. Both types of PMs are oriented parallel to specific crystallographic planes in the quartz, most commonly to c(0001), ??112??2, and r/z101??1. The association of unusual, structurally deformed strata with distinct shock-produced microdeformation features in their quartz-bearing rocks establishes Rock Elm as a meteorite impact structure and supports the view that the presence of multiple parallel cleavages in quartz may be used independently as a criterion for meteorite impact. Preliminary paleontological studies indicate a minimum age of Middle Ordovician for the Rock Elm structure. A similar age estimate (450-400 Ma) is obtained independently by combining the results of studies of the general morphology of complex impact structures with estimated rates of sedimentation for the region. Such methods may be applicable to dating other old and deeply eroded impact structures formed in sedimentary target rocks.

  7. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.


    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino

  8. Assessment of natural radioactivity levels in rocks and their relationships with the geological structure of Johor state, Malaysia.

    Alnour, I A; Wagiran, H; Ibrahim, N; Hamzah, S; Elias, M S; Laili, Z; Omar, M


    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.

  9. Evaluation of geologic structure guiding ground water flow south and west of Frenchman Flat, Nevada Test Site

    McKee, E.H.


    Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifying large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range.

  10. Structural Analysis of Complex Networks

    Dehmer, Matthias


    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  11. Marine Structural Analysis and Design


    王迎光编上海交通大学出版社出版定价:$68.00内容简介:The material in this book has been continuously developed since the author started to teach Modern Ship Structural Design in the Department of Naval Architecture and Ocean Engineering of Shanghai Jiao Tong University in 2004.The subject of marine structural analysis and design is so broad that it is not possible to incorporate every aspect of this sub-

  12. Geological structures from televiewer logs of GT-2, Fenton Hill, New Mexico: Part 2, Rectification

    Burns, K.L.


    Televiewer logs from drill hole GT-2 at the Fenton Hill, New Mexico, Hot Dry Rock Site, have been rectified by conversion of structural traces on the scanner imagery to geographic location and orientation. The rectification method was direct inversion that consisted of mapping from the image to the wellbore, inverting the trace on the wellbore for principal points, and rotating from wellbore to geographic coordinates. From the test imagery of GT-2, 733 structures (fractures and foliations) were measured, compared with 42 structures from recovered core. The 733 new measurements listed in this report are a unique and unrepeatable collection of structural information from the Precambrian basement of northern New Mexico. This direct inversion method is accurate where the magnetic field vector is constant and the tool is centered and aligned in a circular wellbore. In other cases this method yields only approximate results.

  13. Using image analysis and ArcGIS® to improve automatic grain boundary detection and quantify geological images

    DeVasto, Michael A.; Czeck, Dyanna M.; Bhattacharyya, Prajukti


    Geological images, such as photos and photomicrographs of rocks, are commonly used as supportive evidence to indicate geological processes. A limiting factor to quantifying images is the digitization process; therefore, image analysis has remained largely qualitative. ArcGIS®, the most widely used Geographic Information System (GIS) available, is capable of an array of functions including building models capable of digitizing images. We expanded upon a previously designed model built using Arc ModelBuilder® to quantify photomicrographs and scanned images of thin sections. In order to enhance grain boundary detection, but limit computer processing and hard drive space, we utilized a preprocessing image analysis technique such that only a single image is used in the digitizing model. Preprocessing allows the model to accurately digitize grain boundaries with fewer images and requires less user intervention by using batch processing in image analysis software and ArcCatalog®. We present case studies for five basic textural analyses using a semi-automated digitized image and quantified in ArcMap®. Grain Size Distributions, Shape Preferred Orientations, Weak phase connections (networking), and Nearest Neighbor statistics are presented in a simplified fashion for further analyses directly obtainable from the automated digitizing method. Finally, we discuss the ramifications for incorporating this method into geological image analyses.


    Renato Buljan


    Full Text Available The construction design of the underground hydroelectric plant Ombla required geological and structural investigations to he carried out. Due to past earthquakes in the area permanent tectonic movements were inferred. Therefore, in the wider and adjacent surroundings of the Ombla spring it was necessary to analyze the structural fabric and the geodynamic characteristics of the area. The most active zone encountered is the front part of a thrust fault belonging to the Dinaricum regional structural unit. The compressive regime is maintained as a response to the regional stress of an approximately S-N orientation. Different displacements of various parts of the Dinaricum unit are present. Along the rim of the structural blocks, the Hum-Om-bla fault zone extends, accompanied by left transcurrent faults, Through this zone the main groundwater drainage occurs supplying the Ombla spring. In the local Ombla spring area this zone is characterized by three sub-blocks and three major faults. The most important fault for the vital facilities of the Ombla hydroelectric power plant is the Pločice fault which divides the structural sub-blocks. Along this fault zone there are four mutually connected. The lowest two arc active groundwater draining systems supplying the Ombla spring. The data on local stress implies the following deformation of sub-blocks: sub-blocks 2c and 2f are displaced along normal faults from 20° to 30° to the left, downwards, while the sub-block 2 d is displaced along the Pločice thrust fault of 100° to 130° to the left, upwards. The structural data confirmed that the building of an underground dam with a height from 100 to 130 m was feasible. The connection between the caverns and the fault zone was determined. The unfavorable position of the active Pločice fault zone imposes the construction of vital Ombla power plant facilities underground.

  15. Micro-XRF : Elemental Analysis for In Situ Geology and Astrobiology Exploration

    Allwood, Abigail; Hodyss, Robert; Wade, Lawrence


    The ability to make close-up measurements of rock chemistry is one of the most fundamental tools for astrobiological exploration of Mars and other rocky bodies of the solar system. When conducting surface-based exploration, lithochemical measurements provide critical data that enable interpretation of the local geology, which in turn is vital for determining habitability and searching for evidence of life. The value of lithochemical measurements for geological interpretations has been repeatedly demonstrated with virtually every landed Mars mission over the past four decades.

  16. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang


    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones.

  17. Assessment of DInSAR Potential in Simulating Geological Subsurface Structure

    Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.


    High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations

  18. Characterization of the Hydrothermal System of the Tinguiririca Volcanic Complex, Central Chile, using Structural Geology and Passive Seismic Tomography

    Pavez Orrego, Claudia; Tapia, Felipe; Comte, Diana; Gutierrez, Francisco; Lira, Elías; Charrier, Reynaldo; Benavente, Oscar


    A structural characterization of the hydrothermal-volcanic field associated with the Tinguiririca Volcanic Complex had been performed by combining passive seismic tomography and structural geology. This complex corresponds to a 20 km long succession of N25°E oriented of eruptive centers, currently showing several thermal manifestations distributed throughout the area. The structural behavior of this zone is controlled by the El Fierro - El Diablo fault system, corresponding to a high angle reverse faults of Oligocene - Miocene age. In this area, a temporary seismic network with 16 short-period stations was setup from January to April of 2010, in the context of the MSc thesis of Lira- Energía Andina (2010), covering an area of 200 km2 that corresponds with the hydrothermal field of Tinguiririca Volcanic Complex (TVC), Central Chile, Southern Central Andes. Using P- and S- wave arrival times, a 3D seismic velocity tomography was performed. High Vp/Vs ratios are interpreted as zones with high hot fluid content and high fracturing. Meanwhile, low Vp/Vs anomalies could represent the magmatic reservoir and the conduit network associated to the fluid mobility. Based on structural information and thermal manifestations, these anomalies have been interpreted. In order to visualize the relation between local geology and the velocity model, the volume associated with the magma reservoir and the fluid circulation network has been delimited using an iso-value contour of Vp/Vs equal to 1.70. The most prominent observed feature in the obtained model is a large "V" shaped low - velocity anomaly extending along the entire study region and having the same vergency and orientation as the existing high-angle inverse faults, which corroborates that El Fierro - El Diablo fault system represents the local control for fluid mobility. This geometry coincides with surface hydrothermal manifestations and with available geochemical information of the area, which allowed us to generate a

  19. New geological-geophysical data on the structure of the Ninetyeast Ridge

    Levchenko, O.V.; Sager, W.W.; Frey, F.A.; Pringle, M.S.; Krishna, K.S.; Rao, D.G.; Gauntlett, E.; Mervine, E.E.; Marinova, Y.G.; Piotrowski, A.A.; Paul, S.F.; Huang, S.; Eisin, A.E.

    fan. Farther up to 17 degrees N, the Ninetyeast Ridge is traceable in the form of a buried anticlinal uplift of the oceanic basaltic basement. There are many hypotheses proposed for explaining the origin of this enigmatic structure, of which two...

  20. Structural geology of the Rub' Al-Khali Basin, Saudi Arabia

    Stewart, S. A.


    The Rub' Al-Khali basin lies below a Quaternary sand sea, and the structural evolution from the Late Precambrian to Neogene is known only from reflection seismic, gravity, and magnetic data, and wells. Gravity and magnetic data show north-south and northwest-southeast trends, matching mapped Precambrian faults. The deepest structures imaged on reflection seismic data are undrilled Precambrian rifts filled with layered strata at depths up to 13 km. The distribution of Ediacaran-Cambrian Ara/Hormuz mobile salt is restricted to an embayment in the eastern Rub' Al-Khali. The Precambrian rifts show local inversion and were peneplained at base Phanerozoic. A broad crustal-scale fold (Qatar Arch) developed in the Carboniferous and amplified in the Late Triassic, separating subbasins in the west and east Rub' Al-Khali. A phase of kilometer-scale folding occurred in the Late Cretaceous, coeval with thrusting and ophiolite obduction in eastern Oman. These folds trend predominantly north-south, oblique to the northwesterly shortening direction, and occasionally have steep fault zones close to their axial surfaces. The trend and location of these folds closely matches the Precambrian lineaments identified in this study, demonstrating preferential reactivation of basement structures. Compression along the Zagros suture reactivated these folds in the Neogene, this time the result of highly oblique, north-northeast to south-southwest shortening. Cretaceous-Tertiary fold style is interpreted as transpression with minor strain partitioning. Permian, Jurassic, and Eocene evaporite horizons played no role in the structural evolution of the basin, but the Eocene evaporites caused widespread kilometer-scale dissolution collapse structures in the basin center.

  1. Quantitative roughness characterization of geological surfaces and implications for radar signature analysis

    Dierking, Wolfgang


    Stochastic surface models are useful for analyzing in situ roughness profiles and synthetic aperture radar (SAR) images of geological terrain. In this paper, two different surface models are discussed: surfaces with a stationary random roughness (conventional model) and surfaces with a power...

  2. Relation of ERTS-1 detected geologic structure to known economic ore deposits

    Rich, E. I.


    A preliminary analysis of ERTS-1 imagery of the Northern Coast Ranges and Sacramento Valley, California, has disclosed a potentially important fracture system which may be one of the controlling factors in the location of known mercury deposits in the Coast Ranges and which appears to be associated with some of the oil and gas fields within the Sacramento Valley. Recognition of this fracture system may prove to be an extremely useful exploration tool, hence careful analysis of subsequent ERTS imagery might delineate areas for field evaluation.

  3. The analysis of thallium in geological materials by radiochemical neutron activation and x-ray fluorescence spectrometry: a comparison

    McGoldrick, P.J.; Robinson, P. [Tasmania Univ., Sandy Bay, TAS (Australia)


    Carrier-based radiochemical neutron activation (RNAA) is a precise and accurate technique for the analysis of Tl in geological materials. For about a decade, until the mid-80s, a procedure modified from Keays et al. (1974) was used at the University of Melbourne to analyse for Tl in a wide variety of geological materials. Samples of powdered rock weighing several hundred milligrams each were irradiated in HIFAR for between 12 hours and 1 week, and subsequently fused with a sodium hydroxide - sodium peroxide mixture and several milligrams of inactive Tl carrier. Following acid digestion of the fusion mixture anion exchange resin was used to separate Tl from the major radioactive rock constituents. The Tl was then stripped from the resin and purified as thallium iodide and a yield measured gravimetrically. Activity from {sup 204}Tl (a {beta}-emitter with a 3 8 year half-life) was measured and Tl determined by reference to pure chemical standards irradiated and processed along with the unkowns. Detection limits for the longer irradiations were about one part per billion. Precision was monitored by repeat analyses of `internal standard` rocks and was estimated to be about five to ten percent (one standard deviation). On the other hand, X-ray fluorescence spectrometry (XRF) was seen as an excellent cost-effective alternative for thallium analysis in geological samples, down to 1 ppm. 6 refs. 1 tab., 1 fig.

  4. Soil moisture in relation to geologic structure and lithology, northern California

    Rich, E. I. (Principal Investigator)


    The author has identified the following significant results. Structural features in the Norther California Coast Ranges are clearly discernable on Nite-IR images and some of the structural linears may results in an extension of known faults within the region. The Late Mesozoic marine sedimentary rocks along the western margin of the Sacramento Valley are clearly defined on the Nite-IR images and in a gross way individual layers of sandstone can be differentiated from shale. Late Pleistocene alluvial fans are clearly differentiated from second generation Holocene fans on the basis of tonal characteristics. Although the tonal characteristics change with the seasons, the differentiation of the two sets of fans is still possible.

  5. Imaging Geological Structures Up to the Acquisition Surface Using a Hybrid Refraction-Reflection Seismic Method

    Mendes M.


    Full Text Available The aim of seismic imaging is to reconstruct the reflectivity associated with subsurface structures. In standard imaging techniques, the reflectivity model usually starts a few meters below the surface, the actual depth being dependent on data acquisition parameters and the mute used to remove stretching of first arrivals after normal moveout correction. In this paper, we describe a method to image the reflectivity of near-surface structures starting from the acquisition surface. This is achieved by processing both the first arrivals and the reflected phases present in data collected for refraction surveys. The proposed imaging procedure works in three steps. First, we obtain a velocity model for the shallow region by combining the Plus-Minus method of refraction interpretation with tomographic inversion of first arrival times. Second, by processing reflection events present in the refraction data, we obtain a standard reflectivity section for the deeper region. Finally, we compute reflectivity for the shallow region using the velocity model estimated from first arrival information in step 1. This velocity model is used both to compute reflectivity and to convert it in time. The reflectivity obtained for the shallow region is associated with velocity contrasts. In order to merge it with the reflectivity section for the deeper region a scaling factor between the two sets of reflectivity sections must be computed and applied. The novelty of this contribution is the use the tomographic velocity model in evaluating reflectivity for the upper part of the section. This improves the continuity of information about all near-surface structures in comparison with previous works that were limited to reflection data. Three field examples illustrate the proposed procedure showing continuous information about reflectivity of structures starting from the acquisition surface.

  6. The feasibility of TEA CO2 laser-induced plasma for spectrochemical analysis of geological samples in simulated Martian conditions

    Savovic, Jelena; Stoiljkovic, Milovan; Kuzmanovic, Miroslav; Momcilovic, Milos; Ciganovic, Jovan; Rankovic, Dragan; Zivkovic, Sanja; Trtica, Milan


    The present work studies the possibility of using pulsed Transversely Excited Atmospheric (TEA) carbon dioxide laser as an energy source for laser-induced breakdown spectroscopy (LIBS) analysis of rocks under simulated Martian atmospheric conditions. Irradiation of a basaltic rock sample with the laser intensity of 56 MW cm- 2, in carbon-dioxide gas at a pressure of 9 mbar, created target plasma with favorable conditions for excitation of all elements usually found in geological samples. Detection limits of minor constituents (Ba, Cr, Cu, Mn, Ni, Sr, V, and Zr) were in the 3 ppm-30 ppm range depending on the element. The precision varied between 5% and 25% for concentration levels of 1% to 10 ppm, respectively. Generally, the proposed relatively simple TEA CO2 laser-LIBS system provides good sensitivity for geological studies under reduced CO2 pressure.



    <正>20072222 Cao Xiuding(Chengdu University of Technology,Chengdu 610059,China);Qin Guoqing General Packet Radio Service(GPRS)Technology and Its Application in Geological Hazard Monitoring(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2852/P,17(1),2006,p.69-72,76,2 illus.,3 refs.)Key words:geologic hazards



    <正>20071601 Yin Yanhong (Qingdao Institute of Marine Geology, Qingdao 266071, China); Sun Jiashi Discovery of Qingdao Iron Meteorite and Its Chemical Composition and Mineralogy (Marine Geology & Quaternary Geology, ISSN0256-1492, CN37-1117/P, 26(3), 2006, p.121-124, 3 illus., 2 tables, 9 refs.)Key words: iron meteorites, Shandong Province The Qingdao iron meteorite was found in May, 2004.



    <正>20041748 Chen Liang (China University of Geosciences, Nanjing , Jiangsu); Meng Gao-tou Application of Information Model on Geological Hazards Investigating and Zoning of Counties and Cities: Taking Xianju County, Zhejiang Province as an Example (Hydroge-ology & Engineering Geology, ISSN 1000-3665, CN11-2202/P, 30(5), 2003, p. 49 - 52, 4 illus. , 2 tables, 6 refs. ) Key words: geologic hazards, information systems

  10. Mapping and analysis of geological fractures extracted by remote sensing on Landsat TM images, example of the Imilchil-Tounfite area (Central High Atlas, Morocco

    H. El Alaoui El Moujahid


    Full Text Available The use of remote sensing, in this research, can be summarized in mapping and statistical studies of lineaments on the satellites images of the Jurassic outcrops in the Imilchil-Tounfite area, Central High Atlas of Morocco. This is to apply various manual techniques for extracting lineaments from Landsat TM image. Analytical techniques used in this work are: the principal component analysis (PCA applied to selective bands of the visible and infrared, which allows creating new images with better visual interpretation. Directional filters N0°, N45°, N90°, and N135° with a 5.5 matrix were used to enhance lineaments in the corresponding perpendicular directions, and therefore to obtain a good discrimination of those structures. Preliminary results highlight a dominant geological fracturing trending ENE/WSW with 52% of the total lineaments, a second fracture trending is WNW/ESE at 23%, a third fracture series trending NE/SW with 20% and finally, a minor series of fractures trending NW/SE with 5% of the total lineaments. Distribution and statistical relationship, between fractures and the affected surface on the one hand and the fracture length on the other hand, shows a network of well-structured fractures. The final lineament map constitutes a contribution to complete the geology and assisting the mining and hydrogeological prospection, in the Imilchil-Tounfite area.


    V.P. Pakhomov


    Full Text Available The article brings forth the geological-economic analysis of the mineral resource in the area of the transport corridor "Urals industrial – Urals Polar". Given is the analysis of the potential finding of coal on the territory, chromate and other important excavations, the whereabouts of which are more easily approachable for the acquiring with the condition of building a railroad with the path of station Polunochnoye-Obskaya. Given are the possible masses of the delivery of the products accordingly. Distinguished is the size of the investments, that are needed for the mineral resources of the given territory.

  12. Estimation of groundwater flow directions and the tensor of hydraulic conductivity in crystalline massif rocks using information from surface structural geology and mining exploration boreholes

    Florez, C.; Romero, M. A.; Ramirez, M. I.; Monsalve, G.


    In the elaboration of a hydrogeological conceptual model in regions of mining exploration where there is significant presence of crystalline massif rocks., the influence of physical and geometrical properties of rock discontinuities must be evaluated. We present the results of a structural analysis of rock discontinuities in a region of the Central Cordillera of Colombia (The upper and middle Bermellon Basin) in order to establish its hydrogeological characteristics for the improvement of the conceptual hydrogeological model for the region. The geology of the study area consists of schists with quartz and mica and porphyritic rocks, in a region of high slopes with a nearly 10 m thick weathered layer. The main objective of this research is to infer the preferential flow directions of groundwater and to estimate the tensor of potential hydraulic conductivity by using surface information and avoiding the use of wells and packer tests. The first step of our methodology is an analysis of drainage directions to detect patterns of structural controls in the run-off; after a field campaign of structural data recollection, where we compile information of strike, dip, continuity, spacing, roughness, aperture and frequency, we built equal area hydro-structural polar diagrams that indicate the potential directions for groundwater flow. These results are confronted with records of Rock Quality Designation (RQD) that have been systematically taken from several mining exploration boreholes in the area of study. By using all this information we estimate the potential tensor of hydraulic conductivity from a cubic law, obtaining the three principal directions with conductivities of the order of 10-5 and 10-6 m/s; the more conductive joint family has a NE strike with a nearly vertical dip.

  13. Sea-level variability in tide-gauge and geological records: An empirical Bayesian analysis (Invited)

    Kopp, R. E.; Hay, C.; Morrow, E.; Mitrovica, J. X.; Horton, B.; Kemp, A.


