WorldWideScience

Sample records for geologic stratigraphic units

  1. Characteristics of Chinese petroleum geology. Geological features and exploration cases of stratigraphic, foreland and deep formation traps

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chengzao [PetroChina Company Limited, Beijing (China)

    2012-07-01

    The first book of this subject in the recent 10 years. ''Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep Formation Traps'' systematically presents the progress made in petroleum geology in China and highlights the latest advances and achievements in oil/gas exploration and research, especially in stratigraphic, foreland and deep formation traps. The book is intended for researchers, practitioners and students working in petroleum geology, and is also an authoritative reference work for foreign petroleum exploration experts who want to learn more about this field in China.

  2. Some debatable problems of stratigraphic classification

    Science.gov (United States)

    Gladenkov, Yury

    2014-05-01

    Russian geologists perform large-scale geological mapping in Russia and abroad. Therefore we urge unification of legends of geological maps compiled in different countries. It seems important to continuously organize discussions on problems of stratigraphic classification. 1. The stratigraphic schools (conventionally called "European" and "American") define "stratigraphy" in different ways. The former prefers "single" stratigraphy that uses data proved by many methods. The latter divides stratigraphy into several independent stratigraphers (litho-, bio-, magneto- and others). Russian geologists classify stratigraphic units into general (chronostratigraphic) and special (in accordance with a method applied). 2. There exist different interpretations of chronostratigraphy. Some stratigraphers suppose that a chronostratigraphic unit corresponds to rock strata formed during a certain time interval (it is somewhat formalistic because a length of interval is frequently unspecified). Russian specialists emphasize the historical-geological background of chronostratigraphic units. Every stratigraphic unit (global and regional) reflects a stage of geological evolution of biosphere and stratisphere. 3. In the view of Russian stratigraphers, the main stratigraphic units may have different extent: a) global (stage), b) regional (regional stage,local zone), and c) local (suite). There is no such hierarchy in the ISG. 4. Russian specialists think that local "lithostratigraphic" units (formations) which may have diachronous boundaries are not chronostratigraphic ones in strict sense (actually they are lithological bodies). In this case "lithostratigraphy" can be considered as "prostratigraphy" and employed in initial studies of sequences. Therefore, a suite is a main local unit of the Russian Code and differs from a formation, although it is somewhat similar. It does not mean that lithostratigraphy is unnecessary. Usage of marker horizons, members and other bodies is of great help

  3. Uncertainty management in stratigraphic well correlation and stratigraphic architectures: A training-based method

    Science.gov (United States)

    Edwards, Jonathan; Lallier, Florent; Caumon, Guillaume; Carpentier, Cédric

    2018-02-01

    We discuss the sampling and the volumetric impact of stratigraphic correlation uncertainties in basins and reservoirs. From an input set of wells, we evaluate the probability for two stratigraphic units to be associated using an analog stratigraphic model. In the presence of multiple wells, this method sequentially updates a stratigraphic column defining the stratigraphic layering for each possible set of realizations. The resulting correlations are then used to create stratigraphic grids in three dimensions. We apply this method on a set of synthetic wells sampling a forward stratigraphic model built with Dionisos. To perform cross-validation of the method, we introduce a distance comparing the relative geological time of two models for each geographic position, and we compare the models in terms of volumes. Results show the ability of the method to automatically generate stratigraphic correlation scenarios, and also highlight some challenges when sampling stratigraphic uncertainties from multiple wells.

  4. The use of handheld radiometry for the identification of stratigraphic characteristics of Paraiba Basin units

    International Nuclear Information System (INIS)

    Souza, Ebenezer Moreno de; Villar, Heldio Pereira; Lima, Ricardo de Andrade; Lima Filho, Mario

    2000-01-01

    A study on the use of radiometric techniques for the identification of stratigraphic characteristics of Paraiba Basin units was carried out with handheld instrumentation. The area chosen ran from north Pernambuco to south Paraiba. The presence of radioactive material had been previously determined. For this work a portable scintillometer was fixed to the door of a vehicle, on the outside, with the probe directed downwards. Background radiation was measured as 40 cps (counts per second). The scintillometer has an alarm which sounds whenever the measured count rate rises above a pre-established figure, 100 cps in the present case. Monitoring then proceeded manually. In sites where the count rate was much higher than 100 cps, the probe was lowered to the soil surface. Local coordinates were obtained by GPS. Therefore, an isoradioactivity map of the area could be drawn. The comparison between this map and local geological charts showed significant correlation between observed count rates and geologic formations. Low count rates were indicative of the Barreiras formation, whereas the highest rates were obtained for the Gramame formation (with urano-phosphatic lythotypes). It is concluded that handheld radiometry is a useful tool in geological charting, is special in areas where stratigraphic units have been masked by environmental changes and human activities. (author)

  5. Geologic, stratigraphic, thermal, and mechanical factors which influence repository design in the bedded salt environment

    International Nuclear Information System (INIS)

    Ashby, J.P.; Nair, O.; Ortman, D.; Rowe, J.

    1979-12-01

    This report describes the geologic, stratigraphic, thermal, and mechanical considerations applicable to repository design. The topics discussed in the report include: tectonic activity; geologic structure; stratigraphy; rock mechanical properties; and hydrologic properties

  6. OWL representation of the geologic timescale implementing stratigraphic best practice

    Science.gov (United States)

    Cox, S. J.

    2011-12-01

    The geologic timescale is a cornerstone of the earth sciences. Versions are available from many sources, with the following being of particular interest: (i) The official International Stratigraphic Chart (ISC) is maintained by the International Commission for Stratigraphy (ICS), following principles developed over the last 40 years. ICS provides the data underlying the chart as part of a specialized software package, and the chart itself as a PDF using the standard colours; (ii) ITC Enschede has developed a representation of the timescale as a thesaurus in SKOS, used in a Web Map Service delivery system; (iii) JPL's SWEET ontology includes a geologic timescale. This takes full advantage of the capabilities of OWL. However, each of these has limitations - The ISC falls down because of incompatibility with web technologies; - While SKOS supports multilingual labelling, SKOS does not adequately support timescale semantics, in particular since it does not include ordering relationships; - The SWEET version (as of version 2) is not fully aligned to the model used by ICS, in particular not recognizing the role of the Global Boundary Stratotype Sections and Point (GSSP). Furthermore, it is distributed as static documents, rather than through a dynamic API using SPARQL. The representation presented in this paper overcomes all of these limitations as follows: - the timescale model is formulated as an OWL ontology - the ontology is directly derived from the UML representation of the ICS best practice proposed by Cox & Richard [2005], and subsequently included as the Geologic Timescale package in GeoSciML (http://www.geosciml.org); this includes links to GSSPs as per the ICS process - key properties in the ontology are also asserted to be subProperties of SKOS properties (topConcept and broader/narrower relations) in order to support SKOS-based queries; SKOS labelling is used to support multi-lingual naming and synonyms - the International Stratigraphic Chart is implemented

  7. Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound

    Science.gov (United States)

    Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.

    1996-01-01

    During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.

  8. Subsurface geology of the Lusi region: preliminary results from a comprehensive seismic-stratigraphic study.

    Science.gov (United States)

    Moscariello, Andrea; Do Couto, Damien; Lupi, Matteo; Mazzini, Adriano

    2016-04-01

    We investigate the subsurface data of a large sector in the Sidoarjo district (East Java, Indonesia) where the sudden catastrophic Lusi eruption started the 26th May 2006. Our goal is to understand the stratigraphic and structural features which can be genetically related to the surface manifestations of deep hydrothermal fluids and thus allow us to predict possible future similar phenomena in the region. In the framework of the Lusi Lab project (ERC grant n° 308126) we examined a series of densely spaced 2D reflection commercial seismic lines This allowed the reconstruction of the lateral variability of key stratigraphic horizons as well as the main tectonic features. In particular, we shed light on the deep structure of the Watukosek fault system and the associated fracture corridors crossing the entire stratigraphic successions. To the South-West, when approaching the volcanic complex, we could identify a clear contrast in seismic facies between chaotic volcanoclastic wedges and clastic-prone sedimentary successions as well as between the deeper stratigraphic units consisting of carbonates and lateral shales units. The latter show possible ductile deformation associated to fault-controlled diapirism which control in turns deformation of overlying stratigraphic units and deep geo-fluids circulation. Large collapse structures recognized in the study area (e.g. well PRG-1) are interpreted as the results of shale movement at depth. Similarly to Lusi, vertical deformation zones ("pipes"), likely associated with deeply rooted strike-slip systems seem to be often located at the interface between harder carbonate rocks forming isolated build ups and the laterally nearby clastic (shale-prone)-units. The mechanisms of deformation of structural features (strike vs dip slip systems) which may affect either the basement rock or the overlying deeper stratigraphic rocks is also being investigated to understand the relationship between deep and shallower (i.e. meteoric) fluid

  9. CORRELATIONS OF THERMAL CONDUCTIVITY BETWEEN STRATIGRAPHIC UNITS IN THE BROADER AREA OF ZAGREB

    Directory of Open Access Journals (Sweden)

    Miron Kovačić

    2007-12-01

    Full Text Available Thermal conductivity (KTV of geological formations is one of the parameters responsible for the propagation of the heat under the earth surface. During geothermal investigations in the broader area of the Croatian capital of Zagreb the thermal conductivity was measured on the rock samples from the surface and the boreholes. The results of the measurements are presented in this work and used as a basis for calculations of the thermal conductivity of distinct geological formations within the investigated area. It was found out that the values of the thermal conductivity of the rocks in the investigated area vary greatly. The measurements are within the well known scope for certain rock types. The thermal conductivity of the rocks from the Tertiary units corresponds with the average values being typical for such kind of rocks, while the basement carbonate rocks are characterized by the values being by 1 W/K-1m-1 higher than the average. After comparing the thermal conductivity of the stratigraphic units in the broader area of Zagreb it has been established that the values of the thermal conductivity of geological formations in the investigated area are also very different, and that they generally rise with their age. The relative relationships show that the Quaternary, Pliocene and Tertiary sedimentary rocks act as thermal insulators, while Triassic rocks behave as the heat conductor (the paper is published in Croatian.

  10. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  11. Revised Cretaceous and Tertiary stratigraphic nomenclature in the Colville Basin, Northern Alaska

    Science.gov (United States)

    Mull, Charles G.; Houseknecht, David W.; Bird, Kenneth J.

    2003-01-01

    A revised stratigraphic nomenclature is proposed for Cretaceous and Tertiary geologic units of the central and western North Slope of Alaska. This revised nomenclature is a simplified and broadly applicable scheme suitable for a suite of digital geologic quadrangle maps being prepared jointly by the U.S. Geological Survey and the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas. This revised nomenclature scheme is a simplification of a complex stratigraphic terminology that developed piecemeal during five decades of geologic investigations of the North Slope. It is based on helicopter-supported geologic field investigations incorporating information from high-resolution aerial photography, satellite imagery, paleontology, reflection seismic records, and sequence stratigraphic concepts. This revised nomenclature proposes the abandonment of the Colville Group; demotion of the Nanushuk Group to formation status; abandonment of six formations (Kukpowruk, Tuktu, Grandstand, Corwin, Chandler, and Ninuluk); revision of four formations (Sagavanirktok, Prince Creek, Schrader Bluff, and Seabee); elevation of the Tuluvak Tongue of the Prince Creek Formation to formation status; revision of two members (Franklin Bluffs Member and Sagwon Member of the Sagavanirktok Formation); abandonment of eight members or tongues (Kogosukruk, Rogers Creek, Barrow Trail, Sentinel Hill, Ayiyak, Shale Wall, Niakogon, and Killik); and definition of one new member (White Hills Member of the Sagavanirktok Formation).

  12. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  13. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    Science.gov (United States)

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  14. Lithofacies and sequence stratigraphic description of the upper part of the Avon Park Formation and the Arcadia Formation in U.S. Geological Survey G–2984 test corehole, Broward County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Robinson, Edward

    2017-07-18

    Rock core and sediment from U.S. Geological Survey test corehole G–2984 completed in 2011 in Broward County, Florida, provide an opportunity to improve the understanding of the lithostratigraphic, sequence stratigraphic, and hydrogeologic framework of the intermediate confining unit and Floridan aquifer system in southeastern Florida. A multidisciplinary approach including characterization of sequence stratigraphy, lithofacies, ichnology, foraminiferal paleontology, depositional environments, porosity, and permeability was used to describe the geologic samples from this test corehole. This information has produced a detailed characterization of the lithofacies and sequence stratigraphy of the upper part of the middle Eocene Avon Park Formation and Oligocene to middle Miocene Arcadia Formation. This enhancement of the knowledge of the sequence stratigraphic framework is especially important, because subaerial karst unconformities at the upper boundary of depositional cycles at various hierarchical scales are commonly associated with secondary porosity and enhanced permeability in the Floridan aquifer system.

  15. Use of stratigraphic models as soft information to constrain stochastic modeling of rock properties: Development of the GSLIB-Lynx integration module

    International Nuclear Information System (INIS)

    Cromer, M.V.; Rautman, C.A.

    1995-10-01

    Rock properties in volcanic units at Yucca Mountain are controlled largely by relatively deterministic geologic processes related to the emplacement, cooling, and alteration history of the tuffaceous lithologic sequence. Differences in the lithologic character of the rocks have been used to subdivide the rock sequence into stratigraphic units, and the deterministic nature of the processes responsible for the character of the different units can be used to infer the rock material properties likely to exist in unsampled regions. This report proposes a quantitative, theoretically justified method of integrating interpretive geometric models, showing the three-dimensional distribution of different stratigraphic units, with numerical stochastic simulation techniques drawn from geostatistics. This integration of soft, constraining geologic information with hard, quantitative measurements of various material properties can produce geologically reasonable, spatially correlated models of rock properties that are free from stochastic artifacts for use in subsequent physical-process modeling, such as the numerical representation of ground-water flow and radionuclide transport. Prototype modeling conducted using the GSLIB-Lynx Integration Module computer program, known as GLINTMOD, has successfully demonstrated the proposed integration technique. The method involves the selection of stratigraphic-unit-specific material-property expected values that are then used to constrain the probability function from which a material property of interest at an unsampled location is simulated

  16. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin, one of the largest Pennsylvanian bituminous coal-producing regions in the world, currently contains nearly one-half of the top 15 coal-producing States in the United States (Energy Information Agency, 2006). Anthracite of Pennsylvanian age occurs in synclinal basins in eastern Pennsylvania, but production is minimal. A simplified correlation chart was compiled from published and unpublished sources as a means of visualizing currently accepted stratigraphic relations between the rock formations, coal beds, coal zones, and key stratigraphic units in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. The thickness of each column is based on chronostratigraphic divisions (Lower, Middle, and Upper Pennsylvanian), not the thickness of strata. Researchers of Pennsylvanian strata in the Appalachian basin also use biostratigraphic markers and other relative and absolute geologic age associations between the rocks to better understand the spatial relations of the strata. Thus, the stratigraphic correlation data in this chart should be considered provisional and will be updated as coal-bearing rocks within the Appalachian coal regions continue to be evaluated.

  17. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.; Flint, L.E.

    1996-01-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections

  18. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Golden, CO (United States); Flint, L.E. [U.S. Geological Survey, Yucca Mountain Project, Mercury, NV (United States)

    1996-08-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections.

  19. Homogenity of geological units with respect to the radon risk in the Walloon region of Belgium.

    Science.gov (United States)

    Tondeur, François; Cinelli, Giorgia; Dehandschutter, Boris

    2014-10-01

    In the process of mapping indoor radon risk, an important step is to define geological units well-correlated with indoor radon. The present paper examines this question for the Walloon region of Belgium, using a database of more than 18,000 indoor radon measurements. With a few exceptions like the Carboniferous (to be divided into Tournaisian, Visean and Namurian-Westphalian) and the Tertiary (in which all Series may be treated together), the Series/Epoch stratigraphic level is found to be the most appropriate geological unit to classify the radon risk. A further division according to the geological massif or region is necessary to define units with a reasonable uniformity of the radon risk. In particular, Paleozoic series from Cambrian to Devonian show strong differences between different massifs. Local hot-spots are also observed in the Brabant massif. Finally, 35 geological units are defined according to their radon risk, 6 of which still present a clear weak homogeneity. In the case of 4 of these units (Jurassic, Middle Devonian of Condroz and of Fagne-Famenne, Ordovician of the Stavelot massif) homogeneity is moderate, but the data are strongly inhomogeneous for Visean in Condroz and in the Brabant massif. The 35 geological units are used in an ANOVA analysis, to evaluate the part of indoor radon variability which can be attributed to geology. The result (15.4-17.7%) agrees with the values observed in the UK. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Iowa Stratigraphic Data Points

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The Iowa stratigraphic column consists of rock materials of varying geologic age that have been categorized into a shapefile for summarizing the 3 dimensional aspect...

  1. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  2. Stratigraphy and geologic history of Mercury

    Science.gov (United States)

    Spudis, Paul D.; Guest, John E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history.

  3. The stratigraphic filter and bias in measurement of geologic rates

    Science.gov (United States)

    Schumer, Rina; Jerolmack, Douglas; McElroy, Brandon

    2011-01-01

    Erosion and deposition rates estimated from the stratigraphic record frequently exhibit a power-law dependence on measurement interval. This dependence can result from a power-law distribution of stratigraphic hiatuses. By representing the stratigraphic filter as a stochastic process called a reverse ascending ladder, we describe a likely origin of power-law hiatuses, and thus, rate scaling. While power-law hiatuses in certain environments can be a direct result of power-law periods of stasis (no deposition or erosion), they are more generally the result of randomness in surface fluctuations irrespective of mean subsidence or uplift. Autocorrelation in fluctuations can make hiatuses more or less heavy-tailed, but still exhibit power-law characteristics. In addition we show that by passing stratigraphic data backward through the filter, certain statistics of surface kinematics from their formative environments can be inferred.

  4. Venusian extended ejecta deposits as time-stratigraphic markers

    Science.gov (United States)

    Izenberg, Noam R.

    1992-01-01

    Use of impact crater ejects at time-stratigraphic markers was established during lunar geologic mapping efforts. The basic premise is that the deposition of impact ejecta, either by itself or mixed with impact-excavated material, is superimposed on a surface. The deposit becomes an observable, mappable unit produced in a single instant in geologic time. Up to two-thirds of Venus craters exhibit extended ejecta deposits. A reconnaissance survey of 336 craters (about 40 percent of the total population) was conducted. About half the craters examined were located in and around the Beta-Atla-Themis region, and half were spread over the western hemisphere of the planet. The survey was conducted using primarily C1-MIDR images. The preliminary survey shows: (1) of the 336 craters, 223 were found to have extended ejecta deposits. This proportion is higher than that found in other Venus crater databases by up to a factor of 2. (2) 53 percent of all extended ejecta craters were unambiguously superimposed on all volcanic and tectonic units. Crater Annia Faustina's associated parabolic ejecta deposit is clearly superimposed on volcanic flows coming from Gula Mons to the west. Parabola material from Faustina has covered the lava flows, smoothing the surface and reducing its specific backscatter cross section. The stratigraphy implies that the parabola material is the youngest observable unit in the region. (3) 12 percent of extended ejecta deposits are superimposed by volcanic materials. Crater Hwangcini has extended ejecta that has been covered by volcanic flows from a dome field to the northwest, implying that the volcanic units were emplaced subsequent to the ejecta deposit and are the youngest units in the locality. (4) It is difficult to determine the stratigraphic relationships of the remaining extended ejecta deposits in SAR at C1-MIDR resolution. Examination of higher resolution images and application of the other Magellan datasets in systematic manner should resolve

  5. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America.

    Science.gov (United States)

    Fowler, Denver Warwick

    2017-01-01

    Interbasinal stratigraphic correlation provides the foundation for all consequent continental-scale geological and paleontological analyses. Correlation requires synthesis of lithostratigraphic, biostratigraphic and geochronologic data, and must be periodically updated to accord with advances in dating techniques, changing standards for radiometric dates, new stratigraphic concepts, hypotheses, fossil specimens, and field data. Outdated or incorrect correlation exposes geological and paleontological analyses to potential error. The current work presents a high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America, combining published chronostratigraphic, lithostratigraphic, and biostratigraphic data. 40Ar / 39Ar radiometric dates are newly recalibrated to both current standard and decay constant pairings. Revisions to the stratigraphic placement of most units are slight, but important changes are made to the proposed correlations of the Aguja and Javelina formations, Texas, and recalibration corrections in particular affect the relative age positions of the Belly River Group, Alberta; Judith River Formation, Montana; Kaiparowits Formation, Utah; and Fruitland and Kirtland formations, New Mexico. The stratigraphic ranges of selected clades of dinosaur species are plotted on the chronostratigraphic framework, with some clades comprising short-duration species that do not overlap stratigraphically with preceding or succeeding forms. This is the expected pattern that is produced by an anagenetic mode of evolution, suggesting that true branching (speciation) events were rare and may have geographic significance. The recent hypothesis of intracontinental latitudinal provinciality of dinosaurs is shown to be affected by previous stratigraphic miscorrelation. Rapid stepwise acquisition of display characters in many dinosaur clades, in particular chasmosaurine ceratopsids, suggests that they may be useful for high resolution biostratigraphy.

  6. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    A detailed and systematic geological characterization of the urban area of Girona has been conducted under the project '1:5000 scale Urban geological map of Catalonia' of the Catalan Geological Survey (Institut Cartogràfic i Geològic de Catalunya). The results of this characterization are organized into: i) a geological information system that includes all the information acquired; ii) a stratigraphic model focused on identification, characterization and correlation of the geological materials and structures present in the area and; iii) a detailed geological map that represents a synthesis of all the collected information. The mapping project integrates in a GIS environment pre-existing cartographic documentation (geological and topographical), core data from compiled boreholes, descriptions of geological outcrops within the urban network and neighbouring areas, physico-chemical characterisation of representative samples of geological materials, detailed geological mapping of Quaternary sediments, subsurface bedrock and artificial deposits and, 3D modelling of the main geological surfaces. The stratigraphic model is structured in a system of geological units that from a chronostratigrafic point of view are structured in Palaeozoic, Paleogene, Neogene, Quaternary and Anthropocene. The description of the geological units is guided by a systematic procedure. It includes the main lithological and structural features of the units that constitute the geological substratum and represents the conceptual base of the 1:5000 urban geological map of the Girona metropolitan area, which is organized into 6 map sheets. These map sheets are composed by a principal map, geological cross sections and, several complementary maps, charts and tables. Regardless of the geological map units, the principal map also represents the main artificial deposits, features related to geohistorical processes, contours of outcrop areas, information obtained in stations, borehole data, and contour

  7. The geological map of Canelones Department scale 1:1000.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Canelones Department (Uruguay), scale 1:100.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  8. The geological map of Montevideo Department scale 1:50.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Montevideo Department (Uruguay), scale 1:50.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  9. Status Report on the Geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D., Jr.

    1992-01-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. A detailed reported on hydrogeology is being produced in parallel to this one. An important element of this work is the construction of a modern detailed geologic map of the ORR containing subdivisions of all mappable rock units and displaying mesoscopic structural data. Understanding the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. This interim report is the result of cooperation between geologists in two Oak Ridge National Laboratory (ORNL) divisions, Environmental Sciences and Energy, and is a major part of one doctoral dissertation in the Department of Geological Sciences at The University of Tennessee--Knoxville. Major long-term goals of geologic investigations in the ORR are to determine what interrelationships exist between fractures systems in individual rock or tectonic units and the fluid flow regimes, to understand how regional and local geology can be used to help predict groundwater movement, and to formulate a structural-hydrologic model that for the first time would enable prediction of the movement of groundwater and other subsurface fluids in the ORR. Understanding the stratigraphic and structural framework and how it controls fluid flow at depth should be the first step in developing a model for groundwater movement. Development of a state-of-the-art geologic and geophysical framework for the ORR is therefore essential for formulating an integrated structural-hydrologic model. This report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the data that establish the need for additional geologic mapping and geohydrologic studies. An additional intended

  10. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  11. The stratigraphic record of Khawr Al Maqta, Abu Dhabi, United Arab Emirates

    Science.gov (United States)

    Lokier, S. W.; Herrmann, S.

    2012-04-01

    Well-constrained modern depositional analogues are vital to the development of accurate geological reservoir models. The development of realistic hydrocarbon reservoir models requires the application of high-precision, well-constrained outcrop and sub-surface data sets with accurately-documented facies geometries and depositional sequence architectures. The Abu Dhabi coastline provides the best modern analogue for the study of ramp-style carbonate depositional facies akin to those observed in the sub-surface reservoirs of the United Arab Emirates (UAE). However, all previous studies have relied on temporally limited surface datasets. This study employed thirty five shallow subsurface cores spanning the width of the Khawr Al Maqta - the narrow shallow tidal channel that separates Abu Dhabi Island from the mainland. The cores were taken over a transect measuring 1.2 km in length by 50 m wide thus providing a high-resolution record of sub-surface facies geometries in a stratigraphically complex setting. Geometries in these Pleistocene to Holocene facies are complex with interdigitating, laterally heterogeneous carbonate, siliciclastic and evaporite units represented throughout the area of the study. Carbonate facies range from molluscan rudstones to marls and are all indicative of deposition in a shallow, relatively low energy marine setting akin to that seen in the environs of Abu Dhabi Island today. Texturally mature quartz sands occur as thin lenses and as thin cross bedded or laminated horizons up to twenty five centimetres thick. Glauconitic mudstones are common and locally exhibit evidence of rootlets and desiccation cracks. Evaporites are present in the form of gypsum occurring as isolated crystals and nodules or as massive chicken-wire units in excess of three metres thick. All of these textures are consistent with evaporite development in the shallow subsurface. Early, shallow-burial diagenesis has been important. Bioclasts are pervasively leached throughout

  12. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  13. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  14. Quaternary Geologic Map of the Regina 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Fullerton, David S.; Christiansen, Earl A.; Schreiner, Bryan T.; Colton, Roger B.; Clayton, Lee; Bush, Charles A.; Fullerton, David S.

    2007-01-01

    For scientific purposes, the map differentiates Quaternary surficial deposits and materials on the basis of clast lithology or composition, matrix texture or particle size, structure, genesis, stratigraphic relations, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the 'Description of Map Units'. Deposits of some constructional landforms, such as end moraines, are distinguished as map units. Deposits of erosional landforms, such as outwash terraces, are not distinguished, although glaciofluvial, ice-contact, fluvial, and lacustrine deposits that are mapped may be terraced. Differentiation of sequences of fluvial and glaciofluvial deposits at this scale is not possible. For practical purposes, the map is a surficial materials map. Materials are distinguished on the basis of lithology or composition, texture or particle size, and other physical, chemical, and engineering characteristics. It is not a map of soils that are recognized and classified in pedology or agronomy. Rather, it is a generalized map of soils as recognized in engineering geology, or of substrata or parent materials in which pedologic or agronomic soils are formed. As a materials map, it serves as a base from which a variety of maps for use in planning engineering, land-use planning, or land-management projects can be derived and from which a variety of maps relating to earth surface processes and Quaternary geologic history can be derived.

  15. Stratigraphic architecture of a fluvial-lacustrine basin-fill succession at Desolation Canyon, Uinta Basin, Utah: Reference to Walthers’ Law and implications for the petroleum industry

    Science.gov (United States)

    Ford, Grace L.; David R. Pyles,; Dechesne, Marieke

    2016-01-01

    A continuous window into the fluvial-lacustrine basin-fill succession of the Uinta Basin is exposed along a 48-mile (77-kilometer) transect up the modern Green River from Three Fords to Sand Wash in Desolation Canyon, Utah. In ascending order the stratigraphic units are: 1) Flagstaff Limestone, 2) lower Wasatch member of the Wasatch Formation, 3) middle Wasatch member of the Wasatch Formation, 4) upper Wasatch member of the Wasatch Formation, 5) Uteland Butte member of the lower Green River Formation, 6) lower Green River Formation, 7) Renegade Tongue of the lower Green River Formation, 8) middle Green River Formation, and 9) the Mahogany oil shale zone marking the boundary between the middle and upper Green River Formations. This article uses regional field mapping, geologic maps, photographs, and descriptions of the stratigraphic unit including: 1) bounding surfaces, 2) key upward stratigraphic characteristics within the unit, and 3) longitudinal changes along the river transect. This information is used to create a north-south cross section through the basin-fill succession and a detailed geologic map of Desolation Canyon. The cross section documents stratigraphic relationships previously unreported and contrasts with earlier interpretations in two ways: 1) abrupt upward shifts in the stratigraphy documented herein, contrast with the gradual interfingering relationships proposed by Ryder et al., (1976) and Fouch et al., (1994), 2) we document fluvial deposits of the lower and middle Wasatch to be distinct and more widespread than previously recognized. In addition, we document that the Uteland Butte member of the lower Green River Formation was deposited in a lacustrine environment in Desolation Canyon.

  16. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    Science.gov (United States)

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  17. Tectonic-stratigraphic evolution of Cumuruxatiba Basin - Brazil; Evolucao tectono-estratigrafica da Bacia de Cumuruxatiba

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Gustavo; Fernandes, Flavio L.; Silva, Eric Zagotto; Ferreira Neto, Walter Dias [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem Multidisciplinar de Bacias Sedimentares; Ribeiro, Juliana [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Brasilia, DF (Brazil)

    2008-07-01

    In recent years, the exploratory interest on Cumuruxatiba Basin has been inconstant, with modest discoveries of oil. Aiming to deepen the geological knowledge of the basin and in order to attract the interest of oil companies, the ANP (National Agency of Petroleum, Natural Gas and Biofuels) signed contract with COPPE/UFRJ for carrying out an analysis basin project. The project was developed by the Basin Analysis Multidisciplinary Modeling Laboratory (Lab2M/UFRJ) in the period 2006/2007, and was with the main objective outline the main structural and seismo-stratigraphic features of the basin, and in an integrated and multidisciplinary way, build a model of its sedimentation and tectono-stratigraphic evolution. This paper presents the results of the regional seismic mapping, aided by well and potential methods data. The stratigraphic succession the basin has been divided into genetic units (UN-B, UN-C e UN-D) corresponding to second order depositional sequences, they are: UN-B, corresponding by a rift and sag-rift siliciclastic deposits, plus the Aptian evaporitic deposits; UN-C, characterized by carbonatic deposits, and shelf related sediments; and UN-D, corresponding by a final transgressive (siliciclastic) - regressive (mix) cycle, between Cenomanian and actual days. (author)

  18. Quaternary Geologic Map of the Lake Nipigon 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Farrand, William R.; Edited and Integrated by Fullerton, David S.

    1994-01-01

    The Quaternary Geologic Map of the Lake Nipigon 4 degree x 6 degree Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the University of Michigan, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and indicated in the map unit descriptions. Deposits of some constructional landforms, such as kame moraine deposits, are distinguished as map units. Deposits of

  19. A method of reconstructing complex stratigraphic surfaces with multitype fault constraints

    Science.gov (United States)

    Deng, Shi-Wu; Jia, Yu; Yao, Xing-Miao; Liu, Zhi-Ning

    2017-06-01

    The construction of complex stratigraphic surfaces is widely employed in many fields, such as petroleum exploration, geological modeling, and geological structure analysis. It also serves as an important foundation for data visualization and visual analysis in these fields. The existing surface construction methods have several deficiencies and face various difficulties, such as the presence of multitype faults and roughness of resulting surfaces. In this paper, a surface modeling method that uses geometric partial differential equations (PDEs) is introduced for the construction of stratigraphic surfaces. It effectively solves the problem of surface roughness caused by the irregularity of stratigraphic data distribution. To cope with the presence of multitype complex faults, a two-way projection algorithm between threedimensional space and a two-dimensional plane is proposed. Using this algorithm, a unified method based on geometric PDEs is developed for dealing with multitype faults. Moreover, the corresponding geometric PDE is derived, and an algorithm based on an evolutionary solution is developed. The algorithm proposed for constructing spatial surfaces with real data verifies its computational efficiency and its ability to handle irregular data distribution. In particular, it can reconstruct faulty surfaces, especially those with overthrust faults.

  20. USGS National Geologic Map Database Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Geologic Map Database (NGMDB) is a Congressionally mandated national archive of geoscience maps, reports, and stratigraphic information. According to...

  1. Field Reconnaissance Geologic Mapping of the Columbia Hills, Mars: Results from MER Spirit and MRO HiRISE Observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, Kevin W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; McEwen, A.; Rice, J. W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.

  2. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  3. Preliminary stratigraphic and hydrogeologic cross sections and seismic profile of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2013-01-01

    To help water-resource managers evaluate the Floridan aquifer system (FAS) as an alternative water supply, the U.S. Geological Survey initiated a study, in cooperation with the Broward County Environmental Protection and Growth Management Department, to refine the hydrogeologic framework of the FAS in the eastern part of Broward County. This report presents three preliminary cross sections illustrating stratigraphy and hydrogeology in eastern Broward County as well as an interpreted seismic profile along one of the cross sections. Marker horizons were identified using borehole geophysical data and were initially used to perform well-to-well correlation. Core sample data were integrated with the borehole geophysical data to support stratigraphic and hydrogeologic interpretations of marker horizons. Stratigraphic and hydrogeologic units were correlated across the county using borehole geophysical data from multiple wells. Seismic-reflection data were collected along the Hillsboro Canal. Borehole geophysical data were used to identify and correlate hydrogeologic units in the seismic-reflection profile. Faults and collapse structures that intersect hydrogeologic units were also identified in the seismic profile. The information provided in the cross sections and the seismic profile is preliminary and subject to revision.

  4. Geologic evolution of Tucurui region - Para

    International Nuclear Information System (INIS)

    Silva Matta, M.A. da.

    1982-01-01

    The northern part of the Araguaia Belt is exposed in the Tucurui region and their stratigraphic, structural, metamorphic and magmatic features had been studied aiming at contributing for the understanding of the geological evolution of the area. Dating with R-Sr and K-At are also presented, allowing some association for the lythotype of Xingu complex and Araguaia Belt. The oldest stratigraphic unit of the area is represented by the Xingu Complex, composed by gneisses and granites and subordinated schists and anphibolites. Over this unit, during the niddle Proterozoic, the Tucurui group was developed. The bottom of this unit is composed by a sequence of tholeiitic basaltic flows which were here enclosed in the Caripe Formation. The Morrote Formation, is made up of graywackes, and constitutes the upper part of the Tucurui Group. The geossinolinal evolution of the Araguaia Belt took place during the Uruacuano Cycle. This geoteotonic unit is represented in the studied area by the Couto Magalhaes Formation (Tocantins Group) which comprises pelitic and psamitic metasediments. After the metamorphism of the Araguaia Belt, the Couto Magalhaes Formation acted as the place of mafic and ultramafic intrusion and, lately, the Tucurui Fault thrusted the metamorphic rocks of the Tocantins Group over the Tucurui Group lithetypes. (author)

  5. Quaternary Geologic Map of the Lake of the Woods 4 Degrees x 6 Degrees Quadrangle, United States and Canada

    Science.gov (United States)

    Sado, Edward V.; Fullerton, David S.; Goebel, Joseph E.; Ringrose, Susan M.; Edited and Integrated by Fullerton, David S.

    1995-01-01

    The Quaternary Geologic Map of the Lake of the Woods 4 deg x 6 deg Quadrangle, United States and Canada, was mapped as part of the U.S. Geological Survey Quaternary Geologic Atlas of the United States map series (Miscellaneous Investigations Series I-1420, NM-15). The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the earth. They make up the 'ground' on which we walk, the 'dirt' in which we dig foundations, and the 'soil' in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. This map is a product of collaboration of the Ontario Geological Survey, the Minnesota Geological Survey, the Manitoba Department of Energy and Mines, and the U.S. Geological Survey, and is designed for both scientific and practical purposes. It was prepared in two stages. First, separate maps and map explanations were prepared by the compilers. Second, the maps were combined, integrated, and supplemented by the editor. Map unit symbols were revised to a uniform system of classification and the map unit descriptions were prepared by the editor from information received from the compilers and from additional sources listed under Sources of Information. Diagrams accompanying the map were prepared by the editor. For scientific purposes, the map differentiates Quaternary surficial deposits on the basis of lithology or composition, texture or particle size, structure, genesis, stratigraphic relationships, engineering geologic properties, and relative age, as shown on the correlation diagram and

  6. Identification of different geologic units using fuzzy constrained resistivity tomography

    Science.gov (United States)

    Singh, Anand; Sharma, S. P.

    2018-01-01

    Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.

  7. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    Science.gov (United States)

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts

  8. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  9. Stratigraphical sequence and geochronology of the volcanic rock series in caifang basin, south jiangxi

    International Nuclear Information System (INIS)

    Xu Xunsheng; Wu Jianhua

    2010-01-01

    The late Mesozoic volcanic rocks in Jiangxi constitute two volcanic belts: the northern is Xiajiang-Guangfeng volcanic belt, the volcanic rocks series belong to one volcano cycle and named Wuyi group which is subdivided into three formations (Shuangfengling formation, Ehuling formation and Shixi formation); the southern is Sannan-Xunwu volcanic belt, the volcanic rocks series in Caifang basin which locates on Sannan-Xunwu volcanic belt also belong to only one volcano cycle. It can be subdivided into two lithology and lithofacies units (upper and lower): the lower unit consists of sedimentary rocks and associated with a subordinate amount of volcanic rocks, it belongs to erupt-deposit facies which is the product of early volcanic stage; the upper unit is mostly composed of volcanic rocks, it belongs to erupt facies that is the volcanic eruption product. SHRIMP zircon U-Pb age of rhyolite? which locates at the top of the upper unit is 130.79 ± 0.73) Ma. According to the new International Stratigraphic Chart, the boundary of Jurassic and Cretaceous is (145.4 ± 4.0) Ma, so the age shows that the geologic period of Caifang volcanic rocks series is early Early Cretaceous epoch. On the basis of lithological correlation, lithofacies and stratigraphic horizon analysis, the volcanic rock series in Caifang basin fall under Wuyi group, and the lower unit could be incorporated into Shuangfengling formation, the upper unit could be incorporated into Ehuling formation. The subdivision of sequence and the determination of geochronology of the volcanic rock series in Caifang basin provide some references for the study of the late Mesozoic volcanic rocks series of the Sannan-Xunwu volcanic belt. (authors)

  10. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy

    Science.gov (United States)

    Pescatore, Tullio; Renda, Pietro; Schiattarella, Marcello; Tramutoli, Mariano

    1999-12-01

    Stratigraphic studies and facies analysis integrated with a new geological and structural survey of the Meso-Cenozoic units outcropping in the Campania-Lucania Apennines, southern Italy, allowed us to restore the palaeogeographic pattern and the tectonic evolution of the chain during Oligo-Miocene times. The southern Apennines are a N150°-striking and NE-verging fold-and-thrust belt mainly derived from the deformation of the African-Apulian passive margin. Four wide belts with different features have been recognized in the chain area. From east to west the following units outcrop: (a) successions characterized by basinal to marginal facies, ranging in age from Cretaceous to Miocene, tectonically lying on Plio-Pleistocene foredeep deposits; (b) successions characterized by shallow-water, basinal and shelf-margin facies, ranging in age from middle Triassic to Miocene ('Lagonegro units'), overthrust on the previous ones; (c) Triassic to Miocene carbonate platform successions ('Apenninic platform units'), overthrust on the Lagonegro units; (d) Jurassic-Cretaceous to Miocene deep-water successions (ophiolite-bearing or 'internal' units and associated siliciclastic wedges), outcropping along the Tyrrhenian belt and the Calabria-Lucania boundary, overthrust on the Apenninic platform units. All these units tectonically lie on the buried Apulian platform which is covered, at least in the eastern sector of the chain, by Pliocene to Pleistocene foredeep deposits. Stratigraphic patterns of the Cretaceous to lower Miocene Lagonegro successions are coherent with the platform margin ones. Calcareous clastics of the Lagonegro basin are in fact supplied by an adjacent western platform, as inferred by several sedimentological evidences (slump and palaeocurrent directions and decreasing grain size towards the depocentre of the basin). Tectonic relationships among the different units of the chain — with particular emphasis on the Lagonegro and Apenninic platform units of the

  11. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  12. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  13. Sudbury project (University of Muenster-Ontario Geological Survey): Summary of results - an updated impact model

    Science.gov (United States)

    Avermann, M.; Bischoff, L.; Brockmeyer, P.; Buhl, D.; Deutsch, A.; Dressler, B. O.; Lakomy, R.; Mueller-Mohr, V.; Stoeffler, D.

    1992-01-01

    In 1984 the Ontario Geological Survey initiated a research project on the Sudbury structure (SS) in cooperation with the University of Muenster. The project included field mapping (1984-1989) and petrographic, chemical, and isotope analyses of the major stratigraphic units of the SS. Four diploma theses and four doctoral theses were performed during the project (1984-1992). Specific results of the various investigations are reported. Selected areas of the SS were mapped and sampled: Footwall rocks; Footwall breccia and parts of the sublayer and lower section of the Sudbury Igneous Complex (SIC); Onaping Formation and the upper section of the SIC; and Sudbury breccia and adjacent Footwall rocks along extended profiles up to 55 km from the SIC. All these stratigraphic units of the SS were studied in substantial detail by previous workers. The most important characteristic of the previous research is that it was based either on a volcanic model or on a mixed volcanic-impact model for the origin of the SS. The present project was clearly directed toward a test of the impact origin of the SS without invoking an endogenic component. In general, our results confirm the most widely accepted stratigraphic division of the SS. However, our interpretation of some of the major stratigraphic units is different from most views expressed. The stratigraphy of the SS and its new interpretation is given as a basis for discussion.

  14. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  15. The Quequén Salado river basin: Geology and biochronostratigraphy of the Mio-Pliocene boundary in the southern Pampean plain, Argentina

    Science.gov (United States)

    Beilinson, E.; Gasparini, G. M.; Tomassini, R. L.; Zárate, M. A.; Deschamps, C. M.; Barendregt, R. W.; Rabassa, J.

    2017-07-01

    The Quequén Salado river basin has been the focus of several contributions since the first decades of the XX century, namely dealing with the general geological features of the deposits and with the vertebrate remains. In this paper, the Neogene geological history documented by the Quequén Salado river exposures is reconstructed by means of stratigraphic, sedimentological and paleomagnetic studies along with the paleontological analysis of vertebrate remains. The study area is a crucial setting not only to better understand the evolution of the southern Pampas basin during the late Miocene-early Pliocene interval, but also to test the validity of the biochronologic and biostratigraphic schemes, especially the "Irenense". A geological model for the Quequén Salado river valley is proposed: a case of downcutting and headward erosion that contributes with a coherent interpretation to explain the spatial distribution of facies and fossil taxa: the younger in the distal sector of the Quequén Salado middle basin and the older in the lower basin. The sedimentary record is believed to represent the distal reaches of a distributary fluvial system that drained from the Ventania ranges. The stratigraphic section of Paso del Indio Rico results a key stratigraphic site to fully understand the stratigraphic nature of the boundary between the Miocene and the Pliocene (the Huayquerian and Montehermosan stages/ages). In this sense, two stratigraphically superposed range zones have been recognized in the area: Xenodontomys ellipticus Range Zone (latest Miocene-early Pliocene; late Huayquerian), and Eumysops laeviplicatus Range Zone (early Pliocene; Montehermosan). Taking into account the available geological and paleontological evidences, the "Irenense" would not represent a valid biostratigraphic unit, since, according to the geological model here proposed, it would be represented by elements of the Xenodontomys ellipticus Range Zone in the lower QS basin and by elements of the

  16. Hydrogeologic framework and geologic structure of the Floridan aquifer system and intermediate confining unit in the Lake Okeechobee area, Florida

    Science.gov (United States)

    Reese, Ronald S.

    2014-01-01

    The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.

  17. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    Science.gov (United States)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the

  18. Geologic report for the Weldon Spring Raffinate Pits Site

    International Nuclear Information System (INIS)

    1984-10-01

    A preliminary geologic site characterization study was conducted at the Weldon Spring Raffinate Pits Site, which is part of the Weldon Spring Site, in St. Charles County, Missouri. The Raffinate Pits Site is under the custody of the Department of Energy (DOE). Surrounding properties, including the Weldon Spring chemical plant, are under the control of the Department of the Army. The study determined the following parameters: site stratigraphy, lithology and general conditions of each stratigraphic unit, and groundwater characteristics and their relation to the geology. These parameters were used to evaluate the potential of the site to adequately store low-level radioactive wastes. The site investigation included trenching, geophysical surveying, borehole drilling and sampling, and installing observation wells and piezometers to monitor groundwater and pore pressures

  19. Geologic mapping of near-surface sediments in the northern Mississippi Embayment, McCracken County, KY

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Joshua L [JL Sexton and Son; Fryar, Alan E [Dept of Earth and Geoligical Sciences, Univ of KY,; Greb, s F [Univ of KY, KY Geological Survey

    2006-04-01

    POSTER: The Jackson Purchase region of western Kentucky consists of Coastal Plain sediments near the northern margin of the Mississippi Embayment. Within this region is the Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility operated by the US Department of Energy. At PGDP, a Superfund site, soil and groundwater studies have provided subsurface lithologic data from hundreds of monitoring wells and borings. Despite preliminary efforts by various contractors, these data have not been utilized to develop detailed stratigraphic correlations of sedimentary units across the study area. In addition, sedimentary exposures along streams in the vicinityof PGDP have not been systematically described beyond the relatively simple geologic quadrangle maps published by the US Geological Survey in 1966-67. This study integrates lithologic logs, other previous site investigation data, and outcrop mapping to provide a compilation of near-surface lithologic and stratigraphic data for the PGDP area. A database of borehole data compiled during this study has been provided to PGDP for future research and archival.

  20. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

    Science.gov (United States)

    Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.

    2017-06-30

    The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.

  1. Determination of Heat Capacity of Yucca Mountain Stratigraphic Layers

    International Nuclear Information System (INIS)

    T. Hadgu; C. Lum; J.E. Bean

    2006-01-01

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  2. Environmental aspects of engineering geological mapping in the United States

    Science.gov (United States)

    Radbruch-Hall, Dorothy H.

    1979-01-01

    Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.

  3. Kansas Energy Sources: A Geological Review

    Science.gov (United States)

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  4. Surficial geologic map of Berrien County, Michigan, and the adjacent offshore area of Lake Michigan

    Science.gov (United States)

    Stone, Byron D.; Kincare, Kevin A.; O'Leary, Dennis W.; Newell, Wayne L.; Taylor, Emily M.; Williams, Van S.; Lundstrom, Scott C.; Abraham, Jared E.; Powers, Michael H.

    2017-12-13

    The surficial geologic map of Berrien County, southwestern Michigan (sheet 1), shows the distribution of glacial and postglacial deposits at the land surface and in the adjacent offshore area of Lake Michigan. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics, stratigraphic relationships, and age. Drill-hole information correlated in cross sections provides details of typical stratigraphic sequences that compose one or more penetrated geologic map units. A new bedrock geologic map (on sheet 2) includes contours of the altitude of the eroded top of bedrock and shows the distribution of middle Paleozoic shale and carbonate units in the subcrop. A sediment thickness map (also on sheet 2) portrays the extent of as much as 150 meters of surficial materials that overlie the bedrock surface.The major physical features of the county are related principally to deposits of the last Laurentide ice sheet that advanced and then retreated back through the region from about 19,000 to 14,000 radiocarbon years before present. Glacial and postglacial deposits underlie the entire county; shale bedrock crops out only in the adjacent offshore area on the bottom of Lake Michigan. All glacial deposits and glacial meltwater deposits in Berrien County are related to the late Wisconsinan glacial advances of the Lake Michigan ice lobe and its three regional recessional moraines, which cross the county as three north-northeast-trending belts.From east to west (oldest to youngest), the three moraine belts are known as the Kalamazoo, Valparaiso, and Lake Border morainic systems. The till-ridge morainic systems (Lake Border and local Valparaiso morainic systems) consist of multiple, elongate moraine ridges separated by till plains and lake-bottom plains. Tills in ground and end moraines in Berrien County are distinguished as informal units, and are correlated with three proposed regional till units in southwestern Michigan

  5. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  6. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    Science.gov (United States)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure

  7. A three-dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data

    Science.gov (United States)

    Wehr, H.; Chevrot, S.; Courrioux, G.; Guillen, A.

    2018-06-01

    We construct a three-dimensional geological model of the Pyrenees and their foreland basins with the Geomodeller. This model, which accounts for different sources of geological and geophysical informations, covers the whole Pyrenees, from the Atlantic Ocean to the Mediterranean Sea, and from the Iberian range to the Massif Central, down to 70 km depth. We model the geological structure with a stratigraphic column composed of a superposition of layers representing the mantle, lower, middle, and upper crusts. The sedimentary basins are described by two layers which allow us to make the distinction between Mesozoic and Cenozoic sediments, which are characterized by markedly different densities and seismic velocities. Since the Pyrenees result from the convergence between the Iberian and European plates, we ascribe to each plate its own stratigraphic column in order to be able to model the imbrication of Iberian and European crusts along this fossile plate boundary. We also introduce two additional units which describe the orogenic prism and the water column in the Bay of Biscay and in the Mediterranean Sea. The last ingredient is a unit that represents bodies of shallow exhumed and partly serpentinized lithospheric mantle, which are assumed to produce the positive Bouguer gravity anomalies in the North Pyrenean Zone. A first 3D model is built using only the geological information coming from geological maps, drill-holes, and seismic sections. We use the potential field method implemented in Geomodeller to interpolate these geological data. This model is then refined in order to better explain the observed Bouguer anomalies by adding new constraints on the main crustal interfaces. The final model explains the observed Bouguer anomalies with a standard deviation less than 3.4 mGal, and reveals anomalous deep structures beneath the eastern Pyrenees.

  8. Environmental geology in the United States: Present practice and future training needs

    Science.gov (United States)

    Lundgren, Lawrence

    Environmental geology as practiced in the United States confronts issues in three large areas: Threats to human society from geologic phenomena (geologic hazards); impacts of human activities on natural systems (environmental impact), and natural-resource management. This paper illustrates present U.S. practice in environmental geology by sampling the work of 7 of the 50 state geological surveys and of the United States Geological Survey as well. Study of the work of these agencies provides a basis for identifying avenues for the training of those who will deal with environmental issues in the future. This training must deal not only with the subdisciplines of geology but with education to cope with the ethical, interdisciplinary, and public-communication aspects of the work of the environmental geologist.

  9. Geologic map of the greater Denver area, Front Range urban corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.

    1979-01-01

    This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  10. Three-Dimensional Geological Model of Quaternary Sediments in Walworth County, Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Jodi Lau

    2016-07-01

    Full Text Available A three-dimensional (3D geologic model was developed for Quaternary deposits in southern Walworth County, WI using Petrel, a software package primarily designed for use in the energy industry. The purpose of this research was to better delineate and characterize the shallow glacial deposits, which include multiple shallow sand and gravel aquifers. The 3D model of Walworth County was constructed using datasets such as the U.S. Geological Survey 30 m digital elevation model (DEM of land surface, published maps of the regional surficial geology and bedrock topography, and a database of water-well records. Using 3D visualization and interpretation tools, more than 1400 lithostratigraphic picks were efficiently interpreted amongst 725 well records. The final 3D geologic model consisted of six Quaternary lithostratigraphic units and a bedrock horizon as the model base. The Quaternary units include in stratigraphic order from youngest to oldest: the New Berlin Member of the Holy Hill Formation, the Tiskilwa Member of the Zenda Formation, a Sub-Tiskilwa Sand/Gravel unit, the Walworth Formation, a Sub-Walworth Sand/Gravel unit, and a Pre-Illinoisan unit. Compared to previous studies, the results of this study indicate a more detailed distribution, thickness, and interconnectivity between shallow sand and gravel aquifers and their connectivity to shallow bedrock aquifers. This study can also help understand uncertainty within previous local groundwater-flow modeling studies and improve future studies.

  11. Geologic assessment of undiscovered oil and gas resources in Aptian carbonates, onshore northern Gulf of Mexico Basin, United States

    Science.gov (United States)

    Hackley, Paul C.; Karlsen, Alexander W.

    2014-01-01

    Carbonate lithofacies of the Lower Cretaceous Sligo Formation and James Limestone were regionally evaluated using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources. The assessed area is within the Upper Jurassic–Cretaceous–Tertiary Composite total petroleum system, which was defined for the assessment. Hydrocarbons reservoired in carbonate platform Sligo-James oil and gas accumulations are interpreted to originate primarily from the Jurassic Smackover Formation. Emplacement of hydrocarbons occurred via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir facies include porous patch reefs developed over paleostructural salt highs, carbonate shoals, and stacked linear reefs at the carbonate shelf margin. Hydrocarbon traps dominantly are combination structural-stratigraphic. Sealing lithologies include micrite, calcareous shale, and argillaceous lime mudstone. A geologic model, supported by discovery history analysis of petroleum geology data, was used to define a single regional assessment unit (AU) for conventional reservoirs in carbonate facies of the Sligo Formation and James Limestone. The AU is formally entitled Sligo-James Carbonate Platform Oil and Gas (50490121). A fully risked mean undiscovered technically recoverable resource in the AU of 50 million barrels of oil (MMBO), 791 billion cubic feet of natural gas (BCFG), and 26 million barrels of natural gas liquids was estimated. Substantial new development through horizontal drilling has occurred since the time of this assessment (2010), resulting in cumulative production of >200 BCFG and >1 MMBO.

  12. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park

    International Nuclear Information System (INIS)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-01-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  13. Geologic implications of large-scale trends in well-log response, northern Green River Basin, Wyoming

    International Nuclear Information System (INIS)

    Prensky, S.E.

    1986-01-01

    Well-log response in lower Tertiary and Upper Cretaceous rocks in the northern Green River basin, Wyoming, is examined. Digitally recorded well-log data for selected wells located throughout the basin were processed by computer and displayed as highly compressed depth-scale plots for examining large-scale geologic trends. Stratigraphic units, formed under similar depositional conditions, are distinguishable by differing patterns on these plots. In particular, a strong lithologic contrast between Tertiary and underlying Upper Cretaceous non-marine clastic rocks is revealed and correlated through the study area. Laboratory analysis combined with gamma-ray spectrometry log data show that potassium feldspars in the arkosic Tertiary sandstones cause the contrast. The nature and extent of overpressuring has been examined. Data shift on shale conductivity and shale acoustic transit-time plots, previously ascribed to changes in pore pressure, correspond to stratigraphic changes and not necessarily with changes in pore pressure as indicated by drilling-mud weights. Gulf Coast well-log techniques for detecting overpressuring are unreliable and ineffectual in this basin, which has experienced significantly different geologic depositional and tectonic conditions

  14. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    Science.gov (United States)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded

  15. Geologic report, Middlesex Municipal Landfill site, Middlesex, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    This is a report on geologic and hydrologic investigations of the former Municipal Landfill, Middlesex, New Jersey, conducted during 1982 and 1983 by Bechtel National, Inc. for the United States Department of Energy, Oak Ridge Operations Office. The investigations were designed to assess the feasibility of stabilizing the radioactive contamination present on site. The investigations were conducted in two phases: Phase 1 consisted of permeability tests; Phase 2 consisted of tests to ascertain the extent of hydraulic interconnection between various stratigraphic units. The investigations revealed that a complete separation of bedrock and overburden did not exist and that the clay present could not be relied upon to confine vertical migration of contaminants over the long term. 6 references, 27 figures, 6 tables.

  16. Geologic report, Middlesex Municipal Landfill site, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    1984-03-01

    This is a report on geologic and hydrologic investigations of the former Municipal Landfill, Middlesex, New Jersey, conducted during 1982 and 1983 by Bechtel National, Inc. for the United States Department of Energy, Oak Ridge Operations Office. The investigations were designed to assess the feasibility of stabilizing the radioactive contamination present on site. The investigations were conducted in two phases: Phase 1 consisted of permeability tests; Phase 2 consisted of tests to ascertain the extent of hydraulic interconnection between various stratigraphic units. The investigations revealed that a complete separation of bedrock and overburden did not exist and that the clay present could not be relied upon to confine vertical migration of contaminants over the long term. 6 references, 27 figures, 6 tables

  17. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    Science.gov (United States)

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  18. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    . Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.

  19. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of

  20. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    International Nuclear Information System (INIS)

    Prothro, Lance; Drellack Jr, Sigmund; Mercadante, Jennifer

    2009-01-01

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock's ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock's primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic

  1. Burial and exhumation history of southern Sweden estimated from apatite fission-track data, stratigraphic landform analysis and the geological record

    Science.gov (United States)

    Japsen, Peter; Green, Paul F.; Lidmar-Bergström, Karna; Bonow, Johan M.; Erlström, Mikael

    2014-05-01

    episodic development of elevated, passive continental margins. Geological Survey of Denmark and Greenland Bulletin 2013/30, 150 pp. Lidmar-Bergström, K., Bonow, J.M., Japsen, P., 2013. Stratigraphic Landscape Analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global and Planetary Change 100, 153-171.

  2. Application of the geological surveying methods employed at Gorleben to cavern projects in the central European zechstein basin

    International Nuclear Information System (INIS)

    Wilke, F.; Bornemann, O.; Behlau, J.; Mingerzahn, G.

    2002-01-01

    The investigations at Gorleben date back more than 20 years. New methods were developed and applied, especially for detailed stratigraphic and geochemical characterization of the zechstein formation and also geophysical survey methods and geological mapping of complex folds in saline structures. The greatest feat was the 3D imaging of all geological information accompanied by visualization of complex stratigraphic entities [de

  3. The United States Geological Survey: 1879-1989

    Science.gov (United States)

    Rabbitt, Mary C.

