WorldWideScience

Sample records for geologic carbon capture

  1. Geological storage of captured carbon dioxide as a large-scale carbon mitigation option

    Science.gov (United States)

    Celia, Michael A.

    2017-05-01

    Carbon capture and storage (CCS), involves capture of CO2 emissions from power plants and other large stationary sources and subsequent injection of the captured CO2 into deep geological formations. This is the only technology currently available that allows continued use of fossil fuels while simultaneously reducing emissions of CO2 to the atmosphere. Although the subsurface injection and subsequent migration of large amounts of CO2 involve a number of challenges, many decades of research in the earth sciences, focused on fluid movement in porous rocks, provides a strong foundation on which to analyze the system. These analyses indicate that environmental risks associated with large CO2 injections appear to be manageable.

  2. The carbon dioxide capture and geological storage; Le captage et le stockage geologique de CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO{sub 2} generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO{sub 2} capture from lage fossil-fueled combustion installations, the three capture techniques and the CO{sub 2} transport options, the geological storage of the CO{sub 2} and Total commitments in the domain. (A.L.B.)

  3. Micrometeorological Technique for Monitoring of Geological Carbon Capture, Utilization and Storage: Methodology, Workflow and Resources

    Science.gov (United States)

    Burba, G. G.; Madsen, R.; Feese, K.

    2013-12-01

    The eddy covariance (EC) method is a micrometeorological technique for direct high-speed measurements of the transport of gases and energy between land or water surfaces and the atmosphere [1]. This method allows for observations of gas transport scales from 20-40 times per second to multiple years, represents gas exchange integrated over a large area, from hundreds of square meters to tens of square kilometres, and corresponds to gas exchange from the entire surface, including canopy, and soil or water layers. Gas fluxes, emission and exchange rates are characterized from single-point in situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Presently, over 600 eddy covariance stations are in operation in over 120 countries [1]. EC is now recognized as an effective method in regulatory and industrial applications, including CCUS [2-10]. Emerging projects utilize EC to continuously monitor large areas before and after the injections, to locate and quantify leakages where CO2 may escape from the subsurface, to improve storage efficiency, and for other CCUS characterizations [5-10]. Although EC is one of the most direct and defensible micrometeorological techniques measuring gas emission and transport, and complete automated stations and processing are readily available, the method is mathematically complex, and requires careful setup and execution specific to the site and project. With this in mind, step-by-step instructions were created in [1] to introduce a novice to the EC method, and to assist in further understanding of the method through more advanced references. In this presentation we provide brief highlights of the eddy covariance method, its application to geological carbon capture, utilization and storage, key requirements, instrumentation and software, and review educational resources particularly useful for carbon sequestration research. References: [1] Burba G. Eddy Covariance Method

  4. Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine; Fitts, Jeffrey; Wilson, Elizabeth; Pollak, Melisa; Bielicki, Jeffrey; Bhatt, Vatsal

    2013-03-13

    This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties of underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial

  5. Preparing to Capture Carbon

    National Research Council Canada - National Science Library

    Daniel P. Schrag

    2007-01-01

    .... Scientific and economic challenges still exist, but none are serious enough to suggest that carbon capture and storage will not work at the scale required to offset trillions of tons of carbon...

  6. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  7. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  8. Chapter 4: Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, J; Herzog, H

    2006-06-14

    Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or

  9. GEOLOGICAL STORAGE OF CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    Iva Kolenković

    2014-07-01

    Full Text Available Carbon dioxide geological storage represents a key segment of the carbon capture and storage system (CCS expected to significantly contribute to the reduction of its emissions, primarily in the developed countries and in those that are currently being industrialised. This approach to make use of the subsurface is entirely new meaning that several aspects are still in research phase. The paper gives a summary of the most important recent results with a short overview the possibilities in the Republic of Croatia. One option is to construct underground carbon dioxide storage facilities in deep coal seams or salt caverns. Another would be to use the CO2 in enhanced oil and gas recovery projects relying on the retention of the carbon dioxide in the deep reservoir because a portion of the injected gas is not going be produced together with hydrocarbons. Finally, the greatest potential estimated lies in depleted hydrocarbon reservoirs with significantly reduced reservoir pressure, as well as in the large regional units - layers of deep saline aquifers that extend through almost all sedimentary basins (the paper is published in Croatian.

  10. Designing Surface Monitoring Meshes for Geologic Carbon Capture and Storage Sites: Accurate Emissions Accounting for an Essential 2°C Mitigation Technology

    Science.gov (United States)

    Augustin, C. M.; Swart, P. K.; Broad, K.

    2014-12-01

    Geologic carbon capture and storage (CCS) is a feasible solution to the international greenhouse gas (GHG) emissions problem and it has recently been called a "vital" mitigation tool by the International Energy Agency. However, there exists uncertainty concerning the terminal fate of stored carbon dioxide (CO2.) In this regard, reliable monitoring, verification and accounting (MVA) technologies are essential for making CCS publicly acceptable. Chiefly, MVA addresses safety and environmental concerns by providing a warning system to prevent or alleviate CO2 leakages. A secondary purpose of MVA technologies is to prove compliance with CO2 reduction standards through inventory verification. A key MVA tool for tracking CO2 leakages is surface (atmospheric) monitoring. Demonstrating its value, industry actors feel an impetus to invest in surface monitoring as a low-risk, high-value technology to mitigate liability in cases of potential leakages. Despite how necessary this tool is, to date, all surface monitoring mesh designs and best practices have been proposed locally, without discussion of standardization or optimization on a regional, national or international level. We identify the fundamental problem of surface monitoring mesh design as locating the monitoring sites to record CO2 levels over the designated geographic area at lowest cost with maximum impact. We approach this problem from both an operations research (OR) perspective and atmospheric dispersion perspective. From an OR perspective, we approach mesh design using multiobjective optimization models - we specify the relative placement of candidate sites, observation time interval, and optimality criteria. In the second approach, we model CO2 leakage scenarios to test the effectiveness of proposed mesh design from the first approach. We use atmospheric dispersion modeling softwares AERMOD and SCREEN3 - both tools developed by the United States Environmental Protection Agency and codified into law - for

  11. Toward transformational carbon capture systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Litynski, John T. [Office of Fossil Energy, U.S. Dept. of Energy, Washington DC (United States); Brickett, Lynn A. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Morreale, Bryan D. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States)

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  12. Natural materials for carbon capture.

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  13. Carbon Capture: A Technology Assessment

    Science.gov (United States)

    2013-10-21

    time. The absence of a significant market for the novel technologies put them at a further disadvantage . This is similar to the situation for CO2...the overall CCS process applied to a power plant or other industrial process. The CO2 produced from carbon in the fossil fuels or biomass feedstock...Air or Oxygen Fossil Fuels; Biomass USEFUL PRODUCTS (e.g., electricity, fuels, chemicals, hydrogen) CO2 CO2 Capture & Compress CO2 Transport CO2

  14. Analysis of the technical potential for carbon capture and geological sequestration in the oil sector of Brazil; Analise do potencial tecnico do sequestro geologico de CO{sub 2} no setor petroleo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Isabella Vaz Leal da

    2009-02-15

    This thesis focuses on the technologies related to CO{sub 2} capture and geological storage. The main objective of this study is to perform an analysis of the technical potential of geological sequestration of CO{sub 2} in the oil and gas sector in Brazil. Climate changes are directly related to emissions of greenhouse gases. Mainly, are related to increased carbon dioxide emissions due to the use of fossil fuels. To mitigate climate changes there are technologies that have the purpose of promoting the reduction of emissions of greenhouse gases such as the Geological Sequestration of CO{sub 2}. Thus, the study presents a description of the stages of the geological sequestration of CO{sub 2} and the state of the art of the technology in Brazil and worldwide. In addition, is presented the capacity for storage of the Brazilian sedimentary basins. Finally, this thesis analyzes the application of the described technologies in two stationary sources of great importance: refineries and oil and gas production fields. (author)

  15. Realistic costs of carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS

  16. Federal Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold W. [Univ. of Utah, Salt Lake City, UT (United States)

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  17. Carbon Capture and Sequestration. Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, P.; Santillo, D. [Greenpeace Research Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS (United Kingdom)

    2003-02-01

    Over the last few years, understanding of the profound implications of anthropogenically driven climate change has grown. In turn, this has fuelled research into options to mitigate likely impacts. Approaches involving the capture of carbon dioxide and its storage in geological formations, or in marine waters, have generated a raft of proposed solutions. The scale of some of these proposals is such that they will exert impacts of global significance in their own right. Proposals fall into two broad categories: (1) storage of liquid CO2 or products of reacted CO2 into intermediate/deep oceanic waters. and (2) storage of liquid CO2 into sub-seabed or terrestrial geological formations. For the most part, while the technical feasibility of these schemata has been widely explored, the same is not true of their ecological implications. In the case of deep/intermediate oceanic waters, poor baseline understanding of the associated ecosystems is a considerable impediment to any reliable predictive assessment of likely impacts of carbon dioxide storage in these systems. Disruption of marine microbiological processes and degradation of benthic ecosystems, including those with high levels of endemicity, have been identified as potentially serious impacts. Similarly, the physiology, ecology and likely responses of micro-organisms present in targeted geological formations require evaluation prior to any consideration of the use of such formations for storage of CO2. In addition, the impacts of any leakage to surface need also to be considered. Accordingly this paper explores current uncertainties and detailed informational needs related to ocean and geological storage of fossil fuel-derived CO2. Particular emphasis is placed upon the ecological impacts of these proposals in relation to existing and emergent understanding of deep water/soil ecosystems and the indeterminacies attached to this understanding.

  18. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  19. Policy Needs for Carbon Capture & Storage

    Science.gov (United States)

    Peridas, G.

    2007-12-01

    Climate change is one of the most pressing environmental problems of our time. The widespread consensus that exists on climate science requires deep cuts in greenhouse gas emissions, on the order of 50-80% globally from current levels. Reducing energy demand, increasing energy efficiency and sourcing our energy from renewable sources will, and should, play a key role in achieving these cuts. Fossil fuels however are abundant, relatively inexpensive, and still make up the backbone of our energy system. Phasing out fossil fuel use will be a gradual process, and is likely to take far longer than the timeframe dictated by climate science for reducing emissions. A reliable way of decarbonizing the use of fossil fuels is needed. Carbon capture and storage (CCS) has already proven to be a technology that can safely and effectively accomplish this task. The technological know-how and the underground capacity exist to store billions of tons of carbon dioxide in mature oil and gas fields, and deep saline formations. Three large international commercial projects and several other applications have proved this, but substantial barriers remain to be overcome before CCS becomes the technology of choice in all major emitting sectors. Government has a significant role to play in surmounting these barriers. Without mandatory limits on greenhouse gas emissions and a price on carbon, CCS is likely to linger in the background. The expected initial carbon price levels and their potential volatility under such a scheme dictates that further policies be used in the early years in order for CCS to be implemented. Such policies could include a new source performance standard for power plants, and a low carbon generation obligation that would relieve first movers by spreading the additional cost of the technology over entire sectors. A tax credit for capturing and permanently sequestering anthropogenic CO2 would aid project economics. Assistance in the form of loan guarantees for components

  20. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  1. Capturing Gases in Carbon Honeycomb

    Science.gov (United States)

    Krainyukova, Nina V.

    2017-04-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  2. Capturing Gases in Carbon Honeycomb

    Science.gov (United States)

    Krainyukova, Nina V.

    2016-12-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2 -bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  3. Carbon Capture and Sequestration (CCS)

    Science.gov (United States)

    2009-06-19

    for the pre-combustion capture of CO2 is the use of Integrated Gasification Combined-Cycle ( IGCC ) technology to generate electricity.14 There are...currently four commercial IGCC plants worldwide (two in the United States) each with a capacity of about 250 MW. The technology has yet to make a major... IGCC is an electric generating technology in which pulverized coal is not burned directly but mixed with oxygen and water in a high-pressure gasifier

  4. State and Regional Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Durrant, Marie [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  5. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  6. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  7. Reforming fossil fuel use : the merits, costs and risks of carbon dioxide capture and storage

    NARCIS (Netherlands)

    Damen, Kay J.

    2007-01-01

    The sense of urgency in achieving large reductions in anthropogenic CO2 emissions has increased the interest in carbon dioxide capture and storage (CCS). CCS can be defined as the separation and capture of CO2 produced at large stationary sources, followed by transport and storage in geological

  8. Reforming fossil fuel use : the merits, costs and risks of carbon dioxide capture and storage

    NARCIS (Netherlands)

    Damen, Kay J.

    2007-01-01

    The sense of urgency in achieving large reductions in anthropogenic CO2 emissions has increased the interest in carbon dioxide capture and storage (CCS). CCS can be defined as the separation and capture of CO2 produced at large stationary sources, followed by transport and storage in geological rese

  9. Synthesis of optimal adsorptive carbon capture processes.

    Energy Technology Data Exchange (ETDEWEB)

    chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

    2011-01-01

    Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

  10. Wyoming Carbon Capture and Storage Institute

    Energy Technology Data Exchange (ETDEWEB)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  11. CO2 capture in different carbon materials.

    Science.gov (United States)

    Jiménez, Vicente; Ramírez-Lucas, Ana; Díaz, José Antonio; Sánchez, Paula; Romero, Amaya

    2012-07-03

    In this work, the CO(2) capture capacity of different types of carbon nanofibers (platelet, fishbone, and ribbon) and amorphous carbon have been measured at 26 °C as at different pressures. The results showed that the more graphitic carbon materials adsorbed less CO(2) than more amorphous materials. Then, the aim was to improve the CO(2) adsorption capacity of the carbon materials by increasing the porosity during the chemical activation process. After chemical activation process, the amorphous carbon and platelet CNFs increased the CO(2) adsorption capacity 1.6 times, whereas fishbone and ribbon CNFs increased their CO(2) adsorption capacity 1.1 and 8.2 times, respectively. This increase of CO(2) adsorption capacity after chemical activation was due to an increase of BET surface area and pore volume in all carbon materials. Finally, the CO(2) adsorption isotherms showed that activated amorphous carbon exhibited the best CO(2) capture capacity with 72.0 wt % of CO(2) at 26 °C and 8 bar.

  12. High performance hydrophobic solvent, carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Nulwala, Hunaid; Luebke, David

    2017-05-09

    Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.

  13. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  14. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks o

  15. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks o

  16. Highly precise atmospheric oxygen measurements as a tool to detect leaks of carbon dioxide from Carbon Capture and Storage sites

    NARCIS (Netherlands)

    van Leeuwen, Charlotte

    2015-01-01

    In Carbon Capture and Storage (CCS), carbon dioxide (CO2) from fossil fuel combustion is stored underground into a geological formation. Although the storage of CO2 is considered as safe, leakage to the atmosphere is an important concern and monitoring is necessary. Detecting and quantifying leaks

  17. Carbon Capture and Storage in the CDM

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This publication assesses the policy questions as highlighted in the relevant COP/MOP 2 decision, particularly leaks (or seepage) and permanence for geological storage, project boundaries and liability issues, and leakage, as well as a few others raised by some Parties. Since any emissions or leaks during the separation, capture and transport phases would occur during the crediting period of the project (and would therefore be accounted for as project emissions), the paper focuses its analyses for leaks and liability on storage, as it is in this part of the CCS process that long-term leaks could occur.

  18. Measurement of carbon capture efficiency and stored carbon leakage

    Science.gov (United States)

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  19. Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.

    2011-06-08

    This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

  20. Annual Report: Carbon Capture (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, David; Morreale, Bryan; Richards, George; Syamlal, Madhava

    2014-04-16

    Capture of carbon dioxide (CO{sub 2}) is a critical component in reducing greenhouse gas emissions from fossil fuel-based processes. The Carbon Capture research to be performed is aimed at accelerating the development of efficient, cost-effective technologies which meet the post-combustion programmatic goal of capture of 90% of the CO{sub 2} produced from an existing coal-fired power plant with less than a 35% increase in the cost of electricity (COE), and the pre-combustion goal of 90% CO{sub 2} capture with less than a 10% increase in COE. The specific objective of this work is to develop innovative materials and approaches for the economic and efficient capture of CO{sub 2} from coal-based processes, and ultimately assess the performance of promising technologies at conditions representative of field application (i.e., slip stream evaluation). The Carbon Capture research includes seven core technical research areas: post-combustion solvents, sorbents, and membranes; pre-combustion solvents, sorbents, and membranes; and oxygen (O{sub 2}) production. The goal of each of these tasks is to develop advanced materials and processes that are able to reduce the energy penalty and cost of CO{sub 2} (or O{sub 2}) separation over conventional technologies. In the first year of development, materials will be examined by molecular modeling, and then synthesized and experimentally characterized at lab scale. In the second year, they will be tested further under ideal conditions. In the third year, they will be tested under realistic conditions. The most promising materials will be tested at the National Carbon Capture Center (NCCC) using actual flue or fuel gas. Systems analyses will be used to determine whether or not materials developed are likely to meet the Department of Energy (DOE) COE targets. Materials which perform well and appear likely to improve in performance will be licensed for further development outside of the National Energy Technology Laboratory (NETL

  1. Electron capture in carbon dwarf supernovae

    Science.gov (United States)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.

    1974-01-01

    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  2. Tracking Progress in Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    At the second Clean Energy Ministerial in Abu Dhabi, April 2011 (CEM 2), the Carbon Capture, Use and Storage Action Group (CCUS AG) presented seven substantive recommendations to Energy Ministers on concrete, near-term actions to accelerate global carbon capture and storage (CCS) deployment. Twelve CCUS AG governments agreed to advance progress against the 2011 recommendations by the third Clean Energy Ministerial (London, 25-26 April 2012) (CEM 3). Following CEM 2, the CCUS AG requested the IEA and the Global CCS Institute to report on progress made against the 2011 recommendations at CEM 3. Tracking Progress in Carbon Capture and Storage: International Energy Agency/Global CCS Institute report to the third Clean Energy Ministerial responds to that request. The report considers a number of key questions. Taken as a whole, what advancements have committed CCUS AG governments made against the 2011 recommendations since CEM 2? How can Energy Ministers continue to drive progress to enable CCS to fully contribute to climate change mitigation? While urgent further action is required in all areas, are there particular areas that are currently receiving less policy attention than others, where efforts could be redoubled? The report concludes that, despite developments in some areas, significant further work is required. CCS financing and industrial applications continue to represent a particularly serious challenge.

  3. Cutting the cost of carbon capture: a case for carbon capture and utilization.

    Science.gov (United States)

    Joos, Lennart; Huck, Johanna M; Van Speybroeck, Veronique; Smit, Berend

    2016-10-20

    A significant part of the cost for carbon capture and storage (CCS) is related to the compression of captured CO2 to its supercritical state, at 150 bar and typically 99% purity. These stringent conditions may however not always be necessary for specific cases of carbon capture and utilization (CCU). In this manuscript, we investigate how much the parasitic energy of an adsorbent-based carbon capture process may be lowered by utilizing CO2 at 1 bar and adapting the final purity requirement for CO2 from 99% to 70% or 50%. We compare different CO2 sources: the flue gases of coal-fired or natural gas-fired power plants and ambient air. We evaluate the carbon capture performance of over 60 nanoporous materials and determine the influence of the initial and final CO2 purity on the parasitic energy of the carbon capture process. Moreover, we demonstrate the underlying principles of the parasitic energy minimization in more detail using the commercially available NaX zeolite. Finally, the calculated utilization cost of CO2 is compared with the reported prices for CO2 and published costs for CCS.

  4. U.S. Geological Survey Geologic Carbon Sequestration Assessment

    Science.gov (United States)

    Warwick, P. D.; Blondes, M. S.; Brennan, S.; Corum, M.; Merrill, M. D.

    2012-12-01

    The Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geological storage resources for carbon dioxide (CO2) in consultation with the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and State geological surveys. To conduct the assessment, the USGS developed a probability-based assessment methodology that was extensively reviewed by experts from industry, government and university organizations (Brennan et al., 2010, http://pubs.usgs.gov/of/2010/1127). The methodology is intended to be used at regional to sub-basinal scales and it identifies storage assessment units (SAUs) that are based on two depth categories below the surface (1) 3,000 to 13,000 ft (914 to 3,962 m), and (2) 13,000 ft (3,962 m) and greater. In the first category, the 3,000 ft (914 m) minimum depth of the storage reservoir ensures that CO2 is in a supercritical state to minimize the storage volume. The depth of 13,000 ft (3,962 m) represents maximum depths that are accessible with average injection pressures. The second category represents areas where a reservoir formation has potential storage at depths below 13,000 ft (3,962 m), although they are not accessible with average injection pressures; these are assessed as a separate SAU. SAUs are restricted to formation intervals that contain saline waters (total dissolved solids greater than 10,000 parts per million) to prevent contamination of protected ground water. Carbon dioxide sequestration capacity is estimated for buoyant and residual storage traps within the basins. For buoyant traps, CO2 is held in place in porous formations by top and lateral seals. For residual traps, CO2 is contained in porous formations as individual droplets held within pores by capillary forces. Preliminary geologic models have been developed to estimate CO2 storage capacity in approximately 40 major sedimentary basins within the United States. More than

  5. Carbon Capture and Storage: concluding remarks.

    Science.gov (United States)

    Maitland, G C

    2016-10-20

    This paper aims to pull together the main points, messages and underlying themes to emerge from the Discussion. It sets these remarks in the context of where Carbon Capture and Storage (CCS) fits into the spectrum of carbon mitigation solutions required to meet the challenging greenhouse gas (GHG) emissions reduction targets set by the COP21 climate change conference. The Discussion focused almost entirely on carbon capture (21 out of 23 papers) and covered all the main technology contenders for this except biological processes. It included (chemical) scientists and engineers in equal measure and the Discussion was enriched by the broad content and perspectives this brought. The major underlying theme to emerge was the essential need for closer integration of materials and process design - the use of isolated materials performance criteria in the absence of holistic process modelling for design and optimisation can be misleading. Indeed, combining process and materials simulation for reverse materials molecular engineering to achieve the required process performance and cost constraints is now within reach and is beginning to make a significant impact on optimising CCS and CCU (CO2 utilisation) processes in particular, as it is on materials science and engineering generally. Examples from the Discussion papers are used to illustrate this potential. The take-home messages from a range of other underpinning research themes key to CCUS are also summarised: new capture materials, materials characterisation and screening, process innovation, membranes, industrial processes, net negative emissions processes, the effect of GHG impurities, data requirements, environment sustainability and resource management, and policy. Some key points to emerge concerning carbon transport, utilisation and storage are also included, together with some overarching conclusions on how to develop more energy- and cost-effective CCS processes through improved integration of approach across the

  6. Understanding Oscillations of the Geological Carbon Cycle

    Science.gov (United States)

    Bachan, A.; Payne, J.; Saltzman, M.; Thomas, E.; Kump, L. R.

    2015-12-01

    The geological cycling of carbon ties together the sedimentary reservoirs with Earth's biosphere and climate. Perturbations to this coupled system are recorded in the carbon isotopic composition of marine limestones (δ13Ccarb). In the past decade numerous intervals of large-amplitude oscillations in δ13Ccarbhave been identified, with a variety of explanations proposed for individual events. Yet, when data spanning the past ~1 Ga are viewed as a whole, it is clear that large-scale oscillations are a common feature of the carbon isotopic record. The ubiquity of oscillations suggests that they may share a single origin rather than having many disparate causes. Here we present a simple two-box model of the geological carbon cycle exhibiting such oscillations: the Carbon-Cycle Oscillator. Analogous to a damped mass-spring system, the burial fluxes of carbonate and phosphate in the model act like friction, whereas P supply and Corg burial act like the restoring force of the spring. When the sensitivities of P supply and Corg burial to the sizes of the C and P reservoirs, respectively, increase above a critical threshold, the model exhibits oscillations upon perturbation. We suggest that intervals with large oscillations in bulk ocean-atmosphere δ13C are characterized by a greater sensitivity of the C:P burial-ratio and ALK:P weathering-ratio to the state of the ocean-atmosphere carbon pool. In addition, moderating of the slope of that dependence in general can account for the observed decrease in the amplitude of oscillations over the past billion years. We hypothesize that factors with a unidirectional trajectory during Earth history (e.g. increased oxygenation of the deep ocean, and evolution of pelagic calcifiers) led to a decrease in the Earth System's gain and increase in its resilience over geologic time, even in the face of continuing perturbations from the solid Earth and extraterrestrial realms.

  7. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    Science.gov (United States)

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Layered solid sorbents for carbon dioxide capture

    Science.gov (United States)

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2013-02-25

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  9. Materials design for electrocatalytic carbon capture

    Science.gov (United States)

    Tan, Xin; Tahini, Hassan A.; Smith, Sean C.

    2016-05-01

    We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO2 gas. We identify for a group of 1:1 X-N graphene analogue materials that electro-responsive switchable CO2 binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO2 molecules at the adjacent carbon sites.

  10. Designed amyloid fibers as materials for selective carbon dioxide capture.

    Science.gov (United States)

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  11. Greening coal : clean coal and carbon capture and storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Sundararajan, B.

    2008-09-15

    Clean coal technology and carbon capture and storage (CCS) programs used in Canada were discussed. EPCOR's Genesee 3 project uses supercritical combustion methods and has committed $90 towards the implementation of clean air technologies. The company is also constructing new waste water systems and is expanding its environmental remediation programs. The company has recently constructed a 450 MW supercritical coal-fired unit in Edmonton. The plant uses supercritical boiler technology and high efficiency steam turbines that result in significant reductions in carbon dioxide (CO{sub 2}) emissions. The Alberta Saline Aquifer Project (ASAP) is an industry-supported carbon dioxide (CO{sub 2}) sequestration project developed to identify locations for the long-term sequestration of CO{sub 2} in saline aquifers. ASAP is expected to play a major role in advancing the knowledge of CCS technology in Canada. The Integrated CO{sub 2} Network (ICO{sub 2}N) is supported by a consortium of Canadian companies dedicated to meeting Canada's climate change commitments through the widespread implementation of CCS and the creation of infrastructure needed to implement CCS technologies. The Wabamun Lake area was selected by the Alberta Geological Survey as a potential site for CCS due to its proximity to several industrial sources of CO{sub 2}. A new CCS demonstration conducted at SaskPower's Boundary Dam Power Station in Estevan, Saskatchewan. The project aims to capture 500,000 tonnes of CO{sub 2} annually by integrating carbon capture technology with a coal-fired generation unit. 3 figs.

  12. Carbon Capture and Storage (CCS): Overview, Developments, and Challenges

    Science.gov (United States)

    Busch, Andreas; Amann, Alexandra; Kronimus, Alexander; Kühn, Michael

    2010-05-01

    Carbon dioxide capture and storage (CCS) is a technology that will allow the continued combustion of fossil fuels (coal, oil, gas) for e.g. power generation, transportation and industrial processes for the next decades. It therefore facilitates to bridge to a more renewable energy dominated world, enhances the stability and security of energy systems and at the same time reduces global carbon emissions as manifested by many western countries. Geological media suitable for CO2 storage are mainly saline aquifers due to the large storage volumes associated with them, but also depleted oil and gas reservoirs or deep unminable coal beds. Lately, CO2 storage into mafic- to ultramafic rocks, associated with subsequent mineral carbonation are within the R&D scope and first demonstration projects are being executed. For all these storage options various physical and chemical trapping mechanisms must reveal the necessary capacity and injectivity, and must confine the CO2 both, vertically (through an effective seal) or horizontally (through a confining geological structure). Confinement is the prime prerequisite to prevent leakage to other strata, shallow potable groundwater, soils and/or atmosphere. Underground storage of gases (e.g. CO2, H2S, CH4) in these media has been demonstrated on a commercial scale by enhanced oil recovery operations, natural gas storage and acid gas disposal. Some of the risks associated with CO2 capture and geological storage are comparable with any of these industrial activities for which extensive safety and regulatory frameworks are in place. Specific risks associated with CO2 storage relate to the operational (injection) phase and to the post-operational phase. In both phases the risks of most concern are those posed by the potential for acute or chronic CO2 leakage from the storage site. Currently there are only few operations worldwide where CO2 is injected and stored in the subsurface. Some are related to oil production enhancement but the

  13. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons

    Institute of Scientific and Technical Information of China (English)

    Jitong Wang; Huichao Chen; Huanhuan Zhou; Xiaojun Liu; Wenming Qiao; Donghui Long; Licheng Ling

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume.The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption,scanning electron microscopy (SEM),thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture.Factors that affected the sorption capacity of the sorbent were studied.The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%.The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75℃,owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%).Moisture had a promoting effect on the sorption separation of CO2.In addition,the developed sorbent could be regenerated easily at 100℃,and it exhibited excellent regenerability and stability.These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  14. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.

    Science.gov (United States)

    Wang, Jitong; Chen, Huichao; Zhou, Huanhuan; Liu, Xiaojun; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75 degrees C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2. In addition, the developed sorbent could be regenerated easily at 100 degrees C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  15. CO2 Capture by Carbon Aerogel–Potassium Carbonate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2016-01-01

    Full Text Available Recently, various composites for reducing CO2 emissions have been extensively studied. Because of their high sorption capacity and low cost, alkali metal carbonates are recognized as a potential candidate to capture CO2 from flue gas under moist conditions. However, undesirable effects and characteristics such as high regeneration temperatures or the formation of byproducts lead to high energy costs associated with the desorption process and impede the application of these materials. In this study, we focused on the regeneration temperature of carbon aerogel–potassium carbonate (CA–KC nanocomposites, where KC nanocrystals were formed in the mesopores of the CAs. We observed that the nanopore size of the original CA plays an important role in decreasing the regeneration temperature and in enhancing the CO2 capture capacity. In particular, 7CA–KC, which was prepared from a CA with 7 nm pores, exhibited excellent performance, reducing the desorption temperature to 380 K and exhibiting a high CO2 capture capacity of 13.0 mmol/g-K2CO3, which is higher than the theoretical value for K2CO3 under moist conditions.

  16. Biochemical Capture and Removal of Carbon Dioxide

    Science.gov (United States)

    Trachtenberg, Michael C.

    1998-01-01

    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  17. Alternative solvents for post combustion carbon capture

    Directory of Open Access Journals (Sweden)

    Udara S. P. R. Arachchige, Morten C. Melaaen

    2013-01-01

    Full Text Available The process model of post combustion chemical absorption is developed in Aspen Plus for both coal and gas fired power plant flue gas treating. The re-boiler energy requirement is considered as the most important factor to be optimized. Two types of solvents, mono-ethylamine (MEA and di-ethylamine (DEA, are used to implement the model for three different efficiencies. The re-boiler energy requirement for regeneration process is calculated. Temperature and concentration profiles in absorption column are analyzed to understand the model behavior. Re-boiler energy requirement is considerably lower for DEA than MEA as well as impact of corrosion also less in DEA. Therefore, DEA can be recommended as a better solvent for post combustion process for carbon capture plants in fossil fuel fired power industries.

  18. Materials design for electrocatalytic carbon capture

    Directory of Open Access Journals (Sweden)

    Xin Tan

    2016-05-01

    Full Text Available We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO2 gas. We identify for a group of 1:1 X–N graphene analogue materials that electro-responsive switchable CO2 binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO2 molecules at the adjacent carbon sites.

  19. Alternative solvents for post combustion carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The process model of post combustion chemical absorption is developed in Aspen Plus for both coal and gas fired power plant flue gas treating. The re-boiler energy requirement is considered as the most important factor to be optimized. Two types of solvents, mono-ethylamine (MEA) and di-ethylamine (DEA), are used to implement the model for three different efficiencies. The re-boiler energy requirement for regeneration process is calculated. Temperature and concentration profiles in absorption column are analyzed to understand the model behavior. Re-boiler energy requirement is considerably lower for DEA than MEA as well as impact of corrosion also less in DEA. Therefore, DEA can be recommended as a better solvent for post combustion process for carbon capture plants in fossil fuel fired power industries.

  20. Carbon Capture and Sequestration- A Review

    Science.gov (United States)

    Sood, Akash; Vyas, Savita

    2017-08-01

    The Drastic increase of CO2 emission in the last 30 years is due to the combustion of fossil fuels and it causes a major change in the environment such as global warming. In India, the emission of fossil fuels is developed in the recent years. The alternate energy sources are not sufficient to meet the values of this emission reduction and the framework of climate change demands the emission reduction, the CCS technology can be used as a mitigation tool which evaluates the feasibility for implementation of this technology in India. CCS is a process to capture the carbon dioxide from large sources like fossil fuel station to avoid the entrance of CO2 in the atmosphere. IPCC accredited this technology and its path for mitigation for the developing countries. In this paper, we present the technologies of CCS with its development and external factors. The main goal of this process is to avoid the release the CO2 into the atmosphere and also investigates the sequestration and mitigation technologies of carbon.

  1. Yeast-based microporous carbon materials for carbon dioxide capture.

    Science.gov (United States)

    Shen, Wenzhong; He, Yue; Zhang, Shouchun; Li, Junfen; Fan, Weibin

    2012-07-01

    A hierarchical microporous carbon material with a Brunauer-Emmett-Teller surface area of 1348 m(2) g(-1) and a pore volume of 0.67 cm(3) g(-1) was prepared from yeast through chemical activation with potassium hydroxide. This type of material contains large numbers of nitrogen-containing groups (nitrogen content >5.3 wt%), and, consequently, basic sites. As a result, this material shows a faster adsorption rate and a higher adsorption capacity of CO(2) than the material obtained by directly carbonizing yeast under the same conditions. The difference is more pronounced in the presence of N(2) or H(2)O, showing that chemical activation of discarded yeast with potassium hydroxide could afford high-performance microporous carbon materials for the capture of CO(2).

  2. Role of Biofilms in Geological Carbon Sequestration

    Science.gov (United States)

    Gerlach, Robin; Mitchell, Andrew C.; Spangler, Lee H.; Cunningham, Al B.

    2010-05-01

    Geologic sequestration of CO2 involves injection into underground formations including oil beds, deep un-minable coal seams, and deep saline aquifers with temperature and pressure conditions such that CO2 will likely be in the supercritical state. Supercritical CO2 (scCO2) is only slightly soluble in water (approximately 4%) and it is therefore likely that two fluid phases will develop in the subsurface, an aqueous and a supercritical phase. Supercritical CO2 is less dense and much less viscous than water therefore creating the potential for upward leakage of CO2 through fractures, disturbed rock, or cement lining near injection wells. Our research focuses on microbially-based strategies for controlling leakage of CO2 during geologic sequestration and enhancing the process of CO2 trapping. We have demonstrated that engineered microbial biofilms are capable of enhancing formation, mineral, and solubility trapping in carbon sequestration-relevant formation materials. Batch and flow experiments at atmospheric and high pressures (> 74 bar) have shown the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of gaseous and supercritical CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Successful development of these biologically-based concepts could result in microbially enhanced carbon sequestration strategies as well as CO2 leakage mitigation technologies which can be applied either before CO2 injection or as a remedial measure. Acknowledgement: This work was funded by the Zero Emissions Research and Technology (ZERT) program (U.S. DOE Award No. DE-FC26-04NT42262). However any opinions, conclusions, findings or recommendations expressed herein are those of the authors and do not necessarily reflect those of DOE.

  3. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  4. 二氧化碳地质封存问题和地震监测研究进展%Research progress of carbon dioxide capture and geological sequestration problem and seismic monitoring research

    Institute of Scientific and Technical Information of China (English)

    郝艳军; 杨顶辉

    2012-01-01

    二氧化碳(CO2)的捕获和封存技术(CCS)是近年提出的减少CO2排放的重要方法,经过近二十年的发展已经为国际社会所公认.了解长时间封存CO2的变化规律对于成功实施CO2封存非常重要,而限于现场试验的困难性,数值模拟已成为监控长时间封存CO2变化的最重要方法.因此,需要加强CO2封存所涉及的多孔隙介质中多组分多相流运移模拟和地球化学反应模拟研究.在CO2注入地下储层之后,需要长时间监测所封存CO2的运移情况,以及时发现泄漏并采取相应的应对措施.地震监测方法是众多监测方法中最重要的方法之一,四维地震已经在世界上几个大型的封存项目中进行了多次实施,并且取得了很好的效果.为了使地震监测方法更加准确,并能做到常态性地有效监测或实时监控,不仅需要不断发展岩石物理理论和方法,而且需要在岩石物理学研究中充分考虑CO2封存问题的特殊性,即CO2的溶解和化学反应所引起的岩石物理性质的改变.这是研究地球环境和全球气候变化等重大地球科学问题的基础性研究课题,具有重要的理论和实际意义.%Carbon dioxide capture and sequestration technology developed in recent years is an important way to reduce carbon dioxide emissions, and after nearly two decades of development its importance has been recognized by the international community. Understanding the variation of long term sequestration of the carbon dioxide is very important for successful implementation of CO2 sequestration, and because of the limitation and difficulty of field tests, numerical simulation has become the most important way to monitor the variation of long term sequestration. Through numerical simulation of migration law and phase transformation mechanism of the carbon dioxide-saline system in the reservoir, we can deepen the understanding of the various physical and chemical changes in the carbon dioxide

  5. Analysis and Comparison of Carbon Capture & Sequestration Policies

    Science.gov (United States)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  6. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  7. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  8. Bicarbonate produced from carbon capture for algae culture.

    Science.gov (United States)

    Chi, Zhanyou; O'Fallon, James V; Chen, Shulin

    2011-11-01

    Using captured CO(2) to grow microalgae is limited by the high cost of CO(2) capture and transportation, as well as significant CO(2) loss during algae culture. Moreover, algae grow poorly at night, but CO(2) cannot be temporarily stored until sunrise. To address these challenges, we discuss a process where CO(2) is captured as bicarbonate and used as feedstock for algae culture, and the carbonate regenerated by the culture process is used as an absorbent to capture more CO(2). This process would significantly reduce carbon capture costs because it does not require additional energy for carbonate regeneration. Furthermore, not only would transport of the aqueous bicarbonate solution cost less than for that of compressed CO(2), but using bicarbonate would also provide a superior alternative for CO(2) delivery to an algae culture system.

  9. CAPTURING EXHAUST CO2 GAS USING MOLTEN CARBONATE FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Prateek Dhawan

    2016-03-01

    Full Text Available Carbon dioxide is considered as one of the major contenders when the question of greenhouse effect arises. So for any industry or power plant it is of utmost importance to follow certain increasingly stringent environment protection rules and laws. So it is significant to keep eye on any possible methods to reduce carbon dioxide emissions in an efficient way. This paper reviews the available literature so as to try to provide an insight of the possibility of using Molten Carbonate Fuel Cells (MCFCs as the carbon capturing and segregating devices and the various factors that affect the performance of MCFCs during the process of CO2 capture.

  10. Deployment models for commercialized carbon capture and storage.

    Science.gov (United States)

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  11. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  12. SITE CHARACTERIZATION AND SELECTION GUIDELINES FOR GEOLOGICAL CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, S J

    2007-08-31

    Carbon capture and sequestration (CCS) is a key technology pathway to substantial reduction of greenhouse gas emissions for the state of California and the western region. Current estimates suggest that the sequestration resource of the state is large, and could safely and effectively accept all of the emissions from large CO2 point sources for many decades and store them indefinitely. This process requires suitable sites to sequester large volumes of CO2 for long periods of time. Site characterization is the first step in this process, and the state will ultimately face regulatory, legal, and technical questions as commercial CCS projects develop and commence operations. The most important aspects of site characterizations are injectivity, capacity, and effectiveness. A site can accept at a high rate a large volume of CO2 and store it for a long time is likely to serve as a good site for geological carbon sequestration. At present, there are many conventional technologies and approaches that can be used to estimate, quantify, calculate, and assess the viability of a sequestration site. Any regulatory framework would need to rely on conventional, easily executed, repeatable methods to inform the site selection and permitting process. The most important targets for long-term storage are deep saline formations and depleted oil and gas fields. The primary CO2 storage mechanisms for these targets are well understood enough to plan operations and simulate injection and long-term fate of CO2. There is also a strong understanding of potential geological and engineering hazards for CCS. These hazards are potential pathway to CO2 leakage, which could conceivably result in negative consequences to health and the environmental. The risks of these effects are difficult to quantify; however, the hazards themselves are sufficiently well understood to identify, delineate, and manage those risks effectively. The primary hazard elements are wells and faults, but may include other

  13. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    Science.gov (United States)

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  14. Impact of sulfur oxides on mercury capture by activated carbon.

    Science.gov (United States)

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  15. Operating considerations of ultrafiltration in enzyme enhanced carbon capture

    DEFF Research Database (Denmark)

    Deslauriers, Maria Gundersen; Gladis, Arne; Fosbøl, Philip Loldrup

    2017-01-01

    capture capacity of 1 MTonn CO2/year, and is here operated for one year continuously. This publication compares soluble enzymes dissolved in a capture solvent with and without the use of ultrafiltration membranes. The membranes used here have an enzyme retention of 90%, 99% and 99.9%. Enzyme retention......Today, enzyme enhanced carbon capture and storage (CCS) is gaining interest, since it can enable the use of energy efficient solvents, and thus potentially reduce the carbon footprint of CCS. However, a limitation of this technology is the high temperatures encountered in the stripper column, which...

  16. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    Science.gov (United States)

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-05

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money.

  17. Carbon Capture and Storage: Model Regulatory Framework

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Energy-related carbon dioxide (CO2) emissions are set to double by 2050 unless decisive action is taken. International Energy Agency (IEA) analysis demonstrates, however, that it is possible -- in the same timeframe to 2050 -- to reduce projected greenhouse-gas emissions to half 2005 levels, but this will require an energy technology revolution, involving the aggressive deployment of a portfolio of low-carbon energy technologies.