    Sea level varies at a range of temporal and spatial scales, and understanding all its significant sources of variability is crucial to building sea-level rise projections relevant to local decision-making. In the twentieth-century record, sites along the U.S. east coast have exhibited typical year-to-year variability of several centimeters. A faster-than-global increase in sea-level rise in the northeastern United States since about 1990 has led some to hypothesize a 'sea-level rise hot spot' in this region, perhaps driven by a trend in the Atlantic Meridional Overturning Circulation related to anthropogenic climate change [1]. However, such hypotheses must be evaluated in the context of natural variability, as revealed by observational and paleo-records. Bayesian and empirical Bayesian statistical approaches are well suited for assimilating data from diverse sources, such as tide-gauges and peats, with differing data availability and uncertainties, and for identifying regionally covarying patterns within these data. We present empirical Bayesian analyses of twentieth-century tide gauge data [2]. We find that the mid-Atlantic region of the United States has experienced a clear acceleration of sea level relative to the global average since about 1990, but this acceleration does not appear to be unprecedented in the twentieth-century record. The rate and extent of this acceleration instead appears comparable to an acceleration observed in the 1930s and 1940s. Both during the earlier episode of acceleration and today, the effect appears to be significantly positively correlated with the Atlantic Multidecadal Oscillation and likely negatively correlated with the North Atlantic Oscillation [2]. The Holocene and Common Era database of geological sea-level rise proxies [3,4] may allow these relationships to be assessed beyond the span of the direct observational record. At a global scale, similar approaches can be employed to look for the spatial fingerprints of land ice

  14. The Baltic Basin: structure, properties of reservoir rocks, and capacity for geological storage of CO2

    Vaher, Rein


    Full Text Available Baltic countries are located in the limits of the Baltic sedimentary basin, a 700 km long and 500 km wide synclinal structure. The axis of the syneclise plunges to the southwest. In Poland the Precambrian basement occurs at a depth of 5 km. The Baltic Basin includes the Neoproterozoic Ediacaran (Vendian at the base and all Phanerozoic systems. Two aquifers, the lower Devonian and Cambrian reservoirs, meet the basic requirements for CO2 storage. The porosity and permeability of sandstone decrease with depth. The average porosity of Cambrian sandstone at depths of 80–800, 800–1800, and 1800–2300 m is 18.6, 14.2, and 5.5%, respectively. The average permeability is, respectively, 311, 251, and 12 mD. Devonian sandstone has an average porosity of 26% and permeability in the range of 0.5–2 D. Prospective Cambrian structural traps occur only in Latvia. The 16 largest ones have CO2 storage capacity in the range of 2–74 Mt, with total capacity exceeding 400 Mt. The structural trapping is not an option for Lithuania as the uplifts there are too small. Another option is utilization of CO2 for enhanced oil recovery (EOR. The estimated total EOR net volume of CO2 (part of CO2 remaining in the formation in Lithuania is 5.6 Mt. Solubility and mineral trapping are a long-term option. The calculated total solubility trapping capacity of the Cambrian reservoir is as high as 11 Gt of CO2 within the area of the supercritical state of carbon dioxide.

  15. Geological events play a larger role than Pleistocene climatic fluctuations in driving the genetic structure of Quasipaa boulengeri (Anura: Dicroglossidae).

    Yan, Fang; Zhou, Weiwei; Zhao, Haitao; Yuan, Zhiyong; Wang, Yunyu; Jiang, Ke; Jin, Jieqiong; Murphy, Robert W; Che, Jing; Zhang, Yaping


    Paleoclimatic and paleogeological events have been identified as being the two main drivers of genetic structuring in extant organisms. We used a montane stream-dwelling frog, Quasipaa boulengeri, to explore the relative roles played by these drivers on species in southern China, a region needing thorough studies. We detected four major matrilines, and no broadly distributed haplotypes occurred. The complex orogenesis of south-western China drove matrilineal divergence in Q. boulengeri into highly structured geographical units. These matrilines subsequently persisted in situ with stable populations rather than undergoing expansions during glacial cycling. The unification of the upper and middle Yangtze River in the Three Gorges mountain region mediated downstream colonization of this frog. Analyses identified geological events as playing a larger role than climatic fluctuations in driving the population history of Q. boulengeri. Nuclear allele analyses indicated gene flow; this maintained genetic cohesion of the species. South-eastern Sichuan Basin was identified as the area of secondary contact for several matrilines, and this area deserves further study and special protection.

  16. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacremento Valley

    Rich, E. I. (Principal Investigator)


    The author has identified the following significant results. A preliminary analysis of the HCMM imagery of the project area indicated that locally some differentiation of lithologic units within the Northern Coast Range may be possible. Of significance, however, was a thermally cool linear area that appeared on the 30 May 1978 Nite-IR. This linear feature seemed to coincide with the Bear Mt. Fault and with the axis of the Chico Monocline along the eastern margin of the Sacramento Valley.

  17. Structural geology of the French Peak accommodation zone, Nevada Test Site, southwestern Nevada

    Hudson, M.R.


    The French Peak accommodation zone (FPAZ) forms an east-trending bedrock structural high in the Nevada Test Site region of southwestern Nevada that formed during Cenozoic Basin and Range extension. The zone separates areas of opposing directions of tilt and downthrow on faults in the Yucca Flat and Frenchman Flat areas. Paleomagnetic data show that rocks within the accommodation zone adjacent to Yucca Flat were not strongly affected by vertical-axis rotation and thus that the transverse strikes of fault and strata formed near their present orientation. Both normal- and oblique strike-slip faulting in the FPAZ largely occurred under a normal-fault stress regime, with least principal stress oriented west-northwest. The normal and sinistral faults in the Puddle Peka segment transfers extension between the Plutonium Valley normal fault zone and the Cane Spring sinistral fault. Recognition of sinistral shear across the Puddle Peak segment allows the Frenchman Flat basin to be interpreted as an asymmetric pull-apart basin developed between the FPAZ and a zone of east-northeast-striking faults to the south that include the Rock Valley fault. The FPAZ has the potential to influence ground-water flow in the region in several ways. Fracture density and thus probably fracture conductivity is high within the FPAZ due to the abundant fault splays present. Moreover,, fractures oriented transversely to the general southward flow of ground water through Yucca Flat area are significant and have potential to laterally divert ground water. Finally, the FPAZ forms a faulted structural high whose northern and southern flanks may permit intermixing of ground waters from different aquifer levels, namely the lower carbonate, welded tuff, and alluvial aquifers. 42 refs.

  18. Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China

    TAO; Mingxin; XU; Yongchang; SHI; Baoguang; JIANG; Zhongt


    In this paper a comprehensive tracing study is conducted on mantle degassing and deep-seated geological structures in different types of fault zones in the continent of China based on the helium isotope data, coupled with some indices such as CO2/3He, CH4/3He and 40Ar/36Ar,and geological tectonics data. There are four representative types of fault zones: (1) Lithospheric fault zones in the extensional tectonic environment are characterized by a small Earth's crust thickness, a lower CH4/3He-high R and lower CO2/3He-high R system, the strongest mantle degassing, and the dominance of mantle fluid, as is represented by the Tancheng-Lujiang fault zone.(2) The lithospheric fault zones or the subduction zone in the strongly compresso-tectonic environment, for instance, the Bangonghu-Nujiang fault zone, are characterized by a huge thick Earth's crust, with the R/Ra values within the range of 0.43-1.13, and weak mantle degassing with mantle-source helium accounting for 5%-14% of the total. (3) The deep-seated fault zones at the basinal margins of an orogenic belt are characterized by R values being on order of magnitude of 10-7, and the CH4/3He values, 109-1010, CO2/3He values, 106-108; as well as much weak mantle degassing. (4) The crustal fault zones in the orogenic belt, such as the Yaojie fault zone (F19), possess a high CH4/3He-low R (10-8) and high CO2/3He-low R system, with no obvious sign of mantle degassing. Studies have shown that the deep-seated huge fault zones are the major channel ways for mantle degassing, the main factors controlling the intensity of mantle degassing are fault depth, tectonic environment and crust thickness; the intensity of mantle degassing can reflect the depth and the status of deep-seated tectonic environment of fault, while the geochemical tracing studies of gases can open up a new research approach; upwelling activity of hydrothermal fluids from the deep interior of the Earth may be one of the driving forces for the formation and

  19. Spatial analysis of geologic and hydrologic features relating to sinkhole occurrence in Jefferson County, West Virginia

    Doctor, Daniel H.; Doctor, Katarina Z.


    In this study the influence of geologic features related to sinkhole susceptibility was analyzed and the results were mapped for the region of Jefferson County, West Virginia. A model of sinkhole density was constructed using Geographically Weighted Regression (GWR) that estimated the relations among discrete geologic or hydrologic features and sinkhole density at each sinkhole location. Nine conditioning factors on sinkhole occurrence were considered as independent variables: distance to faults, fold axes, fracture traces oriented along bedrock strike, fracture traces oriented across bedrock strike, ponds, streams, springs, quarries, and interpolated depth to groundwater. GWR model parameter estimates for each variable were evaluated for significance, and the results were mapped. The results provide visual insight into the influence of these variables on localized sinkhole density, and can be used to provide an objective means of weighting conditioning factors in models of sinkhole susceptibility or hazard risk.

  20. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Ru-Shan Wu; Xiao-Bi Xie


    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super



    <正>20050726 Cheng Jiabai (Survey Team of Huabei Geological Exploration Bureau, Sanhe 065201, China); Zhao Yuanyi Prospecting Hypothesis and Verification (Contributions to Geology and Mineral Resources Research, ISSN 1001-1412, CN12-1131/P, 19(2), 2004, p. 122-129, 2 refs. , with English abstract) Key words: prospecting model



    <正>20040862 Chen Zhihua (Faculty of Engineering, China University of Geosciences, Wuhan, Hubei); Guan Xuefeng Development of DBMS for Environmental Geologic Hazards on WebGIS (Hydrogeology & Engineering Geology, ISSN1000-3665, CN11-2202/P, 30(2), 2003, p. 20-24, 3 illus. , 9 refs. )



    <正>20131683 Lin Wenjing(Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences,Shijiazhuang050061,China);Liu Zhiming An Estimation of HDR Resources in China’s Mainland(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,33(5),2012,p.807-811,2illus.,2tables,14refs.)



    <正>20131088 Fan Difu (Geological Survey of Jiangsu Province , Nanjing 210018 , China ); Xu Xueqiu Origin Study of Geothermal Field in Xiaoyangkou of Rudong County in Jiangsu (Journal of Geology , ISSN1674-3636 , CN32-1796/P , 36 (2), 2012 , p.192-197 , 3illus. , 9refs.) Key words : geothermal fields , Jiangsu Province



    <正>20081086 Feng Wujun(Geological Research Institute,Jiangsu Oil Field Branch Company,Yangzhou 225012,Jiangsu);Cao Bing Geoheat Resources Evaluation and Target Optimization in Gaoyou Region of Jiangsu Province(Jiangsu Geology,ISSN1003-6474,CN32-1258/P,31(2),2007,p.130-13



    <正>20090651 Chen Boyang(Fujian Institute of Geological Survey and Research,Fuzhou 350011,China) Bio-Geochemical Characteristics of High and Low-Incidence Area of Stomach Cancer in the Coastal Area of Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,27(1),2008,p.29-36,3 tables,6 refs.)



    <正>20131358 Li Jianzhong (State Key Laboratory of Geological Processes and Mineral Resources , School of Earth Sciences and Resources , China University of Geosciences , Beijing 100083 , China); Cui Jing Geological Application of Mult-Idimensional Data Visualization Based on Geometric Coordinate Method (Earth Science Frontiers



    <正>20040834 Chen Yijiu (Geological Exploration Bureau of Guangdong Province, Guangzhou, Guangdong) Discussion on Natural Chornic Irradiation Environment and Pertinent Problems in Guangdong Province, China (Guangdong Geology, ISSN 1001 - 8670, CN44-1201/P, 18(1), 2003, p. 30-41, 7 tables, 1 ref. , with English abstract) Keywords: radioactivity radiation environmental pollution Guangdong Province



    <正>20142114Lin Quansheng(China University of Geosciences,Bejing 100083,China)On the Geologic Characteristics and Economic Significance of the Cambrian Lintian Group in Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,32(4),2013,p.264-273,2illus.,2tables,6refs.)



    <正>20140227Li Wenyuan(Xi’an Center of Geological Survey,CGS,Xi’an 710054,ChinaThe Continental Growth and Ore-Forming Processes(Northwestern Geology,ISSN1009-6248,CN61-1149/P,46(1),2013,p.1-10,5illus.,18refs.)



    <正>20041944 Chen Yuchuan (Chinese Academy of Geological Sciences, Beijing) ; Xue Chunli Discussion on the Regional Mineralizing Pedigree of the Ore Deposits in the Northern Margin of the North China Landmass (Geological Journal of China Universities, ISSN 1006-7493, CN32-1440/P, 9(4), 2003, p. 520-535, 2 illus. , 3 tables, 43 refs. ,

  12. Geologic Maps and Structure Sections of the southwestern Santa Clara Valley and southern Santa Cruz Mountains, Santa Clara and Santa Cruz Counties, California

    McLaughlin, R.J.; Clark, J.C.; Brabb, E.E.; Helley, E.J.; Colon, C.J.


    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (, scvmf.pdf, scvmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller.

  13. Stress Analysis for the Formation of En Echelon Veins and Vortex Structures: a Lesson Plan with a Brief Illumination

    Zeng, Z.; Birnbaum, S.


    An English lesson plan exploring stress analysis of En Echelon veins and vortex structures used in the bilingual course in Structural Geology at the National Science Training Base of China is described. Two mechanical models are introduced in class and both mathematical and mechanical analyses are conducted. Samples, pictures and case studies are selected from Britain, Switzerland, and China. These case studies are augmented from the previous research results of the first author. Students are guided through the entire thought process, including methods and procedures used in the stress analysis of geologic structures. The teaching procedures are also illustrated. The method showed is effective to help students to get the initial knowledge of quantitative analysis for the formation of geological structures. This work is supported by the Ministry of Education of China, the Education Bureau of Hubei Province of China and China University of Geosciences (Wuhan).

  14. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems.

    Ferrari, Belinda C; Bissett, Andrew; Snape, Ian; van Dorst, Josie; Palmer, Anne S; Ji, Mukan; Siciliano, Steven D; Stark, Jonathon S; Winsley, Tristrom; Brown, Mark V


    Landscape heterogeneity impacts community assembly in animals and plants, but it is not clear if this ecological concept extends to microbes. To examine this question, we chose to investigate polar soil environments from the Antarctic and Arctic, where microbes often form the major component of biomass. We examined soil environments that ranged in connectivity from relatively well-connected slopes to patchy, fragmented landforms that comprised isolated frost boils. We found landscape connectedness to have a significant correlation with microbial community structure and connectivity, as measured by co-occurrence networks. Soils from within fragmented landforms appeared to exhibit less local environmental heterogeneity, harboured more similar communities, but fewer biological associations than connected landforms. This effect was observed at both poles, despite the geographical distances and ecological differences between them. We suggest that microbial communities inhabiting well-connected landscape elements respond consistently to regional-scale gradients in biotic and edaphic factors. Conversely, the repeated freeze thaw cycles that characterize fragmented landscapes create barriers within the landscape and act to homogenize the soil environment within individual frost boils and consequently the microbial communities. We propose that lower microbial connectivity in the fragmented landforms is a function of smaller patch size and continual disturbances following soil mixing.

  15. The Chesapeake Bay crater: geology and geophysics of a Late Eocene submarine impact structure

    Poag, C. Wylie; Koeberl, Christian; Reimold, Wolf Uwe


    The list of impact craters documented on Earth is short. Only about 165 genuine impact structures have been identified to date (Table 1.1). Even so, the number is steadily increasing at the rate of ∼3–5 per year (Grieve et al. 1995; Earth Impact Database at In stark contrast, most other rocky planets and satellites of our solar system are pockmarked by thousands to hundreds of thousands of impact features (Beatty et al. 1999). Nevertheless, impact specialists acknowledge that Earth, too, has undergone billions of years of bolide bombardment (Melosh 1989; Schoenberg et al. 2002). The most intense bombardment, however, took place during Earth’s earliest history (∼3.8–4 Ga; Ryder 1990; Cohen et al. 2000; Ryder et al. 2000). Traces of most terrestrial impacts have been completely erased or strongly altered by the dynamic processes of a thick atmosphere, deep ocean, and mobile crust, a combination unique to our planet. Planetary geologists now recognize that processes associated with bolide impacts are fundamental to planetary accretion and surface modification (Melosh 1989; Peucker-Ehrenbrink and Schmitz 2001). Incoming meteorites may have been primary sources for Earth’s water, and, perhaps, even organic life as we know it (Thomas et al. 1997; Kring 2000). There is little doubt that impacts played a major role in the evolution of Earth’s biota (Ryder et al. 1996; Hart 1996).

  16. The Maximum Effective Moment Criterion (MEMC) and Its Implications in Structural Geology


    The Mohr-Coulomb criterion has been widely used to explain formation of fractures.However, it fails to explain large strain deformation that widely occurs in nature. There is presently a σ1-σ3 represents the yield strength of the related rock, L is a unit length and α is the angle between σ1and deformation bands. This criterion demonstrates that the maximum value appears at angles of ±54.7° to σ1 and there is a slight difference in the moment in the range of 55°±10°. The range covers the whole observations available from nature and experiments. Its major implications include: (1) it can be used to determine the stress state when the related deformation features formed; (2) it provides a new approach to determine the Wk of the related ductile shear zone if only the ratio of the vorticity and strain rate remains fixed; (3) It can be used to explain (a) the obtuse angle in the contraction direction of conjugate kink-bands and extensional crenulation cleavages, (b) formation of low-angle normal faults and high-angle reverse faults, (c) lozenge ductile shear zones in basement terranes, (d) some crocodile structures in seismic profiles and (e) detachment folds in foreland basins.



    <正>20111337 Chen Guoxu(Faculty of Earth Resources,China University of Geosciences,Wuhan 430074,China);Wu Chonglong Study on Integration of 3D Geological Modeling and Mineral Resource Exploration Mapping(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,46(3),2010,p.542-546,5 illus.,19 refs.)Key words:geological modeling,digital cartography According to the workflow of traditional methods of mineral reserve estimation,the authors took mine 3D geological modeling and mineral reserve estimation mapping as a starting point to explore a new method for the integration of 3D geological modeling and mineral resource exploration mapping.In order to verify this method,the authors have applied this method to some real mines.The results show that this method can effectively solve those problems of

  18. On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system

    Zhao, Zhanfeng; Illman, Walter A.


    Hydraulic tomography (HT) has been shown to map subsurface heterogeneity accurately through the joint interpretation of multiple pumping tests. Previous research has shown that smooth hydraulic conductivity (K) estimates are obtained beyond where pumping/observation data are available using the geostatistical inversion approach, when the inversion begins with a homogeneous K and when data densities are not high. However, geological data are typically available through outcrops and borehole logs to provide geological variability. Therefore, we investigate the usefulness of geological data for HT analysis at a highly heterogeneous field site by: (1) comparing calibrated geological models of two different resolutions to two homogeneous and four highly parameterized geostatistical inverse models, in terms of both model calibration and validation performances as well as correspondence of estimated K values with permeameter-estimated K profiles along boreholes; and (2) using geological models as prior information for the geostatistical inversion approach. Results reveal that the simultaneous calibration of geological models to seven pumping test data yields K values that correctly reflect the general patterns of vertical distributions of permeameter-estimated K. We also find that the geostatistical inversion approach using a geological model as prior information performs better for both model calibration and validation than using a homogenous K as a prior, and more importantly, improves the correspondence of K estimates to permeameter test results along wells, as well as in preserving geological features where drawdown measurements are lacking. Overall, our results suggest the joint use of both geological and pumping test data for HT analysis when accurate geological data are available.

  19. Two episodes of subduction and collision events at the northern foot of Dabie Mountains: Evidence from petrology and structural geology of granitoid rocks

    YANG; Kunguang; (


    preferred orientation of experimentally deformed quartzites, Geol. Soc. Am. Bull., 1973, 8: 297.[13]Ramsay, J. G., Huber, M., The Techniques of Modern Structural Geology, Vol. 1, Strain Analysis, New York: Academic Press, 1983, 73-124.[14]Li Shuguang, Ge Ningjie, Liu Deliang et al., The Sm-Nd isotopic age of C-type eclogite from the Dabie group in the northern Dabie mountains and its tectonic implication, Chinese Science Bulletin, 1989, 34(19): 1625.[15]Ye Bodan, Jian Ping, Xu Junwen et al., The Sujiahe Terrene Collage Belt and Its Constitution and Evolution Along the North Hillslope of the Tongbai-Dabie Orogenic Belt (in Chinese), Wuhan: China University of Geosciences Press, 1993, 1-69.[16]Jian Ping, Yan Weiran, Li Zhchang et al., Isotopic geochronological evidence for the Caledonian Xiongdian eclogite in the western Dabie mountains, China, Acta Geologica Sinica (in Chinese), 1997, 71(2): 133.[17]Liu Zhigang, Niu Baogui, Fu Yunlian et al., The tectonostratigraphic units at the northern foot of the Dabie mountains, Regional Geology of China (in Chinese), 1994, 13(1): 246.[18]Zhai Xiaoming, Day, H. W., Hacker, B. R. et al., Paleozoic metamorphism in the Qinling orogen, Tongbai Mountain, central China, Geology, 1998, 26: 371.[19]Li, S., Jagoutz., E., Xiao, Y. et al., Chronology of ultrahigh-pressure metamorphism in the Dabie Mountains and Su-Lu terrene: I. Sm-Nd isotope system, Science in China, Ser. D, 1996, 39(6): 597.[20]Zhang, Z., You, Z., Han, Y. et al., Petrology metamorphic process and genesis of the Dabie-Sulu eclogite belt, east-central China, Acta Geologica Sinica, 1995, 96(2): 306.[21]Cong Bolin, Wang Qingchen, The Dabie-Sulu UHP rocks belt: review and prospect, Chinese Science Bulletin, 1999, 44(12): 1074.[22]Xu Shutong, Jiang laili, Liu Yican et al., Tectonic framework and evolution of the Dabie mountains in Anhui, eastern China, Acta Geologica Sinica (in Chinese), 1992, 66(1): 1.[23]Ren Jishun, Niu Baogui, Liu Zhigang

  20. The geological structure and prospects of the prospecting nonanticlinal structures of the eastern part of the near southern zone of the Dnieper-Donetsk Depression

    Gerasimov, R.V.; Ignatova, G.S.


    By using seismic investigations, the geological structure of a part of the near southern zone of the Dnieper-Donetsk depression was studied in detail, and structural constructions were made according to specific layers, characterizing conditions of the occurrence of C/sub 1/V/sub 1/ and C/sub 1/t/sub 1/ deposits. The latter form a monocline steeply stressed toward the center of the depression, complicated in the near side by swelling stresses and a number of shallow folded structures, grouped into a single zone, coinciding in plan with the free parts of the protrusions of the foundation and connecting their troughs. The structures of that zone represent broken up elevations, existing, probably, in the lower Prewisean period. In the interstructural depressions, the thickness of the upper part of the deposits C/sub 1/V/sub 1/ increases by 150 to 200 meters. It is surmised that here favorable conditions existed for the formation of nonanticlinal traps of stratigraphic or lithological stratigraphic types. By taking into consideration that the C/sub 1/t/sub 1/ layer is oil and gas bearing on the whole regionally, and in the part under investigation, is productive, the prospects of further prospecting the region are connected with the nonanticlinal traps in the interstructural zones.