    1989-01-01

    The United States Geological Survey was established on March 3, 1879, just a few hours before the mandatory close of the final session of the 45th Congress, when President Rutherford B. Hayes signed the bill appropriating money for sundry civil expenses of the Federal Government for the fiscal year beginning July 1, 1879. The sundry civil expenses bill included a brief section establishing a new agency, the United States Geological Survey, placing it in the Department of the Interior, and charging it with a unique combination of responsibilities: 'classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain.' The legislation stemmed from a report of the National Academy of Sciences, which in June 1878 had been asked by Congress to provide a plan for surveying the Territories of the United States that would secure the best possible results at the least possible cost. Its roots, however, went far back into the Nation's history. The first duty enjoined upon the Geological Survey by the Congress, the classification of the public lands, originated in the Land Ordinance of 1785. The original public lands were the lands west of the Allegheny Mountains claimed by some of the colonies, which became a source of contention in writing the Articles of Confederation until 1781 when the States agreed to cede their western lands to Congress. The extent of the public lands was enormously increased by the Louisiana Purchase in 1803 and later territorial acquisitions. At the beginning of Confederation, the decision was made not to hold the public lands as a capital asset, but to dispose of them for revenue and to encourage settlement. The Land Ordinance of 1785 provided the method of surveying and a plan for disposal of the lands, but also reserved 'one-third part of all gold, silver, lead, and copper mines to be sold or otherwise disposed of, as Congress shall thereafter direct,' thus implicitly requiring

  4. Full 3-D stratigraphic inversion with a priori information: a powerful way to optimize data integration

    Energy Technology Data Exchange (ETDEWEB)

    Grizon, L.; Leger, M.; Dequirez, P.Y.; Dumont, F.; Richard, V.

    1998-12-31

    Integration between seismic and geological data is crucial to ensure that a reservoir study is accurate and reliable. To reach this goal, there is used a post-stack stratigraphic inversion with a priori information. The global cost-function combines two types of constraints. One is relevant to seismic amplitudes, and the other to an a priori impedance model. This paper presents this flexible and interpretative inversion to determine acoustic impedances constrained by seismic data, log data and geologic information. 5 refs., 8 figs.

  5. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the Exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a consistent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described

  6. SDAR 1.0 a New Quantitative Toolkit for Analyze Stratigraphic Data

    Science.gov (United States)

    Ortiz, John; Moreno, Carlos; Cardenas, Andres; Jaramillo, Carlos

    2015-04-01

    Since the foundation of stratigraphy geoscientists have recognized that data obtained from stratigraphic columns (SC), two dimensional schemes recording descriptions of both geological and paleontological features (e.g., thickness of rock packages, grain size, fossil and lithological components, and sedimentary structures), are key elements for establishing reliable hypotheses about the distribution in space and time of rock sequences, and ancient sedimentary environmental and paleobiological dynamics. Despite the tremendous advances on the way geoscientists store, plot, and quantitatively analyze sedimentological and paleontological data (e.g., Macrostrat [http://www.macrostrat.org/], Paleobiology Database [http://www.paleodb.org/], respectively), there is still a lack of computational methodologies designed to quantitatively examine data from a highly detailed SCs. Moreover, frequently the stratigraphic information is plotted "manually" using vector graphics editors (e.g., Corel Draw, Illustrator), however, this information although store on a digital format, cannot be used readily for any quantitative analysis. Therefore, any attempt to examine the stratigraphic data in an analytical fashion necessarily takes further steps. Given these issues, we have developed the sofware 'Stratigraphic Data Analysis in R' (SDAR), which stores in a database all sedimentological, stratigraphic, and paleontological information collected from a SC, allowing users to generate high-quality graphic plots (including one or multiple features stored in the database). SDAR also encompasses quantitative analyses helping users to quantify stratigraphic information (e.g. grain size, sorting and rounding, proportion of sand/shale). Finally, given that the SDAR analysis module, has been written in the open-source high-level computer language "R graphics/statistics language" [R Development Core Team, 2014], it is already loaded with many of the crucial features required to accomplish basic and

  7. Appalachian basin oil and natural gas: stratigraphic framework, total petroleum systems, and estimated ultimate recovery: Chapter C.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ryder, Robert T.; Milici, Robert C.; Swezey, Christopher S.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The most recent U.S. Geological Survey (USGS) assessment of undiscovered oil and gas resources of the Appalachian basin was completed in 2002 (Milici and others, 2003). This assessment was based on the total petroleum system (TPS), a concept introduced by Magoon and Dow (1994) and developed during subsequent studies such as those by the U.S. Geological Survey World Energy Assessment Team (2000) and by Biteau and others (2003a,b). Each TPS is based on specific geologic elements that include source rocks, traps and seals, reservoir rocks, and the generation and migration of hydrocarbons. This chapter identifies the TPSs defined in the 2002 Appalachian basin oil and gas assessment and places them in the context of the stratigraphic framework associated with regional geologic cross sections D–D′ (Ryder and others, 2009, which was re-released in this volume, chap. E.4.1) and E–E′ (Ryder and others, 2008, which was re-released in this volume, chap. E.4.2). Furthermore, the chapter presents a recent estimate of the ultimate recoverable oil and natural gas in the basin.

  8. Geology and potency of Uranium mineralization occurrences in Harau area, West Sumatera

    International Nuclear Information System (INIS)

    Ngadenin

    2013-01-01

    The Background of this study is due to the geological setting of Harau area and its surrounding, West Sumatera, that is identified as a favourable area for uranium accumulation which is indicated by the presence of anomalous radioactivity in the Tertiary sedimentary rocks deposited on the terrestrial environment and the presence of anomalous uranium contents in Pre-Tertiary granites in several places in West Sumatera, and the presence of radioactivity anomalous in the Pre Tertiary metamorphic rocks. The purpose of this study is to determine the potential formation of uranium mineralization in the Harau area, to be used as a basis to conduct more detailed research in order to inventory the potential of uranium resources in Indonesia. The scope of the discussion in this review includes a discussion of geology, geochemistry and radioactivity of the outcrops. The composition of regional stratigraphic from old to young is quartzite unit, phyllite unit, conglomerate unit, sandstone unit, tuff unit and alluvium river. The main fault that developed in the study area are normal faults trending southwest – northeast. The study area is splitted into two sections where the southeastern part relatives fall down of the northwest. Based on geological setting, radioactivity and uranium data then is assumed that Harau is a potential area for the formation of uranium mineralization in sandstone and its vein type. Sandstone type is expected occur in sandstone conglomerate unit of The Brani Formation and vein type is expected occur in the quartzite unit of The Kuantan Formation. (author)

  9. Geology in the Vicinity of the TYBO and BENHAM Underground Nuclear Tests, Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    L. B. Prothro

    2001-12-01

    Recent radiochemical evidence from groundwater characterization and monitoring wells in the vicinity of the TYBO and BENHAM underground nuclear tests in Area 20 of the Nevada Test Site, suggests that migration of radionuclides within groundwater beneath this portion of Area 20 may be more rapid than previously thought. In order to gain a better understanding of the hydrogeologic conditions in the TYBO-BENHAM area for more accurate flow and transport modeling, a reevaluation of the subsurface geologic environment in the vicinity of the two underground tests was conducted. Eight existing drill holes provided subsurface control for the area. These holes included groundwater characterization and monitoring wells, exploratory holes, and large-diameter emplacement holes used for underground nuclear weapons tests. Detailed and consistent geologic descriptions of these holes were produced by updating existing geologic descriptions with data from petrographic, chemical, and mineralogic analyses, and current stratigraphic concepts of the region. The updated descriptions, along with surface geologic data, were used to develop a detailed geologic model of the TYBO-BENHAM area. This model is represented by diagrams that correlate stratigraphic, lithologic, and alteration intervals between holes, and by isopach and structure maps and geologic cross sections. Regional data outside the TYBO-BENHAM area were included in the isopach and structure maps to better evaluate the geology of the TYBO-BENHAM area in a regional context. The geologic model was then evaluated with regard to groundwater flow and radionuclide migration to assess the model's implications for flow and transport modeling. Implications include: (1) confirmation of the general hydrogeology of the area described in previous studies; (2) the presence of two previously unrecognized buried faults that could act as zones of enhanced permeability within aquifers; and (3) secondary alteration within tuff confining

  10. The First USGS Global Geologic Map of Europa

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D.; Collins, G. C.

    2017-12-01

    Understanding the global scale geology of Europa is paramount to gaining insight into the potential habitability of this icy world. To this end, work is ongoing to complete a global geological map at the scale of 1:15 million that incorporates data at all resolutions collected by the Voyager and Galileo missions. The results of this work will aid the Europa Clipper mission, now in formulation, by providing a framework for collaborative and synergistic science investigations. To understand global geologic and tectonic relations, a total of 10 geologic units have been defined. These include: Low Albedo Ridge Material (lam)—low albedo material that irregularly surrounds large (>20 km) ridge structures; Ridged plains (pr)—distributed over all latitudes and characterized by subparallel to cross-cutting ridges and troughs visible at high resolution (material (b)—linear to curvilinear zones with a distinct, abrupt albedo change from the surrounding region; Crater material (c), Continuous Crater Ejecta (ce) and Discontinuous Crater Ejecta (dce)—features associated with impact craters including the site of the impact, crater material, and the fall-out debris respectively; Low Albedo Chaos (chl), Mottled Albedo Chaos (chm) and High Albedo Chaos (chh)—disrupted terrain with a relatively uniform low albedo, patchy/variegated albedo, and uniform high albedo appearance respectively; Knobby Chaos (chk) - disrupted terrain with rough and blocky texture occurring in the high latitudes. In addition to the geologic units, our mapping also includes structural features—Ridges, Cycloids, Undifferentiated Linea, Crater Rims, Depression Margins, Dome Margins and Troughs. We also introduce a point feature (at the global scale), Microchaos, to denote small (material. The completed map will constrain the distribution of different Europa terrains and provide a general stratigraphic framework to assess the geologic history of Europa from the regional to the global scale. Here, we

  11. Stratigraphic structure of the B1 Tertiary tectonostratigraphic unit in eastern Slovenia

    Directory of Open Access Journals (Sweden)

    Bogomir Jelen

    2002-06-01

    Full Text Available High inconsistency and incoherence in the stratigraphy of the Slovenian upper Paleogene and lower Miocene have remained unsolved in the past 150 years. To solve the problem, we tried to rigorously conduct the authentic Galilei’s scientific method. Steps of logical and empirical verification confirmed the existence of the posited B1 Tertiary tectonostratigraphic unit, and a general chronostratigraphic model of new positional relationships of lithologic units resulted from rather good biochronostratigraphic resolution achieved by nannoplankton and planktonic foraminifera biostratigraphy. The application of principles of newly developed fields in science helped us to avoid errors in transmission of messages (to reduce noise from the source (rock to the concept formation,which had been done previously. This in turn has strongly reduced inconsistency andincoherence (high information entropy = uncertainty. The released amount of information enabled us to answer also questions that reached beyond the original difficulty, e.g.: is the tectonostratigraphic structure of eastern Slovenia a manifestation of plate tectonics processes, and of which ones, are theories of continental escape in the Alps and associated dissection and offset of the formerly uniform Slovenian-Hungarian Paleogene basin tenableor not, are then there in the B1 stratigraphic equivalents of the Hungarian Paleogene basin formations, where are the important Eocene / Oligocene, Paleogene / Neogene, Rupelian / Chattian and Kiscellian / Egerian boundaries in Slovenia, and is there acontinuation of the B1 in Croatia and in the Mid-Hungarian tectonic zone?

  12. Engineering Geological Conditions of the Ignalina NPP Region

    International Nuclear Information System (INIS)

    Buceviciute, S.

    1996-01-01

    During engineering geological mapping, the upper part (to 15-20 m depths) of the lithosphere was investigated at the Ignalina Nuclear Power Plant (INPP) for physical rock characteristics and recent exogenic geological processes and phenomena. The final result of engineering geological mapping was the division of the area into engineering geological regions. In this case five engineering geological regions have been distinguished. The Fig. shows a scheme of engineering geological regionalization of the area and the typical sections of the engineering geological regions. The sections show genesis, age, soil type, thickness of stratigraphic genetical complex for the rocks occurring in the zone of active effect of engineering buildings, as well as the conical strength and density of the distinguished soils. 1 fig., 1 tab

  13. Preliminary hydrogeological evaluation of geological units from the Mesa de los Santos, Santander

    International Nuclear Information System (INIS)

    Diaz, Eliana Jimena; Contreras, Nathalia Maria; Pinto, Jorge Eduardo; Velandia, Francisco; Morales, Carlos Julio; Hincapie, Gloria

    2009-01-01

    This paper present a preliminary hydrogeological evaluation of La Mesa de Los Santos' lithostratigraphic formations, based on the geological mapping, stratigraphy and inventory of water points. All this is supplemented with the analysis of primary porosity by means of the petrographic study and the secondary porosity related statistically with the quantity of fractures of each formation, as well as opening, interconnection and dip. It is made an approach to hydrogeological potential of the geologic outcropping formations in La Mesa de Los Santos, Department of Santander, from the stratigraphic and petrographic analysis and the structural features of these formations. The Upper Member of Los Santos Formation presents the highest potential because of rock's fracturing, continued by the Lower Member with low primary porosity and half fracturing. Silgara Formation, Granito de Pescadero, Jordan Formation and some sections of the sandy levels of the Rosablanca Formation presents a lowest potential due to its low porosity and low grade of fracturing. Low permeability is presented in the Middle Member of the Los Santos Formation, Paja and Tablazo formations, as well as in sectors of the fore mentioned formations and in the Quaternary deposits.

  14. Onshore/ Offshore Geologic Assessment for Carbon Storage in the Southeastern United States

    Science.gov (United States)

    Knapp, C. C.; Knapp, J. H.; Brantley, D.; Lakshmi, V.; Almutairi, K.; Almayahi, D.; Akintunde, O. M.; Ollmann, J.

    2017-12-01

    Eighty percent of the world's energy relies on fossil fuels and under increasingly stricter national and international regulations on greenhouse gas emissions storage of CO2 in geologic repositories seems to be not only a feasible, but also and vital solution for near/ mid-term reduction of carbon emissions. We have evaluated the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift (SGR) basin, and (2) the Mesozoic and Cenozoic geologic formations along the Mid- and South Atlantic seaboard. These analyses have included integration of subsurface geophysical data (2- and 3-D seismic surveys) with core samples, well logs as well as uses of geological databases and geospatial analysis leading to CO2 injection simulation models. ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. While the target reservoirs onshore show heterogeneity and a highly complex geologic evolution they also show promising conditions for significant safe CO2 storage away from the underground acquifers. Our offshore study (the Southeast Offshore Storage Resource Assessment - SOSRA) is focused on the outer continental shelf from North Carolina to the southern tip of Florida. Three old exploration wells are available to provide additional constraints on the seismic reflection profiles. Two of these wells (TRANSCO 1005-1 and COST GE-1) penetrate the pre-rift Paleozoic sedimentary formations while the EXXON 564-1 well penetrates the post

  15. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1978

    International Nuclear Information System (INIS)

    Dutton, S.P.; Finley, R.J.; Galloway, W.E.; Gustavson, T.C.; Handford, C.R.; Presley, M.W.

    1979-01-01

    Early in 1977 the Bureau of Economic Geology was invited to assemble and evaluate geologic data on several salt-bearing basins within the State of Texas as a contribution to the national nuclear repository program. In response to this request, the Bureau, acting as a technical research unit of the University of Texas at Austin and the State of Texas, initiated a long-term program to assemble and interpret all geologic and hydrologic information necessary for delineation, description, and evaluation of salt-bearing strata in the Panhandle area. The technical program can be subdivided into three broad research tasks, which are addressed by a basin analysis group, a surface studies group, and a basin geohydrology group. The basin analysis group has assembled the regional stratigraphic and structural framework of the total basin fill, initiated evaluation of natural resources, and selected stratigraphic core sites for sampling the salt and associated beds. Two drilling sites have provided nearly 8000 feet (2400 m) of core material for analysis and testing of the various lithologies overlying and interbedded with salt units. Concurrently, the surface studies group has collected ground and remotely-sensed data to describe surficial processes, including carbonate and evaporate solution, geomorphic evolution, and fracture system development. The newly formed basin geohydrology group will evaluate both shallow and deep circulation of fluids within the basins. This paper, a summary report of progress, reviews principal conclusions and illustrates the methodologies used and the types of data and displays generated

  16. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan

    Science.gov (United States)

    Skiner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2009-01-01

    The highland-lowland boundary (HLB) of Mars is interpreted to be a complex tectonic and erosional transition that may hold evidence for past geologic processes and environments. The HLB-abutting margin of the Libya Montes and the interbasin plains of northern Tyrrhena Terra display an exceptional view of the earliest to middle history of Mars that has yet to be fully characterized. This region contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. However, a full understanding of the regions geologic and stratigraphic evolution is remarkably lacking. Some outstanding questions regarding the geologic evolution of Libya Montes and northern Tyrrhena Terra in-clude: Does combining geomorphology and composition advance our understanding of the region s evolution? Can highland materials be subdivided into stratigraphically discrete rock and sediment sequences? What do major physiographic transitions imply about the balanced tectonism, climate change, and erosion? Where is the erosional origin and what is the post-depositional history of channel and plains units? When and in what types of environments did aqueous mineral signatures arise? This abstract introduces the geologic setting, science rationale, and first year work plan of a recently-funded 4-year geologic mapping proposal (project year = calendar year). The objective is to delineate the geologic evolution of Libya Montes and northern Tyrrhena Terra at 1:1M scale using both classical geomorphological and compositional mapping techniques. The funded quadrangles are MTMs 00282, -05282, -10282, 00277, -05277, and -10277.

  17. Geology and mineral occurences of braquiantidinal do Lontra - GO

    International Nuclear Information System (INIS)

    Macambira, J.B.

    1983-01-01

    This work involved the geological mapping (in the scale 1:60.000) of an area of 800 square kilometers in the nortwestern part of the state of Goias, near and east of the Araguaia river. Based on the stratigraphy, metamorphism, geochronology, magmatism and mineral deposits hypotheses on the geological evolution of the region are discussed. The area studied belongs to the Precambrian Araguaia Fold Belt. The oldest rocks identified are trondhjemitic gneisses and on these rocks was deposited a sedimentary sequence with minor volcanics of a geosynclinal type. The stratigraphic column of Abreu (1978) was adopted with minor modifications. The basement, of transamazonic age (2000 Ma), consists mostly of gneiss, migmatite, granite gneiss and amphibolite. The metasediments belongs to the lower unit (Estrondo Group) of the Supergroup Baixo Araguaia. The Estrondo Group, of brasilian age (600 Ma), consists in the area of the lowermost Morro do Campo Formation, mainly quartzite and amphibolite, which give the high relief of the brachyanticlines of Lontra and Ramal do Lontra.(author)

  18. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  19. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    OpenAIRE

    Adewale Amosu; Yuefeng Sun

    2017-01-01

    WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections) within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software produ...

  20. Stratigraphic and tectonic revision of Cerro Olivo Complex located of Southeastern of Uruguay

    International Nuclear Information System (INIS)

    Masquelin, E.

    2004-01-01

    This paper presents a stratigraphic and tectonic revision of Cerro Olivo Complex, located in the Southeastern part of the Uruguayan Predevonian Shield. This informal lithostratigraphic unit constitutes the country rock for the emplacement of late-orogenic granitoids, during Neoproterozoic to Cambrian times. This unit groups all the lithodemes affected by deformation and metamorphism. Recent studies indicate the presence of straight gneisses of quartzo-feldspathic composition in the coast of Maldonado Department. These rocks were interpreted as the result of intense deformation in high temperature. These tectonites base a new stratigraphic insight for the complex. They allow their lithotypes to be organized by petrotectonic features, being a function of PT conditions for every last strain process [es

  1. Geostatistical and stratigraphic analysis of deltaic reservoirs from the Reconcavo Basin, Brazil; Analise estratigrafica e geoestatistica de reservatorios deltaicos da Bacia do Reconcavo (BA)

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Carlos Moreira

    1997-07-01

    This study presents the characterization of the external geometry of deltaic oil reservoirs, including the description of their areal distribution using geo statistic tools, such as variography and kriging. A high-resolution stratigraphic study was developed over a 25 km{sup 2} area, by using data from 276 closely-spaced wells of an oil-producer field from the Reconcavo Basin, northeastern Brazil. The studied succession records the progressive lacustrine transgression of a deltaic environment. Core data and stratigraphic cross sections suggest that the oil reservoirs are mostly amalgamated, delta-front lobes, and subordinately, crevasse deposits. Some important geometrical elements were recognized by the detailed variographic analysis developed for each stratigraphic unit (zone). The average width for the groups of deltaic lobes of one zone was measured from the variographic feature informally named as hole effect. This procedure was not possible for the other zones due to the intense lateral amalgamation of sandstones, indicated by many variographic nested structures. Net sand krigged maps for the main zones suggest a NNW-SSE orientation for the deltaic lobes, as also their common amalgamation and compensation arrangements. High-resolution stratigraphic analyses should include a more regional characterization of the depositional system that comprises the studied succession. On the other hand, geostatistical studies should be developed only after the recognition of the depositional processes acting in the study area and the geological meaning of the variable to be treated, including its spatial variability scales as a function of sand body thickness, orientation and amalgamation. (author)

  2. Preliminary geologic map of the Fontana 7.5' quadrangle, Riverside and San Bernardino Counties, California

    Science.gov (United States)

    Morton, Douglas M.; Digital preparation by Bovard, Kelly R.

    2003-01-01

    the unit symbols as follows: lg, large boulders; b, boulder; g, gravel; a, arenaceous; s, silt; c, clay; e.g. Qyfa is a predominantly young alluvial fan deposit that is arenaceous. Multiple letters are used for more specific identification or for mixed units, e.g., Qfysa is a silty sand. In some cases, mixed units are indicated by a compound symbol; e.g., Qyf2sc. Even though this is an Open-File Report and includes the standard USGS Open-File disclaimer, the report closely adheres to the stratigraphic nomenclature of the U.S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (4b above) or plotting the postscript files (2 or 3 above).

  3. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    objective is to determine the distribution and ages of valleys. In our study, we incorporated detailed photogeologic mapping, comprehensive crater statistics (table 1), and geologic, paleotectonic, and paleoerosional Geographic Information System (GIS) databases. Sheets 1–3 show geologic units, faults and other significant structures, and valleys, respectively. To help unravel the complex geologic history of the Thaumasia region, we transferred the highly detailed geologic unit, paleotectonic, and paleoerosional information of sheets 1–3 into a multilayered GIS database for comparative analysis. The geologic information was transferred from hard copy into a digital format by scanning at 25 micron resolution on a drum scanner. The 2-bit scanned image was then converted to an x,y coordinate system using ARC/INFO's vectorization routine. The geologic unit, structural, and erosional data were transformed into the original map projection, Lambert Conformal. The average transformation root mean square error was 0.25 km (acceptable for the Thaumasia map base at 1:5,000,000 scale). After transformation, the features were properly attributed and tediously checked. Once digitized, the map data can be transformed into any map projection depending on the type of data analysis. For example, the equal-area sinusoidal projection was used for determining the precise area of geologic units (table 1). In addition to the geologic map and its attendant stratigraphic section, correlation chart, and description of map units, we include text sections that clarify the histories and temporal, spatial, and causal relations of the various geologic units and landforms of the Thaumasia region. The geologic summary section defines the sequence of major geologic events.

  4. Petroleum geology framework, southeast Bowser Basin, British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Haggart, J.W. [Geological Survey of Canada, Vancouver, BC (Canada); Mahoney, J.B. [Wisconsin Univ., Eau Claire, WS (United States). Dept. of Geology

    2003-07-01

    There are significant coal resources in the northern regions of the Bowser basin in north-central British Columbia. However, the resource potential of the southern part of the basin has not been assessed, therefore the hydrocarbon potential is not known. Geological maps indicate several Mesozoic clastic and volcanic units across the southern part of the basin. Two stratigraphic intervals of the southern Bowser basin are considered to be potential source rocks within the Jurassic-Cretaceous strata. The fine-grained clastic rocks of the Bowser Lake Group contain significant amounts of carbonaceous material or organic matter. Well developed cleavage indicates that the rocks may be thermally over mature. This paper described potential reservoir rocks within the basin, along with their thermal maturation and conceptual play. 4 figs.

  5. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    Science.gov (United States)

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  6. Approaches for the accurate definition of geological time boundaries

    Science.gov (United States)

    Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo

    2015-04-01

    Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age

  7. Fossil preservation and the stratigraphic ranges of taxa

    Science.gov (United States)

    Foote, M.; Raup, D. M.

    1996-01-01

    The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy. Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased.(3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of

  8. Review and protection possibilities of some trans-border (East Serbia-West Bulgaria stratigraphic/palaeontological geosites

    Directory of Open Access Journals (Sweden)

    Jovanović Velimir

    2012-01-01

    Full Text Available Stratigraphic/palaeontological geosites of Stara Planina Mountain in east Serbia are well developed in the area of Serbian/Bulgarian state border, where with this occassion, three sections of exeptional geological and scientific interest are selected: Jelovica, Rosomač and Senokos. These geosites represent the important localities for study of Triassic and Jurassic terrigene-carbonate deposits, for which the scientific value from the domains of palaeontology, stratigraphy and sedimentology is widely known. The aim of this work is to represent the main scientific arguments for inventory and protection of detached transborder geological sites that are unique according to their composition and content.[Projekat Ministarstva nauke Republike Srbije, br. 176008

  9. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Science.gov (United States)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts

  10. Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits

    Science.gov (United States)

    Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter

    2015-04-01

    The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.

  11. Mercury compositional units inferred by MDIS. A comparison with the geology in support to the BepiColombo mission

    Science.gov (United States)

    Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Filacchione, Gianrico; Giacomini, Lorenza; Massirioni, Matteo; Palumbo, Pasquale

    2016-04-01

    distributed distinct spectral units. Therefore, integrating the spectral variability to a well defined morpho-stratigraphic (photo-interpreted) map will permit to improve the geologic map itself, defining sub-units, and associating spectral properties to analogue deposits. We are working to produce quadrangles color mosaics and high resolution color mosaics of smaller areas to define color products (common planetary geologic map) and obtain an "advanced" geologic map. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging data from different instruments provides additional information about lithological composition, contributing to the construction of a more complete geological map (e.g., Giacomini et al., 2012). These work has been done in support of the BepiColombo Mission, which has an innovative Spectrometer and Imagers Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS is composed by three instruments, the visible-near-infrared imaging spectrometer (VIHI), the high-resolution imager (HRIC) and the stereo imaging system (STC) which will be albe to improve the knowledge of Mercury surface form the geological and compositional point of view. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0)

  12. Stratigraphic, regional unconformity analysis and potential petroleum plays of East Siberian Sea Basin

    Science.gov (United States)

    Karpov, Yury; Stoupakova, Antonina; Suslova, Anna; Agasheva, Mariia

    2017-04-01

    The East Siberian Sea basin (ESSB) one of the most unexplored part of the Russian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. This region is considered as a region with probable high petroleum potential. Within the ESSB several phases of orogeny are recognized [1]: Elsmerian orogeny in Early Devonian, Early Brooks orogeny in Early Cretaceous, Late Brooks orogeny in Late Cretaceous. Two generations of the basins could be outlined. Both of these generations are controlled by the basement domains [1]: Paleozoic (post-Devonian) to Mesozoic basins preserved north of the Late Mesozoic frontal thrusts; Aptian-Albian to Quaternary basins, postdating the Verkhoyansk-Brookian orogeny, and evolving mainly over the New-Siberian-Chukchi Fold Belt. Basin is filled with siliclastic sediments and in the deepest depocentres sediments thickness exceeds 8-10 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Finally, main seismic horizons were indicated and each horizon follows regional stratigraphic unconformities: mBU - in base of Cenozoic, BU - in base of Upper Cretaceous, LCU - in base of Cretaceous, JU - in middle of Jurassic, F - in top of Basement. In ESSB, we can identify Permian, Triassic, Jurassic, Cretaceous, Paleogene and Neogene seismic stratigraphy complexes. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other onshore and offshore basins [2, 3, 4]. The majority of structures could be connected with stratigraphic and fault traps. The most perspective prospects are probably connected with grabens and depressions, where thickness of sediments exceed 10 km. Reservoirs in ESSB are proposed by regional geological explorations on New Siberian Islands Archipelago and Wrangel Island. Potential seals are predominantly assigned to Jurassic and Cretaceous periods. Thick clinoform units of various geometry and

  13. Geologic framework for the assessment of undiscovered oil and gas resources in sandstone reservoirs of the Upper Jurassic-Lower Cretaceous Cotton Valley Group, U.S. Gulf of Mexico region

    Science.gov (United States)

    Eoff, Jennifer D.; Dubiel, Russell F.; Pearson, Ofori N.; Whidden, Katherine J.

    2015-01-01

    The U.S. Geological Survey (USGS) is assessing the undiscovered oil and gas resources in sandstone reservoirs of the Upper Jurassic–Lower Cretaceous Cotton Valley Group in onshore areas and State waters of the U.S. Gulf of Mexico region. The assessment is based on geologic elements of a total petroleum system. Four assessment units (AUs) are defined based on characterization of hydrocarbon source and reservoir rocks, seals, traps, and the geohistory of the hydrocarbon products. Strata in each AU share similar stratigraphic, structural, and hydrocarbon-charge histories.

  14. Drilling rate for the Cerro Prieto stratigraphic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Prian C, R.

    1981-01-01

    Drilling practice at the field has been modified in several ways as better information is being obtained. The stratigraphic sequence of the area is made up of three sedimentary rock units of deltaic origin having different densities. These units have been named non-consolidated, semi-consolidated, and consolidated rocks; the thermal reservoirs are located in the latter. To investigate how the drilling rates are affected by the three rock units, plots of drilling advance versus time were made for a large number of wells. A typical plot is shown and drilling rates are practically constant in three different zones; that is, the drilling rate has only two breaks or changes in slope.

  15. A spatial database of bedding attitudes to accompany Geologic map of the greater Denver area, Front Range Urban Corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  16. Earth-Base: testing the temporal congruency of paleontological collections and geologic maps of North America

    Science.gov (United States)

    Heim, N. A.; Kishor, P.; McClennen, M.; Peters, S. E.

    2012-12-01

    Free and open source software and data facilitate novel research by allowing geoscientists to quickly and easily bring together disparate data that have been independently collected for many different purposes. The Earth-Base project brings together several datasets using a common space-time framework that is managed and analyzed using open source software. Earth-Base currently draws on stratigraphic, paleontologic, tectonic, geodynamic, seismic, botanical, hydrologic and cartographic data. Furthermore, Earth-Base is powered by RESTful data services operating on top of PostgreSQL and MySQL databases and the R programming environment, making much of the functionality accessible to third-parties even though the detailed data schemas are unknown to them. We demonstrate the scientific potential of Earth-Base and other FOSS by comparing the stated age of fossil collections to the age of the bedrock upon which they are geolocated. This analysis makes use of web services for the Paleobiology Database (PaleoDB), Macrostrat, the 2005 Geologic Map of North America (Garrity et al. 2009) and geologic maps of the conterminous United States. This analysis is a way to quickly assess the accuracy of temporal and spatial congruence of the paleontologic and geologic map datasets. We find that 56.1% of the 52,593 PaleoDB collections have temporally consistent ages with the bedrock upon which they are located based on the Geologic Map of North America. Surprisingly, fossil collections within the conterminous United States are more consistently located on bedrock with congruent geological ages, even though the USA maps are spatially and temporally more precise. Approximately 57% of the 37,344 PaleoDB collections in the USA are located on similarly aged geologic map units. Increased accuracy is attributed to the lumping of Pliocene and Quaternary geologic map units along the Atlantic and Gulf coastal plains in the Geologic Map of North America. The abundant Pliocene fossil collections

  17. A preliminary guidebook for identifying stratigraphic contacts at the Nevada Test Site

    International Nuclear Information System (INIS)

    Pawloski, G.A.; McKague, H.L.; Wagoner, J.L.; McKinnis, W.B.

    1992-01-01

    Lithologic variation, regional depositional trends, and the lack of written guidelines have resulted in inconsistencies in the recognition of stratigraphic contacts in drill holes at the Nevada Test Site (NTS). Stratigraphic identification, based on mineralogy of discrete samples, can be augmented by geophysical logs and downhole movies to more accurately and consistently locate contacts between units. Criteria are established for locating the base of the Pahute Mesa ash-flow tuff, the top of the Ammonia Tanks ash-flow tuff, the top of the Ammonia Tanks bedded tuff, and the top and the base of the Rainier Mesa Tuff

  18. The 16th International Geological Congress, Washington, 1933

    Science.gov (United States)

    Nelson, C.M.

    2009-01-01

    In 1933, the International Geological Congress (IGC) returned to the United States of America (USA) for its sixteenth meeting, forty-two years after the 5th IGC convened in Washington. The Geological Society of America and the U.S. Geological Survey (USGS) supplied the major part of the required extra-registration funding after the effects of the Great Depression influenced the 72th U.S. Congress not to do so. A reported 1, 182 persons or organizations, representing fifty-four countries, registered for the 16 th IGC and thirty-four countries sent 141 official delegates. Of the total number of registrants, 665 actually attended the meeting; 500 came from the USA; and fifteen had participated in the 5th IGC. The 16 th Meeting convened in the U.S. Chamber of Commerce Building from 22 to 29 July. The eighteen half-day scientific sections-orogenesis (four), major divisions of the Paleozoic (three), miscellaneous (three), batholiths and related intrusives (two), arid-region geomorphic processes and products (one), fossil man and contemporary faunas (one), geology of copper and other ore deposits (one), geology of petroleum (one), measuring geologic time (one), and zonal relations of metalliferous deposits (one)-included 166 papers, of which fifty (including several of the key contributions) appeared only by title. The Geological Society of Washington, the National Academy of Sciences, and the U.S. Bureau of Mines hosted or contributed to evening presentations or receptions. Twenty-eight of the 16th IGC's thirty new guidebooks and one new USGS Bulletin aided eight pre-meeting, seven during-meeting, and four post-meeting field trips of local, regional, or national scope. The remaining two new guidebooks outlined the USA's structural geology and its stratigraphic nomenclature. The 16th IGC published a two-volume monograph on the world's copper resources (1935) and a two-volume report of its proceedings (1936).

  19. Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Buesch, D.C.; Spengler, R.W.; Moyer, T.C.; Geslin, J.K.

    1996-09-01

    This paper describes the formations of the Paintbrush Group exposed at Yucca Mountain, Nevada, presents a detailed stratigraphic nomenclature for the Tiva Canyon and Topopah spring Tuffs, and discusses the criteria that define lithostratigraphic units. The Tiva Canyon and Topopah Spring Tuffs are divided into zones, subzones, and intervals on the basis of macroscopic features observed in surface exposures and borehole samples. Primary divisions reflect depositional and compositional zoning that is expressed by variations in crystal content, phenocryst assemblage, pumice content and composition, and lithic content. Secondary divisions define welding and crystlalization zones, depositional features, or fracture characteristics. Both formations are divided into crystal-rich and crystal-poor members that have an identical sequency of zones, although subzone designations vary slightly between the two units. The identified lithostratigraphic divisions can be used to approximate thermal-mechanical and hydrogeologic boundaries in the field. Linking these three systems of nomenclature provides a framework within which to correlate these properties through regions of sparse data.

  20. Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Buesch, D.C.; Spengler, R.W.; Moyer, T.C.; Geslin, J.K.

    1996-01-01

    This paper describes the formations of the Paintbrush Group exposed at Yucca Mountain, Nevada, presents a detailed stratigraphic nomenclature for the Tiva Canyon and Topopah spring Tuffs, and discusses the criteria that define lithostratigraphic units. The Tiva Canyon and Topopah Spring Tuffs are divided into zones, subzones, and intervals on the basis of macroscopic features observed in surface exposures and borehole samples. Primary divisions reflect depositional and compositional zoning that is expressed by variations in crystal content, phenocryst assemblage, pumice content and composition, and lithic content. Secondary divisions define welding and crystlalization zones, depositional features, or fracture characteristics. Both formations are divided into crystal-rich and crystal-poor members that have an identical sequency of zones, although subzone designations vary slightly between the two units. The identified lithostratigraphic divisions can be used to approximate thermal-mechanical and hydrogeologic boundaries in the field. Linking these three systems of nomenclature provides a framework within which to correlate these properties through regions of sparse data

  1. Characterizing Structural and Stratigraphic Heterogeneities in a Faulted Aquifer Using Pump Tests with an Array of Westbay Multilevel Monitoring Wells

    Science.gov (United States)

    Johnson, B.; Zhurina, E. N.

    2001-12-01

    We are developing and assessing field testing and analysis methodologies for quantitative characterization of aquifer heterogenities using data measured in an array of multilevel monitoring wells (MLW) during pumping and recovery well tests. We have developed a unique field laboratory to determine the permeability field in a 20m by 40m by 70m volume in the fault partitioned, siliciclastic Hickory aquifer system in central Texas. The site incorporates both stratigraphic variations and a normal fault system that partially offsets the aquifer and impedes cross-fault flow. We constructed a high-resolution geologic model of the site based upon 1050 m of core and a suite of geophysical logs from eleven, closely spaced (3-10m), continuously cored boreholes to depths of 125 m. Westbay multilevel monitoring systems installed in eight holes provide 94 hydraulically isolated measurement zones and 25 injection zones. A good geologic model is critical to proper installation of the MLW. Packers are positioned at all significant fault piercements and selected, laterally extensive, clay-rich strata. Packers in adjacent MLW bracket selected hydrostratigraphic intervals. Pump tests utilized two, uncased, fully penetrating irrigation wells that straddle the fault system and are in close proximity (7 to 65 m) to the MLW. Pumping and recovery transient pressure histories were measured in 85 zones using pressure transducers with a resolution of 55 Pa (0.008 psi). The hydraulic response is that of an anisotropic, unconfined aquifer. The transient pressure histories vary significantly from zone to zone in a single MLW as well as between adjacent MLW. Derivative plots are especially useful for differentiating details of pressure histories. Based on the geologic model, the derivative curve of a zone reflects its absolute vertical position, vertical stratigraphic position, and proximity to either a fault or significant stratigraphic heterogeneity. Additional forward modeling is needed to

  2. Geological Identification of Seismic Source at Opak Fault Based on Stratigraphic Sections of the Southern Mountains

    Directory of Open Access Journals (Sweden)

    Hita Pandita

    2016-08-01

    Full Text Available Earthquake is one of the unpredicted natural disasters on our earth. Despite of the absence of high-accuracy method to precisely predict the occurrence of earthquake, numerous studies have been carried out by seismologists to find it. One of the efforts to address the vulnerability of a region to earthquakes is by recognizing the type of rock as the source of the earthquake. Opak Fault is an active fault which was thought to be the source of earthquakes in Yogyakarta and adjacent areas. This study aimed to determine the seismic source types of rocks in Yogyakarta and adjacent areas. The methods were by measuring stratigraphic sections and the layer thickness in the western part of Southern Mountains. Field study was done in 6 (six research sites. Results of stratigraphic measurement indicated the sedimentary rocks in the Southern Mountains was 3.823 km in thick, while the bedrock was more than 1.042 km in thick. Based on the result, the rock types as the seismic source were thought to originate from the continental crust rocks formed of granite and metamorphic complex.

  3. Regional geologic framework off northeastern United States

    Science.gov (United States)

    Schlee, J.; Behrendt, John C.; Grow, J.A.; Robb, James M.; Mattick, R.; Taylor, P.T.; Lawson, B.J.

    1976-01-01

    Six multichannel seismic-reflection profiles taken across the Atlantic continental margin Previous HitoffTop the northeastern United States show an excess of 14 km of presumed Mesozoic and younger sedimentary rocks in the Baltimore Canyon trough and 8 km in the Georges Bank basin. Beneath the continental rise, the sedimentary prism thickness exceeds 7 km south of New Jersey and Maryland, and it is 4.5 km thick south of Georges Bank. Stratigraphically, the continental slope--outer edge of the continental shelf is a transition zone of high-velocity sedimentary rock, probably carbonate, that covers deeply subsided basement. Acoustically, the sedimentary sequence beneath the shelf is divided into three units which are correlated speculatively with the Cenozoic, the Cretaceous, and the Jurassic-Triassic sections. These units thicken offshore, and some have increased seismic velocities farther offshore. The uppermost unit thickens from a fraction of a kilometer to slightly more than a kilometer in a seaward direction, and velocity values range from 1.7 to 2.2 km/sec. The middle unit thickens from a fraction of a kilometer to as much as 5 km (northern Baltimore Canyon trough), and seismic velocity ranges from 2.2 to 5.4 km/sec. The lowest unit thickens to a maximum of 9 km (northern Baltimore Canyon), and velocities span the 3.9 to 5.9-km/sec interval. The spatial separation of magnetic and gravity anomalies on line 2 (New Jersey) suggests that in the Baltimore Canyon region the magnetic-slope anomaly is due to edge effects and that the previously reported free-air and isostatic gravity anomalies over the outer shelf may be due in part to a lateral increase in sediment density (velocity) near the shelf edge. The East Coast magnetic anomaly and the free-air gravity high both coincide over the outer shelf edge on line 1 (Georges Bank) but are offset by 20 km from the ridge on the reflection profile. Because the magnetic-slope-anomaly wavelength is nearly 50 km across, a

  4. Stratigraphic position, origin and characteristics of manganese mineralization horizons in the Late Cretaceous volcano-sedimentary sequence, south-southwest of Sabzevar

    Directory of Open Access Journals (Sweden)

    Sajjad Maghfouri

    2014-10-01

    part or LMV unit comprised of limestone, marl and volcanic rocks, overlies concordantly on the lower part (K2tv. The manganese mineralization within the host volcano-sedimentary sequence, based on stratigraphic position, relative age and type of host rocks involved the two horizons: the first horizon (Mn Ia, Ib consisting of Benesbourd (Masoudi, 2008, Nudeh (Nasrolahi et al., 2012, Homaie (Nasiri et al., 2010, Goft and Manganese Gostar Khavar Zamin deposits, occurred in the lower part of the sequence (K2tv unit and is hosted by red tuffs. The second horizon (Mn II comprising of Zakeri (Taghizadeh et al., 2012, Cheshmeh Safeid, Mohammad Abad Oryan and Chah Setareh deposits, is hosted by marly-carbonate tuffs and locates within the upper part of the sequence (LMV unit (Maghfouri, 2012. Geometry and shape of the ore bodies in various deposits are as stratiform, layered, parallel and concordant with layering of the host rocks. Textures of the ores include massive, lenticular, banded, laminated and disseminated. Mineralogy of the ores in the two ore horizons is simple and similar and is dominated by pyrolusite, psilomelane and braunite. Gangue minerals are predominantly the host rock-forming minerals including quartz, chlorite and feldspar. Discussion Geochemical data, structures and textures, stratigraphic position and lithologic characteristics of the host rocks represent that manganese reserves in south-southwest Sabzevar were formed as sedimentary-exhalative. Acknowledgements The authors are grateful to the Tarbiat Modares University Grant Commission for research funding. References Maghfouri, S., 2012. Geology, Mineralogy, Geochemistry and Genesis of Cu Mineralization within Late Cretaceous Volcano-Sedimentary Sequence in Southwest of Sabzevar, with emphasis on the Nudeh Deposit. M.Sc. Thesis, Tarbiat Modares University, Tehran, Iran, 312 pp. (in Persian Masoudi, M., 2008. Geology, mineralogy, geochemistry and genesis of Benesbourd Mn deposit in the Southwest Sabzevar

  5. Preliminary report on the geology of the Lakeview uranium area, Lake County, Oregon

    International Nuclear Information System (INIS)

    Walker, G.W.

    1980-01-01

    This study was directed partly toward determining uranium resources, but, more specifically toward establishing the geochemical relations of uranium and other metals with rhyolite bodies in the Lakeview uranium area and to compare these bodies with similar rhyolitic bodies outside the area. The ultimate goal of this work was to determine, if possible, the uranium resource potential of these kinds of rocks over an area of several thousand square kilometers and to apply knowledge gained from this resource assessment to similar terranes within the Northern Basin and Range Province. The regional evaluation is still in progress, and its results will be reported at some appropriate time in the future. To these ends a review was made of previous geologic studies of the area and of the uranium deposits themselves, and some regional geologic mapping was done at a scale of 1:24,000. A geologic map was prepared of an area covering about 450 km 2 (approx. 170 mi 2 ), more or less centered on the White King and Lucky Lass mines and on the major cluster of uranium-bearing rhyolites, and some geologic reconnaissance and attendant sampling of rhyolite intrusives and extrusives well outside the Lakeview uranium area were completed. Isotopic dates were obtained on some units and magnetic polarity characteristics were determined on many units in order to more firmly establish age and stratigraphic relations of the diverse volcanic and volcaniclastic units of the region. Major oxide chemistry and selected trace-element chemistry were obtained on those rhyolitic units suitable for analysis in order to establish distribution patterns for uranium, as well as several other metals, in the rhyolitic rocks of the Lakeview uranium area and to make regional correlations with other analyzed rhyolitic rocks

  6. A Group Simulation of the Development of the Geologic Time Scale.

    Science.gov (United States)

    Bennington, J. Bret

    2000-01-01

    Explains how to demonstrate to students that the relative dating of rock layers is redundant. Uses two column diagrams to simulate stratigraphic sequences from two different geological time scales and asks students to complete the time scale. (YDS)

  7. Mapping variation in radon potential both between and within geological units

    International Nuclear Information System (INIS)

    Miles, J C H; Appleton, J D

    2005-01-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m -3 ) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430 000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock-superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface

  8. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    International Nuclear Information System (INIS)

    Gustavson, T.C.; Presley, M.W.; Handford, C.R.; Finley, R.J.; Dutton, S.P.; Baumgardner, R.W. Jr.; McGillis, K.A.; Simpkins, W.W.

    1980-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated

  9. Geology of Sierra de San Miguel area Rocha department (Uruguay)

    International Nuclear Information System (INIS)

    Muzio, R.; Veroslavsky, G.; Morales, E. . E mail: rossana@fcien.edu.uy

    2004-01-01

    This paper is part of a regional study about Mesozoic magmatism, tectonics and sedimentation in Uruguay. As a result of the geological studies carried out in Sierra de San Miguel area (Rocha department), lithological descriptions, their stratigraphic relationships and their petrographic characterization are presented [es

  10. Regional geologic framework off northeastern United States

    International Nuclear Information System (INIS)

    Schlee, J.; Behrendt, J.C.; Grow, J.A.; Robb, J.M.; Mattick, R.E.; Taylor, P.T.; Lawson, B.J.

    1976-01-01

    Six multichannel seismic-reflection profiles taken across the Atlantic continental margin off the northeastern United States show an excess of 14 km of presumed Mesozoic and younger sedimentary rocks in the Baltimore Canyon trough and 8 km in the Georges Bank basin. Beneath the continental rise, the sedimentary prism thickness exceeds 7 km south of New Jersey and Maryland, and it is 4.5 km thick south of Georges Bank Stratigraphically, the continental slope--outer edge of the continental shelf is a transition zone of high-velocity sedimentary rock, probably carbonate, that covers deeply subsidized basement. The spatial separation of magnetic and gravity anomalies on line 2 (New Jersey) suggests that in the Baltimore Canyon region the magnetic-slope anomaly is due to edge effects and that the previously reported free-air and isostatic gravity anomalies over the outer shelf may be due in part to a lateral increase in sediment density (velocity) near the shelf edge. The East Coast magnetic anomaly and the free-air gravity high both coincide over the outer shelf edge on line 1 (Georges Bank) but are offset by 20 km from the ridge on the reflection profile

  11. 3D stratigraphic forward modelling of Shu'aiba Platform stratigraphy in the Bu Hasa Field, Abu Dhabi, United Arab Emirates.

    Science.gov (United States)

    Hu, J.; Lokier, S. W.

    2012-04-01

    This paper presents the results of three dimensional sequence stratigraphic forward modelling of the Aptian age Shu'aiba Formation from Abu Dhabi, United Arab Emirates (UAE). The Shu'aiba Formation lies within the uppermost part of the Lower Cretaceous Thamama Group and forms one of the most prolific hydrocarbon reservoir intervals of the Middle East with production dating back to the 1960's. The Shu'aiba Formation developed as a series of laterally-extensive shallow-water carbonate platforms in an epeiric sea that extended over the northern margin of the African-Arabian Plate. This shallow sea was bounded by the Arabian Shield to the west and the passive margin with the Neo-Tethys Ocean towards the north and east (Droste, 2010). The exposed Arabian Shield acted as a source of siliciclastic sediments to westernmost regions, however, more offshore areas were dominated by shallow-water carbonate deposition. Carbonate production was variously dominated by Lithocodium-Baccinella, orbitolinid foraminifera and rudist bivalves depending on local conditions. While there have been numerous studies of this important stratigraphic interval (for examples see van Buchem et al., 2010), there has been little attempt to simulate the sequence stratigraphic development of the formation. During the present study modelling was undertaken utilising the CARBONATE-3D stratigraphic forward modelling software (Warrlich et al., 2008; Warrlich et al., 2002)) thus allowing for the control of a diverse range of internal and external parameters on carbonate sequence development. This study focuses on platform development in the onshore Bu Hasa Field - the first giant oilfield to produce from the Shu'aiba Formation in Abu Dhabi. The carbonates of the Bu Hasa field were deposited on the southwest slope of the intra-shelf Bab Basin, siliciclastic content is minor. Initially these carbonates were algal dominated with rudist mounds becoming increasingly important over time (Alsharhan, 1987

  12. Geomorphologic, stratigraphic and sedimentologic evidences of ...

    Indian Academy of Sciences (India)

    The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and ...

  13. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  14. Geologic map and map database of northeastern San Francisco Bay region, California, [including] most of Solano County and parts of Napa, Marin, Contra Costa, San Joaquin, Sacramento, Yolo, and Sonoma Counties

    Science.gov (United States)

    Graymer, Russell Walter; Jones, David Lawrence; Brabb, Earl E.

    2002-01-01

    This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (nesfmf.ps, nesfmf.pdf, nesfmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:62,500 or smaller.

  15. Geological study of the landslide of the Fukenoyu thermal spring area

    Energy Technology Data Exchange (ETDEWEB)

    Okami, K [Dept. of Mining and Civil Engg., Fac of Technology, Iwate Univ.; Murai, S; Karasaki, H

    1975-11-01

    The 1973 landslide at Fukenoyu thermal spring, Hachimantai National Park, Japan, was studied geologically. The subsurface structure of the area was determined to contain faulted basement rock with distinct glide planes and a predominantly clayey mineralogy, including montmorillonite. It was concluded that the landslide was caused by the influx of water from melting snow and unstable geology. Two maps, one cross section, six stratigraphic columns, two charts and one table are provided.

  16. Salt Repository Project site study plan for stratigraphic boreholes: Revision 1, December 18, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This site study describes the Stratigraphic Boreholes field work to be conducted during the early stages of Site Characterization at the Deaf Smith County, Texas site. The field program has been designed to provide data useful in addressing information/data needs resulting from Federal/State/local regulations, and repository program requirements. Four Stratigraphic Holes will be drilled near the perimeter of the site to document the subsurface geologic conditions in that area and to provide data necessary for design and construction of the Exploratory Shaft Facilities. Continuous samples will be recovered from the ground surface to the total depth of each sell. Geophysical well logs will provide additional coverage of the stratigraphic section. In-situ down hole testing will include short term hydrologic tests and hydraulic fracture tests to provide information on deep groundwater characteristics and regional stress patterns, respectively. Field methods/tests are chosen that provide the best or only means of obtaining the required data. The Salt Repository Project (SRP) Networks specify the schedule which the program will operate. The Technical Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 30 refs., 13 figs., 4 tabs

  17. Brazil Geologic Basic Survey Program - Barbacena - Sheet SF.23-X-C-III -Minas Gerais State

    International Nuclear Information System (INIS)

    Brandalise, L.A.

    1991-01-01

    The present report refers to the Barbacena sheet (SF.23-X-C-III) systematic geological mapping, on the 1:10,000 scale, related to the Levantamentos Geologicos Basicos do Brasil Program - PLGB, carried out by CPRM for the DNPM. Integrated to geochemical and geophysical surveys, the geological mapping not only yielded geophysical and geochemical maps but a consistent to the 1:100.000 scale Metallogenetic/Provisional one as well. The geological mapping carried out during the Project has really evidenced that samples of distinct stratigraphic units had been employed to define the one and only isochrone. However geochronologic Rb/Sr dating performed during the geological mapping phase evidenced Archean ages for rocks of the Sao Bento dos Torres Metamorphic Suite (2684 ± 110 m.y.) and ages of about 2000 m.y. for the Ressaquinha Complex rocks. An analysis of crustal evolution patterns based on geological mapping, gravimetric survey data, aeromagnetometry and available geochronologic data is given in the Chapter 6, Part II, in the test. Major element oxides, trace-elements and rare-earths elements were analysed to establish parameters for the rocks environment elucidation. Geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the sheet. (author)

  18. Integration of seismic-reflection and well data to assess the potential impact of stratigraphic and structural features on sustainable water supply from the Floridan aquifer system, Broward County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.

    2014-01-01

    The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource. The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.

  19. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    structures: A limited set of material units and tectonic structures describes the geological situation on the surface of Venus (Fig. 1). The globally applicable stratigraphic sequence summarizing varieties of local to regional columns consists of the following units (from older to younger), the relative ages of which are established by relationships of embayment: Tessera (t) represents elevated regions deformed by multiple sets of tectonic structures. Densely lineated plains (pdl) are dissected by numerous subparallel narrow and short lineaments. Ridged plains (pr) commonly form elongated belts of ridges. Shield plains (psh) have numerous small volcanic edifices on the surface. Regional plains were divided into the lower (pr1) and the upper (pr2) units. The lower unit has uniform and relatively low radar albedo; the upper unit is brighter and often forms flow-like occurrences. Shield clusters (sc) are morphologically similar to psh but occur as small patches that postdate regional plains. Smooth plains (ps) have uniform and low radar albedo and occur near impact craters and at distinct volcanic centers. Lobate plains (pl) form fields of lava flows that are typically undeformed by tectonic structures and are associated with major volcanic centers. Several structural assemblages complicate the surface of the material units: Tessera-forming structures (ridges and grooves), belts of ridges, belts of grooves (structural unit gb), mountain belts (structural unit mt that occurs around Lakhmi Planum), wrinkle ridges, and rift zones (structural unit rt). The higly tectonized material and structural units such as t, pdl, pr, mt, and gb predate vast plains units such as psh and rp1. Wrinkle ridges deform all units that are older than units ps and pl. Smooth and lobate plains together with rift zones and shield clusters appear to be contemporaneous and form the top of the global stratigraphic column. Crater statistics: Two factors, the atmosphere screening [32-34] and the observational

  20. Stratigraphic architecture of bedrock reference section, Victoria Crater, Meridiani Planum, Mars

    Science.gov (United States)

    Edgar, Lauren A.; Grotzinger, John P.; Hayes, Alex G.; Rubin, David M.; Squyres, Steve W.; Bell, James F.; Herkenhoff, Ken E.

    2012-01-01

    The Mars Exploration Rover Opportunity has investigated bedrock outcrops exposed in several craters at Meridiani Planum, Mars, in an effort to better understand the role of surface processes in its geologic history. Opportunity has recently completed its observations of Victoria crater, which is 750 m in diameter and exposes cliffs up to ~15 m high. The plains surrounding Victoria crater are ~10 m higher in elevation than those surrounding the previously explored Endurance crater, indicating that the Victoria crater exposes a stratigraphically higher section than does the Endurance crater; however, Victoria strata overlap in elevation with the rocks exposed at the Erebus crater. Victoria crater has a well-developed geomorphic pattern of promontories and embayments that define the crater wall and that reveal thick bedsets (3–7m) of large-scale cross-bedding, interpreted as fossil eolian dunes. Opportunity was able to drive into the crater at Duck Bay, located on the western margin of Victoria crater. Data from the Microscopic Imager and Panoramic Camera reveal details about the structures, textures, and depositional and diagenetic events that influenced the Victoria bedrock. A lithostratigraphic subdivision of bedrock units was enabled by the presence of a light-toned band that lines much of the upper rim of the crater. In ascending order, three stratigraphic units are named Lyell, Smith, and Steno; Smith is the light-toned band. In the Reference Section exposed along the ingress path at Duck Bay, Smith is interpreted to represent a zone of diagenetic recrystallization; however, its upper contact also coincides with a primary erosional surface. Elsewhere in the crater the diagenetic band crosscuts the physical stratigraphy. Correlation with strata present at nearby promontory Cape Verde indicates that there is an erosional surface at the base of the cliff face that corresponds to the erosional contact below Steno. The erosional contact at the base of Cape Verde

  1. Surface geology of Williston 7.5-minute quadrangle, Aiken and Barnwell Counties, South Carolina

    International Nuclear Information System (INIS)

    Willoughby, R.H.; Nystrom, P.G. Jr.; Denham, M.E.; Eddy, C.A.; Price, L.K.

