WorldWideScience

Sample records for geogrid reinforced soil

  1. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    Science.gov (United States)

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  2. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2014-02-01

    Full Text Available In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  3. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.

    Science.gov (United States)

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-03-15

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.

  4. Geogrid reinforced road subgrade influence on the pavement evenness

    Science.gov (United States)

    Šiukščius, A.; Vorobjovas, V.; Vaitkus, A.

    2018-05-01

    As a result of increasing geogrid reinforcement applications in the road subgrade, there are number of projects where geogrid reinforcement is used to control road pavement evenness when there are small layers of peat or mud deeper under road construction. For this task geogrid reinforcement application is not documented but widely used in Lithuania for over a decade. This paper evaluates the long term influence of the geogrid reinforced soil influence on the road surface evenness, when the organic soils stratify in the deeper layers of the subgrade. The geological conditions of the investigated sections are reviewed. The experiment methodology and test results are described, which leads to the conclusions and insights how the pavement evenness depend on the geological conditions and its enhancement. The question is raised about the need for including this geogrid application to the normative documentation. Explanation of the problems that are encountered and the need for further research is given.

  5. Calcium Stabilized And Geogrid Reinforced Soil Structures In Seismic Areas

    International Nuclear Information System (INIS)

    Rimoldi, Pietro; Intra, Edoardo

    2008-01-01

    In many areas of Italy, and particularly in high seismic areas, there is no or very little availability of granular soils: hence embankments and retaining structures are often built using the locally available fine soil. For improving the geotechnical characteristics of such soils and/or for building steep faced structures, there are three possible techniques: calcium stabilization, geogrid reinforcement, and the combination of both ones, that is calcium stabilized and reinforced soil. The present paper aims to evaluate these three techniques in terms of performance, design and construction, by carrying out FEM modeling and stability analyses of the same reference embankments, made up of soil improved with each one of the three techniques, both in static and dynamic conditions. Finally two case histories are illustrated, showing the practical application of the above outlined techniques

  6. hree-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Yousif Fattah

    2016-05-01

    Full Text Available Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures. This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results of vertical crown deflection for the model without geogrid obtained from PLAXIS-3D are higher than those obtained by two-dimensional plane strain by about 21.4% while this percent becomes 12.1 for the model with geogrid, but in general, both have the same trend. The two dimensional finite elements analysis predictions of pipe-soil system behavior indicate an almost linear displacement of pipe deflection with applied pressure while 3-D analysis exhibited non-linear behavior especially at higher loads.

  7. Evaluation of Interface Shear Strength Properties of Geogrid Reinforced Foamed Recycled Glass Using a Large-Scale Direct Shear Testing Apparatus

    Directory of Open Access Journals (Sweden)

    Arul Arulrajah

    2015-01-01

    Full Text Available The interface shear strength properties of geogrid reinforced recycled foamed glass (FG were determined using a large-scale direct shear test (DST apparatus. Triaxial geogrid was used as a geogrid reinforcement. The geogrid increases the confinement of FG particles during shear; consequently the geogrid reinforced FG exhibits smaller vertical displacement and dilatancy ratio than FG at the same normal stress. The failure envelope of geogrid reinforced FG, at peak and critical states, coincides and yields a unique linear line possibly attributed to the crushing of FG particles and the rearrangement of crushed FG after peak shear state. The interface shear strength coefficient α is approximately constant at 0.9. This value can be used as the interface parameter for designing a reinforced embankment and mechanically stabilized earth (MSE wall when FG is used as a lightweight backfill and triaxial geogrid is used as an extensible earth reinforcement. This research will enable FG, recently assessed as suitable for lightweight backfills, to be used together with geogrids in a sustainable manner as a lightweight MSE wall. The geogrid carries tensile forces, while FG reduces bearing stresses imposed on the in situ soil. The use of geogrid reinforced FG is thus significant from engineering, economical, and environmental perspectives.

  8. Influence of Water Content on Pullout Behaviour of Geogrid

    Science.gov (United States)

    Chen, Rong; Song, Yang-yang; Hao, Dong-xue; Gao, Yu-cong

    2017-06-01

    The interaction between geogrid and soil is fundamental and crucial factor on safety and stability of geogrid-reinforced earth structure. Therefore, the interface index between geogrid and soil is of vital importance in the design of reinforced earth structures. The pullout behaviour of geogrid in soil is studied, an experimental investigation is conducted using geogrid in four groups of soil with 20%, 24%, 28%, 32% water contents, which correspond to normal stresses of 50, 100, 200 and 300 kPa respectively. The results indicate that the geogrid embedded in soil mainly represents pullout failure, and the ultimate pullout force is sensitive to water content. It decreases with the increase of the water content firstly. Besides, the water content influences the process of the pullout behaviour. The increase of water content leads to the ultimate pullout force soon.

  9. Estudio experimental del empuje sobre estructuras de contención en suelos reforzados con geomallas Experimental study of the lateral earth pressure on retaining structures in soils reinforced with geogrids

    Directory of Open Access Journals (Sweden)

    Lissette Ruiz-Tagle

    2011-12-01

    Full Text Available Este artículo presenta un estudio experimental de la variación de las tensiones de empuje sobre una pared que soporta un suelo reforzado con geomallas. Para ello se utilizó un equipo diseñado y construido especialmente para ejecutar ensayos de empuje bajo condiciones de deformación plana. Se describe el equipo de ensayo y los instrumentos de medición, así como el suelo y la preparación de las muestras de arena y la geomalla utilizada. En la primera etapa de la investigación se ensayan muestras sin reforzar y se comparan los resultados con aquellos provenientes de las teorías clásicas de empuje. Posteriormente se presentan los resultados de ensayos de empuje en suelo reforzado con una, dos, tres y cuatro geomallas. Se concluye que la incorporación de geomallas como refuerzo en el suelo disminuye el empuje ejercido por el suelo sobre la estructura de contención. Esta disminución del empuje es de aproximadamente un 25% cuando se usa una geomalla, un 50% con dos o tres geomallas y de un 75% con cuatro geomallas para los espaciamientos, sobrecargas e incremento de desplazamientos usados. Resultó posible identificar que la distribución de la tensión de empuje con la profundidad no sólo no sigue la variación triangular sino que se desarrollan arcos de tensiones en el suelo entre las geomallas.This article presents an experimental study on the variation with depth of the stresses due to lateral earth pressure on a wall retaining a soil reinforced with geogrids. To this end, an apparatus was designed and constructed especially tailored for performing lateral earth pressure tests under plain strain conditions. The experimental apparatus and the measurement instruments as well as the soil and the sample preparation and the geogrids used, are described. In a first stage of research, samples without reinforcing are tested and the results are compared with those from classic earth pressure theories. Subsequently, results from lateral earth

  10. Impact resistance of sustainable construction material using light weight oil palm shells reinforced geogrid concrete slab

    International Nuclear Information System (INIS)

    Muda, Z C; Usman, F; Beddu, S; Alam, M A; Mustapha, K N; Birima, A H; Sidek, L M; Rashid, M A; Malik, G; Zarroq, O S

    2013-01-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete slab with geogrid reinforcement of 300mm × 300mm size with 20mm, 30mm and 40 mm thick casted with different geogrid orientation and boundary conditions subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance the slab thickness, boundary conditions and geogrid reinforcement orientation. Test results indicate that the used of the geogrid reinforcement increased the impact resistance under service (first) limit crack up to 5.9 times and at ultimate limit crack up to 20.1 times against the control sample (without geogrid). A good linear relationship has been established between first and ultimate crack resistance against the slab thickness. The orientation of the geogrid has minor significant to the crack resistance of the OPS concrete slab. OPS geogrid reinforced slab has a good crack resistance properties that can be utilized as a sustainable impact resistance construction materials.

  11. Load eccentricity effects on behavior of circular footings reinforced with geogrid sheets

    Directory of Open Access Journals (Sweden)

    Ehsan Badakhshan

    2015-12-01

    Full Text Available In this paper, an experimental study for an eccentrically loaded circular footing, resting on a geogrid reinforced sand bed, is performed. To achieve this aim, the steel model footing of 120 mm in diameter and sand in relative density of 60% are used. Also, the effects of depth of first and second geogrid layers and number of reinforcement layers (1–4 on the settlement-load response and tilt of footing under various load eccentricities (0 cm, 0.75 cm, 1.5 cm, 2.25 cm and 3 cm are investigated. Test results indicate that ultimate bearing capacity increases in comparison with unreinforced condition. It is observed that when the reinforcements are placed in the optimum embedment depth (u/D = 0.42 and h/D = 0.42, the bearing capacity ratio (BCR increases with increasing load eccentricity to the core boundary of footing, and that with further increase of load eccentricity, the BCR decreases. Besides, the tilt of footing increases linearly with increasing settlement. Finally, by reinforcing the sand bed, the tilt of footing decreases at 2 layers of reinforcement and then increases by increasing the number of reinforcement layers.

  12. Analisis Deformasi Vertikal Dan Horisontal Tanah Lunak Di Bawahpiled-Geogrid Supported Embankment

    Directory of Open Access Journals (Sweden)

    Adhe Noor Patria

    2010-02-01

    Full Text Available Soft soil was easily founded in Indonesia. it was a low permeability soil. Constructing building such as embankment, roads on this kind of soil often faced problems. They were long term settlement, long term construction time and consolidation. Some method could be good alternative to overcome these problems such the usage of vertical drains, soil reinforcement, orsoil stabilization. This research carried out numerical simulation on piled-geogrid supported embankment. The simulation used Plaxis version 7.2 software to calculate some iterations. Used in this software as soil parameter input was Mohr-Coulomb Soil Model. Plane strain model was used for floating piles and geogrid. The results showed that the usage of floating piles and geogrid could reduce soil deformation. The reduction in horizontal deformation during contructing embankment were 60 to 68 % for rigid embankment and 80 to 60 % for interface embankment. Meanwhile the reduction in vertical deformation during contructing embankment were 60 to 65 % for rigid embankment and 80 to 65 % for interface embankment..

  13. Evaluation of the base/subgrade soil under repeated loading : phase I--laboratory testing and numerical modeling of geogrid reinforced bases in flexible pavement.

    Science.gov (United States)

    2009-10-01

    This report documents the results of a study that was conducted to characterize the behavior of geogrid reinforced base : course materials. The research was conducted through an experimental testing and numerical modeling programs. The : experimental...

  14. Field investigation on structural performance of the buried UPVC pipes with and without geogrid reinforcement

    Science.gov (United States)

    Teja, Akkineni Surya; Rajkumar, R.; Gokula Krishnan, B.; Aravindh, R.

    2018-02-01

    Buried pipes are used mainly for water supply and drainage besides many other applications such as oil, liquefied natural gas, coal slurries and mine tailings. The pipes used may be rigid (reinforced concrete, vitrified clay and ductile iron) or flexible (Steel, UPVC, aluminium, Fiber glass and High-density polyethylene) although the distinction between them is blurring. Flexible pipe design is governed by deflection or buckling. UPVC pipes are preferred due to light weight, long term chemical stability and cost efficiency. This project aims to study the load deformation behaviour of the buried pipe and stress variation across the cross section of the pipe under static loading along with the influence of depth of embedment, density of backfill on the deformation and stresses in pipe and the deformation behaviour of buried pipe when soil is reinforced with geogrid reinforcement and evaluate the structural performance of the pipe.

  15. 3D-FEM Analysis on Geogrid Reinforced Flexible Pavement Roads

    Science.gov (United States)

    Calvarano, Lidia Sarah; Palamara, Rocco; Leonardi, Giovanni; Moraci, Nicola

    2017-12-01

    Nowadays, the need to increase pavement service life, guarantee high performance, reduce service and maintenance costs has been turned a greater attention on the use of reinforcements. This paper presents findings of a numerical investigation on geogrid reinforced flexible pavement roads, under wheel traffic loads, using a three-dimensional Finite Element Method (FEM). The results obtained show the effectiveness of glass fibre grids as reinforcement which, with appropriate design and correct installation, by improving interface shear resistance, can be used to expand the performance of flexible pavements in different ways: by increasing the road service life providing a relevant contribution against superficial rutting or by decreasing the construction costs due to the reduction in the reinforced HMA layer thickness and thus of mineral aggregate required for its construction.

  16. Investigation of laboratory test procedures for assessing the structural capacity of geogrid-reinforced aggregate base materials.

    Science.gov (United States)

    2015-04-01

    The objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Pro...

  17. Behavior of a strip footing on reinforced soil subjected to inclined load

    Directory of Open Access Journals (Sweden)

    Abbas Jawdat

    2018-01-01

    Full Text Available This study investigates the behavior of a strip footing under inclined load on reinforced sandy soil by using experimental model. The effect of the load inclination angle (α, number of geogrid layers (N and the relative density (RD on the bearing capacity, settlement and horizontal displacement were studied. The results showed that by increasing the number of reinforcement layers (N, the bearing capacity increased, but there is an optimum value (N=4-5 depending on relative density of supporting soil. Also the settlement and horizontal displacement of footing decreasing with increase number of reinforcement layers.

  18. Development of ODOT guidelines for the use of geogrids in aggregate bases.

    Science.gov (United States)

    2012-11-01

    A primary objective of the current study was to help ODOT expand its selection of approved : geogrid products for base reinforcement applications by producing measured data on selected : geogrids and a dense-graded base aggregate commonly used in ODO...

  19. Development and Application of Smart Geogrid Embedded with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zheng-fang Wang

    2015-01-01

    Full Text Available Smart geogrids embedded with fiber Bragg grating (FBG for reinforcement as well as measurement of geotechnical structures have been developed. After the fabricating process of the geogrids is detailed, finite element (FE simulations are conducted to analyze the strain distribution of geogrids and the strain transfer characteristics from geogrids to fiber optic. Results indicate that FBG should be deployed in the middle of the geogrids rib to make sure that uniform strain distribution along the FBG. Also, PVC protective sleeves, which are used to protect fiber optic when integrated with geogrids, have smaller strain transfer loss than nylon sleeves. Tensile experiments are conducted to test strain measurement performance of proposed geogrids, and the results demonstrate that proposed smart geogrids have good linearity and consistency. Temperature experiments show that FBG embedded in geogrids has higher temperature sensitivity, and the temperature induced error can be compensated by an extra FBG strain-independent sensor. Furthermore, designed smart geogrids are used in a geotechnical model test to monitor strain during tunnel excavation. The strain tendency measured by smart geogrids and traditional strain sensor agree very well. The results indicate that smart geogrids embedded with FBGs can be an effective method to measure strains for geological engineering related applications.

  20. INVESTIGATION OF INNER SHEAR RESISTANCE OF GEOGRIDS BUILT UNDER GRANULAR PROTECTION LAYERS AND RAILWAY BALLAST

    Directory of Open Access Journals (Sweden)

    Sz. Fischer

    2015-10-01

    Full Text Available Purpose. Using adequate granular materials and layer structures in the railway super- and substructure is able to stabilise railway track geometry. For this purpose special behaviour of above materials has to be determined, e.g. inner shear resistance. Inner shear resistance of granular media with and without geogrid reinforcement in different depths is not known yet. Methodology. The author developed a special laboratory method to measure and define inner shear resistance of granular materials, it is called «multi-level shear box test». This method is adequate to determine inner shear resistance (pushing force vs. depth (distance from the «zero» surface. Two different granular materials: andesite railway ballast (31.5/63 mm and andesite railway protection layer material (0/56 mm, and seven different types of geogrids (GG1…GG7 were used during the tests. Findings. Values of inner shear resistance functions of andesite railway ballast without geogrid reinforcement and reinforced with different types of geogrids and andesite granular protection layer in function of the vertical distance from the geogrid plane were determined with multi-layer shear box tests when the material aggregation is uncompacted and compacted. Only the compacted sample was tested in case of the 0/56 mm protection layer. Cubic polynomial regression functions fitted on the mean values of the measurements are described graphically. Determination coefficients with values of R2>0.97 were resulted in all the cases of regression functions. Based on the polynomial regression functions fitted on the mean values of the test results, three increasing factors were determined in function of the distance measured from the geogrid. Increasing factor «A», «B» and «D». Originality. Multi-level shear box test, developed by the author, is certified unequivocally adequate for determining inner shear resistance of reinforced and unreinforced granular materials, e.g. railway ballast

  1. Modeling of geosynthetic reinforced capping systems

    International Nuclear Information System (INIS)

    Viswanadham, B.V.S.; Koenig, D.; Jessberger, H.L.