  1. Soil Retaining Structures: Development of models for structural analysis

    Bakker, K.J.


    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these struc

  2. X-ray fluorescence analysis of low concentrations metals in geological samples and technological products

    Lagoida, I. A.; Trushin, A. V.


    For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.

  3. Uncertain Analysis on 3D Geology Modelling%三维地质模拟中不确定性分析方法

    徐华; 武强; 李坤; 雷红专; 贾国凯


    三维地质模拟中的不确定性问题直接影响模型精度、空间数据分析和应用效果。通过分析三维地质模拟各个环节中存在的不确定性问题,建立了基于不确定性的三维地质模拟流程,并提出误差检测与分析校正的有效方法。以矿区复杂的地质构造断层建模为例,研究了逻辑不一致性、数据不完整性以及构造特征推演等问题,并对断层模型误差与评价进行了初步分析。实验证明,所提出的方法能够减少不确定性的传播,提高模型的精度和质量。%The uncertain question of 3D geology modeling straight influences the precision of models,spatial data analysis and application effect.Based on the development of uncertain existing on 3D geology modeling,a framework of 3D geology modeling with uncertainty was put forward.An effective method about error checking and revision was researched.And then,the theory was applied to a concrete example of complex fault simulation on a mine area to avoid the logical conflict,insure the data integrality,and extrapolate the structure feature.The error of fault models and its estimate could be also implemented.The experimental results show that the methods designed can reduce the spread of uncertainty and improve the precision and quality of 3D models.



    <正>20082442 Han Zaisheng(China Geological Servey,Beijing 100011,China);Ran Weiyan Exploration and Evaluation of Shal- low Geothermal Energy(Geology in China, ISSN1000—3657,CN11—1167/P,34(6), 2007,p.1115—1121,6 refs.,with English abstract) Key words:geothermal exploration, geothermal resources

  5. Comparative analysis of the impact of geological activity on astronomical sites of the Canary Islands, Hawaii and Chile

    Eff-Darwich, A; Rodriguez-Losada, J A; de la Nuez, J; Hernandez-Gutierrez, L E; Romero-Ruiz, M C


    An analysis of the impact of seismic and volcanic activity was carried out at selected astronomical sites, namely the observatories of El Teide (Tenerife, Canary Islands), Roque de los Muchachos (La Palma, Canary Islands), Mauna Kea (Hawaii) and Paranal (Chile) and the candidate site of Cerro Ventarrones (Chile). Hazard associated to volcanic activity is low or negligible at all sites, whereas seismic hazard is very high in Chile and Hawaii. The lowest geological hazard in both seismic and volcanic activity was found at Roque de los Muchachos observatory, in the island of La Palma.

  6. Using micro-seismicity and seismic velocities to map subsurface geologic and hydrologic structure within the Coso geothermal field, California

    Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.


    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide

  7. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.


    gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.



    <正>20111836 Gao Jian(Sichuan Institute of Geological Survey for Nuclear Industry,Chengdu 610061,China);Shi Yuzhen Feasibility Study of Exploitation of Geothermal Resource in the Lugu Lake Region,Yanyuan,Sichuan Province(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,30(3),2010,p.291-294,1 illus.,1 table,1 ref.,with English abstract)Key words:geothermal water,Sichuan Province20111837 He Jianhua(Geological Brigade 102,Bureau of Geolog

  9. Preliminary integrated geologic map data for Alaska

    U.S. Geological Survey, Department of the Interior — A GIS database of geologic units and structural features in Alaska, with lithology, age, data structure, and format written and arranged just like the other states.

  10. TI-Octree: Spatial index for geological structures TI-Octree: Índice espacial para estructuras geológicas

    Dagoberto Antonio Suárez Morales


    Full Text Available Modeling and visualization of three-dimensional geological structures is one of the main activities in the mining industry. Miners and geologists most maintain an exhaustive control of the extracted volume of mineral of a deposit, using computer programs for processing the obtained information. In the mining process, a mineral deposit is commonly represented by a block model, which represents the morphology of the laying geological structures. For modeling those geological structures and the volume of extracted mineral they use tetrahedral networks. The tetrahedral network is an spatial structure that, given it characteristics, allows modeling geological structures in the fields of mining and geology, making easier the volume calculus. Aiming to improve the tetrahedral search process given an spatial region,  this work  presents a proposal of one spatial data structure for indexing tetrahedral networks, demonstrating by some experiments that the searching time over this proposal is less compared with the searching time over a linear structure. La modelación y visualización en tres dimensiones de estructuras geológicas es una de las actividades fundamentales realizadas en la industria minera. Los mineros y geólogos deben mantener un control exhaustivo del volumen de extracción de los minerales de un yacimiento, utilizando generalmente programas de cómputo para procesar la información obtenida. En la minería un yacimiento mineral es habitualmente representado por un modelo de bloques y este modelo debe respetar la morfología de las estructuras geológicas. Para modelar las estructuras geológicas y los volúmenes de extracción de mineral se utilizan mallas de tetraedros. La malla de tetraedros es una estructura espacial  que, por sus características, permite modelar las estructuras geológicas en la rama de la geología y la minería, facilitando el cálculo del volumen del sólido. Con el objetivo de mejorar el rendimiento en la b

  11. Progress on 129I analysis and its application in environmental and geological researches

    Fan, Yukun; Hou, Xiaolin; Zhou, Weijian


    in environmental level. Based on its source terms, chemical properties and environmental behaviors, 129Ican be applied for geological dating in a range of 2–80Ma, investigation of formation and migration of hydrocarbon, circulation of ocean water, atmospheric process of iodine, as well as reconstruction...... of dispersion and migration of short-lived radioisotopes of iodine released from nuclear accidents. This article aims to summarize and critically compare the analytical techniques used for 129I measurement and chemical methods for separation of iodine from various sample matrices, purification from...

  12. Analysis of Pumphouse RCC Frame Structure for Soil Structure Interaction

    Mr A.S. Thombare


    Full Text Available When structure is built on ground some elements of structure are direct contact with soil. When loads are applied on structure internal forces are developed in both the structure as well as in soil. It results in deformation of both the components which are independent to each other. This are called soil structure interaction. The analysis is done by using (Bentley STAAD.Pro V8i Version 2007 software. The analysis carried out been pump house structure R.C.C. frame structure find out shear force Z direction fixed support and fixed but support for different soil. It concluded that soil structure interaction more affected on fixed base. So overcome the effects of the soil structure interaction on the soft soil, it is important to design the structure to standard loading condition and interaction forces. Thus here concluded that pump house building should be design resist the maximum shear force in fixed base

  13. Marine geology

    Rao, V.P.; Shankar, R.

    Significant scientific contributions in Marine Geology in India during the Nineties have been highlighted in this paper. Sediment trap data collected in the Arabian Sea and Bay of Bengal have provided much understanding about annual sediment fluxes...



    <正>20112453 Li Qing (First Design and Research Institute,Ministry of Mechanical Industry, Bengbu 233000, China); Li Yixiang Application of Shallow Geothermal Energy Resources in the Hefei Area(Geology



    <正>20101802 Fang Bin (China University of Geosciences,Beijing 100083,China);Yang Yunjun Characteristics and Resource Evaluation of the Jiwa Geothermal Field in Central Qiangtang,Northern Tibet,China (Geological Bulletin of China,ISSN1671-



    <正>20112745Cheng Shurang(Geological survey of Shanxi Province,Xi’an 710065,China); Zhang Lin Grade Evaluation Based on Fuzzy Clustering and Pattern Recognition of Comprehensive Anomalies of Geophysics and



    <正>20101648 Peng Yujing (Survey of Regional Geology and Mineral Resources of Jilin Province, Changchun 130022, China); Zhai Yuchun Age Determination and Characteristics of the Late Indosinian-Yanshanian Metallogenetic Events of Jilin Province



    <正>20112330 Liu Xifang (Key Laboratory of Saline Lake Resources and Environment, Ministry of Land and Resources,Institute of Mineral Resources, Beijing 100037, China);Zheng Mianping Geological Features

  19. Robustness Analysis of Kinetic Structures

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard


    The present paper considers robustness of kinetic structures. Robustness of structures has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. Especially for these types of structural syst...... systems, it is of interest to investigate how robust the structures are, or what happens if a structural element is added to or removed from the original structure. The present paper discusses this issue for kinetic structures in architecture....

  20. Geochemical Impact on the Caprock Porous Structure during CO2 Geological Storage : A Laboratory and Modeling Study

    Rhenals Garrido, D. R.; Lafortune, S.; Souli, H.; Dubujet, P.


    CO2 storage is envisioned as a technique which reduces large quantities of CO2 rejected in the atmosphere because of many human activities. The effectiveness of this technique is mainly related to the storage capacity as well as its safety. The safety of this operation is primarily based on the conservation of petro-physical properties of the caprock, which prevents the transport of CO2 towards the surface. However when CO2 reaches the reservoir/caprock interface due to buoyancy effects, the interaction between interstitial fluid and injected fluid creates a serie of dissolution/precipitation reactions affecting the properties of containment of the caprock, which is generally characterized by low transport properties. This study aims to assess the impact caused by CO2/interstitial fluid interaction on the nanostructure of a caprock under geological storage conditions. In order to do this, degradation experiments at high pressure of CO2 (88 bar) and isothermal (55°C) conditions have been conducted using batch reactors for 3.5 months. The sample used for these experiments is a well characterized shale, from the Tournemire formation (Aveyron-France). Porosity evolution has been followed by using volumetric adsorption at low pressure, from advanced NLFDT and classical theories based on the micropores filling, and capillary condensation phenomena. Results showed a slight variation in both mesopores and micropores size distributions, as a result of dissolution processes, which dominated at laboratoty time scale. Furthermore, chemical analysis from the water sampled showed an overall increase in Ca,Mg,K,Si,Na. The results obtained by physical adsorption and water chemistry analysis were consistent, with geochemical modeling, which suggested reaction paths with calcite dissolution as the main mineral, by producing porosity at short term and (clays, feldspars) dissolution of aluminosilicates dominating at long term.



    <正>20072933 Bie Jun(Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China);Huang Haijun Ground Subsidence of the Modern Yellow River Delta and Its Causes(Marine Geology & Quaternary Geology,ISSN0256-1492,CN37-1117/P,28(4),2006,p.29-35,5 illus.,13 refs.,with English abstract)Key words:land subsidence,Yellow River Delta



    <正>20072288 Hong Quan(Ningbo Institute for Engineering Investigation,Ningbo 315012,China)Design of Information Management System for Engineering Investigation Maps Based on C/S Model(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2852/P,17(1),2006,p.86-90,2 illus.,6 refs.)Key words:information systems,engineering geological map



    <正>20141810 Bian Yumei(Geological Environmental Monitoring Center of Liaoning Province,Shenyang 110032,China);Zhang Jing Zoning Haicheng,Liaoning Province,by GeoHazard Risk and Geo-Hazard Assessment(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(3),2013,p.5-9,2 illus.,tables,refs.)



    <正>20140001Dong Shuwen(Chinese Academy of Geological Sciences,Beijing 100037,China);Li Tingdong Progress of SinoProbe-Deep Exploration in China 2008~2012(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,34(1),2013,p.7-23,8illus.,69refs.)Key words:deep geology,deep seismic sounding,Continental Scientific Drilling,China SinoProbe 2008~2012,the initial phase



    <正>20141269 Dai Deqiu(Institute of Geology,Hunan University of Science and Technology,Xiangtan 411201,China);Chen Xinyue Contrastive of Petrography and Mineral Chemistry Characteristics among Olivine and Ca,Al-rich Assemblages(Chinese Journal of Geology,ISSN0563-5020,CN11-1937/P,48(3),2013,p.762-772,3 illus.,2 tables,25 refs.)



    <正>20122531 Hu Lingzhi ( Institute of Geological Engineering Design & Research of Beijing,Miyun 101500,China );Wang Jiankang Discussion on the Feasibility of Geothermal Resources Development and Utilization in Miyun District,Beijing ( City Geology,ISSN1007-1903,CN11-5519 / P,6 ( 3 ), 2011,p.34-35,59 ,) Key words:geothermal resources,Beijing Geothermal,as a new type of clean energy with the integrated trinity of " heat energy-mineral resource-water resource ",



    <正>20132568 Du Guilin(Seismological Bureau of Weihai City,Weihai 264200,China);Cao Wenhai Genesis of Baoquantang Hot Spring in Weihai and Its Influence on Faulting and Seismic Activities(Marine Geology&Quaternary Geology,ISSN0256-1492,CN37-1117/P,32(5),2012,p.67-72,3illus.,2tables,18refs.)Key words:hot springs,seismicity,Shandong Province



    <正>20122476 Bao Yunjie ( Wuxi Research Institute of Petroleum Geology,SINOPEC,Wuxi 214151,China );Wang Shuyi Reservoir Diagenesis of 3rd Member of Feixianguan Formation,Jiannan Gas Field ( Petroleum Geology & Experiment,ISSN1001-6112,CN32-1151 / TE,33 ( 6 ), 2011,p.564-568,2 il-lus.,1plate,2tables,10refs. ) Key words:carbonate reservoirs,diagenesis,Chongqing,Hubei Province



    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)



    <正>20110164 Dong Lianhui(Xinjiang Bureau of Geology and Mineral Resources and Development,Urumqi 830000,China);Feng Jing Research for Classification of Metallogenic Unit of Xinjiang(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,28(1),2010,p.1-15,1 illus.,1 table,17 refs.,with English abstract)Key words:metallogenic provinces,metallogenic belts,metallogenic area,Xinjiang



    <正>20072528 Chen Yuchuan(Chinese Academy of Geological Sciences,Beijing,100037);Pei Rongfu On Minerogenetic(Metallogenetic)Series:Third Discussion(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,80(10),2006,p.1501-1508,3illus.,1 table,57 refs.,with English abstract)Key words:metallogenic series20072529 Pei Rongfu(Institute of Mineral Resources,CAGS,Beijing 100037);Mei Yanxiong Event Geology Stimulati


    Boris M. Chikov


    Full Text Available In our study, an earthquake focus is viewed as a 3D zone of the Earth’s crust, wherein the discharge of mechanical loading is accompanied by recordable destruction and qualitative transformation of the geological medium. The purpose of the present publication is to make an attempt to reveal a direct relationship between seismicity and deformation-metamorphic processes which took place in the Earth’s crust. Traditional and alternative interpretations of geomechanics of seismic-foci situations are discussed. The problems of geodynamics and geostatics of the seismic-foci systems and their concentrations, as well as anthropogenic models and mechanisms of focus medium structuring are reviewed. The relationship between seismicity and mechanisms of «regional shearing» or formation of crustal deformation-metamorphic structures of lineament type is outlined in the example of the Chuya seismic system of earthquakes which occurred in 2003 and afterwards in the Altai region.

  13. The structurally-controlled rockslide of Barmasse (Valais, Switzerland): structural geology, ground-based monitoring and displacement vs. rainfall modeling.

    Michoud, C.; Abellan, A.; Baillifard, F.-J.; Demierre, J.; Derron, M.-H.; Jaboyedoff, M.; Jakubowski, J.; May-Delasoie, F.


    In this communication, we show a case study on the Barmasse rockslide (Val de Bagnes, Valais, Switzerland), which is an active structurally-controlled instability that threaten roads and inhabitants. The entire slope is included within the Middle Penninic unit. According to regional tectonic stresses, the micaschists that compose the instability have been intensively deformed and metamorphised leading to an important foliation and fracturing. Structural settings have been extracted from 3D points-clouds of the crown area. These datasets were acquired with a terrestrial LiDAR (TLS) and processed with Coltop-3D software. The landslide can be defined as a complex instability, with a continuous movement on a basal surface. This deformation also generates a frequent rockfall activity in the upper part of the slope. The landslide was monitoring using different remote sensing techniques (TLS, GNSS and GB-InSAR): a) regarding TLS measurements, we monitored long term 3D displacements comparing two different TLS points clouds acquired in 2009 and 2011, showing more than 3 m displacements in two years in the upper part of the slope (crown area); b) differential GNSS measures were obtained at the toe of the slide, validating TLS measurements in those areas were vegetation hampered remote sensing measurement; c) finally the landslide was also monitored by a GB-InSAR in order to investigate short term displacements. The experiment was carried out during summer 2011, recording displacement rates exceeding 7 mm in 12 h in the main scarp, and confirmed the high amplitude of daily displacements. We are also continuously recording landslide displacements at a daily rate over the most active part of the slope using one crackmeter. The kinematics of the landslide is characterized by a continuous displacement (3rd creep state) which is clearly controlled by external forces (rainfall episodes): on the one side, landslide velocity sharply increases it value after rainfall episodes; on the

  14. An Approach to Computer Modeling of Geological Faults in 3D and an Application

    ZHU Liang-feng; HE Zheng; PAN Xin; WU Xin-cai


    3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities containing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geological exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of modeling approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling technique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound comprehension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.

  15. Comparing predicted and observed spatial boundaries of geologic phenomena: Automated Proximity and Conformity Analysis applied to ice sheet reconstructions

    Napieralski, Jacob; Li, Yingkui; Harbor, Jon


    Comparing predicted with observed geologic data is a central element of many aspects of research in the geosciences, e.g., comparing numerical ice sheet models with geomorphic data to test ice sheet model parameters and accuracy. However, the ability to verify predictions using empirical data has been limited by the lack of objective techniques that provide systematic comparison and statistical assessment of the goodness of correspondence between predictions of spatial and temporal patterns of geologic phenomena and the field evidence. Much of this problem arises from the inability to quantify the level of agreement between straight or curvilinear features, such as between the modeled extent of some geologic phenomenon and the field evidence for the extent of the phenomenon. Automated Proximity and Conformity Analysis (APCA) addresses this challenge using a system of Geographic Information System-based buffering that determines the general proximity and parallel conformity between linear features. APCA results indicate which modeled output fits empirical data, based on the distance and angle between features. As a result, various model outputs can be sorted according to overall level of agreement by comparison with one or multiple features from field evidence, based on proximity and conformity values. In an example application drawn from glacial geomorphology, APCA is integrated into an overall model verification process that includes matching modeled ice sheets to known marginal positions and ice flow directions, among other parameters. APCA is not limited to ice sheet or glacier models, but can be applied to many geoscience areas where the extent or geometry of modeled results need to be compared against field observations, such as debris flows, tsunami run-out, lava flows, or flood extents.

  16. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique


    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.



    <正>20082333 Bai Guoping(Key Laboratory for Hydrocarbon Accumulation of Education Ministry,China University of Petroleum, Beijing 102249,China);Yin Jinyin Petroleum Geological Features and Explo- ration Potential Analyses of North Carnavon Basin,Australia(Petroleum Geology & Ex- periment,ISSN1001—6112,CN32—1151/ TE,29(3),2007,p.253—258,4 illus.,1 table,12 refs.)

  18. Effect of geological structures, rock weathering, and clay mineralogy in the formation of various landslides along Mugling-Narayanghat road section, Central Nepal Himalaya

    Regmi, Amar Deep; YOSHIDA, Kohki


    The present study was conducted on the landslide prone area around Mugling-Narayanghat road section that consists of Lesser Himalayan and Siwaliks rocks. From more than 250 mapped landslides, ten were selected for detailed study that are supposed to the representative of the whole area. Detailed study showed that large and complex landslides are related to deep rock weathering followed by the intervention of geological structures as faults, joints, and fractures. Large landslides formed by gr...

  19. Deformation in the Bolivian Subandes: a reconstruction of geologic structures along two transects across the Andean Front in Southern Bolivia

    Hadeen, Xennephone; Zeilinger, Gerold


    The Southern Bolivian Subandes is a highly tectonically active region in the Andes since deformation began approx. 10 Ma ago. The study area is located in the Southern Bolivian Subandes southwest of Santa Cruz. Observations were taken along two transects with each being around 100 km long. They stretch from the Subandes-Interandean boundary into the Chaco Plain. The northern transect extends from Abapó in the Chaco Plain and it continues west near Vallegrande and ends just west of Pucara near La Higuera. The southern transect initiates near Charagua in the Chaco Plain. Then it continues west through Villa Vaca Guzmán and ends around 25 km west of Monteagudo. Structural and stratigraphic data were collected along the two transects. The locations of major geologic structures such as thrust faults, anticlines and synclines were mapped. The map along with the data from the two cross sections was then used to generate a 3D model of the Subandean fold and thrust belt between Abapó and Monteagudo. The cross sections were than restored to quantify the amount of shortening that had occurred over the past 10 million years. The southern transect has undergone 65 km of shortening while 50 to 80 km of shortening have transpired along the less constrain northern transect. The estimated rate of deformation averages at 8 mm/yr. The timing of deformation may differ between the two transects. Deformation may have initiated earlier or undergone at a faster rate in the northern transect than in the southern transect. It is also possible that the decollement is shallower in the western portion of the northern transect. We observe that the east propagating anticlines verge to the west. This may be due to the anticlines being cut by exposed or blind thrust faults and then rotated counterclockwise. They rotate while piggybacking on younger thrust faults that developed and propagate to the east of the anticlines. We postulate deformation continues to propagate eastward into the Chaco

  20. Effects of topographic position and geology on shaking damage to residential wood-framed structures during the 2003 San Simeon earthquake, western San Luis obispo county, California

    McCrink, T.P.; Wills, C.J.; Real, C.R.; Manson, M.W.