    1994-01-01

    Detailed geologic mapping has shown the distribution and lithologic character of stratigraphic units and sedimentary deposits in Williston quadrangle. A middle Eocene stratigraphic unit correlative with the restricted McBean Formation is the oldest unit at the surface. The McBean-equivalent unit occurs at low elevations along drainages in the north of the quadrangle but does not crop out. These beds are typically very fine- to fine-grained quartz sand, locally with abundant black organic matter and less commonly with calcium carbonate. The uppermost middle Eocene Orangeburg District bed, commonly composed of loose, clay-poor, very fine- to fine-grained quartz sand, occurs at the surface in the north and southwest of the quadrangle with sparse exposure. The upper Eocene Dry Branch Formation occurs on valley slopes throughout the quadrangle. The Dry Branch is composed of medium- to very coarse-grained quartz sand with varying amounts on interstitial clay and lesser bedded clay. The upper Eocene Tobacco road Sand occurs on upper valley slopes and some interfluves and consists of very fine-grained quartz sand to quartz granules. The upper Middle Miocene to lower Upper Miocene upland unit caps the interfluves and is dominantly coarse-grained quartz sand to quartz granules, with included granule-size particles of white clay that are weathered feldspars. Loose, incohesive quartzose sands of the eolian Pinehurst Formation, Upper Miocene to Lower Pliocene, occur on the eastern slopes of some interfluves in the north of the quadrangle. Quartz sand with varying included humic matter occurs in Carolina bays, and loose deposits of windblown sand occur on the rims of several Carolina bays. Quaternary alluvium fills the valley floors

  2. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  3. New SHRIMP zircon results from Broken Hill: towards robust stratigraphic and event timing

    International Nuclear Information System (INIS)

    Page, R.W.; Stevens, B.P.J.

    1999-01-01

    Full text: Zircon U-Pb SHRIMP geochronology is a powerful means of elucidating geological ages, providing that it is integrated with unequivocal field constraints, and providing that the fundamental assumptions which are behind any isotopic dating methods are geologically validated. In an attempt to better quantify the timing of Broken Hill's complex history and to reduce some current uncertainties, we report initial results from a new U-Pb SHRIMP investigation. This program was planned within the background of our own disparate stratigraphic and structural approaches to Broken Hill geology, and with objectives to (a) benchmark our new age results with those of previous workers as well as our own previous work in the Broken Hill Group, (b) evaluate and test the evidence for reported Archaean basement terrain, (c) date stratigraphic units in the upper parts of the Willyama Supergroup, (d) better constrain the timing of deformational events. Our U-Pb SHRIMP work on zircons from layered paragneisses in the Redan Geophysical Zone near Farmcote was catalysed by Nutman and Ehlers' (1998a) preferred interpretation that these 'strondhjemitic' gneisses represent an original ∼2650 Ma protolith. Our work finds zircon provenance age signatures typical of almost all ca. 1700 Ma metasediments, whether in the Broken Hill Block or other Australian Palaeoproterozoic settings. This therefore suggests that the rocks are not Archaean basement, but are part of a Thackaringa Group package possibly deposited about 1705-1710 Ma ago. New SHRIMP work on the Alma Gneiss provides a magmatic age of 1704±3 Ma, and a minimum stratigraphic age for host Thackaringa Group. This result is within error of our ages for other granitoids (1703±3 Ma, 1704±3 Ma) in the same stratigraphic position near Farmcote. As the Thackaringa Group is no more than 1000-1500 metres thick and includes 1710-1700 Ma detrital zircons, pan of the Alma Gneiss intrusion may well have been shallowly intruded, and akin to

  4. Seismic stratigraphic architecture of the Disko Bay trough-mouth fan system, West Greenland

    Science.gov (United States)

    Hofmann, Julia C.; Knutz, Paul C.

    2015-04-01

    succession has been divided into five seismic units, each representing different stages in the progradational accumulation of the TMF system. This poster and ongoing study will discuss how the ice-stream flow switching is linked to changes in depocentres of sedimentary sequences and further investigate the major controls, e.g. ice-sheet dynamics, ocean-climate changes, tectonic forcing and subglacial geology, that determined the evolution of the Disko Bay TMF. Essencial bibliography Mitchum, R.M. Jr., Vail, P.R., Sangree, J.B., 1977. Seismic stratigraphy and global changes of sea level, Part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. AAPG Memoir 26, 117-133. Ó Cofaigh, C., Andrews, J.T., Jennings, A.E., Dowdeswell, J.A., Hogan, K.A., Kilfeather, A.A., Sheldon, C., 2013. Glacimarine lithofacies, provenance and depositional processes on a West Greenland trough-mouth fan. Journal of Quaternary Science, 28(1), 13-26.

  5. Geologic feasibility of selected chalk-bearing sequences within the conterminous United States with regard to siting of radioactive-waste repositories

    International Nuclear Information System (INIS)

    Gonzales, S.

    1975-11-01

    Various geologic and hydrologic parameters are evaluated in relation to assessing the potential for repository storage of high-level radioactive wastes within several stratigraphic sequences dominated by chalks and chalky limestones. The former lithology is defined as a carbonate rock consisting mainly of very fine-grained particles of micritic calcite. Although chalks also contain coarser-grained particles such as shells of fossil foraminifera and non-calcitic minerals like quartz, most contain more than 90 percent micritic material. The latter represents broken fossil coccolith plates. The chalk-dominated formations discussed are exposed and underlie two different physiographic provinces which nevertheless display a general similarity in both being regions of extensive plains. The Niobrara Formation occurs mainly within the Great Plains province, while the Austin Chalk of Texas and the Selma Group of Alabama and Mississippi are located in the western and eastern Gulf Coastal Plain, respectively. The preliminary assessment is that chalk-bearing sequences show some promise and are deserving of added consideration and evaluation. Containment for hundreds of thousands of years would seem possible given certain assumptions. The most promising units from the three studied are the Niobrara Formation and Selma Group. Regional and local conditions make the Austin more suspect

  6. Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan

    Science.gov (United States)

    Skinner, J. A., Jr.; Tanaka, K. L.; Hare, T. M.

    2009-01-01

    The southern Utopia highland-lowland boundary (HLB) extends >1500 km westward from Hyblaeus Dorsa to the topographic saddle that separates Isidis and Utopia Planitiae. It contains bench-like platforms that contain depressions, pitted cones (some organized into arcuate chains and thumb-print terrain), isolated domes, buried circular depressions, ring fractures, polygonal fractures, and other locally- to regionally-dispersed landforms [1-2]. The objective of this map project is to clarify the geologic evolution of the southern Utopia Planitia HLB by identifying the geologic, structural, and stratigraphic relationships of surface materials in MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247. The project was originally awarded in April, 2007 and is in its final year of support. Mapping is on-schedule and formal map submission will occur by December, 2009, with finalization anticipated by April, 2010. Herein, we (1) review specifics regarding mapping data and methods, (2) present nomenclature requests that we feel will assist with unit descriptions, (3) describe Year 2 mapping and science accomplishments, and (4) outline Year 3 technical and managerial approaches for finalizing the geologic map.

  7. Investigation of background radiation levels and geologic unit profiles in Durango, Colorado

    International Nuclear Information System (INIS)

    Triplett, G.H.; Foutz, W.L.; Lesperance, L.R.

    1989-11-01

    As part of the Uranium Mill Tailings Remedial Action (UMTRA) Project, Oak Ridge National Laboratory (ORNL) has performed radiological surveys on 435 vicinity properties (VPs) in the Durango area. This study was undertaken to establish the background radiation levels and geologic unit profiles in the Durango VP area. During the months of May through June, 1986, extensive radiometric measurements and surface soil samples were collected in the Durango VP area by personnel from ORNL's Grand Junction Office. A majority of the Durango VP surveys were conducted at sites underlain by Quaternary alluvium, older Quaternary gravels, and Cretaceous Lewis and Mancos shales. These four geologic units were selected to be evaluated. The data indicated no formation anomalies and established regional background radiation levels. Durango background radionuclide concentrations in surface soil were determined to be 20.3 ± 3.4 pCi/g for 40 K, 1.6 ± 0.5 pCi/g for 226 Ra, and 1.2 ± 0.3 pCi/g for 232 Th. The Durango background gamma exposure rate was found to be 16.5 ± 1.3 μR/h. Average gamma spectral count rate measurements for 40 K, 226 Ra and 232 Th were determined to be 553, 150, and 98 counts per minute (cpm), respectively. Geologic unit profiles and Durango background radiation measurements are presented and compared with other areas. 19 refs., 15 figs., 5 tabs

  8. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park; Modelo geologico 3D de la estructura en sinforme de Monfrague: un valor anadido al patrimonio geologico del Parque Nacional

    Energy Technology Data Exchange (ETDEWEB)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-07-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  9. Radioactive waste isolation in salt: peer review of the Texas Bureau of Economic Geology's report on the Petrographic, Stratigraphic, and Structural Evidence for Dissolution of Upper Permian Bedded Salt, Texas Panhandle

    International Nuclear Information System (INIS)

    Fenster, D.F.; Anderson, R.Y.; Gonzales, S.; Baker, V.R.; Edgar, D.E.; Harrison, W.

    1984-08-01

    The following recommendations for improving the Texas Bureau of Economic Geology (TBEG) report entitled Petrographic, Stratigraphic, and Structural Evidence for Dissolution of Upper Permian Bedded Salt, Texas Panhandle have been abstracted from the body of this review report. The TBEG report should be resided to conform to one of the following alternatives: (1) If the report is intended to be a review or summary of previous work, it should contain more raw data, be edited to give equal treatment to all types of data, and include summary tables and additional figures. (2) If the report is intended to be a description and interpretation of petrographic evidence for salt dissolution, supported by collateral stratigraphic and structural evidence, the relevant indirect and direct data should become the focal point of the report. The following recommendations apply to one or both of the options listed above. (1) The text should differentiate more carefully between the data and inferences based on those data. (2) The authors should retain the qualifiers present in cited works. Statements in the report that are based on earlier papers are sometimes stronger than those in the papers themselves. (3) The next revision should present more complete data. (4) The authors should achieve a more balanced presentation of alternative hypotheses and interpretations. They could then discuss the relative merits of the alternative interpretations. (5) More attention should be given to clear exposition

  10. Geology of the Shakespeare quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2017-09-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the remotely sensed images of the NASA MESSENGER mission. This quadrangle is characterized by the occurrence of three main types of plains materials and four basin materials, pertaining to the Caloris basin, the largest impact crater on Mercury's surface. The geologic boundaries have been redefined compared to the previous 1:5M map of the quadrangle and the craters have been classified privileging their stratigraphic order rather than morphological appearance. The abundant tectonic landforms have been interpreted and mapped as thrusts or wrinkle ridges.

  11. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  12. SEDIMENTATION AND BASIN-FILL HISTORY OF THE PLIOCENE SUCCESSION EXPOSED IN THE NORTHERN SIENA-RADICOFANI BASIN (TUSCANY, ITALY: A SEQUENCE-STRATIGRAPHIC APPROACH

    Directory of Open Access Journals (Sweden)

    IVAN MARTINI

    2017-08-01

    Full Text Available Basin-margin paralic deposits are sensitive indicators of relative sea-level changes and typically show complex stratigraphic architectures that only a facies-based sequence-stratigraphic approach, supported by detailed biostratigraphic data, can help unravel, thus providing constraints for the tectono-stratigraphic reconstructions of ancient basins. This paper presents a detailed facies analysis of Pliocene strata exposed in a marginal key-area of the northern Siena-Radicofani Basin (Tuscany, Italy, which is used as a ground for a new sequence-stratigraphic scheme of the studied area. The study reveals a more complex sedimentary history than that inferred from the recent geological maps produced as part of the Regional Cartographic Project (CARG, which are based on lithostratigraphic principles. Specifically, four sequences (S1 to S4, in upward stratigraphic order have been recognised, each bounded by erosional unconformities and deposited within the Zanclean-early Gelasian time span. Each sequence typically comprises fluvial to open marine facies, with deposits of different sequences that show striking lithological similarities.The architecture and internal variability shown by the studied depositional sequences are typical of low-accommodation basin-margin settings, that shows: i a poorly-developed to missing record of the falling-stage systems tract; ii a lowstand system tract predominantly made of fluvio-deltaic deposits; iii a highstand system tract with substantial thickness variation between different sequences due to erosional processes associated with the overlying unconformity; iv a highly variable transgressive system tract, ranging from elementary to parasequential organization.

  13. Near-dome geologic findings - Richton Dome, Mississippi: annual status report for FY 83

    International Nuclear Information System (INIS)

    1984-10-01

    Basin Analysis is a study of the regional and local stratigraphic, tectonic, and salt-tectonic conditions that influenced the development of the Mississippi Salt Basin and Richton Dome, an element within that basin. During FY 83, work was concentrated on the local area surrounding Richton Dome and included the writing of the Midyear FY 83 Richton Dome Screening and Suitability Review, input to the Site Characterization Plan that is being prepared by the Southern Region Geologic Project Manager, and initial development of a near-dome geologic model. The geologic model was compiled using information from approximately 300 oil and gas well geophysical logs and 128 line km (80 line mi) of seismic-reflection profiles. In addition to analysis and interpretation of the logs and profiles, stratigraphic data from each were assembled in a computer-based file and were used to produce computer-generated structural contour maps. Major findings from the analyses include a new configuration for the northern end of Richton Dome and improved definitions of near-dome faults and the rim syncline on the northern and eastern flanks of Richton Dome. 4 references, 6 figures

  14. Paleocene stratigraphic plays in Uruguay offshore

    International Nuclear Information System (INIS)

    Morales, E; Soto, M; Ferro, S; Tomasini, J; De Santa Ana, H; Conti, B.; Veroslavsky, G.

    2012-01-01

    The Uruguayan continental margin offshore evolution is represented by three large mega sequences: pre rift, rift and post rift, which are correlated with other South Atlantic basins. The tectonic and stratigraphic knowledge about the Uruguayan offshore evolution enable a hydrocarbon potential approximation . The mapping of the seismic depositional sequences are covered by deep basins. The methodology used identify the migration of Uruguayan side depo centers such as the stratigraphic plays group in particular a prospective Paleocene sequence

  15. United States Geological Survey discharge data from five example gages on intermittent streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data are mean daily discharge data at United States Geological Survey gages. Once column provides the date (mm/dd/yyyy) and the other column provides the mean...

  16. Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle, United States and Canada

    Data.gov (United States)

    Department of the Interior — The Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as...

  17. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 3. Stratigraphies of salt, granite, shale, and basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This study presents the methodology and basic literature used to develop generic stratigraphic sections for the various geologic repository host rocks under considerations: salt, granite, shale and basalt

  18. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  19. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Spengler, R.W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five falt zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members restricted log coverage to the lower half of the drill hole

  20. Database for the Geologic Map of the Skykomish River 30-Minute by 60-Minute Quadrangle, Washington (I-1963)

    Science.gov (United States)

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared from the published geologic map of the Skykomish River 30- by 60-minute quadrangle by the senior author. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, its correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks of the Puget Group crop out farther to the west. Rocks of

  1. Geology, physical properties, and surface effects at Discus Thrower Site, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Carr, W.J.; Miller, C.H.; Dodge, H.W. Jr.

    1975-01-01

    Geologic studies in connection with Project Discus Thrower have furnished detailed stratigraphic and structural information about northwestern Yucca Flat, Nevada Test Site. The Paleozoic rocks consist of a lower carbonate sequence, argillite of the Eleana Formation, and an upper carbonate sequence. The distribution of these rocks suggests that both top and bottom of the Eleana are structural contacts, probably thrusts or reverse faults. The overlying tuff includes several units recognized in the subsurface, such as the Fraction Tuff and tuff of Redrock Valley. Other units recognized include bedded tuff associated with the Grouse Canyon Member of Belted Range Tuff, and the Rainier Mesa and Ammonia Tanks Members of the Timber Mountain Tuff. The Timber Mountain and Grouse Canyon are extensively altered to montmorillonite (a swelling clay), possibly as a result of ponding of alkaline water. The overlying alluvium locally contains at the base a clayey, tuffaceous sandstone

  2. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  3. High resolution seismic stratigraphic analysis. An integrated approach to the subsurface geology of the SE Persian Gulf[Paper 2 is not open for the public

    Energy Technology Data Exchange (ETDEWEB)

    Farzadi, Pourdad

    2006-07-01

    platform margins may over steepen and fail, generating gravity flows that add to high stand clinoform slopes and toe-of-slope basin deposits. In the study area, large quantities of platform-derived fine-grained sediment were transported off-bank, in suspension, probably by tide, currents, and storm waves, and settle on slope and basin floor of the Santonian Ilam Formation. The Ilam Formation is known as a non-reservoir unit, although one of the wells in the study area shows non-commercial oil from within this formation. Using integrated attribute analysis, interpretive work can focus directly on geologic features in 3D space. This study also gives new insights into the internal variability of carbonate turbidite systems that are essential to estimation of reservoir volume, connectivity and variability. The only producing well in this non-reservoir unit has penetrated one of the abandoned channels of the above-mentioned turbidite system. The lack of sufficiently high-resolution seismic imaging techniques has precluded the definition of reliable exploration models at both regional and field scales. Here, advanced imaging techniques applied to conventional 3D seismic data reveal the relations between major tectonic events and depositional processes in two distinct but related tectonic provinces within the northeastern Arabian plate. This work finally focuses on building regional and local stratigraphic evolution models to compare the interplay of Cretaceous and Tertiary deposition processes and deformation events. The final stage is based on comparative studies in hydrocarbon producing regions that today are tectonically quite different: the Dezful embayment in the Zagros Fold and Thrust Belt (ZFTB) and the southeastern Zagros Foreland Basin. Cretaceous reservoir facies in both areas predate the ZFTB and are the result of depositional processes largely controlled by eustatic sea level punctuated by relative sea level changes attributable to salt and distal tectonic effects

  4. Chemical Contaminants as Stratigraphic Markers for the Anthropocene

    Science.gov (United States)

    Kruge, M. A.

    2012-12-01

    Thousands and even millions of years from now, widespread anthropogenic contaminants in sediments would likely persist, incorporated into the geological record. They would inadvertently preserve evidence of our present era (informally designated as the Anthropocene Epoch) characterized by large human populations engaged in intensive industrial and agricultural activities. Hypothetical geologists in the distant future would likely find unusually high concentrations of a wide variety of contaminants at stratigraphic levels corresponding to our present time, analogous to the iridium anomaly marking the bolide impact event at the close of the Cretaceous Period. These would include both organic and inorganic substances, such as industrially-derived heavy metals (e.g., Hg, Pb, Cr, Zn) and hydrocarbons, both petrogenic (derived directly from petroleum) and pyrogenic (combustion products). While there are natural sources for these materials, such as volcanic eruptions, wildfires, and oil seeps, their co-occurrence would provide a signature characteristic of human activity. Diagnostic assemblages of organic compounds would carry an anthropogenic imprint. The distribution of polycyclic aromatic hydrocarbons (PAHs) in a sediment sample could distinguish between natural and human sources. Stable isotopic signatures would provide additional evidence. Concentrations of contaminants in the sedimentary record would increase exponentially with increasing proximity to urban source areas, where at present billions of people are collectively consuming vast quantities of fossil fuels and generating large amounts of waste. Aolian and marine transport prior to deposition has been seen at present to globally redistribute detectable amounts of contaminants including Hg and PAHs, even at great distances from principal source areas. For organic contaminants, deposition in an anoxic sedimentary environment could insure their preservation, increasing the likelihood of their inclusion in the

  5. Geological Mapping and Investigation into a Proposed Syn-rift Alluvial Fan Deposit in the Kerpini Fault Block, Greece.

    OpenAIRE

    Hadland, Sindre

    2016-01-01

    Master's thesis in Petroleum geosciences engineering The Kerpini Fault Block is located in the southern part of the Gulf of Corinth rift system. The rift system consists of several east-west orientated half-grabens with associated syn-rift sediments. Kerpini Fault Block is one of the southernmost half-grabens within the rift systems, and is composed of several different stratigraphic units. The stratigraphic framework consists of a complex interaction of several stratigraphic units. One of...

  6. High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)

    Science.gov (United States)

    Wrege, B.M.; Isely, J.J.

    2009-01-01

    We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.

  7. Geologic map of Harrat Hutaymah, with petrologic classification and distribution of ultramafic inclusions, Saudi Arabia

    Science.gov (United States)

    Thornber, Carl R.

    1990-01-01

    This map shows detailed geology of the Quaternary and Tertiary volcanic deposits that comprise Harrat Hutaymah and an updated and generalized compilation of the underlying Proterozoic and Paleozoic basement rocks. Quaternary alluvial cover and details of basement geology (that is, faults, dikes, and other features) are not shown. Volcanic unit descriptions and contact relations are based upon field investigation by the author and on compilation and revision of mapping Kellogg (1984; northern half of area) and Pallister (1984; southern half of area). A single K-Ar date of 1.80 ± 0.05 Ma for an alkali olivine basalt flow transected by the Al Hutaymah tuff ring (Pallister, 1984) provides the basis for an estimated late Tertiary to Quaternary age range for all harrat volcanic units other than unit Qtr (tuff reworked during Quaternary age time). Contact relations and unit descriptions for the basement rocks were compiled from Pallister (1984), Kellogg (1984 and 1985), DuBray (1984), Johnson and Williams (1984), Vaslet and others (1987), Cole and Hedge (1986), and Richter and others (1984). All rock unit names in this report are informal and capitalization follows Saudi Arabian stratigraphic nomenclature (Fitch, 1980). Geographic information was compiled from Pallister (1984), Kellogg (1984), and Fuller (in Johnson and Williams, 1984) and from field investigation by the author in 1986. The pie diagrams on the map show the distribution and petrology of ultramafic xenoliths of Harrat Hutaymah. The pie diagrams are explained by a detailed classification of ultramafic xenoliths that is introduced in this report.

  8. Stratigraphic cross section of measured sections and drill holes of the Neslan Formation and adjacent formations, Book Cliffs Area, Colorado and Utah

    Science.gov (United States)

    Kirshbaum, Mark A.; Spear, Brianne D.

    2012-01-01

    This study updates a stratigraphic cross section published as plate 2 in Kirschbaum and Hettinger (2004) Digital Data Series 69-G (http://pubs.usgs.gov/dds/dds-069/dds-069-g/). The datum is a marine/tidal ravinement surface within the Cozzette Sandstone Member of the Iles Formation and the Thompson Canyon Sandstone and Sulphur Canyon Sandstone Beds of the Neslen Formation. One of the cores shown was included on the original cross section, and new core descriptions have been added to the upper part of the cored interval. A new core description (S178) is included in this report. Cores are stored in the U.S. Geological Survey Core Research Facility at the Denver Federal Center, Colorado. The following information has also been added to help define the stratigraphic framework: 1) At least five claystones interpreted as altered volcanic ashes have been identified and may give future workers a correlation tool within the largely continental section. 2) Thickness and general geometry of the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone have been added to provide additional stratigraphic context. 3) The geometry in the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone has been added to provide additional stratigraphic context. 4) Ammonite collections are from Gill and Hail. The zone of Didymoceras nebrascense projected into the East Salt Wash area is based on correlation of the flooding surface at the base of the Cozzette Member to this point as shown in Kirschbaum and Hettinger. 5) A leaf locality of the Denver Museum of Nature and Science is shown in its approximate stratigraphic position near Thompson Canyon. 6) A dinosaur locality of the Natural History Museum of Utah is shown in the Horse Canyon area measured section at the stratigraphic position where it was extracted.

  9. Quaternary geologic map of the Austin 4° x 6° quadrangle, United States

    Science.gov (United States)

    State compilations by Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.

    1993-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Austin 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  10. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of scientific and technical program

    Science.gov (United States)

    Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.

    2011-01-01

    The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate

  11. Geologic and operational summary, COST No. G-2 well, Georges Bank area, North Atlantic OCS

    Science.gov (United States)

    Amato, Roger V.; Simonis, Edvardas K.

    1980-01-01

    The Continental Offshore Stratigraphic Test (COST) No. G-2 well is the second deep well to be drilled in the Georges Bank Basin and the third in a series of COST wells on the Atlantic Outer Continental Shelf (OCS). The G-2 was drilled by Ocean Production Company, acting as the operator for 19 participating companies between January 6 and August 30, 1977. The semisubmersible rig Ocean Victory was used to drill the well to a depth of 21,874 feet at a location 132 statute miles east-southeast of Nantucket Island in 272 feet of water. An earlier deep Stratigraphic test, the COST No. G-l well, was drilled 42 statute miles west of the G-2 well, to a depth of 16,071 feet in 1976 (fig. 1). Geological and engineering data obtained from the well were used by companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for lease sale 42 held on December 18, 1979. The Stratigraphic test was intentionally drilled away from any potential petroleum-bearing feature, but in a block bordering several tracts that were included in the sale area.

  12. Detailed geologic modeling of a turbidity reservoir interval at the Mars discovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahaffie, M.J.; Chapin, M.A. [Shell Exploration and Production Technology Co. (United States); Henry, W.A. [Shell Offshore, Inc. (United States)

    1995-12-31

    Detailed reservoir architecture studies using high resolution seismic data coupled with geologic and seismic inversion modeling have been used to evaluate a major hydrocarbon bearing turbidite reservoir found within Prospect Mars. Early interpretations of this interval, based on lower frequency (40 Hz) seismic data, indicated the presence of a single, laterally continuous event covering an area nearly 3 miles square ({approx} 5200 acres). Correlations from well control supported the notion that this seismic event comprised a series of continuous sheet sands exhibiting a high degree of lateral continuity and connectivity. However pressure data taken during fluid sampling of the reservoir suggested the possibility of discontinuities not observed within the resolution of the seismic data. Seismic reprocessing enhancements to increase frequency content revealed the presence of multiple stratigraphic features not previously recognized. Detailed seismic mapping using loop-level seismic attributes and seismic inversion studies constrained by geologic models provide a more realistic depiction of the environment of deposition and improve reservoir simulation modeling for this stratigraphic interval. (author). 3 figs

  13. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    Science.gov (United States)

    Amosu, Adewale; Sun, Yuefeng

    WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections) within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software products that contain interactive environments for carrying out chronostratigraphic analysis, none of them are open-source codes. In addition to being open source, WheelerLab adds two important functionalities not present in currently available software: (1) WheelerLab generates a dynamic chronostratigraphic section and (2) WheelerLab enables chronostratigraphic analysis of older seismic data sets that exist only as images and not in the standard seismic file formats; it can also be used for the chronostratigraphic analysis of outcrop images and interpreted well sections. The dynamic chronostratigraphic section sequentially depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of identified genetic stratal packages. This facilitates a better communication of the sequence-stratigraphic process. WheelerLab is designed to give the user both interactive and interpretational control over the transformation; this is most useful when determining the correct stratigraphic order for laterally separated genetic stratal packages. The program can also be used to generate synthetic sequence stratigraphic sections for chronostratigraphic analysis.

  14. WheelerLab: An interactive program for sequence stratigraphic analysis of seismic sections, outcrops and well sections and the generation of chronostratigraphic sections and dynamic chronostratigraphic sections

    Directory of Open Access Journals (Sweden)

    Adewale Amosu

    2017-01-01

    Full Text Available WheelerLab is an interactive program that facilitates the interpretation of stratigraphic data (seismic sections, outcrop data and well sections within a sequence stratigraphic framework and the subsequent transformation of the data into the chronostratigraphic domain. The transformation enables the identification of significant geological features, particularly erosional and non-depositional features that are not obvious in the original seismic domain. Although there are some software products that contain interactive environments for carrying out chronostratigraphic analysis, none of them are open-source codes. In addition to being open source, WheelerLab adds two important functionalities not present in currently available software: (1 WheelerLab generates a dynamic chronostratigraphic section and (2 WheelerLab enables chronostratigraphic analysis of older seismic data sets that exist only as images and not in the standard seismic file formats; it can also be used for the chronostratigraphic analysis of outcrop images and interpreted well sections. The dynamic chronostratigraphic section sequentially depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of identified genetic stratal packages. This facilitates a better communication of the sequence-stratigraphic process. WheelerLab is designed to give the user both interactive and interpretational control over the transformation; this is most useful when determining the correct stratigraphic order for laterally separated genetic stratal packages. The program can also be used to generate synthetic sequence stratigraphic sections for chronostratigraphic analysis.

  15. Geology and Volcanology of Kima'Kho Mountain, Northern British Columbia: A Pleistocene Glaciovolcanic Edifice

    Science.gov (United States)

    Turnbull, M.; Porritt, L. A.; Edwards, B. R.; Russell, K.

    2014-12-01

    Kima'Kho Mountain is a 1.8 Ma (40Ar/39Ar of 1.82 +/- 40 ka) Pleistocene an alkali-olivine basaltic tuya situated in northern British Columbia. The volcanic edifice rises 460 m from its base and comprises a central vent, dominated by lapilli-tuff and minor pillow lava and dykes; and a surrounding plateau underlain by a sequence of dipping beds of basaltic tuff-breccia and capped by a series of flat-lying, subaerial lava flows. We present a 1:10,000 geological map for Kima'Kho Mountain building on the preliminary work of Ryane et al. (2010). We use the volcanic stratigraphy to explore the implications of three unique features. (1) The central cone comprises massive to crudely-bedded lapilli tuffs containing abundant armoured lapilli - cores of highly-vesicular pyroclasts coated with blocky to cuspate vitric ash. These units suggest an explosive origin from within an ice-enclosed lake, and deposited by wet, dilute pyroclastic surge events. (2) The entire stratigraphic sequence hosts at least two "passage zones" (cf. Jones, 1969); the presence and geometry of these passage zones constrain ice thicknersses at the time of eruption and inform on the englacial lake dynamics. (3) Lastly, our field-based stratigraphic relationships are at odds with the classic tuya model (i.e. an effusive onset to the eruption, forming pillow basalts, followed by explosive activity). Our field mapping suggests an alternative model of tuya architecture, involving a highly-energetic, sustained explosive onset creating a tephra cone that become emergent followed by effusive eruption to create lavas and a subaqueous lava-fed delta. Jones, J. G. Intraglacial volcanoes of the Laugarvatn region, south-west Iceland-I. Geological Society of London Quarterly Journal 124, 197-211 (1969). Ryane, C., Edwards, B. R. & Russell, J. K. The volcanic stratigraphy of Kima'Kho Mountain: A Pleistocene tuya, northwestern British Columbia. Geological Survey of Canada, Current Research 2011-104, 12p, doi:10

  16. Geologic evolution of the SE.23 Sheet - Belo Horizonte, MG, Brazil

    International Nuclear Information System (INIS)

    Pereira, A.D.C.; Fonseca, E.G. da; Braz, E.R.C.

    1987-01-01

    The aim of this paper is to present a synthesis of the geologic evolution in the Belo Horizonte Sheet comprising an area about 281.210 Km 2 . Rb-Sr and K-Ar isotope dating methods are used for age estimation of geologic deposits. The geologic evolution of the cratonic area is reflected by a stable central nucleus surrounded by marginal orogenic belts. In the central area were recognized greenstone belts structures involved by granite terrains and bordered by a granulitic region. The framework of the Sao Francisco Craton involves events of metamorphism, granitogenesis, sedimentary, volcanism and plutonism developed in the Early to Late Proterozoic. The stratigraphic column is complemented by Late Jurassic-Early Cretaceous continental deposits belonging to Parana-Basin. (M.V.M.)

  17. Recognition of Milankovitch cycles in the stratigraphic record:application of the CWT and the FFT to well-log data

    Institute of Scientific and Technical Information of China (English)

    YU Ji-feng; SUI Feng-gui; LI Zeng-xue; LIU Hua; WANG Yu-lin

    2008-01-01

    The authors applied a the combination of Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFF)methods to gamma ray well-log data from the Q3, G1 and D2 wells. This high-resolution stratigraphic study was based on Milankovitch's orbital cycle theory. It was found that the CWT scale factors, 'a,' of 12, 24 and 60 match the ratios of the periodicities of precession, obliquity and eccentricity very well. Nine intervals of the Permo-carboniferous strata were recognized to have Milankovitch cycles in them. For example, section A of well Q3 has 29 precession cycles, 15 obliquity cycles and 7 short eccentricity cycles. The wavelengths are 2.7, 4.4 and 7.8 m for precession, obliquity and eccentricity, respectively. Important geological parameters such as the stratigraphic completeness and the accumulation rate were also estimated. These results provide basic information for further cyclostratigraphic correlation studies in the area. They are of great significance for the study of ancient and future climate change.

  18. Log ASCII Standard (LAS) Files for Geophysical Wireline Well Logs and Their Application to Geologic Cross Sections Through the Central Appalachian Basin

    Science.gov (United States)

    Crangle, Robert D.

    2007-01-01

    Introduction The U.S. Geological Survey (USGS) uses geophysical wireline well logs for a variety of purposes, including stratigraphic correlation (Hettinger, 2001, Ryder, 2002), petroleum reservoir analyses (Nelson and Bird, 2005), aquifer studies (Balch, 1988), and synthetic seismic profiles (Kulander and Ryder, 2005). Commonly, well logs are easier to visualize, manipulate, and interpret when available in a digital format. In recent geologic cross sections E-E' and D-D', constructed through the central Appalachian basin (Ryder, Swezey, and others, in press; Ryder, Crangle, and others, in press), gamma ray well log traces and lithologic logs were used to correlate key stratigraphic intervals (Fig. 1). The stratigraphy and structure of the cross sections are illustrated through the use of graphical software applications (e.g., Adobe Illustrator). The gamma ray traces were digitized in Neuralog (proprietary software) from paper well logs and converted to a Log ASCII Standard (LAS) format. Once converted, the LAS files were transformed to images through an LAS-reader application (e.g., GeoGraphix Prizm) and then overlain in positions adjacent to well locations, used for stratigraphic control, on each cross section. This report summarizes the procedures used to convert paper logs to a digital LAS format using a third-party software application, Neuralog. Included in this report are LAS files for sixteen wells used in geologic cross section E-E' (Table 1) and thirteen wells used in geologic cross section D-D' (Table 2).

  19. Historical rock collection of the Commission for the Geological Map of Spainpreserved in the Madrid School of Civil Engineering

    International Nuclear Information System (INIS)

    Sanz Pérez, E.; Pérez Ruy-Díaz, J.A.; Menéndez-Pidal de Navascués, I.; Sanz Ojeda, P.; Pascual-Arribas, C.

    2017-01-01

    The collection of 200 rocks prepared by the Commission for the Geological Map of Spain for the Madrid School of Civil Engineering, without known author and dated between 1898 and 1907, is one of the collections sent by the Commission to meet the specific needs of engineering institutes, and in which have survived 200 explanatory index cards accompanying each of the specimens. The collection is national in scope and is designed with a clear teaching purpose focused on civil engineering students. Its main feature is to teach the historical geology of Spain summarized in a collection of representative rocks from the Spanish territory classified by geological periods. So that, by knowing the most common rocks that appear in the synthetic stratigraphic column of Spain, this could provide for uses for coeval type of rocks, such as building materials or as foundations. Petrologic classifications and the division of geological periods are used according to these times. The index cards, where many observations about uses of civil engineering rocks are made, endeavor to identify rocks as samples with one’s own eyes and at scale of outcrop in the field, within the regional stratigraphic context. [es

  20. Regional geology of the Pine Creek Geosyncline

    International Nuclear Information System (INIS)

    Needham, R.S.; Crick, I.H.; Stuart-Smith, P.G.

    1980-01-01

    The Pine Creek Geosyncline comprises about 14km of chronostratigraphic mainly pelitic and psammitic Lower Proterozoic sediments with interlayered tuff units, resting on granitic late Archaean complexes exposed as three small domes. Sedimentation took place in one basin, and most stratigraphic units are represented throughout the basin. The sediments were regionally deformed and metamorphosed at 1800Ma. Tightly folded greenschist facies strata in the centre grade into isoclinally deformed amphibolite facies metamorphics in the west and northeast. Pre and post-orogenic continental tholeiites, and post-orogenic granite diapirs intrude the Lower Proterozoic metasediments, and the granites are surrounded by hornfels zones up to 10km wide in the greenschist facies terrane. Cover rocks of Carpentarian (Middle Proterozoic) and younger ages rest on all these rocks unconformably and conceal the original basin margins. The Lower Proterozoic metasediments are mainly pelites (about 75 percent) which are commonly carbonaceous, lesser psammites and carbonates (about 10 percent each), and minor rudites (about 5 percent). Volcanic rocks make up about 10 percent of the total sequence. The environment of deposition ranges from shallow-marine to supratidal and fluviatile for most of the sequence, and to flysch in the topmost part. Poor exposure and deep weathering over much of the area hampers correlation of rock units; the correlation preferred by the authors is presented, and possible alternatives are discussed. Regional geological observations pertinent to uranium ore genesis are described. (author)

  1. Geologic Mapping and Paired Geochemical-Paleomagnetic Sampling of Reference Sections in the Grande Ronde Basalt: An Example from the Bingen Section, Columbia River Gorge, Washington

    Science.gov (United States)

    Sawlan, M.; Hagstrum, J. T.; Wells, R. E.

    2011-12-01

    We have completed comprehensive geochemical (GC) and paleomagnetic (PM) sampling of individual lava flows from eight reference stratigraphic sections in the Grande Ronde Basalt (GRB), Columbia River Basalt Group [Hagstrum et al., 2009, GSA Ann. Mtg, Portland (abst); Hagstrum et al., 2010, AGU Fall Mtg, San Francisco (abst)]. These sections, distributed across the Columbia Plateau and eastern Columbia River Gorge, contain as many as 30 flows, are up to 670 m thick, span upper magneto-stratigraphic zones R2 and N2, and, in some locations, also contain one or more N1 flows. In concert with GC and PM sampling, we have carried out detailed geologic mapping of these sections, typically at a scale of 1:3,000 to 1:5,000, using GPS, digital imagery from the National Aerial Imagery Program (NAIP), and compilation in GIS. GRB member and informal unit names of Reidel et al. [1989, GSA Sp. Paper 239] generally have been adopted, although two new units are identified and named within the N2 zone. Notably, a distinctive PM direction for intercalated lavas of several lower N2 units indicates coeval eruption of compositionally distinct units; this result contrasts with the scenario of serial stratigraphic succession of GRB units proposed by Reidel et al. [1989]. Our objectives in the mapping include: Confirming the integrity of the stratigraphic sequences by documenting flow contacts and intraflow horizons (changes in joint patterns or vesicularity); assessing fault displacements; and, establishing precisely located samples in geologic context such that selected sites can be unambiguously reoccupied. A geologic map and GC-PM data for the Bingen section, along the north side of the Columbia River, are presented as an example of our GRB reference section mapping and sampling. One of our thicker sections (670 m) along which 30 flows are mapped, the Bingen section spans 7 km along WA State Hwy 14, from near the Hood River Bridge ESE to Locke Lake. This section cuts obliquely through a

  2. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  3. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  4. Preliminary subsurface hydrologic considerations: Columbia River Plateau Physiographic Province. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Veatch, M.D.

    1980-04-01

    This report contains a discussion of the hydrologic conditions of the Columbia River Plateau physiographic province. The Columbia River Plateau is underlain by a thick basalt sequence. The Columbia River basalt sequence contains both basalt flows and sedimentary interbeds. These sedimentary interbeds, which are layers of sedimentary rock between lava flows, are the main aquifer zones in the basalt sequence. Permeable interflow zones, involving the permeable top and/or rubble bottom of a flow, are also water-transmitting zones. A number of stratigraphic units are present in the Pasco Basin, which is in the central part of the Columbia River Plateau. At a conceptual level, the stratigraphic sequence from the surface downward can be separated into four hydrostratigraphic systems. These are: (1) the unsaturated zone, (2) the unconfined aquifer, (3) the uppermost confined aquifers, and (4) the lower Yakima basalt hydrologic sequence. A conceptual layered earth model (LEM) has been developed. The LEM represents the major types of porous media (LEM units) that may be encountered at a number of places on the Columbia Plateau, and specifically in the Pasco Basin. The conceptual LEM is not representative of the actual three-dimensional hydrostratigraphic sequence and hydrologic conditions existing at any specific site within the Columbia Plateau physiographic province. However, the LEM may be useful for gaining a better understanding of how the hydrologic regime may change as a result of disruptive events that may interact with a waste repository in geologic media

  5. Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2007-01-01

    This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.

  6. Geologic field trip guide to Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.; Wright, Heather M.

    2017-08-08

    Crater Lake partly fills one of the most spectacular calderas of the world—an 8 by 10 kilometer (km) basin more than 1 km deep formed by collapse of the Mount Mazama volcano during a rapid series of explosive eruptions ~7,700 years ago. Having a maximum depth of 594 meters (m), Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 square kilometers (km2) of pristine forested and alpine terrain, including the lake itself, and virtually all of Mount Mazama. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama’s climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest United States, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. In addition, many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama provide information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive processes revealed by

  7. Preliminary assessment of shales and other argillaceous rocks in the United States

    International Nuclear Information System (INIS)

    Gonzales, S.; Johnson, K.S.

    1981-01-01

    Shales and related clay-rich rock types throughout the conterminous United States are geologically characterized and evaluated on a regional basis relative to their promise as possible candidate rock sequences for the repository disposal of high-level radioactive wastes. Only stratigraphic intervals or parts of them that are laterally persistent, consist of 75 m or more of shale, mudstone, or argillite, and lie at depths of 305 to 915 m below the land surface are included. The general properties of clay-rich rocks, as well as the several desirable characteristics that make them potentially attractive as disposal host candidates, are reviewed. Also discussed are the geologic factors that dictate the potential acceptability of any shale sequence relative to the regional subsurface distribution of units that meet the basic criteria of extent, thickness, and depth. Included in this context are the tectonic setting, geologic structure, seismicity, groundwater hydrology, mineralogy and content of organic matter, mineral resource potential of both the shales and the enclosing geologic basins, and any construction experience on underground openings, such as hydrocarbon-storage facilities. The clay-rich strata that appear to be promising on the basis of this evaluation are inventoried according to their occurrence and distribution within nine geologic-geomorphic regions throughout the country. Also considered are several, more localized occurrences of Precambrian argillites whose mineralogies make them a related yet separate group in comparison with the sedimentary strata already summarized. Topics for which data are insufficient or on which inadequate study has been conducted to date are also identified

  8. Tectonic-stratigraphic evolution of Espirito Santo Basin - Brazil; Evolucao tectono-estratigrafica da Bacia do Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Eric Zagotto; Fernandes, Flavio L.; Lobato, Gustavo; Ferreira Neto, Walter Dias [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem de Bacias (LAB2M); Petersohn, Eliane [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Brasilia, DF (Brazil)

    2008-07-01

    This paper documents the analysis of seismic data of the Espirito Santo basin obtained during the project realized through partnership between COPPE/UFRJ/Lab2M with the Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP) during 2006 and 2007. The major objective of the seismic data interpretation in the project was to define the main structural and stratigraphic features in order to build a sedimentation model and a tectonic-stratigraphic evolution model of the Espirito Santo basin. Thus, the sedimentary package has been divided into eight genetic units (UN), grouped into five third order stratigraphic sequences, namely: UN-B, represented by siliciclastics rocks of the rift stage and evaporitic sag-rift stage, deposited during the Aptian; UN-C, which represents the carbonatic rocks deposited in a marine environment, and siliciclastics rocks located in the proximal portions during the Albian; and UN-D, represented by sediments, composed mainly by pelites, deposited in between the Cenomanian and Recent, and includes the Eocene volcanic event, which one changed the sedimentation pattern of the basin. (author)

  9. Geologic assessment of undiscovered conventional oil and gas resources--Middle Eocene Claiborne Group, United States part of the Gulf of Mexico Basin

    Science.gov (United States)

    Hackley, Paul C.

    2012-01-01

    The Middle Eocene Claiborne Group was assessed using established U.S. Geological Survey (USGS) assessment methodology for undiscovered conventional hydrocarbon resources as part of the 2007 USGS assessment of Paleogene-Neogene strata of the United States part of the Gulf of Mexico Basin including onshore and State waters. The assessed area is within the Upper Jurassic-Cretaceous-Tertiary Composite total petroleum system, which was defined as part of the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich downdip shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources including the Jurassic Smackover and Haynesville Formations and Bossier Shale, the Cretaceous Eagle Ford and Pearsall(?) Formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is ongoing at present. Emplacement of hydrocarbons into Claiborne reservoirs has occurred primarily via vertical migration along fault systems; long-range lateral migration also may have occurred in some locations. Primary reservoir sands in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. Hydrocarbon traps dominantly are rollover anticlines associated with growth faults; salt structures and stratigraphic traps also are important. Sealing lithologies probably are shaley facies within the Claiborne and in the overlying Jackson Group. A geologic model, supported by spatial analysis of petroleum geology data including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AU) with distinctive structural and depositional settings. The AUs include (1) Lower Claiborne Stable Shelf

  10. Geologic occurrences of erionite in the United States: an emerging national public health concern for respiratory disease

    Science.gov (United States)

    Van Gosen, Bradley S.; Blitz, Thomas A.; Plumlee, Geoffrey S.; Meeker, Gregory P.; Pierson, M. Patrick

    2013-01-01

    Erionite, a mineral series within the zeolite group, is classified as a Group 1 known respiratory carcinogen. This designation resulted from extremely high incidences of mesothelioma discovered in three small villages from the Cappadocia region of Turkey, where the disease was linked to environmental exposures to fibrous forms of erionite. Natural deposits of erionite, including fibrous forms, have been identified in the past in the western United States. Until recently, these occurrences have generally been overlooked as a potential hazard. In the last several years, concerns have emerged regarding the potential for environmental and occupational exposures to erionite in the United States, such as erionite-bearing gravels in western North Dakota mined and used to surface unpaved roads. As a result, there has been much interest in identifying locations and geologic environments across the United States where erionite occurs naturally. A 1996 U.S. Geological Survey report describing erionite occurrences in the United States has been widely cited as a compilation of all US erionite deposits; however, this compilation only focused on one of several geologic environments in which erionite can form. Also, new occurrences of erionite have been identified in recent years. Using a detailed literature survey, this paper updates and expands the erionite occurrences database, provided in a supplemental file (US_erionite.xls). Epidemiology, public health, and natural hazard studies can incorporate this information on known erionite occurrences and their characteristics. By recognizing that only specific geologic settings and formations are hosts to erionite, this knowledge can be used in developing management plans designed to protect the public.

  11. Stratigraphic and morphologic signatures of continental shelves, IGC 2016, Cape Town: an introduction

    Science.gov (United States)

    Green, A. N.; Cooper, J. A. G.

    2018-02-01

    This special issue of Geo-Marine Letters comprises seven contributions to the session "Stratigraphic and morphologic signatures of continental shelves" of the 35th International Geological Congress held in Cape Town (Republic of South Africa) on 27 August-4 September 2016. There is an additional article not presented at the conference but falling into the same general theme. The guest editors are A.N. Green and J.A.G. Cooper. The eight articles address several contemporary themes in continental shelf geology. They include the role of antecedent conditioning on the development of shelf stratigraphy and geomorphology; erosion of submerged shorelines and their preservation during (stepped) postglacial sea-level rise; the role of glacial processes (e.g. iceberg scouring during ice-sheet retreat); and the utility of archival data in addressing contemporary issues such as Holocene climate change and global oceanographic circulation systems. The continental shelf holds important information for understanding past and present global circulation and earth-ice-atmosphere interactions including sea-level change. It is hoped that these themes will spur further research that is slowly coming to the fore in several new and innovative mapping and exploration programmes emerging from an increasing number of coastal nations.

  12. Updating the planetary time scale: focus on Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  13. Characterization of the Helderberg Group as a geologic seal for CO 2 sequestration

    Science.gov (United States)

    Lewis, J.E.; McDowell, R.R.; Avary, K.L.; Carter, K.M.

    2009-01-01

    The Midwest Regional Carbon Sequestration Partnership recognizes that both the Devonian Oriskany Sandstone and the Silurian Salina Group offer potential for subsurface carbon dioxide storage in northern West Virginia. The Silurian-Devonian Helderberg Group lies stratigraphically between these two units, and consequendy, its potential as a geologic seal must be evaluated. Predominantly a carbonate interval with minor interbedded siliciclastics and chert, the Helderberg Group was deposited in an ancient epeiric sea. Although most previous investigations of this unit have concentrated on outcrops in eastern West Virginia, new information is available from an injection well drilled along the Ohio River at First Energy's R. E. Burger electric power plant near Shadyside, Ohio. Geophysical, seismic, and core data from this well have been combined with existing outcrop information to evaluate the Helderberg Group's potential as a seal. The data collected suggest that only secondary porosity remains, and permeability, if it exists, most likely occurs along faults or within fractures. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  14. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars

    Science.gov (United States)

    Liu, Yang; Goudge, Timothy A.; Catalano, Jeffrey G.; Wang, Alian

    2018-03-01

    Orbital remote sensing data acquired from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO), in conjunction with other datasets, are used to perform detailed spectral and stratigraphic analyses over a portion of south Melas Chasma, Mars. The Discrete Ordinate Radiative Transfer (DISORT) model is used to retrieve atmospherically corrected single scattering albedos from CRISM I/F data for mineral identification. A sequence of interbedded poly- and monohydrated sulfates associated with interior layered deposits (ILDs) is identified and mapped. Analyses from laboratory experiments and spectral unmixing of CRISM hyperspectral data support the hypothesis of precipitation and dehydration of multiple inputs of complex Mg-Ca-Fe-SO4-Cl brines. In this scenario, the early precipitated Mg sulfates could dehydrate into monohydrated sulfate due to catalytic effects, and the later-precipitated Mg sulfates from the late-stage "clean" brine could terminate their dehydration at mid-degree of hydration to form a polyhydrated sulfate layer due to depletion of the catalytic species (e.g., Ca, Fe, and Cl). Distinct jarosite-bearing units are identified stratigraphically above the hydrated sulfate deposits. These are hypothesized to have formed either by oxidation of a fluid containing Fe(II) and SO4, or by leaching of soluble phases from precursor intermixed jarosite-Mg sulfate units that may have formed during the later stages of deposition of the hydrated sulfate sequence. Results from stratigraphic analysis of the ILDs show that the layers have a consistent northward dip towards the interior of the Melas Chasma basin, a mean dip angle of ∼6°, and neighboring strata that are approximately parallel. These strata are interpreted as initially sub-horizontal layers of a subaqueous, sedimentary evaporite deposits that underwent post-depositional tilting from slumping into the Melas Chasma basin. The interbedded hydrated sulfate

  15. Stratigraphic and structural controls on groundwater flow in an outcropping fossil fan delta: the case of Sant Llorenç del Munt range (NE Spain)

    Science.gov (United States)

    Anglés, Marc; Folch, Albert; Oms, Oriol; Maestro, Eudald; Mas-Pla, Josep

    2017-12-01

    Hydrogeological models of mountain regions present the opportunity to understand the role of geological factors on groundwater resources. The effects of sedimentary facies and fracture distribution on groundwater flow and resource exploitation are studied in the ancient fan delta of Sant Llorenç de Munt (central Catalonia, Spain) by integrating geological field observations (using sequence stratigraphy methods) and hydrogeological data (pumping tests, hydrochemistry and environmental isotopes). A comprehensive analysis of data portrays the massif as a single unit, constituted by different compartments determined by specific layers and sets of fractures. Two distinct flow systems—local and regional—are identified based on pumping test analysis as well as hydrochemical and isotopic data. Drawdown curves derived from pumping tests indicate that the behavior of the saturated layers, whose main porosity is given by the fracture network, corresponds to a confined aquifer. Pumping tests also reflect a double porosity within the system and the occurrence of impervious boundaries that support a compartmentalized model for the whole aquifer system. Hydrochemical data and associated spatial evolution show the result of water-rock interaction along the flow lines. Concentration of magnesium, derived from dolomite dissolution, is a tracer of the flow-path along distinct stratigraphic units. Water stable isotopes indicate that evaporation (near a 5% loss) occurs in a thick unsaturated zone within the massif before infiltration reaches the water table. The hydrogeological analysis of this outcropping system provides a methodology for the conceptualization of groundwater flow in similar buried systems where logging and hydrogeological information are scarce.

  16. Geologic repositories for radioactive waste: the nuclear regulatory commission geologic comments on the environmental assessment

    International Nuclear Information System (INIS)

    Justus, P.S.; Trapp, J.S.; Westbrook, K.B.; Lee, R.; Blackford, M.B.; Rice, B.

    1985-01-01

    The NRC staff completed its review of the Environmental Assessments (EAs) issued by the Department of Energy (DOE) in December, 1984, in support of the site selection processes established by the Nuclear Waste Policy Act of 1982 (NWPA). The EAs contain geologic information on nine sites that DOE has identified as potentially acceptable for the first geologic repository in accordance with the requirements of NWPA. The media for the sites vary from basalt at Hanford, Washington, tuff at Yucca Mountain, Nevada, bedded salt in the Palo Duro Basin, Texas and Paradox Basin, Utah, to salt domes in Mississippi and Louisiana. Despite the diversity in media there are common areas of concern for all sites. These include; structural framework and pattern, rates of tectonic and seismic activity, characterization of subsurface features, and stratigraphic thickness, continuity and homogeneity. Site-specific geologic concerns include: potential volcanic and hydrothermal activity at Yucca Mountain, potential hydrocarbon targets and deep basalt and sub-basalt structure at Hanford, and potential dissolution at all salt sites. The NRC comments were influenced by the performance objectives and siting criteria of 10 CFR Part 60 and the environmental protection criteria in 40 CFR Part 191, the applicable standards proposed by EPA. In its review the NRC identified several areas of geologic concern that it recommended DOE re-examine to determine if alternative or modified conclusions are appropriate

  17. Tectonic evolution of the Paranoá basin: New evidence from gravimetric and stratigraphic data

    Science.gov (United States)

    Martins-Ferreira, Marco Antonio Caçador; Campos, José Eloi Guimarães; Von Huelsen, Monica Giannoccaro

    2018-06-01

    Field gravimetric and stratigraphic surveys were conducted with the aim to constraint the mechanisms responsible for the initiation of the Stenian-Tonian Paranoá basin, central Brazil, a subject not yet studied in detail. The Paranoá Group crops out in the external zone of the Brasília Belt, a Neoproterozoic orogen in the western margin of the São Francisco Craton. Detailed geological mapping confirmed the existence of a regional scale fault that controlled sedimentation of the Paranoá Group during the deposition of its basal formations, revealing important details about basin initiation and early evolution. Gravimetric modeling indicates the existence of paleorift structures beneath the Paranoá sequence in the study area. Results from both stratigraphic and gravimetric surveys show strong evidence of mechanical subsidence by faulting during basin initiation. Unsorted, angular, clasts cut by quartz veins and brecciated boulders present in the basal conglomerate, support this hypothesis. Basin initiation faults coincide with deeper paleorift faults and are thus interpreted as reactivations of the older Statherian Araí Rift. The reactivations favored an initial regime of mechanical subsidence, dominated by the development of epirogenic arches subsiding at different rates. Apart from faulting activity, the post-basal sequence presents no evidence of rift environment in the strict sense. Besides, the great lateral continuity and relatively constant thickness of facies, indicate that an initial mechanic subsidence rapidly gave way to flexural subsidence during subsequent stages of basin evolution. The Paranoá Group do not present reliable characteristics that would allow its strict classification as a passive margin. Its main stratigraphic characteristics, tectonic location and basement architecture, indicate that the Paranoá Group was deposited in a cratonic margin basin, and may have been either connected to a passive margin basin at times of sea level rise

  18. Selected stratigraphic data for drill holes located in Frenchman Flat, Nevada Test Site. Rev. 1

    International Nuclear Information System (INIS)

    Drellack, S.L. Jr.

    1997-02-01

    Stratigraphic data are presented in tabular form for 72 holes drilled in Frenchman Flat, Nevada Test Site, between 1950 and 1993. Three pairs of data presentations are included for each hole: depth to formation tops, formation thicknesses, and formation elevations are presented in both field (English) and metric units. Also included for each hole, where available, are various construction data (hole depth, hole diameter, surface location coordinates) and certain information of hydrogeologic significance (depth to water level, top of zeolitization). The event name is given for holes associated with a particular nuclear test. An extensive set of footnotes is included, which indicates data sources and provides other information. The body of the report describes the stratigraphic setting of Frenchman Flat, gives drill-hole naming conventions and database terminology, and provides other background and reference material

  19. Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS

    Science.gov (United States)

    Amato, Roger V.; Bebout, John W.

    1980-01-01

    The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.

  20. Computer-assisted decision aid for the estimation of mineral endowment: uranium in the San Juan Basin, New Mexico, a case study

    International Nuclear Information System (INIS)

    Carrigan, F.J.

    1983-01-01

    This methodology comprises two main sections, each executed on a different computer system. The first section, the Geologic Decision Model, has been computerized as an interactive PLATO program. Using the PLATO system, the geologist describes probabilistically the perceived states of geologic processes and conditions. The decision model analyzes this information and computes a probability distribution for mineral occurrence. The second section, the Endowment Simulation Model (program MASTER), is run on the DEC 10 and Cyber 175 computers. Program MASTER takes the product of the Geologic Decision Model, combines it with other data, and produces a probabilistic estimate of mineral endowment for the region being evaluated. Development and testing of the Arizona Appraisal System were carried out simultaneously over a period of about three years. During this period, four geologists from government and industry were called upon four or five times over a period of about a year for a study of the uranium (U 3 O 8 ) endowment in the San Juan Basin of northwestern New Mexico. The results produced by the system consist, for each geologist, of a probability distribution for tons of U 3 O 8 endowment for (1) each partition of each stratigraphic unit, (2) each stratigraphic unit as a whole, (3) ''formations'' or ''merged units'' (groups of stratigraphic units), and (4) the San Juan Basin as a whole (all stratigraphic units). The system also calculates the average distribution across all geologists for the various merged units and for the basin as a whole. The result for the basin as a whole (in thousands of tons) is: mean 3,855, variance 4,108 x 10 9 , and 95th percentile 6,541

  1. Geologic Map of the Hellas Region of Mars

    Science.gov (United States)

    Leonard, Gregory J.; Tanaka, Kenneth L.