    1997-01-01

    The investigation deals with the influence of a geosynthetic reinforcement on the deformation behavior and sealing efficiency of the reinforced mineral sealing layer at the onset of non-uniform settlements. The research program is mainly concentrated in studying the influence of reinforcement inclusion in restraining cracks and crack propagation due to soil-geosynthetic bond efficiency. Centrifuge model tests are conducted in the 500 gt capacity balanced beam Bochum geotechnical Centrifuge (Z1) simulating a differential deformation of a mineral sealing layer of a landfill with the help of trap-door arrangement. By comparing the performance of the deformed mineral sealing layer with and without geogrid, the reinforcement ability of the geogrid in controlling the crack propagation and permeability of the mineral swing layer is evaluated

  2. Soil Improvement By Jet Grout Method And Geogrid Against Liquefaction: Example Of Samsun-Tekkeköy

    Science.gov (United States)

    Öztürk, Seda; Banu İkizler, S.; Şadoǧlu, Erol; Dadaşbilge, Ozan; Angın, Zekai

    2017-04-01

    scenarios of earthquakes with 6.0, 6.5, 7.0 and 7.2 magnitudes. As a result of the analyses made, it has been deemed necessary to improve the soil in order to prevent or reduce the liquefaction effects which may occur in a possible earthquake due to the presence of liquefaction potential in the research area. For this purpose, jet grouting method and geogrid fill system, which are used widely in Turkey, have been chosen as appropriate improvement methods. Geogrids are strong in tension so they are commonly used to reinforce subsoils below foundations. Additionally, jet grouting method provides high bearing capacity; it is solution to the settlement problems, it can be applied to almost any kind of soil and it has a short production period. Within this scope, optimal solution was obtained with 616 pieces of 8 m and 12 m jet grout columns with the diameter of 0.65 m and with geogrid mechanical fillings laid on jet grout columns. Thus, not only the risk of liquefaction was eliminated but also an improvement of more than 3 times of the bearing capacity of the foundation was acquired. In addition, the required quality control tests were carried out for the jet grout columns built in the research area and no adverse effects were observed. Key words: Liquefaction, soil improvement, jet grouting, geogrid

  3. Performance of Geosynthetic-Reinforced Soils Under Static and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    M. Touahmia

    2017-04-01

    Full Text Available This paper investigates and discusses the composite behavior of geosynthetic reinforced soil mass. It presents the results of a series of large-scale laboratory tests supported by analytical methods to examine the performance of geogrid reinforcement subjected to static and cyclic pullout loading. The testing equipment and procedures used for this investigation are outlined. The results show that geosynthetic reinforcement can mobilize great resistance to static pulling load under high confining pressures. The reinforcement exhibits gradual deformation under cyclic loading showing no sign of imminent pullout failure for all levels of applied loads. In general, the results demonstrate that geosynthetic can be used in situations where loads are non-static, although care will be required in ensuring that appropriate factors of safety are applied to control the resulting deformation. A simplified analytical model for calculating the pulling capacity of geosynthetic reinforcement is proposed.

  4. Study of the behavior of a reinforced embankment supported on alluvial soft soil - doi: 10.4025/actascitechnol.v35i4.16046

    Directory of Open Access Journals (Sweden)

    João Alexandre Paschoalin Filho

    2013-10-01

    Full Text Available This paper presented a study on the behavior of an embankment, 5.0 m high, reinforced with geogrids, and constructed over a soft soil 7.0 m thick. In order to determine the design strength (Td of the reinforcement, it was carried out a limit equilibrium analysis using the following methods: Simplified Bishop (1955 and Corrected Janbu (1954, for the hypothesis of circular and non circular slip surfaces respectively. In order to verify the behavior of the reinforced embankment, finite element analyses were performed using the software Phase2. Therefore, this work presented the determination of the reinforcement load design, verification of the magnitude of reinforcement strains, determination of the plastification zones in the foundation soil due to the elevation of the compacted soil, and values of distortion and horizontal displacement of the soft soil and mechanism of mobilization of reinforcement load.   

  5. Assessment of reinforced slopes instability in view of semi-analytical methods

    DEFF Research Database (Denmark)

    Tzavara, I.; Tsompanakis, Y.; Zania, Varvara

    The stabilization of natural or man-made earth slopes is usually achieved via proper reinforcement, which usually comprises of geosynthetic geogrids. On the other hand, earthquakes impose in such geostructures dynamic stresses, which may be excessive and can lead to accumulation of slip...... structures. Two approaches were adopted for the analysis of the dynamic stability in order to analyze the conservativeness of the employed method. Firstly, the dynamic response of the sliding soil mass and the development of the seismic accumulated slippage are taken into account simultaneously in a so...

  6. An assessment of the geometry effect of geosynthetics for base course reinforcements

    Directory of Open Access Journals (Sweden)

    Xiaoming Yang, Ph.D.

    2012-09-01

    Full Text Available Geosynthetic-reinforced base course is potentially a cost-effective solution for flexible pavement construction. With the recent advance in the mechanistic-empirical pavement design in the United States, there is a need to develop the next generation design method for geosynthetic-reinforced bases in flexible pavements. To develop such a design method requires an improved understanding about the mechanistic behavior, especially the in-plane elastic behavior, of geosynthetics. In this paper, the geometry effect of geosynthetics was discussed. The author first reviewed recent experimental and numerical studies. Analytical equations based on cellular material mechanics were presented for determining the in-plane elastic properties of geosynthetics. The analytical equations were used to evaluate a few geosynthetics with typical geometries. The results showed that, with the same polymeric material and typical product geometries, the geocell has a better confinement effect than geogrids, and the triaxial geogrid with a triangular aperture has a better confinement effect than the biaxial geogrid with a rectangular aperture. It was also demonstrated that the traditional uniaxial tensile modulus may be a poor indicator of the effectiveness of geosynthetics for base course reinforcements.

  7. Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands.

    Science.gov (United States)

    Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin

    2017-06-27

    Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages.

  8. Assessment of asphalt concrete reinforcement grid in flexible pavements : final report.

    Science.gov (United States)

    2016-05-01

    This report investigated the application of accepted methods of pavement structural evaluation to independently assess the potential structural benefit of asphalt geogrid reinforcement of an operational flexible highway pavement. The asphalt interlay...

  9. Strength Characteristics of Reinforced Sandy Soil

    OpenAIRE

    S. N. Bannikov; Mahamed Al Fayez

    2005-01-01

    Laboratory tests on determination of reinforced sandy soil strength characteristics (angle of internal friction, specific cohesive force) have been carried out with the help of a specially designed instrument and proposed methodology. Analysis of the obtained results has revealed that cohesive forces are brought about in reinforced sandy soil and an angle of internal soil friction becomes larger in comparison with non-reinforced soil.

  10. Modelling root reinforcement in shallow forest soils

    Science.gov (United States)

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  11. Fundamentals of fibre-reinforced soil engineering

    CERN Document Server

    Shukla, Sanjay Kumar

    2017-01-01

    This book is intended to serve as a one-stop reference on fibre-reinforced soils. Over the past 30-35 years, the engineering behaviour of randomly distributed/oriented fibre-reinforced soil, also called simply fibre-reinforced soil, has been investigated in detail by researchers and engineers worldwide. Waste fibres (plastic waste fibres, old tyre fibres, etc.) create disposal and environmental problems. Utilization of such fibres in construction can help resolve these concerns. Research studies and some field applications have shown that the fibres can be utilized in large quantities in geotechnical and civil engineering applications in a cost-effective and environmentally friendly manner. This book covers a complete description of fibres, their effects when included within a soil or other similar materials such as the fly ash, and their field applications. It gives a detailed view of fibre-reinforced soil engineering. The book will be useful to students, professional, and researchers alike, and can also ser...

  12. A multiphase constitutive model of reinforced soils accounting for soil-inclusion interaction behaviour

    OpenAIRE

    BENNIS, M; DE BUHAN, P

    2003-01-01

    A two-phase continuum description of reinforced soil structures is proposed in which the soil mass and the reinforcement network are treated as mutually interacting superposed media. The equations governing such a model are developed in the context of elastoplasticity, with special emphasis put on the soil/reinforcement interaction constitutive law. As shown in an illustrative example, such a model paves the way for numerically efficient design methods of reinforced soil structures.

  13. Soil reinforcement with recycled carpet wastes.

    Science.gov (United States)

    Ghiassian, Hossein; Poorebrahim, Gholamreza; Gray, Donald H

    2004-04-01

    A root or fibre-reinforced soil behaves as a composite material in which fibres of relatively high tensile strength are embedded in a matrix of relatively plastic soil. Shear stresses in the soil mobilize tensile resistance in the fibres, which in turn impart greater strength to the soil. A research project has been undertaken to study the influence of synthetic fibrous materials for improving the strength characteristics of a fine sandy soil. One of the main objectives of the project is to explore the conversion of fibrous carpet waste into a value-added product for soil reinforcement. Drained triaxial tests were conducted on specimens, which were prepared in a cylindrical mould and compacted at their optimum water contents. The main test variables included the aspect ratio and the weight percentage of the fibrous strips. The results clearly show that fibrous inclusions derived from carpet wastes improve the shear strength of silty sands. A model developed to simulate the effect of the fibrous inclusions accurately predicts the influence of strip content, aspect ratio and confining pressure on the shear strength of reinforced sand.

  14. Soil reinforcement with geosynthetics

    Directory of Open Access Journals (Sweden)

    Bessaim Mohammed Mustapha

    2018-01-01

    Full Text Available The proportionality of existence of land with good bearing to erect any building or building is very small, to remedy this deficiency it is necessary to resort to techniques of reinforcement of the soils which can constitute a very important development. Among these methods of remediation, there is reinforcement by the geosynthetics which constitute an effective solution to these constraints. This process tends to stabilize the soil in question with increased load bearing capacity in civil engineering and geotechnical works such as embankments, slopes, embankments and hydraulic structures, with an inestimable gain in time, economy and durability while preserving the natural and environmental aspect.

  15. Seismic Stability of Reinforced Soil Slopes

    DEFF Research Database (Denmark)

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.

    2012-01-01

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...

  16. Numerical modelling of the reinforcing effect of geosynthetic material used in a ballasted railway tracks

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej; Jíra, J.; Hrdlička, Ondřej; Kunecký, Jiří; Kytýř, Daniel; Vyčichl, J.; Doktor, Tomáš

    2010-01-01

    Roč. 224, č. 4 (2010), s. 259-267 ISSN 0954-4097 Institutional research plan: CEZ:AV0Z20710524 Keywords : railway track bed * reinforcing geogrid * finite-element modelling * settlement reduction * contact analysis * ballast material Subject RIV: JN - Civil Engineering Impact factor: 0.389, year: 2010 http://journals.pepublishing.com/content/k561040632411117/

  17. Influence of facing vertical stiffness on reinforced soil wall design

    OpenAIRE

    Puig Damians, Ivan; Bathurst, Richard; Josa Garcia-Tornel, Alejandro; Lloret Morancho, Antonio

    2013-01-01

    Current design practices for reinforced soil walls typically ignore the influence of facing type and foundation compressibility on the magnitude and distribution of reinforcement loads in steel reinforced soil walls under operational conditions. In this paper, the effect of the facing vertical stiffness (due to elastomeric bearing pads placed in the horizontal joints between panels) on load capacity of steel reinforced soil walls is examined in a systematic manner using a numerical modelli...

  18. Reinforced soil structures. Volume I, Design and construction guidelines

    Science.gov (United States)

    1990-11-01

    This report presents comprehensive guidelines for evaluating and using soil reinforcement techniques in the construction of retaining walls, embankment slopes, and natural or cut slopes. A variety of available systems for reinforced soil including in...

  19. Cyclic settlement behavior of strip footings resting on reinforced layered sand slope

    Directory of Open Access Journals (Sweden)

    Mostafa A. El Sawwaf

    2012-10-01

    Full Text Available The paper presents a study of the behavior of model strip footings supported on a loose sandy slope and subjected to both monotonic and cyclic loads. The effects of the partial replacement of a compacted sand layer and the inclusion of geosynthetic reinforcement were investigated. Different combinations of the initial monotonic loads and the amplitude of cyclic loads were chosen to simulate structures in which loads change cyclically such as machine foundations. The affecting factors including the location of footing relative to the slope crest, the frequency of the cyclic load and the number of load cycles were studied. The cumulative cyclic settlement of the model footing supported on a loose sandy slope, un-reinforced and reinforced replaced sand deposits overlying the loose slope were obtained and compared. Test results indicate that the inclusion of soil reinforcement in the replaced sand not only significantly increases the stability of the sandy slope itself but also decreases much both the monotonic and cumulative cyclic settlements leading to an economic design of the footings. However, the efficiency of the sand–geogrid systems depends on the properties of the cyclic load and the location of the footing relative to the slope crest. Based on the test results, the variation of cumulative settlements with different parameters is presented and discussed.

  20. Effects of an Anchoring Configuration on the Static Response of Geotextile and Geogrid Fabrics

    National Research Council Canada - National Science Library

    Simmons, Lebron

    2000-01-01

    An investigation is made of a potential retrofit system for in-fill masonry walls subjected to blast effects that consist of geotextile or geogrid materials anchored to the roof, floor slabs and beams...

  1. Slope Stability Estimation of the Kościuszko Mound in Cracow

    Science.gov (United States)

    Wrana, Bogumił; Pietrzak, Natalia

    2015-06-01

    In the paper, the slope stability problem of the Kościuszko Mound in Cracow, Poland is considered. The slope stability analysis was performed using Plaxis FEM program. The outer surface of the mound has complex geometry. The slope of the cone is not uniform in all directions, on the surface of the cone are pedestrian paths. Due to its complicated geometry it was impossible to do computing by Plaxis input pre-procesor. The initial element mesh was generated using Autodesk Autocad 3D and next it was updated by Plaxis program. The soil parameters were adopted in accordance with the detailed geological soil testing performed in 2012. Calculating model includes geogrids. The upper part was covered by MacMat geogrid, while the lower part of the Mound was reinforced using Terramesh Matt geogrid. The slope analysis was performed by successives reduction of φ /c parameters. The total multiplayer ΣMsf is used to define the value of the soil strength parameters. The article presents the results of slope stability before and after the rainfall during 33 days of precipitation in flood of 2010.

  2. Behavior of granular rubber waste tire reinforced soil for application in geosynthetic reinforced soil wall

    Directory of Open Access Journals (Sweden)

    G. G. D. RAMIREZ

    Full Text Available AbstractLarge quantities of waste tires are released to the environment in an undesirable way. The potential use of this waste material in geotechnical applications can contribute to reducing the tire disposal problem and to improve strength and deformation characteristics of soils. This paper presents a laboratory study on the effect of granular rubber waste tire on the physical properties of a clayey soil. Compaction tests using standard effort and consolidated-drained triaxial tests were run on soil and mixtures. The results conveyed an improvement in the cohesion and the angle of internal friction the clayey soil-granular rubber mixture, depending on the level of confining stress. These mixtures can be used like backfill material in soil retaining walls replacing the clayey soil due to its better strength and shear behavior and low unit weight. A numerical simulation was conducted for geosynthetic reinforced soil wall using the clayey soil and mixture like backfill material to analyzing the influence in this structure.

  3. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  4. Evolution of the Stability Work from Classic Retaining Walls to Mechanically Stabilized Earth Walls

    Directory of Open Access Journals (Sweden)

    Anghel Stanciu

    2008-01-01

    Full Text Available For the consolidation of soil mass and the construction of the stability works for roads infrastructure it was studied the evolution of these kinds of works from classical retaining walls - common concrete retaining walls, to the utilization in our days of the modern and competitive methods - mechanically stabilized earth walls. Like type of execution the variety of the reinforced soil is given by the utilization of different types of reinforcing inclusions (steel strips, geosynthetics, geogrids or facing (precast concrete panels, dry cast modular blocks, metal sheets and plates, gabions, and wrapped sheets of geosynthetics.

  5. Numerical Simulation Of The Treatment Of Soil Swelling Using Grid Geocell Columns

    Directory of Open Access Journals (Sweden)

    Fattah Mohammed Y.

    2015-06-01

    Full Text Available In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model increase, the axial movement (swelling movement and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.

  6. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Pua, Fei-ling; El-Shekeil, Y.A.; AL-Oqla, Faris M.

    2013-01-01

    Highlights: • We developed composites from kenaf and thermoplastic polyurethane. • Soil burial of composites after 80 days shows increase in flexural strength. • Soil burial of composites after 80 days shows increase in flexural modulus. • Tensile properties of composites degrade after soil burial tests. • We investigate the morphological fracture through scanning electron microscopy. - Abstract: A study on mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane (TPU) composites is presented in this paper. Kenaf bast fibre reinforced TPU composites were prepared via melt-mixing method using Haake Polydrive R600 internal mixer. The composites with 30% fibre loading were prepared based on some important parameters; i.e. 190 °C for reaction temperature, 11 min for reaction time and 400 rpm for rotating speed. The composites were subjected to soil burial tests where the purpose of these tests was to study the effect of moisture absorption on the mechanical properties of the composites. Tensile and flexural properties of the composites were determined before and after the soil burial tests for 20, 40, 60 and 80 days. The percentages of both moisture uptake and weight gain after soil burial tests were recorded. Tensile strength of kenaf fibre reinforced TPU composite dropped to ∼16.14 MPa after 80 days of soil burial test. It was also observed that there was no significant change in flexural properties of soil buried kenaf fibre reinforced TPU composite specimens

  7. Seismic response of reinforced soil slopes

    DEFF Research Database (Denmark)

    Tzavara, Ioanna; Zania, Varvara; Tsompanakis, Yiannis

    2010-01-01

    The main aim of the current study is to assess the dynamic response of reinforced soil structures taking into account the most important aspects of the problem and to compare the available design methods. For this purpose, initially the most commonly used pseudostatic approach is implemented via...... a parametric investigation to illustrate the impact of the crucial parameters of this approach. Subsequently, Newmark’s sliding block model is modified to account for the reinforcement forces in the calculation of seismic displacements. Finally, finite element analyses were performed and the numerical results...