    A statistical evaluation of shaking damage to wood-framed houses caused by the 2003 M6.5 San Simeon earthquake indicates that both the rate and severity of damage, independent of structure type, are significantly greater on hilltops compared to hill slopes when underlain by Cretaceous or Tertiary sedimentary rocks. This increase in damage is interpreted to be the result of topographic amplification. An increase in the damage rate is found for all structures built on Plio-Pleistocene rocks independent of topographic position, and this is interpreted to be the result of amplified shaking caused by geologic site response. Damage rate and severity to houses built on Tertiary rocks suggest that amplification due to both topographic position and geologic site response may be occurring in these rocks, but effects from other topographic parameters cannot be ruled out. For all geologic and topographic conditions, houses with raised foundations are more frequently damaged than those with slab foundations. However, the severity of damage to houses on raised foundations is only significantly greater for those on hill slopes underlain by Tertiary rocks. Structures with some damage-resistant characteristics experienced greater damage severity on hilltops, suggesting a spectral response to topographic amplification. ?? 2010, Earthquake Engineering Research Institute.

  1. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Krausová, Ivana [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Mizera, Jiří, E-mail: [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Řanda, Zdeněk; Chvátil, David; Krist, Pavel [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic)


    Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron–electron annihilation line of {sup 18}F at 511 keV, which is a product of the photonuclear reaction {sup 19}F(γ, n){sup 18}F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from {sup 45}Ti and {sup 34m}Cl, whereas those from {sup 44}Sc and {sup 89}Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10–100 μg g{sup −1}.

  2. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Krausová, Ivana; Mizera, Jiří; Řanda, Zdeněk; Chvátil, David; Krist, Pavel


    Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron-electron annihilation line of 18F at 511 keV, which is a product of the photonuclear reaction 19F(γ, n)18F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from 45Ti and 34mCl, whereas those from 44Sc and 89Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10-100 μg g-1.

  3. Design and analysis of heliostat support structure

    Zang Chuncheng; Wang Zhifeng [Inst. of Electrical Engineering, CAS, BJ (China); Liu Xiaobing; Zhang Xiliang [Himin Solar Energy Group Co. Ltd, Dezhou, SD (China); Wang Yanzhong [Beijing Univ. of Aeronautics and Astronautics, BJ (China)


    The design method of the heliostat support structure with the aim of reducing the cost maximally is described in this paper. In order to guarantee the strength, stiffness and stability of the structure, dynamic performance and static performance including internal stress and distortion are analyzed by means of VSAP (Visual Structural Analysis Program) finite element computational software. Then the support structure is optimized on the basis of the analysis. (orig.)



    <正>20091749 Cai Hou’an(College of Energy Geology,China University of Geosciences,Beijing 100083,China);Xu Debin SHRIMP U-Pb Isotope Age of Volcanic Rocks Distributed in the Badaohao Area,Liaoning Province and Its Significance(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,36(4),2008,p.17-20,2 illus.,1 table,16 refs.)Key words:coal measures,volcanic rocks,U-Pb dating,LiaoningA set of andesite volcanic rocks distributes in the Badaohao area in Heishan County,Liaoning Province.It’s geological age and stratigraphy sequence relationship between the Lower Cretaceous Badaohao Formation and the volcanic rocks can not make sure till now and is influencing the further prospect for coals.Zircon



    <正>20110907 Luo Xue(Faculty of Earth Resource,China Unversity of Geosciences,Wuhan 430074,China);Cao Xinzhi Review on the Change and Development of the Research Thoughts about Mineral Deposit Geology(Contributions to Geology and Mineral Resources Research,ISSN1001-1412,CN12-1131/P,25(2),2010,p.147-152,40 refs.)Key words:study of mineral deposit The development and breakthrough of mineral deposit geology depends to a great extent on the progress and change of its research thoughts.From the traditional study of single mineral,single deposit and single metallogenic model to the comprehensive discussion and whole understanding of metallogenic

  6. Geology and Slope Stability Analysis using Markland Method on Road Segment of Piyungan – Patuk, Sleman and Gunungkidul Regencies, Yogyakarta Special Region, Indonesia

    B. N. Kresna Citrabhuwana


    Full Text Available Road segment of Piyungan - Patuk is a part of Yogyakarta - Wonosari highway, fairly dense traversed by vehicles, from bicycles to buses and trucks. This road crosses hilly topography, causing its sides bounded by quite steep slopes or cliffs. Steep slopes and cliffs are potential to create mass movement. Geologic condition of the surrounding area is built of various volcanic lithology such as breccia, siltstone, sandstone and tuff. There are also geologic structures of joints and faults that affect the stability of the slopes around this road. Slope stability analysis for road segment of Piyungan – Patuk was conducted by applying Markland method. Laboratory testings were done to determine the mechanical and physical properties of rocks that influence the slope strength. Results of the testings show that cohesion and friction angle of volcanic breccia are c = 20.0441 kg/cm2 and  = 56.38˚; cohesion and friction angle of sandstone are cr = 0.6862 kg/cm2, cp = 4.6037 kg/cm2, r = 26.37˚, and p = 32.79˚; cohesion and friction angle of tuff is cr = 1.677 kg/cm2, cp = 7.5553 kg/cm2, r = 17.85˚, and p = 24.19˚. Based on the analysis, some slopes in the study area are potential to move. The movements can be classified into rock fall, debris fall, and rock slides with the sliding plane categorized as planar and wedge. On the other hand, landslide prone zones in the study area can be divided into: Areas with high vulnerability, Areas with moderate vulnerability, and Areas with low vulnerability. Areas prone to landslide should be managed by a series of measures, among others understand natural phenomena, recognizing symptoms of avalanche, attempting to reduce the risk, and land use regulation. The management activities should involve all stakeholders in an integrated manner of implementation.

  7. A revised automated proximity and conformity analysis method to compare predicted and observed spatial boundaries of geologic phenomena

    Li, Yingkui; Napieralski, Jacob; Harbor, Jon


    Quantitative assessment of the level of agreement between model-predicted and field-observed geologic data is crucial to calibrate and validate numerical landscape models. Application of Geographic Information Systems (GIS) provides an opportunity to integrate model and field data and quantify their levels of correspondence. Napieralski et al. [Comparing predicted and observed spatial boundaries of geologic phenomena: Automated Proximity and Conformity Analysis (APCA) applied to ice sheet reconstructions. Computers and Geosciences 32, 124-134] introduced an Automated Proximity and Conformity Analysis (APCA) method to compare model-predicted and field-observed spatial boundaries and used it to quantify the level of correspondence between predicted ice margins from ice sheet models and field observations from end moraines. However, as originally formulated, APCA involves a relatively large amount of user intervention during the analysis and results in an index to quantify the level of correspondence that lacks direct statistical meaning. Here, we propose a revised APCA approach and a more automated and statistically robust way to quantify the level of correspondence between model predictions and field observations. Specifically, the mean and standard deviation of distances between model and field boundaries are used to quantify proximity and conformity, respectively. An illustration of the revised method comparing modeled ice margins of the Fennoscandian Ice Sheet with observed end moraines of the Last Glacial Maximum shows that this approach provides a more automated and statistically robust means to quantify correspondence than the original APCA. The revised approach can be adopted for a wide range of geoscience issues where comparisons of model-predicted and field-observed spatial boundaries are useful, including mass movement and flood extents.

  8. Review of strategies for handling geological uncertainty in groundwater flow and transport modeling

    Refsgaard, Jens Christian; Christensen, Steen; Sonnenborg, Torben O.;


    The geologically related uncertainty in groundwater modeling originates from two main sources: geological structures and hydraulic parameter values within these structures. Within a geological structural element the parameter values will always exhibit local scale heterogeneity, which can...... be accounted for, but is often neglected, in assessments of prediction uncertainties. Strategies for assessing prediction uncertainty due to geologically related uncertainty may be divided into three main categories, accounting for uncertainty due to: (a) the geological structure; (b) effective model...... parameters; and (c) model parameters including local scale heterogeneity. The most common methodologies for uncertainty assessments within each of these categories, such as multiple modeling, Monte Carlo analysis, regression analysis and moment equation approach, are briefly described with emphasis...



    <正>20110635 Bai Jinbin(Tianjin Institute of Geological Survey,Yingshui Road 20,Nankai 300191,China),Niu Xiujun Cenozoic Consolidation Characteristics and Land Subsidence in Tianjin(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2825/P,21(1),2010,p.42-46,4 illus.,4 tables,7 refs.)Key words:consolidation,land subsidence,TianjinAccording to the survey data of oil wells in Dagang oilfield and a lot of laboratory data,the paper discussed the relationship between the consolidation characteristics



    <正>20140498An Shize(Sichuan Institute of Geological Engineering Investigation,Chengdu610072,China);Liu Zongxiang On the Failure Mechanism of a Bedding Landslide in Northeast Sichuan(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(1),2013,p.14-19,2illus.,9refs.)Key words:bedding faults,landslides The landslide was caused by excavation engineering.The failure mechanism is explored for slopes with soft interlayer in the red



    20150342Guan Yu(Geo-Environment Monitoring Station of Anhui Province,Hefei230001,China);Chen Xun On Shallow Geothermal Energy Investigation in Urban Planning Zone of Bengbu in Anhui Province(Journal of Geology,ISSN1674-3636,CN32-1796/P,38(1),2014,p.88-93,2illus.,4tables,6refs.)Key words:geothermal energy,Anhui Province The authors conducted studies on shallow geothermal energy in urban planning zone in Bengbu of Anhui Province,depicted the geological settings of shallow geothermal energy,analyzed the natural features,heat exchange



    <正>20110686 Bai Wancheng(Gold Headquarters of the Chinese Armed Police Force,Beijing 100055,China);Dong Jianle Statistic Prediction for Gold Ore Prospecting in China(Contributions to Geology and Mineral Resources Research,ISSN1001-1412,CN12-1131/P,25(1),2010,p.1-4,11,1 illus,1 table,7 refs.,with English abstract)Key words:metallogenic prediction,gold ores,China 20110687 Dong Min(Institute of Geology and Exploration Engineering,Xinjiang University,Urumqi 830046,China);Sun Baosheng Drawing and S


    Williams, D. A.


    NASA’s Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA’s planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT...

  14. Theoretical geology

    Mikeš, Daniel


    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  15. Volcanic history, geologic analysis and map of the Prometheus Patera region on Io

    Leone, Giovanni; Davies, Ashley G.; Wilson, Lionel; Williams, David A.; Keszthelyi, Laszlo P.; Jaeger, Windy L.; Turtle, Elizabeth P.


    Data from Jupiter's moon Io returned by the Galileo spacecraft have been used to create a geologic map of Prometheus Patera, its associated flow field, and nearby features. We have identified the location of the vent that fed the Prometheus flow field during the Galileo epoch in the north-eastern portion of the main Prometheus flow field. This vent is the probable source of a small sulphur-rich plume. Previous studies suggested that the vent may be atop a tectonic fault but we find that the vent is offset from the putative fault. It is plausible that, in the past, magma exploited the fault to reach the surface at Prometheus Patera, but subsequent magma cooling in the conduit could have caused an obstruction preventing further eruptions from providing significant contributions to the Prometheus flow field. We also speculate on how a new Prometheus plumbing system may be fed by mafic magmas after melt stalls in magma reservoirs during its ascent through the lithosphere from the mantle.

  16. Analysis of piezoelectric structures and devices

    Chen, Weiqiu; Wang, Ji


    This edited work covers piezoelectric materials in the form of beams, plates, shells, and other structural components in modern devices and structures. Applications are frequency control and detection functions in resonators, sensors, actuators, oscillations, and other smart and intelligent structures. The contributions cover novel methods for the analysis of piezoelectric structures including wave propagation, high frequency vibration, material characterization, and optimization of structures. Understanding of these methods is increasingly important in the design and modelling of next generat


    Josip Peko


    Full Text Available This study examined steel and aluminum variants of modern exhibition structures in which the main design requirements include low weight (increased span/depth ratio, transportation, and construction and durability (resistance to corrosion. This included a design situation in which the structural application of aluminum alloys provided an extremely convenient and practical solution. Viability of an aluminum structure depends on several factors and requires a detailed analysis. The overall conclusion of the study indicated that aluminum can be used as a structural material and as a viable alternative to steel for Croatian snow and wind load values and evidently in cases in which positive properties of aluminum are required for structural design. Furthermore, a structural fire analysis was conducted for an aluminum variant structure by using a zone model for realistic fire analysis. The results suggested that passive fire protection for the main structural members was not required in the event of areal fire with duration of 60 min.

  18. Open Plot Project: an open-source toolkit for 3-D structural data analysis

    S. Tavani


    Full Text Available In this work we present the Open Plot Project, an open-source software for structural data analysis, including a 3-D environment. The software includes many classical functionalities of structural data analysis tools, like stereoplot, contouring, tensorial regression, scatterplots, histograms and transect analysis. In addition, efficient filtering tools are present allowing the selection of data according to their attributes, including spatial distribution and orientation. This first alpha release represents a stand-alone toolkit for structural data analysis.

    The presence of a 3-D environment with digitalising tools allows the integration of structural data with information extracted from georeferenced images to produce structurally validated dip domains. This, coupled with many import/export facilities, allows easy incorporation of structural analyses in workflows for 3-D geological modelling. Accordingly, Open Plot Project also candidates as a structural add-on for 3-D geological modelling software.

    The software (for both Windows and Linux O.S., the User Manual, a set of example movies (complementary to the User Manual, and the source code are provided as Supplement. We intend the publication of the source code to set the foundation for free, public software that, hopefully, the structural geologists' community will use, modify, and implement. The creation of additional public controls/tools is strongly encouraged.

  19. Archaeological elements of Mt. Lykaion Sanctuary of Zeus (southern Peloponnesus) in relation to tectonics and structural geology

    Davis, G H [Regents Professor, University of Arizona, Department of Geosciences, 326 Gould-Simpson Building, Tucson, AZ 85721 (United States)], E-mail:


    The Sanctuary of Zeus is the focus of the Mt. Lykaion Excavation/Survey (University of Pennsylvania, University of Arizona, and 39th Ephorate of Prehistoric and Classical Antiquities). It was described by Pausanias as a sacred place of pan-Hellenic significance, with stadium and hippodrome in which athletic games were held, a sanctuary of Pan, and a formidable temenos and altar of Lykaion Zeus. In picturing human activity on this mountain during ancient times, it is not adequate to treat the mountain as if it were simply a tall, symmetrical, and handy edifice within which rock contents are irrelevant, for the geology within Mt. Lykaion significantly influenced what was built on it, and where{exclamation_point} There are contemporary reminders of the 'power' of the site, including the devastating April, 1965, Megalopolis earthquake, the epicenter of which was merely 4 km away. In fact, there are active normal faults within the sanctuary. However the primary geoarchitecture is that of the Pindos fold and thrust belt, fashioned largely in Cretaceous through Eocene. Mt. Lykaion's dome-like summit is a thrust klippe separated from underlying nappes by a major thrust fault (Lykaion thrust), the subhorizontal trace of which encircles the mountain creating a subtle bench in the landscape coinciding closely with archaeological and natural elements important to the sanctuary (e.g., stoa, seatwall, fountains, trails). Late Jurassic through Eocene 'Pindos Group' formations are stacked and repeated by the thrusting. Inter-relationships between bedrock, structure, and archaeology are revealed in a 'geoarchaeological column,' which displays positioning of elements in relation to the thrust, and orientations of rock formations in relation to flat patches in otherwise steep, rocky country, which became sites suitable for placement of hippodrome, baths, temenos, horse pasturing areas, etc. Worked limestone blocks are locally derived and can be

  20. The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure

    Shephard, Grace E.; Müller, R. Dietmar; Seton, Maria


    The tectonic evolution of the circum-Arctic, including the northern Pacific, Siberian and North American margins, since the Jurassic has been punctuated by the opening and closing of ocean basins, the accretion of autochthonous and allochthonous terranes and associated deformation. This complexity is expressed in the uncertainty of plate tectonic models of the region, with the time-dependent configurations and kinematic history remaining poorly understood. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins have implications for mantle structure, which can be used as an additional constraint for refining and evaluating plate boundary models. Here we integrate surface geology and geophysics with mantle tomography models to generate a digital set of tectonic blocks and plates as well as topologically closed plate boundaries with time-dependent rotational histories for the circum-Arctic. We find that subducted slabs inferred from seismic velocity anomalies from global P and S wave tomography models can be linked to various episodes of Arctic subduction since the Jurassic, in particular to the destruction of the South Anuyi Ocean. We present a refined model for the opening of the Amerasia Basin incorporating seafloor spreading between at least 142.5 and 120 Ma, a "windshield" rotation for the Canada Basin, and opening orthogonal to the Lomonosov Ridge for the northern Makarov and Podvodnikov basins. We also present a refined pre-accretionary model for the Wrangellia Superterrane, imposing a subduction polarity reversal in the early Jurassic before accretion to North America at 140 Ma. Our model accounts for the late Palaeozoic to early Mesozoic opening and closure of the Cache Creek Ocean, reconstructed between the Wrangellia Superterrane and Yukon-Tanana Terrane. We suggest that a triple junction may also explain the Mid-Palaeozoic opening of the Slide Mountain, Oimyakon and South Anuyi oceans. Our

  1. Archaeological elements of Mt. Lykaion Sanctuary of Zeus (southern Peloponnesus) in relation to tectonics and structural geology

    Davis, G. H.


    The Sanctuary of Zeus is the focus of the Mt. Lykaion Excavation/Survey (University of Pennsylvania, University of Arizona, and 39th Ephorate of Prehistoric and Classical Antiquities). It was described by Pausanias as a sacred place of pan-Hellenic significance, with stadium and hippodrome in which athletic games were held, a sanctuary of Pan, and a formidable temenos and altar of Lykaion Zeus. In picturing human activity on this mountain during ancient times, it is not adequate to treat the mountain as if it were simply a tall, symmetrical, and handy edifice within which rock contents are irrelevant, for the geology within Mt. Lykaion significantly influenced what was built on it, and where! There are contemporary reminders of the 'power' of the site, including the devastating April, 1965, Megalopolis earthquake, the epicenter of which was merely 4 km away. In fact, there are active normal faults within the sanctuary. However the primary geoarchitecture is that of the Pindos fold and thrust belt, fashioned largely in Cretaceous through Eocene. Mt. Lykaion's dome-like summit is a thrust klippe separated from underlying nappes by a major thrust fault (Lykaion thrust), the subhorizontal trace of which encircles the mountain creating a subtle bench in the landscape coinciding closely with archaeological and natural elements important to the sanctuary (e.g., stoa, seatwall, fountains, trails). Late Jurassic through Eocene 'Pindos Group' formations are stacked and repeated by the thrusting. Inter-relationships between bedrock, structure, and archaeology are revealed in a 'geoarchaeological column,' which displays positioning of elements in relation to the thrust, and orientations of rock formations in relation to flat patches in otherwise steep, rocky country, which became sites suitable for placement of hippodrome, baths, temenos, horse pasturing areas, etc. Worked limestone blocks are locally derived and can be matched with formations. The compelling high elevation of

  2. Robustness Analysis of Kinetic Structures

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard


    Kinetic structures in architecture follows a new trend which is emerging in responsive architecture coined by Nicholas Negroponte when he proposed that architecture may benefit from the integration of computing power into built spaces and structures, and that better performing, more rational...

  3. 10 CFR 63.112 - Requirements for preclosure safety analysis of the geologic repository operations area.


    ... include: (a) A general description of the structures, systems, components, equipment, and process... of the performance of the structures, systems, and components to identify those that are important to... comprehensive identification of potential event sequences; (c) Data pertaining to the Yucca Mountain site,...



    20152724 Chen Dan(State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China);Fu Ronghua Study on the Responses of Landslide to Earthquake:Taking Kudiguazi Landslide as an Example(Geological Journal of China Universities,



    20160094Cao Lei(Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing100029,China);Hao Jinlai Rupture Process Of March 10,2014,M W6.9 Earthquake in the Northwestern Coast of California(Chinese Journal of Geophysics,ISSN0001-



    <正>20101425 Dai Deqiu (Institute of Geology, Hunan University of Science and Technology, Xiangtan 411201, China); Lin Yangting Petrography, Mineral Chemistry of 6 New Unequilibrated Ordinary Chondrites Collected from the Grove Mountains, Antarctica(Acta Mineralogica Sinica, ISSN1000-4734, CN52-1045/P, 29(3), 2009, p.405-412, 3 illus., 3 tables, 20 refs.)



    <正>20131375 Dai Deqiu(Institute of GeologyHunan University of Science and TechnologyXiangtan 411201,China);Wang Shijie Comparison of Petrography and Mineral Chemistry Characters between Plagioclase Olivine Inclusions and Typical Ca,Al-Rich Inclusions(Acta Mineralogica Sinica,ISSN1000-4734CN52-1045/P,32(3),2012,p.341-348,3



    <正>20090720 Wang Haiqiao(Institute of Earth Resources and Information,China University of Petroleum(East China),Dongying 257061,China);Zhong Jianhua Theory of Geological Holography(Earth Science Frontiers, ISSN1005-2321,CN11-3370/P,15 (3),2008,p.370-379,8 illus.,24 refs.)