  18. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  19. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  20. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  1. Carbon dioxide capture and air quality

    NARCIS (Netherlands)

    Horssen, A. van; Ramirez, C.A.; Harmelen, T. van; Koornneef, J.

    2011-01-01

    Carbon dioxide (CO2) is one of the most important greenhouse gases (GHG). The most dominant source of anthropogenic CO2 contributing to the rise in atmospheric concentration since the industrial revolution is the combustion of fossil fuels. These emissions are expected to result in global climate

  2. Membrane-based systems for carbon capture and hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Berchtold, Kathryn A [Los Alamos National Laboratory

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on

  3. Basic Research Needs for Carbon Capture: Beyond 2020

    Energy Technology Data Exchange (ETDEWEB)

    Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buchanan, Michelle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-03-04

    This report is based on a SC/FE workshop on Carbon Capture: Beyond 2020, held March 4–5, 2010, to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The problem of thermodynamically efficient and scalable carbon capture stands as one of the greatest challenges for modern energy researchers. The vast majority of US and global energy use derives from fossil fuels, the combustion of which results in the emission of carbon dioxide into the atmosphere. These anthropogenic emissions are now altering the climate. Although many alternatives to combustion are being considered, the fact is that combustion will remain a principal component of the global energy system for decades to come. Today’s carbon capture technologies are expensive and cumbersome and energy intensive. If scientists could develop practical and cost-effective methods to capture carbon, those methods would at once alter the future of the largest industry in the world and provide a technical solution to one of the most vexing problems facing humanity. The carbon capture problem is a true grand challenge for today’s scientists. Postcombustion CO2 capture requires major new developments in disciplines spanning fundamental theoretical and experimental physical chemistry, materials design and synthesis, and chemical engineering. To start with, the CO2 molecule itself is thermodynamically stable and binding to it requires a distortion of the molecule away from its linear and symmetric arrangement. This binding of the gas molecule cannot be too strong, however; the sheer quantity of CO2 that must be captured ultimately dictates that the capture medium must be recycled over and over. Hence the CO2 once bound, must be released with relatively little energy input. Further, the CO2 must be rapidly and selectively pulled out of a mixture

  4. High activity carbon sorbents for mercury capture

    Energy Technology Data Exchange (ETDEWEB)

    George G. Stavropoulos; Irene S. Diamantopoulou; George E. Skodras; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory

    2006-07-01

    High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N{sub 2} adsorption at 77K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior. 10 refs., 3 figs., 1 tab.

  5. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  6. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making

  7. Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Wendy (Harvard Environmental Law and Policy, Cambridge, MA (US)); Chohen, Leah; Kostakidis-Lianos, Leah; Rundell, Sara (Harvard Law School, Cambridge, MA (US))

    2009-03-01

    Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in the absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.

  8. Radiative Neutron Capture on Carbon-14 in Effective Field Theory

    CERN Document Server

    Rupak, Gautam; Vaghani, Akshay

    2012-01-01

    The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Breit-Wigner resonance form.

  9. CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr

    2004-04-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies

  10. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre

  11. Recent Advances in Carbon Capture with Metal-Organic Frameworks.

    Science.gov (United States)

    Stylianou, Kyriakos C; Queen, Wendy L

    2015-01-01

    The escalating level of CO(2) in the atmosphere is one of the most critical environmental issues of our age. The carbon capture and storage from pilot test plants represents an option for reducing CO(2) emissions, however, the energy cost associated with post-combustion carbon capture process alone is ∼30% of the total energy generated by the power plant. Thus, the generation of carbon capture adsorbents with high uptake capacities, great separation performance and low cost is of paramount importance. Metal-organic frameworks are infinite networks of metal-containing nodes bridged by organic ligands through coordination bonds into porous extended structures and several reports have revealed that they are ideal candidates for the selective capture of CO(2). In this review we summarize recent advances related to the synthesis of porous MOFs and the latest strategies to enhance the CO(2) adsorption enthalpies and capacities at low-pressures, increase hydrolytic and mechanical stabilities, and improve the ease of regeneration. Although they show great promise for post-combustion carbon capture, there are still major challenges that must be overcome before they can be used for such a large-scale application.

  12. Chromosome Conformation Capture Carbon Copy (5C) in Budding Yeast.

    Science.gov (United States)

    Belton, Jon-Matthew; Dekker, Job

    2015-06-01

    Chromosome conformation capture carbon copy (5C) is a high-throughput method for detecting ligation products of interest in a chromosome conformation capture (3C) library. 5C uses ligation-mediated amplification (LMA) to generate carbon copies of 3C ligation product junctions using single-stranded oligonucleotide probes. This procedure produces a 5C library of short DNA molecules which represent the interactions between the corresponding restriction fragments. The 5C library can be amplified using universal primers containing the Illumina paired-end adaptor sequences for subsequent high-throughput sequencing.

  13. The mechanism of selective molecular capture in carbon nanotube networks.

    Science.gov (United States)

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  14. New Technical Risk Management Development for Carbon Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Engel, David W.; Letellier, Bruce; Edwards, Brian; Leclaire, Rene; Jones, Edward

    2012-04-30

    The basic CCSI objective of accelerating technology development and commercial deployment of carbon capture technologies through the extensive use of numerical simulation introduces a degree of unfamiliarity and novelty that potentially increases both of the traditional risk elements. In order to secure investor confidence and successfully accelerate the marketability of carbon capture technologies, it is critical that risk management decision tools be developed in parallel with numerical simulation capabilities and uncertainty quantification efforts. The focus of this paper is on the development of a technical risk model that incorporates the specific technology maturity development (level).

  15. National assessment of geologic carbon dioxide storage resources: summary

    Science.gov (United States)

    ,

    2013-01-01

    The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national

  16. Basic Research Needs for Carbon Capture: Beyond 2020

    Energy Technology Data Exchange (ETDEWEB)

    Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buchanan, Michelle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-03-04

    This report is based on a SC/FE workshop on Carbon Capture: Beyond 2020, held March 4–5, 2010, to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The problem of thermodynamically efficient and scalable carbon capture stands as one of the greatest challenges for modern energy researchers. The vast majority of US and global energy use derives from fossil fuels, the combustion of which results in the emission of carbon dioxide into the atmosphere. These anthropogenic emissions are now altering the climate. Although many alternatives to combustion are being considered, the fact is that combustion will remain a principal component of the global energy system for decades to come. Today’s carbon capture technologies are expensive and cumbersome and energy intensive. If scientists could develop practical and cost-effective methods to capture carbon, those methods would at once alter the future of the largest industry in the world and provide a technical solution to one of the most vexing problems facing humanity. The carbon capture problem is a true grand challenge for today’s scientists. Postcombustion CO2 capture requires major new developments in disciplines spanning fundamental theoretical and experimental physical chemistry, materials design and synthesis, and chemical engineering. To start with, the CO2 molecule itself is thermodynamically stable and binding to it requires a distortion of the molecule away from its linear and symmetric arrangement. This binding of the gas molecule cannot be too strong, however; the sheer quantity of CO2 that must be captured ultimately dictates that the capture medium must be recycled over and over. Hence the CO2 once bound, must be released with relatively little energy input. Further, the CO2 must be rapidly and selectively pulled out of a mixture

  17. Carbon capture and storage-Investment strategies for the future?

    Energy Technology Data Exchange (ETDEWEB)

    Rammerstorfer, Margarethe, E-mail: margarethe.rammerstorfer@wu-wien.ac.at [Institute for Corporate Finance, Vienna University of Economics and Business, Administration, Heiligenstaedter Strasse 46-48, A - 1190 Vienna (Austria); ENRAG GmbH - Energy Research and Advisory Group, Getreidemarkt 9, A - 1060 Vienna (Austria); Eisl, Roland [ENRAG GmbH - Energy Research and Advisory Group, Getreidemarkt 9, A - 1060 Vienna (Austria)

    2011-11-15

    The following article deals with real options modeling for investing into carbon capture and storage technologies. Herein, we derive two separate models. The first model incorporates a constant convenience yield and dividend for the investment project. In the second model, the convenience yield is allowed to follow a mean reverting process which seems to be more realistic, but also increases the model's complexity. Both frameworks are to be solved numerically. Therefore, we calibrate our model with respect to empirical data and provide insights into the models' sensitivity toward the chosen parameter values. We found that given the recently observable prices for carbon dioxide, an investment into C O2-storage facilities is not profitable. - Highlights: > Real options modeling for investing into carbon capture and storage technologies. > Given the recently observable prices for carbon dioxide, an investment into CO{sub 2}-storage facilities is not profitable. > Investment decision is mainly affected by risk free rate and volatility.

  18. Carbon Capture and Storage: Legal and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The International Energy Agency (IEA) considers carbon capture and storage (CCS) a crucial part of worldwide efforts to limit global warming by reducing greenhouse-gas emissions. The IEA has estimated that the broad deployment of low-carbon energy technologies could reduce projected 2050 emissions to half 2005 levels -- and that CCS could contribute about one-fifth of those reductions. Reaching that goal, however, would require around 100 CCS projects to be implemented by 2020 and over 3000 by 2050.

  19. Phase-Change Aminopyridines as Carbon Dioxide Capture Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Deepika [Energy Processes and Materials; Page, Jordan P. [Energy Processes and Materials; Bowden, Mark E. [Energy Processes and Materials; Karkamkar, Abhijeet [Energy Processes and Materials; Heldebrant, David J. [Energy Processes and Materials; Glezakou, Vassiliki-Alexandra [Energy Processes and Materials; Rousseau, Roger [Energy Processes and Materials; Koech, Phillip K. [Energy Processes and Materials

    2017-06-22

    Carbon dioxide is the main atmospheric greenhouse gas released from industrial point sources. In order to mitigate adverse environmental effects of these emissions, carbon capture, storage and utilization is required. To this end, several CO2 capture technologies are being developed for application in carbon capture, which include aqueous amines and water-lean solvents. Herein we report new aminopyridine solvents with the potential for CO2 capture from coal-fired power plants. These four solvents 2-picolylamine, 3-picolylamine, 4-picolylamine and N’-(pyridin-4-ylmethyl)ethane-1,2-diamine are liquids that rapidly bind CO2 to form crystalline solids at standard room temperature and pressure. These solvents have displayed high CO2 capture capacity (11 - 20 wt%) and can be regenerated at temperatures in the range of 120 - 150 C. The advantage of these primary aminopyridine solvents is that crystalline salt product can be separated, making it possible to regenerate only the CO2-rich solid ultimately resulting in reduced energy penalty.

  20. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  1. Unravelling the Contested Nature of Carbon Capture and Storage

    NARCIS (Netherlands)

    van Egmond, Sander

    2016-01-01

    Our climate is changing. Carbon Capture and Storage (CCS) has been identified as an important technology to reduce CO2 emissions in order to avoid dangerous climate change. The implementation of CCS is however slow and CCS is publicly contested. This thesis focuses on the debate on this technology.

  2. Porous Organic Polymers for Post-Combustion Carbon Capture.

    Science.gov (United States)

    Zou, Lanfang; Sun, Yujia; Che, Sai; Yang, Xinyu; Wang, Xuan; Bosch, Mathieu; Wang, Qi; Li, Hao; Smith, Mallory; Yuan, Shuai; Perry, Zachary; Zhou, Hong-Cai

    2017-10-01

    One of the most pressing environmental concerns of our age is the escalating level of atmospheric CO2 . Intensive efforts have been made to investigate advanced porous materials, especially porous organic polymers (POPs), as one type of the most promising candidates for carbon capture due to their extremely high porosity, structural diversity, and physicochemical stability. This review provides a critical and in-depth analysis of recent POP research as it pertains to carbon capture. The definitions and terminologies commonly used to evaluate the performance of POPs for carbon capture, including CO2 capacity, enthalpy, selectivity, and regeneration strategies, are summarized. A detailed correlation study between the structural and chemical features of POPs and their adsorption capacities is discussed, mainly focusing on the physical interactions and chemical reactions. Finally, a concise outlook for utilizing POPs for carbon capture is discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Unravelling the Contested Nature of Carbon Capture and Storage

    NARCIS (Netherlands)

    van Egmond, Sander

    2016-01-01

    Our climate is changing. Carbon Capture and Storage (CCS) has been identified as an important technology to reduce CO2 emissions in order to avoid dangerous climate change. The implementation of CCS is however slow and CCS is publicly contested. This thesis focuses on the debate on this technology.

  4. Pipeline and Regional Carbon Capture Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Chris; Wortman, David; Brown, Chris; Hassan, Syed; Humphreys, Ken; Willford, Mark

    2016-03-31

    efforts are also documented in this report. All permit applications had been submitted to all agencies for those permits or approvals required prior to the start of project construction. Most of the requisite permits were received during Phase II. This report includes information on each permitting effort. Successes and lessons learned are included in this report that will add value to the next generation of carbon storage efforts.

  5. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  6. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    Science.gov (United States)

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  7. Sorbents for CO2 capture from high carbon fly ashes.

    Science.gov (United States)

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  8. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    Science.gov (United States)

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner.

  9. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  10. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali

    2013-08-05

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  11. Development Trends in Porous Adsorbents for Carbon Capture.

    Science.gov (United States)

    Sreenivasulu, Bolisetty; Sreedhar, Inkollu; Suresh, Pathi; Raghavan, Kondapuram Vijaya

    2015-11-03

    Accumulation of greenhouse gases especially CO2 in the atmosphere leading to global warming with undesirable climate changes has been a serious global concern. Major power generation in the world is from coal based power plants. Carbon capture through pre- and post- combustion technologies with various technical options like adsorption, absorption, membrane separations, and chemical looping combustion with and without oxygen uncoupling have received considerable attention of researchers, environmentalists and the stake holders. Carbon capture from flue gases can be achieved with micro and meso porous adsorbents. This review covers carbonaceous (organic and metal organic frameworks) and noncarbonaceous (inorganic) porous adsorbents for CO2 adsorption at different process conditions and pore sizes. Focus is also given to noncarbonaceous micro and meso porous adsorbents in chemical looping combustion involving insitu CO2 capture at high temperature (>400 °C). Adsorption mechanisms, material characteristics, and synthesis methods are discussed. Attention is given to isosteric heats and characterization techniques. The options to enhance the techno-economic viability of carbon capture techniques by integrating with CO2 utilization to produce industrially important chemicals like ammonia and urea are analyzed. From the reader's perspective, for different classes of materials, each section has been summarized in the form of tables or figures to get a quick glance of the developments.

  12. An Overview of Geologic Carbon Sequestration Potential in California

    Energy Technology Data Exchange (ETDEWEB)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  13. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    Science.gov (United States)

    Carr, T.R.; Iqbal, A.; Callaghan, N.; ,; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of

  14. Carbonate factories: A conundrum in sedimentary geology

    Science.gov (United States)

    Pomar, L.; Hallock, P.

    2008-03-01

    Describing, characterizing and interpreting the nearly infinite variety of carbonate rocks are conundrums - intricate and difficult problems having only conjectural answers - that have occupied geologists for more than two centuries. Depositional features including components, rock textures, lithofacies, platform types and architecture, all vary in space and time, as do the results of diagenetic processes on those primary features. Approaches to the study of carbonate rocks have become progressively more analytical. One focus has evolved from efforts to build reference models for specific Phanerozoic windows to scrutinize the effect of climate and long-term oscillations of the ocean-atmosphere system in influencing the mineralogy of carbonate components. This paper adds to the ongoing lively debates by attempting to understand changes in the predominant types of carbonate-producing organisms during the Mesozoic-Cenozoic, while striving to minimize the uniformitarian bias. Our approach integrates estimates of changes in Ca 2+ concentration in seawater and atmospheric CO 2, with biological evolution and ecological requirements of characteristic carbonate-producing marine communities. The underlying rationale for our approach is the fact that CO 2 is basic to both carbonates and organic matter, and that photosynthesis is a fundamental biological process responsible for both primary production of organic matter and providing chemical environments that promote calcification. Gross photosynthesis and hypercalcification are dependent largely upon sunlight, while net primary production and, e.g., subsequent burial of organic matter typically requires sources of new nutrients (N, P and trace elements). Our approach plausibly explains the changing character of carbonate production as an evolving response to changing environmental conditions driven by the geotectonic cycle, while identifying uncertainties that deserve further research. With metazoan consumer diversity reduced

  15. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  16. European CO{sub 2} prices and carbon capture investments

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, Luis M.; Chamorro, Jose M. [Bilbao Bizkaia Kutxa, Gran Via, 30, 48009 Bilbao (Spain); University of the Basque Country, Dpt. Fundamentos del Analisis Economico I, Av. Lehendakari Aguirre, 83, 48015 Bilbao (Spain)

    2008-11-15

    We assess the option to install a carbon capture and storage (CCS) unit in a coal-fired power plant operating in a carbon-constrained environment. We consider two sources of risk, namely the price of emission allowance and the price of the electricity output. First we analyse the performance of the EU market for CO{sub 2} emission allowances. Specifically, we focus on the contracts maturing in the Kyoto Protocol's first commitment period (2008 to 2012) and calibrate the underlying parameters of the allowance price process. Then we refer to the Spanish wholesale electricity market and calibrate the parameters of the electricity price process. We use a two-dimensional binomial lattice to derive the optimal investment rule. In particular, we obtain the trigger allowance prices above which it is optimal to install the capture unit immediately. We further analyse the effect of changes in several variables on these critical prices, among them allowance price volatility and a hypothetical government subsidy. We conclude that, at current permit prices, immediate installation does not seem justified from a financial point of view. This need not be the case, though, if carbon market parameters change dramatically, carbon capture technology undergoes significant improvements, and/or a specific governmental policy to promote these units is adopted. (author)

  17. Carbon fibre composite for ventilation air methane (VAM) capture

    Energy Technology Data Exchange (ETDEWEB)

    Thiruvenkatachari, Ramesh [Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 883, Kenmore, Queensland 4069 (Australia); Su Shi, E-mail: Shi.Su@csiro.au [Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 883, Kenmore, Queensland 4069 (Australia); Yu Xinxiang [Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 883, Kenmore, Queensland 4069 (Australia)

    2009-12-30

    Coal mine methane (CMM) is not only a hazardous greenhouse gas but is also a wasted energy resource, if not utilised. This paper evaluates a novel adsorbent material developed for capturing methane from ventilation air methane (VAM) gas in underground coal mines. The adsorbent material is a honeycomb monolithic carbon fibre composite (HMCFC) consisting of multiple parallel flow-through channels and the material exhibits unique features including low pressure drop, good mechanical properties, ability to handle dust-containing gas streams, good thermal and electrical conductivity and selective adsorption of gases. During this study, a series of HMCFC adsorbents (using different types of carbon fibres) were successfully fabricated. Experimental data demonstrated the proof-of-concept of using the HMCFC adsorbent to capture methane from VAM gas. The adsorption capacity of the HMCFC adsorbent was twice that of commercial activated carbon. Methane concentration of 0.56% in the inlet VAM gas stream is reduced to about 0.011% after it passes through the novel carbon fibre composite adsorbent material at ambient temperature and atmospheric pressure. This amounts to a maximum capture efficiency of 98%. These encouraging laboratory scale studies have prompted further large scale trials and economic assessment.

  18. Carbon fibre composite for ventilation air methane (VAM) capture.

    Science.gov (United States)

    Thiruvenkatachari, Ramesh; Su, Shi; Yu, Xin Xiang

    2009-12-30

    Coal mine methane (CMM) is not only a hazardous greenhouse gas but is also a wasted energy resource, if not utilised. This paper evaluates a novel adsorbent material developed for capturing methane from ventilation air methane (VAM) gas in underground coal mines. The adsorbent material is a honeycomb monolithic carbon fibre composite (HMCFC) consisting of multiple parallel flow-through channels and the material exhibits unique features including low pressure drop, good mechanical properties, ability to handle dust-containing gas streams, good thermal and electrical conductivity and selective adsorption of gases. During this study, a series of HMCFC adsorbents (using different types of carbon fibres) were successfully fabricated. Experimental data demonstrated the proof-of-concept of using the HMCFC adsorbent to capture methane from VAM gas. The adsorption capacity of the HMCFC adsorbent was twice that of commercial activated carbon. Methane concentration of 0.56% in the inlet VAM gas stream is reduced to about 0.011% after it passes through the novel carbon fibre composite adsorbent material at ambient temperature and atmospheric pressure. This amounts to a maximum capture efficiency of 98%. These encouraging laboratory scale studies have prompted further large scale trials and economic assessment.

  19. Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks

    Science.gov (United States)

    Murrell, G. R.; Thyne, G. D.

    2007-12-01

    Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

  20. Hydrogen and electricity co-production schemes based on gasification processes with carbon capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Cristian Cormos; Victoria Goia; Ana-Maria Cormos; Serban Agachi [' Babes - Bolyai' University, Cluj - Napoca (Romania). Faculty of Chemistry and Chemical Engineering

    2009-07-01

    This paper investigates the ways for transforming the coal or coal in addition with renewable energy sources (different sorts of biomass e.g. sawdust) or solid waste having energy value (e.g. municipal waste, meat and bone meal), through gasification into different decarbonised energy vectors (power, hydrogen) simultaneous with carbon dioxide capture and storage (CCS). The energy conversion processes investigated in the paper will be modelled and simulated using commercial process flow modelling package (ChemCAD) to produce data for performance evaluation of hydrogen and electricity co-production processes based on gasification with carbon capture and storage. The case studies investigated in the paper will produce a flexible ratio between power and hydrogen in the range of about 400 MW electricity and 0 - 200 MW hydrogen (considering the lower heating value of hydrogen) with 80 - 90 % carbon capture rate. A particular accent will be put in the paper on fuel selection criteria (blending fuels for optimizing gasifier performance), proper choice of gasification reactor (among various commercial types e.g. Shell, Siemens, GE Texaco etc.), modelling and simulation of whole process, thermal and power integration of processes, flexibility analysis of the energy conversion processes (production of a certain energy vector at specific moment of time according to the market demand), CO{sub 2} capture and storage and analysing the quality specifications for plant gaseous streams (hydrogen and carbon dioxide) considering the potential use of hydrogen in the transport sector (fuel cells) and carbon dioxide storage in geological formation or using for Enhanced Oil Recovery (EOR). 24 refs., 5 figs., 3 tabs.

  1. Amine reclaiming technologies in post-combustion carbon dioxide capture.

    Science.gov (United States)

    Wang, Tielin; Hovland, Jon; Jens, Klaus J

    2015-01-01

    Amine scrubbing is the most developed technology for carbon dioxide (CO2) capture. Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance, and therefore purification of the solvents is needed to overcome these problems. This review presents the reclaiming of amine solvents used for post combustion CO2 capture (PCC). Thermal reclaiming, ion exchange, and electrodialysis, although principally developed for sour gas sweetening, have also been tested for CO2 capture from flue gas. The three technologies all have their strengths and weaknesses, and further development is needed to reduce energy usage and costs. An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs.

  2. Amine reclaiming technologies in post-combustion carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    Tielin Wang; Jon Hovland; KlauS J.Jens

    2015-01-01

    Amine scrubbing is the most developed technology for carbon dioxide (CO2) capture.Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance,and therefore purification of the solvents is needed to overcome these problems.This review presents the reclaiming of amine solvents used for post combustion CO2 capture (PCC).Thermal reclaiming,ion exchange,and electrodialysis,although principally developed for sour gas sweetening,have also been tested for CO2 capture from flue gas.The three technologies all have their strengths and weaknesses,and further development is needed to reduce energy usage and costs.An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs.

  3. The global potential for carbon capture and storage from forestry.

    Science.gov (United States)

    Ni, Yuanming; Eskeland, Gunnar S; Giske, Jarl; Hansen, Jan-Petter

    2016-12-01

    Discussions about limiting anthropogenic emissions of CO[Formula: see text] often focus on transition to renewable energy sources and on carbon capture and storage (CCS) of CO[Formula: see text]. The potential contributions from forests, forest products and other low-tech strategies are less frequently discussed. Here we develop a new simulation model to assess the global carbon content in forests and apply the model to study active annual carbon harvest 100 years into the future. The numerical experiments show that under a hypothetical scenario of globally sustainable forestry the world's forests could provide a large carbon sink, about one gigatonne per year, due to enhancement of carbon stock in tree biomass. In addition, a large amount of wood, 11.5 GT of carbon per year, could be extracted for reducing CO[Formula: see text] emissions by substitution of wood for fossil fuels. The results of this study indicate that carbon harvest from forests and carbon storage in living forests have a significant potential for CCS on a global scale.

  4. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  5. Carbon Capture and Storage: Progress and Next Steps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Two years after the G8 leaders commitment to the broad deployment of carbon capture and storage (CCS) by 2020, significant progress has been made towards commercialisation of CCS technologies. Yet the 2008 Hokkaido G8 recommendation to launch 20 large-scale CCS demonstration projects by 2010 remains a challenge and will require that governments and industry accelerate the pace toward achieving this critical goal. This is one of the main findings of a new report by the International Energy Agency (IEA), the Carbon Sequestration Leadership Forum (CSLF), and the Global CCS Institute, to be presented to G8 leaders at their June Summit in Muskoka, Canada.

  6. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  7. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    DEFF Research Database (Denmark)

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    2012-01-01

    performance of the process to the L/G ratio to the absorber, CO2 lean solvent loadings, and striper pressure are presented in this paper. Based on the sensitivity analysis process optimization problems have been defined and solved and, a preliminary control structure selection has been made.......Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  8. Progress in carbon dioxide separation and capture: A review

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This article reviews the progress made in CO2 separation and capture research and engineering. Various technologies, such as absorption, adsorption, and membrane separation, are thoroughly discussed. New concepts such as chemical-looping combustion and hydrate-based separation are also introduced briefly. Future directions are suggested. Sequestration methods, such as forestation, ocean fertilization and mineral carbonation techniques are also covered. Underground injection and direct ocean dump are not covered.

  9. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta

    2005-07-01

    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  10. International politics of low carbon technology development: carbon capture and storage (CCS) in India

    OpenAIRE

    Kapila, Rudra Vidhumani

    2015-01-01

    This thesis explores the international political dynamics of developing low carbon technology. Specifically, Carbon Capture and Storage (CCS) technology as a climate mitigation strategy in a developing country context is examined. CCS is a technological solution that allows for the continued use of fossil fuels without the large amounts of associated CO2 emissions. This entails capturing the CO2 emitted from large point sources, such as a coal-fired power station, and transport...

  11. Economic Screening of Geologic Sequestration Options in the United States with a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.(BATTELLE (PACIFIC NW LAB)); Dooley, James J.(BATTELLE (PACIFIC NW LAB)); Brown, Daryl R.(BATTELLE (PACIFIC NW LAB)); Stephan, Alex J.(BATTELLE (PACIFIC NW LAB)); Badie I. Morsi

    2001-10-19

    Developing a carbon management strategy is a formidable task for nations as well as individual companies. It is often difficult to understand what options are available, let alone determine which may be optimal. In response to the need for a better understanding of complex carbon management options, Battelle has developed a state-of-the-art Geographic Information System (GIS) model with economic screening capability focused on carbon capture and geologic sequestration opportunities in the United States. This paper describes the development of this GIS-based economic screening model and demonstrates its use for carbon management analysis.

  12. Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture.

    Science.gov (United States)

    Ge, Chao; Song, Jian; Qin, Zhangfeng; Wang, Jianguo; Fan, Weibin

    2016-07-27

    A series of sustainable porous carbon materials were prepared from waste polyurethane foam and investigated for capture of CO2. The effects of preparation conditions, such as precarbonization, KOH to carbon precursor weight ratio, and activation temperature, on the porous structure and CO2 adsorption properties were studied for the purpose of controlling pore sizes and nitrogen content and developing high-performance materials for capture of CO2. The sample prepared at optimum conditions shows CO2 adsorption capacities of 6.67 and 4.33 mmol·g(-1) at 0 and 25 °C under 1 bar, respectively, which are comparable to those of the best reported porous carbons prepared from waste materials. The HCl treatment experiment reveals that about 80% of CO2 adsorption capacity arises from physical adsorption, while the other 20% is due to the chemical adsorption originated from the interaction of basic N groups and CO2 molecules. The relationship between CO2 uptake and pore size at different temperatures indicates that the micropores with pore size smaller than 0.86 and 0.70 nm play a dominant role in the CO2 adsorption at 0 and 25 °C, respectively. It was found that the obtained carbon materials exhibited high recyclability and high selectivity to adsorption of CO2 from the CO2 and N2 mixture.

  13. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  14. A Novel Strategy of Carbon Capture and Sequestration by rHLPD Processing

    Directory of Open Access Journals (Sweden)

    Richard Eric Riman

    2016-01-01

    Full Text Available Monoethanolamine (MEA scrubbing is an energy intensive process for Carbon Capture and Sequestration (CCS due to the regeneration of amine in stripping towers at high temperature (100-120 ºC and the subsequent pressurization of CO2 for geologic sequestration. In this paper, we introduce a novel method, reactive hydrothermal liquid phase densification (rHLPD, which is able to solidify (densify monolithic materials without using high temperature kilns. Then we integrate MEA-based CCS processing and mineral carbonation by using rHLPD technology. This integration is designated as rHLPD-Carbon Sequestration (rHLPD-CS process. Our results show that the CO2 captured in the MEA-CO2 solution was sequestered by the mineral (wollastonite CaSiO3 carbonation at a low operating temperature (60 ºC and simultaneously monolithic materials with a compressive strength of ~121 MPa were formed. This suggests that the use of rHLPD-CS technology eliminates the energy consumed for CO2-MEA stripping and CO2 compression and also sequesters CO2 to form value-added products, which have a potential to be utilized as construction and infrastructure materials. In contrast to the high energy requirements and excessive greenhouse gas emissions from conventional Portland cement manufacturing, our calculations show that the integration of rHLPD and CS technologies provides a low energy alternative to production of traditional cementitious binding materials.

  15. A structured approach for selecting carbon capture process models : A case study on monoethanolamine

    NARCIS (Netherlands)

    van der Spek, Mijndert; Ramirez, Andrea

    2014-01-01

    Carbon capture and storage is considered a promising option to mitigate CO2 emissions. This has resulted in many R&D efforts focusing at developing viable carbon capture technologies. During carbon capture technology development, process modeling plays an important role. Selecting an appropriate pro

  16. 75 FR 6087 - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Science.gov (United States)

    2010-02-05

    ... Documents#0;#0; ] Memorandum of February 3, 2010 A Comprehensive Federal Strategy on Carbon Capture and... investment in carbon capture and storage of any nation in history, and these investments are being matched by... technologies, I hereby establish an Interagency Task Force on Carbon Capture and Storage (Task Force)....

  17. A structured approach for selecting carbon capture process models : A case study on monoethanolamine

    NARCIS (Netherlands)

    van der Spek, Mijndert; Ramirez, Andrea

    2014-01-01

    Carbon capture and storage is considered a promising option to mitigate CO2 emissions. This has resulted in many R&D efforts focusing at developing viable carbon capture technologies. During carbon capture technology development, process modeling plays an important role. Selecting an appropriate

  18. 75 FR 32171 - American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and...

    Science.gov (United States)

    2010-06-07

    ... American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage... Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale carbon dioxide (CO 2 ) capture and storage (CCS...

  19. A structured approach for selecting carbon capture process models : A case study on monoethanolamine

    NARCIS (Netherlands)

    van der Spek, Mijndert; Ramirez, Andrea

    2014-01-01

    Carbon capture and storage is considered a promising option to mitigate CO2 emissions. This has resulted in many R&D efforts focusing at developing viable carbon capture technologies. During carbon capture technology development, process modeling plays an important role. Selecting an appropriate pro

  20. Carbon Capture and Storage Legal and Regulatory Review. Edition 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The International Energy Agency (IEA) considers carbon capture and storage (CCS) a crucial part of worldwide efforts to limit global warming by reducing greenhouse-gas emissions. The IEA estimates that emissions can be reduced to a level consistent with a 2°C global temperature increase through the broad deployment of low-carbon energy technologies – and that CCS would contribute about one-fifth of emission reductions in this scenario. Achieving this level of deployment will require that regulatory frameworks – or rather a lack thereof – do not unnecessarily impede environmentally safe demonstration and deployment of CCS, so in October 2010 the IEA launched the IEA Carbon Capture and Storage Legal and Regulatory Review. The CCS Review is a regular review of CCS regulatory progress worldwide. Produced annually, it collates contributions by national and regional governments, as well as leading organisations engaged in CCS regulatory activities, to provide a knowledge-sharing forum to support CCS framework development. Each two page contribution provides a short summary of recent and anticipated CCS regulatory developments and highlights a particular, pre-nominated regulatory theme. To introduce each edition, the IEA provides a brief analysis of key advances and trends, based on the contributions submitted. The theme for this third edition is stakeholder engagement in the development of CO2 storage projects. Other issues addressed include: regulating CO2-EOR, CCS and CO2-EOR for storage; CCS incentive policy; key, substantive issues being addressed by jurisdictions taking steps to finalise CCS regulatory framework development; and CCS legal and regulatory developments in the context of the Clean Energy Ministerial Carbon Capture, Use and Storage Action Group.

  1. Multi-scale modeling of carbon capture systems

    Energy Technology Data Exchange (ETDEWEB)

    Kress, Joel David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The development and scale up of cost effective carbon capture processes is of paramount importance to enable the widespread deployment of these technologies to significantly reduce greenhouse gas emissions. The U.S. Department of Energy initiated the Carbon Capture Simulation Initiative (CCSI) in 2011 with the goal of developing a computational toolset that would enable industry to more effectively identify, design, scale up, operate, and optimize promising concepts. The first half of the presentation will introduce the CCSI Toolset consisting of basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, and high-resolution filtered computationalfluid- dynamics (CFD) submodels. The second half of the presentation will describe a high-fidelity model of a mesoporous silica supported, polyethylenimine (PEI)-impregnated solid sorbent for CO2 capture. The sorbent model includes a detailed treatment of transport and amine-CO2- H2O interactions based on quantum chemistry calculations. Using a Bayesian approach for uncertainty quantification, we calibrate the sorbent model to Thermogravimetric (TGA) data.

  2. Overview of Carbon Capture and Storage Technology%碳捕获与封存技术综述

    Institute of Scientific and Technical Information of China (English)

    韩东升; 任吉萍; 吴干学; 郭家秀; 尹华强

    2012-01-01

    人类活动排放的二氧化碳将导致全球温度上升,从而引发各种灾难。CCS是短期内减缓全球变暖速度的重要手段。文中综述了碳捕获和碳封存的技术方法,以及CCS技术存在的问题。碳捕获分为燃烧前捕获、富氧燃烧捕获和燃烧后捕获。碳封存方式有地址封存、洋封存、矿石碳化、工业利用、生态封存等,其中地质封存是主流方式。%Carbon dioxide emissions from human activities will cause global temperatures to rise, which cause all kinds of disasters. CCS is an important technology to slow down the speed of global warming. In this paper, we introduce some technology methods on carbon capture and sequestration, and some prob- lems about CCS technology. Carbon capture includes pre-combustion capture, capture and oxyfuel combus- tion capture. The ways of carbon sequestration include address sequestration, ocean storage, mineral carbonation, industrial use and storage of ecology, geological storage is a main approach.

  3. Carbonate reservoir characterization. A geologic-engineering analysis. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Chilingarian, G.V. [School of Engineering, University of Southern California, Los Angeles (United States); Mazzullo, S.J. [Geology Department, Wichita State University, Wichita (United States); Rieke, H.H. [Petroleum Engineering Department, University of Southwestern Louisiana, Lafayette (United States); Dominguez, G.C.; Samaniego, F. [eds.

    1996-12-31

    This second volume on carbonate reservoirs completes the two-volume treatise on this important topic to petroleum engineers and geologists. The two volumes form a complete and modern reference work to the properties and production behavior of carbonate petroleum reservoirs. This volume contains valuable glossaries to geologic and petroleum engineering terms providing exact definitions for writers and speakers. Professors will find a useful appendix devoted to questions and problems that can be used for teaching assignments as well as a guide for lecture development. In addition, there is a chapter devoted to core analysis of carbonate rocks which is ideal for laboratory instruction. Managers and production engineers will find a review of the latest laboratory technology for carbonate formation evaluation in the chapter on core analysis. The modern classification of carbonate rocks is presented with petroleum production performance and overall characterization using seismic and well test analyses. Separate chapters are devoted to the important naturally fractured and chalk reservoirs. Throughout the book, the emphasis is on formation evaluation and performance. The importance of carbonate reservoirs lies in the fact that they contain as much as 50% of the total petroleum reserves of the world. This is sometimes masked by the uniquely different properties and production performance characteristics of carbonate reservoirs because of their heterogeneity and the immense diversity that exists among them. This two-volume treatise brings together the wide variety of approaches to the study of carbonate reservoirs and, therefore, will fit the needs of managers, engineers, geologists and teachers. figs., tabs., refs.

  4. Canada's carbon capture and storage initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Alexandra; Mitrovic, Milenka; Grant, Andrea

    2010-09-15

    Carbon capture and storage (CCS) is a critical technology for Canada to make meaningful emissions reductions in the fossil fuels sector. Canada is a global leader in CCS, and both federal and provincial governments are taking action to advance the deployment of this technology, including allocating over CAD 3.5 billion in public funding to CCS. These investments support several interdependent initiatives focusing on addressing the challenges facing CCS, supporting innovation, accelerating deployment, and facilitating information sharing. Canada is also committed to working internationally to ensure that our efforts at home contribute to the overall global advancement of CCS.

  5. The Economics of EU Carbon Capture and Storage Policy

    Energy Technology Data Exchange (ETDEWEB)

    Klaassen, Ger; Brockett, Scott (European Commission (Belgium)); Mantzos, Leonidas; Papandreou, V.; Capros, Pantelis (National Techncal University of Athens, Athens (Greece))

    2008-07-01

    This paper assesses policy options to stimulate the use of carbon capture and storage (CCS) in the EU. It examines the impacts of enabling CCS under the EU emission trading scheme, making CCS mandatory and subsidies to accompany climate mitigation efforts of the EU. The analysis uses a partial equilibrium energy model and external data. The results suggest that enabling CCS as part of the EU CO{sub 2} trading scheme could save 60 billion - with small impacts on employment. The additional costs of making CCS mandatory or using subsidies are not warranted by the additional cost savings and benefits

  6. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Syamlal, Madhava [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Cottrell, Roger [URS Corporation. (URS), San Francisco, CA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Kress, Joel D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sun, Xin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sundaresan, S. [Princeton Univ., NJ (United States); Sahinidis, Nikolaos V. [Carnegie Mellon Univ., Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Zitney, Stephen E. [NETL; Bhattacharyya, D. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Agarwal, Deb [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tong, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lin, Guang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dale, Crystal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Engel, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Calafiura, Paolo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beattie, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shinn, John [SynPatEco. Pleasant Hill, CA (United States)

    2012-09-30

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify

  7. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Syamlal, Madhava [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Cottrell, Roger [URS Corporation. (URS), San Francisco, CA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Kress, Joel D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sun, Xin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sundaresan, S. [Princeton Univ., NJ (United States); Sahinidis, Nikolaos V. [Carnegie Mellon Univ., Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Zitney, Stephen E. [NETL; Bhattacharyya, D. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Agarwal, Deb [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tong, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lin, Guang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dale, Crystal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Engel, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Calafiura, Paolo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beattie, Keith [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shinn, John [SynPatEco. Pleasant Hill, CA (United States)

    2012-09-30

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify

  8. Why capture CO2 from the atmosphere?

    National Research Council Canada - National Science Library

    Keith, David W

    2009-01-01

    Air capture is an industrial process for capturing CO2 from ambient air; it is one of an emerging set of technologies for CO2 removal that includes geological storage of biotic carbon and the acceleration of geochemical weathering...

  9. A Policy Strategy for Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Successful deployment of carbon capture and storage (CCS) is critically dependent on comprehensive policy support. While policy plays an important role in the deployment of many low-carbon technologies, it is especially crucial for CCS. This is because, in contrast to renewable energy or applications of energy efficiency, CCS generates no revenue, nor other market benefits, so long as there is no price on CO2 emissions. It is both costly to install and, once in place, has increased operating costs. Effective, well-designed policy support is essential in overcoming these barriers and the subsequent deployment of CCS technology. This guide for policy makers aims to assist those involved in designing national and international policies around CCS. It covers development of CCS from its early stages through to wide-scale deployment of the technology. The focus is both on incentives for conventional fossil-fuel CCS and for bioenergy with CCS (BECCS).

  10. Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride.

    Science.gov (United States)

    Oh, Youngtak; Le, Viet-Duc; Maiti, Uday Narayan; Hwang, Jin Ok; Park, Woo Jin; Lim, Joonwon; Lee, Kyung Eun; Bae, Youn-Sang; Kim, Yong-Hyun; Kim, Sang Ouk

    2015-09-22

    Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g(-1)) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications.