  8. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  9. REVIEW OF MODERN TECHNOLOGIES OF REINFORCEMENT AND STABILIZATION OF SOFT SOILS

    Directory of Open Access Journals (Sweden)

    Romanov Nikita Valer’evich

    2018-05-01

    Full Text Available Subject: description of the current situation in technologies of soil improvement, namely mechanical and hydraulic consolidation of soils and vertical reinforcement of soils for different types of soft soils. Research objectives: demonstration of modern possibilities and approaches to the design and construction of improved soils. Materials and methods: in this paper, we consider such technologies of ground improvement as dynamic compaction, hydraulic consolidation (vertical drain consolidation, Menard vacuum consolidation, vertical reinforcement of soils (CMC - controlled modulus columns. Results: the result of the study is an intuitive representation of the applicability of described technologies for various types of soft soils. Conclusions: the technologies of ground improvement considered in this article are an effective alternative to both pile foundations and soil replacement. To this day, industrial implementation of soil improvement technologies has proved its applicability, efficiency and competitiveness.

  10. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability

    Science.gov (United States)

    Tristram C. Hales; Chelcy F. Miniat

    2017-01-01

    In steep soil-mantled landscapes, the initiation of shallow landslides is strongly controlled by the distribution of vegetation, whose roots reinforce the soil. The magnitude of root reinforcement depends on the number, diameter distribution, orientation and the mechanical properties of roots that cross potential failure planes. Understanding how these...

  11. Use of reinforced soil foundation (RSF) to support shallow foundation.

    Science.gov (United States)

    2008-11-01

    The main objective of this research study is to investigate potential benefits of using the reinforced soil foundations to improve the bearing capacity and to reduce the settlement of shallow foundations on soils. This includes examining influences o...

  12. Behaviour of normal reinforced concrete columns exposed to different soils

    Directory of Open Access Journals (Sweden)

    Rasheed Laith

    2018-01-01

    Full Text Available Concrete resistance to sulfate attack is one of the most important characteristics for maintaining the durability of concrete. In this study, the effect of the attack of sulfate salts on normal reinforced concrete column was investigated by burying these columns in two types of soils (sandy and clayey in two pits at a depth of 3 m in one of the agricultural areas in the holy city of Karbala, one containing sandy soil (SO3 = 10.609% and the other containing clayey soil with (SO3 = 2.61%. The tests were used (pure axial compression test of reinforced concrete columns, compressive strength test, and splitting tensile strength test, absorption, voids ratio and finally density. It`s found that the strength of RC columns decreasing by (12.51% for age (240 days, for columns buried in clayey soil, where the strength increased by (11.71% for the same period, for columns buried in sandy soils, with respect to the reference column.

  13. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    OpenAIRE

    Gao, Lei; Hu, Guohui; Xu, Nan; Fu, Junyi; Xiang, Chao; Yang, Chen

    2015-01-01

    In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0...

  14. Análisis del comportamiento a flexión de muros de adobe reforzados con geomallas

    OpenAIRE

    Solís, M.; Torrealva, D.; Santillán, P.; Montoya, G.

    2015-01-01

    Rammed earth is a widely used building material in many regions of the world. Due to the high seismic risk in those areas, earthen constructions require suitable and efficient reinforcement techniques from a technological and socioeconomic point of view. This paper analyzes the bending behavior of geogrid reinforced adobe walls from an experimental and analytical point of view. The experimental bending moment-curvature relationships are analytically approached. The results show how geogrid re...

  15. Geosynthetic Reinforced Soil Integrated Bridge System, Synthesis Report

    Science.gov (United States)

    2011-01-01

    This report is the second in a two-part series to provide engineers with the necessary background knowledge of Geosynthetic Reinforced Soil (GRS) technology and its fundamental characteristics as an alternative to other construction methods. It suppl...

  16. Strength behaviour of kerosene coated coir fiber-reinforced expansive soil

    OpenAIRE

    Ramasubbarao Godavarthi Venkata

    2014-01-01

    Coir fibers are extracted from the husks surrounding the coconut. Coir fibers can be effectively used as reinforcing material but it has less durability and hence coir fiber coated with kerosene is used as reinforcement in the present study. The objective of the present investigation is to study the strength behavior of expansive soil reinforced with 5mm long randomly distributed kerosene coated coir fibers in 0% (unreinforced), 0.5%, 1% and 1.5% by dry wei...

  17. Bamboo as Soil Reinforcement: A Laboratory Trial

    Directory of Open Access Journals (Sweden)

    Alhaji Mohammed MUSTAPHA

    2008-12-01

    Full Text Available A lateritic soil classified as A-6 under AASHTO soil classification system was reinforced with 0, 1, 2 and 3 bamboo specimens at laboratory trial level to evaluate its unconfined compressive strength (UCS and modulus of rigidity. The soil specimens were molded in cylindrical form of 38mm diameter and 76mm height while the bamboo specimens were trimmed in to circular plates of 34mm diameter and 3mm thickness. The trial soil specimens are: soil specimen without bamboo specimen (0 bamboo, soil specimen with one bamboo specimen in the center (1 bamboo, soil specimen with one bamboo specimen on top and one at the bottom (2 bamboos and soil specimen with one bamboo specimen on top, center and bottom (3 bamboos. Though, the dry density of the molded soil specimen decreased from 1.638Mg/m3 at 0 bamboo to 1.470Mg/m2 at 3 bamboos, the UCS increased from 226KN/m2 at 0 bamboo to 621KN/m2 at 3 bamboos. Also, for each of the 3 percentage strains (0.5, 1.0 and 1.5% considered, the modulus of rigidity increased with bamboo specimens.

  18. Quantifying root-reinforcement of river bank soils by four Australian tree species

    Science.gov (United States)

    Docker, B. B.; Hubble, T. C. T.

    2008-08-01

    The increased shear resistance of soil due to root-reinforcement by four common Australian riparian trees, Casuarina glauca, Eucalyptus amplifolia, Eucalyptus elata and Acacia floribunda, was determined in-situ with a field shear-box. Root pull-out strengths and root tensile-strengths were also measured and used to evaluate the utility of the root-reinforcement estimation models that assume simultaneous failure of all roots at the shear plane. Field shear-box results indicate that tree roots fail progressively rather than simultaneously. Shear-strengths calculated for root-reinforced soil assuming simultaneous root failure, yielded values between 50% and 215% higher than directly measured shear-strengths. The magnitude of the overestimate varies among species and probably results from differences in both the geometry of the root-system and tensile strengths of the root material. Soil blocks under A. floribunda which presents many, well-spread, highly-branched fine roots with relatively higher tensile strength, conformed most closely with root model estimates; whereas E. amplifolia, which presents a few, large, unbranched vertical roots, concentrated directly beneath the tree stem and of relatively low tensile strength, deviated furthest from model-estimated shear-strengths. These results suggest that considerable caution be exercised when applying estimates of increased shear-strength due to root-reinforcement in riverbank stability modelling. Nevertheless, increased soil shear strength provided by tree roots can be calculated by knowledge of the Root Area Ratio ( RAR) at the shear plane. At equivalent RAR values, A. floribunda demonstrated the greatest earth reinforcement potential of the four species studied.

  19. Pile-Reinforcement Behavior of Cohesive Soil Slopes: Numerical Modeling and Centrifuge Testing

    Directory of Open Access Journals (Sweden)

    Liping Wang

    2013-01-01

    Full Text Available Centrifuge model tests were conducted on pile-reinforced and unreinforced cohesive soil slopes to investigate the fundamental behavior and reinforcement mechanism. A finite element analysis model was established and confirmed to be effective in capturing the primary behavior of pile-reinforced slopes by comparing its predictions with experimental results. Thus, a comprehensive understanding of the stress-deformation response was obtained by combining the numerical and physical simulations. The response of pile-reinforced slope was indicated to be significantly affected by pile spacing, pile location, restriction style of pile end, and inclination of slope. The piles have a significant effect on the behavior of reinforced slope, and the influencing area was described using a continuous surface, denoted as W-surface. The reinforcement mechanism was described using two basic concepts, compression effect and shear effect, respectively, referring to the piles increasing the compression strain and decreasing the shear strain of the slope in comparison with the unreinforced slope. The pile-soil interaction induces significant compression effect in the inner zone near the piles; this effect is transferred to the upper part of the slope, with the shear effect becoming prominent to prevent possible sliding of unreinforced slope.

  20. Long‐Term Monitoring of a Geosynthetic Reinforced Soil Integrated Bridge System (GRS‐IBS)

    Science.gov (United States)

    2017-11-01

    The geosynthetic reinforced soil integrated bridge system (GRS-IBS) is an innovative alternative to conventional bridge technology that utilizes closely spaced layers of geosynthetic reinforcement and compacted granular fill material to provide direc...

  1. An elastoplastic homogenization procedure for predicting the settlement of a foundation on a soil reinforced by columns

    OpenAIRE

    ABDELKRIM, Malek; DE BUHAN, Patrick

    2007-01-01

    This paper presents an elastoplastic homogenization method applied to a soil reinforced by regularly distributed columns. According to this method, the composite reinforced soil is regarded, from a macroscopic point of view, as a homogeneous anisotropic continuous medium, the elastic as well as plastic properties of which can be obtained from the solution to an auxiliary problem attached to the reinforced soil representative cell. Based upon an approximate solution to this problem, in which p...

  2. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    Science.gov (United States)

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion.

  3. Soft soils reinforced by rigid vertical inclusions

    Directory of Open Access Journals (Sweden)

    Iulia-Victoria NEAGOE

    2013-12-01

    Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.

  4. Evaluating the benefits of geogrid reinforced bases in flexible pavement : technical summary report.

    Science.gov (United States)

    2009-09-01

    The inadequacy of many existing roads due to rapid growth in traffic volume provides a motivation for exploring alternatives to existing methods of constructing and rehabilitating roads. The use of geosynthetics to stabilize and reinforce paved and u...

  5. Use of reinforced soil foundation (RSF) to support shallow foundation : summary report.

    Science.gov (United States)

    2008-05-01

    This research study investigates the potential benefits of using reinforced soil foundations to improve the bearing capacity and reduce the settlement of shallow foundations on soils. To implement this objective, a total of 117 tests, including 38 la...

  6. Application and Design of Earth Structures from the Reinforced Soils

    Directory of Open Access Journals (Sweden)

    I. Vaníček

    2000-01-01

    Full Text Available Paper describes the new problems connected with the proper design of the reinforced soil structures according to Eurocode 7 Geotechnical design. Therefore basic problems of reinforcement are briefly specified together with the influence of construction technology on the behaviour of such structures. Also up to date approach to the design method in the Czech republic are more specified. Finally the program of the new research in this field is described.

  7. Mechanical properties of tree roots for soil reinforcement models

    NARCIS (Netherlands)

    Cofie, P.

    2001-01-01

    Evidence from forestry has shown that part of the forest floor bearing capacity is delivered by tree roots. The beneficial effect however varies and diminishes with increasing number of vehicle passes. Roots potential for reinforcing the soil is known to depend among others on root

  8. Nanomodified compositions based on finely dispersed binders for soil reinforcement

    Directory of Open Access Journals (Sweden)

    Alimov Lev

    2017-01-01

    Full Text Available Theoretical prerequisites on the possibility of improvement of physical and mechanical properties of soils at underground space development, their stability at different aggressive actions by means of their structure impregnation with nanomodified suspensions on the basis of especially finely dispersed mineral binders are developed. The features of influence of plasticizers on penetration ability and sedimentation stability of suspensions are revealed. Soil body reinforcement after its impregnation may achieve considerable values, which is related to the features of interaction of components of impregnating composition with extended surface of soil pore space.

  9. Environmental aspects of the implementation of geogrids for pavement optimisation

    Science.gov (United States)

    Kawalec, Jacek; Gołos, Michał; Mazurowski, Piotr

    2018-05-01

    Technological developments in highway construction should not only result in durable, safe and cost-effective solutions for roads and pavements but also, and perhaps above all, lead to solutions that minimise the negative impact of construction on the environment. One of the ways to ensure these requirements are met is to apply technology using geosynthetics. This paper discusses the stabilisation of aggregate with hexagonal geogrids and the benefits - from the point of view of reducing the emission of harmful gases to the atmosphere - which can be realised from this approach, compared with traditional approaches. Solutions for the improvement of weak subgrades and optimisation of the entire pavement structure are discussed, along with the presentation of sample calculations of greenhouse gas emissions, carried out with the use of specialized software related to the construction of the structures in various technologies.

  10. Use of reinforced soil wall to support steam generator transfer

    International Nuclear Information System (INIS)

    Davie, J.R.; Wang, J.T.; Gladstone, R.A.

    1991-01-01

    Consumers Power Company had the two steam generators at its Palisades Nuclear Plant in Michigan replaced in November 1990. This replacement was accomplished through a 26-foot wide by 28-foot high opening cut into the wall of the containment building, about 45 feet above the original ground surface. Because this ground surface was at an approximately 3-H:1-V slope, leveling was required before replacement in order to provide access for the steam generators and adequate support for the heavy-duty gantry crane system used to transfer the generators. A 25-foot high reinforced soil wall was constructed to achieve the level surface. This paper describes the design and construction of the heavily loaded reinforced soil wall, including ground improvement measures required to obtain adequate wall stability. The performance of the wall under test loading will also be presented and discussed

  11. FINELY DISPERSED COMPOSITE BINDER FOR REINFORCING SOILS BY INJECTION METHOD

    Directory of Open Access Journals (Sweden)

    Kharchenko Igor Yakovlevich

    2017-11-01

    Full Text Available Subject: we consider the problem of supplying the construction industry, in particular underground construction, with mineral binder for diluted aqueous suspensions that meet the requirements for reinforcement of low-strength sand and clastic soils by injections into the reinforced soil mass. Research objectives: substantiating possibility of using amorphous biosilica in combination with carbide sludge, whose particles size does not exceed 10 mm on average, as a binder for aqueous suspensions being injected. Materials and methods: as raw materials we used: common construction hydrated lime from “Stroimaterialy” JSC, Belgorod, hydrated lime in the form of carbide sludge from the dumps of Protvino plant (carbide sludge, hereafter, active mineral admixture biosilica from the group of companies “DIAMIX” and a plasticizer Sika viscocrete 5 new. Test methods are in accordance with applicable standards. To obtain samples of impregnated soils, a specially developed technique was used in the form of a unidirectional model. Results: properties of the composite binder prepared with different compositions are presented. The optimal component ratios are determined. The following properties of aqueous suspensions are studied: conditional viscosity, sedimentation and penetrating ability. Conditional viscosity is no more than 40 sec on average. Sedimentation does not exceed 1.2 %. Soil-concrete obtained by injection of a dilute aqueous suspension based on this composite binder has a compressive strength in the range from 4.44 to 12.5 MPa. Conclusions: utilization of finely dispersed composite mineral binder, which is based on interaction of amorphous silica with calcium hydroxide, as a binder for high penetration aqueous suspensions has been substantiated. This binder is not inferior to foreign analogues in terms of its strength and technological parameters and can be used for reinforcement of loose and low-strength soils. In case of using carbide

  12. Smart timber bridge on geosynthetic reinforced soil (GRS) abutments

    Science.gov (United States)

    Adam Senalik; James P. Wacker; Travis K. Hosteng; John Hermanson

    2017-01-01

    Recently, Buchanan County, Iowa, has cooperated with the U.S. Federal Highway Administration (FHWA), USDA Forest Service, Forest Products Laboratory (FPL), and Iowa State University’s Bridge Engineering Center (ISU–BEC) to initiate a project involving the construction and monitoring of a glued-laminated (glulam) timber superstructure on geosynthetic reinforced soil (...

  13. Study on reinforcement of soil for suppressing fugitive dust by bio-cementitious material

    Science.gov (United States)

    Zhan, Qiwei; Qian, Chunxiang

    2017-06-01

    Microbial-induced reinforcement of soil, as a new green and environmental-friendly method, is being paid extensive attention to in that it has low cost, simple operation and rapid effects. In this research, reinforcement of soil for suppressing fugitive dust by bio-cementitious material was investigated. Soil cemented by bio-cementitious material had superior mechanical properties, such as hardness, compressive strength, microstructure, wind-erosion resistance, rainfall-erosion resistance and freeze-thaw resistance. The average hardness of sandy soil, floury soil and clay soil is 18.9 º, 25.2 º and 26.1 º, while average compressive strength of samples is 0.43 MPa, 0.54 MPa and 0.69 MPa, respectively; meanwhile, the average calcite content of samples is 6.85 %, 6.09 %, and 5.96 %, respectively. Compared with the original sandy soil, floury soil and clay soil, the porosity decreases by 38.5 %, 33.7 % and 29.2 %. When wind speed is 12 m/s, the mass loss of sandy soil, floury soil and clay soil cemented by bio-cementitious material are all less than 30 g/(m2·h). After three cycles of rainfall erosion of 2.5 mm/h, the mass loss are less than 25 g/(m2·h) and the compressive strength residual ratio are more than 98.0 %. Under 25 cycles of freeze-thaw, the mass loss ratio are less than 3.0 %.