    <正>20070403 Deng Xiaoying (Zhengzhou Geo-Engineering Exploration Institute, Zhengzhou 450053, China); Yang Guoping Features and Origin of Geothermal Fluid in the New District of Hebi, Henan Provionce (Hydrogeology & Engineering Geology, ISSN1000-3665, CN11-2202/P, 32(2), 2005, p.111-114, 4 illus., 1 table, 7 refs.) Key words: thermal waters, Henan Province



    <正>20042333 Chen Cuibai (School of Water Resources and Environment, China University of Geosciences, Beijing); Yang Qi The Laboratory Study of Biodegradation and Adsorption and Desorption of Trichloroethylene to Mixed Bacteria (Hydrogeology & Engineering Geology, ISSN1000 - 3665, CN11-2202/P, 31(1), 2004, p. 47-51, 6 illus. , 4 tables, 14 refs. )



    20151090 Bian Huiying(School of Environmental Sciences and Engineering,Chang’an University,Xi’an 10054,China);Wang Shuangming Hydrodynamic Conditions of Geothermal Water in Gushi Depression of Guanzhong Basin(Coal Geology&Exploration;,ISSN1001-1986,CN61-1155/P,42(3),2014,p.50-54,60,9illus.,11refs.,



    <正>20132755 Chang Ming(State Key Laboratory for Geo-Hazard Prevention and Geo-Environment Protection,Chengdu University of Technology,Chengdu 610059,China);Tang Chuan Prediction Model for Debris Flow Hazard Zone on Alluvial Fan in Milin Section of Yarlungzangbo River,Tibet(Journal of Engineering Geology,ISSN1004-9665



    <正>20131958 An Lili(China University of Geosciences,Beijing 100083,China);Chen JianpingIntegration and Exploitation of 3DDigital Mine Information System(Journal of Geology,ISSN1674-3636,CN32-1796/P,36(3),2012,p.280-284,2illus.,14refs.)Key words:geographic information system,Sichuan Province



    <正>20071578 Chen Song(College of Civil Engi- neering,Hohai University,Nanjing 210098, China);Han Xuewei Monitoring Program System for the Foundation of Large Bridge (Hydrogeology & Engineering Geology, ISSN 1000-3665,CN 11-2202/P,32(5), 2005,p.44-47,5 illus.,3 refs.) Key words:bridges,footing



    <正>20080675 Chen Shucun(College of Civil Engineering,Hohai University,Nanjing 210098);Gao Zhengxia Application of a Refined BP Algorithm Based Elman Network to Settlement Prediction of Soft Soil Ground(Journal of Engineering Geology,ISSN1004-9665,CN11-3249/P,14(3),2006,p.394-397,4 illus.,2 tables,6 refs.)



    <正>20042360 Feng Zhihan (Geological Survey of Gansu Province, Lanzhou, Gansu) Adjustment of Gravitational Base Point Net Using MATLAB (Computing Techniques for Geophysical and Geochemical Exploration, ISSN 1001-1749, CN51-1242/P, 25(4), 2003, p. 336-339, 1 illus. , 3 refs. )



    <正>20070285 Fu Xiaofang (Institute of Geology and Mineral Resources, SBGMR, Chengdu, Sichuan 610081); Hou Liwei Potential of Mineral Resources of Rare and Dispersed Elements in Sichuan Province and Countermeasures of Exploitation (Acta Geologica Sichuan, ISSN1006-0995, CN51-1273/P, 26(1), 2006, p.10-18, 6 illus., 15 refs.) Key words: mineral resources, Sichuan Province



    <正>20080948 Deng Jinfu(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China);Su Shangguo Yanshanian(Jura-Cretaceous)Orogenic Processes and Metallogenesis of the Taihangshan-Yanshan-West Liaoning Orogenic Belt,North China(Geoscience,ISSN1000-8527,CN11-2035/P,21(2)



    <正>20080252 Zhai Yusheng(State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China) Earth System,Me-tallogenic System to Exploration System(Earth Science Frontiers,ISSN1005-2321,CN11-3370/P,14(1),2007,p.172-181,6 illus.,18 refs.,with English abstract)



    <正>20130838 Li Wenyuan (Xi ’ an Center , China Geological Survey , Xi ’ an 710054 , China); Niu Yaoling Geodynamic Setting and FurtherExploration of Magmatism-Related Mineralization Concentrated in the Late Paleozoic in the Northern Xinjiang Autonomous Region (Earth Science Frontiers , ISSN1005-2321 , CN11-3370/P , 19 (4)



    <正>20131562 Chen Jianping(School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China);Shi Rui 3D Metallogenic Prediction for Western Section of Q8 Gold Deposit in Tongguan County of Shaanxi Province Based on Digital Mineral Deposit Model(Journal of Geology,ISSN1674,

  2. A methodology for 3D modeling and visualization of geological objects

    ZHANG LiQiang; TAN YuMin; KANG ZhiZhong; RUI XiaoPing; ZHAO YuanYuan; LIU Liu


    Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geological data using the 2D or 1D pattern, which results in the loss of a large quantity of spatial data. One of the reasons is that the current methods have limitations on how to express underground geological objects. To analyze and interpret geological models, we present a layer data model to or- ganize different kinds of geological datasets. The data model implemented the unification expression and storage of geological data and geometric models. In addition, it is a method for visualizing large-scaled geological datasets through building multi-resolution geological models rapidly, which can meet the demand of the operation, analysis, and interpretation of 3D geological objects. It proves that our methodology is competent for 3D modeling and self-adaptive visualization of large geological objects and It is a good way to solve the problem of integration and share of geological spatial data.

  3. A methodology for 3D modeling and visualization of geological objects


    Geological body structure is the product of the geological evolution in the time dimension, which is presented in 3D configuration in the natural world. However, many geologists still record and process their geological data using the 2D or 1D pattern, which results in the loss of a large quantity of spatial data. One of the reasons is that the current methods have limitations on how to express underground geological objects. To analyze and interpret geological models, we present a layer data model to organize different kinds of geological datasets. The data model implemented the unification expression and storage of geological data and geometric models. In addition, it is a method for visualizing large-scaled geological datasets through building multi-resolution geological models rapidly, which can meet the demand of the operation, analysis, and interpretation of 3D geological objects. It proves that our methodology is competent for 3D modeling and self-adaptive visualization of large geological objects and it is a good way to solve the problem of integration and share of geological spatial data.

  4. Analysis and Research on Effect of Mountain Fault in Geological Landslide Disaster%地质滑坡灾害的山层断层效应分析与研究



    In the field of geological hazard prevention and control, it is necessary to reconstruct the mountain layer, analyze the fault effect and mathematical model of the mountain, reconstruct the geological horizon surface, and provide the theoretical basis for the prevention and control of geological disasters. The traditional method for fault reconstruction of geological mountain is a fast algorithm of discrete point Delaunay. A reconstruction method based on the branch constraint of geological fault zone is proposed, which is based on the fault effect analysis. The structural and fault reconstruction methods of the geological hazard of geological hazard are analyzed, and the internal structure parameters and physical structure of the fault are analyzed. Then the 3D model of geological landslides is obtained by using the method of layer interpolation and vector cutting. The simulation results show that the method can effectively and accurately reflect the boundary information of geological strata, and the complex geological structure of the fault can be accurately fitted, and the seed points and spatial development trend of the fault plane can be fitted accurately.%在地质滑坡灾害的防治领域,需要对山层进行层面重构,分析山体的层面断层效应和数学模型,重构出地质层位曲面,为地质灾害的防治提供理论基础。传统方法对地质山层的断层重构采用离散点Delaunay的三角网快速生成算法,在三角网扩展时对离散点断面约束曲面的重构效果不好。提出一种基于地质逆断层区域分支约束的地质山层断层面重构方法,进行断层效应分析。分析了地质滑坡灾害的山体地质层的构造和断层层面重构方法,进行山体断层的内部结构参数体系分析和物理构造,然后采用层位插值和矢量裁剪方法进行地质山体滑坡的山层断层三维建模,采用地质逆断层区域分支约束方法,得到断层区域层位面

  5. The Intelligent Use of Structural Analysis.

    Grierson, Donald E.


    Discusses the use of sensitivity analysis in structural design computation. Such analysis can predict how response quantities will vary with given design changes. In addition, it can help student engineers better understand why and when particular structural analyses are or should be conducted. (JN)

  6. Basin-scale Modeling of Geological Carbon Sequestration: Model Complexity, Injection Scenario and Sensitivity Analysis

    Huang, X.; Bandilla, K.; Celia, M. A.; Bachu, S.


    Geological carbon sequestration can significantly contribute to climate-change mitigation only if it is deployed at a very large scale. This means that injection scenarios must occur, and be analyzed, at the basin scale. Various mathematical models of different complexity may be used to assess the fate of injected CO2 and/or resident brine. These models span the range from multi-dimensional, multi-phase numerical simulators to simple single-phase analytical solutions. In this study, we consider a range of models, all based on vertically-integrated governing equations, to predict the basin-scale pressure response to specific injection scenarios. The Canadian section of the Basal Aquifer is used as a test site to compare the different modeling approaches. The model domain covers an area of approximately 811,000 km2, and the total injection rate is 63 Mt/yr, corresponding to 9 locations where large point sources have been identified. Predicted areas of critical pressure exceedance are used as a comparison metric among the different modeling approaches. Comparison of the results shows that single-phase numerical models may be good enough to predict the pressure response over a large aquifer; however, a simple superposition of semi-analytical or analytical solutions is not sufficiently accurate because spatial variability of formation properties plays an important role in the problem, and these variations are not captured properly with simple superposition. We consider two different injection scenarios: injection at the source locations and injection at locations with more suitable aquifer properties. Results indicate that in formations with significant spatial variability of properties, strong variations in injectivity among the different source locations can be expected, leading to the need to transport the captured CO2 to suitable injection locations, thereby necessitating development of a pipeline network. We also consider the sensitivity of porosity and

  7. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: Field examples

    Green, R.A.; Obermeier, S.F.; Olson, S.M.


    The greatest impediments to the widespread acceptance of back-calculated ground motion characteristics from paleoliquefaction studies typically stem from three uncertainties: (1) the significance of changes in the geotechnical properties of post-liquefied sediments (e.g., "aging" and density changes), (2) the selection of appropriate geotechnical soil indices from individual paleoliquefaction sites, and (3) the methodology for integration of back-calculated results of strength of shaking from individual paleoliquefaction sites into a regional assessment of paleoseismic strength of shaking. Presented herein are two case studies that illustrate the methods outlined by Olson et al. [Engineering Geology, this issue] for addressing these uncertainties. The first case study is for a site near Memphis, Tennessee, wherein cone penetration test data from side-by-side locations, one of liquefaction and the other of no liquefaction, are used to readily discern that the influence of post-liquefaction "aging" and density changes on the measured in situ soil indices is minimal. In the second case study, 12 sites that are at scattered locations in the Wabash Valley and that exhibit paleoliquefaction features are analyzed. The features are first provisionally attributed to the Vincennes Earthquake, which occurred around 6100 years BP, and are used to illustrate our proposed approach for selecting representative soil indices of the liquefied sediments. These indices are used in back-calculating the strength of shaking at the individual sites, the results from which are then incorporated into a regional assessment of the moment magnitude, M, of the Vincennes Earthquake. The regional assessment validated the provisional assumption that the paleoliquefaction features at the scattered sites were induced by the Vincennes Earthquake, in the main, which was determined to have M ??? 7.5. The uncertainties and assumptions used in the assessment are discussed in detail. ?? 2004 Elsevier B

  8. Nonlinear structural analysis using integrated force method

    N R B Krishnam Raju; J Nagabhushanam


    Though the use of the integrated force method for linear investigations is well-recognised, no efforts were made to extend this method to nonlinear structural analysis. This paper presents the attempts to use this method for analysing nonlinear structures. General formulation of nonlinear structural analysis is given. Typically highly nonlinear bench-mark problems are considered. The characteristic matrices of the elements used in these problems are developed and later these structures are analysed. The results of the analysis are compared with the results of the displacement method. It has been demonstrated that the integrated force method is equally viable and efficient as compared to the displacement method.

  9. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    Taylor, L.L.; Wilson, J.R. (INEEL); Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K. (SNL); Rath, J.S. (New Mexico Engineering Research Institute)


    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  10. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    Chesick, John P.


    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  11. Geologic map of Mars

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.


    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  12. Teaching Geology in a Penitentiary Setting.

    Orr, William N.


    Describes geology teaching in a penal institution, considering class offerings, teaching structure, teaching schedule, security, cheating, student characteristics, women prisoners in geology classes, and outside field trips. Sample laboratory schedule is included. (JN)

  13. Geologic map of Indonesia - Peta geologi Indonesia

    Sigit, Soetarjo


    The geology, compiled by Th. H. F. Klompe in 1954 from published and unpublished maps of the Direktorat Geologi, has been brought up to date on the basis of investigations carried out to 1962 (Ref. Sigit, Soetarjo, "I. A brief outline of the geology of the Indonesian Archipelago, and II. Geological map of Indonesia;" Direktorat Geologi publication, 1962.)

  14. Paleocollapse structures as geological record for reconstruction of past karst processes during the upper miocene of Mallorca Island

    Robledo Ardila Pedro A.


    Full Text Available Paleocollapse structures and collapse breccias are one of the major features for paleokarst analysis and paleoclimate record. These are affecting the Llucmajor and Santanyí carbonate platforms. These platforms, of southern and eastern Mallorca respectively, are a good example of progradation reef platform in the western Mediterranean. The Santanyí platform is constituted of two sedimentary units, both affected by paleocollapse structures: (1 The Reef Complex attributed to the upper Tortonian-lower Messinian; (2 Santanyí Limestone attributed to the Messinian. There are abundant paleocollapse outcropping in the Reef Complex and Santanyí Limestone units. These structures have been produced by roof collapse of caverns developed in the underlying reefal complex. According to the genetic model, the origin of same paleocollapse structures may be related to early diagenetic processes controlled by high-frequency sea-level fluctuations. During the lowstands of sea level, fresh water flow or mixing zone might have created a cave system near the water table by dissolution of aragonite in the reef front facies and coral patches existing in the lagoonal beds. During subsequent rise and highstands of sea level, inner-shelf beds overlaid the previously karstified reef-core and outer-lagoonal beds. Increase of loading by subsequent accretion of the shallow-water carbonate might have produced paleocollapse structures by gravitational collapse of cave roof. Morphometric and structural classification of paleocollapse is based on geometric and structural criteria according to the type of deformed strata and strata dip. Paleocollapse structures can be classified according to geometric section, size of the paleocave and lithification degree of the host rock when collapsed. Breccias are classified as crackle, mosaic and chaotic types. In same paleocollapse the type of breccias present a vertical and lateral gradation, from crackle in the upper part, to chaotic in



    <正>20072305 Lü Kejie(Department of Earth Sciences,National Natural Science Foundation of China,Beijing 100085,China);Zhou Xiaogang New Principles and Technology on the Analysis of the Earth System Priority Funding Areas and Earth System Science(Advances in Earth Science,ISSN1001-8166,CN62-1091/P,21(10),2006,p.1097-1100,1 table,2 refs.)Key words:earth system science Earth system science is the science that deals with the interactions between and among subsystems,Earth’s overall structure,characteristics and behavior,law and control mechanism of Earth system changes.

  16. Structural Analysis of the Upper Internal Structure in PGSFR

    Kim, S. H.; Koo, G. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The upper internal structure (UIS) is a package of hardware suspended from the rotating plug to about 20 cm above the core assemblies. The functions of the UIS are to support shroud tubes containing the primary and secondary control rod drivelines and preserve critical alignments between these drivelines and the core lattice, under normal and off-normal conditions. In addition, the UIS produces sufficient coolant mixing to mitigate thermal transients to downstream components and provides an opening for the In-Vessel transfer machine to access inner core positions without interfacing with the control rod drive lines and the upper core instrumentation package. The radial position of the shroud tube is fixed by three horizontal guide plates and the lower guide plate is close to the core assemblies and is perforated to permit most of the core effluent to reach the region between guide plates. In this study, the primary stress analysis for dead weight was carried out and the thermal stress analysis considering the coolant temperature around the UIS was performed. In addition, the mode characteristics of the structure by the natural frequency analysis were evaluated. The structural analysis model is developed to evaluate the structural integrity of the UIS. The primary stress analysis, the thermal stress analysis and the natural frequency analysis for the UIS are performed, and the maximum stresses and displacements are evaluated. From the analysis results, it is confirmed that the large local stresses don't occur near the holes and through the wall thicknesses of the structure. In addition, the maximum temperature of the UIS is calculated as 545 .deg. C from the thermal analysis and the structure should be evaluated by the ASME design rules at a high temperature. In the future, the more detailed design will be performed by the high temperature evaluation procedure according to the ASME SEC. III, Div.5.



    <正>20071077 An Zuoxiang(Petroleum Industry Press,Beijing 100011,China);Ma Ji On Bo- real-Style Petroliferous Domain(Xinjiang Petroleum Geology,ISSN1001-3873,CN65 -1107/TE,26(4),2005,p.432-436,4 illus.,9 refs.,with English abstract) Key words:oil and gas fields

  18. Probabilistic structural analysis by extremum methods

    Nafday, Avinash M.


    The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation.

  19. Geologic map of Big Bend National Park, Texas

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.


    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  20. Laboratory electrical resistivity analysis of geologic samples from Fort Irwin, California: Chapter E in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    Bloss, Benjamin R.; Bedrosian, Paul A.


    Correlating laboratory resistivity measurements with geophysical resistivity models helps constrain these models to the geology and lithology of an area. Throughout the Fort Irwin National Training Center area, 111 samples from both cored boreholes and surface outcrops were collected and processed for laboratory measurements. These samples represent various lithologic types that include plutonic and metamorphic (basement) rocks, lava flows, consolidated sedimentary rocks, and unconsolidated sedimentary deposits that formed in a series of intermountain basins. Basement rocks, lava flows, and some lithified tuffs are generally resistive (≥100 ohm-meters [Ω·m]) when saturated. Saturated unconsolidated samples are moderately conductive to conductive, with resistivities generally less than 100 Ω·m, and many of these samples are less than 50 Ω·m. The unconsolidated samples can further be separated into two broad groups: (1) younger sediments that are moderately conductive, owing to their limited clay content, and (2) older, more conductive sediments with a higher clay content that reflects substantial amounts of originally glassy volcanic ash subsequently altered to clay. The older sediments are believed to be Tertiary. Time-domain electromagnetic (TEM) data were acquired near most of the boreholes, and, on the whole, close agreements between laboratory measurements and resistivity models were found. 


    HUANG Yan; LAN Wei-ren


    Based on the nonlinear geometric relation between strain and displacement for flexible cable, the equilibrium equation under self-weight and influence of temperature was established and an analytical solution of displacement and tension distribution defined in Eulerian coordinate system was accurately obtained. The nonlinear algebraic equations caused by cable structure were solved directly using the modified Powell hybrid algorithm with high precision routine DNEQNE of Fortran. For example, a cable structure consisting of three cables jointly supported by a vertical spring and all the other ends fixed was calculated and compared with various methods by other scholars.




    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.



    <正>20092028 Bai Wancheng(Gold Headquarters,Chinese Armed Police Forces,Beijing 100055,China);Dong Jianle Borrowed Model Method and Application in Metallogenic Prognosis(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,44(4),2008,p.60-63,1 illus.,2 tables,8 refs.,with English abstract)Key words:prediction of deposits,geological model20092029 Cao Zubao(Xi’an Branch of China Coal Research Institute,Xi’an 710054,China)Application Study on Artificial Neural Network Method in Deformation Prediction for Foundation Pit(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,35(5),2008,p.38-40,43,1 illus.,6 tables,8 refs.,



    <正>20111769 Bai Yubin(School of Oil and Gas Resources,Xi’an University of Petroleum,Xi’an 710065,China);Zhang Hai Physical Properties and Main Controlling Factors for the Low-Permeability Reservoirs from a Oil Field in the Ordos Basin(Sedimentary Geology and Tethyan Geology,ISSN1009-3850,CN51-1593/P,30(3),2010,p.104-108,4 illus.,2 tables,5 refs.)Key words:low permeability reservoirs,reservoir properties,Ordos BasinThe Chang-2 reservoirs in A oil field in the Ordos Basin dominantly consist of fine-grainded feldspar sandstones which have low porosity and low-permeability,



    <正>20110727 Dai Deqiu (Institute of Geology, Hunan University of Science and Technology, Xiangtan 411201, China); Wang Daode The Evolvement Models and Progress of Research on Formation of Ca-,Al-Rich inclusions in Chondrites (Geological Review, ISSN0371-5736, CN11-1952/P, 56(3), 2010, p.374-383, 2 illus., 1 table, 72 refs.)Key words: chondrites Ca-, Al-rich inclusions (CAIs) are the earliest assemblages formed in the solar nebula. The formation models of CAIs include gas-soild condensation, crystallization from melting or partial melting and high-temperature evaporating residues. The latest study shows similar distribution patterns of the petrographic types and sizes of CAIs in various chondrites. The petrographic characters argue that CAIs in various chemical groups of chondrites formed under similar processes and conditions probably in a same region in the solar nebula.



    <正>20122683 Cao Guangpeng ( State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu 610059,China );Li Yusheng A Rock-Mechanical Study on the Stability of the Xigu Power Transmission Sta-tion Site in Jiulong County,Sichuan Province ( Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467 / P,22 ( 4 ), 2011,p.46-49,2illus.,3 tables,5refs. )



    <正>20070001 Liang Ying (State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China); Wang Henian Petrology-Mineralogy and Classification of Eleven Ordinary Chondrites from the Grove Mountains in Antarctica (Geological Journal of China Universities, ISSN1006-7493, CN32-1440/P,12(1), 2006, p.53-61, 6 illus., 4 tables, 21 refs.) Key words: meteorites, Antarctica



    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal



    <正>20141588 Guo Shiyan(Green Energy Geothermai Development Co.,SINOPEC,Xianyang 712000,China);Li Xiaojun Reservoir Stratum Characteristics and Geothermal Resources Potential of Rongcheng Uplift Geothermal Field in Baoding,Hebei Province(Chinese Journal of Geology,ISSN0563-5020,CN11-1937/P,48(3),2013,p.922-931,2 illus.,4 tables,10 refs.)Key words:geothermal fields,Hebei Province



    <正>20080401 Ding Kuan(Coal Mine Managing Branch Company of Datong Mining Industry Group Company,Datong 037003,China) Surveying the Thickness of the Coal Bed by the Method of Reflecting Wave from Synchronistical Shifting of Stimulating and Receiving(Gansu Geology,ISSN1004-4116,CN62-1191/P,16(1-2),2007,p.93-96,70,3 illus.,4 tables,5 refs.)