    2001-01-01

    INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and deposits, and extensive channels. Geologic activity recorded in the region spans all major epochs of martian chronology, from the early formation of the impact basin to ongoing resurfacing caused by eolian activity. The Hellas region, whose name refers to the classical term for Greece, has been known from telescopic observations as a prominent bright feature on the surface of Mars for more than a century (see Blunck, 1982). More recently, spacecraft imaging has greatly improved our visual perception of Mars and made possible its geologic interpretation. Here, our mapping at 1:5,000,000 scale is based on images obtained by the Viking Orbiters, which produced higher quality images than their predecessor, Mariner 9. Previous geologic maps of the region include those of the 1:5,000,000-scale global series based on Mariner 9 images (Potter, 1976; Peterson, 1977; King, 1978); the 1:15,000,000-scale global series based on Viking images (Greeley and Guest, 1987; Tanaka and Scott, 1987); and detailed 1:500,000-scale maps of Tyrrhena Patera (Gregg and others, 1998), Dao, Harmakhis, and Reull Valles (Price, 1998; Mest and Crown, in press), Hadriaca Patera (D.A. Crown and R. Greeley, map in preparation), and western Hellas Planitia (J.M. Moore and D.E. Wilhelms, map in preparation). We incorporated some of the previous work, but our map differs markedly in the identification and organization of map units. For example, we divide the Hellas assemblage of Greeley and Guest (1987) into the Hellas Planitia and Hellas rim assemblages and change the way units within these groupings are identified

  2. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of drilling large-diameter holes in 1986. Environmental geology notes

    International Nuclear Information System (INIS)

    Vaiden, R.C.; Hasek, M.J.; Gendron, C.R.; Curry, B.B.; Graese, A.M.

    1988-01-01

    The Illinois State Geological Survey (ISGS) has completed an extensive four-year exploration of the area near Fermi National Accelerator Laboratory (Fermilab) at Batavia, 30 miles west of Chicago. The comprehensive investigation was conducted to locate the most suitable site for construction and operation of the Superconducting Super Collider (SSC) - a 20-trillion electron volt (TeV) subatomic particle accelerator. Underlying the proposed site in northeastern Illinois, between 250 and 600 feet deep, are the Galena and Platteville dolomites - strong, stable, nearly impermeable bedrock. To confirm that these bedrock units are suitable for construction of the SSC, ISGS geologists designed a four-year study including test drilling, rock sampling and analysis, geophysical logging, hydrogeologic studies, and seismic exploration. Initially, the study covered parts of six counties. Subsequent research focused on successively smaller areas until the final stage of test drilling in spring 1986 concentrated on a proposed corridor for the SSC tunnel. From 1984 to 1986, thirty 3-inch-diameter test holes were drilled and more than 2 miles of bedrock core was recovered for stratigraphic description and geotechnical analysis

  3. Geologic studies in the Sierra de Pena Blanca, Chihuahua, Mexico

    Science.gov (United States)

    Reyes-Cortes, Ignacio Alfonso

    grade of the rock units; and the possible paths of potential leachate through the geologic media. The last part of the work relates to the natural analog of the Yucca Mountain, the Nopal I orebody, which is compared and found similar in its geologic frame work, in the lithologic units and their weathering, in the stratigraphic relationships with the vitrophyres and tuff horizons, in the climatic dryness, in the regional water table depth and the hydrologic features, in the ignimbritic units mineralogy, and in the radioactive waste fuel compared to the ore mineralogy of the Nopal I. There are mineralogic determinations of the fracture fill material in the orebody and host rock; detailed mapping of the fractures and surface alterations; and gamma ray grid measurements and electromagnetic soundings. All these studies indicate a support criteria to take the Nopal I as a natural analogue of the Yucca Mountain repository. The total evolution of the Nopal I orebody is exposed in the walls and floors of the +00 and +10 levels, which are ready to perform final safety tests in order to compare it with the future Yucca Mountain repository behavior. The Nopal in orebody has been there for several hundred of thousands and may be millions of years in an natural equilibrium with the surrounding environment. (Abstract shortened by UMI.)

  4. Stratigraphic units overlying the Zambales Ophiolite Complex (ZOC) in Luzon, (Philippines): Tectonostratigraphic significance and regional implications

    Science.gov (United States)

    Queaño, Karlo L.; Dimalanta, Carla B.; Yumul, Graciano P.; Marquez, Edanjarlo J.; Faustino-Eslava, Decibel V.; Suzuki, Shigeyuki; Ishida, Keisuke

    2017-07-01

    The Zambales Ophiolite Complex (ZOC) on the island of Luzon, Philippines is one of the most well-studied crust-mantle sequences in the region. Several massifs comprise the ZOC, one of which is the Coto Block overlain by clastic sedimentary units previously dated as Eocene. Geochronologic studies from diabase, granodiorites and other late-stage magmatic products similarly yielded the same age. Succeeding tectonic models have therefore all been grounded on the assumption that the entire ZOC is Eocene. Recent investigations, however, revealed the presence of chert blocks within the Early to Middle Miocene clastic formation overlying the Acoje Block in the northern part of the ophiolite complex. Radiolarians extracted from the cherts yielded a stratigraphic range that suggests a Late Jurassic to Early Cretaceous age. The recognition of a much older age than previously reported of the ZOC warrants a re-examination of its actual distribution and genesis. Correlating with other similarly-aged ophiolites, we suggest defining a western Mesozoic ophiolite belt, largely extending from the west-central portion of the archipelago to the northeastern tip of Luzon island. Tentatively, we attribute the Mesozoic ophiolitic and associated rocks in western Luzon to an arc-continent collision involving the Philippine Mobile Belt and the Palawan Microcontinental Block. In addition, differences in the clastic compositions of the Cenozoic sedimentary formations provide material not only for deciphering the ZOC's unroofing history but also for constraining the timing of province linkage. The intermittent appearance of lithic fragments and detrital minerals from the ophiolite in the units of the Middle Miocene Candelaria Limestone and the Late Miocene to Early Pliocene Sta. Cruz Formation indicates significant but geographically variable contributions from the ophiolite complex. In the northern Zambales Range, the Sta. Cruz Formation caps the Coto Block and the Acoje Block of the ZOC

  5. Geologic characterization of Cuvette Centrale petroleum systems Congo-DRC

    Energy Technology Data Exchange (ETDEWEB)

    Vicentelli, Maria Gabriela C.; Barbosa, Mauro; Rezende, Nelio G.A.M. [HRT Petroleum, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Cuvette Centrale is an almost unexplored basin, which contains some petroleum system elements that indicate the presence of hydrocarbons. In this sense; this paper presents an exploratory alternative for this intracratonic basin. The interpretation of the limited gravimetric, magnetometric, geochemical and seismic available data allowed the identification of many huge structural features and also some areas with hydrocarbon potential for stratigraphic traps. The presence of several oil and gas seeps widespread around the Busira and Lokoro sub-basins indicate that at least one active petroleum system exist in the basin. Despite only four wells have been drilled in the basin, one of them presented oil shows during drilling. Geological correlations between Brazilian Paleozoic basins and Cuvette Centrale sedimentary sequences permitted to conclude that Cambro-Ordovician and Siluro-Devonian source rocks must be present and active in the Cuvette Centrale basin. The tectono-stratigraphic evolution history of the Cuvette Centrale from Neo proterozoic to Recent times shows extensional and compressional/transpressional alternating phases along the geological time. The most confident petroleum system expected in the Cuvette Centrale is characterized by the Cambrian Mamungi shale - source rock - and the Cambro-Ordovician. Upper Arenaceous Sequence - reservoirs, as observed in the MBandaka and Gilson wells and confirmed by surface geology in outcrops. Besides, other potential petroleum systems are expected to occur in the basin. One is characterized by the Neo proterozoic Itury Group source rock and reservoirs in the mature/over mature stage, the others are the Siluro-Devonian and Cretaceous source rocks and reservoirs, expected to occur with better maturity conditions only in the deeper parts of the basin. (author)

  6. Stratigraphy of the crater Copernicus

    Science.gov (United States)

    Paquette, R.

    1984-01-01

    The stratigraphy of copernicus based on its olivine absorption bands is presented. Earth based spectral data are used to develop models that also employ cratering mechanics to devise theories for Copernican geomorphology. General geologic information, spectral information, upper and lower stratigraphic units and a chart for model comparison are included in the stratigraphic analysis.

  7. Measuring Stratigraphic Congruence Across Trees, Higher Taxa, and Time.

    Science.gov (United States)

    O'Connor, Anne; Wills, Matthew A

    2016-09-01

    The congruence between the order of cladistic branching and the first appearance dates of fossil lineages can be quantified using a variety of indices. Good matching is a prerequisite for the accurate time calibration of trees, while the distribution of congruence indices across large samples of cladograms has underpinned claims about temporal and taxonomic patterns of completeness in the fossil record. The most widely used stratigraphic congruence indices are the stratigraphic consistency index (SCI), the modified Manhattan stratigraphic measure (MSM*), and the gap excess ratio (GER) (plus its derivatives; the topological GER and the modified GER). Many factors are believed to variously bias these indices, with several empirical and simulation studies addressing some subset of the putative interactions. This study combines both approaches to quantify the effects (on all five indices) of eight variables reasoned to constrain the distribution of possible values (the number of taxa, tree balance, tree resolution, range of first occurrence (FO) dates, center of gravity of FO dates, the variability of FO dates, percentage of extant taxa, and percentage of taxa with no fossil record). Our empirical data set comprised 647 published animal and plant cladograms spanning the entire Phanerozoic, and for these data we also modeled the effects of mean age of FOs (as a proxy for clade age), the taxonomic rank of the clade, and the higher taxonomic group to which it belonged. The center of gravity of FO dates had not been investigated hitherto, and this was found to correlate most strongly with some measures of stratigraphic congruence in our empirical study (top-heavy clades had better congruence). The modified GER was the index least susceptible to bias. We found significant differences across higher taxa for all indices; arthropods had lower congruence and tetrapods higher congruence. Stratigraphic congruence-however measured-also varied throughout the Phanerozoic, reflecting

  8. Geologic study of Kettle dome, northeast Washington. Final report

    International Nuclear Information System (INIS)

    1980-10-01

    This geologic study of Kettle dome, northeast Washington, encompasses an area of approximately 800 square miles (2048 sq km). The evaluation of uranium occurrences associated with the igneous and metamorphic rocks of the dome and the determination of the relationship between uranium mineralization and stratigraphic, structural, and metamorphic features of the dome are the principal objectives. Evaluation of the validity of a gneiss dome model is a specific objective. The principal sources of data are detailed geologic mapping, surface radiometric surveys, and chemical analyses of rock samples. Uranium mineralization is directly related to the presence of pegmatite dikes and sills in biotite gneiss and amphibolite. Other characteristics of the uranium occurrences include the associated migmatization and high-grade metamorphism of wallrock adjacent to the pegmatite and the abrupt decrease in uranium mineralization at the pegmatite-gneiss contact. Subtle chemical characteristics found in mineralized pegmatites include: (1) U increase as K 2 O increases, (2) U decreases as Na 2 O increases, and (3) U increases as CaO increases at CaO values above 3.8%. The concentration of uranium occurrences in biotite gneiss and amphibolite units results from the preferential intrusion of pegmitites into these well-foliated rocks. Structural zones of weakness along dome margins permit intrusive and migmatitic activity to affect higher structural levels of the dome complex. As a result, uranium mineralization is localized along dome margins. The uranium occurrences in the Kettle dome area are classified as pegmatitic. Sufficient geologic similarities exist between Kettle dome and the Rossing uranium deposit to propose the existence of economic uranium targets within Kettle dome

  9. Lithostratigraphy and volcanology of the Serra Geral Group, Paraná-Etendeka Igneous Province in Southern Brazil: Towards a formal stratigraphical framework

    Science.gov (United States)

    Rossetti, Lucas; Lima, Evandro F.; Waichel, Breno L.; Hole, Malcolm J.; Simões, Matheus S.; Scherer, Claiton M. S.

    2018-04-01

    The volcanic rocks of the Lower Cretaceous Paraná-Etendeka Igneous Province, in Brazil, are grouped in the Serra Geral Group. The province can be chemically divided into low-TiO2, and high-TiO2. In southern Brazil, the low-TiO2 lava pile reaches a thickness of 1 km and is formed of heterogeneous lava packages here divided into four lava formations. Torres Formation (TF) is characterized by chemically more primitive basaltic (> 5 wt% MgO) compound pahoehoe flow fields; these lavas stratigraphically overly aeolian sandstones of Botucatu Formation and represent the onset of the volcanic activity. Vale do Sol Formation (VSF) groups vertically stacked sheet-like rubbly pahoehoe basaltic andesites (SiO2 > 51 wt%; MgO < 5 wt%). These lavas covered the former basalts in the Torres Syncline axis and pinch out towards southwest and represent the most voluminous mafic lava flows. Dacites and rhyolites of Palmas Formation (PF) overlay VSF flows in the central and eastern outcrop area and rest directly upon TF lavas in the west. The acidic units were emplaced as lava domes and widespread tabular lava flows. Esmeralda Formation (EF) is the upper stratigraphic unit and it is formed by a basaltic pahoehoe flow field emplaced during the waning phase of volcanic activity of the low-TiO2 lava sequence. Sedimentary interbeds are preserved throughout the whole lava pile and were deposited during quiescence periods of volcanic activity, and represent important stratigraphic markers (e.g. TF-VSF contact). The newly proposed stratigraphy provides promptly recognized stratigraphic units in a regional framework of fundamental importance for future correlations and provide vital information in the understanding of how the Paraná-Etendeka Igneous Province evolved through time.

  10. The Aristarchus-Harbinger region of the moon: Surface geology and history from recent remote-sensing observations

    Science.gov (United States)

    Zisk, S.H.; Hodges, C.A.; Moore, H.J.; Shorthill, R.W.; Thompson, T.W.; Whitaker, E.A.; Wilhelms, D.E.

    1977-01-01

    The region including the Aristarchus Plateau and Montes Harbinger is probably the most diverse, geologically, of any area of comparble size on the Moon. This part of the northwest quadrant of the lunar near side includes unique dark mantling material; both the densest concentration and the largest of the sinuous rilles; apparent volcanic vents, sinks, and domes; mare materials of various ages and colors; one of the freshest large craters (Aristarchus) with ejecta having unique colors and albedos; and three other large craters in different states of flooding and degradation (krieger, Herodotus, and Prinz). The three best-authenticated lunar transient phenomena were also observed here. This study is based principally on photographic and remote sensing observations made from Earth and Apollo orbiting space craft. Results include (1) delineation of geologic map units and their stratigraphic relationships; (2) discussion of the complex interrelationships between materials of volcanic and impact origin, including the effects of excavation, redistribution and mixing of previously deposited materials by younger impact craters; (3) deduction of physical and chemical properties of certain of the geologic units, based on both the remote-sensing information and on extrapolation of Apollo data to this area; and (4) development of a detailed geologic history of the region, outlining the probable sequence of events that resulted in its present appearance. A primary concern of the investigation has been anomalous red dark mantle on the Plateau. Based on an integration of Earth- and lunar orbit-based data, this layer seems to consist of fine-grained, block-free material containing a relatively large fraction of orange glass. It is probably of pyroclastic origin, laid down at some time during the Imbrian period of mare flooding. ?? 1977 D. Reidel Publishing Company.

  11. Neoproterozoic–Cambrian stratigraphic framework of the Anti-Atlas and Ouzellagh promontory (High Atlas), Morocco

    Science.gov (United States)

    Alvaro, Jose Javier; Benziane, Fouad; Thomas, Robert; Walsh, Gregory J.; Yazidi, Abdelaziz

    2014-01-01

    In the last two decades, great progress has been made in the geochronological, chrono- and chemostratigraphic control of the Neoproterozoic and Cambrian from the Anti-Atlas Ranges and the Ouzellagh promontory (High Atlas). As a result, the Neoproterozoic is lithostratigraphically subdivided into: (i) the Lkest-Taghdout Group (broadly interpreted at c. 800–690 Ma) representative of rift-to-passive margin conditions on the northern West African craton; (ii) the Iriri (c. 760–740 Ma), Bou Azzer (c. 762–697 Ma) and Saghro (c. 760?–610 Ma) groups, the overlying Anezi, Bou Salda, Dadès and Tiddiline formations localized in fault-grabens, and the Ouarzazate Supergroup (c. 615–548 Ma), which form a succession of volcanosedimentary complexes recording the onset of the Pan-African orogeny and its aftermath; and (iii) the Taroudant (the Ediacaran–Cambrian boundary lying in the Tifnout Member of the Adoudou Formation), Tata, Feijas Internes and Tabanite groups that have recorded development of the late Ediacaran–Cambrian Atlas Rift. Recent discussions of Moroccan strata to select new global GSSPs by the International Subcommissions on Ediacaran and Cambrian Stratigraphy have raised the stratigraphic interest in this region. A revised and updated stratigraphic framework is proposed here to assist the tasks of both subcommissions and to fuel future discussions focused on different geological aspects of the Neoproterozoic–Cambrian time span.

  12. 200-ZP-1 operable unit borehole summary report for FY 1995 and FY 1996

    International Nuclear Information System (INIS)

    Darrach, M.E.

    1996-10-01

    This document details the well construction, sampling, analyses, and geologic character of the Ringold Formation fluvial unit E gravels as encountered in 16 boreholes in the 200-ZP-1 Operable Unit. These boreholes were drilled by Water Development Hanford Corporation during fiscal years 1995 and 1996. Two of the sixteen boreholes were abandoned; the remaining 14 boreholes were completed as functioning production and compliance wells. The borehole logs and well summary sheets included as Appendices A and B of this document, respectively, depict and describe the vadose zone stratigraphic units encountered during the course of drilling. Appendix C contains the results of sieve analyses conducted on samples obtained via resonant sonic coring and standard split-spoon methods. The sieve analyses were the driver behind the majority of the well designs. Also, for completeness, Appendices D and E contain the well design calculations and the well development process

  13. Geologic Map of the Cascade Head Area, Northwestern Oregon Coast Range (Neskiwin, Nestucca Bay, Hebo, and Dolph 7.5 minute Quadrangles)

    Science.gov (United States)

    Snavely, Parke D.; Niem, Alan; Wong, Florence L.; MacLeod, Norman S.; Calhoun, Tracy K.; Minasian, Diane L.; Niem, Wendy

    1996-01-01

    flank of the Tillamook Highlands (Wells and others, 1994), but are rare south of the map area; (4) Cascade Head is the northernmost eruptive center of late Eocene alkalic basalts--85 km north of the eruptive center of correlative alkalic flows of the Yachats Basalt in the Newport Embayment (Snavely and Vokes, 1949; Snavely and others, 1990; Barnes and Barnes, 1992; Davis and others, 1995); (5) early Oligocene (33 Ma) sills and dikes of nepheline syenite and camptonite present in the Newport Embayment (Snavely and Wagner, 1961) are not found in the Cascade Head area; (6) extensive middle Oligocene (30 Ma) granophyric gabbro sills that are widespread in the central part of the Oregon Coast Range (Snavely and Wagner, 1961; MacLeod, 1969) are not present in the Cascade Head area. The Cascade Head area is the last segment of the Oregon Coast to receive detailed geologic mapping. Increased logging operations in the 1970's and 1980's created numerous new roadcut exposures and access to exposures in stream beds. More importantly, microfossil biostratigraphic control, available since 1970, based upon foraminifer determinations by W.W. Rau and nannofossil determinations by David Bukry provided critical information on stratigraphic succession as well as on depositional environments of the deep water (bathyal) siltstone units present in much of the Cascade Head area. These paleontologic data also permitted correlations with other sedimentary sequences mapped in the Newport Embayment and in the Tillamook Highlands as well as in western Washington. New 7.5-minute topographic maps and aerial photographs which became available in the late 1980's provided detailed topography which can be related to the distribution of thick sills and broad landslide areas, as well as a precise geographic relationship of geologic observations in this densely forested and brush-covered terrain. New geographic information systems (GIS) technology has produced a digitized color map of the Cascade Head

  14. Geology summary of Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Anderson, J.E.

    1996-08-01

    During FY 1994, three multiport wells were installed in Waste Area Grouping (WAG) 5. The wells were instrumented with Westbay multiport systems. The purpose of the wells is (1) to characterize different flow systems and (2) to monitor for contaminants. The geology of the individual boreholes (WAG 5-12, WAG 5-13, WAG 5-14) is documented in Bechtel National, Inc., (BNI) et al. (1994). The Bechtel report does not explicitly show geologic relationships between these boreholes or integrate this information into the geology of WAG 5. The purpose of this report is to document and present a summary of the distribution of geologic formations in WAG 5. This information is presented in several ways: (1) stratigraphic correlation diagrams based on the natural gamma ray log, (2) geologic cross sections, and (3) a geologic map. This work provides a reference frame for interpreting flow, water, and contaminant chemistry data from multiport wells

  15. Geologic Map of the State of Hawai`i

    Science.gov (United States)

    Sherrod, David R.; Sinton, John M.; Watkins, Sarah E.; Brunt, Kelly M.

    2007-01-01

    About This Map The State's geology is presented on eight full-color map sheets, one for each of the major islands. These map sheets, the illustrative meat of the publication, can be downloaded in pdf format, ready to print. Map scale is 1:100,000 for most of the islands, so that each map is about 27 inches by 36 inches. The Island of Hawai`i, largest of the islands, is depicted at a smaller scale, 1:250,000, so that it, too, can be shown on 36-inch-wide paper. The new publication isn't limited strictly to its map depictions. Twenty years have passed since David Clague and Brent Dalrymple published a comprehensive report that summarized the geology of all the islands, and it has been even longer since the last edition of Gordon Macdonald's book, Islands in the Sea, was revised. Therefore the new statewide geologic map includes an 83-page explanatory pamphlet that revisits many of the concepts that have evolved in our geologic understanding of the eight main islands. The pamphlet includes simplified page-size geologic maps for each island, summaries of all the radiometric ages that have been gathered since about 1960, generalized depictions of geochemical analyses for each volcano's eruptive stages, and discussion of some outstanding topics that remain controversial or deserving of additional research. The pamphlet also contains a complete description of map units, which enumerates the characteristics for each of the state's many stratigraphic formations shown on the map sheets. Since the late 1980s, the audience for geologic maps has grown as desktop computers and map-based software have become increasingly powerful. Those who prefer the convenience and access offered by Geographic Information Systems (GIS) can also feast on this publication. An electronic database, suitable for most GIS software applications, is available for downloading. The GIS database is in an Earth projection widely employed throughout the State of Hawai`i, using the North American datum of

  16. Discovery of Jurassic ammonite-bearing series in Jebel Bou Hedma (South-Central Tunisian Atlas): Implications for stratigraphic correlations and paleogeographic reconstruction

    Science.gov (United States)

    Bahrouni, Néjib; Houla, Yassine; Soussi, Mohamed; Boughdiri, Mabrouk; Ali, Walid Ben; Nasri, Ahmed; Bouaziz, Samir

    2016-01-01

    Recent geological mapping undertaken in the Southern-Central Atlas of Tunisia led to the discovery of Jurassic ammonite-bearing series in the Jebel Bou Hedma E-W anticline structure. These series represent the Southernmost Jurassic rocks ever documented in the outcrops of the Tunisian Atlas. These series which outcrop in a transitional zone between the Southern Tunisian Atlas and the Chott basin offer a valuable benchmark for new stratigraphic correlation with the well-known Jurassic series of the North-South Axis of Central Tunisia and also with the Jurassic subsurface successions transected by petroleum wells in the study area. The preliminary investigations allowed the identification, within the most complete section outcropping in the center of the structure, of numerous useful biochronological and sedimentological markers helping in the establishment of an updated Jurassic stratigraphic framework chart of South-Western Tunisia. Additionally, the Late Jurassic succession documents syn-sedimentary features such as slumping, erosion and reworking of sediments and ammonite faunas that can be considered as strong witnesses of an important geodynamic event around the Jurassic-Cretaceous boundary. These stratigraphic and geodynamic new data make of the Jurassic of Jebel Bou Hedma a key succession for stratigraphic correlation attempt between Atlas Tunisian series and those currently buried in the Chott basin or outcropping in the Saharan platform. Furthermore, the several rich-ammonite identified horizons within the Middle and Upper Jurassic series constitute reliable time lines that can be useful for both paleogeographic and geodynamic reconstructions of this part of the North African Tethyan margin but also in the refinement of the potential migration routes for ammonite populations from the Maghrebian Southern Tethys to Arabia.

  17. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Drake, R.M. II

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited

  18. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  19. The geological heritage of the Kurkur-Dungul area in southern Egypt

    Science.gov (United States)

    Sallam, Emad S.; Ponedelnik, Alena A.; Tiess, Günter; Yashalova, Natalia N.; Ruban, Dmitry A.

    2018-01-01

    The inventory of the geological heritage of Egypt is important for its efficient conservation and usage for the purposes of science, education, and tourism. The field investigations in the Kurkur-Dungul area in southern Egypt have permitted to identify several unique geological features. Their type, rank, relative abundance, and intrinsic diversity, as well as importance of the entire geological heritage of the study area are investigated. Seven geological heritage types are distinguished, namely stratigraphical, sedimentary, palaeogeographical, mineralogical, structural, geomorphological, and economical types. The rank of the features belonging to the listed types ranges from local to global, and the relative abundance and the intrinsic diversity range from low to high. The global rank is established for the sedimentary type, which is determined by the wide distribution of palaeospring tufa deposits. The high relative abundance and intrinsic diversity are established for the geomorphological type. The entire geological heritage of the Kurkur-Dungul area can be employed for diversification of the existing tourism programs offered at the tourist destination of Aswan, as well as for geotourism development. A geopark can be created in the Kurkur-Dungul area for the better exploitation of its geological heritage. The combined development of geological and industrial tourism seems to be possible.

  20. Stratigraphic and structural compartmentalization observed within a model turbidite reservoir, Pennsylvanian Upper Jackfork Formation, Hollywood Quarry, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Slatt, R. [Colorado School of Mines, Golden, CO (United States); Jordan, D. [Arco International Oil and Gas Co., Plano, TX (United States); Stone, C. [Arkansas Geological Commission, Little Rock, AR (United States)] [and others

    1995-08-01

    Hollywood Quarry is a 600 x 375 x 150 ft. (200 x 125 x 50m) excavation which provides a window into lower Pennsylvanian Jackfork Formation turbidite stratal architecture along the crest of a faulted anticlinal fold. A variety of turbidite facies are present, including: (a) lenticular, channelized sandstones, pebbly sandstones, and conglomerates within shale, (b) laterally continuous, interbedded thin sandstones and shales, and (c) thicker, laterally continuous shales. The sandstone and shale layers we broken by several strike-slip and reverse faults, with vertical displacements of up to several feet. This combination of facies and structural elements has resulted in a highly compartmentalized stratigraphic interval, both horizontally and vertically, along the anticlinal flexure. The quarry can be considered analogous to a scaled-down turbidite reservoir. Outcrop gamma-ray logs, measured sections, a fault map, and cross sections provide a database which is analogous to what would be available for a subsurface reservoir. Thus, the quarry provides an ideal outdoor geologic and engineering {open_quote}workshop{close_quote} venue for visualizing the potential complexities of a combination structural-stratigraphic (turbidite) reservoir. Since all forms of compartmentalization are readily visible in the quarry, problems related to management of compartmentalized reservoirs can be discussed and analyzed first-hand while standing in the quarry, within this {open_quote}model reservoir{close_quotes}. These problems include: (a) the high degree of stratigraphic and structural complexity that may be encountered, even at close well spacings, (b) uncertainty in well log correlations and log-shape interpretations, (c) variations in volumetric calculations as a function of amount of data available, and (d) potential production problems associated with specific {open_quote}field{close_quote} development plans.

  1. Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States

    Science.gov (United States)

    Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria

    2010-01-01

    As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.

  2. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    Science.gov (United States)

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  3. On the importance of stratigraphic control for vertebrate fossil sites in Channel Islands National Park, California, USA: Examples from new Mammuthus finds on San Miguel Island

    Science.gov (United States)

    Pigati, Jeffery S.; Muhs, Daniel R.; McGeehin, John P.

    2016-01-01

    Quaternary vertebrate fossils, most notably mammoth remains, are relatively common on the northern Channel Islands of California. Well-preserved cranial, dental, and appendicular elements of Mammuthus exilis (pygmy mammoth) and Mammuthus columbi (Columbian mammoth) have been recovered from hundreds of localities on the islands during the past half-century or more. Despite this paleontological wealth, the geologic context of the fossils is described in the published literature only briefly or not at all, which has hampered the interpretation of associated 14C ages and reconstruction of past environmental conditions. We recently discovered a partial tusk, several large bones, and a tooth enamel plate (all likely mammoth) at two sites on the northwest flank of San Miguel Island, California. At both localities, we documented the stratigraphic context of the fossils, described the host sediments in detail, and collected charcoal and terrestrial gastropod shells for radiocarbon dating. The resulting 14C ages indicate that the mammoths were present on San Miguel Island between ∼20 and 17 ka as well as between ∼14 and 13 ka (thousands of calibrated 14C years before present), similar to other mammoth sites on San Miguel, Santa Cruz, and Santa Rosa Islands. In addition to documenting the geologic context and ages of the fossils, we present a series of protocols for documenting and reporting geologic and stratigraphic information at fossil sites on the California Channel Islands in general, and in Channel Islands National Park in particular, so that pertinent information is collected prior to excavation of vertebrate materials, thus maximizing their scientific value.

  4. Using Outcrop Exposures on the Road to Yellowknife Bay to Build a Stratigraphic Column, Gale Crater, Mars

    Science.gov (United States)

    Stack, K. M.; Grotzinger, J. P.; Sumner, D.; Ehlmann, B. L.; Milliken, R. E.; Eigenbrode, J. L.; Gupta, S.; Williams, R. M. E.; Kah, L. C.; Lewis, K. W.

    2013-01-01

    Since landing in Gale Crater on August 5, 2012, the Curiosity rover has driven 450 m east, descending approximately 15 m in elevation from the Bradbury landing site to Yellowknife Bay. Outcrop exposure along this drive has been discontinuous, but isolated outcrops may represent windows into underlying inplace stratigraphy. This study presents an inventory of outcrops targeted by Curiosity (Figs. 1-2), grouped by lithological properties observed in Mastcam and Navcam imagery. Outcrop locations are placed in a stratigraphic context using orbital imagery and first principles of stratigraphy. The stratigraphic models presented here represent an essential first step in understanding the relative age relationships of lithological units encountered at the Curiosity landing site. Such observations will provide crucial context for assessing habitability potential of ancient Gale crater environments and organic matter preservation.

  5. Outstanding diversity of heritage features in large geological bodies: The Gachsaran Formation in southwest Iran

    Science.gov (United States)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-09-01

    The ideas of geological heritage and geological diversity have become very popular in the modern science. These are usually applied to geological domains or countries, provinces, districts, etc. Additionally, it appears to be sensible to assess heritage value of geological bodies. The review of the available knowledge and the field investigation of the Gachsaran Formation (lower Miocene) in southwest Iran permit to assign its features and the relevant phenomena to as much as 10 geological heritage types, namely stratigraphical, sedimentary, palaeontological, palaeogeographical, geomorphological, hydrogeological, engineering, structural, economical, and geohistorical types. The outstanding diversity of the features of this formation determines its high heritage value and the national rank. The geological heritage of the Gachsaran Formation is important to scientists, educators, and tourists. The Papoon and Abolhaiat sections of this formation are potential geological heritage sites, although these do not represent all above-mentioned types. The large territory, where the Gachsaran Formation outcrop, has a significant geoconservation and geotourism potential, and further inventory of geosites on this territory is necessary. Similar studies of geological bodies in North Africa and the Middle East can facilitate better understanding of the geological heritage of this vast territory.

  6. Formation and distribution of large lithologic-stratigraphic oil & gas fields (provinces

    Directory of Open Access Journals (Sweden)

    Shizhen Tao

    2018-02-01

    Full Text Available Since the “Tenth Five-Year Plan”, lithologic and stratigraphic reservoirs have been the main contribution of both the discovery as well as reserve and production increase in China; there were about 80% of proven reserves. The typical reservoirs in six major basins in the eastern, central, and western China were adopted as reservoir forming models. The reservoir forming models in three types of slopes, three types of depressions, and three types of lithologic reservoir assemblages have been built on the basis of application of new technologies, physical modeling of reservoir forming mechanism, and investigation to the formation and distribution of the reservoirs. The evaluation methods for large lithologic reservoirs provinces were established based on the forming mechanism and main controlling factors mentioned above. In addition, the study reveals the main controlling factors and the laws of enrichment of two types of stratigraphic reservoirs (pinch-out and weathered karst reservoirs based on the evaluation methods for large stratigraphic reservoir provinces that have been established. By comprehensively understanding the laws of enrichment of lithologic-stratigraphic reservoirs in four types of basins, specific evaluation methods and fine exploration techniques have been developed. The findings led to an exploration direction in the “Thirteenth Five-Year Plan” period. The study supported the exploration and selection of oil and gas plays, as well as promoted the exploration of lithologic and stratigraphic reservoirs. Keywords: Lithologic trap, Stratigraphic trap, Lithostratigraphic reservoir, Large oil and gas field, Large oil and gas province, Formation and distribution, Exploration potential

  7. Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico

    Science.gov (United States)

    Dethier, David P.; Thompson, Ren A.; Hudson, Mark R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Cochiti Dam quadrangle is located in the southern part of the Española Basin and contains sedimentary and volcanic deposits that record alluvial, colluvial, eolian, tectonic and volcanic processes over the past seventeen million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The primary mapping responsibilities were as follows: Dethier mapped the surficial deposits, basin-fill sedimentary deposits, Miocene to Quaternary volcanic deposits of the Jemez volcanic field, and a preliminary version of fault distribution. Thompson and Hudson mapped the Pliocene and Quaternary volcanic deposits of the Cerros del Rio volcanic field. Thompson, Minor, and Hudson mapped surface exposures of faults and Hudson conducted paleomagnetic studies for stratigraphic correlations. Thompson prepared the digital compilation of the geologic map.

  8. Geologic context of large karst springs and caves in the Ozark National Scenic Riverways, Missouri

    Science.gov (United States)

    Weary, David J.; Orndorff, Randall C.

    2016-01-01

    The ONSR is a karst park, containing many springs and caves. The “jewels” of the park are large springs, several of first magnitude, that contribute significantly to the flow and water quality of the Current River and its tributaries. Completion of 1:24,000-scale geologic mapping of the park and surrounding river basin, along with synthesis of published hydrologic data, allows us to examine the spatial relationships between the springs and the geologic framework to develop a conceptual model for genesis of these springs. Based on their similarity to mapped spring conduits, many of the caves in the ONSR are fossil conduit segments. Therefore, geologic control on the evolution of the springs also applies to speleogenesis in this part of the southern Missouri Ozarks.Large springs occur in the ONSR area because: (1) the Ozark aquifer, from which they rise, is chiefly dolomite affected by solution via various processes over a long time period, (2) Paleozoic hypogenic fluid migration through these rocks exploited and enhanced flow-paths, (3) a consistent and low regional dip of the rocks off of the Salem Plateau (less than 2° to the southeast) allows integration of flow into large groundwater basins with a few discreet outlets, (4) the springs are located where the rivers have cut down into structural highs, allowing access to water from stratigraphic units deeper in the aquifer thus allowing development of springsheds that have volumetrically larger storage than smaller springs higher in the section, and (5) quartz sandstone and bedded chert in the carbonate stratigraphic succession that are locally to regionally continuous, serve as aquitards that locally confine groundwater up dip of the springs creating artesian conditions. This subhorizontal partitioning of the Ozark aquifer allows contributing areas for different springs to overlap, as evidenced by dye traces that cross adjacent groundwater basin boundaries, and possibly contributes to alternate flow routes

  9. Characterizing Geological Facies using Seismic Waveform Classification in Sarawak Basin

    Science.gov (United States)

    Zahraa, Afiqah; Zailani, Ahmad; Prasad Ghosh, Deva

    2017-10-01

    Numerous effort have been made to build relationship between geology and geophysics using different techniques throughout the years. The integration of these two most important data in oil and gas industry can be used to reduce uncertainty in exploration and production especially for reservoir productivity enhancement and stratigraphic identification. This paper is focusing on seismic waveform classification to different classes using neural network and to link them according to the geological facies which are established using the knowledge on lithology and log motif of well data. Seismic inversion is used as the input for the neural network to act as the direct lithology indicator reducing dependency on well calibration. The interpretation of seismic facies classification map provides a better understanding towards the lithology distribution, depositional environment and help to identify significant reservoir rock

  10. Introduction to the special issue on the Phanerozoic geology of Egypt in honor of Professor Mohamed El-Bahay Issawi

    Science.gov (United States)

    Abdeen, M. M.; Tewksbury, B.; Abdelsalam, M. G.; Tarabees, E.

    2017-12-01

    This issue is dedicated to Professor Mohamed El-Bahay Issawi in recognition of his monumental contributions to an understanding of the Phanerozoic evolution of the northern part of Africa. During his long and productive career in the Egyptian Geological Survey and Mining Authority (EGSMA), he was committed to deciphering the geological history and resources of the Phanerozoic of Egypt. Professor Issawi is widely recognized for his influential stratigraphic-tectonic models that were an inspiration for generations of Egyptian geoscientists from the 1960s onward. His models and expertise helped to attract international interest and involvement in fundamental programs of research on the Phanerozoic geology of Egypt and specifically on geoarchaeology.

  11. Stratigraphic controls on saltwater intrusion in the Dominguez Gap area of coastal Los Angeles

    Science.gov (United States)

    Edwards, B.D.; Ehman, K.D.; Ponti, D.J.; Reichard, E.G.; Tinsley, J.C.; Rosenbauer, R.J.; Land, M.

    2009-01-01

    The Los Angeles Basin is a densely populated coastal area that significantly depends on groundwater. A part of this groundwater supply is at risk from saltwater intrusion-the impetus for this study. High-resolution seismic-reflection data collected from the Los Angeles-Long Beach Harbor Complex have been combined with borehole geophysical and descriptive geological data from four nearby ??400-m-deep continuously cored wells and with borehole geophysical data from adjacent water and oil wells to characterize the Pliocene to Holocene stratigraphy of the Dominguez Gap coastal aquifer system. The new data are shown as a north-south, two- dimensional, sequence-stratigraphic model that is compared to existing lithostratigraphic models of the Los Angeles Basin in an attempt to better understand pathways of saltwater intrusion into coastal aquifers. Intrusion of saltwater into the coastal aquifer system generally is attributed to over-pumping that caused the hydraulic gradient to reverse during the mid-1920s. Local water managers have used the existing lithostratigraphic model to site closely spaced injection wells of freshwater (barrier projects) attempting to hydraulically control the saltwater intrusion. Improved understanding of the stratigraphic relationships can guide modifications to barrier design that will allow more efficient operation. Allostratigraphic nomenclature is used to define a new sequence-stratigraphic model for the area because the existing lithostratigraphic correlations that have been used to define aquifer systems are shown not to be time-correlative. The youngest sequence, the Holocene Dominguez sequence, contains the Gaspur aquifer at its base. The Gaspur aquifer is intruded with saltwater and consists of essentially flat-lying gravelly sands deposited by the ancestral Los Angeles River as broad channels that occupied a paleovalley incised into the coastal plain during the last glacio-eustatic highstand. The underlying sequences are deformed into

  12. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Integration of geological data in the new Information System

    Science.gov (United States)

    Brentini, Maud; Favre, Stéphanie; Rusillon, Elme; Moscariello, Andrea

    2017-04-01

    Piloted by the State of Geneva and implemented by the SIG (Services Industriels de Genève), the GEothermie2020 program aims to develop geothermal energy resources in the Greater Geneva Basin (GGB) (Moscariello A., 2016). Since 2014, many existing data have been examined (Rusillon et al., 2017, Clerc et al., 2016) and new ones have been collected. Nevertheless, to date the actual IT infrastructure of the State of Geneva is neither designed to centralize these data, nor to respond efficiently to operational demands. In this context, we are developing a new Information System adapted to this specific situation (Favre et al., 2017). In order to establish a solid base line for future exploration and exploitation of underground natural resources, the centralization of the geological surface/subsurface knowledge is the real challenge. Finding the balance between comprehensiveness and relevance of the data to integrate into this future complete database system is key. Geological data are numerous, of various nature, and often very heterogeneous. Incorporating and relating all individual data is therefore a difficult and challenging task. As a result, a large work has to be done on the understanding and the harmonization of the stratigraphy of the Geneva Basin, to appreciate the data and spatial geological heterogneity. The first step consisted in consulting all data from MSc and PhD work of the University of Geneva (about 50) and from literature concerning the regional geology. In parallel, an overview concerning the subsurface geological data management in Europe carried out to learn from the experience of other geological surveys. Heterogeneities and discrepancies of the data are the main issue. Over several years (since late 30s) individual authors collected different type of data and made different interpretations leading a variety of stratigraphic facies definitions, associations and environmental reconstructions. Cross checking these data with national programs

  13. Soil Patterns Associated with the Major Geological Units of the Kruger National Park

    Directory of Open Access Journals (Sweden)

    F.J. Venter

    1986-11-01

    Full Text Available The dominant soil types of the Kruger National Park and their interrelationships with parent material, topography and climate are discussed. The geogenetic and topogenetic nature of the soils are manifested in the strong correlations between recurrent soil patterns, major geological units and terrain morphology. The soils are categorised into seven major classes on the basis of the parent material from which they developed. General soil patterns within the major classes are discussed.

  14. Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle

    Science.gov (United States)

    Gregg, T. K. P.; Yingst, R. A.

    2009-01-01

    Since the first lunar mapping program ended in the 1970s, new topographical, multispectral, elemental and albedo imaging datasets have become available (e.g., Clementine, Lunar Prospector, Galileo). Lunar science has also advanced within the intervening time period. A new systematic lunar geologic mapping effort endeavors to build on the success of earlier mapping programs by fully integrating the many disparate datasets using GIS software and bringing to bear the most current understanding of lunar geologic history. As part of this program, we report on a 1:2,500,000-scale preliminary map of a subset of Lunar Quadrangle 10 ("LQ-10" or the "Marius Quadrangle," see Figures 1 and 2), and discuss the first-order science results. By generating a geologic map of this region, we can constrain the stratigraphic and geologic relationships between features, revealing information about the Moon s chemical and thermal evolution.

  15. The ``Problem of the quaternary'' and the taxonomic rank of the late cenozoic in the international stratigraphic scale

    Science.gov (United States)

    Zubakov, V. A.

    2011-02-01

    An international scientific conflict has arisen around the International Stratigraphic Scale, the main document that regulates the rules of reading of geological records and, hence, concerns all Earth sciences. The matter of debate is the geological time scale of 2004, developed by the International Commission on Stratigraphy, where the Quaternary system was abandoned. This ICS decision triggered a protest among Quaternary geologists, members of INQUA, and became the subject of much controversy. This article provides a comprehensive analysis of the Quaternary problem and proposes a reasonable scientific solution that may be appropriate for both parties. The subject of Late Cenozoic geology is discussed: glaciations, human evolution, and recent deposits. In contrast to Charles Lyell's definition of the Plio-Pleistocene according to the percentage of modern mollusk species, it is defined here as a blanket formation, which is correlative to the topography and consists of mapped stratogens hosting fossils of modern biogeocenoses. Features of the description of the Plio-Pleistocene in terms of gravitational orbital tuning are considered. Four paleogeographic phases of modern environment evolution are recognized and ranked as stages: (1) The Messinian evolutionary explosion involved the appearance of many biogeocenoses and the bipedal walking of our extinct ancestors armed with sticks. It was a consequence of the Early Greenland (7.6 Ma BP) and Patagonian (6.7 Ma BP) hyperglaciations. (2) The Zanclean age is marked by climatic and hydrological but not evolutionary boundaries. (3) The appearance of the Villafranchian animal assemblage and Australopithecus, who used stones as weapon: 4.0-3.6 Ma BP. Orogeny and isolation of the Arctic Ocean changed the global climate dramatically. (4) The sexual revolution became the third evolutionary jump: the appearance of the first woman, "Eve", and the genus Homo with her: 1.9 Ma BP. According to the current view, the Plio

  16. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous Lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico Basin Onshore and State Waters

    Science.gov (United States)

    Dennen, Kristin O.; Hackley, Paul C.

    2012-01-01

    An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.

  17. Geological and hydrological investigations at Sidi Kreir Site, west of Alexandria, Egypt

    International Nuclear Information System (INIS)

    El-Shazly, E.M.; Shehata, W.M.; Somaida, M.A.

    1978-01-01

    Sidi-Kreir site lies along the Mediterranean Sea coast at km 30 to km 33 westwards from the center of the city of Alexandria. The studied site covers approximately 10 km 2 from the Mediterranean Sea northward to Mallehet (Lake) Maryut southward. This study includes the results of geological investigation of the site both structurally and stratigraphically, and the groundwater conditions, in relation to the erection of a nuclear power station in the site. The surface geology has been mapped using aerial photographs on scale of 1:20,000. Twenty-five drillholes were core-drilled in order to outline the subsurface geology and to observe the groundwater fluctuations. Selected core samples and soil samples were tested geologically in thin sections, physically and mechanically. Water samples were also collected and tested for total dissolved solids and specific weight. Groundwater level fluctuations were observed for a period of one year in 75 wells and drillholes. Furthermore three pumping tests were conducted to estimate the hydraulic properties of the freshwater aquifer. These properties were also calculated using the core samples data

  18. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2015-10-30

    ://www.ajol.info/index.php/jasem http://www.bioline.org.br/ja. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater System in Parts of. Benin Metropolis, Benin City Nigeria: The Key to Groundwater Sustainability.

  19. The Application of Seismic Attributes and Wheeler Transformations for the Geomorphological Interpretation of Stratigraphic Surfaces: A Case Study of the F3 Block, Dutch Offshore Sector, North Sea

    OpenAIRE

    Mohammad Afifi Ishak; Md. Aminul Islam; Mohamed Ragab Shalaby; Nurul Hasan

    2018-01-01

    This study was carried out in the Pliocene interval of the southern North Sea F3 Block in the Netherlands. This research paper demonstrates how an integrated interpretation of geological information using seismic attributes, sequence stratigraphic interpretation and Wheeler transformation methods allow for the accurate interpretation of the depositional environment of a basin, as well as locating seismic geomorphological features. The methodology adopted here is to generate a 3D dip-steered H...

  20. Geologic Framework Model Analysis Model Report

    Energy Technology Data Exchange (ETDEWEB)

    R. Clayton

    2000-12-19

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the

  1. Geologic Framework Model Analysis Model Report

    International Nuclear Information System (INIS)

    Clayton, R.

    2000-01-01

    The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and

  2. Geologic data for borehole ERDA-9, Eddy County, New Mexico

    International Nuclear Information System (INIS)

    Jones, C.L.

    1981-01-01

    Borehole ERDA-9 is an exploratory well drilled in eastern Eddy County, New Mexico to evaluate and test salt beds for disposal of nuclear wastes. The drilling was done between April 28 and June 4, 1976. Lithologic and stratigraphic details of the geologic section in ERDA-9 are described herein. The selection includes: (1) the Mescalero caliche and the Gatuna Formation of Pleistocene age, (2) the Santa Rosa Sandstone of Triassic age, and (3) the Dewey Lake Red Beds, the Rustler Formation, the Salado Formation, and part of the Castile Formation; all of Permian age

  3. The geology of the southeastern Baltic Sea: a review

    Science.gov (United States)

    Ūsaitytė, Daiva

    2000-06-01

    The Baltic Sea, particularly its southeastern part, is discussed in the paper. Investigations of regional character as well as specialized studies in the area are reviewed. General historical works are mentioned briefly. Previous surveys since the 1950s are presented by the subject studied. The compilation of geological structure of the SE Baltic Sea bottom and adjacent land of Balticum (Baltic States: Estonia, Latvia, Lithuania) is based on considerable amounts of summarized materials. The crystalline basement, sedimentary cover and Quaternary deposits are characterized in the comprehensive survey of geological structure. From a stratigraphical point of view, geological sequence of the platformal cover is comparatively complete: deposits of all geological systems (from the Archean to Cenozoic) are present in the Baltic Syneclise. Considering geotectonical cycles, the sedimentary cover of the syneclise is subdivided into four structural complexes. The thickness and distribution of Quaternary deposits are closely related to the recent bottom relief of the Baltic Sea that in turn is inherited from the Pre-Quaternary surface. Buried palaeo-valleys are characteristic of the Pre-Quaternary surface in the Baltic region and the Baltic Sea bottom. The Quaternary is characterized by layers of various geneses and by sharp changes of their thicknesses.

  4. 3D modeling of stratigraphic units and simulation of seismic facies in the Lion gulf margin; Modelisation 3D des unites stratigraphiques et simulation des facies sismiques dans la marge du golfe du Lion

    Energy Technology Data Exchange (ETDEWEB)

    Chihi, H.

    1997-05-12

    This work aims at providing a contribution to the studies carried out on reservoir characterization by use of seismic data. The study mainly consisted in the use of geostatistical methods in order to model the geometry of stratigraphic units of the Golfe du Lion margin and to simulate the seismic facies from high resolution seismic data. We propose, for the geometric modelling, a methodology based on the estimation of the surfaces and calculation afterwards of the thicknesses, if the modelling of the depth is possible. On the other hand the method consists in estimating the thickness variable directly and in deducing the boundary surfaces afterwards. In order to simulate the distribution of seismic facies within the units of the western domain, we used the truncated Gaussian method. The used approach gave a satisfactory results, when the seismic facies present slightly dipping reflectors with respect to the reference level. Otherwise the method reaches its limits because of the problems of definition of a reference level which allows to follow the clino-forms. In spite of these difficulties, this simulation allows us to estimate the distribution of seismic facies within the units and then to deduce their probable extension. (author) 150 refs.

  5. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  6. Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: First Year Results and Second Year Plan

    Science.gov (United States)

    Skinner, J. A., Jr.; Tanaka, K. L.; Hare, T. M.

    2008-01-01

    The southern Utopia highland-lowland boundary (HLB) extends >1500 km westward from northern Nepenthes Mensae to the topographic saddle that separates Isidis and Utopia Planitiae. It contains bench-like platforms that contain depressions, pitted cones (some organized into arcuate chains and thumbprint terrain), isolated domes, lineated depressions, buried circular depressions, ring fractures, polygonal fractures, and other locally- to regionally-dispersed landforms [1]. The objective of our mapping project is to clarify the geologic evolution of the southern Utopia Planitia HLB by identifying the geologic, structural, and stratigraphic relationships of surface materials in MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247.

  7. Kriging for interpolation of sparse and irregularly distributed geologic data

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, K.

    1986-12-31

    For many geologic problems, subsurface observations are available only from a small number of irregularly distributed locations, for example from a handful of drill holes in the region of interest. These observations will be interpolated one way or another, for example by hand-drawn stratigraphic cross-sections, by trend-fitting techniques, or by simple averaging which ignores spatial correlation. In this paper we consider an interpolation technique for such situations which provides, in addition to point estimates, the error estimates which are lacking from other ad hoc methods. The proposed estimator is like a kriging estimator in form, but because direct estimation of the spatial covariance function is not possible the parameters of the estimator are selected by cross-validation. Its use in estimating subsurface stratigraphy at a candidate site for geologic waste repository provides an example.

  8. Glaciotectonic deformation and reinterpretation of the Worth Point stratigraphic sequence: Banks Island, NT, Canada

    Science.gov (United States)

    Vaughan, Jessica M.; England, John H.; Evans, David J. A.

    2014-05-01

    Hill-hole pairs, comprising an ice-pushed hill and associated source depression, cluster in a belt along the west coast of Banks Island, NT. Ongoing coastal erosion at Worth Point, southwest Banks Island, has exposed a section (6 km long and ˜30 m high) through an ice-pushed hill that was transported ˜ 2 km from a corresponding source depression to the southeast. The exposed stratigraphic sequence is polydeformed and comprises folded and faulted rafts of Early Cretaceous and Late Tertiary bedrock, a prominent organic raft, Quaternary glacial sediments, and buried glacial ice. Three distinct structural domains can be identified within the stratigraphic sequence that represent proximal to distal deformation in an ice-marginal setting. Complex thrust sequences, interfering fold-sets, brecciated bedrock and widespread shear structures superimposed on this ice-marginally deformed sequence record subsequent deformation in a subglacial shear zone. Analysis of cross-cutting relationships within the stratigraphic sequence combined with OSL dating indicate that the Worth Point hill-hole pair was deformed during two separate glaciotectonic events. Firstly, ice sheet advance constructed the hill-hole pair and glaciotectonized the strata ice-marginally, producing a proximal to distal deformation sequence. A glacioisostatically forced marine transgression resulted in extensive reworking of the strata and the deposition of a glaciomarine diamict. A readvance during this initial stage redeformed the strata in a subglacial shear zone, overprinting complex deformation structures and depositing a glaciotectonite ˜20 m thick. Outwash channels that incise the subglacially deformed strata record a deglacial marine regression, whereas aggradation of glaciofluvial sand and gravel infilling the channels record a subsequent marine transgression. Secondly, a later, largely non-erosive ice margin overrode Worth Point, deforming only the most surficial units in the section and depositing a

  9. Abstracts of the Annual Meeting of Planetary Geologic Mappers, San Antonio, TX, 2009

    Science.gov (United States)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L.; Kelley, Michael S.

    2009-01-01

    Topics covered include: Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report; Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus; Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus; Geological Map of the Fredegonde (V-57) Quadrangle, Venus; Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus; Geologic Mapping of V-19; Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle; Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schr dinger Basin; Geologic Mapping along the Arabia Terra Dichotomy Boundary: Mawrth Vallis and Nili Fossae, Mars; Geologic Mapping Investigations of the Northwest Rim of Hellas Basin, Mars; Geologic Mapping of the Meridiani Region of Mars; Geology of a Portion of the Martian Highlands: MTMs -20002, -20007, -25002 and -25007; Geologic Mapping of Holden Crater and the Uzboi-Ladon-Morava Outflow System; Mapping Tyrrhena Patera and Hesperia Planum, Mars; Geologic Mapping of Athabaca Valles; Geologic Mapping of MTM -30247, -35247 and -40247 Quadrangles, Reull Vallis Region, Mars Topography of the Martian Impact Crater Tooting; Mars Structural and Stratigraphic Mapping along the Coprates Rise; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan; Geology of the Southern Utopia Planitia Highland-Lowland Boundary Plain: Second Year Results and Third Year Plan; Mars Global Geologic Mapping: About Half Way Done; New Geologic Map of the Scandia Region of Mars; Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus; Volcanism on Io: Insights from Global Geologic Mapping; and Planetary Geologic Mapping Handbook - 2009.

  10. Geology and uranium occurrences in the Forez tertiary plain (in the French 'Massif Central')

    International Nuclear Information System (INIS)

    Duclos, P.

    1967-01-01

    In the first part, the observations made during the geological survey of the Forez Tertiary plain (in the French 'Massif Central') are recalled. Then, using various methods, the author lists the formations according to chronology. Finally, a reconstitution of the geological history of this subsidence basin is attempted. In the second part, the occurrence of 17 uranium bearing geochemical anomalies is commented upon. Each of these various anomalies is given a place on the stratigraphic scale. This enables the author to put the successive phases of uranium deposition into their proper perspective in the history of the plain. In conclusion, the author points out the usefulness of these uraniferous geochemical anomalies. (author) [fr

  11. Geological Factors Affecting Flow Spatial Continuity in Water Injection of Units Operating in the LGITJ–0102 Ore Body

    Directory of Open Access Journals (Sweden)

    Ilver M. Soto-Loaiza

    2016-05-01

    Full Text Available The objective of the investigation was to identify the geological factors affecting the spatial continuity of the flow during the process of flank water injection in the units operating in the Lower Lagunilla Hydrocarbon Ore Body. This included the evaluation of the recovery factor, the petro-physic properties such as porosity, permeability, water saturation and rock type and quality in each flow unit. it was observed that the rock type of the geologic structure in the ore body is variable. The lowest values for the petro-physic properties were found in the southern area while a high variability of these parameters was observed in the northern and central areas. It was concluded that the northern area has a great potential for the development of new injection projects for petroleum recovery.

  12. Surficial Geologic Map of the Worcester North-Oxford- Wrentham-Attleboro Nine-Quadrangle Area in South- Central Massachusetts

    Science.gov (United States)

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2008-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of nine 7.5-minute quadrangles (417 mi2 total) in south-central Massachusetts (fig. 1). Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and in resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, or organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. The mapped distribution of surficial materials that lie between the land surface and the bedrock surface is based on detailed geologic mapping of 7.5-minute topographic quadrangles, produced as part of an earlier (1938-1982) cooperative statewide mapping program between the U.S. Geological Survey and the Massachusetts Department of Public Works (now Massachusetts Highway Department) (Page, 1967; Stone, 1982). Each published geologic map presents a detailed description of local geologic map units, the genesis of the deposits, and age correlations among units. Previously unpublished field compilation maps exist on paper or mylar sheets and these have been digitally rendered for the present map compilation. Regional summaries based on the Massachusetts surficial geologic mapping

  13. The Influence of Stratigraphic History on Landscape Evolution

    Science.gov (United States)

    Forte, A. M.; Yanites, B.; Whipple, K. X.