  14. Use of reinforced soil foundation (RSF) to support shallow foundation : summary report, November 2008.

    Science.gov (United States)

    2008-05-01

    This research study investigates the potential benefits of using reinforced soil foundations to improve the bearing : capacity and reduce the settlement of shallow foundations on soils. To implement this objective, a total of 117 : tests, including 3...

  15. Experimental study of polyurethane foam reinforced soil used as a rock-like material

    Directory of Open Access Journals (Sweden)

    Eren Komurlu

    2015-10-01

    Full Text Available In this study, polyurethane foam type thermoset polymerizing, due to chemical reaction between its liquid ingredients, was tested as binder after solidifying and then a rock-like material mixing with a sandy silt type soil was prepared. The uniaxial compressive strengths (UCSs of polyurethane foam reinforced soil specimens were determined for different polyurethane ratios in the mixture. Additionally, a series of tests on slake durability, impact value, freezing–thawing resistance, and abrasion resistance of polyurethane reinforced soil (PRS mixture was conducted. The UCS values over 3 MPa were measured from the PRS specimens. The testing results showed that treated soil can economically become a desirable rock-like material in terms of slake durability and resistances against freezing–thawing, impact effect and abrasion. As another characteristic of the rock-like material made with polyurethane foam, unit volume weight was found to be quite lower than those of natural rock materials.

  16. Use of reinforced soil foundation (RSF) to support shallow foundation : final report, November 2008.

    Science.gov (United States)

    2008-11-01

    This research study aims at investigating the potential benefits of using reinforced soil foundations to improve the bearing capacity and reduce the settlement of shallow foundations on soils. To implement this objective, a total of 117 tests, includ...

  17. Mechanical performance and sustainability assessment of reinforced soil walls

    OpenAIRE

    Puig Damians, Ivan

    2016-01-01

    Soil reinforced retaining wall structures are materiallymore efficientthan competing construction solutions such as gravity and cantilever walls. Nevertheless, the behaviour and interactions between the com ponent materials are com plex and not fully understood. Current design methods are typically limited to simple cases with respect to material properties, geometry, and boundary conditions. Advanced numerical models using finite element and/or finite difference methods offer the possibility...

  18. The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand

    Directory of Open Access Journals (Sweden)

    Mostafa El Sawwaf

    2012-10-01

    Full Text Available This paper presents the results of laboratory model tests on the influence of deep excavation-induced lateral soil movements on the behavior of a model strip footing adjacent to the excavation and supported on reinforced granular soil. Initially, the response of the strip footings supported on un-reinforced sand and subjected to vertical loads (which were constant during the test due to adjacent deep excavation-induced lateral soil movement were obtained. Then, the effects of the inclusion of geosynthetic reinforcement in supporting soil on the model footing behavior under the same conditions were investigated. The studied factors include the value of the sustained footing loads, the location of footing relative to the excavation, the affected depth of soil due to deep excavation, and the relative density of sand. Test results indicate that the inclusion of soil reinforcement in the supporting sand significantly decreases both vertical settlements and the tilts of the footings due to the nearby excavation. However, the improvements in the footing behavior were found to be very dependent on the location of the footing relative to excavation. Based on the test results, the variation of the footing measured vertical settlements with different parameters are presented and discussed.

  19. Evaluation Criteria and Results of Full Scale Testing of Bridge Abutment Made from Reinforced Soil

    Science.gov (United States)

    Hildebrand, Maciej; Rybak, Jarosław

    2017-10-01

    Structures made of reinforced soil can be evaluated for their safety based on a load testing. Measurement results are essentially evaluated by displacements of surcharge (mainly in vertical direction) and facing elements (mainly in horizontal direction). Displacements are within several tenths to several millimetres and they can be taken by common geodetic equipment. Due to slow soil consolidation (progress of displacements) under constant load, observations should be made over several days or even weeks or months. A standard procedure of heating of geotextiles, used in laboratory conditions to simulate long term behaviour cannot be used in a natural scale. When the load is removed, the soil unloading occurs. Both the progress of displacements and soil unloading after unloading of the structure are the key presumptions for evaluating its safety (stability). Assessment of measuring results must be preceded by assuming even the simplest model of the structure, so as it could be possible to estimate the expected displacements under controlled load. In view of clearly random nature of soil parameters of retaining structure composed of reinforced soil and due to specific erection technology of reinforced soil structure, the assessment of its condition is largely based on expert’s judgment. It is an essential and difficult task to interpret very small displacements which are often enough disturbed by numerous factors like temperature, insolation, precipitation, vehicles, etc. In the presented paper, the authors tried to establish and juxtapose some criteria for a load test of a bridge abutment and evaluate their suitability for decision making. Final remarks are based on authors experience from a real full scale load test.

  20. Dynamic Response of Reinforced Soil Systems. Volume 1. Report

    Science.gov (United States)

    1993-03-01

    Elements Failure Modes Ai,’Ilast Exposed walls, roof, arch Bruachiig Airbuast/fragment impulse Floor Flexure Fragment penetration Sur;ed walIs, flour , roof...completed panels used in all centrifuge tests are presented in Figures 64 and 65. Connection: For all steel reinforced panels, glue was applied to both the...High Stress Experiments on Soil," Geotechnical Testing Journal , Vol. 10, No. 4, pp. 192-202, Dec 1987. 11. Seaman, L., One-Dimensional Stress Wave

  1. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions.

    Science.gov (United States)

    Gowthaman, Sivakumar; Nakashima, Kazunori; Kawasaki, Satoru

    2018-04-04

    Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS) and randomly distributed fiber-reinforced soil (RDFS) are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  2. A State-of-the-Art Review on Soil Reinforcement Technology Using Natural Plant Fiber Materials: Past Findings, Present Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Sivakumar Gowthaman

    2018-04-01

    Full Text Available Incorporating sustainable materials into geotechnical applications increases day by day due to the consideration of impacts on healthy geo-environment and future generations. The environmental issues associated with conventional synthetic materials such as cement, plastic-composites, steel and ashes necessitate alternative approaches in geotechnical engineering. Recently, natural fiber materials in place of synthetic material have gained momentum as an emulating soil-reinforcement technique in sustainable geotechnics. However, the natural fibers are innately different from such synthetic material whereas behavior of fiber-reinforced soil is influenced not only by physical-mechanical properties but also by biochemical properties. In the present review, the applicability of natural plant fibers as oriented distributed fiber-reinforced soil (ODFS and randomly distributed fiber-reinforced soil (RDFS are extensively discussed and emphasized the inspiration of RDFS based on the emerging trend. Review also attempts to explore the importance of biochemical composition of natural-fibers on the performance in subsoil reinforced conditions. The treatment methods which enhances the behavior and lifetime of fibers, are also presented. While outlining the current potential of fiber reinforcement technology, some key research gaps have been highlighted at their importance. Finally, the review briefly documents the future direction of the fiber reinforcement technology by associating bio-mediated technological line.

  3. The self-reinforcing feedback between low soil fertility and chronic poverty

    Science.gov (United States)

    Barrett, Christopher B.; Bevis, Leah E. M.

    2015-12-01

    Most of the world's extreme poor, surviving on US$1.25 or less per day, live in rural areas and farm for a living. Many suffer chronic poverty that lasts for years or generations, rather than the transitory poverty that dominates developed, urban economies. Such chronic, structural poverty arises when an individual's productive assets -- such as their ability to work or their soils -- and the technologies and markets that transform their assets into food and income are insufficient to attain satisfactory living standards. Research reveals strong links between economic status and soil quality, and these can be self-reinforcing. For example, poor soil constrains agricultural production and household capital, and low household capital constrains investments in improving soils. Price, availability and access to credit can limit farmers' applications of nutrients, which are often the primary constraint on agricultural productivity. Soil micronutrient deficiencies can lead to dietary mineral deficiencies and negative health outcomes that further constrain productivity and household asset accumulation. Soils may also be important for smallholder resilience to stressors and shocks. For example, high-quality soil can reduce vulnerability to drought, and insurance against risk may promote investment in soils. Interventions such as fertilizer subsidies, micronutrient-fortified fertilizer and improved access to information, insurance and credit may all help break the soil-poverty cycle.

  4. A Parametric Study of Stability of Geotextile-Reinforced Soil Above an Underground Cavity

    DEFF Research Database (Denmark)

    poor, Abbas Tahmasebi; Noorzad, R.; Shooshpasha, E.

    2012-01-01

    A study based on two-dimensional finite element analyses under plane strain condition was performed by PLAXIS code to investigate the behavior of geotextilereinforced soil above an underground cavity. The effects of depth of single layer, tensile stiffness, number and length of reinforcement layers...

  5. [Time-evolution study on the cation exchange in the process of reinforcing slip soil by laser-induced breakdown spectroscopy].

    Science.gov (United States)

    Liu, Lu-Wen; Zeng, Wei-Li; Zhu, Xiang-Fei; Wu, Jin-Quan; Lin, Zhao-Xiang

    2014-03-01

    In the present paper, the time evolution study on slip soils treated by different proportions of ionic soil stabilizer (ISS) water solution was conducted by the LIBS system and the relationship between the cation exchange and such engineering properties of reinforcing soil as plasticity index, cohesive force and coefficient of compressibility were analyzed. The results showed that the cation exchange velocity of the proportion of 1:200 ISS reinforcing soil is the fastest among the three proportions (1:100, 1:200 and 1:300) and the modification effect of engineering performance index is quite obvious. These studies provide an experimental basis for the ISS applied to curing project, and monitoring geotechnical engineering performance by LIBS technology also provides a new way of thinking for the curing project monitoring.

  6. STRESS-STRAIN STATE OF ROCKFILL DAM DOUBLE-LAYER FACE MADE OF REINFORCED CONCRETE AND SOIL-CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Sainov Mikhail Petrovich

    2017-05-01

    Full Text Available There was studied the stress-strain state of 215 m high rockfill dam where the seepage-control element is presented by a reinforced concrete face of soil-cement concrete placed on the under-face zone. Calculations were carried out for two possible variants of deformability of rock outline taking into account the non-linearity of its deformative properties. It was obtained that the reinforced concrete face and the soil-cement concrete under-face zone work jointly as a single construction - a double-layer face. As the face assembly resting on rock is made with a sliding joint the scheme of its static operation is similar to the that of the beam operation on the elastic foundation. At that, the upstream surface of the double-layer face is in the compressed zone and lower one is in the tensile zone. This protects the face against cracking on the upstream surface but threatens with structural failure of soil-cement concrete. In order to avoid appearance of cracks in soil-cement concrete part due to tension it is necessary to achieve proper compaction of rockfill and arrange transverse joints in the double-layer face.

  7. Capturing strain localization behind a geosynthetic-reinforced soil wall

    Science.gov (United States)

    Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.

    2003-04-01

    This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.

  8. [Species-associated differences in foliage-root coupling soil-reinforcement and anti-erosion].

    Science.gov (United States)

    Liu, Fu-quan; Liu, Jing; Nao, Min; Yao, Xi-jun; Zheng, Yong-gang; Li, You-fang; Su, Yu; Wang, Chen-jia

    2015-02-01

    This paper took four kinds of common soil and water conservation plants of the study area, Caragana microphylla, Salix psammophila, Artemisia sphaerocephala and Hippophae rhamnides at ages of 4 as the research object. Thirteen indicators, i.e., single shrub to reduce wind velocity ration, shelterbelt reducing wind velocity ration, community reducing wind velocity ration, taproot tensile strength, representative root constitutive properties, representative root elasticity modulus, lateral root branch tensile strength, accumulative surface area, root-soil interface sheer strength, interface friction coefficient, accumulative root length, root-soil composite cohesive, root-soil composite equivalent friction angle, reflecting the characteristics of windbreak and roots, were chose to evaluate the differences of foliage-root coupling soil-reinforcement and anti-erosion among four kinds of plants by analytic hierarchy process (AHP) under the condition of spring gale and summer rainstorm, respectively. The results showed the anti-erosion index of foliage-root coupling was in the sequence of S. psammophila (0.841) > C. microphylla (0.454) > A. sphaerocephala (-0.466) > H. rhamnides (-0.829) in spring gale, and C. microphylla (0.841) > S. psammophila (0. 474) > A. sphaerocephala (-0.470) > H. rhamnides (-0.844) in summer rainstorm. S. psammophila could be regarded as one of the most important windbreak and anti-erosion species, while C. microphylla could be the most valuable soil and water conservation plant for the study area.

  9. Construction Technology and Mechanical Properties of a Cement-Soil Mixing Pile Reinforced by Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Yingwei Hong

    2017-01-01

    Full Text Available A new type of cement-soil mixing pile reinforced by basalt fibre is proposed for increasing the bearing capacity of cement-soil mixing piles. This work primarily consists of three parts. First, the process of construction technology is proposed, which could allow uniform mixing of the basalt fibre in cement-soil. Second, the optimal proportions of the compound mixtures and the mechanical properties of the pile material are obtained from unconfined compression strength test, tensile splitting strength test, and triaxial shear test under different conditions. Third, the reliability of the construction technology, optimal proportions, and mechanical properties are verified by testing the mechanical properties of the drilling core sample on site.

  10. Shear strength in corner region of reinforced concrete duct type structures to be embedded in soil

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Endo, T.

    1993-01-01

    Reinforced concrete ducts for accommodating emergency cooling water pipes are generally embedded in soil. The structures is classified as one of the most important structures in terms of earthquake resistant design. During a strong earthquake it is subjected to shear deformations in concerted movement with surrounding soil. The comer regions of the duct should be designed against shear with moment combined. However, the complicated stress conditions in the region render the design more intricate in comparison with the case of simple determinate RC beam type structures. With the above situation in mind an experimental study was conducted, in which prototype as well as one half scale models representing the stress conditions in the region of interest were loaded and brought to failure in shear. The cross section of the prototype test model without shear reinforcements was 60 (height) x 30cm (width), and the tensile reinforcement ratio was 2.58%. The following results were obtained within the limit of the experimental study. (1) The shear capacity predicted by Japanese Design Code for linear RC members over-estimated the experimental ones with a considerably large safety margin of 4.4-5.0. (2) An improved design procedure to be applied to the specific structure was proposed, which gave a reasonable safety factor against shear failure of 1.7-2.0. (3) Combined smeared and discrete cracking model was utilized to simulate the shear failure mechanism, which could realistically pursue experimental behaviors. (author)

  11. Study of a railway embankment reinforced with jute tassels

    Indian Academy of Sciences (India)

    Embankment; models (physical); soil reinforcement; jute tassel; slope ... Because of high tensile strength of vetiver grass roots, they act like soil .... All the joints are glued as well as reinforced with steel angles and .... slipping, it is nailed to the top of the embankment by several 25.4 mm iron ... The cables can yield in ten-.

  12. A comparison of analytical approaches for the assessment of seismic displacements of geosynthetically reinforced geostructures

    DEFF Research Database (Denmark)

    Tzavara, I.; Tsompanakis, Y.; Zania, Varvara

    2012-01-01

    Aim of the current study is to assess the dynamic response of reinforced soil structures and the potential of the geosynthetics to prevent the seismic induced instabilities taking advantage of their reinforcing effect. For this purpose, representative models of reinforced soil slopes are developed...

  13. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    Science.gov (United States)

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  14. Analysing hydro-mechanical behaviour of reinforced slopes through centrifuge modelling

    Science.gov (United States)

    Veenhof, Rick; Wu, Wei

    2017-04-01

    Every year, slope instability is causing casualties and damage to properties and the environment. The behaviour of slopes during and after these kind of events is complex and depends on meteorological conditions, slope geometry, hydro-mechanical soil properties, boundary conditions and the initial state of the soils. This study describes the effects of adding reinforcement, consisting of randomly distributed polyolefin monofilament fibres or Ryegrass (Lolium), on the behaviour of medium-fine sand in loose and medium dense conditions. Direct shear tests were performed on sand specimens with different void ratios, water content and fibre or root density, respectively. To simulate the stress state of real scale field situations, centrifuge model tests were conducted on sand specimens with different slope angles, thickness of the reinforced layer, fibre density, void ratio and water content. An increase in peak shear strength is observed in all reinforced cases. Centrifuge tests show that for slopes that are reinforced the period until failure is extended. The location of shear band formation and patch displacement behaviour indicate that the design of slope reinforcement has a significant effect on the failure behaviour. Future research will focus on the effect of plant water uptake on soil cohesion.

  15. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    OpenAIRE

    Kamel Bezih; Alaa Chateauneuf; Mahdi Kalla; Claude Bacconnet

    2015-01-01

    In the design of reinforced concrete (RC) bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this ...

  16. Bearing and Swelling Properties of Randomly Distributed Waste Jute Reinforced Soil

    Directory of Open Access Journals (Sweden)

    Murat Ozturk

    2017-10-01

    Full Text Available In this study, waste jute, which was provided from textile companies, was investigated to define effect of waste jute on swelling and bearing behavior of the sand used. Three different water content (17, 19 and 21% and four different waste jute addition amount at different percentages (0, 1, 2, and 3 by mass of dry soil were selected as design variables. With defined variables Swelling Ratio and California Bearing Ratio (CBR tests were conducted. According to test results it is concluded that minimum swelling ratio was observed in the test containing 3% jute with 19% water content and the highest value of CBR was observed in the sample containing 2% jute with 16% water content. In addition to that, CBR values of unreinforced samples were decreased when water content increased from 16% to 21%. However, CBR values of reinforced samples increased with increasing water content from 19% to 21%.