    <正>20140527Chen Hailong(State Key Laboratory of Geo-Hazard Prevention and Geo-Environment Protection,Chengdu University of Technology,Chengdu 610059,China);Chen Dingcai Features of the Typical Mine Debris Flows in Guizhou Province(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(1),2013,p.9-13,2illus.,1table,6refs.)Key words:debris flows,mine,Guizhou Province



    <正>20041769 Fang Rui (Department of Earth Sciences, Nanjing University, Nanjing, Jiangsu); Wu Jichun Design and Implementation of New Spatial Database of Groundwa-ter (Hydrogeology & Engineering Geology, ISSN 1000-3665, CN11-2202/P, 30(5), 2003, p. 33 -36, 4 illus. , 1 table, 8 refs. ) Key words: groundwater, data basesBased on system of relational database, a data model of groundwater spatial information



    <正>20072979 Hang Bangming(Jiangning Branch,Nanjing Bureau of Land and Resources,Nanjing 211100,China);Hua Jianwei Application of 3-D GIS Technology in Environmental Supervision of Open Pit Mines(Jiangsu Geology,ISSN1003-6474,CN32-1258/P,30(4),2006,p.275-279,7 illus.,6 refs.)Key words:geographic information systems,mine environmentBased on a



    <正>20140556Tang Hongxu(State Key Laboratory of Geo-Hazard Prevention and Geo-Environment Protection,Chengdu University of Technology,Chengdu 610059,China);Zhu Jing Three-Dimensional Terrain Model Based on GAMBIT(Journal of Geological Hazards and Environment Preservation,ISSN1006-4362,CN51-1467/P,24(1),2013,p.61-65,2illus.,7refs.)Key words:debris flows,three-dimensional models,ARCGIS,GAMBIT,C language



    20151343Chen Jianping(China University of Geosciences,Beijing100083,China);Yu Miao Method and Practice of 3DGeological Modeling at Key Metallogenic Belt with Large and Medium Scale(Acta Geologica Sinica,ISSN0001-5717,CN11-1951/P,88(6),2014,p.1187-1195,9illus.,22refs.)Key words:geological modeling,metallogenic



    <正>20141850 Chen Dongyue(School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China);Chen Jianping On 3D Ore Prospecting Modeling of Comprehensive Information for Huangshaping Polymetallic Deposit(Journal of Geology,ISSN1674-3636,CN32-1796/P,37(3),2013,p.489-495,12 illus.,12 refs.) Key words:polymetallic ores,data bases,Hunan Province



    <正>20111702 He Ying(Depart ment of Geology,Northwest University,Xi’an710069,China);Yue KefenInhomogeneity of Relationship Between Lithospheric Thinning and Mineralization(Journal of Earth Sciences and Environment,ISSN1672-6561,CN61-1423/P,32(3),2010,p.221-224,233,63refs.)Key words:metallogenesis,lithosphere,crustal thinning

  18. The geology of Ganymede

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  19. Structural Evolution of the East Sierra Valley System (Owens Valley and Vicinity, California: A Geologic and Geophysical Synthesis

    Richard J. Blakely


    Full Text Available The tectonically active East Sierra Valley System (ESVS, which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm, which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3–3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.


    杨韬; 解福燕; 袁金忠


    玉溪市地质灾害类型包括滑坡、崩塌、泥石流、地面塌陷、地裂缝、不稳定斜坡,80%以上灾害主要发生于雨季5~10月,丰水年尤为突出。其中西部的新平哀牢山一带地质灾害发生次数最多,损失最重,南盘江及湖盆地区灾害发生相对较少。通过分析历史上21次地质灾害发生与降水的关系发现,地质构造、地形地貌、岩土体性质结构是地质灾害发生的基础条件,而降雨是诱发地质灾害的主要因素,特别是当日和前3日暴雨影响最为严重,其次不合理的采矿、修路和水利设施建设是加剧和诱发地质灾害发生的人为因素。%The geological hazard type of Yuxi City includes landslides, avalanches, landslides, ground subsidence, ground fissures, unstable slopes. 80% of disasters occurs in rainy seasons (May to October), especially in wet years. Geological hazards occur most frequently and seriously in Ailao Mountain of Xinping which is in the west of Yuxi, while the frequency is relatively fewer in Nanpan River and Hupen area. By analyzing the relation- ship between precipitation and 21 times of geological hazards in history, we find that geological structure, land- form, geotechnical discriminate structure are the basic conditions of geological hazard, and rainfall is the main factor initiating geologic hazard, and heavy rain which falls in the day of geologic hazard occurring or less than 3 days before geologic hazard happened has the greatest impact. Secondly, unreasonable mining, road construction and construction of water conservancy facilities are the human factors which could Exacerbate and induce geological hazards.

  1. Analysis of composite structural elements

    A. Baier


    Full Text Available Purpose: The themes of the study are composite structural components. For this purpose have been designed and built several research positions.Design/methodology/approach: Using different structural materials to build new device components requires multiple tests of the components. Research posts were designed in the advanced graphical program CAx Siemens NX 7.5. Analysed samples were made from the glass fibre, aramid and carbon of various weights. Due to the specific use of composite materials it focuses on the elements in the form of plates and flat bars. For the examination of experimental strain gauge technique was used bead, the force sensor and displacement sensor. The experimental methods were compared with computer simulation using the FEM.Findings: The aim of this study was to determine the basic material constants and a comparison of the experimental method and the method of computer simulation.Research limitations/implications: Change the number of layers and how to connect the laminate with the steel plate changes mechanical properties of the structural component.Practical implications: The ultimate result will be knowledge on the different forms of laminates, such as material properties, the stresses in all layers, strain and comparing the results obtained by two methods.Originality/value: The expected outcome of the study will be the composition and method of joining composite laminate with a steel plate to the possible application in the repair and construction of structural elements of freight wagons.

  2. The Strength of Ethical Matrixes as a Tool for Normative Analysis Related to Technological Choices: The Case of Geological Disposal for Radioactive Waste.

    Kermisch, Céline; Depaus, Christophe


    The ethical matrix is a participatory tool designed to structure ethical reflection about the design, the introduction, the development or the use of technologies. Its collective implementation, in the context of participatory decision-making, has shown its potential usefulness. On the contrary, its implementation by a single researcher has not been thoroughly analyzed. The aim of this paper is precisely to assess the strength of ethical matrixes implemented by a single researcher as a tool for conceptual normative analysis related to technological choices. Therefore, the ethical matrix framework is applied to the management of high-level radioactive waste, more specifically to retrievable and non-retrievable geological disposal. The results of this analysis show that the usefulness of ethical matrixes is twofold and that they provide a valuable input for further decision-making. Indeed, by using ethical matrixes, implicit ethically relevant issues were revealed-namely issues of equity associated with health impacts and differences between close and remote future generations regarding ethical impacts. Moreover, the ethical matrix framework was helpful in synthesizing and comparing systematically the ethical impacts of the technologies under scrutiny, and hence in highlighting the potential ethical conflicts.

  3. Structural Analysis in Shoufengsi Area of Tananao Complex, Eastern Taiwan

    Gong-Ruei Ho and Wei Lo


    Full Text Available The subduction and collision boundaries of the Eurasia and Philippine Sea Plates in the Taiwan mountain belt expose a NE-trending coherent crustal section in the Tananao Complex. This study investigates the structures in three dimensions in the Shoufengsi area, which is located in the middle section of the Tananao Complex to understand the Taiwan orogeny mountain building processes. Detailed geological mapping and structural analyses shows the eastward shortening associated with metamorphism indicative of three deformation events. Three sets of axial plane foliation S1, S2, and S3 can be recognized by Type-1 and Type-3 fold interference patterns. Different structural characteristics can be further revealed in five domains based on domain analysis. Each domain shows the superposed process characteristics. Synthetic structural mapping and microstructure examination analyses on the Shoufengsi area show that NE-trending isoclinal folds and axial D1 and D2 plane foliation events represent shortening deformation and NW-trending crenulation cleavage. Normal D3 event faults display the gravity collapse deformation. These observations are consistent with shortening to extension stage predictions during Eurasia and Philippine Sea Plate collisions.



    <正>(1) HYDROGEOLOGY20041696 Bian Jinyu (Department of Earth Sciences, Nanjing University, Nanjing, Jiangsu); Fang Rui Analysis of Controlling Factors of Ground water Quality in Yancheng Area, Jiangsu Province, China (Hydrogeolo gy & Engineering Geology, ISSN 1000 -3665, CN11-2202/P, 30(5), 2003, p. 56 - 60, 1 illus. , 4 tables, 5 refs. ) Key words: groundwater quality evaluation, Jiangsu Province



    <正> 20070428 Liu Wenye (Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029) Application of Wavelet Analysis in High-Resolution Sequence Stratigraphic Division (Journal of Geomechanics, ISSN1006-6616, CN11-3672/P, 12(1), 2006, p.64-70, 4 illus., 12 refs.) Key words: sequence stratigraphy, wavelet transform

  6. Geological and Inorganic Materials.

    Jackson, L. L.; And Others


    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  7. Seismic-sequence stratigraphy and geologic structure of the Floridan aquifer system near "Boulder Zone" deep wells in Miami-Dade County, Florida

    Cunningham, Kevin J.


    The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, acquired, processed, and interpreted seismic-reflection data near the North and South District “Boulder Zone” Well Fields to determine if geologic factors may contribute to the upward migration of injected effluent into that upper part of the Floridan aquifer system designated by the U.S. Environmental Protection Agency as an underground source of drinking water. The depth of the Boulder Zone at the North and South District “Boulder Zone” Well Fields ranges from about 2,750 to 3,300 feet below land surface (ft bls), whereas overlying permeable zones used as alternative drinking water supply range in depth from about 825 to 1,580 ft bls at the North and South District “Boulder Zone” Well Fields. Seismic-sequence stratigraphy and geologic structures imaged on seismic-reflection profiles created for the study describe the part of the Floridan aquifer system overlying and within the Boulder Zone. Features of the Floridan aquifer system underlying the Boulder Zone were not studied because seismic-reflection profiles acquired near the North and South District “Boulder Zone” Well Fields lacked adequate resolution at such depths.

  8. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    Stosch, Heinz-Günter


    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  9. Robustness Analysis of Timber Truss Structure

    Rajčić, Vlatka; Čizmar, Dean; Kirkegaard, Poul Henning


    The present paper discusses robustness of structures in general and the robustness requirements given in the codes. Robustness of timber structures is also an issues as this is closely related to Working group 3 (Robustness of systems) of the COST E55 project. Finally, an example of a robustness...... evaluation of a widespan timber truss structure is presented. This structure was built few years ago near Zagreb and has a span of 45m. Reliability analysis of the main members and the system is conducted and based on this a robustness analysis is preformed....

  10. Groundwater Coastal Discharge at the Kalogrias Bay in Mani and its Relationship with the Geological and Tectonic Structure of Taygetos (Mani, Southern Peloponnese- Greece)

    Migiros, George; Papanikolaou, Ioannis


    A massive groundwater coastal gushing spring with an annual freshwater discharge rate that exceeds 7*106m3 has been mapped within the Messiniakos Gulf in the Kalogrias bay and Kardamili-Mani (southern Peloponnese), approximately 100m from the coastline. The mechanism that supports this high discharge rate is not only of exceptional scientific interest due also to its complexity, but its potential exploration would be crucial for the future survival, economic development and prosperity of a large part of the Mani peninsula. The sea bottom morphology has an ovoid shape with the deepest part at 29m towards the gushing spring, it is characterized by important linear morphologic features in a rather unstable geologic environment of carbonate bedrock which is covered by a thin layer of semi-cohesive sediments. The study area belongs to the Geotectonic Unit of Mani that covers a large part of the Taygetos mountain and forms the predominant water supply source for all karstic springs of Mani. It consists of thick carbonates of Triassic that end up with the flysch sedimentation in Oligocene times. These alpine rocks are covered uncomfortably by Pliocene and Pleistocene sediments of variable clastic materials. Detailed geological and tectonic analysis of the region, supported by the mapping of springs and the relevant karstic features of the area shows that: a) Springs towards the mountain areas are either contact springs or karstic springs of low discharge rate that are strictly related to the folds and thrusts that were developed during the Alpine deformation phase. b) Springs towards lower slopes and the lowland areas are linked to the Pliocene and Pleistocene sediments that outcrop in local topographic lows and are aligned along strike the normal faults formed by the subsequent extensional phases. They are of low discharge rate and their water supply comes both from the overlying strata of the same Plio-Pleistocene deposits and sideways from the bedrock carbonate rocks

  11. Quantifying structural controls of rockfall activity on alpine limestone cliffs: a LiDAR-based geological approach in the Wetterstein Mountains, Bavarian Alps.

    Jacobs, Benjamin; Krautblatter, Michael


    In mountainous regions, rockfall represents one of the most hazardous processes potentially threatening human life and infrastructure. For risk assessment and dimensioning rockfall mitigation, a thorough understanding of rockfall processes is crucial. Here, the rate of backweathering and rockfall supply are key factors for sediment budget assessment in rock slope environments. However, recent LiDAR approaches do not cover the entire spectrum of rockfall magnitudes (e.g. small fragmental rockfall, rare large events) and many former rockfall studies do not address geological and geotechnical factors controlling rockfall. The test setup was deliberately chosen to reduce the degrees of freedom for rockfall-controlling factors. Lithology, aspect, slope gradient and porosity were kept uniform but scan sites were chosen vary bedding orientation and joint density systematically along a 600 m high limestone rock face. Terrestrial laser scanning (TLS) was used to detect and quantify rockfall activity (mm/a) at five selected rock walls of the north-facing rock slopes of the Reintal Valley over the course of one year. Additionally, structural data were obtained by traditional scanline measurements and TLS-based analysis. The compatibility of TLS methods was tested by validating the data with existing rockfall inventories obtained by direct measurements by Krautblatter et al. (2012). The results show a high discrepancy of seasonal rockfall activity between summer months (0.001 to 0.022 mm/a) and autumn to spring (0.021 to 0.364 mm/a) as well as between favorable bedding orientation (0.015 mm/a) and daylighted bedding (max. 0.264 mm/a). A significant effect of joint spacing on rockfall activity is not evident in the data or overlain by the bedding orientation effect. Nevertheless, the differences in estimated block sizes between the observed rock walls is clearly visible in the TLS derived particle size distribution. The latter was adduced to extrapolate rockfall magnitudes

  12. Petrofacies analysis - the petrophysical tool for geologic/engineering reservoir characterization

    Watney, W.L.; Guy, W.J.; Gerlach, P.M. [Kansas Geological Survey, Lawrence, KS (United States)] [and others


    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measures of a reservoir. The word {open_quotes}petrofacies{close_quotes} makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production performance, and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information, where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations will be reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production such as bypassed pay behind pipe and in old exploration holes, or to assess zonation and continuity of the reservoir. Petrofacies analysis is applied in this example to distinguishing flow units including discrimination of pore type as assessment of reservoir conformance and continuity. The analysis is facilitated through the use of color cross sections and cluster analysis.

  13. Petrofacies Analysis - A Petrophysical Tool for Geologic/Engineering Reservoir Characterization

    Watney, W.L.; Guy, W.J.; Doveton, J.H.; Bhattacharya, S.; Gerlach, P.M.; Bohling, G.C.; Carr, T.R.


    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word "petrofacies" makes an explicit link between petroleum engineers' concerns with pore characteristics as arbiters of production performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations are reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types (size and connectedness) for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production, such as bypassed pay behind pipe and in old exploration wells, or to assess zonation and continuity of the reservoir. Petrofacies analysis in this study was applied to distinguishing flow units and including discriminating pore type as an assessment of reservoir conformance and continuity. The analysis is facilitated through the use of colorimage cross sections depicting depositional sequences

  14. Active faulting, 3-D geological architecture and Plio-Quaternary structural evolution of extensional basins in the central Apennine chain, Italy

    Gori, Stefano; Falcucci, Emanuela; Ladina, Chiara; Marzorati, Simone; Galadini, Fabrizio


    The general basin and range Apennine topographic characteristic is generally attributed to the presently active normal fault systems, whose long-term activity (throughout the Quaternary) is supposed to have been responsible for the creation of morphological/structural highs and lows. By coupling field geological survey and geophysical investigations, we reconstructed the 3-D geological model of an inner tectonic basin of the central Apennines, the Subequana Valley, bounded to the northeast by the southern segment of one of the major active and seismogenic normal faults of the Apennines, known as the Middle Aterno Valley-Subequana Valley fault system. Our analyses revealed that, since the late Pliocene, the basin evolved in a double half-graben configuration through a polyphase tectonic development. An early phase, Late Pliocene-Early Pleistocene in age, was controlled by the ENE-WSW-striking and SSE-dipping Avezzano-Bussi fault, that determined the formation of an early depocentre towards the N-NW. Subsequently, the main fault became the NW-SE-striking faults, which drove the formation during the Quaternary of a new fault-related depocentre towards the NE. By considering the available geological information, a similar structural evolution has likely involved three close tectonic basins aligned along the Avezzano-Bussi fault, namely the Fucino Basin, the Subequana Valley, and the Sulmona Basin, and it has been probably experienced by other tectonic basins of the chain. The present work therefore points out the role of pre-existing transverse tectonic structures, inherited by previous tectonic phases, in accommodating the ongoing tectonic deformation and, consequently, in influencing the structural characteristics of the major active normal faults. This has implications in terms of earthquake fault rupture propagation and segmentation. Lastly, the morpho-tectonic setting of the Apennine chain results from the superposition of deformation events whose geological

  15. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Northern Coast Range, Sacramento Valley, and the Modoc Plateau

    Rich, E. I. (Principal Investigator)


    Heat capacity mapping mission images of about 80,000 sq km in northern California were qualitatively evaluated for usefulness in regional geologic investigations of structure and lithology. The thermal characteristics recorded vary among the several geomorphic provinces and depend chiefly on the topographic expression and vegetation cover. Identification of rock types, or groups of rock types, was most successfully carried out within the semiarid parts of the region; however, extensive features, such as faults, folds and volcanic fields could be delineated. Comparisons of seasonally obtained HCMM images are of limited value except in semiarid regions.

  16. Thermal and structural analysis of Hermes

    Petiau, C.


    After a brief recap of Hermes TPS and structure principles, we present the organization of thermal and structural analysis of the Hermes project, and we describe the way to resolve the problems of connections between calculations performed by the different Hermes partners. We describe in detail the interactions between the general model of TPS, used for global dimensioning of insulation, and refined thermal models giving an accurate temperature map inside details of "hot" and "cold" structures. The organization for structural analysis is based on a finite element general model which supports preliminary design, loads and vibration analyses. Boundary conditions for refined subpart analyses are cut to size, into the general model by a super element technique. This process involves the use by all partners of efficient computer codes, in the field of structural analysis and optimization integrated with CAD; for this Dassault proposes as a reference: the CATIA-ELFINI system.

  17. Semantic Antinomies and Deep Structure Analysis

    Zuber, Ryszard


    This article discusses constructions known as semantic antinomies, that is, the paradoxical results of false presuppositions, and how they can be dealt with by means of deep structure analysis. See FL 508 186 for availability. (CLK)

  18. Dynamic analysis and design of offshore structures

    Chandrasekaran, Srinivasan


    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...

  19. The PRoViDE framework for the quantitative geologic analysis of reconstructed Martian terrain and outcrops

    Traxler, Christoph; Hesina, Gerd; Barnes, Robert; Gupta, Sanjeev; Paar, Gerhard


    The EU-FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) assembled a major portion of the imaging data gathered so far from planetary surface missions into a unique 3D database, brought them into a spatial context and provides access to a complete set of 3D vision products. The processing chain (PRoViP) is able to generate novel 3D fusion products between HiRISE orbiter and multiple-station rover stereo imagery from NASA's Mars Exploration Rover - MER (Pancam, Navcam), and Mars Science Laboratory Curiosity - MSL (Mastcam). An important tool of the PRoViDE framework, using PRoViP multi-resolution 3D vision processing products, is called PRo3D. It is an interactive virtual environment for the scientific exploration and analysis of reconstructed Martian terrain and digital outcrop models. Data fusion is supported so that multiple models with different scales and geometric resolutions can be combined in one 3D scene. This allows studying both the large geological context, which usually is reconstructed from orbiter imagery, and small outcrop details originating from rover camera imagery. PRo3D allows the user to fluently move around and zoom to investigate features at different scales and perspectives, as well as providing various interactive analysis tools. Interpretations can be digitised directly onto the 3D surface, and simple measurements can be taken of the dimensions of the outcrop and sedimentary features. The 3D data allows for incorporation of the geometrical features of the sedimentary layers into the measurements to obtain the true dimensions of those features. Dip and strike is calculated within PRo3D from mapped bedding contacts and fracture traces, through which a best fit plane is created to derive the dip and strike vectors. Scientists can organize measurements and annotations according to their geological context in a hierarchical way. These tools have been tested on two case studies; Victoria Crater and Shaler. Victoria Crater, in the

  20. Analysis model of structure-HDS


    Presents the model established for Structure-HDS(hydraulic damper system) analysis on the basis of the theoretical analysis model of non-compressed fluid in the round pipe will an uniform velocity used as the basic variable, and pressure losses resulting from cross section changes of fluid route taken into consideration. Which provides necessary basis for researches on earthquake responses of a structure with a spacious first story, equipped with HDS at first floor.

  1. Structural Dynamics and Data Analysis

    Luthman, Briana L.