    2016-12-01

    Variation in rock erodibility can play a significant role in landscape evolution. Using a version of the CHILD landscape evolution model that allows for variations in rock erodibility, we found surprisingly complex landscape evolution in simulations with simple, two unit stratigraphies with contrasting erodibility. This work indicated that the stratigraphic order of units in terms of erodibility, the orientation of the contact with respect to the main drainage direction, and the contact dip angle all have pronounced effects on landscape evolution. Here we expand that work to explore the implications of more complicated stratigraphies on landscape evolution. Introducing multiple units adds additional controls on landscape evolution, namely the thicknesses and relative erodibility of rock layers. In models with a sequence of five alternating hard and soft units embedded within arbitrarily thick over- and underlying units, the number of individual layers that noticeably influence landscape morphology decreases as the thickness of individual layers reduces. Contacts with soft rocks over hard produce the most noticeable effect in model output such as erosion rate and channel steepness. For large contrasts in erodibility of 25 m thick layers, only one soft over hard contact is clearly manifest in the landscape. Between 50 and 75 m, two such contacts are manifest, and by 100 m thickness, all three of these contacts are manifest. However, for a given thickness of layers, more units are manifest in the landscape as the erodibility contrast between units decreases. This is true even though the magnitude of landscape effects away from steady-state erosion rates or channel steepness also decrease with decreasing erodibility contrast. Finally, we explore suites of models with alternating layers reflecting either `hardening-' or `softening-upwards' stratigraphies and find that the two scenarios result in decidedly different landscape forms. Hardening-upwards sections produce a

  14. Bedrock Geologic Map of Vermont - Units

    Data.gov (United States)

    Vermont Center for Geographic Information — The bedrock geology was last mapped at a statewide scale 50 years ago at a scale of 1:250,000 (Doll and others, 1961). The 1961 map was compiled from 1:62,500-scale...

  15. Significance of geological units of the Bohemian Massif, Czech Republic, as seen by ambient noise interferometry

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Valentová, L.; Gallovič, F.

    2016-01-01

    Roč. 173, č. 5 (2016), s. 1663-1682 ISSN 0033-4553 R&D Projects: GA ČR GAP210/12/2336; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ambient noise * geological units * Bohemian Massif * velocity model Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016

  16. Proposals of geological sites for L/ILW and HLW repositories. Geological background. Text volume

    International Nuclear Information System (INIS)

    2008-01-01

    /ILW repository, for which the time period considered for long-term safety is 100,000 years, there are no large-scale geotectonic units that, as a whole, would be unsuitable from the viewpoint of long-term geological stability and would have to be excluded. Regionally and locally, however, critical zones will have to be avoided when locating the disposal chambers in order to ensure long-term stability. The space required for the L/ILW repository is comparatively small and there is considerable flexibility in arranging the individual disposal chambers. This means that none of the large-scale units need to be deferred because of spatial conditions, although there are significant differences among the units with respect to tectonic dissection and the resulting spatial situation. For the HLW repository, with a time period of 1 million years being considered for long-term safety, the Alps have to be excluded if long-term stability (including uplift and erosion during the period being considered) is to be assured. There are also reservations regarding the long-term geological stability of the Folded Jura, the western Tabular Jura and the western sub-Jurassic zone. Because of strong tectonic dissection and the resulting insufficient spatial conditions, these three units are excluded for a HLW repository; D) The fourth step involves selecting the preferred host rock formations within the large geotectonic units still under consideration. Proposed for the L/ILW repository are the Opalinus Clay with its confining units, the clay stone sequence 'Brauner Dogger' with its confining units, the Effingen Beds and the marl formations of the Helveticum. For the HLW repository, the Opalinus Clay with its confining units is the preferred host formation. Although the crystalline bedrock and the clay-rich formations of the Lower and Upper Freshwater Molasse fulfil the minimum requirements for a host rock, test options have been deferred because of the large variability of rock properties and the

  17. Geology of the Devonian black shales of the Appalachian Basin

    Science.gov (United States)

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  18. Geological evolution and uranium mineralisation of Chhinjra area, Kulu district, Himachal Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Sen, D B; Kumar, Suresh; Gangadharan, G R [Department of Atomic Energy, New Delhi (India). Atomic Minerals Div.

    1995-08-01

    Several shear-controlled and fracture-filled/disseminated type uranium occurrences are known in the Rampur window. This paper presents the geology and genetic aspects of fracture-filled type of mineralisation in Chhinjra area on the basis of recent stratigraphical, geochronological and tectonic data. Based on the angular unconformity between Manikaran quartzites and overlying chlorite phyllites, the geological evolution of Chhinjra area has been reconstructed in two stages: pre-unconformity and post-unconformity. Each stage is characterised by different phases of deformation with typical structural style and accompanying mineralisation processes. Four major tectonic events can be recognised here, namely 2500 Ma, 1200 Ma, 700 Ma and 55 Ma. Each event has left its imprint on the rocks as well as uranium mineralisation of Chhinjra area. (author). 14 refs., 4 figs.

  19. Geological mapping potential of computer-enhanced images from the Shuttle Imaging Radar - Lisbon Valley Anticline, Utah

    Science.gov (United States)

    Curlis, J. D.; Frost, V. S.; Dellwig, L. F.

    1986-01-01

    Computer-enhancement techniques applied to the SIR-A data from the Lisbon Valley area in the northern portion of the Paradox basin increased the value of the imagery in the development of geologically useful maps. The enhancement techniques include filtering to remove image speckle from the SIR-A data and combining these data with Landsat multispectral scanner data. A method well-suited for the combination of the data sets utilized a three-dimensional domain defined by intensity-hue-saturation (IHS) coordinates. Such a system allows the Landsat data to modulate image intensity, while the SIR-A data control image hue and saturation. Whereas the addition of Landsat data to the SIR-A image by means of a pixel-by-pixel ratio accentuated textural variations within the image, the addition of color to the combined images enabled isolation of areas in which gray-tone contrast was minimal. This isolation resulted in a more precise definition of stratigraphic units.

  20. 3D geological modeling of the transboundary Berzdorf-Radomierzyce basin in Upper Lusatia (Germany/Poland)

    Science.gov (United States)

    Woloszyn, Iwona; Merkel, Broder; Stanek, Klaus

    2017-07-01

    The management of natural resources has to follow the principles of sustainable development. Therefore, before starting new mining activities, it should be checked, whether existing deposits have been completely exploited. In this study, a three-dimensional (3D) cross-border geologic model was created to generalize the existing data of the Neogene Berzdorf-Radomierzyce basin, located in Upper Lusatia on the Polish-German border south of the city of Görlitz-Zgorzelec. The model based on boreholes and cross sections of abandoned and planned lignite fields was extended to the Bernstadt and Neisse-Ręczyn Graben, an important tectonic structure at the southern rim of the basin. The partly detailed stratigraphy of Neogene sequences was combined to five stratigraphic units, considering the lithological variations and the main tectonic structures. The model was used to check the ability of a further utilization of the Bernstadt and Neisse-Ręczyn Graben, containing lignite deposits. Moreover, it will serve as a basis for the construction of a 3D cross-border groundwater model, to investigate the groundwater flow and transport in the Miocene and Quaternary aquifer systems. The large amount of data and compatibility with other software favored the application of the 3D geo-modeling software Paradigm GOCAD. The results demonstrate a very good fit between model and real geological boundaries. This is particularly evident by matching the modeled surfaces to the implemented geological cross sections. The created model can be used for planning of full-scale mining operations in the eastern part of the basin (Radomierzyce).

  1. New insights into the stratigraphic, paleogeographic and tectonic evolution and petroleum potential of Kerkennah Islands, Eastern Tunisia

    Science.gov (United States)

    Elfessi, Maroua

    2017-01-01

    This work presents general insights into the stratigraphic and paleogeographic evolution as well as the structural architecture and the petroleum potential of Kerkennah Islands, located in the Eastern Tunisia Foreland, from Cenomanian to Pliocene times. Available data from twenty wells mostly drilled in Cercina and Chergui fields are used to establish three lithostratigraphic correlations as well as isopach and isobath maps in order to point out thickness and depth variations of different geological formations present within our study area; in addition to a synthetic log and isoporosity map of the main carbonate reservoir (the nummulites enriched Reineche Member). The integrated geological study reveals relatively condensed but generally continuous sedimentation and a rugged substrate with horsts, grabens and tilted blocks due to the initiation and the individualization of Kerkennah arch throughout the studied geological times. Furthermore, a relationship was highlighted between the evolution of our study zone and those of Sirt basin, Western Mediterranean Sea and Pelagian troughs; this relationship is due to the outstanding location of Kerkennah Islands. The main Bou Dabbous source rock is thicker and more mature within the central-east of the Gulf of Gabes indicating therefore the southeast charge of Reineche reservoir which shows NW-SE trending tilted block system surrounded by normal faults representing the hydrocarbon migration pathways. Besides, the thick Oligo-Miocene formations deposited during the collapse of the Pelagian block caused the maturation of the Ypresian source rock, while the Pliocene unconformity allowed basin inversion and hydrocarbon migration.

  2. Petroleum system elements within the Late Cretaceous and Early Paleogene sediments of Nigeria's inland basins: An integrated sequence stratigraphic approach

    Science.gov (United States)

    Dim, Chidozie Izuchukwu Princeton; Onuoha, K. Mosto; Okeugo, Chukwudike Gabriel; Ozumba, Bertram Maduka

    2017-06-01

    Sequence stratigraphic studies have been carried out using subsurface well and 2D seismic data in the Late Cretaceous and Early Paleogene sediments of Anambra and proximal onshore section of Niger Delta Basin in the Southeastern Nigeria. The aim was to establish the stratigraphic framework for better understanding of the reservoir, source and seal rock presence and distribution in the basin. Thirteen stratigraphic bounding surfaces (consisting of six maximum flooding surfaces - MFSs and seven sequence boundaries - SBs) were recognized and calibrated using a newly modified chronostratigraphic chart. Stratigraphic surfaces were matched with corresponding foraminiferal and palynological biozones, aiding correlation across wells in this study. Well log sequence stratigraphic correlation reveals that stratal packages within the basin are segmented into six depositional sequences occurring from Late Cretaceous to Early Paleogene age. Generated gross depositional environment maps at various MFSs show that sediment packages deposited within shelfal to deep marine settings, reflect continuous rise and fall of sea levels within a regressive cycle. Each of these sequences consist of three system tracts (lowstand system tract - LST, transgressive system tract - TST and highstand system tract - HST) that are associated with mainly progradational and retrogradational sediment stacking patterns. Well correlation reveals that the sand and shale units of the LSTs, HSTs and TSTs, that constitute the reservoir and source/seal packages respectively are laterally continuous and thicken basinwards, due to structural influences. Result from interpretation of seismic section reveals the presence of hanging wall, footwall, horst block and collapsed crest structures. These structural features generally aid migration and offer entrapment mechanism for hydrocarbon accumulation. The combination of these reservoirs, sources, seals and trap elements form a good petroleum system that is viable

  3. Aniakchak National Monument and Preserve: Geologic resources inventory report

    Science.gov (United States)

    Hults, Chad P.; Neal, Christina

    2015-01-01

    This GRI report is a companion document to previously completed GRI digital geologic map data. It was written for resource managers to support science-informed decision making. It may also be useful for interpretation. The report was prepared using available geologic information, and the NPS Geologic Resources Division conducted no new fieldwork in association with its preparation. Sections of the report discuss distinctive geologic features and processes within the park, highlight geologic issues facing resource managers, describe the geologic history leading to the present-day landscape, and provide information about the GRI geologic map data. A poster illustrates these data. The Map Unit Properties Table summarizes report content for each geologic map unit.

  4. The stratigraphic distribution of large marine vertebrates and shell beds in the Pliocene of Tuscany

    Science.gov (United States)

    Dominici, Stefano; Benvenuti, Marco; Danise, Silvia

    2015-04-01

    , within an otherwise oligotrophic Mediterranean Sea, sustain a rich and diverse cetacean and shark, epipelagic and mesopelagic community. The modern steep bathymetric gradient was displaced towards the East during the Pliocene, before the latest phases of uplift of the Northern Apennines. An open marine, nutrient-rich ecosystem influenced hinterland basins during major transgressive pulses, leading to a higher productivity and the formation of laterally-continuos accumulations of biogenic hard parts. A comparison with the few available studies on the sequence-stratigraphic distribution of large marine vertebrates and shell beds suggests that a model integrating high-productivity and sea level rise, favouring bone bed and shell bed formation, can be applied at other settings, and other geologic intervals.

  5. Sedimentary Geology Context and Challenges for Cyberinfrastructure Data Management

    Science.gov (United States)

    Chan, M. A.; Budd, D. A.

    2014-12-01

    A cyberinfrastructure data management system for sedimentary geology is crucial to multiple facets of interdisciplinary Earth science research, as sedimentary systems form the deep-time framework for many geoscience communities. The breadth and depth of the sedimentary field spans research on the processes that form, shape and affect the Earth's sedimentary crust and distribute resources such as hydrocarbons, coal, and water. The sedimentary record is used by Earth scientists to explore questions such as the continental crust evolution, dynamics of Earth's past climates and oceans, evolution of the biosphere, and the human interface with Earth surface processes. Major challenges to a data management system for sedimentary geology are the volume and diversity of field, analytical, and experimental data, along with many types of physical objects. Objects include rock samples, biological specimens, cores, and photographs. Field data runs the gamut from discrete location and spatial orientation to vertical records of bed thickness, textures, color, sedimentary structures, and grain types. Ex situ information can include geochemistry, mineralogy, petrophysics, chronologic, and paleobiologic data. All data types cover multiple order-of-magnitude scales, often requiring correlation of the multiple scales with varying degrees of resolution. The stratigraphic framework needs dimensional context with locality, time, space, and depth relationships. A significant challenge is that physical objects represent discrete values at specific points, but measured stratigraphic sections are continuous. In many cases, field data is not easily quantified, and determining uncertainty can be difficult. Despite many possible hurdles, the sedimentary community is anxious to embrace geoinformatic resources that can provide better tools to integrate the many data types, create better search capabilities, and equip our communities to conduct high-impact science at unprecedented levels.

  6. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  7. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  8. USING GIS FOR ORGANIZATION AND MANAGEMENT OF GEOLOGIC SPECIALLY PROTECTED NATURAL AREAS

    Directory of Open Access Journals (Sweden)

    A. V. Shurkhovetskiy

    2017-01-01

    Full Text Available The article describes approaches to the preservation of unique geological objects used in the world and in Russia. It lists the shortcomings of geological monuments of nature as the main form of protection of territories that have specific features of geological structure and significant paleontological locations. It also proves the relevance of geoinformation systems (GIS use for a comprehensive solution of existing problems.The article describes the main features of the algorithm for the GIS development in the projected Alexandrov-Balykleysky geopark, consisting of a number of sequentially performed operations: field and office research, development of a cartographic basis, creation of thematic layers and database, development of conventional designations system and user interface elements.It justifies the division of information available for different user categories by creating specialized thematic layers and their relevant attributive tables, and by including additional information materials in the database. It gives conventional designations examples of geological monuments of nature of various types (paleontological, geological-geomorphological, geologicalpaleontological and sculpture-paleontological and geological sections of various stratigraphic divisions.The obtained results may be used to justify the creation and development of geoparks, to improve the management efficiency of existing geological protected areas, to conduct scientific research and to monitor the state of facilities, to collect, systematize and analyze new data, as well as for the development of tourism, culture, environmental education by creating an information Internet resource and compiling a wide range of educational products: maps, atlases, booklets, etc. 

  9. The “Anthropocene” epoch: Scientific decision or political statement?

    Science.gov (United States)

    Finney, Stanley C.; Edwards, Lucy E.

    2016-01-01

    The proposal for the “Anthropocene” epoch as a formal unit of the geologic time scale has received extensive attention in scientific and public media. However, most articles on the Anthropocene misrepresent the nature of the units of the International Chronostratigraphic Chart, which is produced by the International Commission on Stratigraphy (ICS) and serves as the basis for the geologic time scale. The stratigraphic record of the Anthropocene is minimal, especially with its recently proposed beginning in 1945; it is that of a human lifespan, and that definition relegates considerable anthropogenic change to a “pre-Anthropocene.” The utility of the Anthropocene requires careful consideration by its various potential users. Its concept is fundamentally different from the chronostratigraphic units that are established by ICS in that the documentation and study of the human impact on the Earth system are based more on direct human observation than on a stratigraphic record. The drive to officially recognize the Anthropocene may, in fact, be political rather than scientific.

  10. Characteristics of the gravel size and potassium in the Ejin Alluvial Fan from remote sensing images and stratigraphic section

    International Nuclear Information System (INIS)

    Zhang, Lu; Guo, Huadong; Wang, Qinjun

    2014-01-01

    The Ejin Alluvial Fan (EAF), located in the north-west of China, is an important recorder of both paleoclimatic and tectonic information of the north margin of the Qinghai-Tibet Plateau. Remote sensing technics, including optical and microwave sensors, have been the key spatial observation tools to extract the surface information related to the paleoenvironment. In this paper, the gravel size and chemical element potassium K distributions of the EAF were obtained from RadarSat-2 Synthetic Aperture Radar (SAR) data and LandSat TM optical data, respectively. In addition, the stratigraphic section of the EAF was established and the corresponding geological information in the vertical direction with different periods was obtained. Combining the geological survey information and surface distribution information, it can be concluded as follows. 1) The EAF covers an area of above 30,000 km 2 and may be the largest arid and semi-arid alluvial fan in the world based on the remote sensing survey. 2) Some surface parameters which are related to the paleoenvironmental change can be obtained from remote sensing data, such as the gravel size and potassium K parameters. 3) The forming process of the EAF and the corresponding environments will be understood deeply, combining the paleoenvironmental related parameters derived from remote sensing data and the geologic survey data

  11. Activities of the United States Geological Survey in Pennsylvania

    Science.gov (United States)

    Wood, Charles R.

    1997-01-01

    Since the late 1800's, when the U.S. Geological Survey first established a presence in Pennsylvania, the focus of our work has changed from general hydrologic and geologic appraisals to issue-oriented investigations; from predominantly data collection to a balanced program of data collection, interpretation, and research; and from traditional, hand-drawn mapping to digitally produced coverages with specialized themes. Yet our basic mission has not changed. It is as relevant to the resource issues of today as it was when our geologists first arrived in western Pennsylvania in 1884. Continuing in this proud heritage and tradition, the U.S. Geological Survey is moving confidently toward the next century, evolving organizationally and technologically to better meet the needs of our many constituencies. One major organizational change is the recent accession of employees from the former National Biological Service, who now form the Survey's fourth program division, the Biological Resources Division. These employees join forces with colleagues in our other three divisions: Water Resources, Geologic, and National Mapping. More than any other change in decades, the addition of this biological expertise creates new and exciting opportunities for scientific research and public service. This report provides an overview of recent activities in Pennsylvania conducted by the four program divisions and is intended to inform those interested in U.S. Geological Survey products and services. Additional information is available on our home page (at http://wwwpah2o.er.usgs.gov/). Together with numerous Federal, State, and local agencies and organizations who are our customers and partners, we at the U.S. Geological Survey look forward to providing continued scientific contributions and public service to Pennsylvania and the Nation.

  12. Integrating geologic and engineering data into 3-D reservoir models: an example from norman wells field, NWT, Canada

    International Nuclear Information System (INIS)

    Yose, L.A.

    2004-01-01

    A case study of the Norman Wells field will be presented to highlight the work-flow and data integration steps associated with characterization and modeling of a complex hydrocarbon reservoir. Norman Wells is a Devonian-age carbonate bank ('reef') located in the Northwest Territories of Canada, 60 kilometers south of the Arctic Circle. The reservoir reaches a maximum thickness of 130 meters in the reef interior and thins toward the basin due to depositional pinch outs. Norman Wells is an oil reservoir and is currently under a 5-spot water injection scheme for enhanced oil recovery (EOR). EOR strategies require a detailed understanding of how reservoir flow units, flow barriers and flow baffles are distributed to optimize hydrocarbon sweep and recovery and to minimize water handling. Reservoir models are routinely used by industry to characterize the 3-D distribution of reservoir architecture (stratigraphic layers, depositional facies, faults) and rock properties (porosity. permeability). Reservoir models are validated by matching historical performance data (e.g., reservoir pressures, well production or injection rates). Geologic models are adjusted until they produce a history match, and model adjustments are focused on inputs that have the greatest geologic uncertainty. Flow simulation models are then used to optimize field development strategies and to forecast field performance under different development scenarios. (author)

  13. Stratigraphic implications of uranium deposits

    International Nuclear Information System (INIS)

    Langford, F.F.

    1980-01-01

    One of the most consistent characteristics of economic uranium deposits is their restricted stratigraphic distribution. Uraninite deposited with direct igneous affiliation contains thorium, whereas chemical precipitates in sedimentary rocks are characterized by thorium-free primary uranium minerals with vanadium and selenium. In marine sediments, these minerals form low-grade disseminations; but in terrestrial sediments, chiefly fluvial sandstones, the concentration of uranium varies widely, with the high-grade portions constituting ore. Pitchblende vein deposits not only exhibit the same chemical characteristics as the Colorado-type sandstone deposits, but they have a stratigraphically consistent position at unconformities covered by fluvial sandstones. If deposits in such diverse situations have critical features in common, they are likely to have had many features of their origin in common. Thus, vein deposits in Saskatchewan and Australia may have analogues in areas that contain Colorado-type sandstone deposits. In New Mexico, the presence of continental sandstones with peneconformable uranium deposits should also indicate good prospecting ground for unconformity-type vein deposits. All unconformities within the periods of continental deposition ranging from Permian to Cretaceous should have uranium potential. Some situations, such as the onlap of the Abo Formation onto Precambrian basement in the Zuni Mountains, may be directly comparable to Saskatchewan deposition. However, uranium occurrences in the upper part of the Entrada Sandstone suggest that unconformities underlain by sedimentary rocks may also be exploration targets

  14. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less

  15. The three-dimensional geologic model used for the 2003 National Oil and Gas Assessment of the San Joaquin Basin Province, California: Chapter 7 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    Science.gov (United States)

    Hosford Scheirer, Allegra

    2013-01-01

    We present a three-dimensional geologic model of the San Joaquin Basin (SJB) that may be the first compilation of subsurface data spanning the entire basin. The model volume spans 200 × 90 miles, oriented along the basin axis, and extends to ~11 miles depth, for a total of more than 1 million grid nodes. This model supported the 2003 U.S. Geological Survey assessment of future additions to reserves of oil and gas in the SJB. Data sources include well-top picks from more than 3,200 wildcat and production wells, published cross sections, regional seismic grids, and fault maps. The model consists of 15 chronostratigraphic horizons ranging from the Mesozoic crystalline basement to the topographic surface. Many of the model units are hydrocarbon reservoir rocks and three—the Cretaceous Moreno Formation, the Eocene Kreyenhagen Formation, and the Miocene Monterey Formation—are hydrocarbon source rocks. The White Wolf Fault near the southern end of the basin divides the map volume into 2 separate fault blocks. The construction of a three-dimensional model of the entire SJB encountered many challenges, including complex and inconsistent stratigraphic nomenclature, significant facies changes across and along the basin axis, time-transgressive formation tops, uncertain correlation of outcrops with their subsurface equivalents, and contradictory formation top data. Although some areas of the model are better resolved than others, the model facilitated the 2003 resource assessment in several ways, including forming the basis of a petroleum system model and allowing a precise definition of assessment unit volumes.

  16. One perspective on spatial variability in geologic mapping

    Science.gov (United States)

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  17. Shallow subsurface geology and Vs characteristics of sedimentary units throughout Rasht City, Iran

    Directory of Open Access Journals (Sweden)

    Behzad Mehrabi

    2009-06-01

    Full Text Available The Manjil-Rudbar earthquake of June 1990 caused widespread damage to buildings in the city of Rasht located
    60 km from the epicenter. Seismic surveys, including refraction P-wave, S-wave and downhole tests, were
    carried out to study subsurface geology and classify materials in the city of Rasht. Rasht is built on Quaternary
    sediments consisting of old marine (Q1m, deltaic (Q2d, undivided deltaic sediments with gravel (Qdg and
    young marine (Q2m deposits. We used the variations of Vp in different materials to separate sedimentary
    boundaries. The National Earthquake Hazard Reduction Program (NEHRP scheme was used for site classification.
    Average S-wave velocity to a depth of 30 m was used to develop site categories, based on measured Vs values
    in 35 refraction seismic profiles and 4 downhole tests. For each geological unit histograms of S-wave velocity
    were calculated. This study reveals that the Vs(30 of most of the city falls into categories D and C of NEHRP
    site classification. Average horizontal spectral amplification (AHSA in Rasht was calculated using Vs(30 . The
    AHSA map clearly indicates that the amplification factor east and north of the city are higher than those of south
    and central parts. The results show that the lateral changes and heterogeneities in Q1m sediments are significant
    and most damaged buildings in 1990 Manjil earthquake were located in this unit.

  18. The Geology of the Marcia Quadrangle of Asteroid 4Vesta: An Integrated Mapping Study Using Dawn Spacecraft Data

    Science.gov (United States)

    Williams, David A.; Denevi, B. W.; Mittlefehldt, D. W.; Mest, S. C.; Schenk, P. M.; Jaumann, R.; DeSanctis, M. C.; Buczkowski, D. L.; Ammannito, E.; Prettyman, T. H.; hide

    2012-01-01

    We used geologic mapping applied to Dawn data as a tool to understand the geologic history of the Marcia quadrangle of Vesta. This region hosts a set of relatively fresh craters and surrounding ejecta field, an unusual dark hill named Arisia Tholus, and a orange (false color) diffuse material surrounding the crater Octavia. Stratigraphically, from oldest to youngest, three increasingly larger impact craters named Minucia, Calpurnia, and Marcia make up a snowmanlike feature, which is surrounded by a zone of dark material interpreted to consist of impact ejecta and possibly impact melts. The floor of Marcia contains a pitted terrain thought to be related to release of volatiles (1). The dark ejecta field has an enhanced signature of H, possibly derived from carbonaceous chondritic material that accumulated in Vesta s crust (2,3). The dark ejecta has a spectrally distinctive behavior with shallow pyroxenes band depths. Outside the ejecta field this quadrangle contains various cratered terrains, with increasing crater abundance moving south to north away from the Rheasilvia basin. Arisia Tholus, originally suggested as an ancient volcano, appears to be an impact-sculpted basin rim fragment with a superposed darkrayed impact crater. There remains no unequivocal evidence of volcanic features on Vesta s surface, likely because basaltic material of the HED meteorite suite demonstrates magmatism ended very early on Vesta (4). Ongoing work includes application of crater statistical techniques to obtain model ages of surface units, and more detailed estimates of the compositional variations among the surface units.

  19. The necessity and application of stratigraphic borings in hydrogeologic site assessments

    International Nuclear Information System (INIS)

    Sciacca, J.

    1991-01-01

    The siting and placement of monitoring wells is one of the most critical elements in hydrogeologic assessments of contaminated sites. Monitoring wells are placed to collect hydraulic and chemical concentration data to: (1) determine potential groundwater flow paths and rates: (2) analyze the nature and extent of chemical constituents in groundwater; and (3) estimate contaminant fate and transport. In many instances monitoring wells provide inappropriate or erroneous hydraulic data, do not provide coverage of potential high permeability flow pathways (such as channel sands) or may themselves create (through improper construction) a vertical conduit for contaminant flow from low permeability to high permeability units. This problem is commonly due to installing monitoring wells before conducting essential stratigraphic analysis and formulating a depositional model for the site area. This paper presents case examples where stratigraphic borings were drilled and logged in the vicinity of proposed well locations to effectively design and install the monitoring well network. The borings were continuously sampled or geophysically logged to provide a vertical profile of the borehole. In addition, the geophysical logs provided curve signatures which allowed interpretation of depositional facies. These data were used to interpret subsurface stratigraphy and effectively position monitoring wells that achieve the above objectives and prevent problems associated with faulty well positioning. This method may cost more initially. However, these initial costs are cheaper than long-term project expenses for abandoning improperly completed wells. subsequently installing supplemental monitoring wells or modifying poorly designed treatment systems which resulted from improper or insufficient data generated from the initial monitoring network

  20. Integration of borehole and seismic data to unravel complex stratigraphy: Case studies from the Mannville Group, Western Canada

    Science.gov (United States)

    Sarzalejo Silva, Sabrina Ester

    Understanding the stratigraphic architecture of geologically complex reservoirs, such as the heavy oil deposits of Western Canada, is essential to achieve an efficient hydrocarbon recovery. Borehole and 3-D seismic data were integrated to define the stratigraphic architecture and generate 3-dimensional geological models of the Mannville Group in Saskatchewan. The Mannville is a stratigraphically complex unit formed of fluvial to marine deposits. Two areas in west-central and southern Saskatchewan were examined in this study. In west-central Saskatchewan, the area corresponds to a stratigraphically controlled heavy oil reservoir with production from the undifferentiated Dina-Cummings Members of the Lower Cretaceous Mannville Group. The southern area, although non-prospective for hydrocarbons, shares many similarities with time-equivalent strata in areas of heavy oil production. Seismic sequence stratigraphic principles together with log signatures permitted the subdivision of the Mannville into different packages. An initial geological model was generated integrating seismic and well-log data Multiattribute analysis and neural networks were used to generate a pseudo-lithology or gamma-ray volume. The incorporation of borehole core data to the model and the subsequent integration with the lithological prediction were crucial to capture the distribution of reservoir and non-reservoir deposits in the study area. The ability to visualize the 3-D seismic data in a variety of ways, including arbitrary lines and stratal or horizon slicing techniques helped the definition of stratigraphic features such as channels and scroll bars that affect fluid flow in hydrocarbon producing areas. Small-scale heterogeneities in the reservoir were not resolved due to the resolution of the seismic data. Although not undertaken in this study, the resulting stratigraphic framework could be used to help construct a static reservoir model. Because of the small size of the 3-D seismic surveys

  1. New data on the geology of the archaeological site at Vinča (Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Rundić Ljupko

    2012-01-01

    Full Text Available Landslides threaten Vinča, a world famous archaeological site of Neolithic culture. For this reason, a field investigation and geologic-geotechnical research of the cores of seven exploration boreholes were carried out. Avery interesting structural setting was identified. The oldest stratigraphic unit consists of Middle Miocene Sarmatian sediments, which were discovered along the right bank of Danube River and within its riverbed about 300 m upstream from the archaeological site. These Sarmatian strata give evidence that the Danube River eroded the right bank. In addition, within its recent valley, there is a fault zone along which a block on the right bank was uplifted while a block on the left bank of the river that was subsided. All the boreholes passed through sediments of a previously unknown geological formation. It lies unconformably over Sarmatian strip marls and makes the base for Pleistocene loessoid sediments (approx. 10 m under the surface. These sediments were formed in a marsh-lake environment with a strong river influence. According to its superposition, the supposed age of this formation is the Plio-Pleistocene. Above the right bank of the Danube River, there are steep sections where Pleistocene swamp loessoid sediments were found. True loess deposits are not present here, but are in the hinterland of the right bank of the Danube River. The loess delluvium was deposited over the Pleistocene sediments. On the right bank of the Danube River, below the archaeological site, there are the anthropogenic water compacted sands that were previously incorrectly shown on geological maps as alluvial fans. [Projekat Ministarstva nauke Republike Srbije, br. 176015

  2. Storm-related sedimentation influenced by coastal configuration in the stratigraphic record of a tectonically active shelf (Upper Pleistocene Le Castella terrace, Italy)

    Science.gov (United States)

    Nalin, Ronald; Massari, Francesco

    2018-03-01

    Analysis of patterns of coastal circulation and sediment dispersal is an essential step for the study of controlling factors influencing the long-term dynamics of coastal systems. Modern settings offer the possibility to monitor relevant parameters over relatively short time spans. However, geological examples complement this perspective by providing a time-averaged record where longer trends and stratigraphically significant processes can be evaluated. This study investigates the shallow marine deposits of Le Castella terrace (Upper Pleistocene, southern Italy) to document how patterns of circulation influenced by coastline configuration can affect the preserved millennial-scale depositional record of a progradational shoreline system. The regressive portion of the Le Castella terrace deposits, developed during a relative sea-level highstand and falling stage, consists of a progradational wedge mainly composed of redistributed skeletal particles of a coeval shallow water carbonate factory. Preservation of the morphology of the paleocoastline and abundant current-related sedimentary structures allow reconstruction of the predominant sediment dispersal dynamics responsible for the formation of this sedimentary wedge. Facies and paleocurrent analysis indicate offshore and alongshore sediment transport modes, consistent with coastal circulation driven by storms normally incident to the shoreline and a sharp change in coastline orientation. This coastal inflection influenced circulation patterns causing flow separation and eddy formation in the lee of the curved coastline. Syndepositional tectonic deformation also affected the architecture of the preserved deposits, controlling the nucleation and development of a clinostratified body and determining localized lateral stratigraphic variability. This study illustrates how transient but recurrent circulation patterns associated with changes in coastal orientation and related to high-energy storm events can leave a

  3. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  4. Stratigraphic inversion of pre-stack multicomponent data; Inversion stratigraphique multicomposante avant sommation

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, Y.

    2005-09-15

    This thesis present the extension of mono-component seismic pre-stack data stratigraphical inversion method to multicomponent data, with the objective of improving the determination of reservoir elastic parameters. In addiction to the PP pressure waves, the PS converted waves proved their interest for imaging under gas clouds; and their potential is highly significant for the characterization of lithologies, fluids, fractures... Nevertheless the simultaneous use ol PP and PS data remains problematic because of their different the time scales. To jointly use the information contained in PP and PS data, we propose a method in three steps first, mono-component stratigraphic inversions of PP then PS data; second, estimation of the PP to PS time conversion law; third, multicomponent stratigraphic inversion. For the second point, the estimation of the PP to PS conversion law is based on minimizing the difference between the S impedances obtained from PP and PS mono-component stratigraphic inversion. The pre-stack mono-component stratigraphic inversions was adapted to the case of multicomponent data by leaving each type of data in its own time scale in order to avoid the distortion of the seismic wavelet. The results obtained on a realistic synthetic PP-PS case show on one hand that determining PP to PS conversion law (from the mono-component inversion results) is feasible, and on the other hand that the joint inversion of PP and PS data with this conversion law improves the results compared to the mono-component inversion ones. Although this is presented within the framework of the PP and PS multi-component data, the developed methodology adapts directly to PP and SS data for example. (author)

  5. Evaluating Geologic Sources of Arsenic in Well Water in Virginia (USA

    Directory of Open Access Journals (Sweden)

    Tiffany VanDerwerker

    2018-04-01

    Full Text Available We investigated if geologic factors are linked to elevated arsenic (As concentrations above 5 μg/L in well water in the state of Virginia, USA. Using geologic unit data mapped within GIS and two datasets of measured As concentrations in well water (one from public wells, the other from private wells, we evaluated occurrences of elevated As (above 5 μg/L based on geologic unit. We also constructed a logistic regression model to examine statistical relationships between elevated As and geologic units. Two geologic units, including Triassic-aged sedimentary rocks and Triassic-Jurassic intrusives of the Culpeper Basin in north-central Virginia, had higher occurrences of elevated As in well water than other geologic units in Virginia. Model results support these patterns, showing a higher probability for As occurrence above 5 μg/L in well water in these two units. Due to the lack of observations (<5% having elevated As concentrations in our data set, our model cannot be used to predict As concentrations in other parts of the state. However, our results are useful for identifying areas of Virginia, defined by underlying geology, that are more likely to have elevated As concentrations in well water. Due to the ease of obtaining publicly available data and the accessibility of GIS, this study approach can be applied to other areas with existing datasets of As concentrations in well water and accessible data on geology.

  6. The use of U.S. Geological Survey CD-ROM-based petroleum assessments in undergraduate geology laboratories

    Science.gov (United States)

    Eves, R.L.; Davis, L.E.; Dyman, T.S.; Takahashi, K.I.

    2002-01-01

    Domestic oil production is declining and United States reliance on imported oil is increasing. America will be faced with difficult decisions that address the strategic, economic, and political consequences of its energy resources shortage. The geologically literate under-graduate student needs to be aware of current and future United States energy issues. The U.S. Geological Survey periodically provides energy assessment data via digitally-formatted CD-ROM publications. These publications are free to the public, and are well suited for use in undergraduate geology curricula. The U.S. Geological Survey (USGS) 1995 National Assessment of United States Oil and Gas Resources (Digital Data Series or DDS-30) (Gautier and others, 1996) is an excellent resource for introducing students to the strategies of hydrocarbon exploration and for developing skills in problem-solving and evaluating real data. This paper introduces the reader to DDS-30, summarizes the essential terminology and methodology of hydrocarbon assessment, and offers examples of exercises or questions that might be used in the introductory classroom. The USGS contact point for obtaining DDS-30 and other digital assessment volumes is also provided. Completing the sample exercises in this report requires a copy of DDS-30.

  7. Geological heritage diversity in the Faiyum Oasis (Egypt): A comprehensive assessment

    Science.gov (United States)

    Sallam, Emad S.; Fathy, Esraa E.; Ruban, Dmitry A.; Ponedelnik, Alena A.; Yashalova, Natalia N.

    2018-04-01

    The Faiyum Oasis in the Western Desert of Egypt is famous for its palaeontological localities (Cenozoic whales, primates, etc.) of global importance, but its geological heritage has been not studied in the modern theoretical frame. The new investigation based on the field studies and the literature review permits comprehensive assessment of the geological heritage diversity in this oasis. For this purposes, unique geological features are inventoried with establishment of their geological essence, rank, relative abundance, and intrinsic diversity. As a result, the existence of ten geological heritage types in the Faiyum Oasis is found. These include palaeontological, palaeogeographical, geomorphological, stratigraphical, sedimentary (merged with mineralogical), hydrological coupled with geochemical, igneous, and economical types. From them, the palaeontological and palaeogeographical types are ranked globally, and the geomorphological and hydrological types are ranked nationally. The other types are either of regional (provincial) or local importance. Some hills and cliffs can serve as viewpoint sites for observation of the local geological landscape. The relative abundance and the intrinsic diversity of the unique geological features vary between low and high. Generally, the concentration of this geological heritage in the Faiyum Oasis permits recognition of the geodiversity hotspot that requires conservation and use for tourism purposes. The protected areas located in the oasis and the existing tourism programs do not offer geoconservation and geotourism activities for the entire hotspot. The possible solution of this problem would be creation of a large geopark similar in its design to the Jeju Island Geopark in South Korea. There are important premises for geotourism development in the Faiyum Oasis and its combination with the archaeological and industrial tourism. Nature conservation failures in this geopark should be avoided; some recommendations are given on

  8. A MATLAB®-based program for 3D visualization of stratigraphic setting and subsidence evolution of sedimentary basins: example application to the Vienna Basin

    Science.gov (United States)

    Lee, Eun Young; Novotny, Johannes; Wagreich, Michael

    2015-04-01

    In recent years, 3D visualization of sedimentary basins has become increasingly popular. Stratigraphic and structural mapping is highly important to understand the internal setting of sedimentary basins. And subsequent subsidence analysis provides significant insights for basin evolution. This study focused on developing a simple and user-friendly program which allows geologists to analyze and model sedimentary basin data. The developed program is aimed at stratigraphic and subsidence modelling of sedimentary basins from wells or stratigraphic profile data. This program is mainly based on two numerical methods; surface interpolation and subsidence analysis. For surface visualization four different interpolation techniques (Linear, Natural, Cubic Spline, and Thin-Plate Spline) are provided in this program. The subsidence analysis consists of decompaction and backstripping techniques. The numerical methods are computed in MATLAB® which is a multi-paradigm numerical computing environment used extensively in academic, research, and industrial fields. This program consists of five main processing steps; 1) setup (study area and stratigraphic units), 2) loading of well data, 3) stratigraphic modelling (depth distribution and isopach plots), 4) subsidence parameter input, and 5) subsidence modelling (subsided depth and subsidence rate plots). The graphical user interface intuitively guides users through all process stages and provides tools to analyse and export the results. Interpolation and subsidence results are cached to minimize redundant computations and improve the interactivity of the program. All 2D and 3D visualizations are created by using MATLAB plotting functions, which enables users to fine-tune the visualization results using the full range of available plot options in MATLAB. All functions of this program are illustrated with a case study of Miocene sediments in the Vienna Basin. The basin is an ideal place to test this program, because sufficient data is

  9. Geology, tectonism and composition of the northwest Imbrium region

    Science.gov (United States)

    Wu, Yunzhao; Li, Lin; Luo, Xiaoxing; Lu, Yu; Chen, Yuan; Pieters, Carle M.; Basilevsky, Alexander T.; Head, James W.

    2018-03-01

    The objective of this study is to explore the regional geology of the northwest Imbrium region in which the Chang'E-3 (CE-3) landing site is located. CE-3 successfully landed on December 14, 2013 on the unsampled Eratosthenian basalts whose study is important for understanding the evolution of the Moon. New geologic and structural maps of the research area were produced through the integrated analysis of diverse datasets. The highlands surrounding Imbrium differ from typical Farside Highlands Terrain (FHT). The Iridum highland region (as well as the surrounding Imbrium region) exhibits elevated concentrations of Fe, and abundant local exposures of low-Ca pyroxene and olivine bearing lithologies. In this study these highlands are named as mafic highlands (MH). Our dating results using crater size-frequency distributions (CSFDs) show that the Iridum basin (hosting Sinus Iridum) was formed ∼3.8 Ga, shortly following the Imbrium basin formation and before the last large multiringed basin, Orientale. The Eratosthenian period of lunar basalt eruptions, which lasted longer than other stratigraphic units, is suggested to divide into the Lower Eratosthenian mare (LEm) and Upper Eratosthenian mare (UEm) units. This subdivision is based on whether lava fronts can be clearly seen or not and the age separating the units is 2.35 Ga. The mafic mineralogy of the mare basalts in Imbrium is characterized by abundant olivine in the Eratosthenian-aged basalts and average pyroxene compositions near pigeonite to sub-calcic augite in the Imbrian and Em1 units. The thickness of individual lava for UEm units is 8-11 m, indicative of high effusion rates. The thickness of the Em3 unit ranges from ∼17 m to ∼45 m with lesser thickness to the west and greater thickness in the interior and to the east. The estimated volume and average flux of the Eratosthenian-aged basalts are greater than previously thought. The presence of these youngest basalts in the Procellarum-KREEP terrain (PKT) is

  10. Regional topographic rises on Venus - Geology of Western Eistla Regio and comparison to Beta Regio and Atla Regio

    Science.gov (United States)

    Senske, D. A.; Schaber, G. G.; Stofan, E. R.

    1992-01-01

    Magellan images are used to assess regional stratigraphic relationships in an attempt to establish the evolutionary history and characterize the styles of volcanism at Western Eistla Regio. The regional geologic characteristics of Beta Regio and Atla Regio, imaged by Magellan during the latter part of its first mapping cycle, are also assessed and compared to those of Western Eistla Regio so as to determine if all three of these areas evolved in a similar manner. The detailed characteristics of each region show them to be quite variable in the presence and distribution of coronae and tessera, suggesting that the detailed characteristics of the individual highlands are linked to the local geologic environment.

  11. The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle

    Science.gov (United States)

    Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.

    2010-01-01

    The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).

  12. Characterizing the natural radiation levels throughout the main geological units of Sabkhat al Jabboul area, northern Syria.

    Science.gov (United States)

    Al-Hilal, Mohamed; Aissa, Mosa

    2015-02-01

    The concentrations of equivalent eU, eTh, and K% were determined together with soil gas radon values and carborne gamma-ray survey in order to define the natural radioactivity levels throughout main geological units of Sabkhat al Jabboul region. Forty five soil and rock samples were collected from various lithofacies in each geological unit, and analyzed by γ-ray spectrometric technique for determining the concentration values of major radioelements. Such radiometric data could be used to differentiate between various lithologies of the investigated rocks. Although no distinct radioactive anomalies were found in the area, the radiometric profiles showed some minor variations with slightly higher values than the normal level. Despite the low radioactivity and the lack of rocks diversity in the surveyed area, it was possible to classify some certain rock types based on their radiometric response. The relationships between eU, eTh and their ratios were discussed for the Quaternary, Neogene and Paleogene formations, in order to evaluate the degree of uranium distribution and remobilization. The overall results of this radiometric survey were generally low, and lying within the range of the normal background levels in Syrian. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    Science.gov (United States)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively

  14. Local geological sections and regional stratigraphy based on physical geology and chemical stratigraphy of the Serra Geral Group from Araraquara to Avaré, SP

    Directory of Open Access Journals (Sweden)

    Amélia João Fernandes

    2018-05-01

    Full Text Available ABSTRACT: From Araraquara to Avaré, in the Serra Geral Group outcropping area, 22 detailed geological sections were elaborated. The stratigraphic relationships and the chemical analysis allowed the identification of seven [P2O5] basalt classes, all of them pertaining to the Pitanga type, showing a consistent stacking order across the studied region. Thus, each class is considered to correspond to a specific lava flow, allowing a general stratigraphic column to be proposed. Besides the stacking order, the validation of P2O5 as a tool for lava correlation at great distances was also based on the values obtained from samples collected at different positions in a single flow, and on the remarkable [P2O5] contrast between adjacent flows. Minimum lateral extensions range from 75 to 185 km, and thickness from 20 to 80 m. Vertical tectonic displacements, which took place in different periods, were inferred from the altitude of specific flows, and also from the Botucatu and Piramboia formations. They are noticeable in a region bounded by EW drainage lineaments, which contains a large area where Piramboia and Botucatu formations crop out, probably due to the tectonic activity causing this region to be a generalized structural high.

  15. 'Anthropocene': An Ethical Crisis, Not a Geological Epoch

    Science.gov (United States)

    Cuomo, Chris

    2017-04-01

    The term 'anthropocene' has gained enormous popularity among scientists who believe we are in a global phase distinguished by the extensive and lasting impacts of social activities on Earth's sedimentary record and vital systems. Beyond its widespread informal use, a working group of the International Union of Geological Sciences seeks to formalize the term to name a new geological epoch, implying that the Holocene epoch has ended. I argue that the move to formalize the 'anthropocene' and to declare the demise of the Holocene is premature and ethically misguided, at best, and that the very name 'anthropocene' obscures rather than illuminates the serious moral and political/economic implications of the dire warnings evident in recent stratigraphic and ecological changes. If human-caused mass extinction and other ecological catastrophes are serious harms, ethical responses are required. Instead, the move to formalize the idea of an 'anthropocene' epoch treats dire ethical warnings as an opportunity to redefine the current dangerous situation as a new status quo. Have we met our responsibilities to protect Holocene Earth? This presentation will focus on the ethical implications of using the power and discourse of geology to demote Holocene ecological states from their role as the foundational benchmarks for guiding and assessing human relationships with nature and other species. Have geoscientists adequately consulted the biological, ecological and social sciences before declaring the end of the Holocene epoch? Upon what do we base environmental ethics if the Holocene is considered past history? I will also examine the ethical dimensions of naming the so-called 'anthropocene', asking: who is the presumed 'anthro' in the 'anthropocene'? Are the phenomena identified with the 'anthropocene' (nuclear fallout, mass species endangerment, ocean acidification, fossil fuel pollution, deforestation, mining) definitive accomplishments of the human species? Should the practices

  16. Sequence Stratigraphic Appraisal: Coastal Swamp Depobelt In The ...

    African Journals Online (AJOL)

    Mid-Lower Miocene Agbada sedimentary intercalations of “AB” Field in the coastal swamp depobelt, Western Niger-Delta, were evaluated to determine their sequence stratigraphic character. The analysis was based on a combination of data sets including logs of six wells to describe lithic variations of the Agbada Formation ...

  17. Geological storage of carbon dioxide: the role of sedimentary basins

    International Nuclear Information System (INIS)

    Gunter, W.D.; Bachu, S.

    2001-01-01

    Sedimentary basins, occuring throughout the world, are thick piles of geologically deposited sediments that are the hosts for fossil fuel deposits. They may become even more important in the future if their large storage capacity is utilized for disposing of carbon dioxide. Sedimentary basins are dynamic, in the sense that they have an intricate plumbing system defined by the location of high and low permeability strata that control the flow of fluids throughout the basins and define 'hydrogeological' traps. The most secure type of hydrogeological trapping is found in oil and gas reservoirs in the form of 'structural' or 'stratigraphic' traps, termed 'closed' hydrogeological traps which have held oil and gas for millions of years. Obviously, these would be very attractive for CO 2 storage due to their long history of containment. A second type of hydrogeological trapping has been recognized in aquifers of sedimentary basins that have slow flow rates. The pore space in such 'open' hydrogeological traps is usually filled with saline ground or formation water. A volume of CO 2 injected into a deep open hydrogeological trap can take over a million years to travel updip to reach the surface and be released to the atmosphere. Although the capacity of structural/stratigraphic traps for CO 2 storage is small relative to open hydrogeological traps in deep sedimentary basins, they are likely to be used first as they are known to be secure, having held oil and gas for geological time. As the capacity of closed traps is exhausted and more is learned about geochemical trapping, the large storage capacity available in open hydrogeological traps will be utilized where security of the geological storage of CO 2 can be enhanced by geochemical reactions of the CO 2 with basic silicate minerals to form carbonates. Potential short circuits to the surface through faults or abandoned wells must be located and their stability evaluated before injection of CO 2 . In any event, a

  18. Geologic Setting and Hydrogeologic Units of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    Science.gov (United States)

    Kahle, Sue C.; Olsen, Theresa D.; Morgan, David S.

    2009-01-01

    geologic mapping and well information and to develop a digital, three-dimensional hydrogeologic model that could be used as the basis of a groundwater-flow model. This report describes the principal geologic and hydrogeologic units of the CPRAS and geologic map and well data that were compiled as part of the study. The report also describes simplified regional hydrogeologic sections and unit extent maps that were used to conceptualize the framework prior to development of the digital 3-dimensional framework model.

  19. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    Science.gov (United States)

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  20. 3D stratigraphic modeling of the Congo turbidite system since 210 ka: an investigation of factors controlling sedimentation

    Science.gov (United States)

    Laurent, Dimitri; Picot, Marie; Marsset, Tania; Droz, Laurence; Rabineau, Marina; Granjeon, Didier; Molliex, Stéphane

    2017-04-01

    The geometry and internal functioning of turbidite systems are relatively well-constrained today. However, the respective role of autogenic (topographic compensation, dynamics of turbidity currents…) and allogenic factors (tectonics, sea-level, climate) governing their architectural evolution is still under debate. The geometry of the Quaternary Congo Fan is characterized by successive sedimentary prograding/retrograding cycles bounded by upfan avulsions, reflecting a periodic control of sedimentation (Picot et al., 2016). Multi-proxy studies revealed a strong interplay between autogenic control and climate forcing as evidenced by changes in fluvial sediment supplies consistent with arid and humid periods in the Congo River Basin. In the light of these results, the aim of this study is to investigate the relative impact of internal and external forcing factors controlling, both in time and space, the formation and evolution of depocenters of the Congo Deep-Sea Fan since 210 ka. This work represents the first attempt to model in 3D the stratigraphic architecture of the Congo turbidite system using DionisosFlow (IFP-EN), a diffusion process-based software. It allows the simulation of sediment transport and the 3D geometry reproduction of sedimentary units based on physical processes such as sea level changes, tectonics, sediment supply and transport. According to the modeling results, the role of topographic compensation in the deep-sea fan geometry is secondary compared to climate changes in the drainage basin. It appears that a periodic variation of sediment discharge and water flow is necessary to simulate the timing and volume of prograding/retrograding sedimentary cycles and more particularly the upfan avulsion events. The best-fit simulations show that the overriding factor for such changes corresponds to the expansion of the vegetation cover in the catchment basin associated to the Milankovitch cycle of precession which controlled the West African Monsoon

  1. Stratigraphic model deposit Ofi Inf SDZ-2X A1, Jun in block in Orinoco Oil belt

    International Nuclear Information System (INIS)

    Martinez, E.; Sandoval, D.

    2010-01-01

    This work is about the Stratigraphic model deposit O fi I nf SDZ-2X A1, Junin block in Orinoco Oil belt.This model was based on a chrono stratigraphic interpretation and was defined the correlation between the main and secondary surfaces. The wells of the study area pass through the Cambrian, Cretaceous and Miocene sediments. The last is more interesting for the study because of the stratigraphic and sand body surface presence

  2. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along

  3. Tacuari formation (Nov. Nom.): Lithostratigraphy, facies, environment, age and geological significance (Cerro Largo - Uruguay)

    International Nuclear Information System (INIS)

    Veroslavsky, G.; De Santa Ana, H.; Daners, G.

    2006-01-01

    The definition of the Tacuari formation is proposed to group a set of glacial and fossiliferous siliciclastic rock deposited during the Upper proterozoic in the northeast of Uruguay. Up to this paper these lithologies were included in the San Gregorio formation (Carboniferous - Permian - Norte Basin). However, Leiosphaeridia tenuissima, L, minutissima, Myxcocooides distola, M, siderophila, Soldadophycus bossil and S. major were recorded in these rocks.This finded motivated the accomplishment of geological surveys that allowed to ferify the glacial origin of the Tacuari formation, to define its stratigraphic relationships and to corroborate its affectation by the Sierra Ballena shear zone. Two association of facies were recognized in the Tacuari formation: the base is represented by facies association A (outwash plains), characterized diamictites, sandostones and pelites; at the top, the facies association B (glaciomarine) includes a package of rhythmites with dropstones. On account of the tectonic setting, nature of sedimentation, age, and fossils, the definition of Tacuari formation constitutes a novel contribution to the regional evolutionary model of the Upper proterozoic. discussion of posible stratigraphc correlations with other neoproterozoic units of Western wondwana is also attempted

  4. Tribute by the Algerian Geologists to Professor Michel Durand-Delga (1923-2012). The geological work of Michel Durand-Delga in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Belhai, D.; Ouabadi, A.

    2016-10-01

    Michel Durand-Delga made a success of an outstanding career in geology. His route might be considered as one of a pioneer of a new kind. He set a meticulous rhythm in this discipline of the Earth sciences, particularly in Algeria, the country he loved for its geology, landscapes and population. The first of his fructuous works was published in 1948 on the geology of the Petite Kabylie and he continued, for most his life, to work very closely on this zone which he characterized, in a definitive way, as different from the African continent with at first structural then stratigraphical evidence. He highlighted the Kabylian thrust where the northern domain (internal, also called Kabyle) overlaps a southern domain (external or African). All the geological information that came later either produced by him or later by his students and opponents supported this great hypothesis which today has become a reliable paradigm. (Author)

  5. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  6. Stratigraphic Profiles for Selected Hanford Site Seismometer Stations and Other Locations

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    Stratigraphic profiles were constructed for eight selected Hanford Site seismometer stations, five Hanford Site facility reference locations, and seven regional three-component broadband seismometer stations. These profiles provide interpretations of the subsurface layers to support estimation of ground motions from past earthquakes, and the prediction of ground motions from future earthquakes. In most cases these profiles terminated at the top of the Wanapum Basalt, but at selected sites profiles were extended down to the top of the crystalline basement. The composite one-dimensional stratigraphic profiles were based primarily on previous interpretations from nearby boreholes, and in many cases the nearest deep borehole is located kilometers away.

  7. Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters

    Science.gov (United States)

    Swanson, Sharon M.; Enomoto, Catherine B.; Dennen, Kristin O.; Valentine, Brett J.; Cahan, Steven M.

    2017-02-10

    In 2010, the U.S. Geological Survey (USGS) assessed Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups and their equivalent units for technically recoverable, undiscovered hydrocarbon resources underlying onshore lands and State Waters of the Gulf Coast region of the United States. This assessment was based on a geologic model that incorporates the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico basin; the TPS was defined previously by the USGS assessment team in the assessment of undiscovered hydrocarbon resources in Tertiary strata of the Gulf Coast region in 2007. One conventional assessment unit (AU), which extends from south Texas to the Florida panhandle, was defined: the Fredericksburg-Buda Carbonate Platform-Reef Gas and Oil AU. The assessed stratigraphic interval includes the Edwards Limestone of the Fredericksburg Group and the Georgetown and Buda Limestones of the Washita Group. The following factors were evaluated to define the AU and estimate oil and gas resources: potential source rocks, hydrocarbon migration, reservoir porosity and permeability, traps and seals, structural features, paleoenvironments (back-reef lagoon, reef, and fore-reef environments), and the potential for water washing of hydrocarbons near outcrop areas.In Texas and Louisiana, the downdip boundary of the AU was defined as a line that extends 10 miles downdip of the Lower Cretaceous shelf margin to include potential reef-talus hydrocarbon reservoirs. In Mississippi, Alabama, and the panhandle area of Florida, where the Lower Cretaceous shelf margin extends offshore, the downdip boundary was defined by the offshore boundary of State Waters. Updip boundaries of the AU were drawn based on the updip extent of carbonate rocks within the assessed interval, the presence of basin-margin fault zones, and the presence of producing wells. Other factors evaluated were the middle

  8. Ages of subsurface stratigraphic intervals in the Quaternary of Enewetak Atoll, Marshall Islands

    Science.gov (United States)

    Szabo, B. J.; Tracey, J.I.; Goter, E.R.