  11. Application of halloysite nanotubes for carbon dioxide capture

    Science.gov (United States)

    Kim, Jinsoo; Rubino, Ilaria; Lee, Joo-Youp; Choi, Hyo-Jick

    2016-04-01

    Halloysite is a naturally occurring clay, with physical structure represented by halloysite nanotubes (HNTs). We investigated the potential applicability of HNTs for carbon dioxide (CO2) capture, using two amine-functionalized HNTs: (3-aminopropyl) triethoxysilane (APTES)-grafted HNTs and polyethylenimine (PEI)-impregnated HNTs. APTES-HNTs and PEI-HNTs resulted in 5.6 and 30 wt. % (in sorbent) in functionalization onto HNTs, respectively. Capture efficiency was higher in APTES-HNTs at lower temperatures, while it was maximum in PEI-HNTs at 70°C-75 °C. At 75 °C, adsorption/desorption tests showed that 95% of the two reactions occurred within 30 min, and exhibited 0.15 and 0.21 millimole of CO2 adsorption capacity per millimole of amine group for APTES-HNTs and PEI-HNTs, respectively. During 10 cycles of CO2 adsorption/desorption, there was no significant decrease in sorbent weight and adsorption capacity in both HNTs. These results show that inherent structural features of HNTs can be easily tailored for the development of operational condition-specific CO2 capture system.

  12. Carbon Capture and Storage Legal and Regulatory Review. Edition 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The International Energy Agency (IEA) estimates that 100 carbon capture and storage (CCS) projects must be implemented by 2020 and over 3000 by 2050 if CCS is to fully contribute to the least-cost technology portfolio for CO2 mitigation. To help countries address the many legal and regulatory issues associated with such rapid deployment, the IEA launched the Carbon Capture and Storage Legal and Regulatory Review (CCS Review) in October 2010. The CCS Review gathers contributions by national and regional governments, as well as leading organisations engaged in CCS regulatory activities, to provide a knowledge-sharing forum that supports national-level CCS regulatory development. Each contribution provides a short summary of recent and anticipated developments and highlights a particular regulatory theme (such as financial contributions to long-term stewardship). To introduce each edition, the IEA provides a brief analysis of key advances and trends. Produced bi-annually, the CCS Review provides an up-to-date snapshot of global CCS regulatory developments. The theme for the second edition of the CCS Review, released in May 2011, is long-term liability for stored CO2. Other key issues addressed include: national progress towards implementation of the EU CCS Directive; developments in marine treaties relevant to CCS; international climate change negotiations; and the development process for CCS regulation.

  13. Carbon Capture and Storage and the London Protocol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The International Energy Agency (IEA) estimates that 100 Carbon Capture and Storage (CCS) projects will be required by 2020 and over 3000 by 2050 if CCS is to contribute fully to the least-cost technology portfolio for CO2 mitigation. For CCS to reach its emissions reduction potential, the 2009 IEA publication Technology Roadmap: Carbon Capture and Storage recommends that international legal obstacles associated with global CCS deployment be removed by 2012 -- including the prohibition on transboundary CO2 transfer under the London Protocol. The London Protocol was amended by contracting parties in 2009 to allow for cross-border transportation of CO2 for sub-seabed storage, but the amendment must be ratified by two-thirds of contracting parties to enter into force. It is unlikely that this will occur in the near term; this working paper therefore outlines options that may be available to contracting parties under international law to address the barrier to deployment presented by Article 6, pending formal entry into force of the 2009 amendment.

  14. On leakage and seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  15. Capture and Geological Storage of CO{sub 2}; Captage et stockage geologique du CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-07-01

    To build on the growing success of the first two international symposia on emission reduction and CO{sub 2} capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO{sub 2} emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO{sub 2} storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO{sub 2}: A global project for carbon management in South-East France

  16. Microbial Electrolytic Carbon Capture for Carbon Negative and Energy Positive Wastewater Treatment.

    Science.gov (United States)

    Lu, Lu; Huang, Zhe; Rau, Greg H; Ren, Zhiyong Jason

    2015-07-07

    Energy and carbon neutral wastewater management is a major goal for environmental sustainability, but current progress has only reduced emission rather than using wastewater for active CO2 capture and utilization. We present here a new microbial electrolytic carbon capture (MECC) approach to potentially transform wastewater treatment to a carbon negative and energy positive process. Wastewater was used as an electrolyte for microbially assisted electrolytic production of H2 and OH(-) at the cathode and protons at the anode. The acidity dissolved silicate and liberated metal ions that balanced OH(-), producing metal hydroxide, which transformed CO2 in situ into (bi)carbonate. Results using both artificial and industrial wastewater show 80-93% of the CO2 was recovered from both CO2 derived from organic oxidation and additional CO2 injected into the headspace, making the process carbon-negative. High rates and yields of H2 were produced with 91-95% recovery efficiency, resulting in a net energy gain of 57-62 kJ/mol-CO2 captured. The pH remained stable without buffer addition and no toxic chlorine-containing compounds were detected. The produced (bi)carbonate alkalinity is valuable for wastewater treatment and long-term carbon storage in the ocean. Preliminary evaluation shows promising economic and environmental benefits for different industries.

  17. Comparison of methods for geologic storage of carbon dioxide in saline formations

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Angela L. [U.S. DOE; Bromhal, Grant S. [U.S. DOE; Strazisar, Brian [U.S. DOE; Rodosta, Traci D. [U.S. DOE; Guthrie, William J. [U.S. DOE; Allen, Douglas E. [ORISE; Guthrie, George D. [U.S. DOE

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  18. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  19. How aware is the public of carbon capture and storage?

    Energy Technology Data Exchange (ETDEWEB)

    Curry, T.; Herzog, H.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Lab. for Energy and the Environment; Reiner, D.M. [Cambridge Univ., Cambridge, (United States). Judge Inst. of Management; Ansolabehere, S. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Dept. of Political Science

    2005-07-01

    This paper presented the results of a survey conducted in the fall of 2003 that examined attitudes toward, and understanding of, carbon dioxide capture and storage (CCS), also known as carbon sequestration. The study was conducted as part of broad range of questions about energy and the environment. The goal of the survey was to determine attitudes toward spending on the environment. In particular, the survey asked 17 questions to determine the level of public understanding of global warming and the carbon cycle and to determine public awareness of CCS. In addition to demographic information, the survey determined the effect of national energy usage information and price data on public preferences. The paper also presented some implications for public acceptance. The survey showed that the environment ranked thirteenth on a list of 22 issues facing the United States at the time of the survey, with the top three being terrorism, health care and the economy. The survey also asked respondents to choose the 2 most important of 10 environmental problems, namely water pollution, destruction of ecosystems, toxic waste, overpopulation, ozone depletion, global warming, urban sprawl, smog, endangered species, and acid rain. Global warming ranked sixth out of the issues in the survey. It was noted that very few people in the United States have heard of CCS, and those who have heard of it were no more likely to know what environmental concern it addressed than those who had not heard of CCS. 13 refs.

  20. Resting in peace?- regulatory approaches to the geological storage of radioactive waste and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Langlet, David (School of Business, Economics and Law, Univ. of Goeteborg, Goeteborg (Sweden))

    2010-09-15

    An emerging and much heralded technology for fighting climate change by reducing anthropogenic greenhouse gas emissions is carbon capture and storage (CCS). The final stage of CCS is the storage (or disposal) of the carbon dioxide (CO{sub 2}) away from the atmosphere, typically in a deep geological formation. Although the risks posed by CO{sub 2} differ from those presented by nuclear waste and spent fuel, the similarities - most noticeably the vast time scales involved and the preference for concentration and containment - make a comparison of regulatory approaches to such risks relevant and informative. The intention of the current paper is to carry out such a comparison. Using Sweden as a focal point, applicable legal frameworks for the management of captured CO{sub 2} and spent nuclear fuel and nuclear waste will be juxtaposed. Two aspects in particular will be chosen for closer scrutiny: requirements pertaining to the selection of sites for disposal/storage of nuclear material and captured CO{sub 2} respectively, and the nature and allocation of economic responsibility for handling and minimizing long-term hazards associated with those substances. In the case of nuclear residues, responsibility for spent fuel will be the main focus. However, the same principles mostly apply to other radioactive waste from the nuclear industry, such as parts of decommissioned nuclear reactors

  1. Development of Electro-Microbial Carbon Capture and Conversion Systems

    KAUST Repository

    Al Rowaihi, Israa S.

    2017-05-01

    Carbon dioxide is a viable resource, if used as a raw material for bioprocessing. It is abundant and can be collected as a byproduct from industrial processes. Globally, photosynthetic organisms utilize around 6’000 TW (terawatt) of solar energy to fix ca. 800 Gt (gigaton) of CO2 in the planets largest carbon-capture process. Photosynthesis combines light harvesting, charge separation, catalytic water splitting, generation of reduction equivalents (NADH), energy (ATP) production and CO2 fixation into one highly interconnected and regulated process. While this simplicity makes photosynthetic production of commodity interesting, yet photosynthesis suffers from low energy efficiency, which translates in an extensive footprint for solar biofuels production conditions that store < 2% of solar energy. Electron transfer processes form the core of photosynthesis. At moderate light intensity, the electron transport chains reach maximum transfer rates and only work when photons are at appropriate wavelengths, rendering the process susceptible to oxidative damage, which leads to photo-inhibition and loss of efficiency. Based on our fundamental analysis of the specialized tasks in photosynthesis, we aimed to optimize the efficiency of these processes separately, then combine them in an artificial photosynthesis (AP) process that surpasses the low efficiency of natural photosynthesis. Therefore, by combining photovoltaic light harvesting with electrolytic water splitting or CO2 reduction in combination with microbiological conversion of electrochemical products to higher valuable compounds, we developed an electro-microbial carbon capture and conversion setups that capture CO2 into the targeted bioplastic; polyhydroxybutyrate (PHB). Based on the type of the electrochemical products, and the microorganism that either (i) convert products formed by electrochemical reduction of CO2, e.g. formate (using inorganic cathodes), or (ii) use electrochemically produced H2 to reduce CO2

  2. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finley

    2005-09-30

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline

  3. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    Energy Technology Data Exchange (ETDEWEB)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems

  4. Calcium-decorated carbon nanostructures for the selective capture of carbon dioxide.

    Science.gov (United States)

    Koo, Jahyun; Bae, Hyeonhu; Kang, Lei; Huang, Bing; Lee, Hoonkyung

    2016-10-26

    The development of advanced materials for CO2 capture is of great importance for mitigating climate change. In this paper, we outline our discovery that calcium-decorated carbon nanostructures, i.e., zigzag graphene nanoribbons (ZGNRs), carbyne, and graphyne, have great potential for selective CO2 capture, as demonstrated via first-principles calculations. Our findings show that Ca-decorated ZGNRs can bind up to three CO2 molecules at each Ca atom site with an adsorption energy of ∼-0.8 eV per CO2, making them suitable for reversible CO2 capture. They adsorb CO2 molecules preferentially, compared with other gas molecules such as H2, N2, and CH4. Moreover, based on equilibrium thermodynamical simulations, we confirm that Ca-decorated ZGNRs can capture CO2 selectively from a gas mixture with a capacity of ∼4.5 mmol g(-1) under ambient conditions. Similar results have been found in other carbon nanomaterials, indicating the generality of carbon based nanostructures for selective CO2 capture under ambient conditions.

  5. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that

  6. Computational Tools for Accelerating Carbon Capture Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David

    2013-01-01

    The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.

  7. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amornvadee Veawab

    2006-09-30

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Ethylenediamine was detected in a degraded solution of MEA/PZ solution, suggesting that piperazine is subject to oxidation. Stripper modeling has demonstrated that vacuum strippers will be more energy efficient if constructed short and fat rather than tall and skinny. The matrix stripper has been identified as a configuration that will significantly reduce energy use. Extensive measurements of CO{sub 2} solubility in 7 m MEA at 40 and 60 C have confirmed the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean solutions of 6.2 m MEA/PZ as piperazine increases from 0 to 3.1 m.

  8. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marcus Hilliard; Amorvadee Veawab

    2006-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The pilot plant data have been reconciled using 17% inlet CO{sub 2}. A rate-based model demonstrates that the stripper is primarily controlled by liquid film mast transfer resistance, with kinetics at vacuum and diffusion of reactants and products at normal pressure. An additional major unknown ion, probably glyoxylate, has been observed in MEA degradation. Precipitation of gypsum may be a feasible approach to removing sulphate from amine solutions and providing for simultaneous removal of CO{sub 2} and SO{sub 2}. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater CO{sub 2} loading.

  9. Global Action to Advance Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Representing one-fifth of total global CO2 emissions currently, industrial sectors such as cement, iron and steel, chemicals and refining are expected to emit even more CO2 over the coming decades. Carbon capture and storage (CCS) is currently the only large-scale mitigation option available to cut the emissions intensity of production by over 50% in these sectors. CCS is already proven in some industrial sectors, such as natural gas processing. Yet, the commercial-scale demonstration stage in key sectors such as iron and steel, cement or some processes in the refining sector has not been reached. To achieve decarbonisation goals, policy makers must pay more attention to industrial applications of CCS, while not undermining the global competitiveness of these sectors.

  10. Epoxy based oxygen enriched porous carbons for CO2 capture

    Science.gov (United States)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2017-08-01

    Oxygen enriched carbon adsorbents were successfully synthesized for the first time from template zeolite and epoxy resin as precursor using a nanocasting technique. Carbonization and CO2 activation were performed at various temperatures (500-800 °C) to prepare different carbon structure adsorbents. Several characterization techniques were used to characterize the textural structure, oxygen content and surface functional groups of the adsorbents. The carbon adsorbents show high oxygen content (47.51%), highest surface area (SBET = 686.37 m2 g-1) and pore volume (0.60 cm3 g-1), respectively. The materials were evaluated thermogravimetrically at different adsorption temperatures (30-100 °C) and CO2 concentrations (6-100%). Adsorbent prepared at 700 °C exhibited highest CO2 uptake of 0.91 mmol g-1 due to high surface basicity. Further, regeneration studies of adsorbent exhibited easy regenerability and stability over four multiple adsorptions-desorption cycles. Kinetic models for CO2 adsorption at various CO2 concentrations and temperatures were studied and it was found that the fractional order provided best fitting for the adsorption behavior with an error of less than 3%. The experimental data for CO2 adsorption were analyzed using different isothermal models and found that the Freundlich isothermal model presented perfect fit among all isotherm models depicting heterogeneous adsorbent surface. The isosteric heat of adsorption was estimated to be 11.75 kJ mol-1, indicating physiosorption process. Overall, the above results suggested that the synthesized adsorbent using nanocasting technique provides a feasible way for CO2 capture from point source due to their environmentally benign nature, low cost and stable adsorption capacity.

  11. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  12. Carbon dioxide capture capacity of sodium hydroxide aqueous solution.

    Science.gov (United States)

    Yoo, Miran; Han, Sang-Jun; Wee, Jung-Ho

    2013-01-15

    The present paper investigates the various features of NaOH aqueous solution when applied as an absorbent to capture carbon dioxide (CO(2)) emitted with relatively high concentration in the flue gas. The overall CO(2) absorption reaction was carried out according to consecutive reaction steps that are generated in the order of Na(2)CO(3) and NaHCO(3). The reaction rate and capture efficiency were strongly dependent on the NaOH concentration in the Na(2)CO(3) production range, but were constant in the NaHCO(3) production step, irrespective of the NaOH concentration. The amount of CO(2) absorbed in the solution was slightly less than the theoretical value, which was ascribed to the low trona production during the reaction and the consequent decrease in CO(2) absorption in the NaOH solution. The mass ratio of absorbed CO(2) that participated in the Na(2)CO(3), NaHCO(3), and trona production reactions was calculated to be 20:17:1, respectively.

  13. Capture and geological storage of CO{sub 2}. Innovation, industrial stakes and realizations; Captage et stockage geologique du CO{sub 2}. Innovation, enjeux industriels et realisations

    Energy Technology Data Exchange (ETDEWEB)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th

    2007-07-01

    -making industries and their CO{sub 2} capture and storage needs: the ULCOS program; CO{sub 2} capture technologies: road-maps and potential cost abatement; membranes: oxygen production and hydrogen separation; CO2GeoNet: integration of European research for the establishment of confidence in CO{sub 2} geologic storage; CO2SINK, CO{sub 2} geologic storage test at the European pilot site of Ketzin (Germany); storage in aquifers for European industrial projects: AQUA CO2; the US approach: US standards for the qualification of a CO{sub 2} storage in agreement with federal and state regulations; legal and regulatory aspects; societal acceptation; CO{sub 2} capture, geologic storage and carbon market; economic aspects of CO{sub 2} capture and storage; an experience of implementation of 'clean development mechanisms' in an industrial strategy; closing talk. (J.S.)

  14. Reservoir engineering issues in the geological disposal of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ennis-King, J.; Paterson, L. [CSIRO Petroleum, Glen Waverley, Vic. (Australia). Australian Petroleum Cooperative Research Centre

    2001-07-01

    Injection into geological formations is one of the leading options for disposing of the large amounts of carbon dioxide generated in operations such as natural gas processing. A variety of factors influences the effectiveness of this form of storage in particular geological formations. The phase behaviour of carbon dioxide as a function of temperature and pressure is the most basic of these. Depending on the mineralogy, dissolution of the reservoir rock may lead to local changes in permeability in the short term, while precipitation reactions may influence the capacity for long term sequestration. The spread of the injected gas will also depend on the combined effect of viscous fingering, gravity override, the heterogeneity of the formation and the possibility of preferentially leaching out high permeability paths. The purpose of this work (as part of the Australian Petroleum Cooperative Research Centre's GEODISC program) is to review the interaction between these factors and their integration in a coupled flow models with a particular emphasis on the role of heterogeneity. 14 refs., 2 figs.

  15. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Syamlal, Madhava [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Cottrell, Roger [URS Corporation. (URS), San Francisco, CA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Kress, Joel D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sundaresan, S. [Princeton Univ., NJ (United States); Sun, Xin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Storlie, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bhattacharyya, D. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Tong, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zitney, Stephen E [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Dale, Crystal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Engel, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, Deb [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calafiura, Paolo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shinn, John [SynPatEco, Pleasant Hill, CA (United States)

    2014-03-05

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories’ core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI’s industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI’s academic participants (Carnegie Mellon University, Princeton University, West

  16. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  17. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  18. Ultraviolet modification of Chlamydomonas reinhardtii for carbon capture

    Directory of Open Access Journals (Sweden)

    Gopal NS

    2016-04-01

    Full Text Available Nikhil S Gopal,1 K Sudhakar2 1The Lawrenceville School, Lawrenceville, NJ, USA; 2Bioenergy Laboratory, Malauna Azad National Institute of Technology, Bhopal, India Purpose: Carbon dioxide (CO2 levels have been rising rapidly. Algae are single-cell organisms with highly efficient CO2 uptake mechanisms. Algae yield two to ten times more biomass versus terrestrial plants and can grow nearly anywhere. Large scale CO2 sequestration is not yet sustainable due to high amounts of nitrogen (N and phosphate (P needed to grow algae in media. Methods: Mutant strains of Chlamydomonas reinhardtii were created using ultraviolet light (2.2–3 K J/m2 and natural selection using media with 20%–80% lower N and P compared to standard Sueoka's high salt medium. Strains were selected based upon growth in media concentrations varying from 20% to 80% less N/P compared to control. Biomass was compared to wild-type control (CC-125 using direct counts, optical density dry weight, and mean doubling time. Results: Mean doubling time was 20 and 25 hours in the low N and N/P strains, respectively (vs 66 hours in control. Using direct counts, growth rates of mutant strains of low N and N/P cultures were not statistically different from control (P=0.37 and 0.70, respectively. Conclusion: Two new strains of algae, as well as wild-type control, were able to grow while using 20%–40% less N and P. Ultraviolet light-based modification of algae is an inexpensive and alternative option to genetic engineering techniques. This technique might make larger scale biosequestration possible. Keywords: biosequestration, ultraviolet, carbon sequestration, carbon capture, algae

  19. Reviews and synthesis: Carbon capture and storage monitoring - an integrated biological, biophysical and chemical approach

    Science.gov (United States)

    Hicks, N.; Vik, U.; Taylor, P.; Ladoukakis, E.; Park, J.; Kolisis, F.; Stahl, H.; Jakobsen, K. S.

    2015-06-01

    Carbon capture and storage (CCS) is a developing technology that seeks to mitigate against the impact of increasing anthropogenic carbon dioxide (CO2) production by capturing CO2 from large point source emitters. After capture the CO2 is compressed and transported to a reservoir where it is stored for geological time scales. Potential leakages from CCS projects, where stored CO2 migrates through the overlaying sediments, are likely to have severe implications on benthic and marine ecosystems. Nonetheless, prokaryotic response to elevated CO2 concentrations has been suggested as one of the first detectable warnings if a CO2 leakage should occur. Applying properties of prokaryotic communities (i.e. community composition and metabolic status) as a novel CO2 monitoring application is highly reliable within a multidisciplinary framework, where deviations from the baseline can easily be identified. In this paper we review current knowledge about the impact of CO2 leakages on marine sediments from a multidisciplinary-based monitoring perspective. We focus on aspects from the fields of biology, geophysics, and chemistry, and discuss a case study example. We argue the importance of an integrative multidisciplinary approach, incorporating biogeochemistry, geophysics, microbial ecology and modelling, with a particular emphasis on metagenomic techniques and novel bioinformatics, for future CCS monitoring. Within this framework, we consider that an effective CCS monitoring programme will ensure that large-scale leakages with potentially devastating effects for the overlaying ecosystem are avoided. Furthermore, the multidisciplinary approach suggested here for CCS monitoring is generic, and can be adapted to other systems of interest.

  20. National assessment of geologic carbon dioxide storage resources: results

    Science.gov (United States)

    ,

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery

  1. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    Science.gov (United States)

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  2. The Environmental and Economic Sustainability of Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Mayuran Sivapalan

    2011-05-01

    Full Text Available For carbon capture and storage (CCS to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and

  3. The environmental and economic sustainability of carbon capture and storage.

    Science.gov (United States)

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  4. Inorganic membranes for carbon capture and power generation

    Science.gov (United States)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence

  5. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu [Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964 (United States); Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com [RPS ASA, 55 Village Square Drive, South Kingstown, RI 02879 (United States); Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr [Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering, 32 1312 Beon-gil, Yuseong-daero, Yuseong-gu, Deaejeon (Korea, Republic of); Park, Young-Gyu, E-mail: ypark@kiost.ac.kr [Ocean Circulation and Climate Change Research Center, Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan (Korea, Republic of)

    2016-02-15

    Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here, we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification

  6. Capture and geological sequestration of CO{sub 2}: fighting against global warming; Capture et stockage geologique du CO{sub 2}: lutter contre le rechauffement planetaire

    Energy Technology Data Exchange (ETDEWEB)

    Czernichowski-Lauriol, I

    2006-07-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO{sub 2} sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO{sub 2} emissions between today and 2050. The CO{sub 2} capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  7. A U.S. Strategy for Regulating the Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    Morgan, M. Granger; McCoy, Sean T.

    2011-03-01

    The United States produces more than 70% of its electricity from fossil fuels and nearly 50% from coal alone [U.S. Energy Information Administration, 2009]. Worldwide, the percentages are similar, making coal the single largest fuel source (42%) for electricity generation, followed by natural gas (21%) [International Energy Agency, 2009]. Dramatic improvements in the efficiency of electricity use and expanded use of renewable and nuclear energy can make important contributions to reducing carbon dioxide (CO2) emissions from electricity generation. However, we see no way to achieve an order of magnitude reduction in those emissions by the latter part of this century without some continued use of fossil fuels [Morgan et al., 2005]. This means that an essential part of any portfolio for emissions reduction will be technology to capture CO2 and permanently sequester it in suitable geologic formations.

  8. Carbon dioxide capture by activated methyl diethanol amine impregnated mesoporous carbon

    Science.gov (United States)

    Ardhyarini, N.; Krisnandi, Y. K.

    2017-07-01

    Activated Methyl Diethanol Amine (aMDEA) were impregnated onto the surface of the mesoporous carbon to increase carbon dioxide (CO2) adsorption capacity. The mesoporous carbon was synthesized through soft template method with phloroglucinol as carbon precursor and triblock copolymer (Pluronic F127) as structure directing agent. These activated MDEA impregnated mesoporous carbon (aMDEA-MC) were characterized using various solid characterization techniques. CO2 adsorption was investigated using autoclaved-reactor in the batch system. The FTIR spectrum of aMDEA-MC had absorption peaks at 3395 cm-1 and 1031 cm-1 which are characteristic for O-H stretch and amine C-N stretch in MDEA. The elemental analyzer showed that nitrogen content on the mesoporous carbon increased after impregnation by 23 wt.%. The BET surface area and total pore volume of mesoporous carbon decreased after impregnation, 43 wt.% and 50 wt.%, respectively. The maximum CO2 adsorption capacity of aMDEA43-MC was 2.63 mmol/g (298 K, 5 psi and pure CO2). This is 64 % and 35 % higher compared to the CO2 adsorption capacity of the starting MC and also commercially available activated carbon with higher surface area. All the results suggest that MDEA-MC is a promising adsorbent for CO2 capture.

  9. 76 FR 24007 - Notice of Intent To Prepare an Environmental Impact Statement for the Lake Charles Carbon Capture...

    Science.gov (United States)

    2011-04-29

    ... of Intent To Prepare an Environmental Impact Statement for the Lake Charles Carbon Capture and... Industrial Carbon Capture and Sequestration (ICCS) Program. The Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) would demonstrate: (1) advanced technologies that capture...

  10. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.

  11. Pore-Level Modeling of Carbon Dioxide Sequestration in Geologic Media: Gravity-Driven Escape

    Science.gov (United States)

    Bromhal, G. S.; Smith, D. H.; Ferer, M.

    2002-05-01

    Carbon capture with storage in geologic media has the potential to sequester a significant amount of anthropogenically-produced carbon dioxide in the upcoming decades. Underground injection of gas is already a common practice in the oil and gas industry, and injection into deep brine-saturated formations is a commercially proven method of sequestering CO2. However, before these become viable means of sequestration on a large scale, a number of questions must be answered about the ability of brine and oil fields to retain the CO2 that has been stored there. The primary methods of release of carbon dioxide from many geologic formations likely will be gravity-driven percolation. We have developed a pore-level numerical model that can be used to study the invasion of a non-wetting fluid (CO2) into a porous medium filled with wetting fluid (brine). The model incorporates a distribution of "pore-throat" radii, the formation wettability (i.e., the gas-liquid-solid contact angle), the interfacial tension between the fluids, the fluid viscosities and densities, and all other parameters that appear in the capillary pressure or the capillary, Bond, or fluid-trapping numbers. For this work, the model has been used to study gravity-driven flow upward out of brine-saturated formations (which is very similar to the downward infiltration of DNAPLs into water-saturated porous media). Results are presented which show how leakage rates depend on the amount of carbon dioxide sequestered and the average pore size of the overlying formations, as well as the density of CO2 (which will change with the depth of the formation).

  12. A multicriteria decision analysis model and risk assessment framework for carbon capture and storage.

    Science.gov (United States)

    Humphries Choptiany, John Michael; Pelot, Ronald

    2014-09-01

    Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life-cycle assessments and cost-benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil-fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high-level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions.

  13. Carbon capture and storage - legal and regulatory framework

    Energy Technology Data Exchange (ETDEWEB)

    Russial, T.J. [US Carbon Sequestration Council (United States)

    2011-01-15

    In 1998, a colleague introduced a paper on greenhouse gas (GHG) reduction with a famous Mark Twain quote: 'Everybody talks about the weather, but nobody does anything about it.' Humour aside, the colleague's point was to highlight the considerable body of work under way to develop technologies to address the climate change impacts of GHG emissions. One option is carbon capture and storage (CCS), a technology that has been in the making for over 50 years. Thousands of scientists, engineers, and policymakers throughout the world are not only talking about CCS, but also diligently pursuing the technical know-how and legal and regulatory frameworks needed to deploy CCS as a climate change solution. CCS has many passionate supporters, some equally passionate detractors, and some who view it as a technology that must be tolerated to bridge the gap to fossil-free energy. This is a progress report on CCS readiness throughout the world with regard to the legal and regulatory framework development that is critical to CCS deployment. 177 refs., 7

  14. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  15. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink.

    Science.gov (United States)

    Hilton, Robert G; Galy, Valier; Gaillardet, Jérôme; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Gröcke, Darren R; Coxall, Helen; Bouchez, Julien; Calmels, Damien

    2015-08-06

    Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.

  16. A dynamic mathematical model for packed columns in carbon capture plants

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Jørgensen, John Bagterp; Fosbøl, Philip Loldrup

    2015-01-01

    In this paper, we present a dynamic mathematical model for the absorption and desorption columns in a carbon capture plant. Carbon capture plants must be operated in synchronization with the operation of thermal power plants. Dynamic and flexible operation of the carbon capture plant is important...... simulation using monoethanolamine (MEA) and piperazine (PZ) as solvent. MEA is considered as the base-case solvent in the carbon capture business. The effect of changes in the flue gas flow rate and changes in the available steam are investigated to determine their influence on the performance of the capture...... process. The response of the model is shown in terms of capture efficiency and purity of the CO2 product stream. The model is aimed for rigorous dynamic simulation in the context of optimization and control strategy development....

  17. Technical and economical evaluation of carbon dioxide capture and conversion to methanol process

    Science.gov (United States)

    Putra, Aditya Anugerah; Juwari, Handogo, Renanto

    2017-05-01

    Phenomenon of global warming, which is indicated by increasing of earth's surface temperature, is caused by high level of greenhouse gases level in the atmosphere. Carbon dioxide, which increases year by year because of high demand of energy, gives the largest contribution in greenhouse gases. One of the most applied solution to mitigate carbon dioxide level is post-combustion carbon capture technology. Although the technology can absorb up to 90% of carbon dioxide produced, some worries occur that captured carbon dioxide that is stored underground will be released over time. Utilizing captured carbon dioxide could be a promising solution. Captured carbon dioxide can be converted into more valuable material, such as methanol. This research will evaluate the conversion process of captured carbon dioxide to methanol, technically and economically. From the research, it is found that technically methanol can be made from captured carbon dioxide. Product gives 25.6905 kg/s flow with 99.69% purity of methanol. Economical evaluation of the whole conversion process shows that the process is economically feasible. The capture and conversion process needs 176,101,157.69 per year for total annual cost and can be overcome by revenue gained from methanol product sales.

  18. Mercury capture by native fly ash carbons in coal-fired power plants

    Science.gov (United States)

    Hower, James C.; Senior, Constance L.; Suuberg, Eric M.; Hurt, Robert H.; Wilcox, Jennifer L.; Olson, Edwin S.

    2013-01-01

    The control of mercury in the air emissions from coal-fired power plants is an on-going challenge. The native unburned carbons in fly ash can capture varying amounts of Hg depending upon the temperature and composition of the flue gas at the air pollution control device, with Hg capture increasing with a decrease in temperature; the amount of carbon in the fly ash, with Hg capture increasing with an increase in carbon; and the form of the carbon and the consequent surface area of the carbon, with Hg capture increasing with an increase in surface area. The latter is influenced by the rank of the feed coal, with carbons derived from the combustion of low-rank coals having a greater surface area than carbons from bituminous- and anthracite-rank coals. The chemistry of the feed coal and the resulting composition of the flue gas enhances Hg capture by fly ash carbons. This is particularly evident in the correlation of feed coal Cl content to Hg oxidation to HgCl2, enhancing Hg capture. Acid gases, including HCl and H2SO4 and the combination of HCl and NO2, in the flue gas can enhance the oxidation of Hg. In this presentation, we discuss the transport of Hg through the boiler and pollution control systems, the mechanisms of Hg oxidation, and the parameters controlling Hg capture by coal-derived fly ash carbons. PMID:24223466

  19. Overview of oxy-fuel combustion technology for carbon dioxide (CO2) capture. Chapter 1

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ligang [Canmet, Natural Resources Canada (Canada)

    2011-07-01

    Carbon capture and storage (CCS) is a technique in which carbon is captured, liquefied and transported to an underground storage site. The oxy-fuel combustion process which consists of using oxygen for combustion instead of air is a good approach for CCS as it produces a carbon dioxide enriched flue gas, facilitating its separation from other contaminants. This book treats of the use of use of oxy-fuel combustion for power generation and carbon dioxide (CO2) capture, the current state of this technology, its future application and directions are also presented.

  20. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  1. Post combustion carbon dioxide capture using amine functionalized carbon nanotubes: A review

    Science.gov (United States)

    Dash, Sukanta K.

    2016-04-01

    Many technological viable options available for post combustion CO2 capture (PCC) from fossil fuel based power plants, such as amine absorption, adsorption, membrane separation, cryogenic separation processes. Out of these technological pathways adsorption using carbon nanotubes (CNTs) has shown potential advantages compared to other techniques for CO2 capture from flue gas streams which is evident form published literature from various research groups. Considering the recent developments, this work presents a state-of-the-art review on CO2 capture process using CNTs, amine functionalized CNTs and membrane based CNTs. One of the major challenges in developing CNT adsorption technology lies in the choice and development of an adsorbent material that can efficiently adsorb and also easily desorb and concentrate the captured CO2 with low energy input. This review work consists of a number of interdisciplinary research activities that are focused on the feasibility of developing a small scale carbon capture and storage (CCS) based on the adsorption properties of chemically functionalized CNTs. Another recent development for CO2 separation from flue gas is the application of membrane-based CNTs. Membrane based CO2 separation invites several advantages such as no need of an additional chemical or physical solvent; low energy use; simple process, hence easy to operate. In this work analysis and literature reviews carried out in the recent development in CNTs and membrane based CNTs for CO2 adsorption and separation to update the recent progress in this area. Finally a comparison with amine absorption process and retrofitting option has been discussed with few recommendations.

  2. Biocatalytic carbon capture via reversible reaction cycle catalyzed by isocitrate dehydrogenase.

    Science.gov (United States)

    Xia, Shunxiang; Frigo-Vaz, Benjamin; Zhao, Xueyan; Kim, Jungbae; Wang, Ping

    2014-09-12

    The practice of carbon capture and storage (CCS) requires efficient capture and separation of carbon dioxide from its gaseous mixtures such as flue gas, followed by releasing it as a pure gas which can be subsequently compressed and injected into underground storage sites. This has been mostly achieved via reversible thermochemical reactions which are generally energy-intensive. The current work examines a biocatalytic approach for carbon capture using an NADP(H)-dependent isocitrate dehydrogenase (ICDH) which catalyzes reversibly carboxylation and decarboxylation reactions. Different from chemical carbon capture processes that rely on thermal energy to realize purification of carbon dioxide, the biocatalytic strategy utilizes pH to leverage the reaction equilibrium, thereby realizing energy-efficient carbon capture under ambient conditions. Results showed that over 25 mol of carbon dioxide could be captured and purified from its gas mixture for each gram of ICDH applied for each carboxylation/decarboxylation reaction cycle by varying pH between 6 and 9. This work demonstrates the promising potentials of pH-sensitive biocatalysis as a green-chemistry route for carbon capture.

  3. Molten Carbonate Fuel Cell performance analysis varying cathode operating conditions for carbon capture applications

    Science.gov (United States)

    Audasso, Emilio; Barelli, Linda; Bidini, Gianni; Bosio, Barbara; Discepoli, Gabriele

    2017-04-01

    The results of a systematic experimental campaign to verify the impact of real operating conditions on the performance of a complete Molten Carbonate Fuel Cell (MCFC) are presented. In particular, the effects of ageing and composition of water, oxygen and carbon dioxide in the cathodic feeding stream are studied through the analysis of current-voltage curves and Electrochemical Impedance Spectroscopy (EIS). Based on a proposed equivalent electrical circuit model and a fitting procedure, a correlation is found among specific operating parameters and single EIS coefficients. The obtained results suggest a new performance monitoring approach to be applied to MCFC for diagnostic purpose. Particular attention is devoted to operating conditions characteristic of MCFC application as CO2 concentrators, which, by feeding the cathode with exhaust gases, is a promising route for efficient and cheap carbon capture.

  4. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Syamlal, Madhava [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Cottrell, Roger [URS Corporation. (URS), San Francisco, CA (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Kress, Joel D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sundaresan, S. [Princeton Univ., NJ (United States); Sun, Xin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Storlie, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bhattacharyya, D. [West Virginia Univ., Morgantown, WV (United States); National Energy Technology Lab. (NETL), Morgantown, WV (United States); Tong, Charles [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zitney, Stephen E [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Dale, Crystal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Engel, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, Deb [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calafiura, Paolo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shinn, John [SynPatEco, Pleasant Hill, CA (United States)

    2014-03-05

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories’ core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI’s industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI’s academic participants (Carnegie Mellon University, Princeton University, West

  5. Selection and characterization of new absorbents for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Ma' mun, Sholeh

    2005-09-01

    Removal of acidic gases, in particular CO2, is an important industrial operation. Carbon dioxide is produced in large quantities by fossil-fuel-fired power plants, steel production, the production of petrochemicals, cement production, and natural gas purification. The global climate change, where CO2 is found to be a major contributor, is one of the most important and challenging environmental issues facing the world community. This has motivated intensive research on CO2 capture and storage. Carbon dioxide capture by an absorption process is one of the most common industrial technologies today. Recent economic studies indicate that the process will also remain competitive in the future. One of the key improvements under development is new, faster and more energy-efficient absorbents. A chemical to be used as a commercial absorbent must have high net cyclic capacity, high absorption rate for CO2 and good chemical stability. Alkanolamines are the most commonly used chemical absorbents for the removal of acidic gases today. In the first part of this thesis, an experimental screening of new absorbents for CO2 capture was performed by absorption of CO2 into both single absorbents and absorbent mixtures for amine-based and non-amine-based systems at 40 deg. Celsius From testing of approx. 30 systems, it was found that an aqueous 30 mass % AEEA (2-(2-aminoethyl-amino)ethanol) solution seems to be a potentially good absorbent for capturing CO2 from atmospheric flue gases. It offers high absorption rate combined with high absorption capacity. In addition toAEEA, MMEA (2-(methylamino)ethanol) also needs to be considered. It could have a good potential when used in contactors where the two phases are separated, like in membrane contactors, whereas indications from the study showed foaming tendencies that will make it difficult to use in ordinary towers. AEEA as the selected absorbent obtained from the screening tests was further investigated to determine its vapor

  6. Selection and characterization of new absorbents for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Ma' mun, Sholeh

    2005-09-01

    Removal of acidic gases, in particular CO2, is an important industrial operation. Carbon dioxide is produced in large quantities by fossil-fuel-fired power plants, steel production, the production of petrochemicals, cement production, and natural gas purification. The global climate change, where CO2 is found to be a major contributor, is one of the most important and challenging environmental issues facing the world community. This has motivated intensive research on CO2 capture and storage. Carbon dioxide capture by an absorption process is one of the most common industrial technologies today. Recent economic studies indicate that the process will also remain competitive in the future. One of the key improvements under development is new, faster and more energy-efficient absorbents. A chemical to be used as a commercial absorbent must have high net cyclic capacity, high absorption rate for CO2 and good chemical stability. Alkanolamines are the most commonly used chemical absorbents for the removal of acidic gases today. In the first part of this thesis, an experimental screening of new absorbents for CO2 capture was performed by absorption of CO2 into both single absorbents and absorbent mixtures for amine-based and non-amine-based systems at 40 deg. Celsius From testing of approx. 30 systems, it was found that an aqueous 30 mass % AEEA (2-(2-aminoethyl-amino)ethanol) solution seems to be a potentially good absorbent for capturing CO2 from atmospheric flue gases. It offers high absorption rate combined with high absorption capacity. In addition toAEEA, MMEA (2-(methylamino)ethanol) also needs to be considered. It could have a good potential when used in contactors where the two phases are separated, like in membrane contactors, whereas indications from the study showed foaming tendencies that will make it difficult to use in ordinary towers. AEEA as the selected absorbent obtained from the screening tests was further investigated to determine its vapor

  7. Thermodynamic screening of metal-substituted MOFs for carbon capture.

    Science.gov (United States)

    Koh, Hyun Seung; Rana, Malay Kumar; Hwang, Jinhyung; Siegel, Donald J

    2013-04-07

    Metal-organic frameworks (MOFs) have emerged as promising materials for carbon capture applications due to their high CO2 capacities and tunable properties. Amongst the many possible MOFs, metal-substituted compounds based on M-DOBDC and M-HKUST-1 have demonstrated amongst the highest CO2 capacities at the low pressures typical of flue gasses. Here we explore the possibility for additional performance tuning of these compounds by computationally screening 36 metal-substituted variants (M = Be, Mg, Ca, Sr, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Sn, and Pb) with respect to their CO2 adsorption enthalpy, ΔH(T=300K). Supercell calculations based on van der Waals density functional theory (vdW-DF) yield enthalpies in good agreement with experimental measurements, out-performing semi-empirical (DFT-D2) and conventional (LDA & GGA) functionals. Our screening identifies 13 compounds having ΔH values within the targeted thermodynamic window -40 ≤ ΔH ≤ -75 kJ mol(-1): 8 are based on M-DODBC (M = Mg, Ca, Sr, Sc, Ti, V, Mo, and W), and 5 on M-HKUST-1 (M = Be, Mg, Ca, Sr and Sc). Variations in the electronic structure and the geometry of the structural building unit are examined and used to rationalize trends in CO2 affinity. In particular, the partial charge on the coordinatively unsaturated metal sites is found to correlate with ΔH, suggesting that this property may be used as a simple performance descriptor. The ability to rapidly distinguish promising MOFs from those that are "thermodynamic dead-ends" will be helpful in guiding synthesis efforts towards promising compounds.