    This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash



    <正>20110263 Chen Anqing(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China);Chen Hongde Difference of the Upper Paleozoic Lithostratigraphic Gas Reservoirs in Ordos Basin,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,37(2),2010,p.120-126,4 illus.,1 table,24 refs.)Key words:lithologic reservoir,stratigraphic reservoir,Ordos BasinThe Upper Paleozoic of Ordos Basin is characterized by "gas-generating in the whole basin,gas-bearing widely and gas controlled by lithology".The comparati



    <正>20102418 Chen Hongde(Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China);Huang Fuxi Distribution Rule and Main Controlling Factors of the Marine Facies Hydrocarbon Substances in the Middle and Upper Parts of Yangtze Region,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,36(6),2009,p.569-577,7 illus.,15 refs.)Key words:marine oil generation,oil and gas accumulation,Yangtze RegionUnder the guidance of the tectonic-sequence stratigraphy,sedimentology and lithofacies palaeogeography and dynamic evolutionary view,the au



    <正>20102721 Bian Jianmin(College of Environment and Resources,Jilin University,Changchun 130026,China);Tang Jie Hydrogeochemical Characteristics in the Arsenic Poisoning Area in Western Jilin Province(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,36(5),2009,p.80-83,4 illus.,2 tables,9 refs.)Key words:groundwater,arsenic,Jilin ProvinceSupported by field survey and sample test data,the SPSS is applied to analyze the relationship between arsenic concentration and chemical components.The results show that th



    <正>20091762 Guo Wancheng(Xining Jiulong Engineering Investigation Ltd.,Xining 810700,China);Shi Xingmei Development and Utilization of Guide Basin’s Geothermal Resources of Qinghai Province(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(3),2008,p.79-80,92,2 illus.,2 tables,2 refs.)Key words:geothermal resources,QinghaiThis paper introduced the background of geothermal conditions and the many years of geothermal exploration data in Guide Basin.Then,the authors discussed the geothermal resources feature of Guide basin and raised some opinions on the reasonable development and utilization of geothermal resources.



    <正>20112074 Guo Si(Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China);Guo Ke Solid Mineral Reserves Estimation System Development and Practice Based on Arcgis(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,32(5),2010,p.560-564,458,10 illus.,4 tables,18 refs.)Key words:computer programs,prospective reservesGeostatistics is now the foundation of mineral reserves estimation,and it has become the industry standard for estimating reserves.The software development of solid mineral reserves estimates

  7. 山东邹平吉祥金铜矿矿床地质特征及找矿前景分析%Geological Characteristics and Prospect Analysis of Jixiang Gold Copper Deposits in Zouping County of Shandong Province

    张朋朋; 张燕挥; 郭加朋; 刘辉; 李大鹏


    在对区域成矿地质背景认识的基础上,详细解剖了吉祥金铜矿的矿区地质和矿床地质特征,讨论了矿床成因与找矿标志,并初步展望了该区的找矿前景。初步认为该矿床属于沿断裂构造充填的岩浆热液矿床。控矿因素主要是断裂构造和岩浆岩,主要找矿标志为发育于二长岩体内的硅化、黄铜矿化构造破碎带。通过对地质、物探等资料的分析认为该区具有良好的找矿前景。%Based on regional geological background,regional geology and geological characteristics of Jixiang gold copper deposit have been explained,the origin and prospecting criteria have been discussed,and ore prospect has been forecasted primarily.It is regarded that this deposit belongs to magmatic hydrothermal deposit which is filled along the fault structure.Ore controlling factors are mainly fracture tectonic and magmatic rocks,main prospecting marks are silication,chalcopyrite structure developed in monzonite fracture zone.Through analysis on geological and geophysical data of the area,it is regarded that there are good ore prospects in this area.

  8. 3D Detection, Quantification and Correlation of Slope Failures with Geologic Structure in the Mont Blanc massif

    Allan, Mark; Dunning, Stuart; Lim, Michael; Woodward, John


    A thorough understanding of supply from landslides and knowledge of their spatial distribution is of fundamental importance to high-mountain sediment budgets. Advances in 3D data acquisition techniques are heralding new opportunities to create high-resolution topographic models to aid our understanding of landscape change through time. In this study, we use a Structure-from-Motion Multi-View Stereo (SfM-MVS) approach to detect and quantify slope failures at selected sites in the Mont Blanc massif. Past and present glaciations along with its topographical characteristics have resulted in a high rate of geomorphological activity within the range. Data for SfM-MVS processing were captured across variable temporal scales to examine short-term (daily), seasonal and annual change from terrestrial, Unmanned Aerial Vehicle (UAV) and helicopter perspectives. Variable spatial scales were also examined ranging from small focussed slopes (~0.01 km2) to large valley-scale surveys (~3 km2). Alignment and registration were conducted using a series of Ground Control Points (GCPs) across the surveyed slope at various heights and slope aspects. GCPs were also used to optimise data and reduce non-linear distortions. 3D differencing was performed using a multiscale model-to-model comparison algorithm (M3C2) which uses variable thresholding across each slope based on local surface roughness and model alignment quality. Detected change was correlated with local slope structure and 3D discontinuity analysis was undertaken using a plane-detection and clustering approach (DSE). Computation of joint spacing was performed using the classified data and normal distances. Structural analysis allowed us to assign a Slope Mass Rating (SMR) and assess the stability of each slope relative to the detected change and determine likely failure modes. We demonstrate an entirely 3D workflow which preserves the complexity of alpine slope topography to compute volumetric loss using a variable threshold. A

  9. Generalized Structured Component Analysis with Latent Interactions

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan


    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  10. Using rhetorical structure in sentiment analysis

    Hogenboom, Alexander; Frasincar, Flavius; Jong, de Franciska; Kaymak, Uzay


    Automated sentiment analysis has become an active field of study with a broad applicability. One of the key open research issues lies in dealing with structural aspects of text when analyzing its conveyed sentiment. Recent work uses structural aspects of text in order to distinguish important text s

  11. Group theory analysis of braided geometry structures

    FENG Wei; MA Wensuo


    The braided geometry structures are analyzed with point groups and space groups for which the continuous yarn of the braided preforms is segmented and expressed in some special symbols. All structures of braided material are described and classified with group theory, and new braiding methods are found. The group theory analysis lays the theoretical foundation for optimizing material performance.

  12. Analysis of Geological Background of Seismic Activity in the Chengdu Plain from Data of Seismic Prospecting for Oil

    Huang Shenmu; He Tianhua; Fan Mingxiang; Li Jiapen; Xie Xiongfei; Feng Hedi; Wu Zhishen


    Summarizing the existing data of seismological and geological investigations ancl or strong and intermediate-strong earthquakes in the Sichuan basin and its adjacent areas accumulated by the seismological and petroleum organizations in Sichuan and of the results of seismic prospecting and detailed exploration in Chengdu depression during the last 20 years permitted ns to study the types and distribution of hidden structures in Chengdu depression and its adjacent areas, in particular, to identify in detail the "hidden faults" in the Chenngdu-Deyang area on the one hand; The obtained data indicate that the NE-trending Xinjin fault runs northward and dies out in the south of Penzhen town of Shuangiiu County. Meanwhile, we studied genetic relations of seismic activity to active faults and their corresponding movement characteristics on the other hand. Moreover, the surface faults and deep-seated faults are clearly defined and outlined,and 5 types of seismogenic faults suggested. The knowledge thus obtained enables us to delimit the focal zones for potential strong earthquakes in Chengdu depression. The study suggests that a zone of 40 km wide and more than 100 km long on sides along the Chengdu-Deyang line has a stable seismogeological background and good engineering-seismological conditions.

  13. Geology and structure of the Pine River, Florida River, Carbon Junction, and Basin Creek gas seeps, La Plata County, Colorado

    Fassett, James E.; Condon, Steven M.; Huffman, A. Curtis; Taylor, David J.


    Introduction: This study was commissioned by a consortium consisting of the Bureau of Land Management, Durango Office; the Colorado Oil and Gas Conservation Commission; La Plata County; and all of the major gas-producing companies operating in La Plata County, Colorado. The gas-seep study project consisted of four parts; 1) detailed surface mapping of Fruitland Formation coal outcrops in the above listed seep areas, 2) detailed measurement of joint and fracture patterns in the seep areas, 3) detailed coal-bed correlation of Fruitland coals in the subsurface adjacent to the seep areas, and 4) studies of deep-seated seismic patterns in those seep areas where seismic data was available. This report is divided into three chapters labeled 1, 2, and 3. Chapter 1 contains the results of the subsurface coal-bed correla-tion study, chapter 2 contains the results of the surface geologic mapping and joint measurement study, and chapter 3, contains the results of the deep-seismic study. A preliminary draft of this report was submitted to the La Plata County Group in September 1996. All of the members of the La Plata Group were given an opportunity to critically review the draft report and their comments were the basis for revising the first draft to create this final version of a geologic report on the major La Plata County gas seeps located north of the Southern Ute Indian Reservation.

  14. Bayesian analysis of cosmic structures

    Kitaura, Francisco-Shu


    We revise the Bayesian inference steps required to analyse the cosmological large-scale structure. Here we make special emphasis in the complications which arise due to the non-Gaussian character of the galaxy and matter distribution. In particular we investigate the advantages and limitations of the Poisson-lognormal model and discuss how to extend this work. With the lognormal prior using the Hamiltonian sampling technique and on scales of about 4 h^{-1} Mpc we find that the over-dense regions are excellent reconstructed, however, under-dense regions (void statistics) are quantitatively poorly recovered. Contrary to the maximum a posteriori (MAP) solution which was shown to over-estimate the density in the under-dense regions we obtain lower densities than in N-body simulations. This is due to the fact that the MAP solution is conservative whereas the full posterior yields samples which are consistent with the prior statistics. The lognormal prior is not able to capture the full non-linear regime at scales ...

  15. Polarity Analysis of Texts using Discourse Structure

    Heerschop, Bas; Goosen, Frank; Hogenboom, Alexander; Frasincar, Flavius; Kaymak, Uzay; Jong, de Franciska


    Sentiment analysis has applications in many areas and the exploration of its potential has only just begun. We propose Pathos, a framework which performs document sentiment analysis (partly) based on a document’s discourse structure. We hypothesize that by splitting a text into important and less im

  16. Structural Analysis in a Conceptual Design Framework

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.


    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  17. Structural Analysis Of Offshore Structures Exposed To Blast Loads

    Hansen, Hans Jakup; Thygesen, Ulf; Kristensen, Anders;


    Numerical methods for simulations of blast loads and resulting structural response are investigated and compared to results obtained from tests. The CFD code EXSIM is used for the simulation of the blast load. This code provides a load profile wich is entered in the FEM analysis model....

  18. A protein structure data and analysis system.

    Tian, Hao; Sunderraman, Rajshekhar; Weber, Irene; Wang, Haibin; Yang, Hong


    In this paper, we present the design and implementation of a protein structure data and analysis system that is only used in the lab for analyzing the proprietary data. It is capable of storing public protein data, such as the data in Protein Data Bank (PDB) [1], and life scientists' proprietary data. This toolkit is targeted at life scientists who want to maintain proprietary protein structure data (may be incomplete), to search and query publicly known protein structures and to compare their structure data with others. The comparison functions can be used to find structure differences between two proteins at atom level, especially in mutant versions of proteins. The system can also be used as a tool of choosing better protein structure template in new protein's tertiary structure prediction. The system is developed in Java and the protein data is stored in a relational database (Oracle 9i).

  19. Seismic analysis of nuclear power plant structures

    Go, J. C.


    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  20. Structural-Thermal-Optical-Performance (STOP) Analysis

    Bolognese, Jeffrey; Irish, Sandra


    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.

  1. Imaging a 3D geological structure from HEM, airborne magnetic and ground ERT data in Kalat-e-Reshm area, Iran

    Shirzaditabar, Farzad; Bastani, Mehrdad; Oskooi, Behrooz


    A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense. The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.

  2. Seismic interpretation of the sedimentation systems, structural geology and stratigraphic of the Chicxulub crater, carbonate platform of Yucatan, Mexico.

    Iza, Canales-Garcia; Jaime, Urrutia-Fucugauchi; Joaquin Eduardo, Aguayo-Camargo; Angel, Alatorre-Mendieta Miguel


    In order to describe the structural and stratigraphic features of the Chicxulub crater, was performed the present work of seismic interpretation, seismic attributes and generation of 3D surfaces. Load data it was performed in SEG-Y format, to display a total of 19 seismic reflection profiles were worked at domain time; the corresponding interpretation was carried out by separating five packages with textural differences, for this separation were used five horizons with seismic response representing the base of these packages, the correlation of horizons was made for all lines, creating composed lines so that all profiles were interpret together at intersections for form a grid. Multiple fault zones, were interpreted with the help of seismic attributes, like RMS amplitude, complex trace analysis, gradient of the trace and cosine phase. Was obtained the structural and stratigraphic interpretation , 3D models of the surfaces interpreted with which it is possible to observe the morphology of the base of the basin, it is controlled by the effect of the impact that formed the crater, has the features as a multi-ring crater. Shallower horizons shows that the topography of the base of the crater continues to affect the upper relief, which tends to be horizontal as it approaches the surface but is modeled by themselves sedimentary processes of the carbonate platform of Yucatán; packages below the base of the crater show the characteristics that own carbonated breccia, product the rupture of the material at impact, the material was deposited in a chaotic way, at this level we found the faults and fractures zone.

  3. Structural Vibration Monitoring Using Cumulative Spectral Analysis

    Satoru Goto


    Full Text Available This paper describes a resonance decay estimation for structural health monitoring in the presence of nonstationary vibrations. In structural health monitoring, the structure's frequency response and resonant decay characteristics are very important for understanding how the structure changes. Cumulative spectral analysis (CSA estimates the frequency decay by using the impulse response. However, measuring the impulse response of buildings is impractical due to the need to shake the building itself. In a previous study, we reported on system damping monitoring using cumulative harmonic analysis (CHA, which is based on CSA. The current study describes scale model experiments on estimating the hidden resonance decay under non-stationary noise conditions by using CSA for structural condition monitoring.

  4. Post-Neogene Structural Evolution:An Important Geological Stage in the Formation of Gas Reservoirs in China

    WANG Tingbin


    Tectonic movements since the Neogene have been the major developmental and evolutional stages of the latest global crustal deformation and orogenic movements. China is located in a triangular area bounded by the Indian landmass, the West Siberian landmass and the Pacific Plate, characterized by relatively active tectonic movements since the Neogene, and in this region, natural gas would have been very easy to dissipate, or difficult to preserve. Therefore, the characteristics of post-Neogene tectonic movements offer important geological factors in researching the formation and preservation of gas reservoirs in China. Summarizing the reservoiring history of gas fields in China, although there are some differences between various basins, they are all affected by the tectonic movements since the Neogene. These movements have certainly caused destruction to the reservoiring and distribution of natural gas in China, which has resulted in a certain dissipation of natural gas in some basins. As a whole, however, they have mainly promoted the reservoiring and accumulation of natural gas: (1) a series of China-type foreland basins have been formed between basins and ridges in western China, which provide favorable conditions for the formation of large and medium gas fields, as well as controlling the finalization of gas reservoirs in the basins; (2) rows and belts of anticlines have been formed in the Sichuan Basin in central China, which have been the major stages of the formation and finalization of gas reservoirs in that basin; the integral and quick rising and lifting, and a further west-dipping in the Ordos Basin have resulted in a further accumulation of natural gas in gas fields from Jingbian to Uxin; (3) in eastem China, the Bohai movement in the late Pliocene has provided favorable geological conditions for lately-formed gas reservoirs in the Bohai Sea area mainly composed of the Bozhong depression; and it also resulted in secondary hydrocarbon generation and

  5. Advanced analysis for structural steel building design

    Wai Fah CHEN


    The 2005 AISC LRFD Specifications for Structural Steel Buildings are making it possible for designers to recognize explicitly the structural resistance provided within the elastic and inelastic ranges of beha-vior and up to the maximum load limit state. There is an increasing awareness of the need for practical second-order analysis approaches for a direct determination of overall structural system response. This paper attempts to present a simple, concise and reasonably comprehens-ive introduction to some of the theoretical and practical approaches which have been used in the traditional and modern processes of design of steel building structures.

  6. 和龙市常见地质灾害简析%The common geological hazard analysis in Helong city

    蓝辛伟; 权赫春; 李明玉


    对吉林省和龙市的滑坡、泥石流和崩塌等主要地质灾害进行了研究,结合搜集到的历史上发生地质灾害的资料,分析了导致该区域这三种地质灾害发生的各项因素,并针对和龙市的地质灾害防治提出了一些建设性的意见。%The paper studies major geological disasters of Helong city in Jilin province including landslide,debris flow and collapse,combines with historical geological disasters,analyzes factors leading to three kinds of geological disasters,and finally puts forward some suggestions in light of geological disasters prevention in Helong city.

  7. Prediction of the Vistula Channel Development Between Wloclawek and Torun: Evaluation with Regard to the New Geological Survey

    Babiński Zygmunt


    Full Text Available The aim of this paper is to present the geological structure of the Vistula river valley floor as the modifying factor of fluvial processes and present the development conditions of the contemporary Vistula river channel, which underwent marked transformation due to bed erosion and lateral erosion below the Włocławek reservoir. The analysis of the geological data and the geological survey conducted at the study reach of the Vistula between Włocławek and Toruń resulted in an image of the geological structure of the channel bed along the longitudinal profile

  8. Hydrogeologic framework and geologic structure of the Floridan aquifer system and intermediate confining unit in the Lake Okeechobee area, Florida

    Reese, Ronald S.


    The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.


    Slobodan Šestanović


    Full Text Available In order to design the by-pass road of the city of Omiš which will partially he founded on the landslide Mlija and for the safety of foundations of houses, detail subsurface exploration especially engineering-geological surveys, geophysical surveys, boring and laboratory tests of the sliding material were conducted. Obtained results are presented in this paper. Due to numerous damages of roads, walls and houses built in the area of Mlija and Borak, the possibility of construction in the area was discussed and the foundation method proposed. In order to obtain an overview of circumstances, constant monitoring of variations of the water table level and velocity of the moving material has been proposed.


    Suarez-Plascencia, C.; Delgado-Argote, L. A.; Nunez-Cornu, F. J.


    The Metropolitan Area of Guadalajara (MAG) was built over pumice deposits generated during Quaternary activity in the Sierra la Primavera, that covered a thick sequence of basaltic, dacitic, rhyolitic lava flows, ignimbrites and fluvial-lacustrine deposits. The most complete stratigraphic section is observed in different sections of the Rio Grande de Santiago cliff, located north of the city. Five distinctive geoforms were identified: 1) the cliff of the Rio Grande de Santiago (CRGS) is a tectonic erosive depression with average depth of 500 m and 3.5 km width. Structurally, in the San Gaspar zone, south of the union of Verde river with Santiago river, we identified normal faults with left-lateral motion and oriented 191°/89° on basaltic lavas. In the Colimilla dam, 1297 meters above sea level, we observed lateral faulting with normal component (267°/81°) where jumps as high as 30 m were observed. Lava flows are sheared parallel to the Verde river. In the Puente Arcediano zone, where the base of the sequence is apparent, faults have a dominant orientation of 188°/75° on andesitic flows, whereas on pumice ignimbrites they show a shearing with a direction of 92°/84° parallel to the Verde river. 2) The Sierra la Primavera, to the southwest of MAG is a caldera formed by a series of domes, flows, and pyroclastic deposits with rhyolitic composition. 3) The southern Guadalajara volcanic chain system, which is formed by several volcanic cones and flows of basaltic-andesitic composition and Plio-Pleistocene age, oriented NW-SE, developed over the San Gaspar ignimbrite (4.8 m.a.). 4) Los Colomos and Alcalde-Barranquitas cliff system, which form dendrite networks developed on pumice deposits, where most of the cliffs were deep and narrow. The origin of the cliffs might be associated with observed faults or fracture zones in the CRGS. 5) Wavy plains of Atemajac and Tesistán valleys, which are characterized by hills and wide plains. The system of cliffs controlled the

  11. iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures

    Maerten, F.; Maerten, L.; Pollard, D. D.


    Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope

  12. Consecutive Short-Scan CT for Geological Structure Analog Models with Large Size on In-Situ Stage

    Yang, Min; Zhang, Wen; Wu, Xiaojun; Wei, Dongtao; Zhao, Yixin; Zhao, Gang; Han, Xu; Zhang, Shunli


    For the analysis of interior geometry and property changes of a large-sized analog model during a loading or other medium (water or oil) injection process with a non-destructive way, a consecutive X-ray computed tomography (XCT) short-scan method is developed to realize an in-situ tomography imaging. With this method, the X-ray tube and detector rotate 270° around the center of the guide rail synchronously by switching positive and negative directions alternately on the way of translation until all the needed cross-sectional slices are obtained. Compared with traditional industrial XCTs, this method well solves the winding problems of high voltage cables and oil cooling service pipes during the course of rotation, also promotes the convenience of the installation of high voltage generator and cooling system. Furthermore, hardware costs are also significantly decreased. This kind of scanner has higher spatial resolution and penetrating ability than medical XCTs. To obtain an effective sinogram which matches rotation angles accurately, a structural similarity based method is applied to elimination of invalid projection data which do not contribute to the image reconstruction. Finally, on the basis of geometrical symmetry property of fan-beam CT scanning, a whole sinogram filling a full 360° range is produced and a standard filtered back-projection (FBP) algorithm is performed to reconstruct artifacts-free images. PMID:27537104



    <正>20091943 Cao Zubao(Xi’an Branch of China Coal Research Institute,Xi’an 710054,China);Zhu Mingcheng Application of Pipe-Roof Curtain Grouting in Construction of Coal Mine Tunnel Crossing the Fractured Zone(Exploration Engineering,ISSN1672-7428,CN11-5063/TD,35(8),2008,p.79-81,3 illus.,4 refs.,with English abstract)Key words:curtain grouting20091944 Chen Changfu(Civil Engineering College,Hunan University,Changsha 410082,China);Xiao Shujun Application of Weighted Residual Method in Whole Internal Force Calculation of Anti-Slide Pile(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(4),2008,p.75-79,3 illus.,9 refs.)Key words:slide-resistant



    <正>20091993 Cao Wei(Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou 730000,China);Sheng Yu Grey Relation Projection Model for the Assessment of Permafrost Environment in Coal Mining Areas(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(4),2008,p.111-115,2 tables,15 refs.)Key words:miming,frozen ground,environment impact statementsDue to the intense effect of coal mining activity on permafrost,the permafrost environment in coal mining areas is very frail.It is very important to assess the permafrost environment in coal mining areas.The permafrost environment is

  15. Rock Physics Analysis for the Characterization of the Geological CO2 Storage Prospect in Southwestern Ulleung Basin, Korea

    Min, G.; Han, J.; Lee, M.; Keehm, Y.