    1985-01-01

    Drill cores of Enewetak Atoll, Marshall Islands, reveal six stratigraphic intervals, numbered in downward sequence, which represent vertical coral growth during Quaternary interglaciations. Radiocarbon dates indicate that the Holocene sea transgressed the emergent reef platform by about 8000 yr B.P. The reef grew rapidly upward (about 5 to 10 mm/yr) until about 6500 yr B.P. Afterward vertical growth slowed to about 0.5 mm/yr, then lateral development became dominant during the last several thousand years. The second interval is dated at 131,000 ?? 3000 yr B.P. by uranium series. This unit correlates with oxygen-isotope substage 5e and with terrace VIIa of Huon Peninsula, New Guinea, and of Main Reef-2 terrace at Atauro Island. The third interval is not dated because corals were recrystallized and it is tentatively correlated with either oxygen-isotope stages 7 or 9. The age of the fourth interval is estimated at 454,000 ?? 100,000 yr B.P. from measured 234U 238U activity ratios. This unit is correlated with either oxygen-isotope stage 9, 11, or 13. ?? 1985.

  9. A review of the geologic sections and the faunal assemblages of Aurelian Mammal Age of Latium (Italy) in the light of a new chronostratigraphic framework

    Science.gov (United States)

    Marra, F.; Nomade, S.; Pereira, A.; Petronio, C.; Salari, L.; Sottili, G.; Bahain, J.-J.; Boschian, G.; Di Stefano, G.; Falguères, C.; Florindo, F.; Gaeta, M.; Giaccio, B.; Masotta, M.

    2018-02-01

    The Aurelian Mammal Age for peninsular Italy was introduced on the basis of faunal assemblages mainly recovered at sites along the Via Aurelia west of Rome. These sites exposed a set of sedimentary deposits currently attributed to the Aurelia and to the Vitinia Formations correlated with MIS 9 and MIS 7, respectively. In the present paper we reconstruct the geologic-stratigraphic setting in the western sector of Rome within the wider context of glacio-eustatically controlled, geochronologically constrained aggradational successions defined for this region. We present a chronostratigraphic study based on dedicated field surveys, that, combined with five new 40Ar/39Ar ages and eighteen trace-element and EMP glass analyses of volcanic products, allow us to revise age and correlation with the Marine Isotopic Stages for 10 sites out of 12 previously attributed to the Aurelia Formation and the Torre in Pietra Faunal Unit. In particular, we demonstrate a MIS 13/MIS 11 age for several sections along the Via Aurelia between Malagrotta and Castel di Guido. Based on this new geochronological framework, the first occurrences of Canis lupus and Vulpes vulpes in Italy are antedated to MIS 11, within the Fontana Ranuccio Faunal Unit of the Galerian Mammal Age, consistent with the wider European context. This contribution is intended as the groundwork for a revision of the Middle Pleistocene Mammal Ages of the Italian peninsula, according to the improved chronostratigraphy of the geologic sections hosting the faunal assemblages.

  10. The geological framework of the Wairakei-Tauhara Geothermal System, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael D.; Bignall, Greg; Rae, Andrew J. [GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo (New Zealand)

    2009-03-15

    The geology of the Wairakei-Tauhara geothermal system has been revealed in increments over more than 50 years of field development. Only two major reviews of geo-scientific information have been completed; the first was made more than 40 years ago, the second (unpublished) was completed more than 25 years ago. This paper is an overview and update of the stratigraphic and structural framework of the system and its controls on fluid flow and hydrothermal alteration. We provide information on new areas of drilling exploration in the west of the Wairakei Geothermal Field and on the first production-focused drilling in 40 years at the Tauhara Geothermal Field. The lithology, thickness and extent of several units have been refined, while new units have been discovered by recent deep wells; five new members of the Waiora Formation are proposed. Nomenclature of formations and members is also updated. We review controls on fluid flow in the system and find that fault zones are likely up-flow channels, but their correlation with well feed points is equivocal, whereas intra- and inter-formational permeable zones are directly located by drilling and well completion data. New mineralogy data confirms an earlier known prograde trend of increasing hydrothermal alteration rank and intensity with depth. In the west of the Wairakei-Tauhara system thermal and chemical evolution has created a lower temperature and/or pH overprint on the older propylitic assemblage. Conditions at the eastern boundary of the system appear to have long-term stability. (author)

  11. Geomass: geological modelling analysis and simulation software for the characterisation of fractured hard rock environments

    International Nuclear Information System (INIS)

    White, M.J.; Humm, J.P.; Todaka, N.; Takeuchi, S.

    1998-01-01

    This paper presents the development and functionality of a suite of applications which are being developed to support the geological investigations in the Tono URL. GEOMASS will include 3D geological modelling, 3D fluid flow and solute transport and 3D visualisation capabilities. The 3D geological modelling in GEOMASS will be undertaken using a commercially available 3D geological modelling system, EarthVision. EarthVision provides 3D mapping, interpolation, analysis and well planning software. It is being used in the GEOMASS system to provide the geological framework (structure of the tectonic faults and stratigraphic and lithological contacts) to the 3D flow code. It is also being used to gather the geological data into a standard format for use throughout the investigation programme. The 3D flow solver to be used in GEOMASS is called Frac-Affinity. Frac-Affinity models the 3D geometry of the flow system as a hybrid medium, in which the rock contains both permeable, intact rock and fractures. Frac-Affinity also performs interpolation of heterogeneous rock mass property data using a fractal based approach and the generation of stochastic fracture networks. The code solves for transient flow over a user defined sub-region of the geological framework supplied by EarthVision. The results from Frac-Affinity are passed back to EarthVision so that the flow simulation can be visualized alongside the geological structure. This work-flow allows rapid assessment of the role of geological features in controlling flow. This paper will present the concepts and approach of GEOMASS and illustrate the practical application of GEOMASS using data from Tono

  12. Characterization of oil and gas reservoir heterogeneity. Annual report, November 1, 1990--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  13. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  14. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply

    Science.gov (United States)

    Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    SummaryMineral commodities are vital for economic growth, improving the quality of life, providing for national defense, and the overall functioning of modern society. Minerals are being used in larger quantities than ever before and in an increasingly diverse range of applications. With the increasing demand for a considerably more diverse suite of mineral commodities has come renewed recognition that competition and conflict over mineral resources can pose significant risks to the manufacturing industries that depend on them. In addition, production of many mineral commodities has become concentrated in relatively few countries (for example, tungsten, rare-earth elements, and antimony in China; niobium in Brazil; and platinum-group elements in South Africa and Russia), thus increasing the risk for supply disruption owing to political, social, or other factors. At the same time, an increasing awareness of and sensitivity to potential environmental and health issues caused by the mining and processing of many mineral commodities may place additional restrictions on mineral supplies. These factors have led a number of Governments, including the Government of the United States, to attempt to identify those mineral commodities that are viewed as most “critical” to the national economy and (or) security if supplies should be curtailed.This book presents resource and geologic information on the following 23 mineral commodities currently among those viewed as important to the national economy and national security of the United States: antimony (Sb), barite (barium, Ba), beryllium (Be), cobalt (Co), fluorite or fluorspar (fluorine, F), gallium (Ga), germanium (Ge), graphite (carbon, C), hafnium (Hf), indium (In), lithium (Li), manganese (Mn), niobium (Nb), platinum-group elements (PGE), rare-earth elements (REE), rhenium (Re), selenium (Se), tantalum (Ta), tellurium (Te), tin (Sn), titanium (Ti), vanadium (V), and zirconium (Zr). For a number of these commodities

  15. Structure and dating errors in the geologic time scale and periodicity in mass extinctions

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Structure in the geologic time scale reflects a partly paleontological origin. As a result, ages of Cenozoic and Mesozoic stage boundaries exhibit a weak 28-Myr periodicity that is similar to the strong 26-Myr periodicity detected in mass extinctions of marine life by Raup and Sepkoski. Radiometric dating errors in the geologic time scale, to which the mass extinctions are stratigraphically tied, do not necessarily lessen the likelihood of a significant periodicity in mass extinctions, but do spread the acceptable values of the period over the range 25-27 Myr for the Harland et al. time scale or 25-30 Myr for the DNAG time scale. If the Odin time scale is adopted, acceptable periods fall between 24 and 33 Myr, but are not robust against dating errors. Some indirect evidence from independently-dated flood-basalt volcanic horizons tends to favor the Odin time scale.

  16. Some problems of geologic relations between the Amazon craton and east margins fold belts

    International Nuclear Information System (INIS)

    Almeida, F.F.M. de

    1986-01-01

    This paper deals with some geologic problems related to the limits between the Amazon craton and the fold belts developed at its margins during the Precambrian. These limits are diversified but clearly recognized. To the north, the Araguaia-Tocantins fold belt, of presumed Middle Proterozoic age, is separated from the cratonic block by a deep marginal fracture zone permeated by mafic and ultramafic rocks. The geologic, magmatic and aeromagnetic characteristics of this zone point out the presence of deep faults, supposed to be of Middle Proterozoic age. The southern Paraguay fold belt constitutes and accurated zone of linear structures supposed to be of Late Proterozoic development. Despite the great increase of knowledge during the last ten years many tectonic, stratigraphic and geochronologic problems remain unsolved. The aim of this paper is to point out some of these problems and suggest specific studies to solve them. (author)

  17. Petroleum geology of the Palo Duro Basin, Texas Panhandle

    International Nuclear Information System (INIS)

    Rose, P.R.

    1986-03-01

    The Palo Duro Basin, Permian Basin, Texas is an asymmetric, relatively shallow, intracratonic basin in the southern Texas Panhandle filled mostly by Mississippian, Pennsylvanian, and Permian sedimentary rocks. Although deeper and prolific prolific petroleum-producing basins adjoin it on the north (Anadarko Basin), south (Midland Basin), and east (Hardeman Basin), the Palo Duro Basin has produced remarkably small amounts of oil and gas to date. This is all the more noteworthy because the sedimentary sequence and rock types of the basin are similar to those of the adjacent basins. Analyses of the stratigraphic succession and structural configuration of the Palo Duro Basin suggest that adequate reservoir rocks, top-seals, and geologic structures are present. Most of the structures formed early enough to have trapped hydrocarbons if they were migrating in the rock column. Although additional work is under way to properly address the question of the petroleum source rocks, generation, and migration, the general absence of production in the basin may relate to an overall deficiency in hydrocarbon generation within the basin. Geologic information in this report will form part of the basis for further analysis and conclusions on hydrocarbon potential in the Palo Duro Basin

  18. Geology and associated mineral occurrences of the Araxa Group, Mossamedes Region, Goias, Brazil

    International Nuclear Information System (INIS)

    Simoes, L.S.A.

    1984-01-01

    In the region of Mossamedes, State of Goias, Brazil, the Precambrian metamorphic rocks of the Araxa group were mapped at the scale of 1:25,000, with emphasis on stratigraphic, structural, petrographic and economic aspects. These metamorphites represent a continous stratigraphic sequence which, from bottom to top can be subdivided into five informal lithostratigraphic units: 1) psamitic unit (quartzite, metaconglomerate); 2) psamitic-pelitic unit (quartzite, quartz schist, muscovite schist); 3) lower pelitic - volcanic unit (chlorite - biotite schist, fine grained blastoporphyritic gneiss, amphibolite and calc-schist); 4) upper pelitic - volcanic unit (garnet muscovite schist, biotite schist and gneiss, amphibolite, magnetite muscovite schist); 5) gneissic unit (epidote biotite gneiss, amphibolite). Three types of meta-intrusive rocks were found, besides basic dykes related to Mesozoic magmatism. Four phases of deformation affected the volcano-sedimentary sequence;D 1 , D 2 , D 3 and D 4 , each of them developing distinct deformational features. Barrowian type metamorphism increases progressively from North to South from the biotite zone to the garnet zone (greenschist facies), reaching the staurolite-kyanite zone (amphibolite facies). The magmatism throughout the Group's evolution consists of mafic to felsic volcanic activity, mustly intermediary, as well as three intrusive events. Gold, copper and zinc minerals of economic interest occur within the studied area. The gold mineralizations are related to the pelitic-volcanic sequences. Copper occurs in several rocks from the pelitic-volcanic and gneissic sequences. (Author) [pt

  19. Mars: Stratigraphy of Western Highlands and Polar Regions

    Science.gov (United States)

    Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.

    1985-01-01

    Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.

  20. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  1. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    International Nuclear Information System (INIS)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-01-01

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  2. A three-dimensional stratigraphic model for aggrading submarine channels based on laboratory experiments, numerical modeling, and sediment cores

    Science.gov (United States)

    Limaye, A. B.; Komatsu, Y.; Suzuki, K.; Paola, C.

    2017-12-01

    Turbidity currents deliver clastic sediment from continental margins to the deep ocean, and are the main driver of landscape and stratigraphic evolution in many low-relief, submarine environments. The sedimentary architecture of turbidites—including the spatial organization of coarse and fine sediments—is closely related to the aggradation, scour, and lateral shifting of channels. Seismic stratigraphy indicates that submarine, meandering channels often aggrade rapidly relative to lateral shifting, and develop channel sand bodies with high vertical connectivity. In comparison, the stratigraphic architecture developed by submarine, braided is relatively uncertain. We present a new stratigraphic model for submarine braided channels that integrates predictions from laboratory experiments and flow modeling with constraints from sediment cores. In the laboratory experiments, a saline density current developed subaqueous channels in plastic sediment. The channels aggraded to form a deposit with a vertical scale of approximately five channel depths. We collected topography data during aggradation to (1) establish relative stratigraphic age, and (2) estimate the sorting patterns of a hypothetical grain size distribution. We applied a numerical flow model to each topographic surface and used modeled flow depth as a proxy for relative grain size. We then conditioned the resulting stratigraphic model to observed grain size distributions using sediment core data from the Nankai Trough, offshore Japan. Using this stratigraphic model, we establish new, quantitative predictions for the two- and three-dimensional connectivity of coarse sediment as a function of fine-sediment fraction. Using this case study as an example, we will highlight outstanding challenges in relating the evolution of low-relief landscapes to the stratigraphic record.

  3. Geology of the ECRB Cross Drift-Exploratory Studies Facility, Yucca Mountain Project, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    DOE

    1999-01-01

    The Enhanced Characterization of the Repository Block Cross Drift (Cross Drift) excavated at Yucca Mountain is being studied to determine its suitability as a permanent high-level nuclear waste repository. This report presents a summary of data collected by the U.S. Bureau of Reclamation (USBR) personnel on behalf of the U.S. Geological Survey (USGS) for the Department of Energy in the Cross Drift from Sta. 00+00 to 26+64. This report includes descriptions of lithostratigraphic units, an analysis of data from full-periphery geologic maps (FPGM) and detailed line survey (DLS) data, a detailed description of the Solitario Canyon Fault zone (SCFZ), and an analysis of geotechnical and engineering characteristics. The Cross Drift is excavated entirely within the Topopah Spring Tuff formation of the Paintbrush Group. Units exposed in the crystal-poor member of the Topopah Spring Tuff, include the Topopah Spring crystal-poor upper lithophysal zone (Tptpul) (Sta. 0+00 to 10+15), the Topopah Spring crystal-poor middle nonlithophysal zone (Tptpmn) (Sta. 10+15 to 14+44), the Topopah Spring crystal-poor lower lithophysal zone (Tptpll) (Sta. 14+44 to 23+26), and the Topopah Spring crystal-poor lower nonlithophysal zone (Tptpln) (Sta. 23+26 to 25+85). The lower portion of the Topopah Spring crystal-rich lithophysal transition subzone (Tptrl1) is exposed on the west side of the Solitario Canyon fault from Sta. 26+57.5 to 26+64. Lithologically, the units exposed in the Cross Drift are similar in comparable stratigraphic intervals of the Exploratory Studies Facility (ESF), particularly in terms of welding, secondary crystallization, fracturing, and type, size, color, and abundance of pumice and lithic clasts. The most notable difference is the lack of the intensely fractured zone (IFZ) in the Cross Drift. The as-built cross section and the pre-construction cross section compare favorably. Lithostratigraphic contacts and structures on the pre-construction cross section were

  4. The Oligocene carbonate platform of the Zagros Basin, SW Iran: An assessment of highly-complex geological heritage

    Science.gov (United States)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-05-01

    North Africa and the Middle East possess rich geological heritage, but the latter is yet to be fully identified and described. The Oligocene carbonate platform of the Zagros Basin in southwest Iran, which corresponds to the lower part of the Asmari Formation, has significant potential for geoconservation and geotourism. The types of the geological heritage, their value, and the possible geosites have been assessed. The studied deposits are interesting because of lithology (carbonate rocks), fossils (larger foraminifera, other microfossils, diverse marine invertebrates, fish microremains, and trace fossils), biostratigraphical developments, facies (homoclinal carbonate ramp) and signature of global events (glacioeustatic fluctuations), and outstanding hydrocarbon resources. The five main geological heritage types are sedimentary, palaeontological, stratigraphical, palaeogeographical, and economical, from which the palaeontological, palaeogeographical, and economical types are of global rank. The Khollar and Kavar sections in the Fars Province of Iran are recommended as geosites suitable for research, education, and tourism. The high complexity of the geological heritage linked to the Oligocene carbonate platform of the Zagros Basin implies the phenomenon of geodiversity should be understood with regard to the relationships between types and their values.

  5. The geology of the surrounding metamorphic rock of Zaer granite (Morocco): contribution to the search for uranium

    International Nuclear Information System (INIS)

    Mathias, Laurent

    1984-01-01

    This research thesis reports a study which aimed at reconstituting the geological history of the Zaer region in Morocco with objectives of mining exploration and of assessment of its uranium metallogenic potential. The author examined the whole geological context by studying stratigraphy, sedimentology, tectonic, and petrography of rocks belonging to the concerned area. The main objective was to determine the origin of uranium between a granitic one and a sedimentary one. This meant a reconstitution of the geological history, and therefore the study of the metamorphized sedimentary surrounding rock, of the intrusive granite and of their different possible relationships. On a first part, the author analysed outcropping formations and tried to assign them with a stratigraphic position. He also tried to define the deposition modalities of these formations which could have conditioned sedimentary sites. In a second part, the author reports the study of geological structures and tectonic in order to try to recognise possible structures which could have promoted uranium deposition and trapping in the surrounding rock as well as in granite. The last part addresses the petrography of the different rocks met in the area, and mineralization, notably that of uranium [fr

  6. Features of geologic structure of 'Lira' object territory and possible radionuclide migration pathways

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Mokhov, V.A.; Melent'ev, M.I.; Kislyj, B.I.

    1999-01-01

    In the upper part of Karachaganak salt couple on the Lira object there are 6 artificially created chambers designed for gas condensate store at the depth 850-900 m. The chambers were created with help of underground nuclear explosions. At present a general assessment of radionuclide migration pathways from underground points of an explosion on the surrounding territories in the Lira vicinage is done. On the basis of analysis of geological and hydrogeological data by the Lira area the 4 stratigraphical and hypsometric level of possible radionuclide migration pathways could be marked out. The first of these levels related with Upper Permian saliferous sediments and it covers depths about 1 km up to couple roofing. Here the radionuclide migration will take part by tectonic breaks and fractured reservoirs, activated by energies of conducted explosions. Higher stratigraphic and hypsometric levels have been related with sediments of trias, Jurassic and partially of Cretaceous (second level), pliocene and pliocene-under Quaternary age (third level) and Quaternary sediments of Ural, Ilek and Berezovka rivers terraces (fourth level) where it is possible considerable lateral radionuclide migration in the northern and southern directions toward the couple's framing carvings

  7. A preliminary global geologic map of Vesta based on Dawn Survey orbit data

    Science.gov (United States)

    Yingst, R.; Williams, D. A.; Garry, W. B.; Mest, S. C.; Petro, N. E.; Buczkowski, D.; Schenk, P.; Jaumann, R.; Pieters, C. M.; Roatsch, T.; Preusker, F.; Nathues, A.; LeCorre, L.; Reddy, V.; Russell, C. T.; Raymond, C. A.; DeSanctis, C.; Ammannito, E.; Filacchione, G.

    2011-12-01

    NASA's Dawn spacecraft arrived at the asteroid 4Vesta on July 15, 2011, and is now collecting imaging, spectroscopic, and elemental abundance data during its one-year orbital mission. As part of the geological analysis of the surface, we have utilized images and data from the Survey orbital sequence to produce a global map of Vesta's surface. Unit boundaries and feature characteristics were determined primarily from morphologic analysis of image data; projected Framing Camera (FC) images were used as the base map. Spectral information from FC and VIR are used to refine unit contacts and to separate compositional distinctions from differences arising from illumination or other factors. Those units that could be discerned both in morphology and in the color data were interpreted as geologically distinct units. Vesta's surface is highly-cratered; differences in color and albedo are possible indicators of varying thicknesses and areal extents of crater ejecta. The most prominent candidate impact feature dominates the south pole. This feature consists of a depression roughly circular in shape, with a central hill that is characterized by smoother texture and lower albedo distinctive from the lower-lying surrounding terrain. A complex network of deep troughs and ridges cuts through the floor of the feature. Many of these troughs trend north-south, while others appear circumferential to the hill and are truncated by or terminate at orthogonal ridges/grooves. Detailed mapping of these features will provide information on their orientations, possible origin(s), and their relationship, if any, to the central hill. The equator of Vesta is also girdled by a wide set of flat-floored troughs. Their orientation implies that their formation is related to the south polar structure. Several regions on Vesta have a concentration of craters displaying low-albedo interiors or exteriors. These craters may have an exogenic origin, or may be the result of excavation of a thin sub

  8. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    Science.gov (United States)

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  9. Revised stratigraphic nomenclature and correlation of early proterozoic rocks of the Darwin - Katherine region, Northern Territory

    International Nuclear Information System (INIS)

    Needham, R.S.; Stuart-Smith, P.G.

    1984-01-01

    New stratigraphic names and correlations are given for parts of the Early Proterozoic Pine Creek Geosyncline metasedimentary sequence and overlying felsic volcanics of the Darwin-Katherine region. They have significant implications for the stratigraphic distribution of uranium mineralisation in the Rum Jungle, Alligator Rivers and South Alligator Valley uranium fields

  10. Ichnology applied to sequence stratigraphic analysis of Siluro-Devonian mud-dominated shelf deposits, Paraná Basin, Brazil

    Science.gov (United States)

    Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.

    2018-04-01

    Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with

  11. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy

    Science.gov (United States)

    Rose, K.; Boswell, R.; Collett, T.

    2011-01-01

    In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to

  12. HYDROCARBON PROSPECTING OVE DROCARBON ...

    African Journals Online (AJOL)

    eobe

    GEOLOGY OF THE AREA. The study area covers an area of approximately 41km2 which is located within the offshore southwestern,. Niger Delta (Figure 1). The Niger Delta province has one identified petroleum system which is referred to as Akata-Agbada petroleum system [7]. The stratigraphic units in chronological order ...

  13. United States Geological Survey, programs in Nevada

    Science.gov (United States)

    ,

    1995-01-01

    The U.S. Geological Survey (USGS) has been collecting and interpreting natural-resources data in Nevada for more than 100 years. This long-term commitment enables planners to manage better the resources of a State noted for paradoxes. Although Nevada is one of the most sparsely populated States in the Nation, it has the fastest growing population (fig. 1). Although 90 percent of the land is rural, it is the fourth most urban State. Nevada is the most arid State and relies heavily on water resources. Historically, mining and agriculture have formed the basis of the economy; now tourism and urban development also have become important. The USGS works with more than 40 local, State, and other Federal agencies in Nevada to provide natural-resources information for immediate and long-term decisions.Subjects included in this fact sheet:Low-Level Radioactive-Waste DisposalMining and Water in the Humboldt BasinAquifer Systems in the Great BasinWater Allocation in Truckee and Carson BasinsNational Water-Quality Assessment ProgramMinerals Assessment for Land ManagementIrrigation DrainageGround-Water Movement at Nevada Test SiteOil and Gas ResourcesNational Mapping ProgramDigital Mapping and Aerial PhotographyCollection of Hydrologlc DataGeologic MappingEarthquake HazardsAssessing Mineral Resources of the SubsurfaceEarth Observation DataCooperative Programs

  14. Geological Study and Regional Development of Mamberamo Raya Disctrict of Papua Province, Indonesia

    Science.gov (United States)

    Tonggiroh, Adi; Asri Jaya, HS; Ria Irfan, Ulva

    2018-02-01

    The goverment of Mamberamo Raya district was established through Act No. 19 of 2007 dated 15 March 2007 as part of the administrative area of Papua Province. The administrative age of this district is relatively young requires hard work of all components in facing development challenges so that necessary strategic steps of vision and mission of regional development to achieve ideal conditions of spatial which as direction of the desired embodiment in the future. Regional development covers all technical aspects including the geological aspect that the area is located on the morphology of the mountains and Mamberamo watershed. Strategic steps require policy as an action to achieve the goal with the elaboration of operational steps to realize the welfare of peoples equally and sustainably according to the potential physiogeography of Mamberamo watershed. The geological aspect as the consideration of technical that this region belongs to the regional tectonic which is divided into the difference of fault in the north there is Yapen fault and in the south is Mamberamo-Gauttier Fault and also a consideration on the stratigraphic structure of various rock types including the dominance of sedimentary rocks. This study examines geological aspects as an element of earth science in spatial planning in Mamberamo district, especially Kasonaweja and Burmeso. The analysis is presented based on field data, in the form of geographical map data of geological structure, geological map, and earthquake data described by cluster pattern indicating regional motion relationship and rock characteristics that make up Mamberamo watershed. It finds land characteristics controlled by geological structures, rock arrangements and landforms in response to landslide, flood and seismic changes.

  15. Integrating seismic-reflection and sequence-stratigraphic methods to characterize the hydrogeology of the Floridan aquifer system in southeast Florida

    Science.gov (United States)

    Cunningham, Kevin J.

    2013-01-01

    The Floridan aquifer system (FAS) is receiving increased attention as a result of regulatory restrictions on water-supply withdrawals and treated wastewater management practices. The South Florida Water Management District’s Regional Water Availability Rule, adopted in 2007, restricts urban withdrawals from the shallower Biscayne aquifer to pre-April 2006 levels throughout southeast Florida. Legislation adopted by the State of Florida requires elimination of ocean outfalls of treated wastewater by 2025. These restrictions have necessitated the use of the more deeply buried FAS as an alternate water resource to meet projected water-supply shortfalls, and as a repository for the disposal of wastewater via Class I deep injection wells and injection of reclaimed water. Some resource managers in Broward County have expressed concern regarding the viability of the FAS as an alternative water supply due to a lack of technical data and information regarding its long-term sustainability. Sustainable development and management of the FAS for water supply is uncertain because of the potential risk posed by structural geologic anomalies (faults, fractures, and karst collapse structures) and knowledge gaps in the stratigraphy of the system. The integration of seismic-reflection and borehole data into an improved geologic and hydrogeologic framework will provide a better understanding of the structural and stratigraphic features that influence groundwater flow and contaminant transport.

  16. Geology, sequence stratigraphy, and oil and gas assessment of the Lewis Shale Total Petroleum System, San Juan Basin, New Mexico and Colorado: Chapter 5 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    Science.gov (United States)

    Dubiel, R.F.

    2013-01-01

    The Lewis Shale Total Petroleum System (TPS) in the San Juan Basin Province contains a continuous gas accumulation in three distinct stratigraphic units deposited in genetically related depositional environments: offshore-marine shales, mudstones, siltstones, and sandstones of the Lewis Shale, and marginal-marine shoreface sandstones and siltstones of both the La Ventana Tongue and the Chacra Tongue of the Cliff House Sandstone. The Lewis Shale was not a completion target in the San Juan Basin (SJB) in early drilling from about the 1950s through 1990. During that time, only 16 wells were completed in the Lewis from natural fracture systems encountered while drilling for deeper reservoir objectives. In 1991, existing wells that penetrated the Lewis Shale were re-entered by petroleum industry operators in order to fracture-stimulate the Lewis and to add Lewis gas production onto preexisting, and presumably often declining, Mesaverde Group production stratigraphically lower in the section. By 1997, approximately 101 Lewis completions had been made, both as re-entries into existing wells and as add-ons to Mesaverde production in new wells. Based on recent industry drilling and completion practices leading to successful gas production from the Lewis and because new geologic models indicate that the Lewis Shale contains both source rocks and reservoir rocks, the Lewis Shale TPS was defined and evaluated as part of this U.S. Geological Survey oil and gas assessment of the San Juan Basin. Gas in the Lewis Shale Total Petroleum System is produced from shoreface sandstones and siltstones in the La Ventana and Chacra Tongues and from distal facies of these prograding clastic units that extend into marine rocks of the Lewis Shale in the central part of the San Juan Basin. Reservoirs are in shoreface sandstone parasequences of the La Ventana and Chacra and their correlative distal parasequences in the Lewis Shale where both natural and artificially enhanced fractures produce

  17. Geology of the North Sea and Skagerrak

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O. [ed.

    1995-12-31

    The Marine Geology Unit of the Department of Earth Sciences organized the second Marine Geology symposium at Aarhus University, 7-8 October 1993. The intention was to bring together people working especially with the geology of the North Sea and Skagerrak. Approximately 60 people from different Danish and Norwegian institutions attended the symposium. 28 oral presentations were given and 2 posters presented. A large range of geological topics was covered, embracing biostratigraphy, sequence stratigraphy, sedimentology and structural geology. The majority of the presentations dealt with Quaternary geology and Cenozoic sequence stratigraphy, but also Jurassic and Lower Cretaceous stratigraphy was treated. Studies from the major part of the Danish sector were presented, spanning from Bornholm to the central North Sea, and further into the Norwegian North Sea sector. (au)

  18. Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts

    Science.gov (United States)

    van der Bogert, C. H.; Hiesinger, H.; Dundas, C. M.; Krüger, T.; McEwen, A. S.; Zanetti, M.; Robinson, M. S.

    2017-12-01

    Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the

  19. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas

    Directory of Open Access Journals (Sweden)

    Yuman Wang

    2015-03-01

    Full Text Available A high-precision sedimentary environment study of the Lower Silurian Longmaxi Formation is an important subject for shale gas exploration and development in Sichuan Basin and its surrounding areas. On the basis of outcrops and drilling data, its isochronous stratigraphic framework was built according to a particular graptolite zone and an important marker bed, and lithofacies, paleontology, calcareous content, well logging, geochemistry and other geologic information were combined to describe the sedimentary microfacies of Longmaxi Formation and its stratigraphic sequence, sedimentary evolution process and high quality shale distribution features as follows: ① with regional diachronism of the top and the bottom, the Longmaxi Formation is divided into two third-order sequences (SQ1 and SQ2, of which SQ1 is mainly an abyssal sedimentary assemblage deposited in the marine transgression period, and SQ2 is a bathyal to shallow sea sedimentary assemblage deposited in the marine regression period; ② there are eight microfacies such as deep calcareous shelf and deep argillaceous shelf in this formation and the organic-rich shale was mainly deposited in the deep water area of SQ1; and ③ from SQ1 to SQ2, the depocenter moved from the depression area in southern-eastern to northern Sichuan Basin, but the central Sichuan uplift remained an underwater one. It is concluded from this study that: ① shale gas production layers were mainly deposited in SQ1, the southern-eastern depression area was the depocenter in SQ1 and a shale gas enrichment area; and ② black shale in northern Sichuan was deposited in late SQ2, with limited distribution and relatively insufficient exploration potential, but the potential of shale gas exploration in western Hubei area is between southern-eastern and northern Sichuan Basin.

  20. Geologic map of the Providence Mountains in parts of the Fountain Peak and adjacent 7.5' quadrangles, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul; Miller, David M.; Stevens, Calvin H.; Rosario, Jose J.; Vazquez, Jorge A.; Wan, Elmira; Priest, Susan S.; Valin, Zenon C.

    2017-03-22

    IntroductionThe Providence Mountains are in the eastern Mojave Desert about 60 km southeast of Baker, San Bernardino County, California. This range, which is noted for its prominent cliffs of Paleozoic limestone, is part of a northeast-trending belt of mountainous terrain more than 100 km long that also includes the Granite Mountains, Mid Hills, and New York Mountains. Providence Mountains State Recreation Area encompasses part of the range, the remainder of which is within Mojave National Preserve, a large parcel of land administered by the National Park Service. Access to the Providence Mountains is by secondary roads leading south and north from Interstate Highways 15 and 40, respectively, which bound the main part of Mojave National Preserve.The geologic map presented here includes most of Providence Mountains State Recreation Area and land that surrounds it on the north, west, and south. This area covers most of the Fountain Peak 7.5′ quadrangle and small adjacent parts of the Hayden quadrangle to the north, the Columbia Mountain quadrangle to the northeast, and the Colton Well quadrangle to the east. The map area includes representative outcrops of most of the major geologic elements of the Providence Mountains, including gneissic Paleoproterozoic basement rocks, a thick overlying sequence of Neoproterozoic to Triassic sedimentary rocks, Jurassic rhyolite that intrudes and overlies the sedimentary rocks, Jurassic plutons and associated dikes, Miocene volcanic rocks, and a variety of Quaternary surficial deposits derived from local bedrock units. The purpose of the project was to map the area in detail, with primary emphasis on the pre-Quaternary units, to provide an improved stratigraphic, structural, and geochronologic framework for use in land management applications and scientific research.

  1. Geology and assessment of undiscovered oil and gas resources of the Jan Mayen Microcontinent Province, 2008

    Science.gov (United States)

    Moore, Thomas E.; Pitman, Janet K.; Moore, Thomas E.; Gautier, D.L.

    2018-01-26

    The Jan Mayen Microcontinent encompasses a rectangular, mostly submarine fragment of continental crust that lies north of Iceland in the middle of the North Atlantic Ocean. These continental rocks were rifted away from the eastern margin of Greenland as a consequence of a westward jump of spreading centers from the now-extinct Aegir Ridge to the currently active Kolbeinsey Ridge in the Oligocene and early Miocene. The microcontinent is composed of the high-standing Jan Mayen Ridge and a series of smaller ridges that diminish southward in elevation and includes several deep basins that are underlain by strongly attenuated continental crust. The geology of this area is known principally from a loose collection of seismic reflection and refraction lines and several deep-sea scientific drill cores.The Jan Mayen Microcontinent petroleum province encompasses the entire area of the microcontinent and was defined as a single assessment unit (AU). Although its geology is poorly known, the microcontinent is thought to consist of late Paleozoic and Mesozoic rift basin stratigraphic sequences similar to those of the highly prospective Norwegian, North Sea, and Greenland continental margins. The prospectivity of the AU may be greatly diminished, however, by pervasive extensional deformation, basaltic magmatism, and exhumation that accompanied two periods of continental rifting and breakup in the Paleogene and early Neogene. The overall probability of at least one petroleum accumulation of >50 million barrels of oil equivalent was judged to be 5.6 percent. As a consequence of the low level of probability, a quantitative assessment of this AU was not conducted.

  2. Geological development and uranium and thorium evolutions in volcanic basin No.460

    International Nuclear Information System (INIS)

    Zhou Dean.

    1989-01-01

    On the basis of summarizing the geological features and the developmental history of tectono-magmatic activity, the uranium and thorium evolutional rules of rocks in different times are studied. It is suggested that the uranium and thorium increments caused by potassic migmatization of late Archean basement rocks in this area is the material base which affected the subsequent evolution of the cover of volcanic rocks and uranium mineralization. The Upper Jurassic acid volcanic cover belonging to crustal remelting origin constituted the favorable stratigraphic background for uranium mineralization in this area due to its wide distribution, large thickness, various rock associations and lithological sequences, as well as high content of uranium and thorium. During the late Yanshanian stage acid subvolanic rocks or small intrusions with high uranium intruded along the regional fractures are the decisive factors for the emplacement of uranium mineralization in this area, which othen became the favorable wall rocks for preserving ores itself. During the late stage the hydrothermal uranium mineralization was the main geological process from which uranium and thorium in stratigraphy and terrain were finally separated

  3. Annotated bibliography of the geology of the Columbia Plateau (Columbia River Basalt) and adjacent areas of Oregon

    International Nuclear Information System (INIS)

    Bela, J.

    1979-01-01

    This bibliography containing approximately 2000 entries was prepared by the Oregon Department of Geology and Mineral Industries under Subcontract SA-913 with Rockwell Hanford Operations' Basalt Waste Isolation Program. The objective of the Basalt Waste Isolation Program is to determine the feasibility of storing nuclear waste within the Columbia River Basalt Group. Under the geologic portion of this program, the stratigraphic, structural, tectonic, seismic, and hydrologic aspects of the Columbia Plateau are being examined. Other aspects of the Basalt Waste Isolation Program are concerned with systems integration, engineered barriers, engineering testing, and construction of a near-surface test facility. The area covered in this bibliography comprises that area north of 43 0 30' latitude and east of the Willamette Meridian, which is located just west of Portland. The bibliographic entries are presented in two forms. The first is an alphabetized listing of all articles dealing with the geology of the Columbia Plateau (Columbia River Basalt) and adjacent areas of Oregon. The second form consists of an alphabetized listing of the entries subdivided under fourteen categories

  4. Annotated bibliography of the geology of the Columbia Plateau (Columbia River Basalt) and adjacent areas of Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Bela, J.

    1979-01-01

    This bibliography containing approximately 2000 entries was prepared by the Oregon Department of Geology and Mineral Industries under Subcontract SA-913 with Rockwell Hanford Operations' Basalt Waste Isolation Program. The objective of the Basalt Waste Isolation Program is to determine the feasibility of storing nuclear waste within the Columbia River Basalt Group. Under the geologic portion of this program, the stratigraphic, structural, tectonic, seismic, and hydrologic aspects of the Columbia Plateau are being examined. Other aspects of the Basalt Waste Isolation Program are concerned with systems integration, engineered barriers, engineering testing, and construction of a near-surface test facility. The area covered in this bibliography comprises that area north of 43/sup 0/30' latitude and east of the Willamette Meridian, which is located just west of Portland. The bibliographic entries are presented in two forms. The first is an alphabetized listing of all articles dealing with the geology of the Columbia Plateau (Columbia River Basalt) and adjacent areas of Oregon. The second form consists of an alphabetized listing of the entries subdivided under fourteen categories. (RWR)

  5. Geological considerations and constraints in planning and executing horizontal well prospects : two case studies from the Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Nwabor, D. [Schlumberger Oilfield Services (Saudi Arabia); Al-Fawwaz, A.; Hassani, S. [Saudi Aramco, Dhahran (Saudi Arabia)

    2006-07-01

    This paper discussed the challenges facing horizontal well drilling with particular reference to the limited success rates of 2 wells that were initially planned and drilled geometrically according to integrated geological and seismic data. The limited success was due partly to drilling to target without considering the key subsurface risks and uncertainties at the execution stages of the wells. Two case studies from these fields were presented in an effort to highlight important geological issues that must be considered when planning and executing horizontal wells. While the wells were being drilled, geological decisions were taken based on seismic data, geological modelling and assessing offset well log responses. The continuous use of real-time data during well drilling contributed to the achievement of the wells' objectives. This approach eliminated all the initial assumptions from seismic data. During the planning stages, many target surfaces such as faults, horizons and unconformities were created from a 3 dimensional grid. Each well was geologically steered in the execution stages by comparing what was seen while drilling with what was initially proposed at the planning stages. As drilling progressed, geological issues such as structural, stratigraphic, reservoir fluid contact and surveying uncertainties were considered. In most instances, the geological objectives of the studied wells were met, thereby improving production, increasing net pay and return on investment. It was concluded that the experience from this work can be applied to oilfields anywhere in the world.

  6. The geostatistical approach for structural and stratigraphic framework analysis of offshore NW Bonaparte Basin, Australia

    International Nuclear Information System (INIS)

    Wahid, Ali; Salim, Ahmed Mohamed Ahmed; Yusoff, Wan Ismail Wan; Gaafar, Gamal Ragab

    2016-01-01

    Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rock properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin

  7. The geostatistical approach for structural and stratigraphic framework analysis of offshore NW Bonaparte Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Tronoh, Perak (Malaysia); Gaafar, Gamal Ragab, E-mail: gaafargr@gmail.com [Petroleum Engineering Division, PETRONAS Carigali Sdn Bhd, Kuala Lumpur (Malaysia)

    2016-02-01

    Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rock properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.

  8. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  9. Report of the technic visit made in Fegueira uraniferous bed, Brasil between 21 and 24 of may in 1985

    International Nuclear Information System (INIS)

    Pirelli, H.

    1985-01-01

    The technical visit to the deposit uraniferous of Figueira allowed to visualize different aspects stratigraphic , environmental and structurals.The geological cut across the highway BR-376, it understands practically the whole succession e stratigraphic of the Gondwana of the basin of the Parana, as also sequences of the Pre cambric and of the Devonian one Inferior.- The formations observed during this tour, they are correlation with our formations Cerrezuelo, Native of Cordoba, Three Islands, Dead Friar, Mangrullo, Step Aguiar, Yaguari and Tacuarembo.- The deposit is in the formation- Nice Rio (Three Islands), Member I Triumph, of age Permian Low As(according to) them the study carried out definite well units are demonstrated; This geological model is propitious for the accumulation of uranium due to: - Porous sandstones - carbonaceous sediments.The interaction of these two types of sediments provide in an environment with good

  10. Novel Geothermal Development of Deep Sedimentary Systems in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States); Allis, Rick [Utah Geological Survey, Salt Lake City, UT (United States)

    2017-10-11

    Economic and reservoir engineering models show that stratigraphic reservoirs have the potential to contribute significant geothermal power in the U.S. If the reservoir temperature exceeds about 150 – 200 °C at 2 – 4 km depth, respectively, and there is good permeability, then these resources can generate power with a levelized cost of electricity (LCOE) of close to 10 ¢/kWh (without subsidies) on a 100 MW power plant scale. There is considerable evidence from both groundwater geology and petroleum reservoir geology that relatively clean carbonates and sandstones have, and can sustain, the required high permeability to depths of at least 5 km. This paper identifies four attractive stratigraphic reservoir prospects which are all located in the eastern Great Basin, and have temperatures of 160 – 230 °C at 3 – 3.5 km depth. They are the Elko basins (Nevada), North Steptoe Valley (Nevada), Pavant Butte (Utah), and the Idaho Thrust Belt. The reservoir lithologies are Paleozoic carbonates in the first three, and Jurassic sandstone and carbonate in the Idaho Thrust Belt. All reservoir lithologies are known to have high permeability characteristics. At North Steptoe Valley and Pavant Butte, nearby transmission line options allow interconnection to the California power market. Modern techniques for drilling and developing tight oil and gas reservoirs are expected to have application to geothermal development of these reservoirs.

  11. Creating Geologically Based Radon Potential Maps for Kentucky

    Science.gov (United States)

    Overfield, B.; Hahn, E.; Wiggins, A.; Andrews, W. M., Jr.

    2017-12-01

    Radon potential in the United States, Kentucky in particular, has historically been communicated using a single hazard level for each county; however, physical phenomena are not controlled by administrative boundaries, so single-value county maps do not reflect the significant variations in radon potential in each county. A more accurate approach uses bedrock geology as a predictive tool. A team of nurses, health educators, statisticians, and geologists partnered to create 120 county maps showing spatial variations in radon potential by intersecting residential radon test kit results (N = 60,000) with a statewide 1:24,000-scale bedrock geology coverage to determine statistically valid radon-potential estimates for each geologic unit. Maps using geology as a predictive tool for radon potential are inherently more detailed than single-value county maps. This mapping project revealed that areas in central and south-central Kentucky with the highest radon potential are underlain by shales and karstic limestones.

  12. Nuevos datos sobre estratigrafía del Ordovícico y estructura varisca en el Macizo de Santa María la Real de Nieva

    OpenAIRE

    Alonso, F.; Rubio, F. J.; Martín Parra, L. M.; Rodríguez Fernández, L. R.

    2004-01-01

    We present a new geological map of the lower Ordovician materials cropping out in the Santa Maria la Real de Nieva Massif. The Ordovician sequence, Fm. Capas de Domingo García, comprises two separate stratigraphic units. The lower unit contains conglomerate with clasts of felsic volcanic rocks at its base, slates, and quartzite with cruziana. The upper unit is composed by the quartzite and slate, which is considered a regional equivalent of the sequence at the base of the Armorica...

  13. Geological structure and mineral resources of Algeria

    Directory of Open Access Journals (Sweden)

    Eduard Dobra

    2007-12-01

    Full Text Available The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basins in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000 m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field produced from the Cambrian sands. The western part is limited by Hassi R`mel which is one of the biggest gas field in the world, it is produced from the triassic sands. The Mesozoic section lays on the lower Devonian and in the eastern part, on the Cambrian. The main source rock is Silurian shale with an average thickness of 50 m and a total organic matter of 6 % (14 % in some cases. Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposit with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column.This paper describe the main geological structure and mineral resources of Algeria.

  14. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  15. Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran

    Science.gov (United States)

    Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.

    2018-05-01

    This work presents the application of an integrated geophysical survey of magnetometry and frequency-domain electromagetic data (FDEM) to image a geological unit located in the Kalat-e-Reshm prospect area in Iran which has good potential for ore mineralization. The aim of this study is to concentrate on a 3D arc-shaped andesite unit, where it has been concealed by a sedimentary cover. This unit consists of two segments; the top one is a porphyritic andesite having potential for ore mineralization, especially copper, whereas the lower segment corresponds to an unaltered andesite rock. Airborne electromagnetic data were used to delineate the top segment as a resistive unit embedded in a sediment column of alluvial fan, while the lower andesite unit was detected by magnetic field data. In our research, the FDEM data were first inverted by a laterally-constrained 1D program to provide three pieces of information that facilitate full 3D inversion of EM data: (1) noise levels associated with the FDEM observations, (2) an estimate of the general conductivity structure in the prospect area, and (3) the location of the sought target. Then EM data inversion was extended to 3D using a parallelized OcTree-based code to better determine the boundaries of the porphyry unit, where a transition exists from surface sediment to the upper segment. Moreover, a mixed-norm inversion approach was taken into account for magnetic data to construct a compact and sharp susceptible andesite unit at depth, beneath the top resistive and non-susceptible segment. The blind geological unit was eventually interpreted based on a combined model of conductivity and magnetic susceptibility acquired from individually inverting these geophysical surveys, which were collected simultaneously.

  16. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. A report on the progress of nuclear isolation feasibility studies, 1980. Annual report, October 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Gustavson, T.C.; Bassett, R.L.; Finley, R.J.

    1981-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of the University of Texas and the State of Texas, is conducting a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing and related strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 1980 was divided into five broad research tasks, which were addressed by a surficial analysis and shallow stratigraphy group, a hydrology and geochemistry group, a basin analysis group, a host-rock analysis group, and a seismicity and tectonic environment group. The surficial analysis and shallow stratigraphy group has collected remotely sensed, surface and subsurface data to describe land resources, surface processes, and rates and styles of geomorphic development. The hydrology and geochemistry group has continued analysis of shallow and deep fluid circulation within the basins and has initiated studies of rock and fluid geochemistry within the salt-bearing units. The basin analysis group has characterized the major salt-bearing stratigraphic units within the basins and has assessed the potential for generating and trapping hydrocarbons within the basins. Concurrently, the host-rock analysis group has continued a study of cores from two drilling sites for analysis of salt and other lithologic units within the cores. The newly formed seismicity and tectonic environment group has initiated studies of deep-basement structure and tetonic development of the basin and has made an analysis of surface fracture systems. This paper, a summary of progress during FY 1980, presents principal conclusions and reviews methods used and types of data and maps generated

  17. Geological environment and mineralizations associated to granite from Serra Dourada (meridional edge) - Goias

    International Nuclear Information System (INIS)

    Macambira, M.J.B.

    1983-01-01

    The Serra Dourada granite is related to one of the various large tin-bearing domic structures that occur in central-eastern Goias, where rocks of Uruacu and Brasilia folded belts and of Goias median massif crop out. The present study was undertaken in the southern part of Serra Dourada as an attempt to contribute to the petrologic, metallogenetic and stratigraphic aspects of the granitic rocks present in that region. The methodological approach consisted of the preparation of a 1:45.000 geological map and included the obtention of petrographic, ore microscopic and geochronological data, as well as the determination of major element concentrations in rocks and some minerals. Trace elements were only determined for rocks. (author)

  18. Semantics-informed cartography: the case of Piemonte Geological Map

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Giardino, Marco; Fubelli, Giandomenico

    2016-04-01

    In modern digital geological maps, namely those supported by a large geo-database and devoted to dynamical, interactive representation on WMS-WebGIS services, there is the need to provide, in an explicit form, the geological assumptions used for the design and compilation of the database of the Map, and to get a definition and/or adoption of semantic representation and taxonomies, in order to achieve a formal and interoperable representation of the geologic knowledge. These approaches are fundamental for the integration and harmonisation of geological information and services across cultural (e.g. different scientific disciplines) and/or physical barriers (e.g. administrative boundaries). Initiatives such as GeoScience Markup Language (last version is GeoSciML 4.0, 2015, http://www.geosciml.org) and the INSPIRE "Data Specification on Geology" http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GE_v3.0rc3.pdf (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG) have been promoting information exchange of the geologic knowledge. Grounded on these standard vocabularies, schemas and data models, we provide a shared semantic classification of geological data referring to the study case of the synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap", developed by the CNR Institute of Geosciences and Earth Resources, Torino (CNR IGG TO) and hosted as a dynamical interactive map on the geoportal of ARPA Piemonte Environmental Agency. The Piemonte Geological Map is grounded on a regional-scale geo-database consisting of some hundreds of GeologicUnits whose thousands instances (Mapped Features, polygons geometry) widely occur in Piemonte region, and each one is bounded by GeologicStructures (Mapped Features, line geometry). GeologicUnits and GeologicStructures have been spatially

  19. Geological Effects on Lightning Strike Distributions

    KAUST Repository

    Berdahl, J. Scott

    2016-05-16

    Recent advances in lightning detection networks allow for detailed mapping of lightning flash locations. Longstanding rumors of geological influence on cloud-to-ground (CG) lightning distribution and recent commercial claims based on such influence can now be tested empirically. If present, such influence could represent a new, cheap and efficient geophysical tool with applications in mineral, hydrothermal and oil exploration, regional geological mapping, and infrastructure planning. This project applies statistical analysis to lightning data collected by the United States National Lightning Detection Network from 2006 through 2015 in order to assess whether the huge range in electrical conductivities of geological materials plays a role in the spatial distribution of CG lightning. CG flash densities are mapped for twelve areas in the contiguous United States and compared to elevation and geology, as well as to the locations of faults, railroads and tall towers including wind turbines. Overall spatial randomness is assessed, along with spatial correlation of attributes. Negative and positive polarity lightning are considered separately and together. Topography and tower locations show a strong influence on CG distribution patterns. Geology, faults and railroads do not. This suggests that ground conductivity is not an important factor in determining lightning strike location on scales larger than current flash location accuracies, which are generally several hundred meters. Once a lightning channel is established, however, ground properties at the contact point may play a role in determining properties of the subsequent stroke.

  20. Twenty-Sixth Annual Report of the Director of the United States Geological Survey, 1904-1905

    Science.gov (United States)

    Walcott, Charles D.

    1905-01-01

    IntroductionRemarks on the work of the yearBranches of workThe United States Geological Survey was created in 1879 for the purpose—as its name implies—of examining and reporting on the geologic structure and mineral resources and products of the national domain. To the adequate description of geologic formations and structure cartography is essential, and Congress early recognized this fact by making appropriations for the preparation of a geologic map of the United States. The topographic base map, in order to show with sufficient precision the relations of the geologic formations and the intricacies of the structure, must have a rather large scale and present considerable detail. No such map of this country existed in 1879, and its preparation was immediately begun. The waters of the country are of vast importance, and in a broad sense may be regarded as one of its greatest mineral resources. Hence, in the evolution of the work of the Survey, and especially in view of the great importance of the subject to the irrigation interests, Congress early began making appropriations for ascertaining the amount and quality of the surface and underground waters and when, in 1902, the service for the reclamation of arid lands was organized, that work naturally was placed in the hands of the Secretary of the Interior and by him intrusted to the Director of the Survey.The three great branches of work carried on by the Geological Survey are, therefore, the geologic, the topographic, and the hydrographic, and with these, more especially the latter, is conjoined the Reclamation Service ; publication and administration constitute necessary auxiliary branches. Along these great lines the work of the Survey has progressed without essential variation for many years. The changes made have been due to normal expansion rather than to radical departure in object or plan.State cooperationDuring the last fiscal year, State cooperation, as explained in previous reports, continued

  1. Triassic Sequence Geological Development of the Arctic with focus on Svalbard and the Barents Shelf

    Energy Technology Data Exchange (ETDEWEB)

    Moerk, Atle

    1998-12-31

    Triassic rocks are of great interest for exploration in Arctic areas as they have proved to include both good hydrocarbon source rocks and potential hydrogen reservoir rocks. In this thesis, the stratigraphy and sedimentology of the Arctic Triassic successions are studied within a sequence stratigraphical framework. Inter-regional comparisons throughout the Arctic are based on comparisons of transgressive-regressive sequences. Improved dating of the studied sequences, and the recognition and correlation of sequence boundaries of second and third order, facilitate interpretation of facies distribution and the geological development both within and between the studied areas. Main emphasis is given to the Triassic succession of Svalbard and the Barents Shelf, which through this study is integrated within a circum-Arctic sequence stratigraphical framework. Good correspondence of the Triassic sequence boundaries between the different Arctic areas indicate that they are mainly controlled by eustacy, while decreasing correspondence of the sequence boundaries in the Jurassic and Cretaceous periods indicate that local and large scale tectonism becomes progressively more dominant in the circum-Arctic Realm through the Mesozoic Era. These hypotheses are further discussed. 701 refs., 110 figs., 12 tabs.

  2. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  3. Sequence stratigraphy in the middle Ordovician shale successions, mid-east Korea: Stratigraphic variations and preservation potential of organic matter within a sequence stratigraphic framework

    Science.gov (United States)

    Byun, Uk Hwan; Lee, Hyun Suk; Kwon, Yi Kyun

    2018-02-01

    The Jigunsan Formation is the middle Ordovician shale-dominated transgressive succession in the Taebaeksan Basin, located in the eastern margin of the North China platform. The total organic carbon (TOC) content and some geochemical properties of the succession exhibit a stratigraphically distinct distribution pattern. The pattern was closely associated with the redox conditions related to decomposition, bulk sedimentation rate (dilution), and productivity. To explain the distinct distribution pattern, this study attempted to construct a high-resolution sequence stratigraphic framework for the Jigunsan Formation. The shale-dominated Jigunsan Formation comprises a lower layer of dark gray shale, deposited during transgression, and an upper layer of greenish gray siltstone, deposited during highstand and falling stage systems tracts. The concept of a back-stepped carbonate platform is adopted to distinguish early and late transgressive systems tracts (early and late TST) in this study, whereas the highstand systems tracts and falling stage systems tracts can be divided by changes in stacking patterns from aggradation to progradation. The late TST would be initiated on a rapidly back-stepping surface of sediments and, just above the surface, exhibits a high peak in TOC content, followed by a gradually upward decrease. This trend of TOC distribution in the late TST continues to the maximum flooding surface (MFS). The perplexing TOC distribution pattern within the late TST most likely resulted from both a gradual reduction in productivity during the late TST and a gradual increase in dilution effect near the MFS interval. The reduced production of organic matter primarily incurred decreasing TOC content toward the MFS when the productivity was mainly governed by benthic biota because planktonic organisms were not widespread in the Ordovician. Results of this study will help improve the understanding of the source rock distribution in mixed carbonate

  4. Development of the geologic waste disposal programme in the United States of America

    International Nuclear Information System (INIS)

    Coffman, F.E.; Ballard, W.W.; Carbiener, W.A.

    1983-01-01

    Although alternative concepts are being studied as future options, over at least the next few decades the United States of America is committed to the disposal of commercially generated high-level and transuranic nuclear waste (HLW and TRU) in mined geologic repositories. A 10,000-year minimum isolation period is sought. Responsibility for the management and disposal of United States nuclear waste, in accordance with standards and regulations established, respectively, by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC), resides with the Department of Energy (DOE). The DOE National Waste Terminal Storage (NWTS) Program has been implemented to provide the facilities and develop the requisite technology for the disposal of HLW and TRU. The NWTS Program is highly structured, adequately funded, and realistically scheduled. The timely realization of its objectives is basic to the furtherance of the new national energy policy being defined by President Reagan and the United States Congress. The first NWTS repository is scheduled to be operational as early as 1998. The host-rock formation, selected on the basis of the results of at-depth investigations via exploratory shafts to be sunk in 1983-1985 at three potential sites previously extensively characterized by surface techniques, will be either basalt, volcanic tuff, or domed or bedded salt. Selection of one site in these formations will not necessarily disqualify others. Also, screening studies of granitic formations in the United States for the siting of later, regionally located repositories are currently being conducted. Each NWTS repository will be licensed by the NRC. The first application for a construction authorization will probably be submitted in 1988. The application will be submitted for a site to be selected in 1987

  5. Stratigraphy and mineralogy of Candor Mensa, West Candor Chasma, Mars: Insights into the geologic history of Valles Marineris

    Science.gov (United States)

    Fueten, F.; Flahaut, J.; Stesky, R.; Hauber, E.; Rossi, A. P.

    2014-02-01

    Candor Mensa, an interior layered deposit (ILD) in Valles Marineris, Mars, consists of two stratigraphically distinct units, the lower of which comprises the bulk of the mensa. This lower unit is approximately 5 km thick and composed of parallel layers, 4 to 14 m in thickness and associated with monohydrated sulfates. The lower unit is disconformably overlain by an upper unit composed of thinner (ancestral basins into the current geometry of Valles Marineris chasmata and that it was possible to form hydrated minerals after this event.