  8. Carbon dioxide captured by multi-walled carbon nanotube and activated charcoal: A comparative study

    Directory of Open Access Journals (Sweden)

    Khalili Soodabeh

    2013-01-01

    Full Text Available this study, the equilibrium adsorption of CO2 on activated charcoal (AC and multi-walled carbon nanotube (MWCNT were investigated. Experiments were performed at temperature range of 298-318 K and pressures up to 40 bars. The obtained results indicated that the equilibrium uptakes of CO2 by both adsorbents increased with increasing pressure and decreasing temperature. In spite of lower specific surface area, the maximum amount of CO2 uptake achieved by MWCNT at 298K and 40 bars were twice of CO2 capture by AC (15 mmol.g-1 compared to 7.93 mmol.g-1. The higher CO2 captured by MWCNT can be attributed to its higher pore volume and specific structure of MWCN T such as hollowness and light mass which had greater influence than specific surface area. The experimental data were analyzed by means of Freundlich and Langmuir adsorption isotherm models. Following a simple acidic treatment procedure increased marginally CO2 capture by MWCNT over entire range of pressure, while for AC this effect appeared at higher pressures. Small values of isosteric heat of adsorption were evaluated based on Clausius-Clapeyron equation showed the physical nature of adsorption mechanism. The high amount of CO2 capture by MWCNT renders it as a promising carrier for practical applications such as gas separation.

  9. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  10. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  11. Modification of activated carbon using nitration followed by reduction for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Shafeeyan, Mohammad Saleh; Houshmand, Amirhossein; Arami-Niya, Arash; Daud, Wan Mohd AshiWan [Dept. of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Razaghizadeh, Hosain [Dept. of Faculty of Environment and Energy, Research and Science Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Activated carbon (AC) samples were modified using nitration followed by reduction to enhance their CO{sub 2} adsorption capacities. Besides characterization of the samples, investigation of CO{sub 2} capture performance was conducted by CO{sub 2} isothermal adsorption, temperature-programmed (TP) CO{sub 2} adsorption, cyclic CO{sub 2} adsorption–desorption, and dynamic CO{sub 2} adsorption tests. Almost all modified samples showed a rise in the amount of CO{sub 2} adsorbed when the comparison is made in unit surface area. On the other hand, some of the samples displayed a capacity superior to that of the parent material when compared in mass unit, especially at elevated temperatures. Despite ⁓65% decrease in the surface area, TP-CO{sub 2} adsorption of the best samples exhibited increases of ⁓10 and 70% in CO{sub 2} capture capacity at 30 and 100 °C, respectively.

  12. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve s

  13. Designing and Demonstrating a Master Student Project to Explore Carbon Dioxide Capture Technology

    Science.gov (United States)

    Asherman, Florine; Cabot, Gilles; Crua, Cyril; Estel, Lionel; Gagnepain, Charlotte; Lecerf, Thibault; Ledoux, Alain; Leveneur, Sebastien; Lucereau, Marie; Maucorps, Sarah; Ragot, Melanie; Syrykh, Julie; Vige, Manon

    2016-01-01

    The rise in carbon dioxide (CO[subscript 2]) concentration in the Earth's atmosphere, and the associated strengthening of the greenhouse effect, requires the development of low carbon technologies. New carbon capture processes are being developed to remove CO[subscript 2] that would otherwise be emitted from industrial processes and fossil fuel…

  14. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve

  15. Designing and Demonstrating a Master Student Project to Explore Carbon Dioxide Capture Technology

    Science.gov (United States)

    Asherman, Florine; Cabot, Gilles; Crua, Cyril; Estel, Lionel; Gagnepain, Charlotte; Lecerf, Thibault; Ledoux, Alain; Leveneur, Sebastien; Lucereau, Marie; Maucorps, Sarah; Ragot, Melanie; Syrykh, Julie; Vige, Manon

    2016-01-01

    The rise in carbon dioxide (CO[subscript 2]) concentration in the Earth's atmosphere, and the associated strengthening of the greenhouse effect, requires the development of low carbon technologies. New carbon capture processes are being developed to remove CO[subscript 2] that would otherwise be emitted from industrial processes and fossil fuel…

  16. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions

    NARCIS (Netherlands)

    Xiang, S.C.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B.

    2012-01-01

    Carbon dioxide capture and separation are important industrial processes that allow the use of carbon dioxide for the production of a range of chemical products and materials, and to minimize the effects of carbon dioxide emission. Porous metal-organic frameworks are promising materials to achieve s

  17. Low-Carbon Economic Dispatching for Power Grid Integrated with Carbon Capture Power Plants and Wind Power System

    Directory of Open Access Journals (Sweden)

    Sheng Siqing

    2015-01-01

    Full Text Available Carbon emission characteristics of all kinds of power units are analyzed against the background of the low carbon economy. This paper introduces carbon trading in the dispatching model, gives full consideration to the benefit or cost of carbon emission and introduces carbon emission in the dispatching model as a decision variable so as to achieve the unity of the economy and the environmental protection of the dispatching model. A low carbon economic dispatching model is established based on multiple objectives, such as the lowest thermal power generation cost, the lowest carbon trading cost and the lowest carbon capture power plant operation cost. Load equalization, output constraint of power unit, ramping constraint, spinning reserve constraint and carbon capture efficiency constraint should be taken into account in terms of constraint conditions. The model is solved by the particle swarm optimization based on dynamic exchange and density distance. The fact that the introduction of carbon trading can effectively reduce the level of carbon emission and increase the acceptance level of wind power is highlighted through the comparison of the results of three models’ computational examples. With the carbon trading mechanism, carbon capture power plants with new technologies are able to give full play to the advantage of reducing carbon emission and wind curtailment so as to promote the development of the energy conservation and emission reduction technology and reduce the total cost of the dispatching system.

  18. Advanced modeling to accelerate the scale up of carbon capture technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  19. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Jason Davis; Marus Hiilliard; Qing Xu; David Van Wagener; Jorge M. Plaza

    2006-12-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The best solvent and process configuration, matrix with MDEA/PZ, offers 22% and 15% energy savings over the baseline and improved baseline, respectively, with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal. The stripper rate model shows that a ''short and fat'' stripper requires 7 to 15% less equivalent work than a ''tall and skinny'' one. The stripper model was validated with data obtained from pilot plant experiments at the University of Texas with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ under normal pressure and vacuum conditions using Flexipac AQ Style 20 structured packing. Experiments with oxidative degradation at low gas rates confirm the effects of Cu{sup +2} catalysis; in MEA/PZ solutions more formate and acetate is produced in the presence of Cu{sup +2}. At 150 C, the half life of 30% MEA with 0.4 moles CO{sub 2}/mole amine is about 2 weeks. At 100 C, less than 3% degradation occurred in two weeks. The solubility of potassium sulfate in MEA solution increases significantly with CO{sub 2} loading and decreases with MEA concentration. The base case corrosion rate in 5 M MEA/1,2M PZ is 22 mpy. With 1 wt% heat stable salt, the corrosion rate increases by 50% to 160% in the order: thiosulfate< oxalatecarbonate is ineffective in the absence of oxygen, but 50 to 250 ppm reduces corrosion to less than 2 mpy in the presence of oxygen.

  20. Synergistic Carbon Dioxide Capture and Conversion in Porous Materials.

    Science.gov (United States)

    Zhang, Yugen; Lim, Diane S W

    2015-08-24

    Global climate change and excessive CO2 emissions have caused widespread public concern in recent years. Tremendous efforts have been made towards CO2 capture and conversion. This has led to the development of numerous porous materials as CO2 capture sorbents. Concurrently, the conversion of CO2 into value-added products by chemical methods has also been well-documented recently. However, realizing the attractive prospect of direct, in situ chemical conversion of captured CO2 into other chemicals remains a challenge.

  1. Downhole Microseismic Monitoring at a Carbon Capture, Utilization, and Storage Site, Farnsworth Unit, Ochiltree County, Texas

    Science.gov (United States)

    Ziegler, A.; Balch, R. S.; van Wijk, J.

    2015-12-01

    Farnsworth Oil Field in North Texas hosts an ongoing carbon capture, utilization, and storage project. This study is focused on passive seismic monitoring at the carbon injection site to measure, locate, and catalog any induced seismic events. A Geometrics Geode system is being utilized for continuous recording of the passive seismic downhole bore array in a monitoring well. The array consists of 3-component dual Geospace OMNI-2400 15Hz geophones with a vertical spacing of 30.5m. Downhole temperature and pressure are also monitored. Seismic data is recorded continuously and is produced at a rate of over 900GB per month, which must be archived and reviewed. A Short Term Average/Long Term Average (STA/LTA) algorithm was evaluated for its ability to search for events, including identification and quantification of any false positive events. It was determined that the algorithm was not appropriate for event detection with the background level of noise at the field site and for the recording equipment as configured. Alternatives are being investigated. The final intended outcome of the passive seismic monitoring is to mine the continuous database and develop a catalog of microseismic events/locations and to determine if there is any relationship to CO2 injection in the field. Identifying the location of any microseismic events will allow for correlation with carbon injection locations and previously characterized geological and structural features such as faults and paleoslopes. Additionally, the borehole array has recorded over 1200 active sources with three sweeps at each source location that were acquired during a nearby 3D VSP. These data were evaluated for their usability and location within an effective radius of the array and were stacked to improve signal-noise ratio and are used to calibrate a full field velocity model to enhance event location accuracy. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.

  2. How green can black be? Assessing the potential for equipping USA's existing coal fleet with carbon capture and storage

    Science.gov (United States)

    Patrizio, Piera; Leduc, Sylvain; Mesfun, Sennai; Yowargana, Ping; Kraxner, Florian

    2017-04-01

    The mitigation of adverse environmental impacts due to climate change requires the reduction of carbon dioxide emissions - also from the U.S. energy sector, a dominant source of greenhouse-gas emissions. This is especially true for the existing fleet of coal-fired power plants, accounting for roughly two-thirds of the U.S. energy sectors' total CO2 emissions. With this aim, different carbon mitigation options have been proposed in literature, such as increasing the energy efficiency, co-firing of biomass and/or the adoption of carbon capturing technologies (BECCS). However, the extent to which these solutions can be adopted depends on a suite of site specific factors and therefore needs to be evaluated on a site-specific basis. We propose a spatially explicit approach to identify candidate coal plants for which carbon capture technologies are economically feasible, according to different economic and policy frameworks. The methodology implies the adoption of IIASA's techno economic model BeWhere, which optimizes the cost of the entire BECCS supply chain, from the biomass resources to the storage of the CO2 in the nearest geological sink. The results shows that biomass co-firing appears to be the most appealing economic solution for a larger part of the existing U.S. coal fleet, while the adoption of CCS technologies is highly dependent on the level of CO2 prices as well as on local factors such as the type of coal firing technology and proximity of storage sites.

  3. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    carbon dioxide emission problems. More specifically, the prototype framework and the three-stage approach adopted for systematic and sustainable design of carbon capture and utilization processes incorporates (i) process synthesis stage, the determination of a processing path from a network...... of alternatives; (ii) process design, the design and analysis of a process or generated processing path in terms of process “hot-spots” or deficiencies to set design targets for improvement; and (iii) innovative and more sustainable design, determination of solutions matching the design targets. In this way......) and the determination of the optimal processing route. Finally, the framework has access to, a collection of tools for analysis, such as economic analysis, sustainability and life cycle assessment, and links to detailed process simulation (process simulators). Following the work-flow and data-flow implemented...

  4. Atmospheric monitoring for fugitive emissions from geological carbon storage

    Science.gov (United States)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  5. Direct electrochemical capture and release of carbon dioxide using an industrial organic pigment: quinacridone.

    Science.gov (United States)

    Apaydin, Dogukan Hazar; Głowacki, Eric Daniel; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2014-06-23

    Limiting anthropogenic carbon dioxide emissions constitutes a major issue faced by scientists today. Herein we report an efficient way of controlled capture and release of carbon dioxide using nature inspired, cheap, abundant and non-toxic, industrial pigment namely, quinacridone. An electrochemically reduced electrode consisting of a quinacridone thin film (ca. 100 nm thick) on an ITO support forms a quinacridone carbonate salt. The captured CO2 can be released by electrochemical oxidation. The amount of captured CO2 was quantified by FT-IR. The uptake value for electrochemical release process was 4.61 mmol g(-1). This value is among the highest reported uptake efficiencies for electrochemical CO2 capture. For comparison, the state-of-the-art aqueous amine industrial capture process has an uptake efficiency of ca. 8 mmol g(-1).

  6. High-Performance Sorbents for Carbon Dioxide Capture from Air

    Energy Technology Data Exchange (ETDEWEB)

    Sholl, David; Jones, Christopher

    2013-03-13

    This project has focused on capture of CO{sub 2} from ambient air (“air capture”). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: • Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. • Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. • Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: • Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. • Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. • The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and

  7. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    Energy Technology Data Exchange (ETDEWEB)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  8. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor.

    Science.gov (United States)

    Watson, Stuart K; Han, Zhenlin; Su, Wei Wen; Deshusses, Marc A; Kan, Eunsung

    2016-12-01

    The present study reports CO2 capture and conversion to bicarbonate using Escherichia coli expressing carbonic anhydrase (CA) on its cell surface in a novel foam bioreactor. The very large gas-liquid interfacial area in the foam bioreactor promoted rapid CO2 absorption while the CO2 in the aqueous phase was subsequently converted to bicarbonate ions by the CA. CO2 gas removal in air was investigated at various conditions such as gas velocity, cell density and CO2 inlet concentration. Regimes for kinetic and mass transfer limitations were defined. Very high removal rates of CO2 were observed: 9570 g CO2 m(-3) bioreactor h(-1) and a CO2 removal efficiency of 93% at 4% inlet CO2 when the gas retention time was 24 s, and cell concentration was 4 gdw L(-1). These performances are superior to earlier reports of experimental bioreactors using CA for CO2 capture. Overall, this bioreactor system has significant potential as an alternative CO2 capture technology.

  9. Optimization of capillary trapping for application in geological carbon dioxide sequestration

    Science.gov (United States)

    Harper, E.; Wildenschild, D.; Armstrong, R. T.; Herring, A. L.

    2011-12-01

    Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. Sequestration is achieved by capturing carbon dioxide (CO2) gas effluent from coal fired power plants and injecting it into saline aquifers. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore scale. Pairs of analogous fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, non-wetting fluid viscosity and flow rate, were altered to characterize their impact on capillary trapping. Through the use of computed x-ray microtomography (CMT), we were able to quantify distinct differences between initial (post NW phase imbibition) and residual (post wetting fluid flood) non-wetting phase saturations. Observed trends will be used to identify optimal conditions for trapping CO2 during subsurface sequestration.

  10. Carbon Capture by a Continuous, Regenerative Ammonia-Based Scrubbing Process

    Energy Technology Data Exchange (ETDEWEB)

    Resnik, K.P.; Yeh, J.T.; Pennline, H.W.

    2006-10-01

    Overview: To develop a knowledge/data base to determine whether an ammonia-based scrubbing process is a viable regenerable-capture technique that can simultaneously remove carbon dioxide, sulfur dioxide, nitric oxides, and trace pollutants from flue gas.

  11. Performance assessment of natural gas and biogas fueled molten carbonate fuel cells in carbon capture configuration

    Science.gov (United States)

    Barelli, Linda; Bidini, Gianni; Campanari, Stefano; Discepoli, Gabriele; Spinelli, Maurizio

    2016-07-01

    The ability of MCFCs as carbon dioxide concentrator is an alternative solution among the carbon capture and storage (CCS) technologies to reduce the CO2 emission of an existing plant, providing energy instead of implying penalties. Moreover, the fuel flexibility exhibited by MCFCs increases the interest on such a solution. This paper provides the performance characterization of MCFCs operated in CCS configuration and fed with either natural gas or biogas. Experimental results are referred to a base CCS unit constituted by a MCFC stack fed from a reformer and integrated with an oxycombustor. A comparative analysis is carried out to evaluate the effect of fuel composition on energy efficiency and CO2 capture performance. A higher CO2 removal ability is revealed for the natural feeding case, bringing to a significant reduction in MCFC total area (-11.5%) and to an increase in produced net power (+13%). Moreover, the separated CO2 results in 89% (natural gas) and 86.5% (biogas) of the CO2 globally delivered by the CCS base unit. Further investigation will be carried out to provide a comprehensive assessment of the different solutions eco-efficiency considering also the biogas source and availability.

  12. Capture and storage of Carbon dioxid: a method for countering climatic changes

    Science.gov (United States)

    Benea, L. M.

    2017-01-01

    One of the options aimed at preventing climatic changes is the capture and storage of carbon dioxide, a method with a great potential for reducing greenhouse gases. Capturing and storing carbon dioxide in the soil involves new benefits for the communities in the respective areas. Those benefits also follow from the fact that the organic compound has an essential factor in the soil, determining its properties. The paper presents several results concerning the determination of the quantity of carbon dioxide in different types of soil and it is intended to be the beginning of the process of data collection and the analysis of the reserves and the flow of carbon.

  13. Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review.

    Science.gov (United States)

    Creamer, Anne Elise; Gao, Bin

    2016-07-19

    The persistent increase in atmospheric CO2 from anthropogenic sources makes research directed toward carbon capture and storage imperative. Current liquid amine absorption technology has several drawbacks including hazardous byproducts and a high-energy requirement for regeneration; therefore, research is ongoing to develop more practical methods for capturing CO2 in postcombustion scenarios. The unique properties of carbon-based materials make them specifically promising for CO2 adsorption at low temperature and moderate to high partial pressure. This critical review aims to highlight the development of carbon-based solid sorbents for postcombustion CO2 capture. Specifically, it provides an overview of postcombustion CO2 capture processes with solid adsorbents and discusses a variety of carbon-based materials that could be used. This review focuses on low-cost pyrogenic carbon, activated carbon (AC), and metal-carbon composites for CO2 capture. Further, it touches upon the recent progress made to develop metal organic frameworks (MOFs) and carbon nanomaterials and their general CO2 sorption potential.

  14. How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation

    Science.gov (United States)

    Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.

    2014-12-01

    Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.

  15. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport

  16. Unravelling uncertainty and variability in early stage techno-economic assessments of carbon capture technologies

    NARCIS (Netherlands)

    van der Spek, Mijndert; Sanchez Fernandez, Eva; Eldrup, Nils Henrik; Skagestad, Ragnhild; Ramirez, Andrea; Faaij, André

    2017-01-01

    This paper addresses the uncertainty and variability in techno-economic studies of carbon capture technologies, based on a detailed comparison of the results of different studies on postcombustion CO2 capture with advanced amines, and on an in-depth uncertainty analysis using a combination of sensit

  17. Multiphase modeling of geologic carbon sequestration in saline aquifers.

    Science.gov (United States)

    Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C

    2015-01-01

    Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock.

  18. Perspectives on Carbon Capture and Sequestration in the United States

    Science.gov (United States)

    Wong-Parodi, Gabrielle Mei-Ling

    Overall, this dissertation examines a sequence of important interconnected issues: the perspectives of potential and actual CCS host communities, the perspectives of the environmental community on the rationality of CCS as viable mitigation solution for the United States, and strategies for engaging with the public on CCS. Much of the research in this dissertation is original work addressing major interdisciplinary gaps in existing literature as well as in industry and government public engagement practice. Each of the chapters is a stand-alone paper that provides a unique contribution to a series of different types of carbon management technologies and academic disciplines. They are assembled together to provide a unique integrated evaluation of these related problems. Collectively, these chapters capture some of the major challenges facing mitigation technology engagement from the potentially time consuming need for careful social site characterization to the opportunities for using citizen-guided marketing methods to identify factors that may enhance effective public engagement. Chapters 2 and 3 are essays on the perspectives of potential and actual CCS host communities. Chapter 2 finds that host communities in California's Central Valley are more concerned with the social risks of hosting a CCS project (e.g. fear of neglect should something go wrong) rather than with the technical risks of the technology. Chapter 3 finds that host communities across the US are more concerned with social risks, and want a say in how those risks should be mitigated. This Chapter concludes with a discussion of how a 'social site characterization' conducted along side a traditional site characterization when evaluating the potential for a CCS project may be a good way to both encourage positive relationships with community members and mitigate potential concerns. Chapter 4 is an essay on the perspectives of the environmental community towards the potential of CCS as a viable

  19. Optimization of post combustion carbon capture process-solvent selection

    Directory of Open Access Journals (Sweden)

    Udara S. P. R. Arachchige, Muhammad Mohsin, Morten C. Melaaen

    2012-01-01

    Full Text Available The reduction of the main energy requirements in the CO2 capture process that is re-boiler duty in stripper section is important. Present study was focused on selection of better solvent concentration and CO2 lean loading for CO2 capture process. Both coal and gas fired power plant flue gases were considered to develop the capture plant with different efficiencies. Solvent concentration was varied from 25 to 40 (w/w % and CO2 lean loading was varied from 0.15 to 0.30 (mol CO2/mol MEA for 70-95 (mol % CO2 removal efficiencies. The optimum specifications for coal and gas processes such as MEA concentration, CO2 lean loading, and solvent inlet flow rate were obtained.

  20. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  1. New Demands, New Supplies: A National Look at the Water Balance of Carbon Dioxide Capture and Sequestration

    Science.gov (United States)

    Roach, J. D.; Kobos, P.; Klise, G. T.; Krumhansl, J. L.; McNemar, A.

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Capturing carbon dioxide as a polymer from natural gas.

    Science.gov (United States)

    Hwang, Chih-Chau; Tour, Josiah J; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B; Tour, James M

    2014-06-03

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and (13)C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  3. Capturing carbon dioxide as a polymer from natural gas

    Science.gov (United States)

    Hwang, Chih-Chau; Tour, Josiah J.; Kittrell, Carter; Espinal, Laura; Alemany, Lawrence B.; Tour, James M.

    2014-06-01

    Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors. Infrared, Raman and 13C nuclear magnetic resonance signatures substantiate carbon dioxide fixation by polymerization in the carbon channels to form poly(CO2) under much lower pressures than previously required. This growing chemisorbed sulphur- or nitrogen-atom-initiated poly(CO2) chain further displaces physisorbed hydrocarbon, providing a continuous carbon dioxide selectivity. Once returned to ambient conditions, the poly(CO2) spontaneously depolymerizes, leading to a sorbent that can be easily regenerated without the thermal energy input that is required for traditional sorbents.

  4. Radiative muon capture on carbon, oxygen, and calcium

    Energy Technology Data Exchange (ETDEWEB)

    Blecher, M.; Armstrong, D.S. [Virginia Polytechnic Inst. and State Univ., Blacksburg (United States); Ahmad, S.; Burnham, R.A.; Gorringe, T.P.; Hasinoff, M.D.; Larabee, A.J.; Summhammer, J.; Waltham, C.W.; Wright, D.H. [British Columbia Univ., Vancouver (Canada); Azuelos, G.; Macdonald, J.A.; Numao, T.; Poutissou, J.M. [British Columbia Univ., Vancouver (Canada). TRIUMF Facility; Clifford, E.T.H.; Robertson, B.C. [Queen`s Univ., Kingston, Ontario (Canada); Mes, H. [National Research Council of Canada, Ottawa, Ontario (Canada); Depommier, P.; Poutissou, R. [Montreal Univ., Quebec (Canada)

    1990-02-01

    By means of muons from the cosmic radiation the authors have measured the radiative muon capture rate on C, O, and Ca. From the result the rations g{sub P}/g{sub A} have determined under the assumption of q{sup 2}=-0.88m{sup 2}{sub {mu}}. (HSI).

  5. New Adsorption Cycles for Carbon Dioxide Capture and Concentration

    Energy Technology Data Exchange (ETDEWEB)

    James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

    2008-07-31

    The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been

  6. Research on Carbon Dioxide Capture and Storage Technology%碳捕捉与封存技术研究

    Institute of Scientific and Technical Information of China (English)

    于德龙; 吴明; 赵玲; 汪宇彤

    2014-01-01

    碳捕捉与封存技术指将二氧化碳从工业生产过程中最大限度分离出来,输送到指定地点封存,并与大气长期隔绝过程。CO2捕捉技术有燃烧前捕捉、燃烧后捕捉和富氧燃烧捕捉三类,且各具优缺点和适用情况,实际应用应根据具体情况具体分析;CO2常用输送方式有管道输送、船舶输送和罐车输送三类,对于大规模长距离应首选管道输送,长距离海洋输送应首选船舶输送,对于短距离小输量应首选罐车输送;CO2封存一般有四大类封存方式:海洋封存、矿石碳化、地质封存和工业利用,其中地质封存对减排贡献最大,矿石碳化和工业利用贡献有限,海洋封存仍处研究之中。%Carbon dioxide capture and storage technology is to separate CO2 from industry and to transport to a pointed place for storage. CO2 capture technologies include three measures:pre-combustion capture, post-combustion capture and oxygen-enriched combustion capture. Each measure has advantages and disadvantages, and the suitable technology should be chosen according to particular case. CO2 common transportation methods include three modes of pipeline transportation, marine transportation and tanker transportation. For long distance and large quantities,the pipeline transportation should be chosen; for long distance ocean transportation,shipping transportation should be chosen;For little throughput and short distance, the tanker transportation should be chosen. CO2 storage methods include four types in general. They are ocean sequestration, mineral carbonation, geological storage and industrial use. Among them the geological storage has the largest contribution to emission reduction, the mineral carbonation and industrial use have limited contribution, and the ocean sequestration is still in studying.

  7. Impact of individual acid flue gas components on mercury capture by heat-treated activated carbon

    Institute of Scientific and Technical Information of China (English)

    Jian-ming ZHENG; Jin-song ZHOU; Zhong-yang LUO; Ke-fa CEN

    2012-01-01

    Elemental mercury capture on heat-treated activated carbon (TAC) was studied using a laboratory-scale fixed bed reactor.The capability of TAC to perform Hg0 capture under both N2 and baseline gas atmospheres was studied and the effects of common acid gas constituents were evaluated individually to avoid complications resulting from the coexistence of multiple components.The results suggest that surface functional groups (SFGs) on activated carbon (AC) are vital to Hg0 capture in the absence of acid gases.Meanwhile,the presence of acid gas components coupled with defective graphitic lattices on TAC plays an important role in effective Hg0 capture.The presence of HCl,NO2,and NO individually in basic gases markedly enhances Hg0 capture on TAC due to the heterogeneous oxidation of Hg0 on acidic sites created on the carbon surface and catalysis by the defective graphitic lattices on TAC.Similarly,the presence of SO2 improves Hg0 capture by about 20%.This improvement likely results from the deposition of sulfur groups on the AC surface and oxidation of the elemental mercury by SO2 due to catalysis on the carbon surface.Furthermore,O2 exhibits a synergistic effect on Hg0 oxidation and capture when acid gases are present in the flue gases.

  8. The new draft law to Carbon Capture and Storage; Der neue Gesetzentwurf zu Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hellriegel, Mathias [Sozietaet Eggers Malmendier Rechtsanwaelte, Berlin (Germany)

    2010-12-30

    Emissions of greenhouse gas into the atmosphere are considered as a central reason for the global climate change. Regarding the reduction of CO{sub 2} emissions, recently the capture of CO{sub 2} and its permanent underground storage is discussed. With the government's draft of the law to regulate the capture, transport and permanent storage of CO{sub 2}, the Grand Coalition took a first attempt to implement the CCS Directive. The author of the contribution under consideration describes the main contents of the current draft law and considered this draft critically.

  9. Comparison of two electrolyte models for the carbon capture with aqueous ammonia

    DEFF Research Database (Denmark)

    Darde, Victor; Thomsen, Kaj; van Well, Willy J.M.

    2012-01-01

    Post-combustion carbon capture is attracting much attention due to the fact that it can be retrofitted on existing coal power plants. Among the most interesting technologies is the one that employs aqueous ammonia solutions to absorb the generated carbon dioxide. The evaluation of such process...

  10. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage

    NARCIS (Netherlands)

    Schakel, Wouter; Meerman, Hans; Talaei, Alireza; Ramírez, Andrea; Faaij, André

    2014-01-01

    Combining co-firing biomass and carbon capture and storage (CCS) in power plants offers attractive potential for net removal of carbon dioxide (CO2) from the atmosphere. In this study, the impact of co-firing biomass (wood pellets and straw pellets) on the emission profile of power plants with carbo

  11. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Science.gov (United States)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  12. Accelerating the development and deployment of carbon capture and storage technologies : an innovation system perspective

    NARCIS (Netherlands)

    van Alphen, K.

    2011-01-01

    In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. At present CCS is the only t

  13. Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage

    NARCIS (Netherlands)

    Schakel, Wouter; Meerman, Hans; Talaei, Alireza; Ramírez, Andrea; Faaij, André

    2014-01-01

    Combining co-firing biomass and carbon capture and storage (CCS) in power plants offers attractive potential for net removal of carbon dioxide (CO2) from the atmosphere. In this study, the impact of co-firing biomass (wood pellets and straw pellets) on the emission profile of power plants with

  14. Capturing and sequestering carbon by enhancing the natural carbon cycle: Prelimary identification of basic science needs and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.M.

    1997-07-01

    This document summarizes proceedings and conclusions of a US DOE workshop. The purpose of the workshop was to identify the underlying research needed to answer the following questions: (1) Can the natural carbon cycle be used to aid in stabilizing or decreasing atmospheric CO{sub 2} and CH{sub 4} by: (a) Increasing carbon capture; (b) Preventing carbon from returning to the atmosphere through intermediate (<100 years) to long-term sequestration (> 100 years)?; and (2) What kind of ecosystem management practices could be used to achieve this? Three working groups were formed to discuss the terrestrial biosphere, oceans, and methane. Basic research needs identified included fundamental understanding of carbon cycling and storage in soils, influence of climate change and anthropogenic emissions on the carbon cycle, and carbon capture and sequestration in oceans. 2 figs., 4 tabs.

  15. Carbon dioxide capture from a cement manufacturing process

    Science.gov (United States)

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  16. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture

    Science.gov (United States)

    Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi

    2015-04-01

    Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the

  17. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)

    2012-06-15

    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  18. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  19. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture.

    Science.gov (United States)

    Hao, Guang-Ping; Mondin, Giovanni; Zheng, Zhikun; Biemelt, Tim; Klosz, Stefan; Schubel, René; Eychmüller, Alexander; Kaskel, Stefan

    2015-02-02

    There is significant interest in high-performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra-hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water-capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g(-1) at P/P0 =0.2 and 25 °C (20% relative humidity or 6000 ppm). Benefiting from properties, such as defined morphology, narrow pore size distribution, and high heterogeneity, this series of functional carbons may serve as model materials for fundamental research on carbon chemistry and the advance of new types of materials for water-vapor capture as well as other applications requiring combined highly hydrophilic surface chemistry, developed hierarchical porosity, and excellent stability.

  20. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2016-01-01

    gas molecules in the structural lattice. In this work, we quantitatively investigate the swapping behavior from injection of pure carbon dioxide and the (CO2 + N2) binary gas mixture through artificial hydrate-bearing sandstone samples by use of a core-flooding experimental apparatus. A total of 13...... of pure carbon dioxide in swapping methane from its hydrate phase; the methane recovery efficiency in brine water systems is enhanced relative to pure water systems. The replenishment of a fresh (CO2 + N2) gas mixture into the vapor phase can be considered as an efficient extraction method because 46...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...

  1. Developing low-cost carbon-based sorbents for Hg capture from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Ron Perry; Janos Lakatos; Colin E. Snape; Cheng-gong Sun [University of Nottingham (United Kingdom). UK Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-07-01

    To help reduce the cost of Hg capture, a number of low-cost carbons are being investigated, including tyre char, PFA carbons and gasification residues. This contribution reports the breakthrough capacities in fixed-bed screening tests for these materials in relation to those for commercial active carbons, including Norit FGD and the extent to which breakthrough capacities can be improved by MnO{sub 2} impregnation. 7 refs., 3 figs., 1 tab.

  2. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hillard; Babatunde Oyenekan

    2003-10-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. The welding work has initiated and will be completed for a revised startup of the pilot plant in February 2004.

  3. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; A. Frank Seibert

    2002-10-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Progress has been made in this reporting period on three subtasks. A simple thermodynamic model has been developed to represent the CO{sub 2} vapor pressure and speciation of the new solvent. A rate model has been formulated to predict the CO{sub 2} flux with these solutions under absorber conditions. A process and instrumentation diagram and process flow diagram have been prepared for modifications of the existing pilot plant system.

  4. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Babatunde Oyenekan; Terraun Jones

    2003-07-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been further developed with a standalone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Gas chromatography has been used to measure the oxidative degradation of piperazine. The heat exchangers for the pilot plant have been received. The modifications are on schedule for start-up in November 2003.

  5. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J. Tim Cullinane; Marcus Hilliard; Terraun Jones

    2003-04-01

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. A rigorous thermodynamic model has been developed with a stand-alone FORTRAN code to represent the CO{sub 2} vapor pressure and speciation of the new solvent. Parameters have been developed for use of the electrolyte NRTL model in AspenPlus. Analytical methods have been developed using gas chromatography and ion chromatography. The heat exchangers for the pilot plant have been ordered.

  6. Capture and utilization of carbon dioxide with polyethylene glycol

    CERN Document Server

    Yang, Zhen-Zhen; He, Liang-Nian

    2012-01-01

    In this volume, Professor He and his coworkers summarize polyethylene glycol (PEG)-promoted CO2 chemistry on the basis of understanding about phase behavior of PEG/CO2 system and reaction mechanism at molecular level. As PEG could be utilized as a green replacement for organic solvents, phase-transfer catalyst, surfactant, support in various reaction systems, significantly promoting catalytic activity and recovering expensive metal catalysts, particularly regarded as a CO2-philic material, the authors focus on special applications of PEG in CO2 capture and utilization, including PEG-functional

  7. Feasibility study of algae-based Carbon Dioxide capture

    Science.gov (United States)

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertak...

  8. Feasibility study of algae-based Carbon Dioxide capture

    Science.gov (United States)

    SUMMARY: The biomass of microalgae contains approximately 50% carbon, which is commonly obtained from the atmosphere, but can also be taken from commercial sources that produce CO2, such as coal-fired power plants. A study of operational demonstration projects is being undertak...

  9. Potential for sequestration of carbon dioxide in South Africa carbon capture and storage in South Africa

    CSIR Research Space (South Africa)

    Hietkamp, S

    2008-11-01

    Full Text Available for biological, geological, chemical and marine storage was determined and it was found that the biological storage potential is limited, the chemical storage potential is largely unknown, the geological storage potential may be large, but further study...

  10. Radiative muon capture on carbon, oxygen, and calcium

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.S.; Ahmad, S.; Burnham, R.A.; Gorringe, T.P.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E. (University of British Columbia, Vancouver, British Columbia (Canada)); Azuelos, G.; Macdonald, J.A.; Numao, T.; Poutissou, J. (TRIUMF, Vancouver, British Columbia (Canada)); Blecher, M.; Wright, D.H. (Virginia Polytechnic Institute and State University, Blacksburg, Virginia (USA)); Clifford, E.T.H.; Summhammer, J. (TRIUMF, Vancouver, British Columbia (Canada) University of Victoria, Victoria, British Columbia (Canada)); Depommier, P.; Poutissou, R. (Universite de Montreal, Montreal, Quebec (Canada)); Mes, H. (National Research Council of Canada, Ottawa (Canada)); Robertson, B.C. (Queen' s University, Kingston, Ontario (Canada))

    1991-03-01

    The photon energy spectra from radiative muon capture on {sup 12}C, {sup 16}O, and {sup 40}Ca have been measured using a time projection chamber as a pair spectrometer. The branching ratio for radiative muon capture is sensitive to {ital g}{sub {ital p}}, the induced pseudoscalar coupling constant of the weak interaction. Expressed in terms of the axial-vector weak coupling constant {ital g}{sub {ital a}}, values of {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=5.7{plus minus}0.8 and {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=7.3{plus minus}0.9 are obtained for {sup 40}Ca and {sup 16}O, respectively, from comparison with phenomenological calculations of the nuclear response. From comparison with microscopic calculations, values of {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=4.6{plus minus}1.8, 13.6{sub {minus}1.9}{sup +1.6}, and 16.2{sub {minus}0.7}{sup +1.3} for {sup 40}Ca, {sup 16}O, and {sup 12}C, respectively, are obtained. The microscopic results are suggestive of a renormalization of the nucleonic form factors within the nucleus.

  11. Basin-scale Modeling of Geological Carbon Sequestration: Model Complexity, Injection Scenario and Sensitivity Analysis

    Science.gov (United States)

    Huang, X.; Bandilla, K.; Celia, M. A.; Bachu, S.

    2013-12-01

    Geological carbon sequestration can significantly contribute to climate-change mitigation only if it is deployed at a very large scale. This means that injection scenarios must occur, and be analyzed, at the basin scale. Various mathematical models of different complexity may be used to assess the fate of injected CO2 and/or resident brine. These models span the range from multi-dimensional, multi-phase numerical simulators to simple single-phase analytical solutions. In this study, we consider a range of models, all based on vertically-integrated governing equations, to predict the basin-scale pressure response to specific injection scenarios. The Canadian section of the Basal Aquifer is used as a test site to compare the different modeling approaches. The model domain covers an area of approximately 811,000 km2, and the total injection rate is 63 Mt/yr, corresponding to 9 locations where large point sources have been identified. Predicted areas of critical pressure exceedance are used as a comparison metric among the different modeling approaches. Comparison of the results shows that single-phase numerical models may be good enough to predict the pressure response over a large aquifer; however, a simple superposition of semi-analytical or analytical solutions is not sufficiently accurate because spatial variability of formation properties plays an important role in the problem, and these variations are not captured properly with simple superposition. We consider two different injection scenarios: injection at the source locations and injection at locations with more suitable aquifer properties. Results indicate that in formations with significant spatial variability of properties, strong variations in injectivity among the different source locations can be expected, leading to the need to transport the captured CO2 to suitable injection locations, thereby necessitating development of a pipeline network. We also consider the sensitivity of porosity and

  12. Carbon dioxide capture and storage: a win-win option? (the economic case)

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, G. [Future Energy Solutions, Didcot (United Kingdom)

    2003-07-01

    The UK currently derived 90% of its primary energy and generates over 70% of its electricity from fossil fuels. Moreover, it has access to substantial carbon dioxide storage capacity. In particular there is potential for storage combined with Enhance Oil Recovery (EOR) in the oil fields of the central and northern North Sea areas, while the gas fields of the southern North Sea offer a large near shore resource for storage. In the longer term saline aquifers offer an even large storage capacity. Consequently carbon dioxide capture and storage needs to be assessed as an important potential option for greenhouse gas abatement for the UK. This scoping study has examined the implementation, operation, economics and barriers to undertaking carbon dioxide capture and storage in the UK. It has concentrated on carbon dioxide capture from fossil fuel power stations; large 'point sources' of the gas that would need to be tackled in order to deliver significant levels of greenhouse gas abatement. Options for gas capture considered are retrofitting equipment to existing coal and natural gas fired plant as well as the construction of new coal (IGCC) and gas (GTCC) technology. Economic assessments have been made with 'present day' costs, and do not consider future improvements through technical innovation and; learning by doing', the potential of which is considerable for the mature carbon capture technologies.

  13. Inherent Tracers for Carbon Capture and Storage in Sedimentary Formations: Composition and Applications.

    Science.gov (United States)

    Flude, Stephanie; Johnson, Gareth; Gilfillan, Stuart M V; Haszeldine, R Stuart

    2016-08-01

    Inherent tracers-the "natural" isotopic and trace gas composition of captured CO2 streams-are potentially powerful tracers for use in CCS technology. This review outlines for the first time the expected carbon isotope and noble gas compositions of captured CO2 streams from a range of feedstocks, CO2-generating processes, and carbon capture techniques. The C-isotope composition of captured CO2 will be most strongly controlled by the feedstock, but significant isotope fractionation is possible during capture; noble gas concentrations will be controlled by the capture technique employed. Comparison with likely baseline data suggests that CO2 generated from fossil fuel feedstocks will often have δ(13)C distinguishable from storage reservoir CO2. Noble gases in amine-captured CO2 streams are likely to be low concentration, with isotopic ratios dependent on the feedstock, but CO2 captured from oxyfuel plants may be strongly enriched in Kr and Xe which are potentially valuable subsurface tracers. CO2 streams derived from fossil fuels will have noble gas isotope ratios reflecting a radiogenic component that will be difficult to distinguish in the storage reservoir, but inheritance of radiogenic components will provide an easily recognizable signature in the case of any unplanned migration into shallow aquifers or to the surface.

  14. Landslide Research at the British Geological Survey: Capture, Storage and Interpretation on a National and Site-Specific Scale

    Institute of Scientific and Technical Information of China (English)

    Catherine PENNINGTON; Claire FOSTER; Jonathan CHAMBERS; Gareth JENKINS

    2009-01-01

    Landslide research at the British Geological Survey (BGS) is carried out through a number of activities, including surveying, database development and real-time monitoring of landslides.Landslide mapping across the UK has been carried out since BGS started geological mapping in 1835. Today, BGS geologists use a combination of remote sensing and ground-based investigations to survey landslides. The development of waterproof tablet computers (BGS-SIGMAmobile), with inbuilt GPS and GIS for field data capture provides an accurate and rapid mapping methodology for field surveys.Regional and national mapping of landslides is carried out in conjunction with site-specific monitoring, using terrestrial LiDAR and differential GPS technologies, which BGS has successfully developed for this application. In addition to surface monitoring, BGS is currently developing geophysical ground-imaging systems for landslide monitoring, which provide real-time information on subsurface changes prior to failure events. BGS's mapping and monitoring activities directly feed into the BGS National Landslide Database, the most extensive source of information on landslides in Great Britain. It currently holds over 14 000 records of landslide events. By combining BGS's corporate datasets with expert knowledge, BGS has developed a landslide hazard assessment tool,GeoSure, which provides information on the relative landslide hazard susceptibility at national scale.