  17. Reinforcement mechanism of multi-anchor wall with double wall facing

    Science.gov (United States)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  18. Effect of reinforcement fibers on the collapse potential of clayey sands

    Directory of Open Access Journals (Sweden)

    Adjabi Souhila

    2018-01-01

    Full Text Available The collapse of soils under wetting is a major problem in Geotechnical engineering. The erection of structures on these types of soils, located in arid and semi-arid zones, needs careful treatment of these soils. Soil reinforcement techniques have been rapidly increased during these two decades because of their effectiveness in geotechnical engineering. The aim of this experimental work is to investigate the collapsible soil behaviour in order to improve its characteristics. To achieve this goal, Polyethylene fibers, and Sisal fibers were used as Polyethylene fibers content in mass are varied from 0% (unreinforced samples to 15%; and Sisal fibers content from 0.5% to 1%. The fiber reinforcement is combined with other processing procedures such as compaction and the addition of CPA cement to decrease the collapse potential.

  19. Análisis del comportamiento a flexión de muros de adobe reforzados con geomallas

    Directory of Open Access Journals (Sweden)

    Solís, M.

    2015-09-01

    Full Text Available Rammed earth is a widely used building material in many regions of the world. Due to the high seismic risk in those areas, earthen constructions require suitable and efficient reinforcement techniques from a technological and socioeconomic point of view. This paper analyzes the bending behavior of geogrid reinforced adobe walls from an experimental and analytical point of view. The experimental bending moment-curvature relationships are analytically approached. The results show how geogrid reinforcement improves the performance of adobe masonry in terms of strength and ductility. Thus, a better seismic performance is achieved.La tierra cruda constituye el material de construcción más importante en muchas regiones del planeta. Dado el riesgo sísmico existente en la mayor parte de estas regiones, es necesario el desarrollo de técnicas de refuerzo eficaces y adecuadas desde un punto de vista tecnológico y socioeconómico. Este artículo analiza desde un punto experimental y analítico el comportamiento a flexión de muros de adobe reforzados con geomallas. Las leyes momento-curvatura de los muros ensayados son aproximadas mediante una serie de modelos analíticos que permiten analizar el comportamiento del material compuesto adobe-geomalla. Los resultados obtenidos muestran como la geomalla mejora el comportamiento de la mampostería de adobe en términos de resistencia y ductilidad, mejorando así su comportamiento en caso de movimiento sísmico.

  20. THE RELIABILITY ANALYSIS OF EXISTING REINFORCED CONCRETE PILES IN PERMAFROST REGIONS

    Directory of Open Access Journals (Sweden)

    Vladimir S. Utkin

    2017-06-01

    Full Text Available The article describes the general problem of safe operation of buildings and structures with the dynamics of permafrost in Russia and other countries. The global warming on Earth will lead to global disasters such as failures of buildings and structures. The main reason of these failures will be a reduction of bearing capacity and the reliability of foundations. It is necessary to organize the observations (monitoring for the process of reducing the bearing capacity of foundations to prevent such accidents and reduce negative consequences, to development of preventive measures and operational methods for the piles reliability analysis. The main load-bearing elements of the foundation are reinforced concrete piles and frozen ground. Reinforced concrete piles have a tendency to decrease the bearing capacity and reliability of the upper (aerial part and the part in the soil. The article discusses the problem of reliability analysis of existing reinforced concrete piles in upper part in permafrost regions by the reason of pile degradation in the contact zone of seasonal thawing and freezing soil. The evaluation of the probability of failure is important in itself, but also it important for the reliability of foundation: consisting of piles and frozen soil. Authors offers the methods for reliability analysis of upper part of reinforced concrete piles in the contact zone with seasonally thawed soil under different number of random variables (fuzzy variables in the design mathematical model of a limit state by the strength criterion.

  1. Improving geotechnical properties of clayey soil using polymer material

    OpenAIRE

    Karim Hussein; Al-Soudany Kawther

    2018-01-01

    This study illustrates the application of polymer material for clayey soil stabilization. The article will focus on studying the strength behavior of the clayey soils reinforced with homogenously polymer fiber. In the current research, “polypropylene” was selected as polymer material to reinforce the natural clay soil. This polymer fiber was added to the clayey soil with four different percentages of (0, 1.5, 3, and 5%) by weight of soil. Various tests with different polymer contents were per...

  2. Effect of soil–structure interaction on the reliability of reinforced concrete bridges

    Directory of Open Access Journals (Sweden)

    Kamel Bezih

    2015-09-01

    Full Text Available In the design of reinforced concrete (RC bridges, the random and nonlinear behavior of soil may lead to insufficient reliability levels. For this reason, it is necessary to take into account the variability of soil properties which can significantly affect the bridge behavior regarding ultimate and serviceability limit states. This study investigates the failure probability for existing reinforced concrete bridges due to the effects of interaction between the soil and the structure. In this paper, a coupled reliability–mechanical approach is developed to study the effect of soil–structure interaction for RC bridges. The modeling of this interaction is incorporated into the mechanical model of RC continuous beams, by considering nonlinear elastic soil stiffness. The reliability analysis highlights the large importance of soil–structure interaction and shows that the structural safety is highly sensitive to the variability of soil properties, especially when the nonlinear behavior of soil is considered.

  3. Numerical analysis of pipe impact on reinforced concrete structures

    International Nuclear Information System (INIS)

    Prinja, N.K.

    1990-01-01

    This paper presents the methodology and the results of numerical analyses carried out by using the computer code DYNA3D to analyse pipe impacts on a reinforced concrete slab, a floor beam and a column. Modelling techniques employed to represent various features of typical reinforced concrete (RC) structures and the details of a soil and crushable foam type of material model used to represent concrete material behaviour are described. The results show that a reasonable prediction of global behaviour of reinforced concrete structures under impact loading can be obtained by this numerical method. (author)

  4. Positive Reinforcement and Logical Consequences in the Treatment of Classroom Encopresis.

    Science.gov (United States)

    Lyon, Mark A.

    1984-01-01

    A child with a diagnosis of mild mental retardation was treated for encopresis. Positive reinforcement procedures for continence and logical consequences for soiling were effective in accomplishing complete continence during the final phase of treatment. An ABCDA design with a decelerating rate of reinforcement was utilized to assess treatment…

  5. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  6. Development of advanced earthquake resistant performance verification on reinforced concrete underground structure. Pt. 2. Verification of the ground modeling methods applied to non-linear soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Kanatani, Mamoru; Ohtomo, Keizo; Matsui, Jun; Matsuo, Toyofumi

    2003-01-01

    In order to develop an advanced verification method for earthquake resistant performance on reinforced concrete underground structures, the applicability of two different types of soil modeling methods in numerical analysis were verified through non-linear dynamic numerical simulations of the large shaking table tests conducted using the model comprised of free-field ground or soils and a reinforced concrete two-box culvert structure system. In these simulations, the structure was modeled by a beam type element having a tri-linear curve of the relations between curvature and flexural moment. The soil was modeled by the Ramberg-Osgood model as well as an elasto-plastic constitutive model. The former model only employs non-linearity of shear modulus regarding strain and initial stress conditions, whereas the latter can express non-linearity of shear modulus caused by changes of mean effective stress during ground excitation and dilatancy of ground soil. Therefore the elasto-plastic constitutive model could precisely simulate the vertical acceleration and displacement response on ground surface, which were produced by the soil dilations during a shaking event of a horizontal base input in the model tests. In addition, the model can explain distinctive dynamic earth pressure acting on the vertical walls of the structure which was also confirmed to be related to the soil dilations. However, since both these modeling methods could express the shear force on the upper slab surface of the model structure, which plays the predominant role on structural deformation, these modeling methods were applicable equally to the evaluation of seismic performance similar to the model structure of this study. (author)

  7. Surface Heave Behaviour of Coir Geotextile Reinforced Sand Beds

    Science.gov (United States)

    Lal, Dharmesh; Sankar, N.; Chandrakaran, S.

    2017-06-01

    Soil reinforcement by natural fibers is one of the cheapest and attractive ground improvement techniques. Coir is the most abundant natural fiber available in India and due to its high lignin content; it has a larger life span than other natural fibers. It is widely used in India for erosion control purposes, but its use as a reinforcement material is rather limited. This study focuses on the use of coir geotextile as a reinforcement material to reduce surface heave phenomena occurring in shallow foundations. This paper presents the results of laboratory model tests carried out on square footings supported on coir geotextile reinforced sand beds. The influence of various parameters such as depth of reinforcement, length, and number of layers of reinforcement was studied. It was observed that surface heave is considerably reduced with the provision of geotextile. Heave reduction up to 98.7% can be obtained by the proposed method. Heave reduction is quantified by a non-dimensional parameter called heave reduction factor.

  8. Bringing life to soil physical processes

    Science.gov (United States)

    Hallett, P. D.

    2013-12-01

    When Oklahoma's native prairie grass roots were replaced by corn, the greatest environmental (and social) disaster ever to hit America ensued. The soils lost structure, physical binding by roots was annihilated and when drought came the Great Dust Bowl commenced. This form of environmental disaster has repeated over history and although not always apparent, similar processes drive the degradation of seemingly productive farmland and forests. But just as negative impacts on biology are deleterious to soil physical properties, positive impacts could reverse these trends. In finding solutions to soil sustainability and food security, we should be able to exploit biological processes to improve soil physical properties. This talk will focus on a quantitative understanding of how biology changes soil physical behaviour. Like the Great Dust Bowl, it starts with reinforcement mechanisms by plant roots. We found that binding of soil by cereal (barley) roots within 5 weeks of planting can more than double soil shear strength, with greater plant density causing greater reinforcement. With time, however, the relative impact of root reinforcement diminishes due to root turnover and aging of the seedbed. From mechanical tests of individual roots, reasonable predictions of reinforcement by tree roots are possible with fibre bundle models. With herbaceous plants like cereals, however, the same parameters (root strength, stiffness, size and distribution) result in a poor prediction. We found that root type, root age and abiotic factors such as compaction and waterlogging affect mechanical behaviour, further complicating the understanding and prediction of root reinforcement. For soil physical stability, the interface between root and soil is an extremely important zone in terms of resistance of roots to pull-out and rhizosphere formation. Compounds analogous to root exudates have been found with rheological tests to initially decrease the shear stress where wet soils flow, but

  9. Influence of backfill moisture content on the pullout capacity of geotextile reinforcement in MSE walls.

    Science.gov (United States)

    2012-12-01

    Sources of high-quality soils to meet design standards for the construction of reinforced soil structures are : in many cases rare and in short supply. An economical alternative to coarse-grained, free-draining soils : consists of using locally avail...

  10. Laboratory study on subgrade soil stabilization using RBI grade 81

    Science.gov (United States)

    Cynthia, J. Bernadette; Kamalambikai, B.; Prasanna Kumar, R.; Dharini, K.

    2017-07-01

    The present study investigates the effect of reinforcing the sub grade soils with RBI 81 material. A soil nearby was collected and preliminary tests were conducted to classify the soil and it was found from the results that the sample collected was a poorly graded clay. Subsequently Tests such as Proctor Compaction, CBR, and UCC were conducted to study the various engineering properties of the identified soil. In addition to the above tests were also conducted on the soil by reinforcing with varying percentages of RBI 81. From the analysis of test results it was found that this material (RBI 81) will significantly improve the CBR value of the soil.

  11. Effect of molarity in geo polymer earth brick reinforced with fibrous coir wastes using sandy soil and quarry dust as fine aggregate. (Case study

    Directory of Open Access Journals (Sweden)

    P. Palanisamy

    2018-06-01

    Full Text Available The studies are mainly carried out on strength development for various grades of geo-polymer mortar with varying molarity (M for producing geo-polymer earth brick (GPEB. The studies are focused on use of more sandy soil sieved from the raw earth available at site and quarry dust on replaced with river sand for making the un-burnt brick. The brick is reinforced with fibrous coir waste to increase shear strength and further pressed by hand compaction. Geo-polymer mortar is based on an inorganic alumina silicate binder system and it has more advantages of quick strength gain, negligence of water curing, best mechanical properties, eco-friendly, sustainable and alternate to ordinary Portland cement (OPC based mortar. Fly Ash (FA, Ground Granulated Blast-furnace Slag (GGBS, sandy soil sieved from earth and Quarry Dust (QD are mixed with alkaline solution in different molarities 6 M, 8 M and 10 M to prepare specimens. Specimens are tested against workability, compressive strength, and water absorption test, rate of water absorption, abraded test and also fiber content of the brick. The research found that the brick is made by FA & GGBS as binders and soil & quarry dust as fine aggregate in ratio of 0.5:0.5:1.75:0.25 with fibrous coir waste 1% and alkaline solution 10 M for preparing mortar to produce, excellent compressive strength, low water absorption, low rate of absorption, good abrasive resistance etc., The new brick is placed an alternate to compressed stabilized earth block, cement block and traditional burnt brick. Keywords: Fiber reinforced geo-polymer earth brick, Geo-polymer mortar using sandy soil and quarry dust as fine-aggregate, Nature fibrous coir wastes, Un-burnt brick, Alternate to compressed stabilized earth block

  12. Numerical Analysis of Slopes Stability and Shallow Foundations Behavior at Crest under Real Seismic Loading - Reinforcement Effect

    International Nuclear Information System (INIS)

    Mekdash, H.; Hage Chehade, F.; Sadek, M.; Abdel Massih, D.; El Hachem, E.; Youssef, E.

    2011-01-01

    The aim of this paper is to analyze the slopes stability under seismic loading using a global numerical dynamic approach. This approach allows important parameters that are generally ignored by traditional engineering methods such as the soil deformability, the dynamic amplification, non linear soil behavior, the spatial and temporal variability of the seismic loading and the reinforcement element. The present study is conducted by using measures recorded during real earthquakes (Turkey, 1999) and (Lebanon, 2008). Elastoplastic soil behavior analysis leads to monitor the evolution of the slope state after an earthquake and to clarify the most probable failure circles. A parametric study according to the reinforcement length, position, inclination and the number of elements has been studied in order to define the optimal reinforcement scheme for slopes under seismic loading. This study contains also the stability analysis of an existing foundation near the slope's crest. It will focus on the reinforcement in order to give recommendation for the most appropriate scheme that minimize the settlement of the foundation due to earthquake effect. (author)

  13. Electrical resisitivity of mechancially stablized earth wall backfill

    Science.gov (United States)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized

  14. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    Science.gov (United States)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  15. Use of flexible facing for soil nail walls.

    Science.gov (United States)

    2011-11-01

    Soil nail walls are a widely used technology for retaining vertical and nearly vertical cuts in soil. A : significant portion of the cost of soil nail wall construction is related to the construction of a reinforced : concrete face. The potential for...

  16. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    International Nuclear Information System (INIS)

    Aklik, P.

    2012-01-01

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author) [de

  17. Improving geotechnical properties of clayey soil using polymer material

    Directory of Open Access Journals (Sweden)

    Karim Hussein

    2018-01-01

    Full Text Available This study illustrates the application of polymer material for clayey soil stabilization. The article will focus on studying the strength behavior of the clayey soils reinforced with homogenously polymer fiber. In the current research, “polypropylene” was selected as polymer material to reinforce the natural clay soil. This polymer fiber was added to the clayey soil with four different percentages of (0, 1.5, 3, and 5% by weight of soil. Various tests with different polymer contents were performed to study the effect of using such a polymer as a stabilizing agent on geotechnical properties of clay. As the fiber content increases, the optimum moisture content (OMC is increased while the specific gravity decreases. For Atterberg’s limits, the results indicated increasing liquid limit and plasticity index while decreasing plastic limit with increase in polymer content. The outcomes of the tests also reflected a considerable improvement in the unconfined compressive strength with noticeable improvement in the shear strength parameter (undrained shear strength, cu of the treated soils. The undrained shear strength obtained from treated soil with 5% polymer addition is more than three times that of the untreated soil. With an increase in polymer content, the consolidation parameters (Compression index Cc and recompression index Cr decreases. Finally, the benefit of the reinforcement is increased with increasing polymer fiber content.

  18. Investigation of deformation of elements of three-dimensional reinforced concrete structures located in the soil, interacting with each other through rubber gaskets

    Science.gov (United States)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2017-06-01

    In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.

  19. Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM

    Science.gov (United States)

    Cai, Fei; Ugai, Keizo

    2003-06-01

    This paper reports the limitation of the conventional Bishop's simplified method to calculate the safety factor of slopes stabilized with anchors, and proposes a new approach to considering the reinforcing effect of anchors on the safety factor. The reinforcing effect of anchors can be explained using an additional shearing resistance on the slip surface. A three-dimensional shear strength reduction finite element method (SSRFEM), where soil-anchor interactions were simulated by three-dimensional zero-thickness elasto-plastic interface elements, was used to calculate the safety factor of slopes stabilized with anchors to verify the reinforcing mechanism of anchors. The results of SSRFEM were compared with those of the conventional and proposed approaches for Bishop's simplified method for various orientations, positions, and spacings of anchors, and shear strengths of soil-grouted body interfaces. For the safety factor, the proposed approach compared better with SSRFEM than the conventional approach. The additional shearing resistance can explain the influence of the orientation, position, and spacing of anchors, and the shear strength of soil-grouted body interfaces on the safety factor of slopes stabilized with anchors.