  6. Applying and improving a sedimentary facies model for exploration of stratigraphic traps in the Austrian Molasse basin

    Energy Technology Data Exchange (ETDEWEB)

    Hinsch, R.; Kofler, N. [Rohoel-Aufsuchungs AG (RAG), Vienna (Austria); Hubbard, S. [Calgary Univ., Calgary (Canada). Dept. of Geology and Geophysics

    2007-09-13

    In the Molasse foreland basin of Upper Austria gas is produced from deep-water sandstones and conglomerates of the Puchkirchen and basal Hall formations (Oligocene-Lower Miocene). The basin is mature, with >750 wells drilled by RAG to date. An extensive 3-D seismic reflection dataset that covers much of the paleo-basin foredeep has been acquired in the study area over the last 15 years. Seismic stratigraphic analysis has revealed that deepwater sedimentation in the basin was dominated by a channel belt up to 5 km wide that transported sediment derived from the Central and Eastern Alps eastward along the basin axis (Linzer, 2001; de Ruig, 2003). Based on these findings, a detailed sedimentary facies model has been developed, outlining several distinct depositional elements that reveal numerous possible stratigraphic trap types (de Ruig and Hubbard, 2006). This depositional model is currently being applied and tested in exploration and refined by ongoing research. Channel abandonment and migration are important processes that resulted in stratigraphic configurations consisting of coarse-grained sandstones and conglomerates overlain by channel and overbank mudstones. This represents ideal reservoir architecture, including porous reservoir facies sealed by impermeable deposits. Additional stratigraphic trapping conditions can result from special spatial arrangements of depositional elements, for example a sandstone-filled tributary channel that is sealed by an overlying mudstone-filled abandonment channel. Recognizing and further improving such stratigraphic trapping configurations are important for future exploration in Upper Austria, where most of the structural traps have been drilled. (orig.)

  7. Status of image analysis methods to delineate stratigraphic position in the Topopah Spring Member of the Paintbrush Tuff, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.; Broxton, D.E.; Spaw, J.

    1989-10-01

    The Topopah Spring Member of the Paintbrush Tuff is an ash-flow cooling unit that is the candidate host rock for a potential high-level nuclear waste repository at Yucca Mountain, Nevada. The repository workings will be mostly confined to the member's rhyolitic portion, which is chemically homogenous but texturally variable. This report describes the status of work to develop a useful internal stratigraphy for the rhyolitic portion of the member; our approach is to use an image analysis technique to map textural variations within the member as a function of stratigraphic height. Fifteen petrographic thin sections of Topopah Spring rhyolitic tuff were studied in each of two drill holes (USW GU-3 and USW G-4). Digital color images were collected in transmitted light for two scenes 1 cm on a side for each thin section. Objects within a scene were classified by color, and measurements of area, elongation, and roughness were determined for each object. Summary statistics were compiled for all measurements for each color component within a scene, and each variable was statistically examined for correlations with stratigraphic position. Our initial studies using image analysis have not yet produced a useful method for determining stratigraphic position within the Topopah Spring Member. Simplifications made in this preliminary application of image analysis may be largely responsible for these negative results. The technique deserves further investigation, and more detailed analysis of existing data is recommended. 9 refs., 11 figs., 4 tabs

  8. Student learning and understanding of sequence stratigraphic principles

    Science.gov (United States)

    Herrera, Juan Sebastian

    Research in geoscience education addressing students' conceptions of geological subjects has concentrated in topics such as geological time, plate tectonics, and problem solving in the field, mostly in K-12 and entry level college scenarios. Science education research addressing learning of sedimentary systems in advance undergraduates is rather limited. Therefore, this dissertation contributed to filling that research gap and explored students' narratives when explaining geological processes associated with the interaction between sediment deposition and sea level fluctuations. The purpose of the present study was to identify the common conceptions and alternative conceptions held by students when learning the basics of the sub discipline known as sequence stratigraphy - which concepts students were familiar and easily identified, and which ones they had more difficulty with. In addition, we mapped the cognitive models that underlie those conceptions by analyzing students' gestures and conceptual metaphors used in their explanations. This research also investigated the interaction between geoscientific visual displays and student gesturing in a specific learning context. In this research, an in-depth assessment of 27 students' ideas of the basic principles of sequence stratigraphy was completed. Participants were enrolled in advanced undergraduate stratigraphy courses at three research-intensive universities in Midwest U.S. Data collection methods included semi-structured interviews, spatial visualization tests, and lab assignments. Results indicated that students poorly integrated temporal and spatial scales in their sequence stratigraphic models, and that many alternative conceptions were more deeply rooted than others, especially those related to eustasy and base level. In order to better understand the depth of these conceptions, we aligned the analysis of gesture with the theory of conceptual metaphor to recognize the use of mental models known as image

  9. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    Science.gov (United States)

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  10. Geographic Information System (GIS) representation of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1979 (NODC Accession 0000605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical seagrass coverage in Perdido Bay 1979 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  11. An iPad and Android-based Application for Digitally Recording Geologic Field Data

    Science.gov (United States)

    Malinconico, L. L.; Sunderlin, D.; Liew, C.; Ho, A. S.; Bekele, K. A.

    2011-12-01

    Field experience is a significant component in most geology courses, especially sed/strat and structural geology. Increasingly, the spatial presentation, analysis and interpretation of geologic data is done using digital methodologies (GIS, Google Earth, stereonet and spreadsheet programs). However, students and professionals continue to collect field data manually on paper maps and in the traditional "orange field notebooks". Upon returning from the field, data are then manually transferred into digital formats for processing, mapping and interpretation. The transfer process is both cumbersome and prone to transcription error. In conjunction with the computer science department, we are in the process of developing an application (App) for iOS (the iPad) and Android platforms that can be used to digitally record data measured in the field. This is not a mapping program, but rather a way of bypassing the field book step to acquire digital data directly that can then be used in various analysis and display programs. Currently, the application allows the user to select from five different structural data situations: contact, bedding, fault, joints and "other". The user can define a folder for the collection and separation of data for each project. Observations are stored as individual records of field measurements in each folder. The exact information gathered depends on the nature of the observation, but common to all pages is the ability to log date, time, and lat/long directly from the tablet. Information like strike and dip are entered using scroll wheels and formation names are also entered using scroll wheels that access easy-to-modify lists of the area's stratigraphic units. This insures uniformity in the creation of the digital records from day-to-day and across field teams. Pictures can also be taken using the tablet's camera that are linked to each record. Once the field collection is complete the data (including images) can be easily exported to a .csv file

  12. Ontological Encoding of GeoSciML and INSPIRE geological standard vocabularies and schemas: application to geological mapping

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario; Fubelli, Giandomenico; Giardino, Marco

    2016-04-01

    Encoding of geologic knowledge in formal languages is an ambitious task, aiming at the interoperability and organic representation of geological data, and semantic characterization of geologic maps. Initiatives such as GeoScience Markup Language (last version is GeoSciML 4, 2015[1]) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0 rc3, 2013[2]), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG[3]) have been promoting information exchange of the geologic knowledge. There have also been limited attempts to encode the knowledge in a machine-readable format, especially in the lithology domain (see e.g. the CGI_Lithology ontology[4]), but a comprehensive ontological model that connect the several knowledge sources is still lacking. This presentation concerns the "OntoGeonous" initiative, which aims at encoding the geologic knowledge, as expressed through the standard vocabularies, schemas and data models mentioned above, through a number of interlinked computational ontologies, based on the languages of the Semantic Web and the paradigm of Linked Open Data. The initiative proceeds in parallel with a concrete case study, concerning the setting up of a synthetic digital geological map of the Piemonte region (NW Italy), named "GEOPiemonteMap" (developed by the CNR Institute of Geosciences and Earth Resources, CNR IGG, Torino), where the description and classification of GeologicUnits has been supported by the modeling and implementation of the ontologies. We have devised a tripartite ontological model called OntoGeonous that consists of: 1) an ontology of the geologic features (in particular, GeologicUnit, GeomorphologicFeature, and GeologicStructure[5], modeled from the definitions and UML schemata of CGI vocabularies[6], GeoScienceML and INSPIRE, and aligned with the Planetary realm of NASA SWEET ontology[7]), 2) an ontology of the Earth materials (as defined by the

  13. Quaternary Geological Phenomena in Labuhan Area, Pandeglang Regency, Banten Province

    Directory of Open Access Journals (Sweden)

    U. Lumban Batu

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v7i4.148Geological features in Labuhan area were studied from the middle of October to the middle of November 2011 covering seventy days. Surface and subsurface data were obtained from interpretation of landsat images and shallow hand-auger boreholes. The geological features are distinctly associated with active tectonics. The stratigraphy clearly indicates at least three phases of tectonic activities since the Late Miocene until Holocene. Tectonics of phase one occurred in the Late Miocene; phase two took place in the period from Pliocene to Late Pleistocene, while tectonics phase three is ongoing in the Holocene. Volcanic activity has intensified since the Early Pleistocene. The landsat images show an irregular outline of the northern coast line. This penomenon is interpreted to be the result of tectonic uplift. On the other hand, the southern coast is linear in plan which is interpreted to correlate with tectonic subsidence. Furthermore, stratigraphic correlation shows that depositional environment changed vertically due to a local subsidence. The northern researched area is occupied by Pleistocene volcanic eruption centres, whilst the younger ones tend to shift southward. This fact tends to indicate that the subduction zone moved southward slowly.

  14. Geographical and geological data from caves and mines infected with white-nose syndrome (WNS) before September 2009 in the eastern United States

    Science.gov (United States)

    Swezey, Christopher S.; Garrity, Christopher P.

    2011-01-01

    Since 2006, a white fungus named Geomyces destructans has been observed on the muzzles, noses, ears, and (or) wings of bats in the eastern United States, and bat colonies that are infected with this fungus have experienced dramatic incidences of mortality. Although it is not exactly certain how and why these bats are dying, this condition has been named white-nose syndrome (WNS). WNS appears to have spread from an initial infection site at a cave that is connected to a commercial cave in New York, and by the end of August 2009 was identified in at least 74 other sites in the eastern United States. Although detailed geographical and geological data are limited, a review of the available data shows that sites infected with WNS before September 2009 include both natural caves and mines. These infected sites extend from New Hampshire to Virginia, and known site elevations range from 84 to 2693 feet above sea level. In terms of geological setting, the infected sites include sedimentary, metamorphic, and igneous rocks of ages ranging from Precambrian to Jurassic. However, by the end of August 2009, no infected sites had been identified in strata of Mississippian, Cretaceous, or Triassic age. Meteorological data are sparse, but most of the recorded air temperatures in the known WNS-infected caves and mines range from 0 to 13.9 degrees C, and humidity measurements range from 68 to 100 percent. Although it is not certain which environmental parameters are important for WNS, it is hoped that the geographical and geological information presented in this paper will inform and clarify some of the debate about WNS, lead to greater understanding of the environmental parameters associated with WNS, and highlight the paucity of scientific data from caves in the eastern United States.

  15. Improved predictive mapping of indoor radon concentrations using ensemble regression trees based on automatic clustering of geological units

    International Nuclear Information System (INIS)

    Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien

    2015-01-01

    Purpose: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. Method: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). Results: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. Conclusion: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables

  16. Geologic map of the Nepenthes Planum Region, Mars

    Science.gov (United States)

    Skinner, James A.; Tanaka, Kenneth L.

    2018-03-26

    This map product contains a map sheet at 1:1,506,000 scale that shows the geology of the Nepenthes Planum region of Mars, which is located between the cratered highlands that dominate the southern hemisphere and the less-cratered sedimentary plains that dominate the northern hemisphere.  The map region contains cone- and mound-shaped landforms as well as lobate materials that are morphologically similar to terrestrial igneous or mud vents and flows. This map is part of an informal series of small-scale (large-area) maps aimed at refining current understanding of the geologic units and structures that make up the highland-to-lowland transition zone. The map base consists of a controlled Thermal Emission Imaging System (THEMIS) daytime infrared image mosaic (100 meters per pixel resolution) supplemented by a Mars Orbiter Laser Altimeter (MOLA) digital elevation model (463 meters per pixel resolution). The map includes a Description of Map Units and a Correlation of Map Units that describes and correlates units identified across the entire map region. The geologic map was assembled using ArcGIS software by Environmental Systems Research Institute (http://www.esri.com). The ArcGIS project, geodatabase, base map, and all map components are included online as supplemental data.

  17. How semantics can inform the geological mapping process and support intelligent queries

    Science.gov (United States)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2017-04-01

    The geologic mapping process requires the organization of data according to the general knowledge about the objects, namely the geologic units, and to the objectives of a graphic representation of such objects in a map, following an established model of geotectonic evolution. Semantics can greatly help such a process in two concerns: the provision of a terminological base to name and classify the objects of the map; on the other, the implementation of a machine-readable encoding of the geologic knowledge base supports the application of reasoning mechanisms and the derivation of novel properties and relations about the objects of the map. The OntoGeonous initiative has built a terminological base of geological knowledge in a machine-readable format, following the Semantic Web tenets and the Linked Data paradigm. The major knowledge sources of the OntoGeonous initiative are GeoScience Markup Language schemata and vocabularies (through its last version, GeoSciML 4, 2015, published by the IUGS CGI Commission) and the INSPIRE "Data Specification on Geology" directives (an operative simplification of GeoSciML, published by INSPIRE Thematic Working Group Geology of the European Commission). The Linked Data paradigm has been exploited by linking (without replicating, to avoid inconsistencies) the already existing machine-readable encoding for some specific domains, such as the lithology domain (vocabulary Simple Lithology) and the geochronologic time scale (ontology "gts"). Finally, for the upper level knowledge, shared across several geologic domains, we have resorted to NASA SWEET ontology. The OntoGeonous initiative has also produced a wiki that explains how the geologic knowledge has been encoded from shared geoscience vocabularies (https://www.di.unito.it/wikigeo/). In particular, the sections dedicated to axiomatization will support the construction of an appropriate data base schema that can be then filled with the objects of the map. This contribution will discuss

  18. Hydrogeologic data from the US Geological Survey test wells near Waycross, Ware County, Georgia

    Science.gov (United States)

    Matthews, S.E.; Krause, R.E.

    1983-01-01

    Two wells were constructed near Waycross, Ware County, Georgia, from July 1980 to May 1981 to collect stratigraphic, structural, geophysical, hydrologic, hydraulic, and geochemical information for the U.S. Geological Survey Tertiary Limestone Regional Aquifer-System Analysis. Data collection included geologic sampling and coring, borehole geophysical logging, packer testing, water-level measuring, water-quality sampling, and aquifer testing. In the study area, the Tertiary limestone aquifer system is about 1,300 feet thick and is confined and overlain by about 610 feet of clastic sediments. The aquifer system consists of limestone, dolomite, and minor evaporites and has high porosity and permeability. A 4-day continuous discharge aquifer test was conducted, from which a transmissivity of about 1 million feet squared per day and a storage coefficient of 0.0001 were calculated. Water from the upper part of the aquifer is of a calcium bicarbonate type. The deeper highly mineralized zone produces a sodium bicarbonate type water in which concentrations of magnesium, sulfate, chloride, sodium, and some trace metals increase with depth. (USGS)

  19. Geology of the U12n.07 UG-3 drill hole, area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    Terry, S.S.; Cunningham, M.J.

    1975-11-01

    The U12n.07 UG-3 horizontal drill hole, located near the eastern edge of the center of Rainier Mesa, Nevada Test Site, was drilled to a total depth of 809 m (2,653 ft). This hole was drilled to further evaluate the tunnel-level stratigraph, and structure southwest of the U12n tunnel complex. The drill hole is collared in the middle of Tertiary tunnel bed 3A and penetrates upsection through tunnel beds 3 and 4 and terminates in subunit 4K, all of Tertiary age. Stratigraphy, structure, engineering geology, and physical properties and their relation to tunnel engineering are discussed

  20. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  1. Milankovitch cyclicity in modern continental margins: stratigraphic cycles in terrigenous shelf settings; El registro de la ciclicidad de Milankovitch en margenes continentales actuales: ciclos estratigraficos en plataformas terrigenas

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, F. J.; Ridente, D.

    2013-06-01

    We present a synthesis of the sedimentary responses to Late Quaternary Milankovitch-type sea-level cycles (100 and 20 kyr periodicities) as a basis for our investigations into the patterns and concepts of composite sequences in shallow-shelf settings. We describe the record of both 100 and 20 kyr cycles as documented worldwide and discuss the pattern of composite cyclicity mainly on the basis of previously published data from the Adriatic Sea and Gulf of Cadiz margins. Cycles of 100 kyr are those most frequently documented in Quaternary margins; they occur in the form of unconformity-bounded depositional sequences dominated by fairly uniform pro gradational-regressive units and more variable, though less well developed, transgressive deposits. Sequence boundaries correspond to prominent polygenic (regressive-transgressive) erosional surfaces that bear witness to considerable transgressive reworking of the original sub-aerial unconformity. Although the progradational units making up the greater part of these sequences have usually been interpreted as a record of a falling sea-level stage, recent evidence is pointing towards a more complex stratigraphic picture, including a distinction between relative highstand and lowstand deposits. The 20-kyr stratigraphic motifs show greater variation compared to that displayed by the more common 100-kyr sequences, particularly in the basic structure of systems tracts and the nature of bounding surfaces. The two case studies described here, the Adriatic Sea and Gulf of Cadiz margins, highlight the fact that, concomitantly with an increase in frequencies of cycles and sequences, sediment supply and the dynamics of their dispersal significantly affected the stratigraphic response to the main controlling factor, which was sea-level, thus determining the variety of expression in the 20 kyr cycles. (Author)

  2. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Science.gov (United States)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  3. Economic Screening of Geologic Sequestration Options in the United States with a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.(BATTELLE (PACIFIC NW LAB)); Dooley, James J.(BATTELLE (PACIFIC NW LAB)); Brown, Daryl R.(BATTELLE (PACIFIC NW LAB)); Stephan, Alex J.(BATTELLE (PACIFIC NW LAB)); Badie I. Morsi

    2001-10-19

    Developing a carbon management strategy is a formidable task for nations as well as individual companies. It is often difficult to understand what options are available, let alone determine which may be optimal. In response to the need for a better understanding of complex carbon management options, Battelle has developed a state-of-the-art Geographic Information System (GIS) model with economic screening capability focused on carbon capture and geologic sequestration opportunities in the United States. This paper describes the development of this GIS-based economic screening model and demonstrates its use for carbon management analysis.

  4. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  5. Mineralogic Model (MM3.0) Report

    International Nuclear Information System (INIS)

    Sanchez, A.

    2004-01-01

    The purpose of this report is to provide a three-dimensional (3-D) representation of the mineral abundance within the geologic framework model domain. The mineralogic model enables project personnel to estimate mineral abundances at any position, within the model region, and within any stratigraphic unit in the model area. The model provides the abundance and distribution of 10 minerals and mineral groups within 22 stratigraphic sequences or model layers in the Yucca Mountain area. The uncertainties and limitations associated with this model are discussed in Section 6.4. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7

  6. Role of different types of solid models in hydrodynamic modeling and their effects on groundwater protection processes

    Science.gov (United States)

    Bódi, Erika; Buday, Tamás; McIntosh, Richard William

    2013-04-01

    Defining extraction-modified flow patterns with hydrodynamic models is a pivotal question in preserving groundwater resources regarding both quality and quantity. Modeling is the first step in groundwater protection the main result of which is the determination of the protective area depending on the amount of extracted water. Solid models have significant effects on hydrodynamic models as they are based on the solid models. Due to the legislative regulations, on protection areas certain restrictions must be applied which has firm consequences on economic activities. In Hungarian regulations there are no clear instructions for the establishment of either geological or hydrodynamic modeling, however, modeling itself is an obligation. Choosing the modeling method is a key consideration for further numerical calculations and it is decisive regarding the shape and size of the groundwater protection area. The geometry of hydrodynamic model layers is derived from the solid model. There are different geological approaches including lithological and sequence stratigraphic classifications furthermore in the case of regional models, formation-based hydrostratigraphic units are also applicable. Lithological classification is based on assigning and mapping of lithotypes. When the geometry (e.g. tectonic characteristics) of the research area is not known, horizontal bedding is assumed the probability of which can not be assessed based on only lithology. If the geological correlation is based on sequence stratigraphic studies, the cyclicity of sediment deposition is also considered. This method is more integrated thus numerous parameters (e.g. electrofacies) are taken into consideration studying the geological conditions ensuring more reliable modeling. Layers of sequence stratigraphic models can be either lithologically homogeneous or they may include greater cycles of sediments containing therefore several lithological units. The advantage of this is that the modeling can

  7. Geologic map of the Lada Terra quadrangle (V-56), Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  8. Geology of the Syncline Ridge area related to nuclear waste disposal, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Hoover, D.L.; Morrison, J.N.

    1980-01-01

    The Syncline Ridge area is in the western part of Yucca Flat, Nye Co., Nev. Drill holes, geophysical surveys, mapping, and laboratory studies during 1976 through 1978 were used to investigate argillite in unit J (Mississippian) of the Eleana Formation (Devonian and Mississippian) as a possible nuclear waste repository site. Argillite in unit J has a minimum stratigraphic thickness of at least 700 m. The argillite underlies most of the Syncline Ridge area east of the Eleana Range, and is overlain by Quaternary alluvium and the Tippipah Limestone of Syncline Ridge. At the edges of the Syncline Ridge area, alluvium and volcanic rocks overlie the argillite. The argillite is underlain by more than 1000 m of quartzite, siliceous argillite, and minor limestone in older units of the Eleana Formation. These older units crop out in the Eleana Range. The area is divided into southern, central, and northern structural blocks by two lateral faults. The southern and central blocks either have volumes of argillite too small for a repository site, or have irregular-shaped volumes caused by Mesozoic high-angle faults that make the structure too complex for a repository site. The northern block appears to contain thick argillite within an area of 6 to 8 km 2 . The postvolcanic history of the Syncline Ridge area indicates that the area has undergone less deformation than other areas in Yucca Flat. Most of the late Tertiary and Quaternary deformation consisted of uplift and eastward tilting in the Syncline Ridge area. Preliminary engineering geology investigations indicate that although the competency of the argillite is low, the argillite may be feasible for construction of a nuclear waste disposal facility. Physical, thermal, chemical, and mineralogical properties of the argillite appear to be within acceptable limits for a nuclear waste repository

  9. Geographic Information System (GIS) characterization of historical seagrass coverage in Perdido Bay from United States Geological Survey/National Wetlands Research Center (USGS/NWRC), 1987 (NODC Accession 0000606)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Graphical representation of historical seagrass coverage in Perdido Bay in 1987 from United States Geological Survey/National Wetlands Research Center (USGS/NWRC).

  10. Spatial Digital Database for the Geologic Map of Oregon

    Science.gov (United States)

    Walker, George W.; MacLeod, Norman S.; Miller, Robert J.; Raines, Gary L.; Connors, Katherine A.

    2003-01-01

    Introduction This report describes and makes available a geologic digital spatial database (orgeo) representing the geologic map of Oregon (Walker and MacLeod, 1991). The original paper publication was printed as a single map sheet at a scale of 1:500,000, accompanied by a second sheet containing map unit descriptions and ancillary data. A digital version of the Walker and MacLeod (1991) map was included in Raines and others (1996). The dataset provided by this open-file report supersedes the earlier published digital version (Raines and others, 1996). This digital spatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information for use in spatial analysis in a geographic information system (GIS). This database can be queried in many ways to produce a variety of geologic maps. This database is not meant to be used or displayed at any scale larger than 1:500,000 (for example, 1:100,000). This report describes the methods used to convert the geologic map data into a digital format, describes the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. Scanned images of the printed map (Walker and MacLeod, 1991), their correlation of map units, and their explanation of map symbols are also available for download.

  11. Standardization of mapping practices in the British Geological Survey

    Science.gov (United States)

    Allen, Peter M.

    1997-07-01

    Because the British Geological Survey (BGS) has had, since its foundation in 1835, a mandate to produce geological maps for the whole of Great Britain, there is a long history of introducing standard practices in the way rocks and rock units have been named, classified and illustrated on maps. The reasons for the failure of some of these practices are examined and assessed in relation to the needs of computerized systems for holding and disseminating geological information.

  12. Geological, geophysical investigations and seismotectonic analysis with reference to selection of site for nuclear power plants: a review

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2014-01-01

    Geological, geophysical investigations and seismotectonic analysis play a major role in qualifying a proposed site for establishment of nuclear power plants. In an area, it is important to understand the aspects such as regional and local geology, geomorphology, tectonic settings, presence of active faults/capable faults, earthquake history and earthquake proneness, neotectonic activity, slope instability, subsidence, liquefaction, seismically induced flooding, tsunami and geohydrological conditions. Geological investigations comprise use of remote sensing and ground validation followed by geological mapping, identification of faults, near surface geological studies for foundation conditions, stratigraphic drilling, palaeoseismology, studies on engineering properties of rock and soil. Geophysical investigations provide insight into subsurface geology including concealed faults, elastic constants and hydrological conditions. Radon emanometry is a valuable tool in the initial stage to decipher subsurface active weak zones/fault lines. Seismotectonic analysis identifies the provinces of tectonic significance and their earthquake potential, thereby designating lineaments of consequence leading to their evaluation. This, in turn, determines the design basis earthquake parameter for the estimation of vibratory ground motion. This article provides certain measures to evaluate the suitability of the sites for the establishment of nuclear power plants in terms of geological, geophysical investigations and seismotectonic status. Atomic Minerals Directorate for Exploration and Research (AMD) had carried out seismotectonic analysis of the area around Kaiga, Narora, Kalpakkam, Kakrapar, Tarapur, Kudankulam and Rawatbhata Nuclear Power Projects, which were either in operation or under expansion and construction. Such analysis was extended to a number of proposed sites for establishing nuclear power plants in West Bengal, Bihar, Orissa, Andhra Pradesh, Gujrat, Madhya Pradesh

  13. Final Report: Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye [Univ. of Wyoming, Laramie, WY (United States)

    2018-01-17

    The critical component of a risk assessment study in evaluating GCS is an analysis of uncertainty in CO2 modeling. In such analyses, direct numerical simulation of CO2 flow and leakage requires many time-consuming model runs. Alternatively, analytical methods have been developed which allow fast and efficient estimation of CO2 storage and leakage, although restrictive assumptions on formation rock and fluid properties are employed. In this study, an intermediate approach is proposed based on the Design of Experiment and Response Surface methodology, which consists of using a limited number of numerical simulations to estimate a prediction outcome as a combination of the most influential uncertain site properties. The methodology can be implemented within a Monte Carlo framework to efficiently assess parameter and prediction uncertainty while honoring the accuracy of numerical simulations. The choice of the uncertain properties is flexible and can include geologic parameters that influence reservoir heterogeneity, engineering parameters that influence gas trapping and migration, and reactive parameters that influence the extent of fluid/rock reactions. The method was tested and verified on modeling long-term CO2 flow, non-isothermal heat transport, and CO2 dissolution storage by coupling two-phase flow with explicit miscibility calculation using an accurate equation of state that gives rise to convective mixing of formation brine variably saturated with CO2. All simulations were performed using three-dimensional high-resolution models including a target deep saline aquifer, overlying caprock, and a shallow aquifer. To evaluate the uncertainty in representing reservoir permeability, sediment hierarchy of a heterogeneous digital stratigraphy was mapped to create multiple irregularly shape stratigraphic models of decreasing geologic resolutions: heterogeneous (reference), lithofacies, depositional environment, and a (homogeneous) geologic formation. To ensure model

  14. Revelation and registration of geological heritage on the test sites territories

    International Nuclear Information System (INIS)

    Kazakova, Yu.I.

    1999-01-01

    Studies of geotypes in Kazakhstan are carrying out from 1993. 'Geological heritage of Kazakhstan' data base incorporating more than 400 objects is developed. The geotypes classification by a diverse features was worked out. The showing up and accounting system of geotype objects diversity was demonstrated and approved on the international symposia on geological heritage protection (ProGeo-97 and ProGeo-98). But this work does not conducted on the test sites yet. At present these territories have been more available but data about geotypes within its boundaries are fragmentary yet. Among its there are locations of interesting dinosaur remains (Baikanur space site), ancient mine working, petroglyphic drawings, agate manifestations, picturesque landscapes (Semipalatinsk test site). Within test zones there are such interesting antropogenic noticeably object as places of nuclear explosions including the famous Atomic Lake. There are a lot interest object on the territories adjoint to test sites (stratigraphical open-casts of the universal importance, paleontological remains and others) gives basis for to suggest that on the closed earlier territories there are a lot of interesting geotypes. At present these sites are entering to rehabilitation stage. At that one of the important measure must be study of geotypes situated within its limits

  15. Scale determinants of fiscal investment in geological exploration: evidence from China.

    Science.gov (United States)

    Lu, Linna; Lei, Yalin

    2013-01-01

    With the continued growth in demand for mineral resources and China's efforts in increasing investment in geological prospecting, fiscal investment in geological exploration becomes a research hotspot. This paper examines the yearly relationship among fiscal investment in geological exploration of the current term, that of the last term and prices of mining rights over the period 1999-2009. Hines and Catephores' investment acceleration model is applied to describe the scale determinants of fiscal investment in geological exploration which are value-added of mining rights, value of mining rights and fiscal investment in the last term. The results indicate that when value-added of mining rights, value of mining rights or fiscal investment in the last term moves at 1 unit, fiscal investment in the current term will move 0.381, 1.094 or 0.907 units respectively. In order to determine the scale of fiscal investment in geological exploration for the current year, the Chinese government should take fiscal investment in geological exploration for the last year and the capital stock of the previous investments into account. In practice, combination of government fiscal investment in geological exploration with its performance evaluation can create a virtuous circle of capital management mechanism.

  16. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  17. U.S. Geological Survey Cooperative Fish and Wildlife Research Units Program—2016–2017 Research Abstracts

    Science.gov (United States)

    Dennerline, Donald E.; Childs, Dawn E.

    2017-04-20

    The U.S. Geological Survey (USGS) has several strategic goals that focus its efforts on serving the American people. The USGS Ecosystems Mission Area has responsibility for the following objectives under the strategic goal of “Science to Manage and Sustain Resources for Thriving Economies and Healthy Ecosystems”:Understand, model, and predict change in natural systemsConserve and protect wildlife and fish species and their habitatsReduce or eliminate the threat of invasive species and wildlife diseaseThis report provides abstracts of the majority of ongoing research investigations of the USGS Cooperative Fish and Wildlife Research Units program and is intended to complement the 2016 Cooperative Research Units Program Year in Review Circular 1424 (https://doi.org/10.3133/cir1424). The report is organized by the following major science themes that contribute to the objectives of the USGS:Advanced TechnologiesClimate ScienceDecision ScienceEcological FlowsEcosystem ServicesEndangered Species Conservation, Recovery, and Proactive StrategiesEnergyHuman DimensionsInvasive SpeciesLandscape EcologySpecies of Greatest Conservation NeedSpecies Population, Habitat, and Harvest ManagementWildlife Health and Disease

  18. Tectonic-stratigraphic evolution of mini-basins and salt provinces of Espirito Santo Basin-Brazil; Analise da evolucao tectono sedimentar de mini-bacias e provincias de sal da Bacia do Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Neto, Walter Dias; Fernandes, Flavio Luis [Petroleum Geoscience Technology Ltda. (PGT), Rio de Janeiro, RJ (Brazil); Mohriak, Webster [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Espirito Santo Basin integrates the group of basins along the eastern Brazilian continental margin. It is located between 18 deg and 21 deg S, encompassing an area of approximately 220,000 km{sup 2}, onshore and offshore the Espirito Santo State. Its geological limit with the Campos Basin to the south is defined by a Precambrian basement high (Vitoria Arch), and its northern limit with the Mucuri Basin is defined by a geopolitical limit. The study of salt tectonics processes in the Espirito Santo Basin allowed the deformational analysis and interpretation of the chronological evolution of the mini-basins developed between salt diapirs. We observe an intrinsic relationship between halokinesis and creation of subsidence troughs that may be important for trapping hydrocarbon reservoirs, and consequently form oil and gas accumulations in this portion of the basin. This geodynamics evolution of these structures is marked by a strong linkage between salt movement and coeval sedimentation in the interdomal basins, forming structures and stratigraphic traps that may constitute important aspects for the petroleum geology. (author)

  19. United States of America activities relative to the International Atomic Energy Agency (IAEA) initiative: Records management for deep geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    Warner, P.J.

    1997-03-01

    The International Atomic Energy Agency (IAEA) has conducted consultant and advisory meetings to prepare a Technical Document which is intended to provide guidance to all IAEA Member States (otherwise known as countries) that are currently planning, designing, constructing or operating a deep or near surface geological repository for the storage and protection of vitrified high-level radioactive waste, spent fuel waste and TRU-waste (transuranic). Eleven countries of the international community are presently in various stages of siting, designing, or constructing deep geologic repositories. Member States of the IAEA have determined that the principle safety of such completed and operation sites must not rely solely on long term institutional arrangements for the retention of information. It is believed that repository siting, design, operation and postoperation information should be gathered, managed and retained in a manner that will provide information to future societies over a very long period of time. The radionuclide life is 10,000 years thus the retention of information must outlive current societies, languages, and be continually migrated to new technology to assure retrieval. This presentation will provide an overview of the status of consideration and implementation of these issues within the United States efforts relative to deep geologic repository projects.

  20. United States of America activities relative to the International Atomic Energy Agency (IAEA) initiative: Records management for deep geologic repositories

    International Nuclear Information System (INIS)

    Warner, P.J.

    1997-01-01

    The International Atomic Energy Agency (IAEA) has conducted consultant and advisory meetings to prepare a Technical Document which is intended to provide guidance to all IAEA Member States (otherwise known as countries) that are currently planning, designing, constructing or operating a deep or near surface geological repository for the storage and protection of vitrified high-level radioactive waste, spent fuel waste and TRU-waste (transuranic). Eleven countries of the international community are presently in various stages of siting, designing, or constructing deep geologic repositories. Member States of the IAEA have determined that the principle safety of such completed and operation sites must not rely solely on long term institutional arrangements for the retention of information. It is believed that repository siting, design, operation and postoperation information should be gathered, managed and retained in a manner that will provide information to future societies over a very long period of time. The radionuclide life is 10,000 years thus the retention of information must outlive current societies, languages, and be continually migrated to new technology to assure retrieval. This presentation will provide an overview of the status of consideration and implementation of these issues within the United States efforts relative to deep geologic repository projects

  1. Uniting geology and craftsmanship to find the optimal soapstone for restoration of the Nidaros soapstone Cathedral in Norway

    Science.gov (United States)

    Aslaksen Aasly, Kari; Meyer, Gurli Birgitte; Kløve Keiding, Jakob; Langås, Rune; Lund, Vegard

    2017-04-01

    The Nidaros Cathedral situated in Trondheim, Norway is a restored cathedral resting on the remnants of an original medieval church sanctified St Olav. The cathedral became one of the most important sanctuary for pilgrimage during the Middle Ages and still is today. In a European context the cathedral, along with a certain group of other churches and monasteries in Norway, is unique by being build from soapstone (steatite). This talc and chlorite dominated metamorphic rock is relatively soft, heat resistant and dense making the material ideal for cooking pots, stoves and all kinds of utensils. Soapstone has therefore been appreciated, used and quarried since the Stone Age in Norway. At the onset of Christianity the choice of soapstone from harder rock types was not difficult for the building owners combining the vision of stone churches in Norway with the skills of wood carving traditions of local handicraftsmen. The best example is the Nidaros Cathedral built in the 11th to 14th century. In 1869, the Nidaros Cathedral Restoration Workshop (NDR) was founded with the purpose of restoring the cathedral using original craftsman's techniques and authentic materials. The restoration was originally completed in 1969, but is still ongoing due to weathering of certain used soapstone types. A major challenge remains to find soapstone resources of the right quality. Core issues relate to avoid rocks with cracks and cleavage, a demand for homogeneity, maintaining esthetic authenticity, resistance to weathering (disintegration) and last but not least the ultimatum of workability. Thus locating new soapstone resources depends strongly on geological understanding, quarry experience and stone carver's knowledge. The present work is based on close cooperation between stone carvers and geologists in a common goal of uniting knowledge and experience in defining qualities of soapstone for various purposes of restoration. Cooperate observations of geology and carving properties in the

  2. U.S. Geological Survey program of offshore resource and geoenvironmental studies, Atlantic-Gulf of Mexico region, from September 1, 1976, to December 31, 1978

    Science.gov (United States)

    Folger, David W.; Needell, Sally W.

    1983-01-01

    Mineral and energy resources of the continental margins of the United States arc important to the Nation's commodity independence and to its balance of payments. These resources are being studied along the continental margins of the Atlantic Ocean and the Gulf of Mexico in keeping with the mission of the U.S. Geological Survey to survey the geologic structures, mineral resources, and products of the national domain.'(Organic Act of 1879). An essential corollary to these resource studies is the study of potential geologic hazards that may be associated with offshore resource exploration and exploitation. In cooperation with the U.S. Bureau of Land Management, the Geological Survey, through its Atlantic-Gulf of Mexico Marine Geology Program, carries out extensive research to evaluate hazards from sediment mobility, shallow gas, and slumping and to acquire information on the distribution and concentration of trace metals and biogenic and petroleum-derived hydrocarbons in sea-floor sediments. All these studies arc providing needed background information, including information on pollutant dispersal, on the nearshore, estuarine, and lacustrine areas that may be near pipeline and nuclear powerplant sites. Users of these data include the Congress, many Federal agencies, the coastal States, private industry, academia, and the concerned public. The results of the regional structural, stratigraphic, and resource studies carried out under the Atlantic-Gulf of Mexico Marine Geology Program have been used by the Geological Survey and the Bureau of Land Management to select areas for future leasing and to aid in the evaluation of tracts nominated for leasing. Resource studies have concentrated mostly on the Atlantic Outer Continental Shelf frontier areas. Geologic detailing of five major basins along the U.S. Atlantic margin, where sediments are as much as 14 km thick, have been revealed by 25,000 km of 24-and 48-channel common-depth-point seismic data, 187,000 km of

  3. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    Science.gov (United States)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  4. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Waters, A.C.; Carroll, P.R.

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima's zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff

  5. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Waters, A.C.; Carroll, P.R. (eds.)

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima`s zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff.

  6. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 2: Crater Size-frequency Distribution Curves and Geomorphic Unit Ages

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    In assessing the relative ages of the geomorphic/geologic units, crater counts of the entire unit or nearly the entire unit were made and summed in order to get a more accurate value than obtainable by counts of isolated sections of each unit. Cumulative size-frequency counts show some interesting relationships. Most of the units show two distinct crater populations with a flattening out of the distribution curve at and below 10 km diameter craters. Above this crater size the curves for the different units diverge most notably. In general, the variance may reflect the relative ages of these units. At times, however, in the larger crater size range, these curves can overlap and cross on another. Also the error bars at these larger sizes are broader (and thus more suspect), since counts of larger craters show more scatter, whereas the unit areas remain constant. Occasional clusters of relatively large craters within a given unit, particularly one of limited areal extent, can affect the curve so that the unit might seem to be older than units which it overlies or cuts.

  7. Digital Geological Model (DGM): a 3D raster model of the subsurface of the Netherlands

    NARCIS (Netherlands)

    Gunnink, J.L.; Maljers, D.; Gessel, S.F. van; Menkovic, A.; Hummelman, H.J.

    2013-01-01

    A 3D geological raster model has been constructed of the onshore of the Netherlands. The model displays geological units for the upper 500 m in 3D in an internally consistent way. The units are based on the lithostratigraphical classification of the Netherlands. This classification is used to

  8. Geomorphology in North American Geology Departments, 1971

    Science.gov (United States)

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  9. Stratigraphic dictionary of the mesozoic and cenozoic deposits of the western Siberian lowland. Stratigraficheskii slovar' mezozoiskikh i kainozoiskikh otlozhenii zapadno-Sibirskoi nizmennosti

    Energy Technology Data Exchange (ETDEWEB)

    Rostovtseva, N N

    1978-01-01

    The dictionary contains 655 descriptions of stratigraphic subdivisions (series, suites, subsuites, layers, packets, horizons, strata) of Triassic, Jurassic, Cretaceous, Tertiary, Neogene, and Quaternary deposits of the western Siberian lowland. Also presented are maps indicating the demarcation limits of all of the adopted stratigraphic subdivisions (Appendices 1 to 14), and correlative stratigraphic diagrams (Appendices 15 to 21). The dictionary may be of use as a reference manual for geologists of all fields of specialization, particularly for those working in western Siberia. 202 references, 21 figures.

  10. Geology and prospecting in the Carpatians conference excursion guide

    Directory of Open Access Journals (Sweden)

    Jacko Stanislav

    2000-06-01

    Full Text Available We would like to welcome you to the excursions finalizing the Geology and prospecting in the Carpathians Conference, Her¾any –2000. The aim of the excursions is to provide you an overview of these Western Carpathian lithostructural units – and their mineralization respectively, research progress of which has been (at that time closely connected with personal investigation enthusiasm of our Professors - the founders of our Faculty. The current state of geological development knowledge of principal structural units of the Western Carpathians is outlined in papers included in special issue of Mineralia Slovaca magazine you have received at the begining of the Conference. For this reason the content of this Excursion quide is exclusively concentrated to description of routes localities. Broader geological relationships of particular outcrops is possible to find in attached Geological map of the Slovak Republic 1:100 000. The organizers of the excursions gratefully acknowledge the efforts of all colleagues who contributed to this quide. We also like to express our thanks for the financial support to Slovak VEGA grant Agency (Grant No:1/7389/2 and to the following organizations: Association of Metallurgy, Minig Industry and Geology of Slovak Republic, Slovak Geological Society, Management of TU Košice, SAPTU Foundation of TU Košice, Geological Survey of the Slovak Republic Betox JSC. Košice, SMW JSC. Jelšava, Uranpress Ltd. Spišská Nová Ves, TESCO Košice, ŽELBA-Siderite JSC. Nižná Slaná and ŽELBA –JSC. Spišská Nová Ves.

  11. Application of remote sensing to the photogeologic mapping of the region of the Itatiaia alkaline complex. M.S. Thesis; [Minas Gerais, Rio De Janeiro, Sao Paulo, and Itatiaia, Brazil

    Science.gov (United States)

    Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.

    1981-01-01

    Remote sensing methods applied to geologically complex areas, through interaction of ground truth and information obtained from multispectral LANDSAT images and radar mosaics were evaluated. The test area covers parts of Minos Gerais, Rio De Janeiro and Sao Paulo states and contains the alkaline complex of Itatiaia and surrounding Precambrian terrains. Geological and structural mapping was satisfactory; however, lithological varieties which form the massif's could not be identified. Photogeological lineaments were mapped, some of which represent the boundaries of stratigraphic units. Automatic processing was used to classify sedimentary areas, which includes the talus deposits of the alkaline massifs.

  12. The Oligocene-Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy)

    Science.gov (United States)

    Brandano, Marco; Cornacchia, Irene; Raffi, Isabella; Tomassetti, Laura

    2016-03-01

    The stratigraphic architecture of the Bolognano Formation documents the evolution of the Majella carbonate platform in response to global and local changes that affected the Mediterranean area during the Oligocene-Miocene interval. The Bolognano Formation consists of a homoclinal ramp that developed in a warm, subtropical environment. Five different lithofacies associations have been identified: Lepidocyclina calcarenites, cherty marly limestones, bryozon calcarenites, hemipelagic marls and marly limestones, and Lithothamnion limestones. Each association corresponds to a single lithostratigraphic unit except for the Lepidocyclina calcarenites that form two distinct lithostratigraphic units (Lepidocyclina calcarenites 1 and 2). These six units reflect alternation of shallow-water carbonate production and drowning. Specifically, two of the three stages of shallow-water carbonate production regard the development of wide dune fields within the middle ramp, one stage dominated by red algae and a sea-grass carbonate factory, whereas the two drowning phases are represented by marly cherty limestones and calcareous marls. A new biostratigraphic framework for Bolognano Formation is presented, based on high-resolution analysis of calcareous nannofossil assemblages, which proved to be very useful for biostratigraphic constraints also in shallow-water settings. Using this approach, we have linked the first drowning phase, late Chattian-Aquitanian p.p. in age, to western Mediterranean volcanism and the Mi-1 event, and the second drowning phase, late Burdigalian-Serravallian in age, to the closure of the Indo-Pacific passage and the occurrence of the global Monterey event. These results permit a new deciphering, in terms of sequence stratigraphy, of the Bolognano Formation that is interpreted as a 2nd-order super-sequence that can be subdivided into 3 transgressive-regressive sequences.

  13. The U.S. Geological Survey's TRIGA® reactor

    Science.gov (United States)

    DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.

    2012-01-01

    The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.

  14. Comparison of methods used to estimate conventional undiscovered petroleum resources: World examples

    Science.gov (United States)

    Ahlbrandt, T.S.; Klett, T.R.

    2005-01-01

    Various methods for assessing undiscovered oil, natural gas, and natural gas liquid resources were compared in support of the USGS World Petroleum Assessment 2000. Discovery process, linear fractal, parabolic fractal, engineering estimates, PETRIMES, Delphi, and the USGS 2000 methods were compared. Three comparisons of these methods were made in: (1) the Neuquen Basin province, Argentina (different assessors, same input data); (2) provinces in North Africa, Oman, and Yemen (same assessors, different methods); and (3) the Arabian Peninsula, Arabian (Persian) Gulf, and North Sea (different assessors, different methods). A fourth comparison (same assessors, same assessment methods but different geologic models), between results from structural and stratigraphic assessment units in the North Sea used only the USGS 2000 method, and hence compared the type of assessment unit rather than the method. In comparing methods, differences arise from inherent differences in assumptions regarding: (1) the underlying distribution of the parent field population (all fields, discovered and undiscovered), (2) the population of fields being estimated; that is, the entire parent distribution or the undiscovered resource distribution, (3) inclusion or exclusion of large outlier fields; (4) inclusion or exclusion of field (reserve) growth, (5) deterministic or probabilistic models, (6) data requirements, and (7) scale and time frame of the assessment. Discovery process, Delphi subjective consensus, and the USGS 2000 method yield comparable results because similar procedures are employed. In mature areas such as the Neuquen Basin province in Argentina, the linear and parabolic fractal and engineering methods were conservative compared to the other five methods and relative to new reserve additions there since 1995. The PETRIMES method gave the most optimistic estimates in the Neuquen Basin. In less mature areas, the linear fractal method yielded larger estimates relative to other methods

  15. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    Science.gov (United States)

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  16. The Punta del Este terrain and its volcano sedimentary cover, metamorphic and sedimentary: geology, geochemistry and geochronology

    International Nuclear Information System (INIS)

    Preciozzi, F.

    2015-01-01

    Gariep belt it develops over the West Africa coastal region of Namibia underlying on Namaqua metamorphic complex.It characterized by supra crustal rocks affected for a very low to low metamorphism and in two tecto no-stratigraphic units identified by Base i et al 2005 showing that sediments of Formation Rocha in Uruguay and the Group Oranjemund Gariep in S E Africa have similar ages in the provenance of the zircons, suggesting that they were probably deposited in the same basin. This unit exhibits detrital zircons around 600my, sedimentation and metamorphism and deformación occur in a narrow time interval from 600-610 to 574 m (Granite de Castillo intrusion) .Cam pal et al, 2005 proposed to the Cerros Aguirre Formation similar in a range of age of different events. To the east separated from the Punta del Este Terrane –Pelotas. Aigua .Florianopolis batholith s by the shear zone Alferez Cordillera (Preciozzi et al. 1999, Basei et al. 2000) Another option develops this granitic belt is an integral part of Land Punta del Este Terrane(Preciozzi in this work), being deployed on a thin cratonic granite edge. The climax of the post-brasilian magmatism is 580my, strongly related to trans current movements (eg shear zones Major Gercino-Alferez- Cordillera and Sierra Ballena.In South America an old west domain is formed by the Piedra Alta Terrane which integrate the Río de la Pl ata Craton, a central domain intensely reworked by Neoproterozoic events known so far as Nico Perez . The primary coverage is integrated by two volcano-sedimentary basins (San Carlos Formation and Cerros de Aguirre Formation)In this study are considered the Geology,Geochemistry and Geochronology of the different units of Rocha Formation

  17. Accommodation and supply—a dual control on stratigraphic sequences

    Science.gov (United States)

    Schlager, Wolfgang

    1993-07-01

    It is widely accepted that both eustatic and tectonically controlled regional changes of sea level have contributed to the record of stratigraphic sequences. I suggest that environmental change be added as a third, autonomous control. Sedimentologic principles clearly indicate that sequences and their systems tracts are controlled by the interplay of two rates —the rate of change in accommodation (space available for sedimentation) and the rate of sediment supply. Sea level has direct control on accommodation, but its influence on sediment supply is remote and easily overshadowed by environmental factors. For instance, the record of the most recent sea-level rise is a transgressive systems tract where supply is low; it is a prograding highstand systems tract in deltas where the supply is high. Examples of sequence boundaries generated by changes in sediment supply include tectonically driven shifts in sediment input into basins, changes in ocean currents, pulsating supply from failure of submarine slopes and drowning of carbonate platforms by environmental stress. Furthermore, the stratigraphic sequences in fluviatile continental basins are physically removed from sea-level induced changes in accommodation and must have formed by changes in the rate and pattern of supply. Subaerial exposure of marine sediments at the sequence boundary is a most important criterion for recognizing sea level cycles as opposed to supply cycles. Other criteria include downstepping of shelf breaks and characteristic patterns in the spacing of time lines within sequences. Some third-order cycles (ca. 0.5-3 Ma duration) meet these criteria, others do not. Cycle-stacking patterns and the shifting facies belts on cratons indicate that many second- and third-order cycles lack pronounced exposure unconformities and represent gradual changes superimposed on more rapid, shorter oscillations. Seismic data yield poor images of these gradational changes because they lack resolution. Seismic

  18. United States geological survey's reserve-growth models and their implementation

    Science.gov (United States)

    Klett, T.R.

    2005-01-01

    The USGS has developed several mathematical models to forecast reserve growth of fields both in the United States (U.S.) and the world. The models are based on historical reserve growth patterns of fields in the U.S. The patterns of past reserve growth are extrapolated to forecast future reserve growth. Changes of individual field sizes through time are extremely variable, therefore, the reserve growth models take on a statistical approach whereby volumetric changes for populations of fields are used in the models. Field age serves as a measure of the field-development effort that is applied to promote reserve growth. At the time of the USGS World Petroleum Assessment 2000, a reserve growth model for discovered fields of the world was not available. Reserve growth forecasts, therefore, were made based on a model of historical reserve growth of fields of the U.S. To test the feasibility of such an application, reserve growth forecasts were made of 186 giant oil fields of the world (excluding the U.S. and Canada). In addition, forecasts were made for these giant oil fields subdivided into those located in and outside of Organization of Petroleum Exporting Countries (OPEC). The model provided a reserve-growth forecast that closely matched the actual reserve growth that occurred from 1981 through 1996 for the 186 fields as a whole, as well as for both OPEC and non-OPEC subdivisions, despite the differences in reserves definition among the fields of the U.S. and the rest of the world. ?? 2005 International Association for Mathematical Geology.

  19. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  20. Geologic framework, hydrostratigraphy, and ichnology of the Blanco, Payton, and Rough Hollow 7.5-minute quadrangles, Blanco, Comal, Hays, and Kendall Counties, Texas

    Science.gov (United States)

    Clark, Allan K.; Golab, James A.; Morris, Robert E.

    2016-09-13

    This report presents the geologic framework, hydro­stratigraphy, and ichnology of the Trinity and Edwards Groups in the Blanco, Payton, and Rough Hollow 7.5-minute quad­rangles in Blanco, Comal, Hays, and Kendall Counties, Texas. Rocks exposed in the study area are of the Lower Cretaceous Trinity Group and lower part of the Fort Terrett Formation of the Lower Cretaceous Edwards Group. The mapped units in the study area are the Hammett Shale, Cow Creek Limestone, Hensell Sand, and Glen Rose Limestone of the Trinity Group and the lower portion of the Fort Terrett Formation of the Edwards Group. The Glen Rose Limestone is composed of the Lower and Upper Members. These Trinity Group rocks con­tain the upper and middle Trinity aquifers. The only remaining outcrops of the Edwards Group are the basal nodular member of the Fort Terrett Formation, which caps several hills in the northern portion of the study area. These rocks were deposited in an open marine to supratidal flats environment. The faulting and fracturing in the study area are part of the Balcones fault zone, an extensional system of faults that generally trends southwest to northeast in south-central Texas.The hydrostratigraphic units of the Edwards and Trinity aquifers were mapped and described using a classification system based on fabric-selective or not-fabric-selective poros­ity types. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is hydrostratigraphic unit VIII. The mapped hydrostratigraphic units of the upper Trinity aquifer are (from top to bottom) the Camp Bullis, upper evaporite, fossiliferous, and lower evaporite which are interval equivalent to the Upper Member of the Glen Rose Limestone. The middle Trinity aquifer encompasses (from top to bottom) the Lower Member of the Glen Rose Limestone, the Hensell Sand Member, and the Cow Creek Limestone Member of the Pearsall Formation. The Lower Member of the Glen Rose Limestone is subdivided into six informal hydro­stratigraphic

  1. Titan's methane cycle and its effect on surface geology

    Science.gov (United States)

    Lopes, R. M.; Peckyno, R. S.; Le Gall, A. A.; Wye, L.; Stofan, E. R.; Radebaugh, J.; Hayes, A. G.; Aharonson, O.; Wall, S. D.; Janssen, M. A.; Cassini RADAR Team

    2010-12-01

    Titan’s surface geology reflects surface-atmospheric interaction in ways similar to Earth’s. The methane cycle on Titan is a major contributor to the formation of surface features such as lakes, seas, rivers, and dunes. We used data from Cassini RADAR to map the distribution and relative ages of terrains that allow us to determine the geological processes that have shaped Titan’s surface. These SAR swaths (up to Titan flyby T64) cover about ~45% percent of the surface, at a spatial resolution ranging from 350 m to about >2 km. The data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution and significance of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth. In this paper, we update the geologic unit map that used flybys up to T30 (Lopes et al., 2010, Icarus, 205, 540-558), representing ~20% of the surface. We find that the overall correlations found previously still hold given more than double the areal coverage. In terms of global areal distribution, both dunes and mountainous terrains (including Xanadu) cover more area (respectively 9.2% and 14.6% of the observed area) than other identified geologic units. In terms of latitudinal distribution, dunes and hummocky, mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes filled with liquid are found at high latitudes only (above 60 degrees). Impact structures are mostly located at low latitudes, with no confidently identified craters above 60 degrees latitude, possibly indicating that more resurfacing has occurred at higher latitudes. Putative cryovolcanic features, consisting mostly of flows, are not ubiquitous and are mostly located in the areas surrounding Xanadu. We examine temporal relationships between

  2. Research of Houjiayao Unit in North China

    Science.gov (United States)

    Ji, Y.

    2012-12-01

    "Houjiayao Group" is the standard stratigraphic unit of late Pleistocene in northern China, which was created by Jia Lanpo and Wei Qi during their research on Houjiayao site. Based on the mammal, ancient human fossils and Paleolithic features, "Houjiayao Group" was thought as late Pleistocene sediments. "Houjiayao Group" was defined as late Pleistocene stratigraphic units. However, the problems of the age of "Houjiayao Group", stratigraphic division and other issues, have not yet been well resolved. These issues include: the differences of age-dating results, the unclear comparison between stratigraphic units and regional contrast, the uncertain relationship between "Houjiayao Group" and "Nihewan Layer ", and so on. Houjiayao site which located in the southeast of Houjiayao village in Dongjingji town Yangyuan County, Hebei province of China, is a very important paleolithic site. But some researches show that Houjiayao site is located at the 3th terrace of Liyigou valley and there are many opinions about the age of Houjiayao site, which varies from 20-500 thousand years. Combined with former research results and many research methods, our study was mainly focused on the key problems existing in the study of "Houjiayao Group". Through the use of sequence stratigraphy, chronostratigraphy, biostratigraphy and other theoretical methods, stratigraphic section was studied in the late Pleistocene stratigraphy and sedimentary environment. Through environmental indicators and the age-dating tests, the evolution of ancient geography and environment were identified elementarily. After analyzing informations of this area, geomorphologic investigation and stratum comparation in and around Houjiayao site were done. Houjiayao site is located on the west bank of Liyigou river, which has a tributary named Black Stone River. Two or three layers of volcanic materials were found in this area, those sediments are from a buried paleovolcano in upstream of Black Stone River. The volcanic

  3. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive

  4. Geologic drivers of late ordovician faunal change in laurentia: investigating links between tectonics, speciation, and biotic invasions.

    Directory of Open Access Journals (Sweden)

    David F Wright

    Full Text Available Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.

  5. Heavy mineral delineation of the Cretaceous, Paleocene, and Eocene stratigraphic sections at the Savannah River Site, Upper Coastal Plain of South Carolina

    International Nuclear Information System (INIS)

    Cathcart, E.M.; Sargent, K.A.