  15. Near-surface monitoring strategies for geologic carbon dioxide storage verification

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Lewicki, Jennifer L.; Hepple, Robert P.

    2003-10-31

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment

  16. Mesoporous carbon composite for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chih-Chau; Jin, Zhong; Lu, Wei; Sun, Zhengzong; Alemany, Lawrence; Tour, James M. [Rice University, Houston, TX (United States); Lomeda, Jay R.; Flatt, Austen K. [Nalco Company, Naperville, IL (United States)

    2012-07-01

    Herein we report a carbon based technology that can be used to rapidly adsorb and release CO{sub 2}. CO{sub 2} uptake by the synthesized composites was determined using a gravimetric method at room temperature and atmospheric pressure. 39% polyethylenimine-mesocarbon (PEI-CMK-3) composite had {approx} 12 wt% CO{sub 2} uptake capacity and a 37% polyvinylamine meso-carbon (PVA-CMK-3) composite had {approx} 13 wt% CO{sub 2} uptake capacity. The sorbents were easily regenerated at 75 deg C and exhibit excellent stability over multiple regeneration cycles. CO{sub 2} uptake was equivalent when using 10% CO{sub 2} in 90% CH{sub 4}, C{sub 2}H{sub 6} and C{sub 3}H{sub 9} mixture, underscoring the efficacy for CO{sub 2} separation from natural gas. (author)

  17. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2005-04-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Stripper modeling suggests the energy requirement with a simple stripper will be about the same for 5 m K{sup +}/2.5 m PZ and 7 m MEA. Modeling with a generic solvent shows that the optimum heat of CO{sub 2} desorption to minimize heat duty lies between 15 and 25 kcal/gmol. On-line pH and density measurements are effective indicators of loading and total alkalinity for the K+/PZ solvent. The baseline pilot plant campaign with 30% MEA has been started.

  18. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  19. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Amorvadee Veawab

    2005-01-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. In Campaign 3 of the pilot plant, the overall mass transfer coefficient for the stripper with 7 m MEA decreased from 0.06 to 0.01 mol/(m{sup 3}.s.kPa) as the rich loading increased from 0.45 to 0.6 mol CO{sub 2}/mol MEA. Anion chromatography has demonstrated that nitrate and nitrite are major degradation products of MEA and PZ with pure oxygen. In measurements with the high temperature FTIR in 7 m MEA the MEA vapor pressure varied from 2 to 20 Pa at 35 to 70 C. In 2.5 m PZ the PZ vapor pressure varied from 0.2 to 1 Pa from 37 to 70 C.

  20. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees

    2005-07-31

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The baseline campaign with 30% MEA has given heat duties from 40 to 70 kcal/gmol CO{sub 2} as predicted by the stripper model. The Flexipak 1Y structured packing gives significantly better performance than IMTP 40 duped packing in the absorber, but in the stripper the performance of the two packings is indistinguishable. The FTIR analyzer measured MEA volatility in the absorber represented by an activity coefficient of 0.7. In the MEA campaign the material balance closed with an average error of 3.5% and the energy balance had an average error of 5.9.

  1. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Daniel Ellenberger

    2005-10-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No.40 dumped packing. Independent measurements of CO{sub 2} solubility give a CO{sub 2} loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

  2. Carbon Capture via Chemical-Looping Combustion and Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Marcus; Mattisson, Tobias; Ryden, Magnus; Lyngfelt, Anders

    2006-10-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3 - 50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible. Further, two different types of chemical-looping reforming (CLR) have been presented in recent years. CLR is a technology to produce hydrogen with inherent CO{sub 2} capture. This paper presents an overview of the research performed on CLC and CLR highlights the current status of the technology.

  3. CO(2) capture from dilute gases as a component of modern global carbon management.

    Science.gov (United States)

    Jones, Christopher W

    2011-01-01

    The growing atmospheric CO(2) concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO(2) from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO(2) capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO(2) directly from ambient air (air capture) as a means of reducing the global atmospheric CO(2) concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed.

  4. CO 2 Capture from Dilute Gases as a Component of Modern Global Carbon Management

    KAUST Repository

    Jones, Christopher W.

    2011-07-15

    The growing atmospheric CO2 concentration and its impact on climate have motivated widespread research and development aimed at slowing or stemming anthropogenic carbon emissions. Technologies for carbon capture and sequestration (CCS) employing mass separating agents that extract and purify CO2 from flue gas emanating from large point sources such as fossil fuel-fired electricity-generating power plants are under development. Recent advances in solvents, adsorbents, and membranes for postcombust- ion CO 2 capture are described here. Specifically, room-temperature ionic liquids, supported amine materials, mixed matrix and facilitated transport membranes, and metal-organic framework materials are highlighted. In addition, the concept of extracting CO2 directly from ambient air (air capture) as a means of reducing the global atmospheric CO2 concentration is reviewed. For both conventional CCS from large point sources and air capture, critical research needs are identified and discussed. © Copyright 2011 by Annual Reviews. All rights reserved.

  5. Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids: Implications for Geologic Carbon Sequestration

    Science.gov (United States)

    Miller, Q. R.; Schaef, T.; Thompson, C.; Loring, J. S.; Windisch, C. F.; Bowden, M. E.; Arey, B. W.; McGrail, P.

    2012-12-01

    Global climate change is viewed by many as an anthropogenic phenomenon that could be mitigated through a combination of conservation efforts, alternative energy sources, and the development of technologies capable of reducing carbon dioxide (CO2) emissions. Continued increases of atmospheric CO2 concentrations are projected over the next decade, due to developing nations and growing populations. One economically favorable option for managing CO2 involves subsurface storage in deep basalt formations. The silicate minerals and glassy mesostasis basalt components act as metal cation sources, reacting with the CO2 to form carbonate minerals. Most prior work on mineral reactivity in geologic carbon sequestration settings involves only aqueous dominated reactions. However, in most sequestration scenarios, injected CO2 will reside as a buoyant fluid in contact with the sealing formation (caprock) and slowly become water bearing. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet scCO2. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably wet supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) in order to gain insight into reaction processes. Mineral transformation reactions were followed by two novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the scCO2 resulted in increased carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared (IR) spectroscopy and indirectly with 18O isotopic labeling techniques (Raman spectroscopy). The thin water films were determined to be critical for facilitating carbonation processes in wet scCO2. Even in extreme low water conditions, the IR technique detected the formation of

  6. Opportunities for early Carbon Capture, Utilisation and Storage development in China

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, D. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-01-15

    The outline of the presentation shows the following elements: China CCUS (Carbon Capture, Utilisation and Storage) policy, strategy and development status; International developments in CCUS; High-purity CO2 sources and potential EOR (Enhanced Oil Recovery) locations in China; Capture routes: (a) Separation technologies/processes, (b) CO2 purity specifications, compression and after treatment, (c) CO2 transportation options, (d) Associated Cost; Potential cost-effective full-chain CCUS projects in Shaanxi; Barriers to CCUS development in Shaanxi; and Conclusions.

  7. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  8. Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2014-01-01

    accurate descriptions of both fluid- and hydrate phase equilibria in the studied system and its subsystems. The developed model is applied to simulate two simplified, gas hydrate-based processes for post-combustion carbon dioxide capture from power station flue gases. The first process, an unpromoted...... hydrate process, operates isothermally at a temperature of 280. K. Applying three consecutive hydrate formation/dissociation stages (three-stage capture process), a carbon dioxide-rich product (97. mol%) is finally delivered at a temperature of 280. K and a pressure of 3.65. MPa. The minimum pressure...... requirement of the first stage is estimated to be 24.9. MPa, corresponding to the incipient hydrate dissociation pressure at 280. K for the considered flue gas. A second simulated carbon dioxide capture process uses tetrahydrofuran as a thermodynamic promoter to reduce the pressure requirements. By doing so...

  9. Recovery Act: Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Domenico

    2013-05-31

    The main objective of this project is to provide training opportunities for two graduate students in order to improve the human capital and skills required for implementing and deploying carbon capture and sequestration (CCS) technologies. The graduate student effort will be geared towards the formulation and implementation of an integrated simulation-optimization framework to provide a rigorous scientific support to the design CCS systems that, for any given site: (a) maximize the amount of carbon storage; (b) minimize the total cost associated with the CCS project; (c) minimize the risk of CO2 upward leakage from injected formations. The framework will stem from a combination of data obtained from geophysical investigations, a multiphase flow model, and a stochastic multi-objective optimization algorithm. The methodology will rely on a geostatistical approach to generate ensembles of scenarios of the parameters that are expected to have large sensitivities and uncertainties on the model response and thus on the risk assessment, in particular the permeability properties of the injected formation and its cap rock. The safety theme will be addressed quantitatively by including the risk of CO2 upward leakage from the injected formations as one the objectives that should be minimized in the optimization problem. The research performed under this grant is significant to academic researchers and professionals weighing the benefits, costs, and risks of CO2 sequestration. Project managers in initial planning stages of CCS projects will be able to generate optimal tradeoff surfaces and with corresponding injection plans for potential sequestration sites leading to cost efficient preliminary project planning. In addition, uncertainties concerning CCS have been researched. Uncertainty topics included Uncertainty Analysis of Continuity of Geological Confining Units using Categorical Indicator Kriging (CIK) and the Influence of Uncertain Parameters on the Leakage of CO2 to

  10. Molecular simulation of carbon dioxide adsorption for carbon capture and storage

    Science.gov (United States)

    Tenney, Craig M.

    Capture of CO2 from fossil fuel power plants and sequestration in unmineable coal seams are achievable methods for reducing atmospheric emissions of this greenhouse gas. To aid the development of effective CO2 capture and sequestration technologies, a series of molecular simulation studies were conducted to study the adsorption of CO2 and related species onto heterogeneous, solid adsorbents. To investigate the influence of surface heterogeneity upon adsorption behavior in activated carbons and coal, isotherms were generated via grand canonical Monte Carlo (GCMC) simulation for CO2 adsorption in slit-shaped pores with several variations of chemical and structural heterogeneity. Adsorption generally increased with increasing oxygen content and the presence of holes or furrows, which acted as preferred binding sites. To investigate the potential use of the flexible metal organic framework (MOF) Cu(BF4)2(bpy)2 (bpy=bipyridine) for CO2 capture, pure- and mixed-gas adsorption was simulated at conditions representative of power plant process streams. This MOF was chosen because it displays a novel behavior in which the crystal structure reversibly transitions from an empty, zero porosity state to a saturated, expanded state at the "gate pressure". Estimates of CO2 capacity above the gate pressure from GCMC simulations using a rigid MOF model showed good agreement with experiment. The CO2 adsorption capacity and estimated heats of adsorption are comparable to common physi-adsorbents under similar conditions. Mixed-gas simulations predicted CO2/N2 and CO2/H 2selectivities higher than typical microporous materials. To more closely investigate this gating effect, hybrid Monte-Carlo/molecular-dynamics (MCMD) was used to simulate adsorption using a flexible MOF model. Simulation cell volumes remained relatively constant at low gas pressures before increasing at higher pressure. Mixed-gas simulations predicted CO2/N 2 selectivities comparable to other microporous adsorbents. To

  11. An Integrated, Low Temperature Process to Capture and Sequester Carbon Dioxide from Industrial Emissions

    Science.gov (United States)

    Wendlandt, R. F.; Foremski, J. J.

    2013-12-01

    Laboratory experiments show that it is possible to integrate (1) the chemistry of serpentine dissolution, (2) capture of CO2 gas from the combustion of natural gas and coal-fired power plants using aqueous amine-based solvents, (3) long-term CO2 sequestration via solid phase carbonate precipitation, and (4) capture solvent regeneration with acid recycling in a single, continuous process. In our process, magnesium is released from serpentine at 300°C via heat treatment with ammonium sulfate salts or at temperatures as low as 50°C via reaction with sulfuric acid. We have also demonstrated that various solid carbonate phases can be precipitated directly from aqueous amine-based (NH3, MEA, DMEA) CO2 capture solvent solutions at room temperature. Direct precipitation from the capture solvent enables regenerating CO2 capture solvent without the need for heat and without the need to compress the CO2 off gas. We propose that known low-temperature electrochemical methods can be integrated with this process to regenerate the aqueous amine capture solvent and recycle acid for dissolution of magnesium-bearing mineral feedstocks and magnesium release. Although the direct precipitation of magnesite at ambient conditions remains elusive, experimental results demonstrate that at temperatures ranging from 20°C to 60°C, either nesquehonite Mg(HCO3)(OH)●2H2O or a double salt with the formula [NH4]2Mg(CO3)2●4H2O or an amorphous magnesium carbonate precipitate directly from the capture solvent. These phases are less desirable for CO2 sequestration than magnesite because they potentially remove constituents (water, ammonia) from the reaction system, reducing the overall efficiency of the sequestration process. Accordingly, the integrated process can be accomplished with minimal energy consumption and loss of CO2 capture and acid solvents, and a net generation of 1 to 4 moles of H2O/6 moles of CO2 sequestered (depending on the solid carbonate precipitate and amount of produced H2

  12. Comparative study of metal-organic frameworks for carbon capture applications

    Science.gov (United States)

    Simmons, Jason; Zhou, Wei; Wu, Hui; Yildirim, Taner

    2010-03-01

    With the current prevalence of hydrocarbon-based energy sources, carbon capture and sequestration are essential technologies for minimizing the emission of carbon dioxide and the resulting increased atmospheric concentration of CO2. Current technologies based on absorption require high temperature regeneration of the solvent, ultimately leading to significantly decreased efficiency and increased cost. Development of an adsorption-based technology, based on physical adsorption in optimized porous media, would greatly reduce the regeneration costs. Here we discuss the carbon capture performance of a range of metal-organic frameworks (MOFs), including both high surface area materials as well as those with sites that have been engineered to have enhanced binding. In particular, we demonstrate that MOFs can capture significant amounts of CO2 and that the CO2 can be readily removed from the MOF using standard pressure/vacuum swing techniques, yielding cyclic capture capacities in excess of 5 mmol/g. Further, we discuss the role of pore geometry and surface chemistry in the capacity of CO2 that can be removed in order to best optimize these materials. Lastly, we will address the effect of flue gas impurities on the carbon capture performance of these MOFs.

  13. Kinetic study of a Layout for the Carbon Capture with Aqueous Ammonia without Salt Precipitation

    DEFF Research Database (Denmark)

    Bonalumi, Davide; Lillia, Stefano; Valenti, Gianluca

    2017-01-01

    This paper focuses on carbon capture in an Ultra Super Critical power plant. The technology selected for CO2 capture is based on cooled ammonia scrubbing in post-combustion mode, as recently investigated by the authors in another work. Here, a rate-based approach is adopted. In detail, a specific...... primary energy consumption for CO2 avoided (SPECCA) of 2.77 MJ/kgCO2 is calculated in case of 85% of CO2 capture, with an ultimate power plant efficiency of 37.27%....

  14. Kinetic study of a Layout for the Carbon Capture with Aqueous Ammonia without Salt Precipitation

    DEFF Research Database (Denmark)

    Bonalumi, Davide; Lillia, Stefano; Valenti, Gianluca

    2017-01-01

    This paper focuses on carbon capture in an Ultra Super Critical power plant. The technology selected for CO2 capture is based on cooled ammonia scrubbing in post-combustion mode, as recently investigated by the authors in another work. Here, a rate-based approach is adopted. In detail, a specific...... primary energy consumption for CO2 avoided (SPECCA) of 2.77 MJ/kgCO2 is calculated in case of 85% of CO2 capture, with an ultimate power plant efficiency of 37.27%....

  15. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    Science.gov (United States)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  16. CO2 Capture by Absorption with Potassium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan; Andrew Sexton; Amorvadee Veawab

    2006-04-28

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The final campaign of the pilot plant was completed in February 2006 with 5m K{sup +}/2.5m PZ and 6.4m K{sup +}/1.6m PZ using Flexipac AQ Style 20. The new cross-exchanger reduced the approach temperature to less than 9 C. Stripper modeling has demonstrated that a configuration with a ''Flashing Feed'' requires 6% less work that a simple stripper. The oxidative degradation of piperazine proceeds more slowly than that of monoethanolamine and produces ethylenediamine and other products. Uninhibited 5 m KHCO{sub 3}/2.5 m PZ corrodes 5 to 6 times faster that 30% MEA with 0.2 mol CO{sub 2}/mol MEA.

  17. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-11-08

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The stripper model with Aspen Custom Modeler and careful optimization of solvent rate suggests that 7 m MEA and 5 m K+/2.5 m PZ will be practically equivalent in energy requirement and optimum solution capacity. The multipressure stripper reduces energy consumption by 15% with a maximum pressure of 5 atm. The use of vanadium as a corrosion inhibitor will carry little risk of long-term environmental or health effects liability, but the disposal of solvent with vanadium will be subject to regulation, probably as a hazardous waste. Analysis of the pilot plant data from Campaign 1 has given values of the mass transfer coefficient consistent with the rate data from the wetted wall column. With a rich end pinch, 30% MEA should provide a capacity of 1.3-1.4 mole CO{sub 2}/kg solvent.

  18. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    Energy Technology Data Exchange (ETDEWEB)

    Gary T. Rochelle; Eric Chen; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-11-08

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. The stripper model with Aspen Custom Modeler and careful optimization of solvent rate suggests that 7 m MEA and 5 m K+/2.5 m PZ will be practically equivalent in energy requirement and optimum solution capacity. The multipressure stripper reduces energy consumption by 15% with a maximum pressure of 5 atm. The use of vanadium as a corrosion inhibitor will carry little risk of long-term environmental or health effects liability, but the disposal of solvent with vanadium will be subject to regulation, probably as a hazardous waste. Analysis of the pilot plant data from Campaign 1 has given values of the mass transfer coefficient consistent with the rate data from the wetted wall column. With a rich end pinch, 30% MEA should provide a capacity of 1.3-1.4 mole CO{sub 2}/kg solvent.

  19. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust.

    Science.gov (United States)

    Galy, Valier; Beyssac, Olivier; France-Lanord, Christian; Eglinton, Timothy

    2008-11-07

    At geological time scales, the role of continental erosion in the organic carbon (OC) cycle is determined by the balance between recent OC burial and petrogenic OC oxidation. Evaluating its net effect on the concentration of carbon dioxide and dioxygen in the atmosphere requires the fate of petrogenic OC to be assessed. Here, we report a multiscale (nanometer to micrometer) structural characterization of petrogenic OC in the Himalayan system. We show that graphitic carbon is preserved and buried in marine sediments, while the less graphitized forms are oxidized during fluvial transport. Radiocarbon dating indicates that 30 to 50% of the carbon initially present in the Himalayan rocks is conserved during the erosion cycle. Graphitization during metamorphism thus stabilizes carbon in the crust over geological time scales.

  20. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  1. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  2. Multi-phase CFD modeling of solid sorbent carbon capture system

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. M.; DeCroix, D.; Breault, Ronald W. [U.S. DOE; Xu, W.; Huckaby, E. David [U.S. DOE

    2013-01-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  3. Challenges of oxyfuel combustion modeling for carbon capture

    Science.gov (United States)

    Kangwanpongpan, T.; Klatt, M.; Krautz, H. J.

    2012-04-01

    From the policies scenario from Internal Energy Agency (IEA) in 2010, global energy demand for coal climbs from 26% in 2006 to 29% in 2030 and most of demands for coal comes from the power-generation sector [1]. According to the new Copenhagen protocol [3], Global CO2 emission is rising from power generation due to an increasing world demand of electricity. For Energy-related CO2 emission in 2009, 43% of CO2 emissions from fuel combustion were produced from coal, 37% from oil and 20% from gas [4]. Therefore, CO2 capture from coal is the key factor to reduce greenhouse gas emission. Oxyfuel combustion is one of the promising technologies for capturing CO2 from power plants and subsequent CO2 transportation and storage in a depleted oil or gas field or saline-aquifer. The concept of Oxyfuel combustion is to remove N2 from the combustion process and burn the fuel with a mixture composed of O2 and CO2 together with recycled flue gas back into combustion chamber in order to produce a flue gas consisting mainly of CO2. This flue gas can be easily purified, compressed and transported to storage sites. However, Oxyfuel plants are still in the phase of pilot-scaled projects [5] and combustion in Oxyfuel conditions must be further investigated for a scale-up plant. Computational fluid dynamics (CFD) serves as an efficient tool for many years in Oxyfuel combustion researches [6-12] to provide predictions of temperature, heat transfer, and product species from combustion process inside furnace. However, an insight into mathematical models for Oxyfuel combustion is still restricted due to many unknown parameters such as devolatilization rate, reaction mechanisms of volatile reactions, turbulent gaseous combustion of volatile products, char heterogeneous reactions, radiation properties of gaseous mixtures and heat transfer inside and through furnace's wall. Heat transfer drastically changes due to an increasing proportion of H2O and CO2 in these Oxyfuel conditions and the degree

  4. Selective Removal of Nitrosamines from a Model Amine Carbon-Capture Waterwash Using Low-Cost Activated-Carbon Sorbents.

    Science.gov (United States)

    Widger, Leland R; Combs, Megan; Lohe, Amit R; Lippert, Cameron A; Thompson, Jesse G; Liu, Kunlei

    2017-09-19

    Nitrosamines generated in the amine solvent loop of postcombustion carbon capture systems are potent carcinogens, and their emission could pose a serious threat to the environment or human health. Nitrosamine emission control strategies are critical for the success of amine-based carbon capture as the technology approaches industrial-scale deployment. Waterwash systems have been used to control volatile and aerosol emissions, including nitrosamines, from carbon-capture plants, but it is still necessary to remove or destroy nitrosamines in the circulating waterwash to prevent their subsequent emission into the environment. In this study, a cost-effective method for selectively removing nitrosamines from the absorber waterwash effluent with activated-carbon sorbents was developed to reduce the environmental impact associated with amine-based carbon capture. The results show that the commercial activated-carbon sorbents tested have a high capacity and selectivity for nitrosamines over the parent solvent amines, with capacities up to 190 mg/g carbon, under simulated amine waterwash conditions. To further reduce costs, an aerobic thermal sorbent regeneration step was also examined due to the low thermal stability of nitrosamines. To model the effect of oxidation on the sorbent performance, thermal- and acid-oxidized sorbents were also prepared from the commercial sorbents and analyzed. The chemical and physical properties of nitrosamines, the parent amine, and the influence of the physical properties of the carbon sorbents on nitrosamine adsorption was examined. Key sorbent properties included the sorbent hydrophilicity and hydrophobicity, surface pKa of the sorbent, and chemical structure of the parent amine and nitrosamine.

  5. Capturing Detailed Outcrop Geology Using Terrestrial Laser Scanning (Lidar) and Other Digital Technologies: Current Status and Future Directions

    Science.gov (United States)

    Jones, R. R.; McCaffrey, K. J.

    2007-12-01

    Geospatial data acquisition at global to regional scales has wide acceptance, and tools such as Google Earth have been instrumental in extending Earth visualisation far beyond specialist users of GIS and satellite imagery. At the outcrop scale, the number of industry and academic geoscientists adopting digital technologies to gather field data is steadily increasing. When integrated with traditional field skills, these technologies offer two fundamental advantages: firstly, outcrop geology can now be recorded with very high detail and precision; secondly, observations and data are precisely georeferenced, which is a prerequisite for 2D and 3D spatial analysis. Digital outcrop data are being used in a wide variety of ways, many of which can be characterised in terms of two end members. Firstly, using methods such as terrestrial laser scanning and digital photogrammetry, it is possible to create highly realistic virtual copies of the outcrop. These virtual outcrop models can be used to great effect to enhance teaching, to provide virtual field-trips (most effective in conjunction with a real visit to the outcrop), to promote group discussion and interpretation, or as part of Health & Safety briefing. Secondly, digital outcrop data is also being used to derive quantitative attribute measurements from specific geological features. Here the emphasis is not on capturing a photo-realistic copy of the outcrop, but rather on gathering the relevant types of data at the most appropriate resolution and geospatial precision for the type of analysis undertaken. In addition to laser scanning, useful technologies include dGPS, laser range-finding, and Total Station surveying. Examples of this kind of quantitative analysis include fault curvature, roughness, branch-line geometry, spatial variation in fault displacement, fracture spacing and 3D spatial clustering, fold curvature, sedimentary channel morphology, lateral and vertical facies variations, and geomorphological analysis of

  6. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    Science.gov (United States)

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing

  7. Estimation of Geologic Storage Capacity of Carbon Dioxide in the Bukpyeong Basin, Korea Using Integrated Three-Dimensional Geologic Formation Modeling and Thermo-Hydrological Numerical Modeling

    Science.gov (United States)

    Kim, J.; Kihm, J.; Park, S.; SNU CO2 GEO-SEQ TEAM

    2011-12-01

    A conventional method, which was suggested by NETL (2007), has been widely used for estimating the geologic storage capacity of carbon dioxide in sedimentary basins. Because of its simple procedure, it has been straightforwardly applied to even spatially very complicate sedimentary basins. Thus, the results from the conventional method are often not accurate and reliable because it can not consider spatial distributions of fluid conditions and carbon dioxide properties, which are not uniform but variable within sedimentary basins. To overcome this limit of the conventional method, a new method, which can consider such spatially variable distributions of fluid conditions and carbon dioxide properties within sedimentary basins, is suggested and applied in this study. In this new method, a three-dimensional geologic formation model of a target sedimentary basin is first established and discretized into volume elements. The fluid conditions (i.e., pressure, temperature, and salt concentration) within each element are then obtained by performing thermo-hydrological numerical modeling. The carbon dioxide properties (i.e., phase, density, dynamic viscosity, and solubility to groundwater) within each element are then calculated from thermodynamic database under corresponding fluid conditions. Finally, the geologic storage capacity of carbon dioxide with in each element is estimated using the corresponding carbon dioxide properties as well as porosity and element volume, and that within the whole sedimentary basin is determined by summation over all elements. This new method is applied to the Bukpyeong Basin, which is one of the prospective offshore sedimentary basins for geologic storage of carbon dioxide in Korea. A three-dimensional geologic formation model of the Bukpyeong Basin is first established considering the elevation data of the boundaries between the geologic formations obtained from seismic survey and geologic maps at the sea floor surface. This geologic

  8. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  9. Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents.

    Science.gov (United States)

    Dowson, G R M; Dimitriou, I; Owen, R E; Reed, D G; Allen, R W K; Styring, P

    2015-01-01

    Carbon Dioxide Utilisation (CDU) processes face significant challenges, especially in the energetic cost of carbon capture from flue gas and the uphill energy gradient for CO2 reduction. Both of these stumbling blocks can be addressed by using alkaline earth metal compounds, such as Grignard reagents, as sacrificial capture agents. We have investigated the performance of these reagents in their ability to both capture and activate CO2 directly from dried flue gas (essentially avoiding the costly capture process entirely) at room temperature and ambient pressures with high yield and selectivity. Naturally, to make the process sustainable, these reagents must then be recycled and regenerated. This would potentially be carried out using existing industrial processes and renewable electricity. This offers the possibility of creating a closed loop system whereby alcohols and certain hydrocarbons may be carboxylated with CO2 and renewable electricity to create higher-value products containing captured carbon. A preliminary Techno-Economic Analysis (TEA) of an example looped process has been carried out to identify the electrical and raw material supply demands and hence determine production costs. These have compared broadly favourably with existing market values.

  10. Preliminary carbon dioxide capture technical and economic feasibility study evaluation of carbon dioxide capture from existing fired plants by hybrid sorption using solid sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  11. Air pollution impacts from carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Harmelen, T. van; Horssen, A. van; Jozwicka, M.; Pulles, T. (TNO, Delft (Netherlands)); Odeh, N. (AEA Technology, Harwell (United Kingdom)); Adams, M. (EEA, Copenhagen (Denmark))

    2011-11-15

    This report comprises two separate complementary parts that address the links between CCS implementation and its subsequent impacts on GHG and air pollutant emissions on a life-cycle basis: Part A discusses and presents key findings from the latest literature, focusing upon the potential air pollution impacts across the CCS life-cycle arising from the implementation of the main foreseen technologies. Both negative and positive impacts on air quality are presently suggested in the literature - the basis of scientific knowledge on these issues is rapidly advancing. Part B comprises a case study that quantifies and highlights the range of GHG and air pollutant life-cycle emissions that could occur by 2050 under a low-carbon pathway should CCS be implemented in power plants across the European Union under various hypothetical scenarios. A particular focus of the study was to quantify the main life-cycle emissions of the air pollutants taking into account the latest knowledge on air pollutant emission factors and life-cycle aspects of the CCS life-cycle as described in Part A of the report. Pollutants considered in the report were the main GHGs CO{sub 2}, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) and the main air pollutants with potential to harm human health and/or the environment - nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}), ammonia (NH{sub 3}), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM{sub 10}). (Author)

  12. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer G; Northen, Trent

    2010-03-26

    Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.

  13. Calcifying cyanobacteria--the potential of biomineralization for carbon capture and storage.

    Science.gov (United States)

    Jansson, Christer; Northen, Trent

    2010-06-01

    Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.

  14. Alternative Layouts for the Carbon Capture with the Chilled Ammonia Process

    DEFF Research Database (Denmark)

    Valenti, Gianluca; Bonalumi, Davide; Fosbøl, Philip Loldrup

    2013-01-01

    Many alternatives are being investigated for the carbon capture, but none appears to have been proved as the choice for full-scale applications. This work considers the Chilled Ammonia Process for coal-fired Ultra Super Critical power plants. Three layouts are simulated with Aspen Plus...

  15. The role of Carbon Capture and Storage in a future sustainable energy system

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    This paper presents the results of adding a CCS(Carbon Capture and Storage) plant including an underground CO2 storage to a well described and well documented vision of converting the present Danish fossil based energy system into a future sustainable energy system made by the Danish Society...

  16. A Layout for the Carbon Capture with Aqueous Ammonia without Salt Precipitation

    DEFF Research Database (Denmark)

    Bonalumi, Davide; Valenti, Gianluca; Lillia, Stefano

    2016-01-01

    Post-combustion carbon capture technologies seem to be necessary to realize the CO2 mitigation policies internationally shared for the next future, despite none of them appears to be ready for full-scale applications. This work considers the aqueous ammonia based process for a coal-fired Ultra...

  17. A wet electrostatic precipitator (WESP) as countermeasure to mist formation in amine based carbon capture

    NARCIS (Netherlands)

    Mertens, J.; Anderlohr, C.; Rogiers, P.; Brachert, L.; Khakharia, P.M.; Goetheer, E.L.V.; Schaber, K.

    2014-01-01

    This study is to our knowledge the first to evaluate the potential of a wet electrostatic precipitator (WESP) to prevent aerosol formation issues inside amine based carbon capture installations. A WESP is a suitable option since this study proves that it is very efficient for the removal of the mist

  18. Economic and environmental evaluation of flexible integrated gasification polygeneration facilities with carbon capture and storage

    Science.gov (United States)

    One innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which ...

  19. Thermokinetic/mass-transfer analysis of carbon capture for reuse/sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Brady, Patrick Vane; Staiger, Chad Lynn; Luketa, Anay Josephine

    2010-09-01

    Effective capture of atmospheric carbon is a key bottleneck preventing non bio-based, carbon-neutral production of synthetic liquid hydrocarbon fuels using CO{sub 2} as the carbon feedstock. Here we outline the boundary conditions of atmospheric carbon capture for recycle to liquid hydrocarbon fuels production and re-use options and we also identify the technical advances that must be made for such a process to become technically and commercially viable at scale. While conversion of atmospheric CO{sub 2} into a pure feedstock for hydrocarbon fuels synthesis is presently feasible at the bench-scale - albeit at high cost energetically and economically - the methods and materials needed to concentrate large amounts of CO{sub 2} at low cost and high efficiency remain technically immature. Industrial-scale capture must entail: (1) Processing of large volumes of air through an effective CO{sub 2} capture media and (2) Efficient separation of CO{sub 2} from the processed air flow into a pure stream of CO{sub 2}.

  20. Carbon Dioxide Capture from Flue Gas: Development and Evaluation of Existing and Novel Process Concepts

    NARCIS (Netherlands)

    Abu Zahra, M.R.M.

    2009-01-01

    One of the main global challenges in the years to come is to reduce the CO2 emissions in view of the apparent contribution to global warming. Carbon dioxide capture, transport, and storage (CCS) from fossil fuel fired power plants is drawing increased interest as an intermediate solution towards sus

  1. 2nd clean coal & carbon capture - securing the future. Conference documentation and delegate information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The presentations covered: policies and the regulatory environment - creating opportunities for clean coal technologies; mastering the economics of clean coal - gaining finance and investment for key projects; international initiatives in clean coal technologies; power plant developments; broader uses for coal; and carbon capture and storage.

  2. Valuing Metal-Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents

    KAUST Repository

    Adil, Karim

    2017-08-22

    The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.

  3. Representing Carbon Capture and Storage in MARKAL EPAUS9r16a

    Science.gov (United States)

    Energy system models are used to evaluate the energy and environmental implications of alternative pathways for producing and using energy. Many such models include representations of the costs and capacities of carbon capture and sequestration (CCS). In this presentation, Dan Lo...

  4. Valuing Metal-Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents.

    Science.gov (United States)

    Adil, Karim; Bhatt, Prashant M; Belmabkhout, Youssef; Abtab, Sk Md Towsif; Jiang, Hao; Assen, Ayalew H; Mallick, Arijit; Cadiau, Amandine; Aqil, Jamal; Eddaoudi, Mohamed

    2017-08-22

    The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Economic and Environmental Assessment of Natural Gas Plants with Carbon Capture and Storage (NGCC-CCS)

    Science.gov (United States)

    The CO2 intensity of electricity produced by state-of-the-art natural gas combined-cycle turbines (NGCC) isapproximately one-third that of the U.S. fleet of existing coal plants. Compared to new nuclear plants and coal plantswith integrated carbon capture, NGCC has a lower invest...

  6. Economic and environmental evaluation of flexible integrated gasification polygeneration facilities with carbon capture and storage

    Science.gov (United States)

    One innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which ...

  7. A wet electrostatic precipitator (WESP) as countermeasure to mist formation in amine based carbon capture

    NARCIS (Netherlands)

    Mertens, J.; Anderlohr, C.; Rogiers, P.; Brachert, L.; Khakharia, P.M.; Goetheer, E.L.V.; Schaber, K.

    2014-01-01

    This study is to our knowledge the first to evaluate the potential of a wet electrostatic precipitator (WESP) to prevent aerosol formation issues inside amine based carbon capture installations. A WESP is a suitable option since this study proves that it is very efficient for the removal of the mist

  8. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence

    DEFF Research Database (Denmark)

    Liu, Huang; Guo, Ping; Regueira Muñiz, Teresa

    2016-01-01

    showed an irreversible change of its framework, which occurs during the CO2 capture process. It was found that there is an irreversible chemical reaction among ZIF-8, water, and CO2, which creates both zinc carbonate (or zinc carbonate hydroxides) and single 2-methylimidazole crystals, and therefore......The performance of zeolitic imidazolate framework 8 (ZIF-8) for CO2 capture under three different conditions (wetted ZIF-8, ZIF-8/water slurry, and ZIF-8/water-glycol slurry) was systemically investigated. This investigation included the study of the pore structure stability of ZIF-8 by using X...... the pore structure of ZIF-8 collapses. It is suggested therefore that care must be taken when using ZIF-8 or products containing ZIF-8 for gas capture, gas separation, or other applications where both water and acid gases coexist....

  9. Electrocatalytically switchable CO2 capture: first principle computational exploration of carbon nanotubes with pyridinic nitrogen.

    Science.gov (United States)

    Jiao, Yan; Zheng, Yao; Smith, Sean C; Du, Aijun; Zhu, Zhonghua

    2014-02-01

    Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2 . This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2 -capture phenomenon is considered.

  10. Synthesis and characterization of functional thienyl-phosphine microporous polymers for carbon dioxide capture.

    Science.gov (United States)

    Chen, Xianghui; Qiao, Shanlin; Du, Zhengkun; Zhou, Yuanhang; Yang, Renqiang

    2013-07-25

    A novel kind of functional organic microporous polymer is designed by introducing polar organic groups (P=O and P=S) and electron-rich heterocyclic into the framework to obtain high carbon dioxide capture capacity. The estimated Brunauer-Emmett-Teller (BET) surface areas of these polymers are about 600 m(2) g(-1) and the highest CO2 uptake is 2.26 mmol g(-1) (1.0 bar/273 K). Interestingly, the polymer containing P=O groups shows greater CO2 capture capacity than that containing P=S groups at the same temperature. In addition, these polymers show high isosteric heats of CO2 adsorption (28.6 kJ mol(-1) ), which can be competitive with some nitrogen-rich networks. Therefore, these microporous polymers are promising candidates for carbon dioxide capture.

  11. Multiphase fluid-rock reactions among supercritical carbon dioxide, brine, aquifer, and caprock: relevance to geologic sequestration of carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kaszuba, J. P. (John P.); Janecky, D. R. (David R.); Snow, M. G. (Marjorie G.)

    2004-01-01

    The reactive behavior of a multiphase fluid (supercritical CO{sub 2} and brine) under physical-chemical conditions relevant to geologic storage and sequestration in a carbon repository is largely unknown. Experiments were conducted in a flexible cell hydrothermal apparatus to evaluate multiphase fluid-rock (aquifer plus caprock) reactions that may impact repository integrity.

  12. LABORATORY TESTS ON THE EFFICIENCY OF CARBON DIOXIDE CAPTURE FROM GASES IN NaOH SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Włodzimierz Kordylewski

    2013-04-01

    Full Text Available The lab-scale experiments were carried out in order to determine the effectiveness of CO2 capture from gases in the sodium hydroxide solutions under approximately standard conditions. The flow rate of the carrier gas was 140 l/min, and the CO2 content was 15%.The absorber was Dreschel washer with NaOH solution. The efficiency of CO2 capture of 85% was obtained for 50% of NaOH. It was proved that the increase of temperature in NaOH solution improves CO2 capture efficiency. The efficiency of capturing CO2 in 1 mol/l sodium carbonate was defined as 4–5%. The products of CO2 reactions in sorption solutions were marked.

  13. Engineering-Geological Properties of Carbonate Rocks in Relation to Weathering Intensity

    Science.gov (United States)

    Pollak, Davor

    For most of the purposes engineering-geological explorations are done on the surface. Afterwards the surface data get correlated with other exploration results in order to produce rock mass quality model. The modelling of subsurface and deeper zones in karst areas in Croatia is usually a difficult task because of a complex geology. The evaluation of rock mass quality in those zones is even more demanding mainly because of the specific weathering processes of carbonate rocks. Since karstification significantly changes engineering-geological properties of carbonate rocks, it is of vital importance to determine the degree of weathering in surface and subsurface zones. Engineering-geological properties of carbonate rocks in the surface zone, subsurface and deeper zones are compared and discussed in the paper. Facts and examples are taken from recent highway projects in Croatia. From those data it has been recognized, that depending on the basic block size, two basic weathering models can be established. Each of the models has its specific engineering-geological properties.

  14. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hancu, Dan; Chen, Wei

    2014-07-01

    This report presents system and economicanalysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO₂ capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. Forcomparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO₂ for the aminosilicone-based carbon-capture process is $46.04/ton of CO₂ as compared to $60.25/ton of CO₂ when MEA is used. The aminosilicone- based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO₂ decreases to $44.12/ton. The aminosilicone-based solvent has a higherthermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lowervapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lowerheat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages overconventional systems using MEA.

  15. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-12-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 10(13) cm(-2) or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility.

  16. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    Science.gov (United States)

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

  17. Examining the role of carbon capture and storage through an ethical lens.

    Science.gov (United States)

    Medvecky, Fabien; Lacey, Justine; Ashworth, Peta

    2014-12-01

    The risk posed by anthropogenic climate change is generally accepted, and the challenge we face to reduce greenhouse gas (GHG) emissions to a tolerable limit cannot be underestimated. Reducing GHG emissions can be achieved either by producing less GHG to begin with or by emitting less GHG into the atmosphere. One carbon mitigation technology with large potential for capturing carbon dioxide at the point source of emissions is carbon capture and storage (CCS). However, the merits of CCS have been questioned, both on practical and ethical grounds. While the practical concerns have already received substantial attention, the ethical concerns still demand further consideration. This article aims to respond to this deficit by reviewing the critical ethical challenges raised by CCS as a possible tool in a climate mitigation strategy and argues that the urgency stemming from climate change underpins many of the concerns raised by CCS.

  18. Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ligang (ed.) [Canmet, Natural Resources Canada, Ottawa, Ontario (Canada)], email: lzheng@nrcan-rncan.gc.ca

    2011-07-01

    An important part of the world's electricity is produced from coal. It is a predominant resource for power generation because of its abundance and world-wide distribution. However the use of coal results in emissions of carbon monoxide, oxides of sulphur and nitrogen (NOx) and particle matter which have a negative impact on the environment. In order to reduce CO2 emissions, the plant's efficiency can be increased or the carbon can be captured, liquefied, and transported to an underground storage site through the carbon capture and storage (CCS) process. Three options can be used for CCS; oxy-fuel combustion is the most promising as it does not require CO2 separation. This book presents the oxy-fuel combustion technology, its current state, development needs and prospective timeline. The book's 15 chapters were all analyzed separately for inclusion in this database.