  20. Mitigation measures for soil embankments against fault rupture using geosynthetics

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2010-01-01

    , the number of the reinforcements, the height of the soil layer and the applied fault displacement was examined. The results which were obtained from this investigation indicate that the proposed configurations of reinforced soil can be efficiently used in order to reduce the permanent deformations developed......In the current study the ability of geosynthetics to reduce the permanent deformations developed due to a fault rupture propagation in a soil embankment is investigated. For this purpose parametric numerical analyses were performed and the effect of the material properties of the geosynthetics...

  1. Improvement of efficiency of application of condensed soil cushions to loose soils ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ УПЛОТНЕННЫХ ГРУНТОВЫХ ПОДУШЕК НА СЛАБЫХ ГРУНТАХ

    Directory of Open Access Journals (Sweden)

    Usmanov Rustam Alimdzhanovich

    2013-05-01

    Full Text Available In the civil engineering practice, construction operations in loose and high compressibility soils require the application of compressed sand cushions. Recently, there has been a substantial decline in the use of compacted ground beddings in the practice of industrial and civil engineering. This can be partly explained by the weaknesses of the existing calculation methods that may often generate higher values of the size of compacted cushions (width and thickness and, consequently, cause a substantial increase in their cost. It is noteworthy that the existing methods of calculation do not take account of strength and deformation characteristics of the cushion material in the course of identification of the cushion size and their operating bearing capacity.However, the studies implemented by different authors suggest the possibility of reducing the size of compacted soil cushions applied to loose and high compressibility soils. Therefore, the most effective are the pads reinforced by high-strength reinforcing elements (as geo-textile, geo-grids, etc. The author elaborates on the possible methods of expanding the scope of compacted ground bedding in the practice of industrial and civil construction. The analysis of the findings of experimental and theoretical studies of compacted and reinforced soil bedding in loose soils is performedРассмотрены возможности расширения области применения уплотненных грунтовых подушек в практике промышленного и гражданского строительства. Приведен анализ результатов экспериментально-теоретических исследований высокоуплотненных, а также армированных высокопрочными геосинтетическими материалами грунтовых подушек в условиях

  2. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    Directory of Open Access Journals (Sweden)

    Grujić Bojana

    2017-12-01

    Full Text Available The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  3. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    Science.gov (United States)

    Grujić, Bojana; Jokanović, Igor; Grujić, Žarko; Zeljić, Dragana

    2017-12-01

    The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  4. Behavior of reinforced concrete beams reinforced with GFRP bars

    Directory of Open Access Journals (Sweden)

    D. H. Tavares

    Full Text Available The use of fiber reinforced polymer (FRP bars is one of the alternatives presented in recent studies to prevent the drawbacks related to the steel reinforcement in specific reinforced concrete members. In this work, six reinforced concrete beams were submitted to four point bending tests. One beam was reinforced with CA-50 steel bars and five with glass fiber reinforced polymer (GFRP bars. The tests were carried out in the Department of Structural Engineering in São Carlos Engineering School, São Paulo University. The objective of the test program was to compare strength, reinforcement deformation, displacement, and some anchorage aspects between the GFRP-reinforced concrete beams and the steel-reinforced concrete beam. The results show that, even though four GFRP-reinforced concrete beams were designed with the same internal tension force as that with steel reinforcement, their capacity was lower than that of the steel-reinforced beam. The results also show that similar flexural capacity can be achieved for the steel- and for the GFRP-reinforced concrete beams by controlling the stiffness (reinforcement modulus of elasticity multiplied by the bar cross-sectional area - EA and the tension force of the GFRP bars.

  5. Analysis of Dynamic Coupling Characteristics of the Slope Reinforced by Sheet Pile Wall

    Directory of Open Access Journals (Sweden)

    H. L. Qu

    2017-01-01

    Full Text Available Large deformation of slope caused by earthquake can lead to the loss of stability of slope and its retaining structures. At present, there have been some research achievements about the slope reinforcement of stabilizing piles. However, due to the complexity of the structural system, the coupling relationship between soil and pile is still not well understood. Hence it is of great necessity to study its dynamic characteristics further. In view of this, a numerical model was established by FLAC3D in this paper, and the deformation and stress nephogram of sheet pile wall in peak ground motion acceleration (PGA at 0.1 g, 0.2 g, and 0.4 g were obtained. Through the analysis, some conclusions were obtained. Firstly, based on the nephogram of motion characteristics and the positions of the slip surface and the retaining wall, the reinforced slope can be divided into 6 sections approximatively, namely, the sliding body parts of A, B, C, D, and E and the bedrock part F. Secondly, the deformation and stress distributions of slope reinforced by sheet pile wall were carefully studied. Based on the results of deformation calculation from time history analysis, the interaction force between structure and soil can be estimated by the difference of peak horizontal displacements, and the structure-soil coupling law under earthquake can be studied by this approach.

  6. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    OpenAIRE

    Shinji Ochi

    2011-01-01

    The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss a...

  7. Full-Scale Accelerated Testing of Multi-axial Geogrid Stabilized Flexible Pavements

    Science.gov (United States)

    2017-06-01

    a plastic limit (PL) of 27%, and a plasticity index (PI) of 37%, as determined by ASTM D4318. According to the Unified Soil Classification System...USCS), the soil was classified as a high- plasticity clay (CH) and an A-7-6 according to the American Association of State and Highway...Testing and Materials (ASTM). 2010. Standard test methods for liquid limit, plastic limit, and plasticity index of soils . Designation: D 4318-10e1

  8. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    Directory of Open Access Journals (Sweden)

    Shinji Ochi

    2011-02-01

    Full Text Available The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.

  9. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers.

    Science.gov (United States)

    Ochi, Shinji

    2011-02-25

    The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.

  10. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1995-01-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940's through the early 1960's. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at critical locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted

  11. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  12. Creep behavior of soil nail walls in high plasticity index (PI) soils : project summary.

    Science.gov (United States)

    2015-08-31

    Soil nailing is a convenient and economic : stabilization method for the reinforcement of existing : excavations by installing threaded steel bars into cuts : or slopes as wall construction progresses from top : down (Figure 1). An aspect of particul...

  13. Flexural reinforced concrete member with FRP reinforcement

    OpenAIRE

    Putzolu, Mariana

    2017-01-01

    One of the most problematic point in construction is the durability of the concrete especially related to corrosion of the steel reinforcement. Due to this problem the construction sector, introduced the use of Fiber Reinforced Polymer, the main fibers used in construction are Glass, Carbon and Aramid. In this study, the author aim to analyse the flexural behaviour of concrete beams reinforced with FRP. This aim is achieved by the analysis of specimens reinforced with GFRP bars, with theoreti...

  14. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  15. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  16. Reinforced microextraction of polycyclic aromatic hydrocarbons from polluted soil samples using an in-needle coated fiber with polypyrrole/graphene oxide nanocomposite.

    Science.gov (United States)

    Behfar, Mina; Ghiasvand, Ali Reza; Yazdankhah, Fatemeh

    2017-07-01

    The surface of a stainless-steel wire was platinized using electrophoretic deposition method to create a high-surface-area with porous and cohesive substrate. The platinized fiber was coated by the polypyrrole/graphene oxide nanocomposite by electropolymerization and accommodated into a stainless-steel needle to fabricate an in-needle coated fiber. The developed setup was coupled to gas chromatography with flame ionization detection and applied to extract and determine polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene) in complicated solid matrices, along with reinforcement of the extraction by cooling the sorbent, using liquid carbon dioxide. To obtain the best extraction efficiency, the important experimental variables including extraction temperature and time, temperature of cooled sorbent, sampling flow rate, and desorption condition were studied. Under the optimal condition, limits of detection for five studied analytes were in the range of 0.2-0.8 pg/g. Linear dynamic ranges for the calibration curves were found to be in the range of 0.001-1000 ng/g. Relative standard deviations obtained for six replicated analyses of 1 ng/g of analytes were 4.9-13.5%. The reinforced in-needle coated fiber method was successfully applied for the analysis of polycyclic aromatic hydrocarbons in contaminated soil samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reinforcement of Soft Foundation with Geotextile and Observation for Sea Dike Project of Zhapu Port

    Institute of Scientific and Technical Information of China (English)

    章香雅; 郑祖祯

    2003-01-01

    The design method of reinforcement of soft foundation with geotextile for the sea dike of the Zhapu Port is discussed in this paper. The prototype behaviours such as pore water pressure, settlement and so on were observed. The degree of consolidation is found out from observed pore water pressure and observed settlement respectively, then the strength increment of soil is calculated and compared with that obtained from vane shear tests. For the use of observed pore water pressure, the consolidation coefficient of soil is deduced approximately with a method named experimental exponential interpolation. The degree of consolidation of the ground is deduced theoretically from the dissipation of pore water pressure. Besides, the logarithmic curve and hyperbola are used to fit the observed time-settlement curve, and the degree of consolidation of soil is obtained according to the definition of the consolidation degree. After preliminary verification with observed prototype data, the method to reinforce the low dike with geotextile is considered to be simple and rational, and it can also reduce the construction cost.

  18. Root reinforcement and its contribution to slope stability in the Western Ghats of Kerala, India

    Science.gov (United States)

    Lukose Kuriakose, Sekhar; van Beek, L. P. H.

    2010-05-01

    The Western Ghats of Kerala, India is prone to shallow landslides and consequent debris flows. An earlier study (Kuriakose et al., DOI:10.1002/esp.1794) with limited data had already demonstrated the possible effects of vegetation on slope hydrology and stability. Spatially distributed root cohesion is one of the most important data necessary to assess the effects of anthropogenic disturbances on the probability of shallow landslide initiation, results of which are reported in sessions GM6.1 and HS13.13/NH3.16. Thus it is necessary to the know the upper limits of reinforcement that the roots are able to provide and its spatial and vertical distribution in such an anthropogenically intervened terrain. Root tensile strength and root pull out tests were conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) Gambooge (Garcinia gummi-gutta), 8) Coffee (Coffea Arabica) and 9) Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested had a length of 15 cm. Root pull out tests were conducted in the field. Root tensile strength vs root diameter, root pull out strength vs diameter, root diameter vs root depth and root count vs root depth relationships were derived. Root cohesion was computed for nine most dominant plants in the region using the perpendicular root model of Wu et al. (1979) modified by Schimidt et al. (2001). A soil depth map was derived using regression kriging as suggested by Kuriakose et al., (doi:10.1016/j.catena.2009.05.005) and used along with the land use map of 2008 to distribute the

  19. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    OpenAIRE

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimenta...

  20. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Reinforced sulphur concrete

    NARCIS (Netherlands)

    2014-01-01

    Reinforced sulphur concrete wherein one or more metal reinforcing members are in contact with sulphur concrete is disclosed. The reinforced sulphur concrete comprises an adhesion promoter that enhances the interaction between the sulphur and the one or more metal reinforcing members.

  2. Effect of waste synthetic bag pieces on the CBR value of expansive Soil

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Agarwal

    2015-03-01

    Full Text Available Expansive soils such as black cotton soil which are widely distributed in India have a tendency for volume changes due to change in moisture content. Also exhibits very low bearing capacity and high compressibility. Stabilization of such soil by admixture is used commonly now days. But no mix is suitable to improve all the types of soil. But it is obvious that depending on type of soil & type of admixture the optimum mix can be designed.  In this paper a mix has been designed to improve the bearing capacity of soil by using fly ash and lime mixture, reinforced with waste synthetic bag pieces. Various tests are carried out to determine the CBR value and other soil properties with and without using any admixture and reinforcement. The maximum value of CBR was found to be23.82% for 2.5 mm penetration and 22.21% for 5 mm penetration, when waste synthetic bag pieces of size 2 cm * 2 cm were used at a proportion of 0.1%.

  3. Strengthening and Stabilization of the Weak Water Saturated Soils Using Stone Columns

    Directory of Open Access Journals (Sweden)

    Sinyakov Leonid

    2016-01-01

    Full Text Available The article considers innovative modern materials and structures for strengthening of weak soils. In this paper describes a method of strengthening of weak saturated soils using stone columns. The method of calculating the physical-mechanical characteristics of reinforced soil mass is presented. Two approaches to determining the stress-strain state and timeframe of consolidation of strengthened soil foundation using the finite element technique in two-dimensional formulation are proposed. The first one approach it is a modeling of reinforced soil mass, where each pile is represented as a separate 2D stripe. The second approach is to the simulation of the strengthened mass the equivalent composite block with improved physical-mechanical characteristics. The use of the equivalent composite block can significantly reduce the time spent on the preparation of a design scheme. The results of calculations were compared. They show the allowable divergence of results of calculation by two methods were presented, and the efficiency of the strengthening of weak water saturated soils by stone column is proved.

  4. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    Science.gov (United States)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  5. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    Science.gov (United States)

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  6. Autoshaping Chicks with Heat Reinforcement: The Role of Stimulus-Reinforcer and Response-Reinforcer Relations

    Science.gov (United States)

    Wasserman, Edward A.; And Others

    1975-01-01

    The present series of experiments attempted to analyze more fully the contributions of stimulus-reinforcer and response-reinforcer relations to autoshaping within a single conditioning situation. (Author)

  7. Biodegradation behavior of styrene butadiene rubber (SBR) reinforced with modified coconut shell powder

    Science.gov (United States)

    Sreejith, M. P.; Balan, Aparna K.; Shaniba, V.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    Biodegradation behavior of styrene butadiene rubber composites reinforced with natural filler, coconut shell powder (CSP), with different filler loadings were carried out under soil burial conditions for three to six months. The extent of biodegradation of the composites was evaluated through weight loss, tensile strength and hardness measurements. It was observed that the permanence of the composites was remarkably dependent on filler modification, size of the filler particle and filler content. Composites containing silane modified filler were found to be more resistant to attack by the microbes present in the soil. Mechanical properties such as tensile strength, Young's modulus and hardness were decreased after soil burial testing due to the microbial attack onto the samples.

  8. Dynamic analysis of a reactor building on alluvial soil

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Paul, D.K.; Warudkar, A.S.

    1977-01-01

    The reactor building consists of reinforced concrete internal framed structure enclosed in double containment shells of prestressed and reinforced concrete all resting on a common massive raft. The external cylindrical shell is capped by a spherical dome while the internal shell carries a cellular gird slab. The building is partially buried under ground. The soil consists of alluvial going to 1000 m depth. The site lies in a moderate seismic zone. The paper presents the dynamic analysis of the building including soil-structure interaction. The mathematical model consists of four parallel, suitably interconnected struxtures, namely inner containment, outer containment, internal frame and the calandria vault. Each one of the parallel structures consists of lumped-mass beam elements. The soil below the raft and on the sides of outer containment shell is represented by elastic springs in both horizontal and vertical directions. The various assumpions required to be made in developing the mathematical model are briefly discussed in the paper. (Auth.)

  9. Genomic Signatures of Reinforcement

    Directory of Open Access Journals (Sweden)

    Austin G. Garner

    2018-04-01

    Full Text Available Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved.

  10. Genomic Signatures of Reinforcement

    Science.gov (United States)

    Goulet, Benjamin E.

    2018-01-01

    Reinforcement is the process by which selection against hybridization increases reproductive isolation between taxa. Much research has focused on demonstrating the existence of reinforcement, yet relatively little is known about the genetic basis of reinforcement or the evolutionary conditions under which reinforcement can occur. Inspired by reinforcement’s characteristic phenotypic pattern of reproductive trait divergence in sympatry but not in allopatry, we discuss whether reinforcement also leaves a distinct genomic pattern. First, we describe three patterns of genetic variation we expect as a consequence of reinforcement. Then, we discuss a set of alternative processes and complicating factors that may make the identification of reinforcement at the genomic level difficult. Finally, we consider how genomic analyses can be leveraged to inform if and to what extent reinforcement evolved in the face of gene flow between sympatric lineages and between allopatric and sympatric populations of the same lineage. Our major goals are to understand if genome scans for particular patterns of genetic variation could identify reinforcement, isolate the genetic basis of reinforcement, or infer the conditions under which reinforcement evolved. PMID:29614048

  11. Habituation of reinforcer effectiveness

    OpenAIRE

    David R Lloyd; David R Lloyd; Douglas J Medina; Larry W Hawk; Whitney D Fosco; Jerry B Richards

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE) is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We ar...

  12. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    Science.gov (United States)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  13. Laterally Loaded Single Pile Response Considering the Influence of Suction and Non-Linear Behaviour of Reinforced Concrete Sections

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2017-12-01

    Full Text Available A hybrid BEM-p-y curves approach was developed for the single pile analysis with free/fixed head restraint conditions. The method considers the soil non-linear behaviour by means of p-y curves in series to a multi-layered elastic half-space. The non-linearity of reinforced concrete pile sections, also considering the influence of tension-stiffening, has been considered. The model reproduces the influence of suction by increasing the stress state and hence the stiffness of shallow soil-layers. Suction is modeled using the Modified-Kovacs model. The hybrid BEM-py curves method was validated by comparing results from data of 22 load tests on single piles. In addition, a detailed comparison is presented between measured and computed data on a large-diameter reinforced concrete bored single pile.