    1994-01-01

    The Upper Atlantic Coastal Plain of South Carolina consists of a fluvial-deltaic and shallow marine complex of unconsolidated sediments overlying the crystalline basement rocks of the North American continent. Because of the lateral and vertical variability of these sediments, stratigraphic boundaries have been difficult to distinguish. Portions of the Cretaceous, Paleocene, and eocene stratigraphic sections from cores recovered during the construction of two monitoring wells at the Savannah River Site were studied to determine if heavy mineral suites could be utilized to distinguish boundaries. The stratigraphic sections include: the Late Cretaceous Middendorf, Black Creek, and Steel Creek Formations, the Paleocene Snapp Formation, the late Paleocene-Early Eocene Fourmile Branch Formation, and the Early Eocene Congaree formation. In previous studies composite samples were taken over 2.5 ft. intervals along the cores and processed using a heavy liquid for heavy mineral recovery. During this study, heavy mineral distributions were determined by binocular microscope and the mineral identifications confirmed by x-ray diffraction analysis of hand-picked samples. The heavy mineral concentration data and grain size data were then compared to the stratigraphic boundary positions determined by other workers using more classical methods. These comparisons were used to establish the utility of this method for delineating the stratigraphic boundaries in the area of study

  6. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  7. Geological mapping of the vertical southeast face of El Capitan, Yosemite Valley, California (Invited)

    Science.gov (United States)

    Stock, G. M.; Glazner, A. F.; Ratajeski, K.; Law, B.

    2010-12-01

    El Capitan in Yosemite Valley, California, is one of the world’s most accessible large granitic rock faces. At nearly 1 km tall, the vertical southeast face of El Capitan provides unique insight into igneous processes contributing to the assembly of the Sierra Nevada batholith ~103 million years ago. Although the base and summit dome of El Capitan have been mapped in detail, the vertical face has so far eluded comprehensive attempts at geologic mapping. We have combined field mapping by technical rock climbing with high-resolution gigapixel photography to develop the first detailed digital geologic map of the southeast face (North America Wall). Geologic units exposed on the face include the El Capitan and Taft Granites, at least two phases of dioritic intrusions, hybridized rocks, and late-stage aplite/pegmatite dikes and pods. We map these units on a high resolution far-range base image derived from a high-resolution panoramic photograph, and verify contact relationships with close-range field photographs and visual observations from anchor points along major climbing routes. Mapping of contact relationships between these units reveals the sequence of intrusion of the various units, as well as the relationship of the mafic intrusions with the more voluminous granites. Geologic mapping of the southeast face also informs geologic hazards by constraining the source area for lithologically distinct rock falls; for example, geologic mapping confirms that a 2.2 x 106 m3 rock avalanche that occurred circa 3,600 years ago originated from near the summit of El Capitan, within an area dominated by Taft Granite. In addition to expanding mapping to the southwest face, future mapping efforts will focus on integrating the high resolution base map with airborne and terrestrial LiDAR data to produce a three-dimensional geologic map of one of the most iconic rock formations in the world.

  8. Predictive modeling of terrestrial radiation exposure from geologic materials

    Science.gov (United States)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  9. Landscape, Geology and Wines in the Jurançon vineyard

    Science.gov (United States)

    Fasentieux, Bertrand; Burgio, Marion; Delfaud, Jean

    2015-04-01

    Located on the Pyrenean Northern Piedmont, in Bearn, the PDO vineyards of Jurançon are undergoing great development, which requires a study of soils. The landscape constitutes the main approach exploiting physical parameters - climatological, morphological and geological. Man has realized the cadastral map for agricultural land in which vineyards develop. The geological substratum falls into three units: the Cretaceous flysch to the South, the Cenozoic calcareous pudding stone of Jurançon to the North-East and the oligo-Miocene molasse of Monein to the North-West.The soils resulting from these units are varied, with different pHs, permeabilities and clay minerals. Each of these three ' terroirs ' produces dry or sweet wines with different characteristics well highlighted by winemakers. Thus, geology, associated with climatology, determines distinctive types. Their expression, the landscape, becomes a communication tool, with a view to develop wine tourism.

  10. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  11. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  12. Structural geologic study of southeastern Missouri

    International Nuclear Information System (INIS)

    Satterfield, I.R.; Ward, R.A.

    1978-01-01

    A geologic map at 1:62,500 scale was prepared of the Cretaceous (Mesozoic) and Tertiary (cenozoic) sediments and seven major units were recognized with emphasis on faulting. Faulted sediments of Pliocene age (possibly Pleistocene) were observed and younger units are suspected to be involved. Data from hand-augered holes plus water well data were logged and plotted. The feasibility of using physical data (size analysis and pH) as a correlation tool for determining structural disturbance in loess deposits was established

  13. Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results

    Science.gov (United States)

    Skinner, J. A., Jr.; Tanaka, K. L.

    2010-01-01

    The southern Utopia highland-lowland transitional zone extends from northern Terra Cimmeria to southern Utopia Planitia and contains broad, bench-like platforms with depressions, pitted cones, tholi, and lobate flows. The locally occurring geologic units and landforms contrast other transitional regions and record a spatially partitioned geologic history. We systematically delineated and described the geologic units and landforms of the southern Utopia-Cimmeria highland-lowland transitional zone for the production of a 1:1,000,000-scale geologic map (MTMs 10237, 15237, 20237, 10242, 15242, 20242, 10247, 15247, and 20247). Herein, we present technical and scientific results of this mapping project.

  14. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  15. To the question the unity of composition of fluids of heterogeneous geological objects.

    Science.gov (United States)

    Galant, Yuri

    2017-04-01

    Creation of Unit Theory Oil Generation based on a number of the provisions, one of which is the unity of the hydrocarbon composition in various geological objects. Studies conducted in various geological conditions and tectonic - magmatic environment. In studying the hydrocarbon composition of various geological objects, untraditional for petroleum geology (igneous rocks, metamorphic rocks, mineral deposits, etc.) progressively manifested that hydrocarbons are also distributed and have the following features. Studies have shown: 1. The composition of the hydrocarbon components presented by, light hydrocarbons, heavy hydrocarbons up to including hexane, normal forms, isoforms, saturated and unsaturated hydrocarbons. 2. Hydrocarbon composition and the ratio of methane to heavy hydrocarbons corresponds to the composition of gases gas fields. 3. The composition and the ratio of hydrocarbons do not depend on genetic types of heterogeneous geological objects. 4. Gas saturation meets the prevailing structure of rocks - pores or fractures. The foregoing allows us to speak of a single source of generating and delivering hydrocarbons in the Earth's Crust, regardless of the geological situation. I.e. the presence of hydrocarbons in the Earth's Crust is UNITED! 5. From a practical point of view - virtually unconventional for hydrocarbons rock can serve as unconventional hydrocarbon resources.

  16. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  17. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  18. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  19. Association between mapped vegetation and Quaternary geology on Santa Rosa Island, California

    Science.gov (United States)

    Cronkite-Ratcliff, C.; Corbett, S.; Schmidt, K. M.

    2017-12-01

    Vegetation and surficial geology are closely connected through the interface generally referred to as the critical zone. Not only do they influence each other, but they also provide clues into the effects of climate, topography, and hydrology on the earth's surface. This presentation describes quantitative analyses of the association between the recently compiled, independently generated vegetation and geologic map units on Santa Rosa Island, part of the Channel Islands National Park in Southern California. Santa Rosa Island was heavily grazed by sheep and cattle ranching for over one hundred years prior to its acquisition by the National Park Service. During this period, the island experienced significant erosion and spatial reduction and diversity of native plant species. Understanding the relationship between geology and vegetation is necessary for monitoring the recovery of native plant species, enhancing the viability of restoration sites, and understanding hydrologic conditions favorable for plant growth. Differences in grain size distribution and soil depth between geologic units support different plant communities through their influence on soil moisture, while differences in unit age reflect different degrees of pedogenic maturity. We find that unsupervised machine learning methods provide more informative insight into vegetation-geology associations than traditional measures such as Cramer's V and Goodman and Kruskal's lambda. Correspondence analysis shows that unique vegetation-geology patterns associated with beach/dune, grassland, hillslope/colluvial, and fluvial/wetland environments can be discerned from the data. By combining geology and vegetation with topographic variables, mixture models can be used to partition the landscape into multiple representative types, which then be compared with conceptual models of plant growth and succession over different landforms. Using this collection of methods, we show various ways that that Quaternary geology

  20. Environmental geology of Nampo, Puyo, Sochon, Hamyol

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Han, Dae Suk; Kim, Yoon Jong; Yu, Il Hyun; Lee, Bong Joo; Jeong, Gyo Cheol; Kim, Kyeong Su [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    An environmental geology map at a scale of 1:100,000 was produced to provide information on land use potential within the area of over 1,300 km{sup 2} consisting of Nampo, Puyo , Sochon and Hamyol. Land use potentiality was quantitatively assigned in accordance with the environmental geologic index(EI) derived from such factors as landslide frequency, engineering geological unit, topography and density of lineament length, being classified into 4 units. Also produced was a landslide susceptibility map at the same scale as the above map, showing five different grades of susceptibility based on hazard index(HI). Besides the above mentioned mapping, an investigation on the soils, rocks and natural aggregates throughout the study area was undertaken to assess their utilization potential as construction materials. Also carried out were the analysis of erosion and sedimentation in/around the Keum river, a geotechnical engineering investigation on the reclaimed tidal zone south of the Taechon beach, and the stability analysis of the cut slopes along the national roads. All the results of the investigations and analyses are presented in the paper. It is expected that the maps and accompanying information could be utilized in formulating regional land-use planning for variable projects. (author). 51 refs., 60 figs., 62 tabs., 3 maps.

  1. Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico

    Science.gov (United States)

    Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.

    2011-01-01

    This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.

  2. Reservoir quality of intrabasalt volcaniclastic units onshore Faroe Islands, North Atlantic Igneous Province, northeast Atlantic

    DEFF Research Database (Denmark)

    Ólavsdóttir, Jana; Andersen, Morten Sparre; Boldreel, Lars Ole

    2015-01-01

    The Paleocene and Eocene strata in the western part of the FaroeShetland Basin contain abundant volcanic and volcaniclastic rocks. Recently, hydrocarbon discoveries have been made in reservoirs of siliciclastic origin in intra- and post-volcanic strata in the central Faroe-Shetland Basin that show....... Onshore samples are used as Faroese offshore volcaniclastic intervals are represented by a few confidential samples where the stratigraphic level is uncertain. The onshore samples have been taken from 29 geotechnical (made related to tunnel building, etc.) and 2 scientific (made related to research of the geology...

  3. Risk and geological uncertainties in carbonate reservoirs in Santos Basin; Incertezas geologicas e risco em reservatorios carbonaticos na Bacia de Santos

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makoto; Cortez, Marcella M.M. [Queiroz Galvao Perfuracoes S.A., Rio de Janeiro, RJ (Brazil); Mendes, Marcos Huber

    2004-07-01

    The Lower Albian in the south part of Santos Basin is composed mainly of oolitic calcarenites and calcilutites organized in shoaling upward cycles. The calcarenites from the top of the sequence constitute a package of reservoir zones and sub-zones with regional distribution along which are located mature, producing and development phase oil fields. In this work the main factors with major impact in reserves estimation are interpreted and quantified in a probabilistic approach giving support for the development plan phase of a field of the carbonatic trend. The regional stratigraphic and structural interpretations provided information about extension, external geometry, and continuity of the reservoir zones for reserves risk computation. The porosity probability density functions were defined according to stratigraphic position, seismic reflection pattern of calcarenites and also information from the discovery and the appraisal wells. The Decision Tree methodology with Monte Carlo Simulation was used to better understand the impact of geological uncertainties in reserves computation and also as a first step for risk management. The Monte Carlo simulation allows the Multivariate Sensibility and Scenario Analysis, Probabilistic Technical and Economic Evaluation and Optimal Portfolio Stochastic Simulation. (author)

  4. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  5. Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time

    DEFF Research Database (Denmark)

    He, X.; Sonneborg, T.O.; Jørgensen, F.

    2013-01-01

    in three scenarios involving simulation of groundwater head distribution and travel time. The first scenario implied 100 stochastic geological models all assigning the same hydraulic parameters for the same geological units. In the second scenario the same 100 geological models were subjected to model...

  6. Status report on the geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences); Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young (Oak Ridge National Lab., TN (United States)); Lietzke, D.A. (Lietzke (David A.), Rutledge, TN (United States)); McMaster, W.M. (McMaster (William M.), Heiskell, TN (United States))

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  7. Status report on the geology of the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth

  8. Geologic framework for the national assessment of carbon dioxide storage resources—Southern Rocky Mountain Basins: Chapter M in Geologic framework for the national assessment of carbon dioxide storage resources

    Science.gov (United States)

    Merrill, Matthew D.; Drake, Ronald M.; Buursink, Marc L.; Craddock, William H.; East, Joseph A.; Slucher, Ernie R.; Warwick, Peter D.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2016-06-02

    The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.

  9. Discussion on the 3D visualizing of 1:200 000 geological map

    Science.gov (United States)

    Wang, Xiaopeng

    2018-01-01

    Using United States National Aeronautics and Space Administration Shuttle Radar Topography Mission (SRTM) terrain data as digital elevation model (DEM), overlap scanned 1:200 000 scale geological map, program using Direct 3D of Microsoft with C# computer language, the author realized the three-dimensional visualization of the standard division geological map. User can inspect the regional geology content with arbitrary angle, rotating, roaming, and can examining the strata synthetical histogram, map section and legend at any moment. This will provide an intuitionistic analyzing tool for the geological practitioner to do structural analysis with the assistant of landform, dispose field exploration route etc.

  10. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  11. Should the U.S. proceed to consider licensing deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Curtiss, J.R.

    1993-01-01

    The United States, as well as other countries facing the question of how to handle high-level nuclear waste, has decided that the most appropriate means of disposal is in a deep geologic repository. In recent years, the Radioactive Waste Management Committee of the Nuclear Energy Agency has developed several position papers on the technical achievability of deep geologic disposal, thus demonstrating the serious consideration of deep geologic disposal in the international community. The Committee has not, as yet, formally endorsed disposal in a deep geologic repository as the preferred method of handling high-level nuclear waste. The United States, on the other hand, has studied the various methods of disposing of high-level nuclear waste, and has determined that deep geologic disposal is the method that should be developed. The purpose of this paper is to present a review of the United States' decision on selecting deep geologic disposal as the preferred method of addressing the high-level waste problem. It presents a short history of the steps taken by the U.S. in determining what method to use, discusses the NRC's waste Confidence Decision, and provides information on other issues in the U.S. program such as reconsideration of the final disposal standard and the growing inventory of spent fuel in storage

  12. Geochemical evaluation of a shale stratigraphic profile from Paraiba Valley (Tremembe)

    International Nuclear Information System (INIS)

    Loureiro, M.R.B.; Cardoso, J.N.

    1987-01-01

    The sedimentary core ranges 0-35m depth and covers three types of bituminous shales, intercalated by two layers of sterile clay. A systematic geochemical study of samples of most stratigraphic layers was undertaken for the first time in this work, including elemental analysis (C, H), carbonate content, type of organic matter, infrared spectrometry and molecular characterization of organic extracts (hight-resolution) gas chromatography, mass spectrometry). No consistent correlation between lithology and amount/type of organic matter was observed, contrary to literature data, pointing out the paper shale strata as richest in organic matter. Molecular stratigraphy of the core presented similar n-alkane profiles generally maximizing at n-C 27 attesting to a small variation in input along the sedimentary section. Characterization of the branched/cyclic hydrocarbons evidenced a continental input to the sediment, as revealed by the presence, in several layers, of isometric des-A-fernenes, presumed products of diagenesis of arborinone. A microbial input was also evidenced through the general occurrence of hopanoids, trace amounts of steroidal skeletons as well as atomic H/C ratios ca. 2. The sharp variations in biomarker profiles with depth showed great potential as correlation markers in a detailed stratigraphic study of the basin, as a valuable supplement to traditional lithological parameters. (author) [pt

  13. Complejo Ojosmin: fragment of ophiolite transamazonian

    International Nuclear Information System (INIS)

    Bossi, J.; Pineyro, D. . Email geologia@fagro.edu.uy

    2004-01-01

    A preliminary geological survey of a previously unknown basic igneous complex in the Padre Alta Terrane (Pat) is presented. We report petrographic, geochemical and stratigraphic data for more than 200 outcrops. Geological evolution of the complex can be described in terms of four main events: (1) formation Pat units around 2000 Ma; (2) granodiorite thrusting onto possible ophiolite ca 1900 Ma ; (3) granophyric magmatism around 1700 Ma(4) intrusion of trachyte dykes. Data available suggest thrusting onto fragment of oceanic crust. Since the described structure presupposes the existence of pre transamazonian continental fragments in the TPA, it is very important to study the area in detail in the future [es

  14. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    Science.gov (United States)

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  15. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface

  16. Beowulf Distributed Processing and the United States Geological Survey

    Science.gov (United States)

    Maddox, Brian G.

    2002-01-01

    Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing

  17. Geological-genetic classification for uranium deposits

    International Nuclear Information System (INIS)

    Terentiev, V.M.; Naumov, S.S.

    1997-01-01

    The paper describes a system for classification uranium deposits based on geological and genetic characteristics. The system is based on the interrelation and interdependence of uranium ore formation processes and other geological phenomena including sedimentation, magmatism and tectonics, as well as the evolution of geotectonic structures. Using these aspects, deposits are classified in three categories: endogenic - predominately hydrothermal and hydrothermal-metasomatic; exogenic - sedimentary diagenetic, biogenic sorption, and infiltrational; and polygenetic or composite types. The latter complex types includes: sedimentary/metamorphic and metamorphic and sedimentary/hydrothermal, where different ore generating processes have prevailed over a rock unit at different times. The 3 page classification is given in both the English and Russian languages. (author). 3 tabs

  18. Appendix Q: siting considerations for submarine geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Hollister, C.D.; Corliss, B.H.

    1981-01-01

    Site suitability characteristics of submarine geological formations for the disposal of radioactive wastes include the distribution coefficient of the host medium, permeability, viscoelastic nature of the sediments, influence of organic material on remobilization, and effects of thermal stress. The submarine geological formation that appears to best satisfy these criteria is abyssal red clay. Regions in the ocean that have coarse grained deposits, high or variable thermal conductivity, high organic carbon content, and sediment thickness of less than 50 m are not being considered at this time. The optimum geological environment should be tranquil and have environmental predictability over a minimum of 10 5 years. A paleoenvironmental model of Cenozoic sedimentation in the central North Pacific has been constructed from sedimentological, geotechnical and stratigraphic data derived from a single giant piston core collected in the central North Pacific (GPC-3: 30 0 N, 157 0 W; 5705 m). This core represents a record of nearly continuous sedimentation for nearly 70 million years. The core was taken from a region of abyssal hill topography located beneath the present-day carbonate compensation depth. It contains 24.5 meters of undisturbed sediment composed of oxidized brown clay with altered ash layers. Paleomagnetic stratigraphy for the upper 4.5 meters indicates sedimentation rates are 2.5 mm/1000 years for the last 2 m.y. and 1.1 mm/1000 years before that to 2.4 Ma. Ichthyolith stratigraphy shows sedimentation rates of 0.2 to 0.3 mm/1000 years from 65 to 5 Ma. The observed sedimentological variations can be explained in terms of present sedimentation patterns in the central North Pacific and by the NNW motion of the Pacific plate during the Cenozoic

  19. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Robey, T.H.

    1994-01-01

    Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass

  20. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-01-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35 degree N; Long. 115 degree W and lat. 38 degree N, long. 118 degree W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. The procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute's ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado

  1. Geologic map and cross sections of the Embudo Fault Zone in the Southern Taos Valley, Taos County, New Mexico

    Science.gov (United States)

    Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte

    2016-01-01

    The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to

  2. Geologic Mapping in the Hesperia Planum Region of Mars

    Science.gov (United States)

    Gregg, Tracy K. P.; Crown, David A.

    2010-01-01

    Hesperia Planum, characterized by a high concentration of mare-type wrinkle ridges and ridge rings, encompasses > 2 million square km in the southern highlands of Mars. The most common interpretation is that the plains were emplaced as "flood" lavas with total thicknesses of geologic mapping reveal that the whole of Hesperia Planum is unlikely to be composed of the same materials, emplaced at the same geologic time. To unravel these complexities, we are generating a 1:1.5M-scale geologic map of Hesperia Planum and its surroundings. To date, we have identified 4 distinct plains units within Hesperia Planum and are attempting to determine the nature and relative ages of these materials.

  3. The United States program for the safety assessment of geologic disposal of commercial radioactive wastes

    International Nuclear Information System (INIS)

    Claiborne, H.C.

    1977-01-01

    The safe disposal of commercial radioactive wastes in deep geologic formations is the goal of the National Waste Terminal Storage (NWTS) Program. Safety assessment begins with selection of a disposal site; that is, all geologic and hydrologic factors must indicate long-term stability of the formation and prospective isolation of wastes from circulating ground waters for hundreds of thousands of years. The long-term stability of each site under thermal loading must then be demonstrated by sophisticated rock mechanic analyses. Therefore, it can be expected that the sites that are chosen will effectively isolate the waste for a very long period of time. However, to help provide answers on the mechanisms and consequences of an unlikely breach in the integrity of the repository, a Waste Isolation Safety Assessment Program (WISAP) is studied. The overall objective of this program is an assessment of the safety associated with the long-term disposal of high-level radioactive waste in a geologic formation. This objective will be achieved by developing methods and generating data necessary to characterize the safety of generic geological waste disposal concepts, which are to be applied in the assessment of specific sites. It is expected that no one particular model will suffice. Both deterministic and probabilistic approaches will be used, and the entire spectrum of phenomena that could influence geologic isolation will be considered

  4. Surficial geologic map of the Mount Grace-Ashburnham-Monson-Webster 24-quadrangle area in central Massachusetts

    Science.gov (United States)

    Stone, Janet R.

    2013-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction-aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  5. Surficial geologic map of the Norton-Manomet-Westport-Sconticut Neck 23-quadrangle area in southeast Massachusetts

    Science.gov (United States)

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.; Kincare, Kevin A.

    2012-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 23 7.5-minute quadrangles (919 mi2 total) in southeastern Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  6. New data on the geological environment of the natural reactors

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.; Besnus, Y.; Weber, F.

    1978-01-01

    Since the Libreville symposium in 1975 knowledge of the geological environment of the reactors has advanced as a result of a more extensive study of the Francevillian uranium deposits. In the Oklo deposit a detailed stratigraphy of the Cl bed (uraniferous mineralized bed) has been established, making it possible to re-establish stratigraphically the position of the natural reactors. A tectonic analysis of the Oklo deposit has revealed the special features of the Oklo structure and the reaction zones situated in the shear troughs. Petrographic studies have revealed the presence of two types of ore with distinct modes of formation. In the first case, the role played by organic materials seems predominant, while in the second case migrations of oxidizing solutions are the main source of the reconcentrations. Finally, a geochemical study made of samples from Oklo and Okelobondo points to the existence of an ''isolated'' geochemical phase containing uranium and a certain number of trace elements. This phase is associated with the organic material. This study also deals with the migration of lead at Oklo and Mounana. (author)

  7. Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 4. Driller's logs, stratigraphic cross section and utility routines

    International Nuclear Information System (INIS)

    Friedrichs, D.R.

    1980-01-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System

  8. Sequence stratigraphic interpretation of parts of Anambra Basin, Nigeria using geophysical well logs and biostratigraphic data

    Science.gov (United States)

    Anakwuba, E. K.; Ajaegwu, N. E.; Ejeke, C. F.; Onyekwelu, C. U.; Chinwuko, A. I.

    2018-03-01

    tract and highstand system tract found in Ajali, Nsukka, Nkporo and Imo (Ebenebe Sandstone) Formations show good continuity and as such good reservoir qualities while the shales of the transgressive system tracts which includes the Imo Formation, Mamu, and Nkporo Formations where most of the maximum flooding surfaces were delineated, can serve as seals to the numerous reservoir units. Combinations of the reservoir sands of the lowstand system tract and highstand system tract and the shale units of the transgressive system tract can form good stratigraphic traps for hydrocarbon and hence should be hydrocarbon exploration targets.

  9. Principles for determining the economic competence of production units

    Energy Technology Data Exchange (ETDEWEB)

    Gubanova, O D; Makhlina, M I

    1980-01-01

    In the general plan for controlling the sector ''Geology and Exploration of the Depths'', a reduction is stipulated in the number of independent organizations and their inclusion as production units in the production geological associations. Distribution of rights and duties between the association and the production units is very important. Presentation to rights of the leaders to the lowest level to independently solve operational questions allows the leadership of the association to focus attention on solving major problems. The production units are given qualitative fulfillment of geological and production assignments, guarantee of improved efficiency of work, labor productivity and decrease in cost of the work; introduction of the latest achievements of science and technology; observation of the regime for conservation and efficient use of monetary resources, material and labor resources. There are natural interrelationships between specialization of production, centralization of the control functions and a change in the volume of authority of the production units. The legal status of the production unit is presented in two documents: statutes on the production geological association and statutes on the given production unit approved by the general director of the association. Principles are revealed for centralizing the rights needed to fulfill the functions following from national economic responsibility of the production geological association. This is long-term planning and forecasting, control of scientific-technical progress, scientific research, etc., control of the property, establishment of unified conditions for organization of labor and wages, construction, etc.

  10. Geologic hazards in the region of the Hurricane fault

    Science.gov (United States)

    Lund, W.R.

    1997-01-01

    Complex geology and variable topography along the 250-kilometer-long Hurricane fault in northwestern Arizona and southwestern Utah combine to create natural conditions that can present a potential danger to life and property. Geologic hazards are of particular concern in southwestern Utah, where the St. George Basin and Interstate-15 corridor north to Cedar City are one of Utah's fastest growing areas. Lying directly west of the Hurricane fault and within the Basin and Range - Colorado Plateau transition zone, this region exhibits geologic characteristics of both physiographic provinces. Long, potentially active, normal-slip faults displace a generally continuous stratigraphic section of mostly east-dipping late Paleozoic to Cretaceous sedimentary rocks unconformably overlain by Tertiary to Holocene sedimentary and igneous rocks and unconsolidated basin-fill deposits. Geologic hazards (exclusive of earthquake hazards) of principal concern in the region include problem soil and rock, landslides, shallow ground water, and flooding. Geologic materials susceptible to volumetric change, collapse, and subsidence in southwestern Utah include; expansive soil and rock, collapse-prone soil, gypsum and gypsiferous soil, soluble carbonate rocks, and soil and rock subject to piping and other ground collapse. Expansive soil and rock are widespread throughout the region. The Petrified Forest Member of the Chinle Formation is especially prone to large volume changes with variations in moisture content. Collapse-prone soils are common in areas of Cedar City underlain by alluvial-fan material derived from the Moenkopi and Chinle Formations in the nearby Hurricane Cliffs. Gypsiferous soil and rock are subject to dissolution which can damage foundations and create sinkholes. The principal formations in the region affected by dissolution of carbonate are the Kaibab and Toroweap Formations; both formations have developed sinkholes where crossed by perennial streams. Soil piping is

  11. Airborne radiometric data - A tool for reconnaissance geological mapping using a GIS

    International Nuclear Information System (INIS)

    Graham, D.F.; Bonham-Carter, G.F.

    1993-01-01

    A clustering technique is applied to radioelement data, and the resulting cluster map is compared with a digitized geological map within a GIS software package. The cross tabulation clearly identifies those geological units that have a distinctive radioelement response. By reclassifying the map overlay and imposing a color coding scheme that enhances bedrock geology classes, the relationship between the bedrock geology and radioelement response is enhanced. The degree of correlation between the two cartographic images is site dependent, rather than global. Areas where the two maps differ indicate zones of possible interest for field verification of published field maps for the purposes of mineral exploration. 13 refs

  12. Genetic and stratigraphic significance of the Upper Devonian Frasnian Z Marker, west-central Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Wendte, J. [Geological Survey of Canada, Calgary, AB (Canada); Stoakes, F. [Stoakes Consulting Group Ltd., Calgary, AB (Canada); Bosman, M. [Canadian Hunter Exploration Ltd., Calgary, AB (Canada); Bernstein, L. [Talisman Energy Inc., Calgary, AB (Canada)

    1995-12-01

    The stratigraphic model from the west-central Alberta basin was provided. It defined the Z Marker as a distinctive and widespread wireline log marker within the thick Frasnian Ireton shale basin succession. The marker represents an interval of condensed sedimentation and corresponds to an abrupt change from a calcareous signature below to an argillaceous character above. Toward the shelf, in the West Pembina area, the Z Marker correlates to a level within a conformable succession of nodular lime wackestones and corresponds to the base of a depositional cycle near the middle of the Lobstick member of the Nisku Formation. Further shelfward, the Z Marker continues as a well-defined log marker until the Nisku shelf margin. The stratigraphic significance of the Z Marker in delineating various oil bearing formations in Alberta were explained in great detail. The correct recognition and correlation of this marker was claimed to permit an understanding of basin evolution beyond that discernable from the existing lithostratigraphic nomenclature alone. 17 refs., 13 figs.

  13. A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs

    Science.gov (United States)

    Zeng, Yuehua; Shen, Zheng-Kang

    2017-01-01

    We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone, which are represented as buried dislocations in the Earth. Faults distributed within blocks have their geometrical structure and locking depths specified by the Uniform California Earthquake Rupture Forecast, version 3 (UCERF3) and the 2008 U.S. Geological Survey National Seismic Hazard Map Project model. Faults slip beneath a predefined locking depth, except for a few segments where shallow creep is allowed. The slip rates are estimated using a least‐squares inversion. The model resolution analysis shows that the resulting model is influenced heavily by geologic input, which fits the UCERF3 geologic bounds on California B faults and ±one‐half of the geologic slip rates for most other WUS faults. The modeled slip rates for the WUS faults are consistent with the observed GPS velocity field. Our fit to these velocities is measured in terms of a normalized chi‐square, which is 6.5. This updated model fits the data better than most other geodetic‐based inversion models. Major discrepancies between well‐resolved GPS inversion rates and geologic‐consensus rates occur along some of the northern California A faults, the Mojave to San Bernardino segments of the San Andreas fault, the western Garlock fault, the southern segment of the Wasatch fault, and other faults. Off‐fault strain‐rate distributions are consistent with regional tectonics, with a total off‐fault moment rate of 7.2×1018">7.2×1018 and 8.5×1018  N·m/year">8.5×1018  N⋅m/year for California and the WUS outside California, respectively.

  14. Geology of the eastern emerald belt (EEB)

    International Nuclear Information System (INIS)

    Moreno, Giovani; Terraza, Roberto; Montoya, Diana

    2009-01-01

    The stratigraphic record in EEB begins with an upper Paleozoic basal siliciclastic sequence (Farallones Group, Devonian - Carboniferous), unconformably overlain by basal Cretaceous formations (Bata to the east, Santa Rosa - Ubala - Chivor to the west o the Quetame Massif). The Cretaceous marine ingression took place in a tectonically active basin since Triassic and Jurassic. This tectonic setting last until the end of earliest Cretaceous giving place to a thick sedimentary sequence made of the aforementioned basal units and the Lutitas de Macanal, Las Juntas, Fomeque and Une formations. Paleozoic basement highs normal fault bounded, restrict the Cretaceous sedimentation in the EEB zone, this is evidence especially for the basal Cretaceous units (Berriasian). In this way, to the east of Montecristo Anticline (overlaying Farallones Group) we found conglomerates (Bata Formation), instead to the west sedimentation was mainly lodolithic (Santa Rosa Formation, new litostratigraphic unit). Toward Ubala, overlaying Paleozoic basement (Farallones Anticline) rest a calcareous -Terrigenous set (Ubala Formation new litostratigraphic unit). In Chivor - Malacara area we found evaporitic sets with calcareous rocks (Chivor Formation, new litostratigraphic unit) overlaying Santa Rosa Formation. In Valanginian times the sea regionally drown the area of EEB and give rise to marine offshore conditions (Lutitas de Macanal Formation) with episodic events of gravity flows (El Figaro - Los Cedros members). During Hauterivian to Albian times the accumulation of a sandy - muddy sediments in tidal fats or deltaic systems give rise the record of Las Juntas -Une formations. Finally in Barremian early Albian times there are a siliciclastic - calcareous record of marine offshore environments (Fomeque Formation).

  15. Paleoseismic and Paleogeographic Reconstruction of the Central Coastal of Ecuador: Insights from Quaternary Geological Data for the Jaramijó bay area

    Science.gov (United States)

    Chunga, K.; Maurizio, M.; Garces, D.; Quiñonez, M. F.; Peña, G. E.

    2015-12-01

    Late Holocene sequences of loose to weakly consolidated sand and clay sediments intercalated with volcanic-ash layers (particles transported by fall-out), are outcrops on a sea cliff in the Jaramijó bay area (situated 7 km away in the East direction from Manta city, Manabí, at the middle section of Ecuador's Pacific coastline). The main geomorphologic feature in the site is the wave-cut beach platform permanently exposed at the lowest tides and an 18 m-high coastal cliff retreat with an estimated rate of ca. 2.5 meter/year (Chunga, 2014). One of the most remarkable geoarchaeological evidences found in this outcrop, it is the remains of two large bones (ie., radius and radial) of the human forearm of ca. 800 years ago (with archaeological vestiges of the Manteña culture) covered by a 8 to 25 cm-thick volcanic ash layer, stratigraphically at the top, an erosive contact with chaotic deposition of medium to fine-grained sand which indicates a potential tsunami deposit. Moreover, several volcanic ash and lahar layers are well distinguished on the sea cliff, which are associated with pyroclastic products transported as lahars from the Quilotoa and Cotopaxi, Pululahua volcanic structures (northern Andes in Ecuador) situated at a distance between of 150-190 kilometers (Mothes and Hall, 2008; Usselman, 2006). It is not excluded that previous pre-Columbian cultures also have been displaced in the last 2,000 years by disastrous geological events such as subduction earthquakes, local tsunami and volcanic lahar-ash deposits. All of these stratigraphic and palaeoseismologic features will allow us to understand the catastrophic geological events that abruptly shaped the landscape, furthermore, to investigate the changes of moderate to high Late Holocene progradation rates of the Jaramijó bay coastline.

  16. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model

  17. The Tiehchanshan structure of NW Taiwan: A potential geological reservoir for CO2 sequestration

    Directory of Open Access Journals (Sweden)

    Kenn-Ming Yang

    2017-01-01

    Full Text Available The Tiehchanshan structure is the largest gas-field in the outer foothills of northwestern Taiwan and has been regarded as the best site for CO2 sequestration. This study used a grid of seismic sections and wellbore data to establish a new 3-D geometry of subsurface structure, which was combined with lithofacies characters of the target reservoir rock, the Yutengping Sandstone, to build a geological model for CO2 sequestration. On the surface, the Tiehchanshan structure is characterized by two segmented anticlines offset by a tear fault. The subsurface geometry of the Tiehchanshan structure is, however, composed of two thrust-related anticlines with opposite vergence and laterally increasing fold symmetry toward each other. The folds are softly linked via the transfer zone in the subsurface, implying that the suspected tear fault in the surface transfer zone may not exist in the subsurface. The Yutengping Sandstone is composed of several sandstone units characterized by coarsening-upward cycles. The sandstone member can be further divided into four well-defined sandstone layers, separated by laterally continuous shale layers. In view of the structural and stratigraphic characteristics, the optimum area for CO2 injection and storage is in the structurally high in the northern part of the Tiehchanshan structure. The integrity of the closure and the overlying seal are not disrupted by the pre-orogenic high-angle faults. On the other hand, a thick continuous shale layer within the Yutengping Sandstone isolates the topmost sandy layer from the underlying ones and gives another important factor to the CO2 injection simulation.

  18. Geological map of Uruguay Esc 1,100,000. Cuchilla del Ombu. Sheet H-12

    International Nuclear Information System (INIS)

    Montana, J.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Cuchilla del Ombu) and the explanatory memoranda which describes the geological, lithological and sedimentological characteristics soils. In crystalline rocks have been recognized four basic units: porphyritic granite, Cunapiru granite, Cunapiru subvolcanic microgranite and metamorfites

  19. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  20. A not-so-big crisis: re-reading Silurian conodont diversity in a sequence-stratigraphic framework

    Science.gov (United States)

    Jarochowska, Emilia; Munnecke, Axel

    2016-04-01

    Conodonts are extensively used in Ordovician through Triassic biostratigraphy and fossil-based geochemistry. However, their distribution in rock successions is commonly taken at face value, without taking into account their diverse and poorly understood ecology. Multielement taxonomy, ontogenetic and environmental variability, difficulties in extraction, and relative rarity all contribute to the general lack of quantitative studies on conodont stratigraphic distribution and temporal turnover. With respect to Silurian conodonts, the concept of recurrent conodont extinction events - the so called Ireviken, Mulde and Lau events - has become a standard in the stratigraphic literature. The concept has been proposed based on qualitative observations of local extirpations of open-marine pelagic or nekto-benthic taxa and temporary dominance of shallow-water species in the Silurian succession of the Swedish island of Gotland. These changes coincided with positive carbon isotope excursions, abrupt facies shifts, "blooms" of benthic fauna, and changes in reef communities, which have all been combined into a general view of Silurian bio-geochemical events. This view posits a deterministic, reproducible pattern in Silurian conodont diversity, attributed to recurrent ecological or geochemical conditions. The growing body of sequence-stratigraphic interpretations across these events in Gotland and other sections worldwide indicate that in all cases the Silurian "events" are associated with rapid global regressions. This suggests that faunal changes such as the dominance of shallow-water, low-diversity conodont fauna and the increase of benthic invertebrate diversity and abundance represent predictable consequences of the variation in the completeness of the rock record and preservation potential of different environments. Our studies in Poland and Ukraine indicate that the magnitude of change in the taxonomic composition of conodont assemblages across the middle Silurian global

  1. Deformation patterns in the southwestern part of the Mediterranean Ridge (South Matapan Trench, Western Greece)

    Science.gov (United States)

    Andronikidis, Nikolaos; Kokinou, Eleni; Vafidis, Antonios; Kamberis, Evangelos; Manoutsoglou, Emmanouil

    2017-12-01

    Seismic reflection data and bathymetry analyses, together with geological information, are combined in the present work to identify seabed structural deformation and crustal structure in the Western Mediterranean Ridge (the backstop and the South Matapan Trench). As a first step, we apply bathymetric data and state of art methods of pattern recognition to automatically detect seabed lineaments, which are possibly related to the presence of tectonic structures (faults). The resulting pattern is tied to seismic reflection data, further assisting in the construction of a stratigraphic and structural model for this part of the Mediterranean Ridge. Structural elements and stratigraphic units in the final model are estimated based on: (a) the detected lineaments on the seabed, (b) the distribution of the interval velocities and the presence of velocity inversions, (c) the continuity and the amplitudes of the seismic reflections, the seismic structure of the units and (d) well and stratigraphic data as well as the main tectonic structures from the nearest onshore areas. Seabed morphology in the study area is probably related with the past and recent tectonics movements that result from African and European plates' convergence. Backthrusts and reverse faults, flower structures and deep normal faults are among the most important extensional/compressional structures interpreted in the study area.

  2. High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gardner, J.N.; Lavine, A.; Vaniman, D.; WoldeGabriel, G.

    1998-06-01

    In this report the authors document results of high-precision geologic mapping in the vicinity of TA-55 that has been done to identify parts of the southern portion of the Rendija Canyon Fault, or any other faults, with the potential for seismic surface rupture. To assess the potential for surface rupture at TA-55, an area of approximately 3 square miles that includes the Los Alamos County Landfill and Twomile, Mortandad, and Sandia Canyons has been mapped in detail. Map units are mostly cooling or flow units within the Tshirege Member (1.2 Ma) of the Bandelier Tuff. Stratigraphic markers that are useful for determining offsets in the map area include a distinct welding break at or near the cooling Unit 2-Unit 3 contact, and the Unit 3-Unit 4 contact. At the County Landfill the contact between the Tshirege Member of the Bandelier Tuff and overlying Quaternary alluvium has also been mapped. The mapping indicates that there is no faulting in the near-surface directly below TA-55, and that the closest fault is about 1500 feet west of the Plutonium Facility. Faulting is more abundant on the western edge of the map area, west of TA-48 in uppermost Mortandad Canyon, upper Sandia Canyon, and at the County Landfill. Measured vertical offsets on the faults range from 1 to 8 feet on mapped Bandelier Tuff contacts. Faulting exposed at the Los Alamos County Landfill has deformed a zone over 1000 feet wide, and has a net vertical down-to-the-west displacement of at least 15 feet in the Bandelier Tuff. Individual faults at the landfill have from less than 1 foot to greater than 15 feet of vertical offset on the Bandelier Tuff. Most faults in the landfill trend N-S, N20W, or N45E. Results of the mapping indicate that the Rendija Canyon Fault does not continue directly south to TA-55. At present, the authors have insufficient data to connect faulting they have mapped to areas of known faulting to the north or south of the study area

  3. Devonian and Lower Carboniferous Conodonts of the Cantabrian Mountains (Spain) and their stratigraphic application

    NARCIS (Netherlands)

    Adrichem Boogaert, van H.A.

    1967-01-01

    A short review of the literature on the stratigraphy of the Devonian and the Lower Carboniferous of the Cantabrian Mountains precedes the report of the author's stratigraphic and palaeontologic observations in León: the Río Esla area (Gedinnian to Viséan), the central Cantabrian area (Famennian to

  4. Criteria, in the field of geology, about uranium prospecting at the plain coast of Nuevo Leon and Tamaulipas, Mexico

    International Nuclear Information System (INIS)

    Colorado L, D.S.

    1975-01-01

    Use is made of the existing theories about uranium prospecting in sedimentary deposits. A classic method is used for this purpose, that is to say that the geology of the area is studied on the basis of aerial photogrpahy and reconnaissance on the ground for verification. According to the observations on the field it was determined what environments were the most favorable and what formations were susceptible of mineralization. In the studied area the Formation Frio No Marino and Formation Jackson are the most indicated for prospecting. It is suggested to realize detailed studies of paleosedimentation in the above mentioned formations, as well as a general study (stratigraphic) of the Cuenca de Burgos in order to fix the future prospectings

  5. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  6. Preliminary geologic map of the Lathrop Wells volcanic center

    International Nuclear Information System (INIS)

    Crowe, B.; Harrington, C.; McFadden, L.; Perry, F.; Wells, S.; Turrin, B.; Champion, D.

    1988-12-01

    A preliminary geologic map has been compiled for the bedrock geology of the Lathrop Wells volcanic center. The map was completed through use of a combination of stereo photographic interpretation and field mapping on color aerial photographs. These photographs (scale 1:4000) were obtained from American Aerial Surveys, Inc. They were flown on August 18, 1987, at the request of the Yucca Mountain Project (then Nevada Nuclear Waste Storage Investigations). The photographs are the Lathrop Wells VC-Area 25 series, numbers 1--32. The original negatives for these photographs are on file with American Aerial Surveys, Inc. Copies of the negatives have been archived at the Los Alamos National Laboratory, Group N-5. The preliminary geologic map is a bedrock geologic map. It does not show alluvial deposits, eolian sands, or scoria fall deposits from the youngest eruptive events. The units will be compiled on separate maps when the geomorphic and soils studies are more advanced

  7. Surficial geology and land classification, Mackenzie Valley Transportation Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, O L; Pilon, J; Veilette, J

    1974-01-01

    The objective of this project, continued from 1971 and 1972 is to provide an inventory of surficial geology and permafrost distribution data pertinent to pipeline construction, road building, and other land use activities that might take place in the Mackenzie Valley Transportation Corridor. Hughes together with N.W. Rutter devoted one month to reconnaissance examination of the area encompassed by this project and Project 710047 (see this report). A primary objective was to insure uniform usage of map-units throughout the 2 areas. Construction on the Mackenzie Highway was examined in order to evaluate terrain performance of various map-units crossed by the highway. Limited geological studies, including shallow borings and measurement of sections, were conducted to supplement field work of 1971 and 1972. J. Veillette conducted diamond drilling in permanently frozen surficial deposits during the period mid-March to mid-April.

  8. SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Sminchak, Joel

    2012-09-30

    This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data

  9. Paleomagnetic constrains in the reconstruction of the recent stratigraphic evolution of the Po delta

    Science.gov (United States)

    Correggiari, Annamaria; Vigliotti, Luigi; Remia, Alessandro; Perini, Luisa; Calabrese, Lorenzo; Luciani, Paolo

    2014-05-01

    The delta and prodelta deposits are characterized by a complex stratigraphic architecture that can be approached with several multidisciplinary tools. We present an example from the Po delta system characterized by alternating phases of rapid advance and abandonment of its multiple deltaic lobes that has been investigated through: (1) a review of historical cartography extending back several centuries; (2) integrated surveys of VHR seismic profiles recorded offshore of the modern delta from water depths as shallow as 5 m to the toe of the prodelta in about 30 m; and (3) sedimentological and geochronological data from precisely positioned sediment cores. Within this well known stratigraphic framework we have acquired seismic data and sediment cores in the area of the post roman Po delta system. However a precise dating of the recent evolution of depositional delta lobes is difficult because of the lack of suitable dating methods. To constrain the emplacement timing of the Renaissance lobes a paleomagnetic studies was carried out on a sedimentary sequence representing a seismic facies well correlated in the cores by whole core magnetic susceptibility profile. Forty eight samples were collected from a core section (RER96-1) characterized by a fine grained lithology suitable for paleomagnetic investigations. The characteristic remanent magnetization (ChRM) of the sediments has been obtained by applying an AF cleaning between 10 and 30 millitesla. The results have been compared with the directions recorded by the historical lavas of the Etna and Vesuvius. The combination of the trends observed in the declination and inclination suggests that the results can be compatible with the directions of the secular variation of the earth magnetic field occurring during the XVII century. This allow to date the sismic unit as representative of the beginning of the new delta following the Porto Viro avulsion made by the Venice Republic in 1604 AD. This delta history reflects the

  10. Geologic literature on North America, 1785-1918; Part I, Bibliography

    Science.gov (United States)

    Nickles, John M.

    1923-01-01

    The bibliography forming Part I of this compilation includes papers relating to the geology paleontology, petrology, and mineralogy of North America-specifically, the United States, the Dominion of Canada and Newfoundland, the Arctic regions north of the continent, Greenland, Mexico Central America, Panama, and the West Indies including Trinidad-and also the Hawaiian Islands. Geographic and descriptive writings and accounts of travels with incidental mention of geologic facts are not included. Textbooks published in America and work general in character by American authors are given but general papers by foreign writers are excluded unless they have appeared in American publications. Papers by American writers on the geology of other parts of the world are not listed.

  11. Geology of the Integrated Disposal Facility Trench

    International Nuclear Information System (INIS)

    Reidel, Steve P.; Fecht, Karl R.

    2005-01-01

    This report describes the geology of the integrated Disposal Facility (IDF) Trench. The stratigraphy consists of some of the youngest sediments of the Missoula floods (younger than 770 ka). The lithology is dominated sands with minor silts and gravels that are largely unconsolidated. The stratigraphy can be subdivided into five geologic units that can be mapped throughout the trench. Four of the units were deposited by the Missoula floods and the youngest consists of windblown sand and silt. The sediment has little moisture and is consistent with that observed in the characterization boreholes. The sedimentary layers are flat lying and there are no faults or folds present. Two clastic dikes were encountered, one along the west wall and one that can be traced from the north to the southwall. The north-south clastic dike nearly bifurcates the trench but the west wall clastic dike can not be traced very far east into the trench. The classic dikes consist mainly of sand with clay-lined walls. The sediment in the dikes is compacted to partly cemented and are more resistant than the layered sediments

  12. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    C.J.Lewis; A.Lavine; S.L.Reneau; J.N.Gardner; R.Channell; C.W.Criswell

    2002-12-01

    We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluations and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east

  13. THE BRECCE DELLA RENGA FORMATION: AGE AND SEDIMENTOLOGY OF A SYN-TECTONIC CLASTIC UNIT IN THE UPPER MIOCENE OF CENTRAL APENNINES. INSIGHTS FROM FIELD GEOLOGY

    Directory of Open Access Journals (Sweden)

    SIMONE FABBI

    2014-07-01

    Full Text Available In the NE Simbruini Mountains, the “Brecce della Renga Fm.” is a clastic unit documenting sedimentation controlled by late Miocene extensional tectonics.The unit has been subdivided into three lithofacies and six sublithofacies, based on the arenite/rudite/pelite ratio. Massive and coarser (up to megablock size intervals are interpreted as rockfall deposits (likely induced by earthquakes at the toe of steep submarine escarpments. By contrast, finer levels are interpreted as having been sedimented through avalanching and turbidity flows in more distal settings, and are partly lateral to basinal hemipelagites and siliciclastic turbidites. Pelite lenses, found at various stratigraphic levels, are the result of ponded sedimentation along the clastic margin. Calcareous nannofossils analyses have been performed for age determinations on 60 fossiliferous samples, which were collected in each sublithofacies of the “Brecce della Renga Fm.”. The unit ranges from early Tortonian (MNN8b to early Messinian (MNN11c. The age and field geometries of the older breccias document the existence of a Tortonian extensional phase, which predated the late Messinian thrusting. A progradation of the clastic wedge can be observed in the Tortonian, while Messinian deposits show a fining upwards trend. The distribution curve of clastics over time can, given the number of synsedimentary faults mapped in the area, be put in relation with the seismicity induced by the activity along such faults, which after reaching an acme in the Tortonian gradually reached a quiescent state in the early Messinian, causing the backstepping of clastic facies.

  14. Geology of proximal, small-volume trachyte-trachyandesite pyroclastic flows and associated surge deposits, Roccamonfina volcano, Italy

    Science.gov (United States)

    Giannetti, Bernardino

    1998-01-01

    This paper describes the 232 ka B.P. MTTT trachyte-trachyandesite pyroclastic succession of Roccamonfina volcano. This small-volume, proximal sequence crops out along Mulino di Sotto, Paratone, and Pisciariello ravines in the southwest sector of the central caldera, and covers a minimum extent of 3.5 km 2 area. It is made up of seven pyroclastic flows and pyroclastic surge units consisting of trachytic ash matrix containing juvenile trachyandesitic scoria and dense lava fragments, pumice clasts of uncertain trachyandesite, and a foreign trachyandesitic lithic facies. Two stratigraphic markers allow correlation of the units. No paleosoils and Plinian fallout have been observed at the base and within the succession. Some lateral grading of scoria and lithic clasts suggests that MTTT derived from three distinct source vents. The sequence consists of a basal ash flow passing laterally to laminated surge deposits (Unit A). This is overlain by a reversely graded scoria and pumice lapilli flow (Unit B) which is in turn overlain by a thinly cross-stratified scoria lapilli surge (Unit C). Unit C is capped by a prominent ash-and-scoria flow (Unit D). A ground layer (Marker MK1) divides Unit D from a massive ignimbrite which grades upcurrent to sand-wave surge deposits (Unit E). Another ground layer (Marker MK2) separates Unit E from Unit F. This unit consists of a basal ignimbrite passing laterally to bedded surge deposits with convolute structures (subunit Fl), and grading upcurrent to a subhorizontally plane-laminated ash cloud (subunit F2) containing near the top a layer of millimetric lithic clasts embedded in fine ash. The succession is closed by the pyroclastic flow Unit G. Surge Unit C can be interpreted in terms of vertical gradients in turbulence, particle concentration, and velocity during flowage, whereas the bedded surge parts present in the massive deposits of Units A and E-F1 can be related to abrupt changes of velocity down the steep slopes of ravines. Reverse

  15. Identifikasi Lapisan Geologi Bawah Permukaan Berdasarkan Data Geomagnetik di Sungai Logawa Banyumas

    Directory of Open Access Journals (Sweden)

    Sukmaji Anom Raharjo

    2014-02-01

    Full Text Available Identification of geological resources can be done either using surface mapping and cross sectional stratigraphy measurement or geophysical approximation beneath the earth surface. Geomagnetic exploration related to the existing of gold mineral begins with the total magnetic field intensity measurements at 173 locations was scattered in 109.196970 - 109.207580E and 7.448830 - 7.454110S. Interpretation from processing of data obtained four anomalous object, which is defined as fine-medium sandstone (χ= 0.0015 cgs units, coarse sandstone and compact (χ= 0.0035 cgs units, igneous basalt-andesite old Slamet (χ= 0.0085 cgs units, and the complex bedrock (χ= 0.0145 cgs units. The presence of gold mineralization in the rock throughout geomagnetic surveys used to identification of subsurface geological which is interpreted from the processing data that indicated the presence of gold in association with sedimentary (sandstone is often referred to as sediment-hosted.

  16. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    International Nuclear Information System (INIS)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States

  17. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States.

  18. Evidence for Mojave-Sonora megashear-Systematic left-lateral offset of Neoproterozoic to Lower Jurassic strata and facies, western United States and northwestern Mexico

    Science.gov (United States)

    Stewart, John H.

    2005-01-01

    Major successions as well as individual units of Neoproterozoic to Lower Jurassic strata and facies appear to be systematically offset left laterally from eastern California and western Nevada in the western United States to Sonora, Mexico. This pattern is most evident in units such as the "Johnnie oolite," a 1- to 2-m-thick oolite of the Neoproterozoic Rainstorm Member of the Johnnie Formation in the western United States and of the Clemente Formation in Sonora. The pattern is also evident in the Lower Cambrian Zabriskie Quartzite of the western United States and the correlative Proveedora Quartzite in Sonora. Matching of isopach lines of the Zabriskie Quartzite and Proveedora Quartzite suggests ???700-800 km of left-lateral offset. The offset pattern is also apparent in the distribution of distinctive lithologic types, unconformities, and fossil assemblages in other rocks ranging in age from Neoproterozoic to Early Jurassic. In the western United States, the distribution of facies in Neoproterozoic and Paleozoic strata indicates that the Cordilleran miogeocline trends north-south. A north-south trend is also suggested in Sonora, and if so is compatible with offset of the miogeocline but not with the ideas that the miogeocline wrapped around the continental margin and trends east-west in Sonora. An imperfect stratigraphic match of supposed offset segments along the megashear is apparent. Some units, such as the "Johnnie oolite" and Zabriskie-Proveedora, show almost perfect correspondence, but other units are significantly different. The differences seem to indicate that the indigenous succession of the western United States and offset segments in Mexico were not precisely side by side before offset but were separated by an area-now buried, eroded, or destroyed-that contained strata of intermediate facies. ?? 2005 Geological Society of America.

  19. Stratigraphic and structural configuration of the Navajo (Jurassic) through Ouray (Mississippian-Devonian) formations in the vicinity of Davis and Lavender Canyons, southeastern Utah

    International Nuclear Information System (INIS)

    McCleary, J.R.; Romie, J.E.

    1986-04-01

    This study developed a three-dimensional computer model of stratigraphic and structural relationships within a 3497-km 2 (1350-mi 2 ) study area centered on the proposed site for a high-level nuclear waste repository in southeastern Utah. The model consists of a sequence of internally reconciled isopach and structure contour maps horizontally registered and stored in stratigraphic order. This model can be used to display cross sections, perspective block diagrams, or fence diagrams at any orientation; estimate depth of formation contacts and thicknesses for any new stratigraphic or hydrologic boreholes; facilitate ground-water modeling studies; and evaluate the structural and stratigraphic evolution of the study area. This study also includes limited evaluations of aquifer continuity in the Elephant Canyon and Honaker Trail Formations, and of salt dissolution and flowage features as interpreted from geophysical logs. The study identified a long history of movement in the fault system in the north-central part of the study area and a major salt flowage feature in the northeastern part. It describes the Elephant Canyon Formation aquifer as laterally limited, the Honaker Trail Formation aquifer as fairly continuous over the area, and Beef Basin in the southern part of the area as a probable dissolution feature. It also concludes that the Shay-Bridger Jack-Salt Creek Graben system is apparently a vertically continuous feature between the basement and ground surface. No stratigraphic or structural discontinuities were detected in the vicinity of Davis Canyon that appear to be detrimental to the siting of a waste repository

  20. Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2001-01-01

    variety of sources ranging from volcanoes to coronae (Magee and Head, 1995; Keddie and Head, 1995). In addition, global analysis of the distribution of volcanic features revealed that Lavinia Planitia is an area deficient in the distribution of distinctive volcanic sources and corona-like features (Head and others, 1992; Crumpler and others, 1993). Lavinia Planitia gravity and geoid data show that the lowland is characterized by a -30 mGal gravity anomaly and a -10 m geoid anomaly, centered on eastern Lavinia (Bindschadler and others, 1992b; Konopliv and Sjogren, 1994). Indeed, the characteristics and configuration of Lavinia Planitia have been cited as evidence for the region being the site of large-scale mantle down welling (Bindschadler and others, 1992b). Thus, this region is a laboratory for the study of the formation of lowlands, the emplacement of volcanic plains, the formation of associated tectonic features, and their relation to mantle processes. These questions and issues are the basis for our geologic mapping analysis. In our analysis we have focused on the geologic mapping of the Lavinia Planitia quadrangle using traditional methods of geologic unit definition and characterization for the Earth (for example, American Commission on Stratigraphic Nomenclature, 1961) and planets (for example, Wilhelms, 1990) appropriately modified for radar data (Tanaka, 1994). We defined units and mapped key relations using the full resolution Magellan synthetic aperture radar (SAR) data (mosaiced full resolution basic image data records, C1-MIDR's, F-MIDR's, and F-Maps) and transferred these results to the base map compiled at a scale of 1:5 million. In addition to the SAR image data, we incorporated into our analyses digital versions of Magellan altimetry, emissivity, Fresnel reflectivity, and roughness data (root mean square, rms, slope). The background for our unit definition and characterization is described in Tanaka (1994), Basilevsky and Head (1995a, b)