  19. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    Science.gov (United States)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  20. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    Science.gov (United States)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  1. Pilot-Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-Combustion Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, Marc [SRI International, Menlo Park, CA (United States)

    2016-09-01

    The overall objective of this project is to achieve the DOE’s goal to develop advanced CO2 capture and separation technologies that can realize at least 90% CO2 removal from flue gas steams produced at a pulverized coal (PC) power plant at a cost of less than $40/tonne of CO2 captured. The principal objective is to test a CO2 capture process that will reduce the parasitic plant load by using a CO2 capture sorbent that will require a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption, high CO2 adsorption capacity, and excellent selectivity. While the intent of this project was to produce design and performance data by testing the sorbent using a slipstream of coal-derived flue gas at the National Carbon Capture Center (NCCC) under realistic conditions and continuous long-term operation, the project was terminated following completion of the detailing pilot plant design/engineering work on June 30, 2016.

  2. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  3. Developing low-cost carbon-based sorbents for Hg capture from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Perry, R.; Lakatos, J.; Snape, C.E.; Sun, C. [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2005-07-01

    To help reduce the cost of Hg capture from flue gas a number of low-cost carbons are being investigated, including activated tyre char and PFA carbon, in conjunction with some of the pre-treatments that have been found to be effective for commercial actived carbons. Experimental conditions for screening the sorbents have been selected to determine breakthrough capacities rapidly. The unactivated carbons have low breakthrough capacities under the test conditions employed (around 0.1 mg g{sup -1}) but these improve upon steam activation (around 0.25 mg g{sup -1}) but are still lower than those of non-impregnated commercial activated carbons (around 0.4-0.7 mg g{sup -1}), due to their lower surface areas. Comparable improvements to the commercial carbons have been achieved for impregnation treatments, including sulfur and bromine. However, certain gasification chars do have much higher breakthrough capacities than commercial carbons used for flue gas injection. Manganese oxide impregnation with low concentration is particularly effective for the activated and unactivated carbons giving breakthrough capacities comparable to the commercial carbons. Pointers for further increasing breakthrough and equilibrium capacities for carbon-based sorbents are discussed. 7 refs., 1 fig., 3 tabs.

  4. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Barnhart, Elliot [Montana State Univ., Bozeman, MT (United States); Lageson, David [Montana State Univ., Bozeman, MT (United States); Nall, Anita [Montana State Univ., Bozeman, MT (United States); Dobeck, Laura [Montana State Univ., Bozeman, MT (United States); Repasky, Kevin [Montana State Univ., Bozeman, MT (United States); Shaw, Joseph [Montana State Univ., Bozeman, MT (United States); Nugent, Paul [Montana State Univ., Bozeman, MT (United States); Johnson, Jennifer [Montana State Univ., Bozeman, MT (United States); Hogan, Justin [Montana State Univ., Bozeman, MT (United States); Codd, Sarah [Montana State Univ., Bozeman, MT (United States); Bray, Joshua [Montana State Univ., Bozeman, MT (United States); Prather, Cody [Montana State Univ., Bozeman, MT (United States); McGrail, B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oldenburg, Curtis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wagoner, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pawar, Rajesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  5. Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs.

    Science.gov (United States)

    Kawaguchi, Hideo; Sakuma, Takahiro; Nakata, Yuiko; Kobayashi, Hajime; Endo, Keita; Sato, Kozo

    2010-07-01

    To recover energy from carbon dioxide sequestered in geological reservoirs, the geochemical effects of acidic and substrate- and nutrient-limiting conditions on methane production by the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus were investigated in a simulated deep saline aquifer environment using formation water media retrieved from petroleum reservoirs.

  6. Thermophysical Properties and Phase Behavior of Fluids for Application in Carbon Capture and Storage Processes.

    Science.gov (United States)

    Trusler, J P Martin

    2017-06-07

    Phase behavior and thermophysical properties of mixtures of carbon dioxide with various other substances are very important for the design and operation of carbon capture and storage (CCS) processes. The available empirical data are reviewed, together with some models for the calculation of these properties. The systems considered in detail are, first, mixtures of carbon dioxide, water, and salts; second, carbon dioxide-rich nonelectrolyte mixtures; and third, mixtures of carbon dioxide with water and amines. The empirical data and the plethora of available models permit the estimation of key fluid properties required in the design and operation of CCS processes. The engineering community would benefit from the further development, and delivery in convenient form, of a small number of these models sufficient to encompass the component slate and operating conditions of CCS processes.

  7. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  8. Design of protonation constant measurement apparatus for carbon dioxide capturing solvents

    Science.gov (United States)

    Ma'mun, S.; Amelia, E.; Rahmat, V.; Alwani, D. R.; Kurniawan, D.

    2016-11-01

    Global warming phenomenon has led to world climate change caused by high concentrations of greenhouse gases (GHG), e.g. carbon dioxide (CO2), in the atmosphere. Carbon dioxide is produced in large amount from coal-fired power plants, iron and steel production, cement production, chemical and petrochemical manufacturing, natural gas purification, and transportation. Carbon dioxide emissions seem to rise from year to year; some efforts to reduce the emissions are, therefore, required. Amine-based absorption could be deployed for post-combustion capture. Some parameters, e.g. mass transfer coefficients and chemical equilibrium constants, are required for a vapor-liquid equilibrium modeling. Protonation constant (pKa), as one of those parameters, could then be measured experimentally. Therefore, an experimental setup to measure pKa of CO2 capturing solvents was designed and validated by measuring the pKa of acetic acid at 30 to 70 °C by a potentiometric titration method. The set up was also used to measure the pKa of MEA at 27 °C. Based on the validation results and due to low vapor pressure of CO2 capturing solvents in general, e.g. alkanolamines, the setup could therefore be used for measuring pKa of the CO2 capturing solvents at temperatures up to 70 °C.

  9. The oxalate-carbonate pathway: at the interface between biology and geology

    Science.gov (United States)

    Junier, P.; Cailleau, G.; Martin, G.; Guggiari, M.; Bravo, D.; Clerc, M.; Aragno, M.; Job, D.; Verrecchia, E.

    2012-04-01

    The formation of calcite in otherwise carbonate-free acidic soils through the biological degradation of oxalate is a mechanism termed oxalate-carbonate pathway. This pathway lies at the interface between biological and geological systems and constitutes an important, although underestimated, soil mineral carbon sink. In this case, atmospheric CO2 is fixed by the photosynthetic activity of oxalogenic plants, which is partly destined to the production of oxalate used for the chelation of metals, and particularly, calcium. Fungi are also able to produce oxalate to cope with elevated concentrations of metals. In spite of its abundance as a substrate, oxalate is a very stable organic anion that can be metabolized only by a group of bacteria that use it as carbon and energy sources. These bacteria close the biological cycle by degrading calcium oxalate, releasing Ca2+ and inducing a change in local soil pH. If parameters are favourable, the geological part of the pathway begins, because this change in pH will indirectly lead to the precipitation of secondary calcium carbonate (calcite) in unexpected geological conditions. Due to the initial acidic soil conditions, and the absence of geological carbonate in the basement, it is unexpected to find C in the form of calcite. The activity of the oxalate-carbonate pathway has now been demonstrated in several places around the world, suggesting that its importance can be even greater than expected. In addition, new roles for each of the biological players of the pathway have been revealed recently forcing us to reconsider a global biogeochemical model for oxalate cycling.

  10. U.S. Geological Survey Methodology Development for Ecological Carbon Assessment and Monitoring

    Science.gov (United States)

    Zhu, Zhi-Liang; Stackpoole, S.M.

    2009-01-01

    Ecological carbon sequestration refers to transfer and storage of atmospheric carbon in vegetation, soils, and aquatic environments to help offset the net increase from carbon emissions. Understanding capacities, associated opportunities, and risks of vegetated ecosystems to sequester carbon provides science information to support formulation of policies governing climate change mitigation, adaptation, and land-management strategies. Section 712 of the Energy Independence and Security Act (EISA) of 2007 mandates the Department of the Interior to develop a methodology and assess the capacity of our nation's ecosystems for ecological carbon sequestration and greenhouse gas (GHG) flux mitigation. The U.S. Geological Survey (USGS) LandCarbon Project is responding to the Department of Interior's request to develop a methodology that meets specific EISA requirements.

  11. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  12. Electro-osmotic-based catholyte production by Microbial Fuel Cells for carbon capture.

    Science.gov (United States)

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Li, Baikun; Cristiani, Pierangela; Ieropoulos, Ioannis

    2015-12-01

    In Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes. The highest pH levels (>13) of produced liquid were achieved by the MFCs with the activated carbon cathodes producing the highest power (309 μW). Caustic catholyte formation is presented in the context of beneficial cathode flooding and transport mechanisms, in an attempt to understand the effects of active and passive diffusion. Active transport was dominant under closed circuit conditions and showed a linear correlation with power performance, whereas osmotic (passive) transport was governing the passive flux of liquid in open circuit conditions. Caustic catholyte was mineralised to a mixture of carbonate and bicarbonate salts (trona) thus demonstrating an active carbon capture mechanism as a result of the MFC energy-generating performance. Carbon capture would be valuable for establishing a carbon negative economy and environmental sustainability of the wastewater treatment process.

  13. The Nature of Carbonate and Organic δ13C Covariance Through Geological Time

    Science.gov (United States)

    Oehlert, A. M.; Swart, P. K.

    2014-12-01

    Significant evolutionary, climatic, and oceanographic events in Earth history are often accompanied by excursions in the carbon isotope composition (δ13C) of marine carbonates and co-occurring sedimentary organic material. The observation of synchronous excursions in the δ13C values of marine carbonates and coeval organic matter is commonly thought to prove that the deposit has not been altered by diagenesis, and that the variations in the δ13C records are the result of a significant change in global carbon cycling. Furthermore, this model suggests that the covariance of carbonate and organic δ13C records is driven only by changes in the δ13C value of the dissolved inorganic carbon in the surface waters of the ocean. However, recent work suggests that there may be at least two alternate models for generating covariance between carbonate and organic δ13C values in the geologic record. One of the models invokes sea-level driven syndepositional mixing between isotopically distinct sources of carbonate and organic material to produce positive covariance between carbonate and organic δ13C values. The second model suggests that post-depositional alteration to the carbonate δ13C values during meteoric diagenesis, in concert with concurrent contributions of terrestrial organic material during subaerial exposure, can also produce co-occurring negative excursions with tightly covariant δ13C records. In contrast to earlier interpretations of covariant δ13C values, these models suggest that both syndepositional and post-depositional factors can significantly influence the relationship between carbonate and organic δ13C values in a variety of depositional environments. The implications for reconstructions of ancient global carbon cycle events will be explored within the context of these three models, and their relative importance throughout geologic time will be discussed.

  14. Facile synthesis of magnetic mesoporous hollow carbon microspheres for rapid capture of low-concentration peptides.

    Science.gov (United States)

    Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2014-08-13

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g(-1) at room temperature and a Brunauer-Emmett-Teller specific surface area of 48.8 m(2) g(-1) with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications.

  15. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    Science.gov (United States)

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  16. Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture.

    Science.gov (United States)

    Woodward, Robert T; Stevens, Lee A; Dawson, Robert; Vijayaraghavan, Meera; Hasell, Tom; Silverwood, Ian P; Ewing, Andrew V; Ratvijitvech, Thanchanok; Exley, Jason D; Chong, Samantha Y; Blanc, Frédéric; Adams, Dave J; Kazarian, Sergei G; Snape, Colin E; Drage, Trevor C; Cooper, Andrew I

    2014-06-25

    To impact carbon emissions, new materials for carbon capture must be inexpensive, robust, and able to adsorb CO2 specifically from a mixture of other gases. In particular, materials must be tolerant to the water vapor and to the acidic impurities that are present in gas streams produced by using fossil fuels to generate electricity. We show that a porous organic polymer has excellent CO2 capacity and high CO2 selectivity under conditions relevant to precombustion CO2 capture. Unlike polar adsorbents, such as zeolite 13x and the metal-organic framework, HKUST-1, the CO2 adsorption capacity for the hydrophobic polymer is hardly affected by the adsorption of water vapor. The polymer is even stable to boiling in concentrated acid for extended periods, a property that is matched by few microporous adsorbents. The polymer adsorbs CO2 in a different way from rigid materials by physical swelling, much as a sponge adsorbs water. This gives rise to a higher CO2 capacities and much better CO2 selectivity than for other water-tolerant, nonswellable frameworks, such as activated carbon and ZIF-8. The polymer has superior function as a selective gas adsorbent, even though its constituent monomers are very simple organic feedstocks, as would be required for materials preparation on the large industrial scales required for carbon capture.

  17. Atmospheric Chemistry of the Carbon Capture Solvent Monoethanolamine (MEA): A Theoretical Study

    Science.gov (United States)

    da Silva, G.

    2012-12-01

    The development of amine solvent technology for carbon capture and storage has the potential to create large new sources of amines to the atmosphere. The atmospheric chemistry of amines generally, and carbon capture solvents in particular, is not well understood. We have used quantum chemistry and master equation modelling to investigate the OH radical initiated oxidation of monoethanolamine (NH2CH2CH2OH), or MEA, the archetypal carbon capture solvent. The OH radical can abstract H atoms from either carbon atom in MEA, with negative reaction barriers. Treating these reactions with a two transition state model can reliably reproduce experimental rate constants and their temperature dependence. The products of the MEA + OH reaction, the NH2CHCH2OH and NH2CH2CHOH radicals, undergo subsequent reaction with O2, which has also been studied. In both cases chemically activated reactions that bypass peroxyl radical intermediates dominate, producing 2-iminoethanol + HO2 (from NH2CHCH2OH) or aminoacetaldehyde + HO2 (from NH2CH2CHOH), making the process HOx-neutral. The operation of chemically activated reaction mechanisms has implications for the ozone forming potential of MEA. The products of MEA photo-oxidation are proposed as important species in the formation of both organic and inorganic secondary aerosols, particularly through uptake of the imine 2-iminoethanol and subsequent hydrolysis to ammonia and glycolaldehyde.

  18. Environmental assessment of amine-based carbon capture Scenario modelling with life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Andreas; Askham, Cecilia; Modahl, Ingunn Saur; Vold, Bjoern Ivar; Johnsen, Fredrik Moltu

    2012-07-01

    This report contains a first attempt at introducing the environmental impacts associated with amines and derivatives in a life cycle assessment (LCA) of gas power production with carbon capture and comparing these with other environmental impacts associated with the production system. The report aims to identify data gaps and methodological challenges connected both to modelling toxicity of amines and derivatives and weighting of environmental impacts. A scenario based modelling exercise was performed on a theoretical gas power plant with carbon capture, where emission levels of nitrosamines were varied between zero (gas power without CCS) to a worst case level (outside the probable range of actual carbon capture facilities). Because of extensive research and development in the areas of solvents and emissions from carbon capture facilities in the latter years, data used in the exercise may be outdated and results should therefore not be taken at face value.The results from the exercise showed: According to UseTox, emissions of nitrosamines are less important than emissions of formaldehyde with regard to toxicity related to operation of (i.e. both inputs to and outputs from) a carbon capture facility. If characterisation factors for emissions of metals are included, these outweigh all other toxic emissions in the study. None of the most recent weighting methods in LCA include characterisation factors for nitrosamines, and these are therefore not part of the environmental ranking.These results shows that the EDecIDe project has an important role to play in developing LCA methodology useful for assessing the environmental performance of amine based carbon capture in particular and CCS in general. The EDecIDe project will examine the toxicity models used in LCA in more detail, specifically UseTox. The applicability of the LCA compartment models and site specificity issues for a Norwegian/Arctic situation will be explored. This applies to the environmental compartments

  19. Geoelectric Monitoring Studies for the Carbon Dioxide Geological Storage

    Science.gov (United States)

    Tosha, T.; Ishido, T.; Nishi, Y.

    2008-12-01

    Self-potential (SP) anomalies of negative polarity are frequently observed near deep wells. These anomalies appear to be caused by an underground electrochemical mechanism similar to a galvanic cell: the metallic well casing acts as a vertical electronic conductor connecting regions of differing redox potential. Electrons flow upward though the casing from a deeper reducing environment to a shallower oxidizing environment, and simultaneously a compensating vertical flow of ions is induced in the surrounding formation to maintain charge neutrality. If the redox potential in the deeper region is then increased by injecting an oxidizing substance, the difference in redox potential between the shallower and deeper regions will be reduced, resulting in an SP increase near the wellhead. We have been monitoring earth-surface SP during gas injection tests at various sites in Japan. When air was injected into a 100-meter well within a geothermal field, a remarkable simultaneous increase in SP centered on the wellhead was observed. A small but unmistakable SP increase also took place near the wellhead when CO2 was slowly injected, which we believe was caused by local pH reduction at depth resulting from dissolution of the injected CO2 in the aquifer fluid. SP changes were also observed in Yubari, geological sequestration test site in Japan, where one well injected CO2 into a coal bed and the fluid containing CH4 was produced from a nearby well. The CO2 content of the fluid was also monitored. SP increased substantially around the injection wellhead, but no significant SP changes attributable to the injection were observed near the production wellhead. This is consistent with the observation that CO2 did not break through into the production well during the experiment. We believe that SP measurements at the earth surface represent a new and promising technique for sensing the approach of CO2 to well casings deep within the subsurface.

  20. Geological Carbon Sequestration in the Ohio River Valley: An Evaluation of Possible Target Formations

    Science.gov (United States)

    Dalton, T. A.; Daniels, J. J.

    2009-12-01

    The development of geological carbon sequestration within the Ohio River Valley is of major interest to the national electricity and coal industries because the Valley is home to a heavy concentration of coal-burning electricity generation plants and the infrastructure is impossible to eliminate in the short-term. It has been determined by Ohio's politicians and citizenry that the continued use of coal in this region until alternative energy supplies are available will be necessary over the next few years. Geologic sequestration is the only possible means of keeping the CO2 out of the atmosphere in the region. The cost of the sequestration effort greatly decreases CO2 emissions by sequestering CO2 directly on site of these plants, or by minimizing the distance between fossil-fueled generation and sequestration (i.e., by eliminating the cost of transportation of supercritical CO2 from plant to sequestration site). Thus, the practicality of CO2 geologic sequestration within the Ohio River Valley is central to the development of such a commercial effort. Though extensive work has been done by the Regional Partnerships of the DOE/NETL in the characterization of general areas for carbon sequestration throughout the nation, few projects have narrowed their focus into a single geologic region in order to evaluate the sites of greatest commercial potential. As an undergraduate of the Earth Sciences at Ohio State, I have engaged in thorough research to obtain a detailed understanding of the geology of the Ohio River Valley and its potential for commercial-scale carbon sequestration. Through this research, I have been able to offer an estimate of the areas of greatest interest for CO2 geologic sequestration. This research has involved petrological, mineralogical, geochemical, and geophysical analyses of four major reservoir formations within Ohio—the Rose Run, the Copper Ridge, the Clinton, and the Oriskany—along with an evaluation of the possible effects of injection

  1. Potential impact of CO{sub 2} leakage from carbon capture and storage systems on field bean (Vicia faba)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Traboulsi, M.; Sjoegersten, S.; Colls, J.; Black, C. [Univ. of Nottingham. School of Biosciences, Loughborough (United Kingdom); Steven, M. [Univ. of Nottingham. School of Geography, Nottingham (United Kingdom)

    2012-05-15

    Capture and geological storage of carbon dioxide (CO{sub 2}) has been suggested to be essential to reduce emissions to the atmosphere and aid mitigation of global climate change. However, leakage from transport pipelines or carbon capture and storage (CCS) reservoirs may pose risks to vegetation and contribute to rising atmospheric concentrations [CO{sub 2}]. This study examined effects on seedling emergence and growth when field bean plants (Vicia faba cv. Wizard) grown under field conditions were subjected to elevated soil [CO{sub 2}] for 39 days after planting. The strong negative correlation between soil [CO{sub 2}] and [O{sub 2}] during the injection period created a hypoxic soil environment under conditions of elevated soil [CO{sub 2}]. The damaging impact of this treatment became apparent early in the experiment as no seeds exposed to soil [CO{sub 2}] >50% emerged, even after injection was discontinued. Some seeds exposed to soil [CO{sub 2}] <50% produced seedlings, but many did not survive. Seedling emergence and survival in the gassed plots was greatest at [CO{sub 2}] of 5-20%, but root and shoot growth was reduced relative to control plants. Seedling emergence and growth were negatively related to soil [CO{sub 2}] and positively related to [O{sub 2}], although it is not known which was more important in inducing the observed effects. These findings suggest that leakage of CO{sub 2} from transport pipelines or CCS sites may greatly reduce seedling emergence and crop establishment in the vicinity of such infrastructures. (Author)

  2. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury

    Energy Technology Data Exchange (ETDEWEB)

    Ghorishi, S.B.; Keeney, R.M.; Serre, S.D.; Gullett, B.K.; Jozewicz, W.S. [ARCADIS, Durham, NC (USA)

    2002-10-15

    Elemental mercury is present in considerable concentrations in emissions from some coal-fired plants and its removal presents more of a challenge than the capture of oxidized forms of mercury. Efforts to discern the role of an activated carbon's surface functional group on the adsorption of elemental mercury (Hg{sup 0}) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORIT Americas Inc. (FGD)) was Cl-impregnated (Cl-FGD) (5 lb (2.3 kg) per batch) and tested for entrained-flow, short-time-scale capture of Hg{sup 0}. In an entrained flow reactor, the Cl-DFGD was introduced in Hg{sup 0}-laden flue gases of various compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg{sup 0} removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg{sup 0} removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). The experimental conditions simulated those common in the flue gas of coal-fired boilers burning western subbituminous or lignite coal containing less than 1 ppm HCl. Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200{degree}C) had minimal effects on Hg{sup 0} removal by the Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator. 26 refs., 7 figs., 3 tabs.

  3. Modelling of cyclopentane promoted gas hydrate systems for carbon dioxide capture processes

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2014-01-01

    amount of reliable LLE data exist for the binary system of water and cyclopentane. Additional water-in-oil data in particular are desired for this system.An unpromoted hydrate-based capture process, operating isothermally at a temperature of 280. K is simulated. The minimum pressure requirement...... behaviour and hydrate phase behaviour is presented. Cycloalkanes ranging from cyclopropane to cyclohexane, represents a challenge for CPA, both in the description of the pure component densities and for liquid-liquid equilibrium (LLE) in the binary systems with water. It is concluded that an insufficient...... of the first stage is estimated to be 24.9. MPa. Applying three consecutive hydrate formation/dissociation stages (three-stage capture process), a carbon dioxide-rich product (97. mol%) may be delivered at a temperature of 280. K and a pressure of 3.65. MPa.A second capture process, where cyclopentane...

  4. Toluene vapor capture by activated carbon particles in a dual gas-solid cyclone system.

    Science.gov (United States)

    Lim, Yun Hui; Ngo, Khanh Quoc; Park, Young Koo; Jo, Young Min

    2012-08-01

    Capturing of odorous compounds such as toluene vapor by a particulate-activated carbon adsorbent was investigated in a gas-solid cyclone, which is one type of mobile beds. The test cyclone was early modified with the post cyclone (PoC) and a spiral flow guide to the vortex finder. The proposed process may contribute to the reduction of gases and dust from industrial exhausts, especially when dealing with a low concentration of odorous elements and a large volume ofdust flow. In this device, the toluene capturing efficiency at a 400 ppm concentration rose up to 77.4% when using activated carbon (AC) particles with a median size of 27.03 microm. A maximum 96% of AC particles could be collected for reuse depending on the size and flow rate. The AC regenerated via thermal treatment showed an adsorption potential up to 66.7% throughout repeated tests.

  5. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae.

    Science.gov (United States)

    Yadav, Anant; Choudhary, Piyush; Atri, Neelam; Teir, Sebastian; Mutnuri, Srikanth

    2016-11-01

    The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO2 from vent gas. The studies were carried out for CO2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO2 in vent gas to 15 vol.% of CO2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m(2)/day. The methane yield was 386 l CH4/kg VSfed of Chlorella sp. whereas 228 l CH4/kg VSfed of the consortium of algae.

  6. Self-propelled carbon nanotube based microrockets for rapid capture and isolation of circulating tumor cells

    Science.gov (United States)

    Banerjee, Shashwat S.; Jalota-Badhwar, Archana; Zope, Khushbu R.; Todkar, Kiran J.; Mascarenhas, Russel R.; Chate, Govind P.; Khutale, Ganesh V.; Bharde, Atul; Calderon, Marcelo; Khandare, Jayant J.

    2015-05-01

    Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01797a

  7. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    Energy Technology Data Exchange (ETDEWEB)

    Workman, James

    2013-09-30

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  8. Development of Specific Rules for the Application of Life Cycle Assessment to Carbon Capture and Storage

    Directory of Open Access Journals (Sweden)

    Michela Gallo

    2013-03-01

    Full Text Available Carbon Capture and Storage (CCS is a very innovative and promising solution for greenhouse gases (GHG reduction, i.e., capturing carbon dioxide (CO2 at its source and storing it indefinitely to avoid its release to the atmosphere. This paper investigates a set of key issues in the development of specific rules for the application of Life Cycle Assessment (LCA to CCS. The following LCA-based information are addressed in this work: definition of service type, definition of functional unit, definition of system boundaries, choice of allocation rules, choice of selected Life Cycle Inventory (LCI results or other selected parameters for description of environmental performance. From a communication perspective, the specific rules defined in this study have been developed coherently with the requirements of a type III environment label scheme, the International EPD® System, according to the ISO 14025 standard.

  9. Advanced computational tools for optimization and uncertainty quantification of carbon capture processes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [U.S. DOE; Ng, Brenda [Lawrence Livermore National Laboratory; Eslick, John [Carnegie Mellon University

    2014-01-01

    Advanced multi-scale modeling and simulation has the potential to dramatically reduce development time, resulting in considerable cost savings. The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and universities that is developing, demonstrating, and deploying a suite of multi-scale modeling and simulation tools. One significant computational tool is FOQUS, a Framework for Optimization and Quantification of Uncertainty and Sensitivity, which enables basic data submodels, including thermodynamics and kinetics, to be used within detailed process models to rapidly synthesize and optimize a process and determine the level of uncertainty associated with the resulting process. The overall approach of CCSI is described with a more detailed discussion of FOQUS and its application to carbon capture systems.

  10. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.

    Science.gov (United States)

    Hwang, Kuo Chu; Lai, Po Dong; Chiang, Chi-Shiun; Wang, Pei-Jen; Yuan, Chiun-Jye

    2010-11-01

    HeLa cells were incubated with neutron capture nuclei (boron-10 and gadolinium)-containing carbon nanoparticles, followed by irradiation of slow thermal neutron beam. Under a neutron flux of 6 x 10(11) n/cm(2) (or 10 min irradiation at a neutron flux of 1 x 10(9) n/cm(2) s), the percentages of acute cell death at 8 h after irradiation are 52, 55, and 28% for HeLa cells fed with BCo@CNPs, GdCo@CNPs, and Co@CNPs, respectively. The proliferation capability of the survived HeLa cells was also found to be significantly suppressed. At 48 h after neutron irradiation, the cell viability further decreases to 35 +/- 5% as compared to the control set receiving the same amount of neutron irradiation dose but in the absence of carbon nanoparticles. This work demonstrates "proof-of-concept" examples of neutron capture therapy using (10)B-, (157)Gd-, and (59)Co-containing carbon nanoparticles for effective destruction of cancer cells. It will also be reported the preparation and surface functionalization of boron or gadolinium doped core-shell cobalt/carbon nanoparticles (BCo@CNPs, GdCo@CNPs and Co@CNPs) using a modified DC pulsed arc discharge method, and their characterization by various spectroscopic measurements, including TEM, XRD, SQUID, FT-IR, etc. Tumor cell targeting ability was introduced by surface modification of these carbon nanoparticles with folate moieties.

  11. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture

    KAUST Repository

    Shekhah, Osama

    2014-06-25

    Direct air capture is regarded as a plausible alternate approach that, if economically practical, can mitigate the increasing carbon dioxide emissions associated with two of the main carbon polluting sources, namely stationary power plants and transportation. Here we show that metal-organic framework crystal chemistry permits the construction of an isostructural metal-organic framework (SIFSIX-3-Cu) based on pyrazine/copper(II) two-dimensional periodic 4 4 square grids pillared by silicon hexafluoride anions and thus allows further contraction of the pore system to 3.5 versus 3.84 for the parent zinc(II) derivative. This enhances the adsorption energetics and subsequently displays carbon dioxide uptake and selectivity at very low partial pressures relevant to air capture and trace carbon dioxide removal. The resultant SIFSIX-3-Cu exhibits uniformly distributed adsorption energetics and offers enhanced carbon dioxide physical adsorption properties, uptake and selectivity in highly diluted gas streams, a performance, to the best of our knowledge, unachievable with other classes of porous materials. 2014 Macmillan Publishers Limited.

  12. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Robert

    2012-12-01

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern

  13. Co-precipitation of phosphate and carbonate minerals: geological and ecological implications

    Science.gov (United States)

    Sanchez-Román, Monica; McKenzie, Judith; Vasconcelos, Crisogono

    2015-04-01

    Microorganisms play an important role in natural environments by controlling the metal cations (e.g., Ca2+, Mg2+, Fe2+) and the anions (CO32-, NH4+, PO43-) that precipitate as biominerals (e.g., carbonates, phosphates). In contrast to phosphate minerals, precipitation of carbonate minerals by bacteria has been widely studied in culture experiments and in natural environments. Moreover, studies of sedimentary phosphate minerals and their geological and ecological implications are rare. Nevertheless, phosphate minerals frequently co-precipitate with carbonates in culture experiments and in natural systems. In the present work, we investigate how microorganisms control the mineralogy and geochemistry of phosphate and carbonate minerals. For this, culture experiments were performed to study the co-precipitation of phosphate and carbonate minerals using aerobic heterotrophic bacteria at sedimentary Earth's surface conditions. Ca-Mg carbonate (dolomite, Mg-calcite) and/or Mg-carbonate (hydromagnesite) precipitated with Mg-phosphate (struvite). In most of the cultures, phosphate was the dominant mineral phase found in the bacterial precipitates and carbonates precipitated after phosphate phases. Notably, in all the cultures, we found a mixture of phosphate and carbonate minerals. This study shines new light into the microbial diagenetic processes involved in the co-precipitation of phosphate and carbonate minerals and links the P and C cycles.

  14. Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao; Sun, Xin; Storlie, Curtis; Marcy, Peter; Dietiker, Jean-François; Li, Tingwen; Spenik, James

    2016-01-01

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesian calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.

  15. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I. (Univ. of Pittsburgh, PA); Heintz, Y.J. (Univ. of Pittsburgh, PA); Ilconich, J.B. (Parsons)

    2007-06-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  16. Self-propelled carbon nanotube based microrockets for rapid capture and isolation of circulating tumor cells.

    Science.gov (United States)

    Banerjee, Shashwat S; Jalota-Badhwar, Archana; Zope, Khushbu R; Todkar, Kiran J; Mascarenhas, Russel R; Chate, Govind P; Khutale, Ganesh V; Bharde, Atul; Calderon, Marcelo; Khandare, Jayant J

    2015-05-21

    Here, we report a non-invasive strategy for isolating cancer cells by autonomously propelled carbon nanotube (CNT) microrockets. H2O2-driven oxygen (O2) bubble-propelled microrockets were synthesized using CNT and Fe3O4 nanoparticles in the inner surface and covalently conjugating transferrin on the outer surface. Results show that self-propellant microrockets can specifically capture cancer cells.

  17. Measurement and Modelling of the Piperazine Potassium Carbonate Solutions for CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Waseem Arshad, Muhammad

    The climate is in a critical state due to the impact of pollution by CO2 and similar greenhouse gasses. Action needs to be taken in order reduce the emission of harmful components. CO2 capture is one process to help the world population back on track in order to return to normal condition, obtain...... with the purpose of simulating the CO2 capture process. This involves equilibrium studies on physical properties in the activated carbonate solvent. Energy consumption while applying the promoted carbonate solutions using piperazine is given in overview.......The climate is in a critical state due to the impact of pollution by CO2 and similar greenhouse gasses. Action needs to be taken in order reduce the emission of harmful components. CO2 capture is one process to help the world population back on track in order to return to normal condition......, obtaining a sustainable use of natural organic resources. In this work the solid solubility has been measured for the promoted hot carbonate process using piperazine and K2CO3/KHCO3. It entails a comparison of several newly developed methods in order to guarantee the accuracy of determined experimental work...

  18. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    Science.gov (United States)

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  19. Ranking of enabling technologies for oxy-fuel based carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, T.L.; Oryshchyn, D.L.; Ciferno, J.P.

    2007-06-01

    The USDOE National Energy Technology Laboratory (NETL) has begun a process to identify and rank enabling technologies that have significant impacts on pulverized coal oxy-fuel systems. Oxy-fuel combustion has been identified as a potential method for effectively capturing carbon in coal fired power plants. Presently there are a number of approaches for carbon capture via oxy-fuel combustion and it is important to order those approaches so that new research can concentrate on those technologies with high potentials to substantially lower the cost of reduced carbon electricity generation. NETL evaluates these technologies using computer models to determine the energy use of each technology and the potential impact of improvements in the technologies on energy production by a power plant. Near-term sub-critical boiler technologies are targeted for this analysis because: • most of the world continues to build single reheat sub-critical plants; • the overwhelming number of coal fired power plants requiring retrofit for CO2 capture are sub-critical plants. In addition, even in the realm of new construction, subcritical plants are common because they are well understood, easy to operate and maintain, fuel tolerant, and reliable. Following the initial investigation into sub-critical oxy-fuel technology, future investigations will move into the supercritical range.

  20. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-11

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  1. Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis.

    Science.gov (United States)

    Wang, Tao; Lackner, Klaus S; Wright, Allen B

    2013-01-14

    An ideal chemical sorbent for carbon dioxide capture from ambient air (air capture) must have a number of favourable properties, such as environmentally benign behaviour, a high affinity for CO(2) at very low concentration (400 ppm), and a low energy cost for regeneration. The last two properties seem contradictory, especially for sorbents employing thermal swing adsorption. On the other hand, thermodynamic analysis shows that the energy cost of an air capture device need only be slightly larger than that of a flue gas scrubber. The moisture swing separation process studied in this paper provides a novel approach to low cost CO(2) capture from air. The anionic exchange resin sorbent binds CO(2) when dry and releases it when wet. A thermodynamic model with coupled phase and chemical equilibria is developed to study the complex H(2)O-CO(2)-resin system. The moisture swing behaviour is compatible with hydration energies changing with the activity of water on the resin surfaces. This activity is in turn set by the humidity. The rearrangement of hydration water on the resin upon the sorption of a CO(2) molecule is predicted as a function of the humidity and temperature. Using water as fuel to drive the moisture swing enables an economical, large-scale implementation of air capture. By generating CO(2) with low partial pressures, the present technology has implications for in situ CO(2) utilizations which require low pressure CO(2) gas rather than liquid CO(2).

  2. The national carbon capture center at the power systems development facility

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  3. Hydroquinone and quinone-grafted porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading

    NARCIS (Netherlands)

    Wang, J.; Krishna, R.; Yang, J.; Deng, S.

    2015-01-01

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were

  4. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling.

    Science.gov (United States)

    Tansel, Berrin; Surita, Sharon C

    2016-06-01

    Siloxane levels in biogas can jeopardize the warranties of the engines used at the biogas to energy facilities. The chemical structure of siloxanes consists of silicon and oxygen atoms, alternating in position, with hydrocarbon groups attached to the silicon side chain. Siloxanes can be either in cyclic (D) or linear (L) configuration and referred with a letter corresponding to their structure followed by a number corresponding to the number of silicon atoms present. When siloxanes are burned, the hydrocarbon fraction is lost and silicon is converted to silicates. The purpose of this study was to evaluate the adequacy of activated carbon gas samplers for quantitative analysis of siloxanes in biogas samples. Biogas samples were collected from a landfill and an anaerobic digester using multiple carbon sorbent tubes assembled in series. One set of samples was collected for 30min (sampling 6-L gas), and the second set was collected for 60min (sampling 12-L gas). Carbon particles were thermally desorbed and analyzed by Gas Chromatography Mass Spectrometry (GC/MS). The results showed that biogas sampling using a single tube would not adequately capture octamethyltrisiloxane (L3), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). Even with 4 tubes were used in series, D5 was not captured effectively. The single sorbent tube sampling method was adequate only for capturing trimethylsilanol (TMS) and hexamethyldisiloxane (L2). Affinity of siloxanes for activated carbon decreased with increasing molecular weight. Using multiple carbon sorbent tubes in series can be an appropriate method for developing a standard procedure for determining siloxane levels for low molecular weight siloxanes (up to D3). Appropriate quality assurance and quality control procedures should be developed for adequately quantifying the levels of the higher molecular weight siloxanes in biogas with sorbent tubes

  5. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.

    2011-04-01

    when low-carbon energy is considered cheap enough to replace fossil fuels. Carbon dioxide capture and storage (CCS) is one such bridging technology (1). CCS has been the focus of an increasing amount of research over the last 15-20 years and is the subject of a comprehensive IPCC report that thoroughly covers the subject (1). CCS is currently being carried out in several countries around the world in conjunction with natural gas extraction (e.g., 2, 3) and enhanced oil recovery (17). Despite this progress, widespread deployment of CCS remains the subject of research and future plans rather than present action on the scale needed to mitigate emissions from the perspective of climate change. The reasons for delay in deploying CCS more widely are concerns about cost (18), regulatory and legal uncertainty (19), and potential environmental impacts (21). This chapter discusses the long-term (decadal) sustainability and environmental hazards associated with the geologic CO{sub 2} storage (GCS) component of large-scale CCS (e.g., 20). Discussion here barely touches on capture and transport of CO{sub 2} which will occur above ground and which are similar to existing engineering, chemical processing, and pipeline transport activities and are therefore easier to evaluate with respect to risk assessment and feasibility. The focus of this chapter is on the more uncertain part of CCS, namely geologic storage. The primary concern for sustainability of GCS is whether there is sufficient capacity in sedimentary basins worldwide to contain the large of amounts of CO{sub 2} needed to address climate change. But there is also a link between sustainability and environmental impacts. Specifically, if GCS is found to cause unacceptable impacts that are considered worse than its climate-change mitigation benefits, the approach will not be widely adopted. Hence, GCS has elements of sustainability insofar as capacity of the subsurface for CO{sub 2} is concerned, and also in terms of whether the

  6. Behavioral responses of Arctica islandica (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage.

    Science.gov (United States)

    Bamber, Shaw D; Westerlund, Stig

    2016-11-01

    Sub-sea geological storage of carbon dioxide (CO2) provides a viable option for the Carbon Capture and Storage (CCS) approach for reducing atmospheric emissions of this greenhouse gas. Although generally considered to offer a low risk of major leakage, it remains relevant to establish the possible consequences for marine organisms that live in or on sediments overlying these storage areas if such an event may occur. The present study has used a series of laboratory exposures and behavioral bioassays to establish the sensitivity of Arctica islandica to simulated leakages of CO2. This long-lived bivalve mollusc is widely distributed throughout the North Sea, an area where geological storage is currently taking place and where there are plans to expand this operation significantly. A recently published model has predicted a maximum drop of 1.9pH units in seawater at the point source of a substantial escape of CO2 from sub-sea geological storage in this region. Valve movements of A. islandica exposed to reduced pH seawater were recorded continuously using Hall effect proximity sensors. Valve movement regulation is important for optimising the flow of water over the gills, which supplies food and facilitates respiration. A stepwise reduction in seawater pH showed an initial increase in both the rate and extent of valve movements in the majority of individuals tested when pH fell to 6.2 units. Exposing A. islandica to pH 6.2 seawater continuously for seven days resulted in a clear increase in valve movements during the first 40h of exposure, followed by a gradual reduction in activity intensity over the subsequent five days, suggesting acclimation. The ability of both exposed and control bivalves to burrow successfully into sediment on completion of this exposure was very similar. A final exposure trial, testing whether increased valve movements initiated by reduced pH were related to foot extension during attempted burrowing, found no such association. In summary

  7. Energy-efficient stirred-tank photobioreactors for simultaneous carbon capture and municipal wastewater treatment.

    Science.gov (United States)

    Mohammed, K; Ahammad, S Z; Sallis, P J; Mota, C R

    2014-01-01

    Algal based wastewater treatment (WWT) technologies are attracting renewed attention because they couple energy-efficient sustainable treatment with carbon capture, and reduce the carbon footprint of the process. A low-cost energy-efficient mixed microalgal culture-based pilot WWT system, coupled with carbon dioxide (CO2) sequestration, was investigated. The 21 L stirred-tank photobioreactors (STPBR) used light-emitting diodes as the light source, resulting in substantially reduced operational costs. The STPBR were operated at average optimal light intensity of 582.7 μmol.s(-1).m(-2), treating synthetic municipal wastewater containing approximately 250, 90 and 10 mg.L(-1) of soluble chemical oxygen demand (SCOD), ammonium (NH4-N), and phosphate, respectively. The STPBR were maintained for 64 days without oxygen supplementation, but had a supply of CO2 (25 mL.min(-1), 25% v/v in N2). Relatively high SCOD removal efficiency (>70%) was achieved in all STPBR. Low operational cost was achieved by eliminating the need for mechanical aeration, with microalgal photosynthesis providing all oxygenation. The STPBR achieved an energy saving of up to 95%, compared to the conventional AS system. This study demonstrates that microalgal photobioreactors can provide effective WWT and carbon capture, simultaneously, in a system with potential for scaling-up to municipal WWT plants.

  8. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  9. The National Carbon Capture Center at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for

  10. Environmental issues in the geological disposal of carbon dioxide and radioactive waste

    OpenAIRE

    West, Julia M.; Shaw, Richard P.; Pearce, Jonathan M.