    We performed rock physical analysis for the characterization of the CO2 storage site in Ulleung basin, Korea. We obtained the characteristics of target formation from the previous work, which contains comprehensive analyses on key horizons and stratigraphy. After verifying the previous work with well-log data, we performed rock physics modeling to obtain the interrelations between reservoir properties and seismic property for key units, such as shale volume-impedance and porosity-impedance relations. We applied the relations to inverted acoustic impedance from 3D seismic data, and obtained 3D distribution maps for shale volume and porosity. We found around 10-meter-thick cap rock unit (Unit 2-3) and two reservoir units (Unit 3-1 & 3-2) with thickness of a few hundred meters. Unit 2-3 has consistently high shale volume throughout the study area, which implies that it can be a good cap rock. Unit 3-1 and 3-2 seem to be good reservoir layers and their average sand thicknesses are 60 m and 150 m, respectively. From this preliminary analysis, the pore volume of the sand intervals of two reservoirs units is estimated to be 20 billion cubic meters. If we assume that one percent of sand pore volume can be replaced by injected CO2, the injectable amount of CO2 would be 136 million metric tonne. Acknowledgements: This work was supported by "Development of Technology for CO2 Marine Geological Storage" funded by the Ministry of Oceans and Fisheries, Korea (No. 20052004), and "Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant" funded by the Ministry of Trade, Industry & energy (No. 20132010201760).

  16. Synthetic geology - Exploring the "what if?" in geology

    Klump, J. F.; Robertson, J.


    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  17. Regional surface melt constrained from exposed strata on the Greenland ice sheet using structural geology, satellite imagery and IcePod data.

    Tinto, K. J.; Bell, R. E.; Porter, D. F.; Das, I.; Frearson, N.; Bertinato, C.; Boghosian, A.; Chu, W.; Creyts, T. T.; Dhakal, T.; Dong, L.; Starke, S. E.


    strata. By combining satellite and airborne observations we demonstrate that the apparent displacement of the exposed strata documents the increased surface melt over the last three decades. Integrating structural geology into the surface mass balance analysis provides unique insights into the spatial variability of melt across the region.

  18. Dynamic Analysis of Structures Using Neural Networks

    N. Ahmadi


    Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.

  19. Analysis of flexible structures under lateral impact

    Ramirez, D. F. [Paul C. Kizzo and Associates Inc., Seismic Structural Group, Oakland, CA 94612 (United States); Razavi, H. [AREVA Inc., Civil Seismic Group, San Jose, CA 95119 (United States)


    Three methods for analysis of flexible structures under lateral impact are presented. The first proposed method (Method A) consists of: (1) modifying an available deceleration on a rigid target with conservation principles to account for structural flexibility; and (2) transient nonlinear analysis of the structure with the corrected forcing function. The second proposed method (Method B) is similar to Method A in obtaining the forcing function but it solves the equations of motion of an idealized two-degree-of-freedom system instead of directly using conservation principles. The last method simply provides the maximum force in the structure using the conservation of energy and linear momentum. A coupled simulation is also performed in LS-DYNA and compared against the proposed methods. A case study is presented to illustrate the applicability of all three methods and the LS-DYNA simulation. (authors)

  20. Object-Oriented Analysis, Structured Analysis, and Jackson System Development

    Wieringa, R.J.; Van Assche, F.; Moulin, B.; Rolland, C.


    Conceptual modeling is the activity of producing a conceptual model of an actual or desired version of a universe of discourse (UoD). In this paper, two methods of conceptual modeling are compared, structured analysis (SA) and object-oriented analysis (OOA). This is done by transforming a model prod

  1. Application of geologic-mathematical 3D modeling for complex structure deposits by the example of Lower- Cretaceous period depositions in Western Ust - Balykh oil field (Khanty-Mansiysk Autonomous District)

    Perevertailo, T.; Nedolivko, N.; Prisyazhnyuk, O.; Dolgaya, T.


    The complex structure of the Lower-Cretaceous formation by the example of the reservoir BC101 in Western Ust - Balykh Oil Field (Khanty-Mansiysk Autonomous District) has been studied. Reservoir range relationships have been identified. 3D geologic- mathematical modeling technique considering the heterogeneity and variability of a natural reservoir structure has been suggested. To improve the deposit geological structure integrity methods of mathematical statistics were applied, which, in its turn, made it possible to obtain equal probability models with similar input data and to consider the formation conditions of reservoir rocks and cap rocks.

  2. Using geologic conditions and multiattribute decision analysis to determine the relative favorability of selected areas for siting a high-level radioactive waste repository

    Harrison, W.; Edgar, D.E.; Baker, C.H.; Buehring, W.A.; Whitfield, R.G.; Van Luik, A.E.J.; Sood, M.K.; Flower, M.F.J.; Warren, M.F.; Jusko, M.J.; Peerenboom, J.P.; Bogner, J.E.


    A method is presented for determining the relative favorability of geologically complex areas for isolating high-level radioactive wastes. In applying the method to the northeastern region of the United States, seismicity and tectonic activity were the screening criteria used to divide the region into three areas of increasing seismotectonic risk. Criteria were then used to subdivide the area of lowest seismotectonic risk into six geologically distinct subareas including characteristics, surface-water and groundwater hydrology, potential human intrusion, site geometry, surface characteristics, and tectonic environment. Decision analysis was then used to identify the subareas most favorable from a geologic standpoint for further investigation, with a view to selecting a site for a repository. Three subareas (parts of northeastern Vermont, northern New Hampshire, and western Maine) were found to be the most favorable, using this method and existing data. However, because this study assessed relative geologic favorability, no conclusions should be drawn concerning the absolute suitability of individual subareas for high-level radioactive waste isolation. 34 refs., 7 figs., 20 tabs.

  3. Advancements in 3D Structural Analysis of Geothermal Systems

    Siler, Drew L [Nevada Bureau of Mines and Geology, University of Nevada, Reno; Faulds, James E [Nevada Bureau of Mines and Geology, University of Nevada, Reno; Mayhew, Brett [Nevada Bureau of Mines and Geology, University of Nevada, Reno; McNamara, David [Department of Geothermal Science, GNS Science, NZ


    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  4. Data structures and algorithm analysis in Java

    Shaffer, Clifford A


    With its focus on creating efficient data structures and algorithms, this comprehensive text helps readers understand how to select or design the tools that will best solve specific problems. It uses Java as the programming language and is suitable for second-year data structure courses and computer science courses in algorithm analysis. Techniques for representing data are presented within the context of assessing costs and benefits, promoting an understanding of the principles of algorithm analysis and the effects of a chosen physical medium. The text also explores tradeoff issues, familiari

  5. Data structures and algorithm analysis in C++

    Shaffer, Clifford A


    With its focus on creating efficient data structures and algorithms, this comprehensive text helps readers understand how to select or design the tools that will best solve specific problems. It uses Microsoft C++ as the programming language and is suitable for second-year data structure courses and computer science courses in algorithm analysis.Techniques for representing data are presented within the context of assessing costs and benefits, promoting an understanding of the principles of algorithm analysis and the effects of a chosen physical medium. The text also explores tradeoff issues, f

  6. On the structural analysis of textile composites

    Bogdanovich, Alexander E.; Pastore, Christopher M.

    The local structural inhomogeneities which distinguish textile composites from laminated materials are discussed. Techniques for quantifying these inhomogeneities through three dimensional geometric modelling are introduced and methods of translating them into elastic properties are presented. Some basic ideas on application of spline functions to the stress field analysis in textile composites are proposed. The significance of internal continuity conditions for these materials is emphasized. Several analytical techniques based on the concept of a meso-volume are discussed. An example is presented to demonstrate the application of the method to structural analysis of textile composites.

  7. An appraisal of the geologic structure beneath the Ikogosi warm spring in south-western Nigeria using integrated surface geophysical methods

    J.S Ojo


    Full Text Available An integrated surface geophysical investigation involving resistivity and magnetic methods was carried out in the immediate vicinity of the Ikogosi warm spring situated in south-western Nigeria with a view to delineating its subsurface geological sequence and evaluating the structural setting beneath the warmspring. Total field magnetic measurements and vertical electrical sounding (VES data were acquired along five N-S traverses. Magnetic and VES data interpretation
    involved inverse modelling. The inverse magnetic models delineated fractured quartzite/faulted areas within fresh massive quartzite at varying depths and beneath all traverses. The geoelectrical sections developed from VESinterpretation results also delineated a subsurface sequence consisting of a topsoil/weathered layer, fresh quartzite, fractured/faulted quartzite and fresh quartzite bedrock. It was deduced that the fractured/faulted quartzite may have acted as conduit for the
    movement of warm groundwater from profound depths to the surface while the spring outlet was located on a geological interface  (lineament.

  8. Sedimentary basins of the republic of Yemen: Their structural evolution and geological characteristics; Evolution structurelle et caracteristiques geologiques des bassins sedimentaires de la republique du Yemen

    Beydoun, Z.R. [University of Beirut (United States); As-Saruri, M.L; Baraba, R.S.


    The distribution and evolution of the sedimentary basins of Yemen was, until recently, poorly understood as this was based entirely on surface geology and correlations of the older stratigraphic units which were exposed only in deeply dissected bordering uplifts of the Gulf of Aden and Red Sea or the high plateau of the north west. The discovery of commercial oil and gas in several interior Mesozoic rift basins of Yemen in the late 1980`s and in the early 1990`s, spurred many oil companies to enter the exploration race and carry out detailed seismic surveys and intensive exploration drilling in many areas. This resulted in a rapid rise in overall new subsurface geological data acquisition and an increasingly clear perception of the distribution, orientation and inception times of the main basins. No overall synthesis of results was, however, undertaken. Recent studies involving the review, correlation and synthesis of the mass of new subsurface stratigraphic data in connection with standardisation of lithostratigraphic nomenclature in use in Yemen and its further formalization in accordance with internationally accepted rules, have, perforce, required the establishment of an overall structural framework within which inter and intra-basin stratigraphic correlation could be carried out. It is this new framework of depositional basins and inter-basin uplifts that is discussed here. (authors) 37 refs.

  9. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    Qian Wang


    Full Text Available Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF. SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.

  10. Earthquake-induced soft-sediment deformation structures in the Mesoproterozoic Wumishan Formation,North China,and their geologic implications


    Soft-sediment structures are key to defining seismites. Two soft-sediment deformation horizons, bounded by undeformed carbonate strata, have been found in the Wumishan Formation in the Jumahe region, 175 km southwest of Beijing. One is in the lowest part of Wumishan Formation; and the other is in the uppermost part of Litho-member I. The soft-sediment structures in these two horizons fall into three categories: mould-and-sag structures, hydraulic shatterings and liquefaction dikes. The mould-and-sag structures are divided into two types: one developed in tidal-flat sediments, accompa-nied by many liquefaction-related structures and characterized by autochthonous post-earthquake sediments in sags, and the other type developed in deep-water environments, is not associated with liquefaction structures, and is overlain immediately by seismogenic tsunamites. The hydraulic shat-terings are composed of pockets of fluidization conglomerate, sand intrusions, and syndepositional faults. The liquefaction dikes fall into two categories: hydraulic-fracturing dikes and lateral-spreading dikes. The former are steep, planar, and pinch out upwards. The latter are snake-like and characterized by no diapir-related drag structures in surrounding rocks. Examination of the attitudes and strati-graphic positions of these structures suggests that these soft-sediment structures are seismogenic, and consequently, are seismites. Most seismites in the Wumishan Formation are developed near the former western, margin fault of Yanliao rift. This occurrence suggests that they could be related to movements on this fault. Other geological implications are discussed.

  11. Latest development in seismic texture analysis for subsurface structure, facies, and reservoir characterization: A review

    Gao, Dengliang


    In exploration geology and geophysics, seismic texture is still a developing concept that has not been sufficiently known, although quite a number of different algorithms have been published in the literature. This paper provides a review of the seismic texture concepts and methodologies, focusing on latest developments in seismic amplitude texture analysis, with particular reference to the gray level co-occurrence matrix (GLCM) and the texture model regression (TMR) methods. The GLCM method evaluates spatial arrangements of amplitude samples within an analysis window using a matrix (a two-dimensional histogram) of amplitude co-occurrence. The matrix is then transformed into a suite of texture attributes, such as homogeneity, contrast, and randomness, which provide the basis for seismic facies classification. The TMR method uses a texture model as reference to discriminate among seismic features based on a linear, least-squares regression analysis between the model and the data within an analysis window. By implementing customized texture model schemes, the TMR algorithm has the flexibility to characterize subsurface geology for different purposes. A texture model with a constant phase is effective at enhancing the visibility of seismic structural fabrics, a texture model with a variable phase is helpful for visualizing seismic facies, and a texture model with variable amplitude, frequency, and size is instrumental in calibrating seismic to reservoir properties. Preliminary test case studies in the very recent past have indicated that the latest developments in seismic texture analysis have added to the existing amplitude interpretation theories and methodologies. These and future developments in seismic texture theory and methodologies will hopefully lead to a better understanding of the geologic implications of the seismic texture concept and to an improved geologic interpretation of reflection seismic amplitude

  12. Old Geology and New Geology


    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Value of Information Analysis in Structural Safety

    Konakli, Katerina; Faber, Michael Havbro


    Pre-posterior analysis can be used to assess the potential of an experiment to enhance decision making by providing information on parameters characterized by uncertainty. The present paper describes a framework for pre-posterior analysis for support of decisions related to maintenance of structu......Pre-posterior analysis can be used to assess the potential of an experiment to enhance decision making by providing information on parameters characterized by uncertainty. The present paper describes a framework for pre-posterior analysis for support of decisions related to maintenance...... of structural systems. In this context, experiments may refer to inspections or techniques of structural health monitoring. The Value of Information concept provides a powerful tool for determining whether the experimental cost is justified by the expected benefit and for identifying the optimal among different...

  14. RNA Secondary Structure Analysis Using RNAstructure.

    Mathews, David H


    RNAstructure is a user-friendly program for the prediction and analysis of RNA secondary structure. It is available as a Web server, as a program with a graphical user interface, or as a set of command-line tools. The programs are available for Microsoft Windows, Macintosh OS X, or Linux. This unit provides protocols for RNA secondary structure prediction (using the Web server or the graphical user interface) and prediction of high-affinity oligonucleotide biding sites to a structured RNA target (using the graphical user interface).

  15. Improving transient analysis technology for aircraft structures

    Melosh, R. J.; Chargin, Mladen


    Aircraft dynamic analyses are demanding of computer simulation capabilities. The modeling complexities of semi-monocoque construction, irregular geometry, high-performance materials, and high-accuracy analysis are present. At issue are the safety of the passengers and the integrity of the structure for a wide variety of flight-operating and emergency conditions. The technology which supports engineering of aircraft structures using computer simulation is examined. Available computer support is briefly described and improvement of accuracy and efficiency are recommended. Improved accuracy of simulation will lead to a more economical structure. Improved efficiency will result in lowering development time and expense.

  16. Entity Authentication:Analysis using Structured Intuition

    Ahmed, Naveed; Jensen, Christian D.


    In this paper, we propose a new method for the analysis that uses intuition of the analyst in a structured way. First we define entity authentication in terms of fine level authentication goals (FLAGs). Then we use some relevant structures in protocol narrations and use them to justify FLAGs...... for the protocol. All along this process, we discover vulnerabilities and unstated assumptions of the protocol. As the method is intuition based, the quality of results depends on the expertise of the security analyst, however, the structured intuition has two major advantages: Firstly we get a precise...

  17. Integrating Geologic, Geochemical and Geophysical Data in a Statistical Analysis of Geothermal Resource Probability across the State of Hawaii

    Lautze, N. C.; Ito, G.; Thomas, D. M.; Hinz, N.; Frazer, L. N.; Waller, D.


    Hawaii offers the opportunity to gain knowledge and develop geothermal energy on the only oceanic hotspot in the U.S. As a remote island state, Hawaii is more dependent on imported fossil fuel than any other state in the U.S., and energy prices are 3 to 4 times higher than the national average. The only proven resource, located on Hawaii Island's active Kilauea volcano, is a region of high geologic risk; other regions of probable resource exist but lack adequate assessment. The last comprehensive statewide geothermal assessment occurred in 1983 and found a potential resource on all islands (Hawaii Institute of Geophysics, 1983). Phase 1 of a Department of Energy funded project to assess the probability of geothermal resource potential statewide in Hawaii was recently completed. The execution of this project was divided into three main tasks: (1) compile all historical and current data for Hawaii that is relevant to geothermal resources into a single Geographic Information System (GIS) project; (2) analyze and rank these datasets in terms of their relevance to the three primary properties of a viable geothermal resource: heat (H), fluid (F), and permeability (P); and (3) develop and apply a Bayesian statistical method to incorporate the ranks and produce probability models that map out Hawaii's geothermal resource potential. Here, we summarize the project methodology and present maps that highlight both high prospect areas as well as areas that lack enough data to make an adequate assessment. We suggest a path for future exploration activities in Hawaii, and discuss how this method of analysis can be adapted to other regions and other types of resources. The figure below shows multiple layers of GIS data for Hawaii Island. Color shades indicate crustal density anomalies produced from inversions of gravity (Flinders et al. 2013). Superimposed on this are mapped calderas, rift zones, volcanic cones, and faults (following Sherrod et al., 2007). These features were used



    <正>20111053 Chen Jian(School of Earth and Environment,Anhui University of Science and Technology,Huainan 232001,China);Liu Wenzhong Organic Affinity of Trace Elements in Coal from No.10 Coal-Bed at Western Huagou,Guoyang(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(4),2010,p.16-20,24,3 illus.,3 tables,19 refs.)Key words:coal,minor elements,Anhui Province In order to study the organic affinity of trace elements in coal from No.10 coal-bed at western Huagou,Guoyang,10 borehole samples were collected at exploration area of Huaibei mining area.The contents of 12 kinds of trace elements were determined by the inductively coupled plasma mass spectrometry(ICP-MS),the total organic carbon(TOC)of coal was determined by LECO carbon and sulfur analyzer,and the organic affinity of trace elements were deduced from the correlations between contents and TOCs.The results showed that the contents of V,Cr,Co,Ni,Mo,Cd,Sb,Pb and Zn were lower than



    <正>20110957 Bai Jingru(Engineering Research Centre of Ministry of Education for Comprehensive Utilization of Oil Shale,Northeast Dianli University,Jilin 132012,China);Wang Qing Basic Physicochemical Characteristics of the Huadian Oil Shale Semi-Cokes(Journal of Jilin University,ISSN1671-5888,CN22-1343/P,40(4),2010,p.905-911,5 illus.,8 tables,10 refs.,with English abstract)Key words:oil shale,Jilin Province20110958 Chen Jingyi(Faculty of Resources and Information Technology,China University of Petroleum,Beijing 102249,China);Wang Feiyu Maturity and Genetic Type of Crude Oils in Qikou Sag,Bohai Bay Basin(Xinjiang Petroleum Geology,ISSN1001-3873,CN65-1107/TE,31(3),2010,p.242-244,7 illus.,4 refs.)Key words:crude oil,Bohaiwan Basin Qikou sag is one of the rich-oil areas in Bohai Bay Basin,in which three sets of lacustrine source rocks developed in Tertiary and Paleozoic reservoirs.The geochemical analyses of 59 crude oil and 102 source rock samples from Qikou sag show that the crude oils in Qikou sag belong to mature oil,combined with the biomarkers of n-alkanes,steroid and terpenoid as well as light hydrocarbons index,

  20. Fault Geometry and Active Stress from Earthquakes and Field Geology Data Analysis: The Colfiorito 1997 and L'Aquila 2009 Cases (Central Italy)

    Ferrarini, F.; Lavecchia, G.; de Nardis, R.; Brozzetti, F.


    The fault segmentation pattern and the regional stress tensor acting since the Early Quaternary in the intra-Apennine area of central Italy was constrained by integrating two large geological and seismological fault-slip data sets collected for the areas struck by the two most energetic seismic sequences of the last 15 years (Colfiorito 1997, M w 6.0 and L'Aquila 2009, M w 6.1). The integrated analysis of the earthquake fault association and the reconstruction of the 3D shape of the seismogenic sources were exploited to identify homogeneous seismogenic volumes associated with subsets of geological and focal mechanism data. The independent analysis of geological and seismological data allowed us to observe and highlight similarities between the attitude of the long-term (e.g., Quaternary) and the instantaneous present-day (seismogenic) extensional deformations and to reveal their substantial coaxiality. Coherently, with the results from the kinematic analysis, the stress field inversion also noted a prevailing tensional seismotectonic regime associated with a subhorizontal, NE-SW, minimum stress axis. A minor, very local, and shallow (L'Aquila area. These results do not agree with those indicating Quaternary regional strike-slip regimes or wide areas characterized by strike-slip deformation during the Colfiorito and L'Aquila seismic sequences.