  14. Adapting without reinforcement.

    Science.gov (United States)

    Kheifets, Aaron; Gallistel, C Randy

    2012-11-01

    Our data rule out a broad class of behavioral models in which behavioral change is guided by differential reinforcement. To demonstrate this, we showed that the number of reinforcers missed before the subject shifted its behavior was not sufficient to drive behavioral change. What's more, many subjects shifted their behavior to a more optimal strategy even when they had not yet missed a single reinforcer. Naturally, differential reinforcement cannot be said to drive a process that shifts to accommodate to new conditions so adeptly that it doesn't miss a single reinforcer: it would have no input on which to base this shift.

  15. Investigations of timing during the schedule and reinforcement intervals with wheel-running reinforcement.

    Science.gov (United States)

    Belke, Terry W; Christie-Fougere, Melissa M

    2006-11-01

    Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.

  16. Habituation of reinforcer effectiveness

    Directory of Open Access Journals (Sweden)

    David R Lloyd

    2014-01-01

    Full Text Available In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE that links behavioral and neural based explanations of reinforcement. We argue that habituation of reinforcer effectiveness (HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009;Rankin et al., 2009. We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect ‘accelerated-HRE’. Consideration of HRE is important for the development of effective reinforcement based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  17. Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete

    International Nuclear Information System (INIS)

    Blunt, J.; Jen, G.; Ostertag, C.P.

    2015-01-01

    Highlights: • Reinforced concrete beams were subjected to cyclic flexural loading. • Hybrid fiber reinforced composites were effective in reducing corrosion rates. • Crack resistance due to fibers increased corrosion resistance of steel rebar. • Galvanic corrosion measurements underestimated corrosion rates. • Polarization resistance measurements predicted mass loss more accurately. - Abstract: Service loads well below the yield strength of steel reinforcing bars lead to cracking of reinforced concrete. This paper investigates whether the crack resistance of Hybrid Fiber Reinforced Concrete (HyFRC) reduces the corrosion rate of steel reinforcing bars in concrete after cyclic flexural loading. The reinforcing bars were extracted to examine their surface for corrosion and compare microcell and macrocell corrosion mass loss estimates against direct gravimetric measurements. A delay in corrosion initiation and lower active corrosion rates were observed in the HyFRC beam specimens when compared to reinforced specimens containing plain concrete matrices cycled at the same flexural load

  18. Linking plants, fungi and soil mechanics

    Science.gov (United States)

    Yildiz, Anil; Graf, Frank

    2017-04-01

    Plants provide important functions in respect soil strength and are increasingly considered for slope stabilisation within eco-engineering methods, particularly to prevent superficial soil failure. The protective functions include hydrological regulation through interception and evapo-transpiration as well as mechanical stabilisation through root reinforcement and, to a certain extent, chemical stabilisation through sticky metabolites. The ever-growing application of plants in slope stabilisation demanded more precise information of the vegetation effects and, concomitant, led the models for quantifying the reinforcement shoot up like mushrooms. However, so far, the framework and interrelationships for both the role of plants and the quantification concepts have not been thoroughly analysed and comprehensively considered, respectively, often resulting in unsatisfactory results. Although it seems obvious and is implicitly presupposed that the plant specific functions related to slope stability require growth and development, this is anything but given, particularly under the often hostile conditions dominating on bare and steep slopes. There, the superficial soil layer is often characterised by a lack of fines and missing medium-sized and fine pores due to an unstable soil matrix, predominantly formed by coarse grains. Low water retention capacity and substantial leaching of nutrients are the adverse consequences. Given this general set-up, sustainable plant growth and, particularly, root development is virtually unachievable. At exactly this point mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, come into play. Though, they are probably well-known within the eco-engineering community, mycorrhizal fungi lead a humble existence. This is in spite of the fact that they supply their hosts with water and nutrients, improving the plant's ability to master otherwise unbridgeable environmental conditions. However, in order to support

  19. Theoretical and numerical analysis of reinforced concrete beams with confinement reinforcement

    Directory of Open Access Journals (Sweden)

    R. G. Delalibera

    Full Text Available This paper discusses the use of confinement in over-reinforced concrete beams. This reinforcement consists of square stirrups, placed in the compression zone of the beam cross-section, in order to improve its ductility. A parametric numerical study is initially performed, using a finite element computational program that considers the material nonlinearities and the confinement effect. To investigate the influence of the transverse reinforcing ratio on the beam ductility, an experimental program was also conducted. Four over-reinforced beams were tested; three beam specimens with additional transverse reinforcement to confine the beams, and one without it. All specimens were fabricated with a concrete designed for a compressive strength of 25 MPa. The experimental results show that the post-peak ductility factor is proportional to the confining reinforcement ratio, however the same is not observed for the pre-peak ductility factor, which varied randomly with changes in the confining reinforcement ratio. It was also observed from the experiments that the confinement effect tends to be smaller close to the beam neutral axis.

  20. Parameter Sensitivity Analysis on Deformation of Composite Soil-Nailed Wall Using Artificial Neural Networks and Orthogonal Experiment

    Directory of Open Access Journals (Sweden)

    Jianbin Hao

    2014-01-01

    Full Text Available Based on the back-propagation algorithm of artificial neural networks (ANNs, this paper establishes an intelligent model, which is used to predict the maximum lateral displacement of composite soil-nailed wall. Some parameters, such as soil cohesive strength, soil friction angle, prestress of anchor cable, soil-nail spacing, soil-nail diameter, soil-nail length, and other factors, are considered in the model. Combined with the in situ test data of composite soil-nail wall reinforcement engineering, the network is trained and the errors are analyzed. Thus it is demonstrated that the method is applicable and feasible in predicting lateral displacement of excavation retained by composite soil-nailed wall. Extended calculations are conducted by using the well-trained intelligent forecast model. Through application of orthogonal table test theory, 25 sets of tests are designed to analyze the sensitivity of factors affecting the maximum lateral displacement of composite soil-nailing wall. The results show that the sensitivity of factors affecting the maximum lateral displacement of composite soil nailing wall, in a descending order, are prestress of anchor cable, soil friction angle, soil cohesion strength, soil-nail spacing, soil-nail length, and soil-nail diameter. The results can provide important reference for the same reinforcement engineering.

  1. Habituation of reinforcer effectiveness.

    Science.gov (United States)

    Lloyd, David R; Medina, Douglas J; Hawk, Larry W; Fosco, Whitney D; Richards, Jerry B

    2014-01-09

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect "accelerated-HRE." Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior.

  2. Axial Compression Tests on Corroded Reinforced Concrete Columns Consolidated with Fibre Reinforced Polymers

    Directory of Open Access Journals (Sweden)

    Bin Ding

    2017-06-01

    Full Text Available Reinforced concrete structure featured by strong bearing capacity, high rigidity, good integrity, good fire resistance, and extensive applicability occupies a mainstream position in contemporary architecture. However, with the development of social economy, people need higher requirements on architectural structure; durability, especially, has been extensively researched. Because of the higher requirement on building material, ordinary reinforced concrete structure has not been able to satisfy the demand. As a result, some new materials and structures have emerged, for example, fibre reinforced polymers. Compared to steel reinforcement, fibre reinforced polymers have many advantages, such as high tensile strength, good durability, good shock absorption, low weight, and simple construction. The application of fibre reinforced polymers in architectural structure can effectively improve the durability of the concrete structure and lower the maintenance, reinforcement, and construction costs in severe environments. Based on the concepts of steel tube concrete, fibre reinforced composite material confined concrete, and fibre reinforced composite material tubed concrete, this study proposes a novel composite structure, i.e., fibre reinforced composite material and steel tube concrete composite structure. The structure was developed by pasting fibre around steel tube concrete and restraining core concrete using fibre reinforced composite material and steel tubes. The bearing capacity and ultimate deformation capacity of the structure was tested using column axial compression test.

  3. Biodegradation of flax fiber reinforced poly lactic acid

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available Woven and nonwoven flax fiber reinforced poly lactic acid (PLA biocomposites were prepared with amphiphilic additives as accelerator for biodegradation. The prepared composites were buried in farmland soil for biodegradability studies. Loss in weight of the biodegraded composite samples was determined at different time intervals. The surface morphology of the biodegraded composites was studied with scanning electron microscope (SEM. Results indicated that in presence of mandelic acid, the composites showed accelerated biodegradation with 20–25% loss in weight after 50–60 days. On the other hand, in presence of dicumyl peroxide (as additive, biodegradation of the composites was relatively slow as confirmed by only 5–10% loss in weight even after 80–90 days. This was further confirmed by surface morphology of the biodegraded composites. We have attempted to show that depending on the end uses, we can add different amphiphilic additives for delayed or accelerated biodegradability. This work gives us the idea of biodegradation of materials from natural fiber reinforced PLA composites when discarded carelessly in the environment instead of proper waste disposal site.

  4. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  5. Analysis the evaluation of reinforces concrete structure Block 62 by Non Destructive Method, Destructive Method and Esteem Computer Program

    International Nuclear Information System (INIS)

    Mohd Jamil Hashim; Norhazwani Mohd Azahari

    2012-01-01

    The evaluation of old and unrecorded building is a difficult task to work on. This is because no detail record of building component such as reinforce concrete strength test record, type of reinforcement used, construction methods and soil investigation (SI) which make it impossible to analyse. Through NDT building reinforced concrete component is easily evaluated and mean while DT method give assurance through actual sample testing. From these early result detail drawing plans can be rebuild and building forensic work can be done. These data will be fed into the computer program to produce a structure evaluation result whether it is safe or not in accordance to design standard BS8110. (author)

  6. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis

    CERN Document Server

    Ling, Hoe I; Leshchinsky, Dov; Koseki, Junichi; A Collection of Papers of the Geotechnical Symposium in Rome

    2007-01-01

    This book is an outgrowth of the proceedings for the Geotechnical Symposium in Roma, which was held on March 16 and 17, 2006 in Rome, Italy. The Symposium was organized to celebrate the 60th birthday of Prof. Tatsuoka as well as honoring his research achievement. The publications are focused on the recent developments in the stress-strain behavior of geomaterials, with an emphasis on laboratory measurements, soil constitutive modeling and behavior of soil structures (such as reinforced soils, piles and slopes). The latest advancement in the field, such as the rate effect and dynamic behavior of both clay and sand, behavior of modified soils and soil mixtures, and soil liquefaction are addressed. A special keynote paper by Prof. Tatsuoka is included with three other keynote papers (presented by Prof. Lo Presti, Prof. Di Benedetto, and Prof. Shibuya).

  7. Geotechnical properties of reinforced clayey soil using nylons carry’s bags by products

    Directory of Open Access Journals (Sweden)

    Salim Nahla

    2018-01-01

    Full Text Available All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.

  8. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  9. Reinforcement Schedules in a Verbal Reinforcement Combination and Renection-Impulsivity

    OpenAIRE

    TAMASE, Koji; UEDA, Masako

    1986-01-01

    It was predicted that higher proportion of the negative reinforcement "Wrong" than that of the positive reinforcement "Right" in a reinforcement combination will produce higher proportion of the correct response and this trend will be greater in reflective children than in impulsive children. From 140 kindergarten children 30 reflective and 30 impulsive children were selected and they were given a two-hole marble-dropping task. The best performance in the ratio of correct responses was obtain...

  10. Soil-structure interaction effects on the reliability evaluation of reactor containments

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1986-01-01

    The probability-based method for the seismic reliability assessment of nuclear structures, which has been developed at Brookhaven National Laboratory (BNL), is extended to include the effects of soil-structure interaction. A reinforced concrete containment building is analyzed in order to examine soil-structure interaction effects on: (1) structural fragilities; (2) floor response spectra statistics; and (3) correlation coefficients for total acceleration responses at specified structural locations

  11. Management of Reinforcement Corrosion

    DEFF Research Database (Denmark)

    Küter, André; Geiker, Mette Rica; Møller, Per

    Reinforcement corrosion is the most important cause for deterioration of reinforced concrete structures, both with regard to costs and consequences. Thermodynamically consistent descriptions of corrosion mechanisms are expected to allow the development of innovative concepts for the management...... of reinforcement corrosion....

  12. Preparation and Biodegradation of Nanocellulose Reinforced Polyvinyl Alcohol Blend Films in Bioenvironmental Media

    OpenAIRE

    Nusaiba Islam; Sharmin Jahan Proma; Ashiqur Rahman; Ashok Kumar Chakraborty

    2017-01-01

    Solution casting method was used to prepare nanocellulose reinforced polyvinyl alcohol (PVOH) from Oil palm empty fruit bunches. Different environmental test were used to investigate the biodegradability of the composite in soil and compost as well as in water and acidic solution. The morphology of the composite was investigated by scanning electron microscopy. The composite film with nanocellulose and without nanocellulose were compared, nanocellulose modified PVOH film showed more highly de...

  13. Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland

    OpenAIRE

    Schimel, JP; Wetterstedt, JAM; Holden, PA; Trumbore, SE

    2011-01-01

    We measured the 14 C and 13 C signatures of CO 2 respired from surface and deep soils released through multiple dry/rewetting cycles in laboratory incubations. The C respired from surface soils included components fixed before and after the 1960s. However, that respired from deep soils was derived from organic matter with a mean turnover time estimated in the range of 650-850 years. This reinforces previous research suggesting that a substantial amount of deep soil C is chemically labile b...

  14. How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks

    Science.gov (United States)

    Millogo, Younoussa; Aubert, Jean-Emmanuel; Hamard, Erwan; Morel, Jean-Claude

    2015-01-01

    Physicochemical characteristics of Hibiscus cannabinus (kenaf) fibers from Burkina Faso were studied using X-ray diffraction (XRD), infrared spectroscopy, thermal gravimetric analysis (TGA), chemical analysis and video microscopy. Kenaf fibers (3 cm long) were used to reinforce earth blocks, and the mechanical properties of reinforced blocks, with fiber contents ranging from 0.2 to 0.8 wt%, were investigated. The fibers were mainly composed of cellulose type I (70.4 wt%), hemicelluloses (18.9 wt%) and lignin (3 wt%) and were characterized by high tensile strength (1 ± 0.25 GPa) and Young’s modulus (136 ± 25 GPa), linked to their high cellulose content. The incorporation of short fibers of kenaf reduced the propagation of cracks in the blocks, through the good adherence of fibers to the clay matrix, and therefore improved their mechanical properties. Fiber incorporation was particularly beneficial for the bending strength of earth blocks because it reinforces these blocks after the failure of soil matrix observed for unreinforced blocks. Blocks reinforced with such fibers had a ductile tensile behavior that made them better building materials for masonry structures than unreinforced blocks.

  15. Effects of partial reinforcement and time between reinforced trials on terminal response rate in pigeon autoshaping.

    Science.gov (United States)

    Gottlieb, Daniel A

    2006-03-01

    Partial reinforcement often leads to asymptotically higher rates of responding and number of trials with a response than does continuous reinforcement in pigeon autoshaping. However, comparisons typically involve a partial reinforcement schedule that differs from the continuous reinforcement schedule in both time between reinforced trials and probability of reinforcement. Two experiments examined the relative contributions of these two manipulations to asymptotic response rate. Results suggest that the greater responding previously seen with partial reinforcement is primarily due to differential probability of reinforcement and not differential time between reinforced trials. Further, once established, differences in responding are resistant to a change in stimulus and contingency. Secondary response theories of autoshaped responding (theories that posit additional response-augmenting or response-attenuating mechanisms specific to partial or continuous reinforcement) cannot fully accommodate the current body of data. It is suggested that researchers who study pigeon autoshaping train animals on a common task prior to training them under different conditions.

  16. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    This paper describes the work conducted by the Canadian Nuclear Safety Commission (CNSC) related to the influence of transverse reinforcement on perforation capacity of reinforced concrete (RC) slabs under “hard” missile impact (impact with negligible missile deformations). The paper presents the results of three tests on reinforced concrete slabs conducted at VTT Technical Research Centre (Finland), along with the numerical simulations as well as a discussion of the current code provisions related to impactive loading. Transverse reinforcement is widely used for improving the shear and punching strength of concrete structures. However, the effect of this reinforcement on the perforation resistance under localized missile impact is still unclear. The goal of this paper is to fill the gap in the current literature related to this topic. Based on similar tests designed by the authors with missile velocity below perforation velocity, it was expected that transverse reinforcement would improve the perforation resistance. Three slabs were tested under almost identical conditions with the only difference being the transverse reinforcement. One slab was designed without transverse reinforcement, the second one with the transverse reinforcement in form of conventional stirrups with hooks and the third one with the transverse reinforcement in form of T-headed bars. Although the transverse reinforcement reduced the overall damage of the slabs (the rear face scabbing), the conclusion from the tests is that the transverse reinforcement does not have important influence on perforation capacity of concrete slabs under rigid missile impact. The slab with T-headed bars presented a slight improvement compared to the baseline specimen without transverse reinforcement. The slab with conventional stirrups presented slightly lower perforation capacity (higher residual missile velocity) than the slab without transverse reinforcement. In conclusion, the performed tests show slightly

  17. [Effects of heavy machinery operation on the structural characters of cultivated soils in black soil region of Northeast China].