    2011-01-01

    A comparative assessment of the post-closure environmental issues for the geological disposal of carbon dioxide (CO2) and radioactive waste is made in this chapter. Several criteria are used: the characteristics of radioactive waste and CO2; their potential environmental impacts; an assessment of the hazards arising from radioactive waste and CO2; and monitoring of their environmental impacts. There are several differences in the way that the long term safety of the disposal of radioactive wa...

  11. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  12. Synthesis of High-Surface-Area Nitrogen-Doped Porous Carbon Microflowers and Their Efficient Carbon Dioxide Capture Performance.

    Science.gov (United States)

    Li, Yao; Cao, Minhua

    2015-07-01

    Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high-surface-area hierarchically porous N-doped carbon microflowers, which were assembled from porous nanosheets by a three-step route: soft-template-assisted self-assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure-directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N-doped carbon microflowers (A-NCF-4) have a hierarchically porous structure, high specific surface area (2309 m(2)  g(-1)), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm(3)  g(-1)). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g(-1) were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.

  13. Sponges with covalently tethered amines for high-efficiency carbon capture

    KAUST Repository

    Qi, Genggeng

    2014-12-12

    © 2014 Macmillan Publishers Limited. All rights reserved. Adsorption using solid amine sorbents is an attractive emerging technology for energy-efficient carbon capture. Current syntheses for solid amine sorbents mainly based on physical impregnation or grafting-to methods (for example, aminosilane-grafting) lead to limited sorbent performance in terms of stability and working capacity, respectively. Here we report a family of solid amine sorbents using a grafting-from synthesis approach and synthesized by cationic polymerization of oxazolines on mesoporous silica. The sorbent with high amount of covalently tethered amines shows fast adsorption rate, high amine efficiency and sorbent capacity well exceeding the highest value reported to date for lowerature carbon dioxide sorbents under simulated flue gas conditions. The demonstrated efficiency of the new amine-immobilization chemistry may open up new avenues in the development of advanced carbon dioxide sorbents, as well as other nitrogen-functionalized systems.

  14. Carbonic Anhydrase Enhanced Carbon Capture: Kinetic Measurements and Pilot Plant Trials

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: MEA (a primary amine), AMP (a sterically hindered primary amine), MDEA (a tertiary amine) and K2CO3 a carbonate salt solution were tested...... in concentrations from 5 to 50 wt%. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined in a temperature range from 298 to 328 K and benchmarked to a 30 wt% MEA solution. The study reveals that the addition of the enzyme carbonic...

  15. Utility of Biofilms and Biologically-Induced Mineralization in Geologic Carbon Sequestration

    Science.gov (United States)

    Gerlach, R.; Mitchell, A. C.; Cunningham, A. B.; Spangler, L.

    2010-12-01

    Geologic carbon sequestration involves the injection of CO2 into underground formations including oil beds, deep un-minable coal seams, basaltic rocks, and deep saline aquifers with temperature and pressure conditions such that CO2 will often be in the supercritical state. Four trapping mechanisms are proposed to play significant roles in the deep geologic sequestration of CO2: formation trapping, capillary trapping, solubility trapping, and mineral trapping. Our research has shown that, independent of the host rock, microbial biofilms are capable of enhancing formation trapping, solubility trapping, and mineral trapping. i) We have demonstrated that engineered microbial biofilms are capable of reducing the permeability of rock cores at pressures and temperatures, which would be found in the presence of supercritical CO2. ii) The biofilms have been demonstrated to be resistant to supercritical CO2. iii) Biofilms precipitate CO2 in the form of calcium carbonate (CaCO3), which resists dissolution by brine and scCO2. iv) Microbial activity can increase CO2 solubilization thus improving solubility trapping. Recent activities have begun to focus on practical aspects related to the implementation of biofilm-enhanced geologic carbon sequestration technologies in field situations.

  16. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance.

    Science.gov (United States)

    Wang, Rutao; Wang, Peiyu; Yan, Xingbin; Lang, Junwei; Peng, Chao; Xue, Qunji

    2012-11-01

    Business costs and energy/environmental concerns have increased interested in biomass materials for production of activated carbons, especially as electrode materials for supercapacitors or as solid-state adsorbents in CO₂ adsorption area. In this paper, waste celtuce leaves were used to prepare porous carbon by air-drying, pyrolysis at 600 °C in argon, followed by KOH activation. The as-prepared porous carbon have a very high specific surface area of 3404 m²/g and a large pore volume of 1.88 cm³/g. As an electroactive material, the porous carbon exhibits good capacitive performance in KOH aqueous electrolyte, with the specific capacitances of 421 and 273 F/g in three and two-electrode systems, respectively. As a solid-state adsorbent, the porous carbon has an excellent CO₂ adsorption capacity at ambient pressures of up to 6.04 and 4.36 mmol/g at 0 and 25 °C, respectively. With simple production process, excellent recyclability and regeneration stability, the porous carbon that was derived from celtuce leaves is among the most promising materials for high-performance supercapacitors and CO₂ capture.

  17. On the limits of CO{sub 2} capture capacity of carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.F.; Plaza, M.G.; Pis, J.J.; Rubiera, F.; Pevida, C.; Centeno, T.A. [CSIC, Oviedo (Spain)

    2010-08-17

    This study shows that standard techniques used for carbons characterization, such as physical adsorption of CO{sub 2} at 273 K and N-2 at 77K, can be used to assess, with a good accuracy, the maximum capacity of carbons to capture CO{sub 2} under post- and pre-combustion conditions. The analysis of the corresponding adsorption isotherms, within the general theoretical framework of Dubinin's theory, leads to the values of the micropore volume, W-o, and the characteristic energy, E-o, of the carbons, which provide direct information on the equilibrium CO{sub 2} uptake of the carbons at different pressures and temperatures. Although in special cases slightly higher values can be obtained, an overall assessment of the textural parameters for a large variety of activated carbons, indicates that a CO{sub 2} uptake upper-bound around 10-11 wt% seems to be realistic for standard activated carbons under post-combustion conditions. In the case of pre-combustion conditions, this limit would not exceed 60-70 wt%.

  18. Global carbon management using air capture and geosequestration at remote locations

    Science.gov (United States)

    Lackner, K. S.; Goldberg, D.

    2014-12-01

    CO2 emissions need not only stop; according the IPCC, emissions need to turn negative. This requires means to remove CO2 from air and store it safely and permanently. We outline a combination of secure geosequestration and direct capture of CO2 from ambient air to create negative emissions at remote locations. Operation at remote sites avoids many difficulties associated with capture at the source, where space for added equipment is limited, good storage sites are in short supply, and proximity to private property engenders resistance. Large Igneous Provinces have been tested as secure CO2 reservoirs. CO2 and water react with reservoir rock to form stable carbonates, permanently sequestering the carbon. Outfitting reservoirs in large igneous provinces far from human habitation with ambient air capture systems creates large CO2 sequestration sites. Their remoteness offers advantages in environmental security and public acceptance and, thus, can smooth the path toward CO2 stabilization. Direct capture of CO2 from ambient air appears energetically and economically viable and could be scaled up quickly. Thermodynamic energy requirements are very small and a number of approaches have shown to be energy efficient in practice. Sorbent technologies include supported organoamines, alkaline brines, and quaternary ammonium based ion-exchange resins. To demonstrate that the stated goals of low cost and low energy consumption can be reached at scale, public research and demonstration projects are essential. We suggest co-locating air capture and geosequestration at sites where renewable energy resources can power both activities. Ready renewable energy would also allow for the co-production of synthetic fuels. Possible locations with large wind and basalt resources include Iceland and Greenland, the north-western United States, the Kerguelen plateau, Siberia and Morocco. Capture and sequestration in these reservoirs could recover all of the emissions of the 20th century and

  19. The National Carbon Capture Center at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-07-14

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived flue gas and syngas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived flue gas and syngas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development paths to commercialization. During the calendar year 2013 portion of the Budget Period Four reporting period, efforts at the NCCC focused on post-combustion CO2 capture, gasification, and pre-combustion CO2 capture technology testing. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of post-combustion, testing was conducted on an enzyme-based technology, advanced solvents from two major developers, and a gas separation membrane. During the year, the gasification process was operated for three test runs, supporting development of water-gas shift and COS hydrolysis catalysts, a mercury sorbent, and several gasification support technologies. Syngas produced during gasification operation was also used for pre-combustion capture technologies, including gas separation membranes from three different technology developers, a CO2 sorbent, and CO2 solvents.

  20. A new class of single-component absorbents for reversible carbon dioxide capture under mild conditions.

    Science.gov (United States)

    Barzagli, Francesco; Lai, Sarah; Mani, Fabrizio

    2015-01-01

    Some inexpensive and commercially available secondary amines reversibly react with CO2 at room temperature and ambient pressure to yield carbonated species in the liquid phase in the absence of any additional solvent. These solvent-free absorbents have a high CO2 capture capacity (0.63-0.65 mol CO2 /mol amine) at 1.0 bar (=100 kPa), combined with low-temperature reversibility at ambient pressure. (13) C NMR spectroscopy analysis identified the carbonated species as the carbamate salts and unexpected carbamic acids. These absorbents were used for CO2 (15 and 40 % in air) capture in continuous cycles of absorption-desorption carried out in packed columns, yielding an absorption efficiency of up to 98.5 % at absorption temperatures of 40-45 °C and desorption temperatures of 70-85 °C at ambient pressure. The absence of any parasitic solvent that requires to be heated and stability towards moisture and heating could result in some of these solvent-free absorbents being a viable alternative to aqueous amines for CO2 chemical capture.

  1. Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture.

    Science.gov (United States)

    Hayashi, T; Lee, T G; Hazelwood, M; Hedrick, E; Biswas, P

    2000-06-01

    The use of activated carbon fiber (ACF) filters for the capture of particulate matter and elemental Hg is demonstrated. The pressure drop and particle collection efficiency characteristics of the ACF filters were established at two different face velocities and for two different aerosols: spherical NaCl and combustion-generated silica particles. The clean ACF filter specific resistance was 153 kg m-2 sec-1. The experimental specific resistance for cake filtration was 1.6 x 10(6) sec-1 and 2.4 x 10(5) sec-1 for 0.5- and 1.5-micron mass median diameter particles, respectively. The resistance factor R was approximately 2, similar to that for the high-efficiency particulate air filters. There was a discrepancy in the measured particle collection efficiencies and those predicted by theory. The use of the ACF filter for elemental Hg capture was illustrated, and the breakthrough characteristic was established. The capacity of the ACF filter for Hg capture was similar to other powdered activated carbons.

  2. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    Science.gov (United States)

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  3. Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Rohan; Wall, Terry [Chemical Engineering, University of Newcastle, Callaghan, NSW (Australia)

    2011-02-15

    The oxy-fuel process is one of three carbon capture technologies which supply CO{sub 2} ready for sequestration - the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and results in significantly different flue gas compositions. Sulphur has been shown in the study to have impacts in the furnace, during ash collection, CO{sub 2} compression and transport as well as storage, with many options for its removal or impact control. In particular, the effect of sulphur containing species can pose a risk for corrosion throughout the plant and transport pipelines. This paper presents a technical review of all laboratory and pilot work to identify impacts of sulphur impurities from throughout the oxy-fuel process, from combustion, gas cleaning, compression to sequestration with removal and remedial options. An economic assessment of the optimum removal is not considered. Recent oxy-fuel pilot trials performed in support of the Callide Oxy-fuel Project and other pilot scale data are interpreted and combined with thermodynamic simulations to develop a greater fundamental understanding of the changes incurred by recycling the flue gas. The simulations include a sensitivity analysis of process variables and comparisons between air fired and oxy-fuel fired conditions - such as combustion products, SO{sub 3} conversion and limestone addition. (author)

  4. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  5. Molecular simulation studies of CO2 adsorption by carbon model compounds for carbon capture and sequestration applications.

    Science.gov (United States)

    Liu, Yangyang; Wilcox, Jennifer

    2013-01-02

    Effects of oxygen-containing surface functionalities on the adsorption of mixtures including CO(2)/CH(4), CO(2)/N(2), and CO(2)/H(2)O have been investigated in the current work. Together with Bader charge analysis, electronic structure calculations have provided the initial framework comprising both the geometry and corresponding charge information required to carry out statistical-based molecular simulations. The adsorption isotherms and selectivity of CO(2) from CO(2)/N(2), CO(2)/CH(4), and CO(2)/H(2)O gas mixtures were determined by grand canonical Monte Carlo simulations at temperature/pressure conditions relevant to carbon capture and sequestration applications. The interactions between the surfaces with induced polarity and nonpolar/polar molecules have been investigated. It has been observed that, due to the induced polarity of the surface functionalization, the selectivity of CO(2) over CH(4) increases from approximately 2 to higher than 5, and the selectivity of CO(2) over N(2) increases from approximately 5 to 20, especially in the low-pressure regime. However, water vapor will always preferentially adsorb over CO(2) in carbon-based systems containing oxygen functionalized surfaces at conditions relevant to carbon capture application. Molecular simulation results indicate that the surface chemistry in micropores is tunable thereby influencing the selectivity for enhanced uptake of CO(2).

  6. The National Carbon Capture Center at the Power Systems Development Facility: Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  7. Carbon dioxide capture by planar (AlN)n clusters (n=3-5).

    Science.gov (United States)

    Guo, Chen; Wang, Chong

    2017-09-26

    Searching for materials and technologies of efficient CO2 capture is of the utmost importance to reduce the CO2 impact on the environment. Therefore, the (AlN)n clusters (n = 3-5) are researched using density functional theoretical calculations. The results of the optimization show that the most stable structures of (AlN)n clusters all display planar configurations at B3LYP and G3B3 methods, which are consistent with the reported results. For these planar clusters, we further systematically studied their interactions with carbon dioxide molecules to understand their adsorption behavior at the B3LYP/6-311+G(d,p) level, including geometric optimization, binding energy, bond index, and electrostatic. We found that the planar structures of (AlN)n (n = 3-5) can capture 3-5 CO2 molecules. The result indicates that (AlN)n (n = 3-5) clusters binding with CO2 is an exothermic process (the capture of every CO2 molecule on (AlN)n clusters releases at least 30 kcal mol(-1) in relative free energy values). These analysis results are expected to further motivate the applications of clusters to be efficient CO2 capture materials.

  8. Final Deliverable W6, D6.4: Coal power plants with carbon capture and storage – A sustainability assessment

    NARCIS (Netherlands)

    Ramirez, C.A.; Schakel, W.B.; Wood, R.; Grytli, T.

    2013-01-01

    Carbon Capture and Storage (CCS) is increasingly gaining attention as a strategy for the abatement of greenhouse gas (GHG) emissions. CCS includes the capture of CO2 emissions from electricity generation plants and/or industrial processes, its transport (by pipeline or ships) and sequestration in un

  9. Final Deliverable W6, D6.4: Coal power plants with carbon capture and storage – A sustainability assessment

    NARCIS (Netherlands)

    Ramirez, C.A.|info:eu-repo/dai/nl/284852414; Schakel, W.B.|info:eu-repo/dai/nl/369280784; Wood, R.; Grytli, T.

    2013-01-01

    Carbon Capture and Storage (CCS) is increasingly gaining attention as a strategy for the abatement of greenhouse gas (GHG) emissions. CCS includes the capture of CO2 emissions from electricity generation plants and/or industrial processes, its transport (by pipeline or ships) and sequestration in un

  10. Ammonia Activation of Carbonized Polysaccharides and their Application for the Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tae Youl; Park, Seo Kyoung; Lee, Je Seung [Kyung Hee University, Seoul (Korea, Republic of)

    2016-05-15

    Porous carbons derived from polysaccharides (cellulose, chitosan, and alginic acid) have been prepared by heat treatment under N{sub 2} atmosphere and activated at high temperature under ammonia gas atmosphere. The CO{sub 2} adsorption capacities of prepared porous carbon materials and their dependence on the surface area and pore volume were investigated. The surface area of pristine carbon from cellulose, chitosan, and alginic acid at 800 .deg. C was measured as 406.5, 206.8, and 258.2 m{sup 2}/g with the pore volume of 0.27, 0.14, and 0.15 cm{sup 3}/g, respectively. The surface area and pore volume of carbons derived from cellulose, chitosan, and alginic acid further increased up to 976.6, 883.4, and 1031.9 m{sup 2}/g and 0.54, 0.45, and 0.65 cm{sup 3}/g, respectively, after the activation at high temperature under ammonia gas environment. The CO{sub 2} adsorption capacities of pristine carbons were measured as high as 1.85 mmol/g and further increased up to 2.44 mmol/g by ammonia activation.

  11. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping.

    Science.gov (United States)

    Mitchell, Andrew C; Dideriksen, Knud; Spangler, Lee H; Cunningham, Alfred B; Gerlach, Robin

    2010-07-01

    The potential of microorganisms for enhancing carbon capture and storage (CCS) via mineral-trapping (where dissolved CO(2) is precipitated in carbonate minerals) and solubility trapping (as dissolved carbonate species in solution) was investigated. The bacterial hydrolysis of urea (ureolysis) was investigated in microcosms including synthetic brine (SB) mimicking a prospective deep subsurface CCS site with variable headspace pressures [p(CO(2))] of (13)C-CO(2). Dissolved Ca(2+) in the SB was completely precipitated as calcite during microbially induced hydrolysis of 5-20 g L(-1) urea. The incorporation of carbonate ions from (13)C-CO(2) ((13)C-CO(3)(2-)) into calcite increased with increasing p((13)CO(2)) and increasing urea concentrations: from 8.3% of total carbon in CaCO(3) at 1 g L(-1) to 31% at 5 g L(-1), and 37% at 20 g L(-1). This demonstrated that ureolysis was effective at precipitating initially gaseous [CO(2)(g)] originating from the headspace over the brine. Modeling the change in brine chemistry and carbonate precipitation after equilibration with the initial p(CO(2)) demonstrated that no net precipitation of CO(2)(g) via mineral-trapping occurred, since urea hydrolysis results in the production of dissolved inorganic carbon. However, the pH increase induced by bacterial ureolysis generated a net flux of CO(2)(g) into the brine. This reduced the headspace concentration of CO(2) by up to 32 mM per 100 mM urea hydrolyzed because the capacity of the brine for carbonate ions was increased, thus enhancing the solubility-trapping capacity of the brine. Together with the previously demonstrated permeability reduction of rock cores at high pressure by microbial biofilms and resilience of biofilms to supercritical CO(2), this suggests that engineered biomineralizing biofilms may enhance CCS via solubility-trapping, mineral formation, and CO(2)(g) leakage reduction.

  12. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS)

    Science.gov (United States)

    Muratori, Matteo; Calvin, Katherine; Wise, Marshall; Kyle, Page; Edmonds, Jae

    2016-09-01

    Bioenergy with carbon capture and storage (BECCS) is considered a potential source of net negative carbon emissions and, if deployed at sufficient scale, could help reduce carbon dioxide emissions and concentrations. However, the viability and economic consequences of large-scale BECCS deployment are not fully understood. We use the Global Change Assessment Model (GCAM) integrated assessment model to explore the potential global and regional economic impacts of BECCS. As a negative-emissions technology, BECCS would entail a net subsidy in a policy environment in which carbon emissions are taxed. We show that by mid-century, in a world committed to limiting climate change to 2 °C, carbon tax revenues have peaked and are rapidly approaching the point where climate mitigation is a net burden on general tax revenues. Assuming that the required policy instruments are available to support BECCS deployment, we consider its effects on global trade patterns of fossil fuels, biomass, and agricultural products. We find that in a world committed to limiting climate change to 2 °C, the absence of CCS harms fossil-fuel exporting regions, while the presence of CCS, and BECCS in particular, allows greater continued use and export of fossil fuels. We also explore the relationship between carbon prices, food-crop prices and use of BECCS. We show that the carbon price and biomass and food crop prices are directly related. We also show that BECCS reduces the upward pressure on food crop prices by lowering carbon prices and lowering the total biomass demand in climate change mitigation scenarios. All of this notwithstanding, many challenges, both technical and institutional, remain to be addressed before BECCS can be deployed at scale.

  13. Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective

    Directory of Open Access Journals (Sweden)

    Bobo Zheng

    2014-08-01

    Full Text Available The world’s energy needs have been continually growing over the past decade, yet fossil fuels are limited. Renewable energies are becoming more prevalent, but are still a long way from being commonplace worldwide. Literature mining is applied to review carbon capture and storage (CCS development trends and to develop and examine a novel carbon capture and storage technological paradigm (CCSTP, which incorporates CCSTP competition, diffusion and shift. This paper first provides an overview of the research and progress in CCS technological development, then applies a techno-paradigm theory to analyze CCSTP development and to provide a guide for future CCS technological trends. CCS could avoid CO2 being released into the atmosphere. Moreover, bioenergy with CCS (BECCS can make a significant contribution to a net removal of anthropogenic CO2 emissions. In this study, we compare the different CCSTP developmental paths and the conventional techno-paradigm by examining the S-curves. The analyses in this paper provide a useful guide for scholars seeking new inspiration in their research and for potential investors who are seeking to invest research funds in more mature technologies. We conclude that political barriers and public acceptance are the major distinctions between the CCSTP and the conventional techno-paradigm. It is expected that policy instruments and economic instruments are going to play a pivotal role in the accomplishment of global carbon reduction scenarios.

  14. Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41

    Institute of Scientific and Technical Information of China (English)

    Jianwen Wei; Lei Liao; Yu Xiao; Pei Zhang; Yao Shi

    2010-01-01

    The novel carbon dioxide (CO2) adsorbents with a high capture efficiency were prepared through impregnating the as-synthesized MCM-41 with three kinds of amines,namely diethylenetdamine (DETA),tdethylenetetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP).The resultant samples were characterized by small angle X-ray diffraction and low temperature N2 adsorption.The synthesis way not only saves the energy or extractor to remove the template but also is environmentally friendly due to the absence of the potential pollutants such as toluene.CO2 capture was investigated in a dynamic packed column.The sample impregnated by TETA showed the highest adsorption capacity,approximately 2.22 mmol/g at 60℃ due to its highest amino-groups content among the three amines,The CO2 adsorption behavior was also investigated with the deactivation model,which showed an excellent prediction for the breakthrough curves.

  15. Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zunfeng, E-mail: liuz2@chem.leidenuniv.nl; Voskamp, Patrick [Cell Observatory, Biophysical Structural Chemistry, Leiden Institute of Chemistry (Netherlands); Zhang Yue; Chu Fuqiang [Changzhou University, School of Pharmaceutical Engineering and Life Science (China); Abrahams, Jan Pieter, E-mail: abrahams@chem.leidenuniv.nl [Cell Observatory, Biophysical Structural Chemistry, Leiden Institute of Chemistry (Netherlands)

    2013-04-15

    Purification of unstable protein complexes is a bottleneck for investigation of their 3D structure and in protein-protein interaction studies. In this paper, we demonstrate that streptavidin-coated single-walled carbon nanotubes (Strep Bullet SWNT) can be used to capture the biotinylated DNA-EcoRI complexes on a 2D surface and in solution using atomic force microscopy and electrophoresis analysis, respectively. The restriction enzyme EcoRI forms unstable complexes with DNA in the absence of Mg{sup 2+}. Capturing the EcoRI-DNA complexes on the Strep Bullet SWNT succeeded in the absence of Mg{sup 2+}, demonstrating that the Strep Bullet SWNT can be used for purifying unstable protein complexes.

  16. Capture of carbon dioxide by amine-impregnated as-synthesized MCM-41.

    Science.gov (United States)

    Wei, Jianwen; Liao, Lei; Xiao, Yu; Zhang, Pei; Shi, Yao

    2010-01-01

    The novel carbon dioxide (CO2) adsorbents with a high capture efficiency were prepared through impregnating the as-synthesized MCM-41 with three kinds of amines, namely diethylenetriamine (DETA), triethylenetetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP). The resultant samples were characterized by small angle X-ray diffraction and low temperature N2 adsorption. The synthesis way not only saves the energy or extractor to remove the template but also is environmentally friendly due to the absence of the potential pollutants such as toluene. CO2 capture was investigated in a dynamic packed column. The sample impregnated by TETA showed the highest adsorption capacity, approximately 2.22 mmol/g at 60 degrees C due to its highest amino-groups content among the three amines. The CO2 adsorption behavior was also investigated with the deactivation model, which showed an excellent prediction for the breakthrough curves.

  17. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Rychel, Dwight

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  18. Metal-Organic Frameworks as Potential Platforms for Carbon Dioxide Capture and Chemical Transformation

    Science.gov (United States)

    Gao, Wenyang

    The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, have prompted the exploration of alternative approaches for CCS. Extensive efforts have been dedicated to the development of functional porous materials, such as activated carbons, zeolites, porous organic polymers, and metal-organic frameworks (MOFs) to capture CO2. However, these adsorbents are limited by either poor selectivity for CO2 separation from gas mixtures or low CO2 adsorption capacity. Therefore, it is still highly demanding to design next-generation adsorbent materials fulfilling the requirements of high CO2 selectivity and enough CO2 capacity, as well as high water/moisture stability under practical conditions. Metal-organic frameworks (MOFs) have been positioned at the forefront of this area as a promising type of candidate amongst various porous materials. This is triggered by the modularity and functionality of pore size, pore walls and inner surface of MOFs by use of crystal engineering approaches. In this work, several effective strategies, such as incorporating 1,2,3-triazole groups as moderate Lewis base centers into MOFs and employing flexible azamacrocycle-based ligands to build MOFs, demonstrate to be promising ways to enhance CO 2 uptake capacity and CO2 separation ability of porous MOFs. It is revealed through in-depth studies on counter-intuitive experimental observations that the local electric

  19. Numerical Simulation of Behavior of Carbon Dioxide Injected into Target Geologic Formations in the Bukpyeong Basin, Korea

    Science.gov (United States)

    Kihm, J.; Park, S.; Kim, J.

    2013-12-01

    A series of thermo-hydrological numerical simulations was performed to predict and analyze behavior of carbon dioxide injected into target geologic formations in the Bukpyeong Basin, which is one of the prospective offshore basins for geologic carbon dioxide storage in Korea. The results of the numerical simulations for the two areas in the basin show that the spatial distribution, structure (layered structure), and hydrological properties (anisotropy of intrinsic permeability) of the target geologic formations have significant impacts on three-dimensional behavior of carbon dioxide injected. The horizontal movement of carbon dioxide along the spatial distribution of a target geologic formation (Unit C-4) is more dominant than the vertical movement. As the injection amount of carbon dioxide increases, carbon dioxide plume expands furthermore and reaches to the shallower depth region from the mean sea level. Even in case of the maximum injection amount of carbon dioxide, carbon dioxide does not leak through the top boundary (sea floor) of the modeling domain for both areas. It indicates that carbon dioxide can be stored in the two areas up to their effective storage capacities of free fluid phase carbon dioxide, which was estimated in authors' previous study. As time progresses, carbon dioxide stored by hydrodynamic trapping decreases, while carbon dioxide stored by solubility trapping increases. The total mass of carbon dioxide stored by solubility trapping evaluated in this study is significantly greater than that estimated in authors' previous study. It indicates that the storage efficiency of aqueous phase carbon dioxide is greater than that of free fluid phase carbon dioxide. Therefore, this difference in the storage efficiencies of the free fluid and aqueous phases of carbon dioxide must be properly considered when more rigorous effective storage capacities of carbon dioxide are to be estimated on basin and even site scales. This work was supported by the

  20. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    Science.gov (United States)

    Calvo-Muñoz, Elisa; García-Mateos, Francisco José; Rosas, Juana; Rodríguez-Mirasol, José; Cordero, Tomás

    2016-05-01

    A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2). In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt). Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  1. Bicarbonate-based Integrated Carbon Capture and Algae Production System with alkalihalophilic cyanobacterium.

    Science.gov (United States)

    Chi, Zhanyou; Xie, Yuxiao; Elloy, Farah; Zheng, Yubin; Hu, Yucai; Chen, Shulin

    2013-04-01

    An extremely alkalihalophilic cyanobacteria Euhalothece ZM001 was tested in the Bicarbonate-based Integrated Carbon Capture and Algae Production System (BICCAPS), which utilize bicarbonate as carbon source for algae culture and use the regenerated carbonate to absorb CO2. Culture conditions including temperature, inoculation rate, medium composition, pH, and light intensity were investigated. A final biomass concentration of 4.79 g/L was reached in tissue flask culture with 1.0 M NaHCO3/Na2CO3. The biomass productivity of 1.21 g/L/day was achieved under optimal conditions. When pH increased from 9.55 to 10.51, 0.256 M of inorganic carbon was consumed during the culture process. This indicated sufficient carbon can be supplied as bicarbonate to the culture. This study proved that a high biomass production rate can be achieved in a BICCAPS. This strategy can also lead to new design of photobioreactors that provides an alternative supply of CO2 to sparging.

  2. Siting is a constraint to realize environmental benefits from carbon capture and storage.

    Science.gov (United States)

    Sekar, Ashok; Williams, Eric; Chester, Mikhail

    2014-10-07

    Carbon capture and storage (CCS) for coal power plants reduces onsite carbon dioxide emissions, but affects other air emissions on and offsite. This research assesses the net societal benefits and costs of Monoethanolamine (MEA) CCS, valuing changes in emissions of CO2, SO2, NOX, NH3 and particulate matter (PM), including those in the supply chain. Geographical variability and stochastic uncertainty for 407 coal power plant locations in the U.S. are analyzed. The results show that the net environmental benefits and costs of MEA CCS depend critically on location. For a few favorable sites of both power plant and upstream processes, CCS realizes a net benefit (benefit-cost ratio >1) if the social cost of carbon exceeds $51/ton. For much of the U.S. however, the social cost of carbon must be much higher to realize net benefits from CCS, up to a maximum of $910/ton. While the social costs of carbon are uncertain, typical estimates are in the range of $32-220 per ton, much lower than the breakeven value for many potential CCS locations. Increased impacts upstream from the power plant can dramatically change the social acceptability of CCS and needs further consideration and analysis.

  3. Growth and activity of reservoir microorganisms under carbon capture and storage conditions

    Science.gov (United States)

    Rakoczy, Jana; Gniese, Claudia; Krüger, Martin

    2015-04-01

    Carbon capture and storage is a technology to decelerate global warming by reducing CO2 emissions into the atmosphere. To ensure safe long-term storage of CO2 in the underground a number of factors need to be considered. One of them is microbial activity in storage reservoirs, which can lead to the formation of acidic metabolites, H2S or carbonates which then might affect injectivity, permeability, pressure build-up and long-term operability. Our research focused on the effect of high CO2 concentrations on growth and activity of selected thermophilic fermenting and sulphate-reducing bacteria isolated from deep reservoirs. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a certain sterilizing effect on cells. This effect was not observed in control cultures with 100 bar of hydrostatic pressure. However, when provided with a surface for attachment, CO2-inhibited cells restarted growth after CO2 release. The same was observed for organisms able to form spores. Further experiments will examine physiological and molecular properties of the model organism allowing for prediction of its sensitivity and/or adaptability to carbon dioxide in potential future storage sites.

  4. Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions

    Directory of Open Access Journals (Sweden)

    Elisa M Calvo-Muñoz

    2016-05-01

    Full Text Available A series of porous carbon materials obtained from biomass waste have been synthesized, with different morphologies and structural properties, and evaluated as potential adsorbents for CO2 capture in post-combustion conditions. These carbon materials present CO2 adsorption capacities, at 25 ºC and 101.3 kPa, comparable to those obtained by other complex carbon or inorganic materials. Furthermore, CO2 uptakes under these conditions can be well correlated to the narrow micropore volume, derived from the CO2 adsorption data at 0 ºC (VDRCO2. In contrast, CO2 adsorption capacities at 25 ºC and 15 kPa are more related to only pores of sizes lower than 0.7 nm. The capacity values obtained in column adsorption experiments were really promising. An activated carbon fiber obtained from Alcell lignin, FCL, presented a capacity value of 1.3 mmol/g (5.7 %wt. Moreover, the adsorption capacity of this carbon fiber was totally recovered in a very fast desorption cycle at the same operation temperature and total pressure and, therefore, without any additional energy requirement. Thus, these results suggest that the biomass waste used in this work could be successfully valorized as efficient CO2 adsorbent, under post-combustion conditions, showing excellent regeneration performance.

  5. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture

    OpenAIRE

    García López, Susana; Gil Matellanes, María Victoria; Fernández Martín, Claudia; Pis Martínez, José Juan; Rubiera González, Fernando; Pevida García, Covadonga

    2011-01-01

    In this study a commercial activated carbon (Norit R2030CO2) was assessed as a solid sorbent for precombustion CO2 capture. This technology involves the removal of CO2 from the shifted-syngas prior to the generation of electricity and the production of high-purity clean H2. The CO2 equilibrium adsorption capacity and breakthrough time were evaluated in a flow-through system where the adsorbent was subjected to four consecutive adsorption–desorption cycles. A CO2/H2/N2 gas mixture (20/70/10 vo...

  6. Cost-effective synthesis of amine-tethered porous materials for carbon capture.

    Science.gov (United States)

    Lu, Weigang; Bosch, Mathieu; Yuan, Daqiang; Zhou, Hong-Cai

    2015-02-01

    A truly cost-effective strategy for the synthesis of amine-tethered porous polymer networks (PPNs) has been developed. A network containing diethylenetriamine (PPN-125-DETA) exhibits a high working capacity comparable to current state-of-art technology (30 % monoethanolamine solutions), yet it requires only one third as much energy for regeneration. It has also been demonstrated to retain over 90 % capacity after 50 adsorption-desorption cycles of CO2 in a temperature-swing adsorption process. The results suggest that PPN-125-DETA is a very promising new material for carbon capture from flue gas streams.

  7. Spatially-Explicit Water Balance Implications of Carbon Capture and Sequestration

    Science.gov (United States)

    Sathre, R. C.; Breunig, H.; Greenblatt, J.; Larsen, P.; McKone, T.; Quinn, N. W.; Scown, C.

    2012-12-01

    Carbon dioxide capture and sequestration (CCS) is increasingly discussed as a means to reduce greenhouse gas emissions and limit climate destabilization. CCS implementation is likely to have varied effects on local water balances. On one hand, power plants equipped with CO2 capture may require substantially more cooling water than plants without CO2 capture. On the other hand, injection of captured CO2 into saline aquifers may require brine extraction for pressure management, and the extracted brine may be desalinated and used as a fresh water resource. We conduct a geospatial analysis detailing how CCS implementation affects the county-level balance of water supply and demand across the contiguous United States. We calculate baseline water stress indices for each county for the year 2005, and explore CCS deployment scenarios for the year 2030 and their impacts on local water supply and demand. We use GIS mapping to identify locations where water supply will likely not constrain CCS deployment, locations where fresh water supply may constrain CCS deployment but brine extraction can overcome these constraints, and locations where limited fresh water and brine availability are likely to constrain CCS deployment. We conduct sensitivity analyses to determine bounds of uncertainty and to identify the most influential parameters. We find that CCS can strongly affect freshwater supply and demand in specific regions, but overall it has a moderate effect on water balances.; Locations of 217 coal-fired (red) and natural gas-fired (green) power plants that meet criteria for CO2 capture. Size of circle corresponds to amount of CO2 emission in 2005.

  8. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris

    Science.gov (United States)

    Zhou, Minghua; He, Huanhuan; Jin, Tao; Wang, Hongyu

    2012-09-01

    With the increasing concerns for global climate change, a sustainable, efficient and renewable energy production from wastewater is imperative. In this study, a novel microbial carbon capture cell (MCC), is constructed for the first time by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells (MFCs) to fulfill the zero discharge of carbon dioxide. This process can achieve an 84.8% COD removal, and simultaneously the maximum power density can reach 2485.35 mW m-3 at a current density of 7.9 A m-3 and the Coulombic efficiency is 9.40%, which are 88% and 57.7% greater than that with suspended C. vulgaris, respectively. These enhancements in performance demonstrate the feasibility of an economical and effective approach for the simultaneous wastewater treatment, electricity generation and biodiesel production from microalgae.

  9. Characterization of Qatar's surface carbonates for CO2 capture and thermochemical energy storage

    Science.gov (United States)

    Kakosimos, Konstantinos E.; Al-Haddad, Ghadeer; Sakellariou, Kyriaki G.; Pagkoura, Chrysa; Konstandopoulos, Athanasios G.

    2017-06-01

    Samples of surface carbonates were collected from three different areas of the Qatar peninsula. We employed material characterization techniques to examine the morphology and composition of the samples, while their CO2 capture capacity was assessed via multiple successive calcination-carbonation cycles. Our samples were mainly calcite and dolomite based. Calcite samples showed higher initial capacity of around 11 mmol CO2 g-1 which decayed rapidly to less than 2 mmol CO2 g-1. On the other hand, dolomite samples showed an excellent stability (˜15 cycles) with a capacity of 6 mmol CO2 g-1. The performance of the dolomite samples is better compared to other similar natural samples, from literature. A promising result for future studies towards improving their performance by physical and chemical modification.

  10. Carbon dioxide capture strategies from flue gas using microalgae: a review.

    Science.gov (United States)

    Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V

    2016-09-01

    Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.

  11. Carbon Capturing Potential of Wood Substitution in Domestic and Office Furniture in India

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Yadav

    2014-05-01

    Full Text Available The changes in temperature have been attributed to increasing concentrations of atmospheric carbon dioxide and other green house gases in the atmosphere and major concerned at present. Greenhouse gases naturally act as a blanket “known as Greenhouse Effect” of the Earth and facilitate for maintaining about 33 degrees Celsius temperature. Over the past century, the Earth‟s temperature has increased by about 0.50 degrees Celsius. The carbon concentration in the atmosphere may be reduced by two approaches. Keeping the atmospheric CO2 concentration below 450–600 ppmv poses an unprecedented challenge to humanity and can be attained by two main approaches: (1 to reduce emissions; (2 to capture CO2 and store it, i.e., through sequestration. Carbon sequestration involves two steps: (1 CO2 capture from the atmosphere (2 storage. The present study deals with the second approach storage. The study concludes that in India the requirement of raw materials such as wood, metal and plastic for furniture annually was 11.6 Mm3 , 4.46 Mm3, 1.78 Mm3 respectively. Based on the analogy as defined in the methodology, the replacement of 1 M3 metal or plastic by wood would save 2 tons of carbon dioxide emission. Therefore, this results of the saving of 624000 tonnes CO2 emission against 5% of replacement of each matal and plastic as furniture raw material by wood. This study advocate, use of wood as raw material for furniture, which have a significant potential for mitigating the climate change impacts.

  12. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture.

    Science.gov (United States)

    Guo, Li-Ping; Zhang, Yan; Li, Wen-Cui

    2017-05-01

    Microalgae biomass is a sustainable source with the potential to produce a range of products. However, there is currently a lack of practical and functional processes to enable the high-efficiency utilization of the microalgae. We report here a hydrothermal process to maximize the utilizability of microalgae biomass. Specifically, our concept involves the simultaneous conversion of microalgae to (i) hydrophilic and stable carbon quantum dots and (ii) porous carbon. The synthesis is easily scalable and eco-friendly. The microalgae-derived carbon quantum dots possess a strong two-photon fluorescence property, have a low cytotoxicity and an efficient cellular uptake, and show potential for high contrast bioimaging. The microalgae-based porous carbons show excellent CO2 capture capacities of 6.9 and 4.2mmolg(-1) at 0 and 25°C respectively, primarily due to the high micropore volume (0.59cm(3)g(-1)) and large specific surface area (1396m(2)g(-1)).

  13. National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands

    Science.gov (United States)

    Buursink, Marc L.; Cahan, Steven M.; Warwick, Peter D.

    2015-01-01

    Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resources is allocated to Federal land management. Assessed areas are allocated to four other general land-ownership categories as follows: State lands about 4.5 percent, Tribal lands about 2.4 percent, private and other lands about 72 percent, and offshore areas about 2.6 percent.

  14. Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    Qing; Liu; Yao; Shi; Shudong; Zheng; Liqi; Ning; Qing; Ye; Mengna; Tao; Yi; He

    2014-01-01

    Industrial grade multi-walled carbon nanotubes(IG-MWCNTs) are a low-cost substitute for commercially purified multi-walled carbon nanotubes(P-MWCNTs). In this work, IG-MWCNTs were functionalized with tetraethylenepentamine(TEPA) for CO2capture. The TEPA impregnated IG-MWCNTs were characterized with various experimental methods including N2adsorption/desorption isotherms, elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. Both the adsorption isotherms of IGMWCNTs-n and the isosteric heats of different adsorption capacities were obtained from experiments. TEPA impregnated IG-MWCNTs were also shown to have high CO2adsorption capacity comparable to that of TEPA impregnated P-MWCNTs. The adsorption capacity of IG-MWCNTs based adsorbents was in the range of 2.145 to 3.088 mmol/g, depending on adsorption temperatures. Having the advantages of low-cost and high adsorption capacity, TEPA impregnated IG-MWCNTs seem to be a promising adsorbent for CO2capture from flue gas.

  15. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines.

    Science.gov (United States)

    Puxty, Graeme; Rowland, Robert; Allport, Andrew; Yang, Qi; Bown, Mark; Burns, Robert; Maeder, Marcel; Attalla, Moetaz

    2009-08-15

    The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO2) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO2 capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO2 absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermal gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO2 absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation.

  16. Transport Properties of Amine/Carbon Dioxide Reactive Mixtures and Implications to Carbon Capture Technologies.

    Science.gov (United States)

    Turgman-Cohen, Salomon; Giannelis, Emmanuel P; Escobedo, Fernando A

    2015-08-19

    The structure and transport properties of physisorbed and chemisorbed CO2 in model polyamine liquids (hexamethylenediamine and diethylenetriamine) are studied via molecular dynamics simulations. Such systems are relevant to CO2 absorption processes where nonaqueous amines are used as absorbents (e.g., when impregnated or grafted onto mesoporous media or misted in the gas phase). It is shown that accounting for the ionic speciation resulting from CO2 chemisorption enabled us to capture the qualitative changes in extent of absorption and fluidity with time that are observed in thermogravimetric experiments. Simulations reveal that high enough concentration of reacted CO2 leads to strong intermolecular ionic interactions and the arrest of molecular translations. The transport properties obtained from the simulations of the ionic speciated mixtures are also used to construct an approximate continuum-level model for the CO2 absorption process that mimics thermogravimetric experiments.

  17. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor.

    Science.gov (United States)

    Honda, Ryo; Boonnorat, Jarungwit; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2012-12-01

    A highly efficient microalgae cultivation process was developed for carbon dioxide capture using nutrients from treated sewage. A submerged-membrane filtration system was installed in a photobioreactor to achieve high nutrient loading and to maintain a high concentration and production of microalgae. Chlorella vulgaris, Botryococcus braunii and Spirulina platensis were continuously cultivated with simulated treated sewage and 1%-CO(2) gas. The optimum hydraulic retention time (HRT) and solids retention time (SRT) were explored to achieve the maximum CO(2) capture rate, nutrient removal rate and microalgae biomass productivity. The carbon dioxide capture rate and volumetric microalgae productivity were high when the reactor was operated under 1-day (HRT) and 18-days (SRT) conditions. The independent control of HRT and SRT is effective for efficient microalgae cultivation and carbon dioxide capture using treated sewage.

  18. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    Science.gov (United States)

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials.

  19. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture

    KAUST Repository

    Zhao, Yunfeng

    2012-01-01

    Nitrogen-doped carbon materials were prepared by a nanocasting route using tri-continuous mesoporous silica IBN-9 as a hard template. Rationally choosing carbon precursors and carefully controlling activation conditions result in an optimized material denoted as IBN9-NC1-A, which possesses a very high nitrogen doping concentration (∼13 wt%) and a large surface area of 890 m 2 g -1 arising from micropores (<1 nm). It exhibits an excellent performance for CO 2 adsorption over a wide range of CO 2 pressures. Specifically, its equilibrium CO 2 adsorption capacity at 25 °C reaches up to 4.50 mmol g -1 at 1 bar and 10.53 mmol g -1 at 8 bar. In particular, it shows a much higher CO 2 uptake at low pressure (e.g. 1.75 mmol g -1 at 25 °C and 0.2 bar) than any reported carbon-based materials, owing to its unprecedented nitrogen doping level. The high nitrogen contents also give rise to significantly enhanced CO 2/N 2 selectivities (up to 42), which combined with the high adsorption capacities, make these new carbon materials promising sorbents for selective CO 2 capture from power plant flue gas and other relevant applications. © 2012 The Royal Society of Chemistry.

  20. The intermediate neutron-capture process and carbon-enhanced metal-poor stars

    CERN Document Server

    Hampel, Melanie; Lugaro, Maria; Meyer, Bradley S

    2016-01-01

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP-s/r stars, which show both Ba and Eu enrichment, are particularly puzzling since the s and the r processes require neutron densities that are more than ten orders of magnitude apart, and hence are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patterns of CEMP-s/r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterised by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from $10^7$ to $10^{15}$ cm$^{-3}$. With respect to the cl...

  1. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents.

    Science.gov (United States)

    Izquierdo, M Teresa; Ballestero, Diego; Juan, Roberto; García-Díez, Enrique; Rubio, Begoña; Ruiz, Carmen; Pino, M Rosa

    2011-10-15

    In this work, a regenerable sorbent for Hg retention based on carbon supported Au nanoparticles has been developed and tested. Honeycomb structures were chosen in order to avoid pressure drop and particle entrainment in a fixed bed. Carbon-based supports were selected in order to easily modify the surface chemistry to favour the Au dispersion. Results of Hg retention and regeneration were obtained in a bench scale experimental installation working at high space velocities (for sorbent, 53,000 h(-1); for active phase, 2.6 × 10(8) h(-1)), 120 °C for retention temperature and Hg inlet concentration of 23 ppbv. Gold nanoparticles were shown to be the active phase for mercury capture through an amalgamating mechanism. The mercury captured by the spent sorbent can be easily released to be disposed or reused. Mercury evolution from spent sorbents was followed by TPD experiments showing that the sorbent can be regenerated at temperatures as low as 220 °C.

  2. Hydrothermal synthesis of N-doped spherical carbon from carboxymethylcellulose for CO2 capture

    Science.gov (United States)

    Wu, Qiong; Li, Wei; Liu, Shouxin; Jin, Chunde

    2016-04-01

    Spherical carbonaceous adsorbents (CSn) with micro-porosity developed for CO2 capture were prepared by a simple hydrothermal carbonization of carboxymethylcellulose (CMC) in the presence of urea, and activated in a high temperature N2 atmosphere. The effects of specific surface area, pore structure, and N content on the CO2 adsorption capacity were systematically investigated. Urea was found to react with surface carbonyl groups and other intermediate products generated by CMC hydrothermal carbonization, which produced highly spherical morphologies that also exhibited some ordered lattice structures. The particle size of N-doped CSn was larger than that of particles prepared without urea. Nitrogen was mainly present in pyridine (N-6), pyrrolic/pyridone (N-5) and quaternary (N-Q) forms. The high CO2 capture capacity was produced by a combination of N-doping and developing micro-pore structures. At an adsorption pressure of 1 bar, the capacity was dominated by the micro-porosity. However, during initial, lower pressures the N content dominated the CO2 adsorption capacity.

  3. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.

    Science.gov (United States)

    Scala, F

    2001-11-01

    Following a companion paper focused on the in-duct mercury capture in incinerator flue gas by powdered activated carbon injection, this paper is concerned with the additional mercury capture on the fabric filter cake, relevant to baghouse equipped facilities. A detailed model is presented for this process, based on material balances on mercury in both gaseous and adsorbed phases along the growing filter cake and inside the activated carbon particles,taking into account mass transfer resistances and adsorption kinetics. Several sorbents of practical interest have been considered, whose parameters have been evaluated from available literature data. The values and range of the operating variables have been chosen in order to simulate typical incinerators operating conditions. Results of simulations indicate that, contrary to the in-duct removal process, high mercury removal efficiencies can be obtained with moderate sorbent consumption, as a consequence of the effective gas/sorbent contacting on the filter. Satisfactory utilization of the sorbents is predicted, especially at long filtration times. The sorbent feed rate can be minimized by using a reactive sorbent and by lowering the filter temperature as much as possible. Minor benefits can be obtained also by decreasing the sorbent particle size and by increasing the cleaning cycle time of the baghouse compartments. Reverse-flow baghouses were more efficient than pulse-jet baghouses, while smoother operation can be obtained by increasing the number of baghouse compartments. Model results are compared with available relevant full scale data.

  4. Learning from a carbon dioxide capture system dataset: Application of the piecewise neural network algorithm

    Directory of Open Access Journals (Sweden)

    Veronica Chan

    2017-03-01

    Full Text Available This paper presents the application of a neural network rule extraction algorithm, called the piece-wise linear artificial neural network or PWL-ANN algorithm, on a carbon capture process system dataset. The objective of the application is to enhance understanding of the intricate relationships among the key process parameters. The algorithm extracts rules in the form of multiple linear regression equations by approximating the sigmoid activation functions of the hidden neurons in an artificial neural network (ANN. The PWL-ANN algorithm overcomes the weaknesses of the statistical regression approach, in which accuracies of the generated predictive models are often not satisfactory, and the opaqueness of the ANN models. The results show that the generated PWL-ANN models have accuracies that are as high as the originally trained ANN models of the four datasets of the carbon capture process system. An analysis of the extracted rules and the magnitude of the coefficients in the equations revealed that the three most significant parameters of the CO2 production rate are the steam flow rate through reboiler, reboiler pressure, and the CO2 concentration in the flue gas.

  5. An investigation of carbon dioxide capture by chitin acetate/DMSO binary system.

    Science.gov (United States)

    Eftaiha, Ala'a F; Alsoubani, Fatima; Assaf, Khaleel I; Troll, Carsten; Rieger, Bernhard; Khaled, Aseel H; Qaroush, Abdussalam K

    2016-11-05

    Chitin is considered to be the second most abundant naturally-occurring polysaccharide. Also, dimethyl sulfoxide (DMSO) is the second highest dielectric constant polar solvent after water. Despite the low solubility of chitin in common organic solvents, and due to its high nitrogen content, it may serve as a potential scrubbing agent "wet scrubbing" for carbon dioxide (CO2) capturing as an alternative to monoethanolamine "renewables for renewables approach". Briefly, a detailed investigation for the utilization of low molecular weight, chitin-acetate (CA) in DMSO for the capturing of CO2 is reported. As carbonation process takes place, the formation of ionic alkylcarbonate was confirmed throughout spectroscopic and computational studies. Supramolecular chemisorption was proven throughout (1)H Nuclear Magnetic Resonance ((1)H NMR) together with the absence of sorption of CO2 by the monomeric repeating unit, glucosamine hydrochloride. Further, Density Functional Theory (DFT) calculations supported the formation of the CA/CO2 adduct through a newly formed supramolecular ionic interaction and hydrogen bonding along the oligosaccharide backbone between the neighboring ammonium ion and hydroxyl functional groups. The sorption capacity was measured volumetrically within an in situ Attenuated Total Reflectance-Fourier Transform Infrared coupled (in situ ATR-FTIR) autoclave at 25.0°C, and 4.0bar CO2, with a maximum sorption capacity of 3.63 [Formula: see text] /gsorbent at 10.0% (w/v).

  6. Simultaneous Wastewater Treatment, Algal Biomass Production and Electricity Generation in Clayware Microbial Carbon Capture Cells.

    Science.gov (United States)

    Jadhav, Dipak A; Jain, Sumat C; Ghangrekar, Makarand M

    2017-05-02

    Performance of microbial carbon capture cells (MCCs), having a low-cost clayware separator, was evaluated in terms of wastewater treatment and electricity generation using algae Chlorella pyrenoidosa in MCC-1 and Anabaena ambigua in MCC-2 and without algae in a cathodic chamber of MCC-3. Higher power production was achieved in MCC-1 (6.4 W/m(3)) compared to MCC-2 (4.29 W/m(3)) and MCC-3 (3.29 W/m(3)). Higher coulombic efficiency (15.23 ± 1.30%) and biomass production (66.4 ± 4.7 mg/(L*day)) in MCC-1 indicated the superiority of Chlorella over Anabaena algae for carbon capture and oxygen production to facilitate the cathodic reduction. Algal biofilm formation on the cathode surface of MCC-1 increased dissolved oxygen in the catholyte and decreased the cathodic charge transfer resistance with increase in reduction current. Electrochemical analyses revealed slow cathodic reactions and increase in internal resistance in MCC-2 (55 Ω) than MCC-1 (30 Ω), due to lower oxygen produced by Anabaena algae. Thus, biomass production in conjunction with wastewater treatment, CO2 sequestration and electricity generation can be achieved using Chlorella algal biocathode in MCC.

  7. Development and evaluation of porous materials for carbon dioxide separation and capture.

    Science.gov (United States)

    Bae, Youn-Sang; Snurr, Randall Q

    2011-12-02

    The development of new microporous materials for adsorption separation processes is a rapidly growing field because of potential applications such as carbon capture and sequestration (CCS) and purification of clean-burning natural gas. In particular, new metal-organic frameworks (MOFs) and other porous coordination polymers are being generated at a rapid and growing pace. Herein, we address the question of how this large number of materials can be quickly evaluated for their practical application in carbon dioxide separation processes. Five adsorbent evaluation criteria from the chemical engineering literature are described and used to assess over 40 MOFs for their potential in CO(2) separation processes for natural gas purification, landfill gas separation, and capture of CO(2) from power-plant flue gas. Comparisons with other materials such as zeolites are made, and the relationships between MOF properties and CO(2) separation potential are investigated from the large data set. In addition, strategies for tailoring and designing MOFs to enhance CO(2) adsorption are briefly reviewed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    Directory of Open Access Journals (Sweden)

    Premila D. Thongbam

    2011-04-01

    Full Text Available Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  9. The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes.

    Science.gov (United States)

    Minic, Zoran; Thongbam, Premila D

    2011-01-01

    Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis) a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO₂ from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO₂ fixation and assimilation might be very useful. This review describes some current research concerning CO₂ fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  10. A Model of Carbon Capture and Storage with Demonstration of Global Warming Potential and Fossil Fuel Resource Use Efficiency

    Science.gov (United States)

    Suebsiri, Jitsopa

    Increasing greenhouse gas concentration in the atmosphere influences global climate change even though the level of impact is still unclear. Carbon dioxide capture and storage (CCS) is increasingly seen as an important component of broadly based greenhouse gas reduction measures. Although the other greenhouse gases are more potent, the sheer volume of CO 2 makes it dominant in term of its effect in the atmosphere. To understand the implications, CCS activities should be studied from a full life cycle perspective. This thesis outlines the successful achievement of the objectives of this study in conducting life cycle assessment (LCA), reviewing the carbon dioxide implications only, combining two energy systems, coal-fired electrical generations and CO2 used for enhanced oil recovery (EOR). LCA is the primary approach used in this study to create a tool for CCS environmental evaluation. The Boundary Dam Power Station (BDPS) and the Weyburn-Midale CO 2 EOR Project in Saskatchewan, Canada, are studied and adopted as case scenarios to find the potential for effective application of CCS in both energy systems. This study demonstrates two levels of retrofitting of the BDPS, retrofit of unit 3 or retrofit of all units, combined with three options for CO 2 geological storage: deep saline aquifer, CO2 EOR, and a combination of deep saline aquifer storage and CO2 EOR. Energy output is considered the product of combining these two energy resources (coal and oil). Gigajoules (GJ) are used as the fundamental unit of measurement in comparing the combined energy types. The application of this tool effectively demonstrates the results of application of a CCS system concerning global warming potential (GWP) and fossil fuel resource use efficiency. Other environmental impacts could be analyzed with this tool as well. In addition, the results demonstrate that the GWP reduction is directly related to resource use efficiency. This means the lower the GWP of CCS, the lower resource use

  11. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  12. Design and simulation of rate-based CO2 capture processes using carbonic anhydrase (CA) applied to biogas

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gaspar, Jozsef; Jacobsen, Bjartur

    2017-01-01

    a potential to create negative emissions using bio-energy carbon capture and storage (BECCS). All sectors are still in the need for applying more sustainable carbon capture and storage (CCS) technologies which result in lower energy consumption while reducing the impact on the environment. Recently several....... The advantage is a noticeably lower regeneration energy compared to primary and secondary amines. As a result the cost for stripping is significantly lower. Reactivated slow tertiary amines are applied in this study with the aim of reducing energy consumption. This is achieved byusing carbonic anhydrase (CA...

  13. Cumulative Radiative Forcing Implications of Deployment Strategies for Carbon Capture and Storage

    Science.gov (United States)

    Sathre, R. C.; Masanet, E.

    2011-12-01

    Carbon capture and storage (CCS) is increasingly discussed as a potential means of mitigating the climate disruption associated with fossil fuel use. Some technologies for capturing, transporting, and sequestering carbon dioxide (CO2) are already mature, while others technologies under development may lead to more cost- and energy-efficient CCS systems. Various elements of CCS systems are currently in operation at relatively small scale, but will need to be scaled up very substantially in order to make a significant contribution to climate change mitigation. Because the rate of fossil fuel CO2 emission is continuing to increase and the emitted CO2 will remain in the atmosphere for long time periods, the speed at which CCS is deployed will strongly affect the cumulative CO2 emission and the climate impacts. To better understand these issues, in this analysis we integrate scenario forecasting of energy supply systems, life cycle emission modeling, and time-dependent calculations of cumulative radiative forcing. We develop a series of CCS deployment scenarios that describe plausible future trajectories for CCS implementation in the US electric power plant fleet. The scenarios incorporate dimensions such as speed of deployment build-out, year of initiating deployment, efficiency of capture technology, and installation in new power plants vs. retrofitting existing plants. We conduct life cycle greenhouse gas (GHG) emissions analyses of each scenario to estimate annual emission profiles of CO2, CH4, and N2O over a 90-year time horizon, from 2010 to 2100. We then model the atmospheric dynamics of the emitted GHGs including atmospheric decay and instantaneous radiative forcing patterns over time. Finally, we determine the cumulative radiative forcing of each scenario, which we use as a proxy for surface temperature change and resulting disruption to physical, ecological and social systems. The results show strong climate mitigation benefits of early, aggressive

  14. Capturing low-carbon power system dynamics : Interactions between intermittent renewables and power plants with CO2 capture and storage

    NARCIS (Netherlands)

    Brouwer, A.S.

    2015-01-01

    Low-carbon power systems are needed by the year 2050 to meet climate change mitigation targets. This dissertation investigates the operational and economic feasibility of such future low-carbon power systems by simulating the Dutch and European power systems. Particular attention is paid to the impa

  15. Capturing low-carbon power system dynamics : Interactions between intermittent renewables and power plants with CO2 capture and storage

    NARCIS (Netherlands)

    Brouwer, Anne-Sjoerd

    2015-01-01

    Low-carbon power systems are needed by the year 2050 to meet climate change mitigation targets. This dissertation investigates the operational and economic feasibility of such future low-carbon power systems by simulating the Dutch and European power systems. Particular attention is paid to the

  16. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    Science.gov (United States)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.

  17. The National Carbon Capture Center at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-31

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO{sub 2} capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO{sub 2} capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During the calendar year 2012 portion of the Budget Period Four reporting period, efforts at the NCCC focused on testing of pre- and post-combustion CO{sub 2} capture processes and gasification support technologies. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of pre-combustion, testing was conducted on a new water-gas shift catalyst, a CO{sub 2} solvent, and gas separation membranes from four different technology developers, including two membrane systems incorporating major scale-ups. Post-combustion tests involved advanced solvents from three major developers, a gas separation membrane, and two different enzyme technologies. An advanced sensor for gasification operation was evaluated, operation with biomass co-feeding with coal under oxygen-blown conditions was achieved, and progress continued on refining several gasification support technologies.

  18. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the

  19. The National Carbon Capture Center at the Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During the calendar year 2012 portion of the Budget Period Four reporting period, efforts at the NCCC focused on testing of pre- and post-combustion CO2 capture processes and gasification support technologies. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of pre-combustion, testing was conducted on a new water-gas shift catalyst, a CO2 solvent, and gas separation membranes from four different technology developers, including two membrane systems incorporating major scale-ups. Post-combustion tests involved advanced solvents from three major developers, a gas separation membrane, and two different enzyme technologies. An advanced sensor for gasification operation was evaluated, operation with biomass co-feeding with coal under oxygen-blown conditions was achieved, and progress continued on refining several gasification support technologies.

  20. Life cycle assessment of carbon capture and utilization from ammonia process in Mexico.

    Science.gov (United States)

    Morales Mora, M A; Vergara, C Pretelín; Leiva, M A; Martínez Delgadillo, S A; Rosa-Domínguez, E R

    2016-12-01

    Post-combustion CO2 capture (PCC) of flue gas from an ammonia plant (AP) and the environmental performance of the carbon capture utilization (CCU) technology for greenhouse gas (GHG) emissions to an enhanced oil recovery (EOR) system in Mexico was performed as case study. The process simulations (PS) and life cycle assessment (LCA) were used as supporting tools to quantify the CO2 capture and their environmental impacts, respectively. Two scenarios were considered: 1) the AP with its shift and CO2 removal unit and 2) Scenario 1 plus PCC of the flue gas from the AP primary reformer (AP-2CO2) and the global warming (GW) impact. Also, the GW of the whole of a CO2-EOR project, from these two streams of captured CO2, was evaluated. Results show that 372,426 tCO2/year can be PCC from the flue gas of the primary reformer and 480,000 tons/y of capacity from the AP. The energy requirement for solvent regeneration is estimated to be 2.8 MJ/kgCO2 or a GW impact of 0.22 kgCO2e/kgCO2 captured. GW performances are 297.6 kgCO2e emitted/barrel (bbl) for scenario one, and 106.5 kgCO2e emitted/bbl for the second. The net emissions, in scenario one, were 0.52 tCO2e/bbl and 0.33 tCO2e/bbl in scenario two. Based on PS, this study could be used to evaluate the potential of CO2 capture of 4080 t/d of 4 ammonia plants. The integration of PS-LCA to a PCC study allows the applicability as methodological framework for the development of a cluster of projects in which of CO2 could be recycled back to fuel, chemical, petrochemical products or for enhanced oil recovery (EOR). With AP-2CO2, "CO2 emission free" ammonia production could be achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Deciding between carbon trading and carbon capture and sequestration: an optimisation-based case study for methanol synthesis from syngas.

    Science.gov (United States)

    Üçtuğ, Fehmi Görkem; Ağralı, Semra; Arıkan, Yıldız; Avcıoğlu, Eray

    2014-01-01

    The economic and technical feasibility of carbon capture and sequestration (CCS) systems are gaining importance as CO2 emission reduction is becoming a more pressing issue for parties from production sectors. Public and private entities have to comply with national schemes imposing tighter limits on their emission allowances. Often these parties face two options as whether to invest in CCS or buy carbon credits for the excess emissions above their limits. CCS is an expensive system to invest in and to operate. Therefore, its feasibility depends on the carbon credit prices prevailing in the markets now and in the future. In this paper we consider the problem of installing a CCS unit in order to ensure that the amount of CO2 emissions is within its allowable limits. We formulate this problem as a non-linear optimisation problem where the objective is to maximise the net returns from pursuing an optimal mix of the two options described above. General Algebraic Modelling Systems (GAMS) software was used to solve the model. The results were found to be sensitive to carbon credit prices and the discount rate, which determines the choices with respect to the future and the present. The model was applied to a methanol synthesis plant as an example. However, the formulation can easily be extended to any production process if the CO2 emissions level per unit of physical production is known. The results showed that for CCS to be feasible, carbon credit prices must be above 15 Euros per ton. This value, naturally, depends on the plant-specific data, and the costs we have employed for CCS. The actual prices (≈5 Euros/ton CO2) at present are far from encouraging the investors into CCS technology.

  2. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Mercado, Rocio; Huck, Johanna M.; Wang, Hui; Guo, Zhanhu; Wang, Wenchuan; Cao, Dapeng; Haranczyk, Maciej; Smit, Berend

    2015-10-21

    Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. Here, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer–Emmett–Teller (BET) specific surface areas of 430–3624 m2 g–1, and a broad range of pore volumes of 0.24–3.50 cm3 g–1, all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal–organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance

  3. Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture.

    Science.gov (United States)

    Xiang, Zhonghua; Mercado, Rocio; Huck, Johanna M; Wang, Hui; Guo, Zhanhu; Wang, Wenchuan; Cao, Dapeng; Haranczyk, Maciej; Smit, Berend

    2015-10-21

    Porous covalent polymers are attracting increasing interest in the fields of gas adsorption, gas separation, and catalysis due to their fertile synthetic polymer chemistry, large internal surface areas, and ultrahigh hydrothermal stabilities. While precisely manipulating the porosities of porous organic materials for targeted applications remains challenging, we show how a large degree of diversity can be achieved in covalent organic polymers by incorporating multiple functionalities into a single framework, as is done for crystalline porous materials. Here, we synthesized 17 novel porous covalent organic polymers (COPs) with finely tuned porosities, a wide range of Brunauer-Emmett-Teller (BET) specific surface areas of 430-3624 m(2) g(-1), and a broad range of pore volumes of 0.24-3.50 cm(3) g(-1), all achieved by tailoring the length and geometry of building blocks. Furthermore, we are the first to successfully incorporate more than three distinct functional groups into one phase for porous organic materials, which has been previously demonstrated in crystalline metal-organic frameworks (MOFs). COPs decorated with multiple functional groups in one phase can lead to enhanced properties that are not simply linear combinations of the pure component properties. For instance, in the dibromobenzene-lined frameworks, the bi- and multifunctionalized COPs exhibit selectivities for carbon dioxide over nitrogen twice as large as any of the singly functionalized COPs. These multifunctionalized frameworks also exhibit a lower parasitic energy cost for carbon capture at typical flue gas conditions than any of the singly functionalized frameworks. Despite the significant improvement, these frameworks do not yet outperform the current state-of-art technology for carbon capture. Nonetheless, the tuning strategy presented here opens up avenues for the design of novel catalysts, the synthesis of functional sensors from these materials, and the improvement in the performance of

  4. Co-cultivation of microalgae and nitrifiers for higher biomass production and better carbon capture.

    Science.gov (United States)

    Bilanovic, Dragoljub; Holland, Mark; Starosvetsky, Jeanna; Armon, Robert

    2016-11-01

    The aim of this work was to study co-cultivation of nitrifiers with microalgae as a non-intrusive technique for selective removal of oxygen generated by microalgae. Biomass concentration was, at least, 23% higher in mixed-cultures where nitrifiers kept the dissolved oxygen concentration below 9.0μLL(-1) than in control Chlorella vulgaris axenic-cultures where the concentration of dissolved oxygen was higher than 10.0μLL(-1). This approach to eliminating oxygen inhibition of microalgal growth could become the basis for the development of advanced microalgae reactors for removal of CO2 from the atmosphere, and concentrated CO2 streams. CO2 sequestration would become a chemically and geologically safer and environmentally more sound technology provided it uses microalgal, or other biomass, instead of CO2, for carbon storage.

  5. Insights into soil carbon dynamics across climatic and geologic gradients from temporally-resolved radiocarbon measurements

    Science.gov (United States)

    van der Voort, T. S.; Hagedorn, F.; Mannu, U.; Walthert, L.; McIntyre, C.; Eglinton, T. I.

    2016-12-01

    Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore quantifying soil organic matter dynamics (carbon turnover, stocks and fluxes) across spatial gradients is essential for an understanding of the carbon cycle and the impacts of global change. In particular, links between soil carbon dynamics and different climatic and compositional factors remains poorly understood. Radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics. Temporally-resolved radiocarbon measurements, which take advantage of "bomb-radiocarbon"-driven changes in atmospheric 14C, enable further constraints to be placed on C turnover times. These in turn can yield more precise flux estimates for both upper and deeper soil horizons. This project combines bulk radiocarbon measurements on a suite of soil profiles spanning strong climatic (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1) and geologic gradients with a more in-depth approach for a subset of locations. For this subset, temporal and carbon-fraction specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Resulting temporally-resolved turnover estimates are coupled to carbon stocks, fluxes across this wide range of forest ecosystems and are examined in the context of environmental drivers (temperature, precipitation, primary production and soil moisture) as well as composition (sand, silt and clay content). Statistical analysis on the region-scale - correlating radiocarbon signature with climatic variables such as temperature, precipitation, primary production and elevation - indicates that composition rather than climate is a key driver of ­­Δ14C signatures. Estimates of carbon turnover, stocks and fluxes derived from temporally-resolved measurements highlight the pivotal role of soil moisture as a

  6. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Arastoopour, Hamid [Illinois Inst. of Technology, Chicago, IL (United States); Abbasian, Javad [Illinois Inst. of Technology, Chicago, IL (United States)

    2014-07-31

    This project describes the work carried out to prepare a highly reactive and mechanically strong MgO based sorbents and to develop a Population Balance Equations (PBE) approach to describe the evolution of the particle porosity distribution that is linked with Computational Fluid Dynamics (CFD) to perform simulations of the CO2 capture and sorbent regeneration. A large number of MgO-based regenerable sorbents were prepared using low cost and abundant dolomite as the base material. Among various preparation parameters investigated the potassium/magnesium (K/Mg) ratio was identified as the key variable affecting the reactivity and CO2 capacity of the sorbent. The optimum K/Mg ratio is about 0.15. The sorbent formulation HD52-P2 was identified as the “best” sorbent formulation and a large batch (one kg) of the sorbent was prepared for the detailed study. The results of parametric study indicate the optimum carbonation and regeneration temperatures are 360° and 500°C, respectively. The results also indicate that steam has a beneficial effect on the rate of carbonation and regeneration of the sorbent and that the reactivity and capacity of the sorbent decreases in the cycling process (sorbent deactivation). The results indicate that to achieve a high CO2 removal efficiency, the bed of sorbent should be operated at a temperature range of 370-410°C which also favors production of hydrogen through the WGS reaction. To describe the carbonation reaction kinetics of the MgO, the Variable Diffusivity shrinking core Model (VDM) was developed in this project, which was shown to accurately fit the experimental data. An important advantage of this model is that the changes in the sorbent conversion with time can be expressed in an explicit manner, which will significantly reduce the CFD computation time. A Computational Fluid Dynamic/Population Balance Equations (CFD/PBE) model was developed that accounts for the particle (sorbent) porosity distribution and a new version of

  7. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  8. The global carbon nation: Status of CO2 capture, storage and utilization

    Science.gov (United States)

    Kocs, Elizabeth A.

    2017-07-01

    As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS) plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG) emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today's global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  9. Soils and Global Change in the Carbon Cycle over Geological Time

    Science.gov (United States)

    Retallack, G. J.

    2003-12-01

    sedimentary rocks; organic matter burial is an important long-term control on CO2 levels in the atmosphere (Berner and Kothavala, 2001). The magnitudes of carbon pools and fluxes involved provide a perspective on the importance of soils compared with other carbon reservoirs ( Figure 1). (6K)Figure 1. Pools and fluxes of reduced carbon (bold) and oxidized carbon (regular) in Gt in the pre-industrial carbon cycle (sources Schidlowski and Aharon, 1992; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Before industrialization, there was only 600 Gt (1 Gt=1015g) of carbon in CO2 and methane in the atmosphere, which is about the same amount as in all terrestrial biomass, but less than half of the reservoir of soil organic carbon. The ocean contained only ˜3 Gt of biomass carbon. The deep ocean and sediments comprised the largest reservoir of bicarbonate and organic matter, but that carbon has been kept out of circulation from the atmosphere for geologically significant periods of time (Schidlowski and Aharon, 1992). Humans have tapped underground reservoirs of fossil fuels, and our other perturbations of the carbon cycle have also been significant ( Vitousek et al., 1997b; see Chapter 8.10).Atmospheric increase of carbon in CO2 to 750 Gt C by deforestation and fossil fuel burning has driven ongoing global warming, but is not quite balanced by changes in the other carbon reservoirs leading to search for a "missing sink" of some 1.8±1.3 GtC, probably in terrestrial organisms, soils, and sediments of the northern hemisphere (Keeling et al., 1982; Siegenthaler and Sarmiento, 1993; Stallard, 1998). Soil organic matter is a big, rapidly cycling reservoir, likely to include much of this missing sink.During the geological past, the sizes of, and fluxes between, these reservoirs have varied enormously as the world has alternated between greenhouse times of high carbon content of the atmosphere, and icehouse times of low carbon content of the atmosphere. Oscillations in the atmospheric

  10. Using improved technology for widespread application of a geological carbon sequestration study

    Science.gov (United States)

    Raney, J.

    2013-12-01

    The Kansas Geological Survey is part of an ongoing collaboration between DOE-NETL, academia, and the petroleum industry to investigate the feasibility of carbon utilization and storage in Kansas. Latest findings in the 25,000 mi2 study area in southern Kansas estimate CO2 storage capacity ranges from 8.8 to 75.5 billion metric tons in a deep Lower Orodovican-age Arbuckle saline aquifer. In addition, an estimated 100 million tonnes of CO2 could be used for extracting additional oil from Kansas' fields, making transitions to carbon management economic. This partnership has a rare opportunity to synchronize abundant, yet previously disseminated knowledge into a cohesive scientific process to optimize sequestration site selection and implementation strategies. Following a thorough characterization, a small-scale CO2 injection of 70,000 tonnes will be implemented in Wellington Field in Sumner County, including a five-plot miscible CO2-EOR flood of a Mississippian reservoir followed by the underlying Arbuckle saline aquifer. Best practices and lessons learned from the field study will improve estimates on CO2 storage capacity, plume migration models, and identify potential leakage pathways to pursue safe and effective geological carbon sequestration at commercial scales. A highly accessible and multifunctional online database is being developed throughout the study that integrates all acquired geological, physical, chemical, and hydrogeologic knowledge. This public database incorporates tens of thousands of data points into easily viewable formats for user downloads. An Interactive Project Map Viewer is a key mechanism to present the scientific research, and will delineate compartment candidates and reservoirs matching reference criteria or user defined attributes. This tool uses a familiar pan and zoom interface to filter regional project data or scale down to detailed digitized information from over 3,300 carefully selected preexisting Kansas wells. A Java-based log

  11. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  12. Probabilistic Assessment of Above Zone Pressure Predictions at a Geologic Carbon Storage Site

    Science.gov (United States)

    Namhata, Argha; Oladyshkin, Sergey; Dilmore, Robert M.; Zhang, Liwei; Nakles, David V.

    2016-12-01

    Carbon dioxide (CO2) storage into geological formations is regarded as an important mitigation strategy for anthropogenic CO2 emissions to the atmosphere. This study first simulates the leakage of CO2 and brine from a storage reservoir through the caprock. Then, we estimate the resulting pressure changes at the zone overlying the caprock also known as Above Zone Monitoring Interval (AZMI). A data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is then used to quantify the uncertainty in the above zone pressure prediction based on the uncertainties in different geologic parameters. Finally, a global sensitivity analysis is performed with Sobol indices based on the aPC technique to determine the relative importance of different parameters on pressure prediction. The results indicate that there can be uncertainty in pressure prediction locally around the leakage zones. The degree of such uncertainty in prediction depends on the quality of site specific information available for analysis. The scientific results from this study provide substantial insight that there is a need for site-specific data for efficient predictions of risks associated with storage activities. The presented approach can provide a basis of optimized pressure based monitoring network design at carbon storage sites.

  13. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard; Zhou, S James; Ding, Yong; Bikson, Ben

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating

  14. Activated carbon enhancement with covalent organic polymers: An innovative material for application in water purification and carbon dioxide capture

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    Covalent organic polymers (COPs) have emerged as one of the leading advanced materials for environmental applications, such as the capture and recovery of carbon dioxide and the removal of contaminants from polluted water.1–4 COPs exhibit many remarkable properties that other leading advanced...... solvent uptake in concentrated streams to metal and organic pollutant adsorption in contaminated waters.2 However, given the nanoscale structure of these COPs, real-world application has yet remained elusive for these materials. By creating a material large and robust enough to be used in a full...... of COPs onto a material large enough to be able to be used in a packed-bed column. These columns can then be applied in biogas purification to remove CO2 and up-concentrate methane, in the exhaust flue gas stream from a power plant. Furthermore, by impregnating nanoscale zero valent iron (nZVI) inside...

  15. Microbial characterization of basalt formation waters targeted for geological carbon sequestration.

    Science.gov (United States)

    Lavalleur, Heather J; Colwell, Frederick S

    2013-07-01

    Geological carbon sequestration in basalts is a promising solution to mitigate carbon emissions into the Earth's atmosphere. The Wallula pilot well in Eastern Washington State, USA provides an opportunity to investigate how native microbial communities in basalts are affected by the injection of supercritical carbon dioxide into deep, alkaline formation waters of the Columbia River Basalt Group. Our objective was to characterize the microbial communities at five depth intervals in the Wallula pilot well prior to CO2 injection to establish a baseline community for comparison after the CO2 is injected. Microbial communities were examined using quantitative polymerase chain reaction to enumerate bacterial cells and 454 pyrosequencing to compare and contrast the diversity of the native microbial communities. The deepest depth sampled contained the greatest amount of bacterial biomass, as well as the highest bacterial diversity. The shallowest depth sampled harbored the greatest archaeal diversity. Pyrosequencing revealed the well to be dominated by the Proteobacteria, Firmicutes, and Actinobacteria, with microorganisms related to hydrogen oxidizers (Hydrogenophaga), methylotrophs (Methylotenera), methanotrophs (Methylomonas), iron reducers (Geoalkalibacter), sulfur oxidizers (Thiovirga), and methanogens (Methermicocccus). Thus, the Wallula pilot well is composed of a unique microbial community in which hydrogen and single-carbon compounds may play a significant role in sustaining the deep biosphere.

  16. Using Analytical and Numerical Modeling to Assess the Utility of Groundwater Monitoring Parameters at Carbon Capture, Utilization, and Storage Sites

    Science.gov (United States)

    Porse, S. L.; Hovorka, S. D.; Young, M.; Zeidouni, M.

    2012-12-01

    Carbon capture, utilization, and storage (CCUS) is becoming an important bridge to commercial geologic sequestration (GS) to help reduce anthropogenic CO2 emissions. While CCUS at brownfield sites (i.e. mature oil and gas fields) has operational advantages over GS at greenfield sites (i.e. saline formations) such as the use of existing well infrastructure, previous site activities can add a layer of complexity that must be accounted for when developing groundwater monitoring protection networks. Extensive work has been done on developing monitoring networks at GS sites for CO2 accounting and groundwater protection. However, the development of appropriate monitoring strategies at commercial brownfield sites continues to develop. The goals of this research are to address the added monitoring complexity by adapting simple analytical and numerical models to test these approaches using two common subsurface monitoring parameters, pressure and aqueous geochemistry. The analytical pressure model solves for diffusivity in radial coordinates and the leakage rate derived from Darcy's law. The aqueous geochemical calculation computer program PHREEQC solves the advection-reaction-dispersion equation for 1-D transport and mixing of fluids .The research was conducted at a CO2 enhanced oil recovery (EOR) field on the Gulf Coast of Texas. We modeled the performance over time of one monitoring well from the EOR field using physical and operational data including lithology and water chemistry samples, and formation pressure data. We explored through statistical analyses the probability of leakage detection using the analytical and numerical methods by varying the monitoring well location spatially and vertically with respect to a leaky fault. Preliminary results indicate that a pressure based subsurface monitoring system provides a better probability of leakage detection than geochemistry alone, but together these monitoring parameters can improve the chances of leakage detection

  17. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  18. Learning through a portfolio of carbon capture and storage demonstration projects

    Science.gov (United States)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  19. Near-Term Opportunities for Carbon Dioxide Capture and Storage 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document contains the summary report of the workshop on global assessments for near-term opportunities for carbon dioxide capture and storage (CCS), which took place on 21-22 June 2007 in Oslo, Norway. It provided an opportunity for direct dialogue between concerned stakeholders in the global effort to accelerate the development and commercialisation of CCS technology. This is part of a series of three workshops on near-term opportunities for this important mitigation option that will feed into the G8 Plan of Action on Climate Change, Clean Energy and Sustainable Development. The ultimate goal of this effort is to present a report and policy recommendations to the G8 leaders at their 2008 summit meeting in Japan.

  20. Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas

    KAUST Repository

    Khalilpour, Rajab

    2011-08-12

    The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO 2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO 2/N 2 binary mixture or considering the co/countercurrent flow pattern of hollow-fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers (AIChE).

  1. Autonomous Underwater Vehicle Survey Design for Monitoring Carbon Capture and Storage Sites

    Science.gov (United States)

    Bull, J. M.; Cevatoglu, M.; Connelly, D.; Wright, I. C.; McPhail, S.; Shitashima, K.

    2013-12-01

    Long-term monitoring of sub-seabed Carbon Capture and Storage (CCS) sites will require systems that are flexible, independent, and have long-endurance. In this presentation we will discuss the utility of autonomous underwater vehicles equipped with different sensor packages in monitoring storage sites. We will present data collected using Autosub AUV, as part of the ECO2 project, from the Sleipner area of the North Sea. The Autosub AUV was equipped with sidescan sonar, an EM2000 multibeam systems, a Chirp sub-bottom profiler, and a variety of chemical sensors. Our presentation will focus on survey design, and the simultaneous use of multiple sensor packages in environmental monitoring on the continental shelf.

  2. Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Swart, Peter

    2013-11-30

    This award was a training grant awarded by the U.S. Department of Energy (DOE). The purpose of this award was solely to provide training for two PhD graduate students for three years in the general area of carbon capture and storage (CCS). The training consisted of course work and conducting research in the area of CCS. Attendance at conferences was also encouraged as an activity and positive experience for students to learn the process of sharing research findings with the scientific community, and the peer review process. At the time of this report, both students have approximately two years remaining of their studies, so have not fully completed their scientific research projects.

  3. Economics of carbon dioxide capture and utilization-a supply and demand perspective.

    Science.gov (United States)

    Naims, Henriette

    2016-11-01

    Lately, the technical research on carbon dioxide capture and utilization (CCU) has achieved important breakthroughs. While single CO2-based innovations are entering the markets, the possible economic effects of a large-scale CO2 utilization still remain unclear to policy makers and the public. Hence, this paper reviews the literature on CCU and provides insights on the motivations and potential of making use of recovered CO2 emissions as a commodity in the industrial production of materials and fuels. By analyzing data on current global CO2 supply from industrial sources, best practice benchmark capture costs and the demand potential of CO2 utilization and storage scenarios with comparative statics, conclusions can be drawn on the role of different CO2 sources. For near-term scenarios the demand for the commodity CO2 can be covered from industrial processes, that emit CO2 at a high purity and low benchmark capture cost of approximately 33 €/t. In the long-term, with synthetic fuel production and large-scale CO2 utilization, CO2 is likely to be available from a variety of processes at benchmark costs of approx. 65 €/t. Even if fossil-fired power generation is phased out, the CO2 emissions of current industrial processes would suffice for ambitious CC