    Science.gov (United States)

    Wang, En-Heng; Chai, Ya-Fan; Chen, Xiang-Wei

    2008-02-01

    With the cultivated soils in black soil region of Northeast China as test objects, this paper measured their structural characters such as soil strength, bulk density, and non-capillary porosity/capillary porosity (NCP/CP) ratio before and after heavy and medium-sized machinery operation, aimed to study the effects of machinery operation on the physical properties of test soils. The results showed that after machinery operation, there existed three distinct layers from top to bottom in the soil profiles, i.e., plowed layer, cumulative compacted layer, and non-affected layer, according to the changes of soil strength. Under medium-sized machinery operation, these three layers were shallower, and there was a new plow pan at the depth between 17.5 and 30 cm. Heavy machinery operation had significant positive effects on the improvement of topsoil structure (P heavy machinery, the bulk density of topsoil decreased by 7.2% and 3.5%, respectively, and NCP/CP increased by 556.6% after subsoiling, which would benefit water infiltration, reinforce water storage, and weaken the threat of soil erosion. The main action of heavy machinery operation was soil loosening, while that of medium-sized machinery operation was soil compacting.

  18. Numerical Simulation for the Soil-Pile-Structure Interaction under Seismic Loading

    Directory of Open Access Journals (Sweden)

    Lifeng Luan

    2015-01-01

    Full Text Available Piles are widely used as reinforcement structures in geotechnical engineering designs. If the settlement of the soil is greater than the pile, the pile is pulled down by the soil, and negative friction force is produced. Previous studies have mainly focused on the interaction of pile-soil under static condition. However, many pile projects are located in earthquake-prone areas, which indicate the importance of determining the response of the pile-soil structure under seismic load. In this paper, the nonlinear, explicit, and finite difference program FLAC3D, which considers the mechanical behavior of soil-pile interaction, is used to establish an underconsolidated soil-pile mode. The response processes of the pile side friction force, the pile axial force, and the soil response under seismic load are also analyzed.

  19. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    Science.gov (United States)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  20. Nonlinear dynamic analysis of framed structures including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mahmood, M.N.; Ahmed, S.Y.

    2008-01-01

    The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)

  1. Experimental Study on Unconfined Compressive Strength of Organic Polymer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-01-01

    Full Text Available The natural sand is loose in structure with a small cohesive force. Organic polymer can be used to reinforce this sand. To assess the effectiveness of organic polymer as soil stabilizer (PSS, a series of unconfined compressive strength tests have been performed on reinforced sand. The focus of this study was to determine a curing method and a mix design to stabilize sand. The curing time, PSS concentration, and sand density were considered as variables in this study. The reinforcement mechanism was analyzed with images of scanning electron microscope (SEM. The results indicated that the strength of stabilized sand increased with the increase in the curing time, concentration, and sand density. The strength plateaus are at about curing time of 48 h. The UCS of samples with density of 1.4 g/cm3 at 10%, 20%, 30%, 40%, and 50% PSS concentration are 62.34 kPa, 120.83 kPa, 169.22 kPa, 201.94 kPa, and 245.28 kPa, respectively. The UCS of samples with PSS concentration of 30% at 1.4 g/cm3, 1.5 g/cm3, and 1.6 g/cm3 density are 169.22 kPa, 238.6 kPa 5, and 281.69 kPa, respectively. The chemical reaction between PSS and sand particle is at its microlevel, which improves the sand strength by bonding its particles together and filling the pore spaces. In comparison with the traditional reinforcement methods, PSS has the advantages of time saving, lower cost, and better environment protection. The research results can be useful for practical engineering applications, especially for reinforcement of foundation, embankment, and landfill.

  2. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    Directory of Open Access Journals (Sweden)

    R. Ananda Kumar

    2015-01-01

    Full Text Available Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral load reviews are also presented. This review paper is prepared to find out the performance of basalt fibre reinforced polymer BFRP composite retrofitted reinforced cement concrete single end bearing piles.

  3. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    Science.gov (United States)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  4. Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica

    Directory of Open Access Journals (Sweden)

    André Leandro da Silva

    2016-02-01

    Full Text Available Abstract A growing global trend for maximum use of natural resources through new processes and products has enhanced studies and exploration of renewable natural materials. In this study, cardanol, a component of the cashew nut shell liquid (CNSL, was used as a building block for the development of a thermosetting matrix, which was reinforced by raw and modified sponge gourd fibers (Luffa cylindrica. DSC and TG results showed that among biocomposites, the one reinforced by sponge gourd fibers treated with NaOH 10 wt% (BF10 had the highest thermal stability, besides the best performance in the Tensile testing, showing good incorporation, dispersion, and adhesion to polymer matrix, observed by SEM. After 80 days of simulated soil experiments, it has been discovered that the presence of treated fiber allowed better biodegradability behavior to biocomposites. The biobased thermoset plastic and biocomposites showed a good potential to several applications, such as manufacturing of articles for furniture and automotive industries, especially BF10.

  5. Methods for producing reinforced carbon nanotubes

    Science.gov (United States)

    Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  6. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections.

    Science.gov (United States)

    Stacul, Stefano; Squeglia, Nunziante

    2018-02-15

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  7. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2018-02-01

    Full Text Available A Boundary Element Method (BEM approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  8. Stress-strain response of plastic waste mixed soil.

    Science.gov (United States)

    Babu, G L Sivakumar; Chouksey, Sandeep Kumar

    2011-03-01

    Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Carbon Fiber Reinforced Polymer Grids for Shear and End Zone Reinforcement in Bridge Beams

    Science.gov (United States)

    2018-01-01

    Corrosion of reinforcing steel reduces life spans of bridges throughout the United States; therefore, using non-corroding carbon fiber reinforced polymer (CFRP) reinforcement is seen as a way to increase service life. The use of CFRP as the flexural ...

  10. Combining noncontingent reinforcement and differential reinforcement schedules as treatment for aberrant behavior.

    OpenAIRE

    Marcus, B A; Vollmer, T R

    1996-01-01

    Research has shown that noncontingent reinforcement (NCR) can be an effective behavior-reduction procedure when based on a functional analysis. The effects of NCR may be a result of elimination of the contingency between aberrant behavior and reinforcing consequences (extinction) or frequent and free access to reinforcers that may reduce the participant's motivation to engage in aberrant behaviors or mands. If motivation is momentarily reduced, behavior such as mands may not be sensitive to p...

  11. Degradation of Waterfront Reinforced Concrete Structures

    African Journals Online (AJOL)

    Key words: Degradation, reinforced concrete, Dar es Salaam port. Abstract—One of the ... especially corrosion of the reinforcement. ... Corrosion of steel reinforcement contributes .... cracks along the line of reinforcement bars and most of the ...

  12. Protection of Buried Pipe under Repeated Loading by Geocell Reinforcement

    Science.gov (United States)

    Khalaj, Omid; Joz Darabi, N.; Moghaddas Tafreshi, S. N.; Mašek, Bohuslav

    2017-12-01

    With increase in cities’ population and development of urbane life, passing buried pipelines near ground’s surface is inevitable in urban areas, roads, subways and highways. This paper presents the results of three-dimensional full scale model tests on high-density polyethylene (HDPE) pipe with diameter of 250 mm in geocell reinforced soil, subjected to repeated loading to simulate the vehicle loads. The effect of geocell’s pocket size (55*55 mm and 110*110 mm) and embedment depth of buried pipe (1.5 and 2 times pipe diameter) in improving the behaviour of buried pipes was investigated. The geocell’s height of 100 mm was used in all tests. The repeated load of 800 kPa was applied on circular loading plate with diameter of 250 mm. The results show that the pipe displacement, soil surface settlement and transferred pressure on the pipe’s crown has been influenced significantly upon the use of geocells. For example, the vertical diametric strain (VDS) and soil surface settlement (SSS), in a way that using a geocell with pocket size of 110*110 mm reduces by 27% and 43%, respectively, compared with the unreinforced one. Meanwhile, by increasing buried depth of pipe from 1.5D to 2D, the use of geocell of 110*110 mm delivers about 50% reduction in SSS and VDS, compared with the unreinforced soil.

  13. Confinement of Reinforced-Concrete Columns with Non-Code Compliant Confining Reinforcement plus Supplemental Pen-Binder

    Directory of Open Access Journals (Sweden)

    Anang Kristianto

    2012-11-01

    Full Text Available One of the important requirements for earthquake resistant building related to confinement is the use of seismic hooks in the hoop or confining reinforcement of reinforced-concrete column elements. However, installation of a confining reinforcement with a 135-degree hook is not easy. Therefore, in practice, many construction workers apply a confining reinforcement with a 90-degreehook (non-code compliant. Based on research and records of recent earthquakes in Indonesia, the use of a non-code compliant confining reinforcement for concrete columns produces structures with poor seismic performance. This paper presents a study that introduces an additional element that is expected to improve the effectiveness of concrete columns confined with a non-code compliant confining reinforcement. The additional element, named a pen-binder, is used to keep the non-code compliant confining reinforcement in place. The effectiveness of this element under pure axial concentric loading was investigatedcomprehensively.The specimens tested in this study were 18 concrete columns,with a cross-section of 170 mm x 170 mm and a height of 480 mm. The main test variables were the material type of the pen-binder, the angle of the hook, and the confining reinforcement configuration.The test results indicate that adding pen-binders can effectively improve the strength and ductility of the column specimens confined with a non-code compliant confining reinforcement

  14. Influence of reinforcement's corrosion into hyperstatic reinforced concrete beams: a probabilistic failure scenarios analysis

    Directory of Open Access Journals (Sweden)

    G. P. PELLIZZER

    Full Text Available AbstractThis work aims to study the mechanical effects of reinforcement's corrosion in hyperstatic reinforced concrete beams. The focus is the probabilistic determination of individual failure scenarios change as well as global failure change along time. The limit state functions assumed describe analytically bending and shear resistance of reinforced concrete rectangular cross sections as a function of steel and concrete resistance and section dimensions. It was incorporated empirical laws that penalize the steel yield stress and the reinforcement's area along time in addition to Fick's law, which models the chloride penetration into concrete pores. The reliability theory was applied based on Monte Carlo simulation method, which assesses each individual probability of failure. The probability of global structural failure was determined based in the concept of failure tree. The results of a hyperstatic reinforced concrete beam showed that reinforcements corrosion make change into the failure scenarios modes. Therefore, unimportant failure modes in design phase become important after corrosion start.

  15. Ultrasonic, Molecular and Mechanical Testing Diagnostics in Natural Fibre Reinforced, Polymer-Stabilized Earth Blocks

    Directory of Open Access Journals (Sweden)

    C. Galán-Marín

    2013-01-01

    Full Text Available The aim of this research study was to evaluate the influence of utilising natural polymers as a form of soil stabilization, in order to assess their potential for use in building applications. Mixtures were stabilized with a natural polymer (alginate and reinforced with wool fibres in order to improve the overall compressive and flexural strength of a series of composite materials. Ultrasonic pulse velocity (UPV and mechanical strength testing techniques were then used to measure the porous properties of the manufactured natural polymer-soil composites, which were formed into earth blocks. Mechanical tests were carried out for three different clays which showed that the polymer increased the mechanical resistance of the samples to varying degrees, depending on the plasticity index of each soil. Variation in soil grain size distributions and Atterberg limits were assessed and chemical compositions were studied and compared. X-ray diffraction (XRD, X-ray fluorescence spectroscopy (XRF, and energy dispersive X-ray fluorescence (EDXRF techniques were all used in conjunction with qualitative identification of the aggregates. Ultrasonic wave propagation was found to be a useful technique for assisting in the determination of soil shrinkage characteristics and fibre-soil adherence capacity and UPV results correlated well with the measured mechanical properties.

  16. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.

    Directory of Open Access Journals (Sweden)

    F. Giadrossich

    2009-09-01

    Full Text Available The present paper deals with the root system's characteristics of Spanish Broom (Spartium junceum L., a species whose capacity for adaptating and resisting to drought is worth investigating. In particular, the aims of the study were 1 to investigate the plant's bio-mechanical aspects and 2 to verify whether root reinforcement and the field rooting ability of stem cuttings enhance its potential for use in slope stabilization and soil bio-engineering techniques, particularly in the Mediterranean areas. Single root specimens were sampled and tested for tensile strength, obtaining classic tensile strength-diameter relationships. Analysis were performed on the root systems in order to assess root density distribution. The Root Area Ratio (RAR was analyzed by taking both direct and indirect measurements, the latter relying on image processing. The data obtained were used to analyze the stability of an artificial slope (landfill and the root reinforcement. The measurement and calculation of mean root number, mean root diameter, RAR, root cohesion and Factor of safety are presented in order to distinguish the effect of plant origin and propagation. Furthermore, tests were performed to assess the possibility of agamic propagation (survival rate of root-ball endowed plants, rooting from stem cuttings. These tests confirmed that agamic propagation is difficult, even though roots were produced from some buried stems, and for practical purposes it has been ruled out. Our results show that Spanish Broom has good bio-mechanical characteristics with regard to slope stabilization, even in critical pedoclimatic conditions and where inclinations are quite steep, and it is effective on soil depths up to about 50 cm, in agreement with other studies on Mediterranean species. It is effective in slope stabilization, but less suitable for soil bio-engineering or for triggering natural plant succession.

  17. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  18. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    Science.gov (United States)

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  19. Geotechnical properties of reinforced clayey soil using nylons carry’s bags by products

    OpenAIRE

    Salim Nahla; Al-Soudany Kawther; Jajjawi Nora

    2018-01-01

    All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economica...

  20. Caregiver preference for reinforcement-based interventions for problem behavior maintained by positive reinforcement.

    Science.gov (United States)

    Gabor, Anne M; Fritz, Jennifer N; Roath, Christopher T; Rothe, Brittany R; Gourley, Denise A

    2016-06-01

    Social validity of behavioral interventions typically is assessed with indirect methods or by determining preferences of the individuals who receive treatment, and direct observation of caregiver preference rarely is described. In this study, preferences of 5 caregivers were determined via a concurrent-chains procedure. Caregivers were neurotypical, and children had been diagnosed with developmental disabilities and engaged in problem behavior maintained by positive reinforcement. Caregivers were taught to implement noncontingent reinforcement (NCR), differential reinforcement of alternative behavior (DRA), and differential reinforcement of other behavior (DRO), and the caregivers selected interventions to implement during sessions with the child after they had demonstrated proficiency in implementing the interventions. Three caregivers preferred DRA, 1 caregiver preferred differential reinforcement procedures, and 1 caregiver did not exhibit a preference. Direct observation of implementation in concurrent-chains procedures may allow the identification of interventions that are implemented with sufficient integrity and preferred by caregivers. © 2016 Society for the Experimental Analysis of Behavior.

  1. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    Science.gov (United States)

    Doughty, Adam H; Richards, Jerry B

    2002-07-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process.

  2. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  3. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  4. Self-reinforcing impacts of plant invasions change over time.

    Science.gov (United States)

    Yelenik, Stephanie G; D'Antonio, Carla M

    2013-11-28

    Returning native species to habitats degraded by biological invasions is a critical conservation goal. A leading hypothesis poses that exotic plant dominance is self-reinforced by impacts on ecosystem processes, leading to persistent stable states. Invaders have been documented to modify fire regimes, alter soil nutrients or shift microbial communities in ways that feed back to benefit themselves over competitors. However, few studies have followed invasions through time to ask whether ecosystem impacts and feedbacks persist. Here we return to woodland sites in Hawai'i Volcanoes National Park that were invaded by exotic C4 grasses in the 1960s, the ecosystem impacts of which were studied intensively in the 1990s. We show that positive feedbacks between exotic grasses and soil nitrogen cycling have broken down, but rather than facilitating native vegetation, the weakening feedbacks facilitate new exotic species. Data from the 1990s showed that exotic grasses increased nitrogen-mineralization rates by two- to fourfold, but were nitrogen-limited. Thus, the impacts of the invader created a positive feedback early in the invasion. We now show that annual net soil nitrogen mineralization has since dropped to pre-invasion levels. In addition, a seedling outplanting experiment that varied soil nitrogen and grass competition demonstrates that the changing impacts of grasses do not favour native species re-establishment. Instead, decreased nitrogen availability most benefits another aggressive invader, the nitrogen-fixing tree Morella faya. Long-term studies of invasions may reveal that ecosystem impacts and feedbacks shift over time, but that this may not benefit native species recovery.

  5. Trainability of eliminative behaviour in dairy heifers using a secondary reinforcer

    DEFF Research Database (Denmark)

    Whistance, Lindsay Kay; Sinclair, Liam A.; Arney, David Richard

    2009-01-01

    Soiled bedding influences cleanliness and disease levels in dairy cows and there is no evidence of an inherent latrine behaviour in cattle. If cows were trained to use a concrete area of the housing system as a latrine, a cleaner bed could be maintained. Thirteen group-housed, 14-16-month......-old Holstein-Friesian heifers, were clicker trained with heifer-rearing concentrate pellets as a reward. Training was carried out in four phases. (Phase 1) Association of feed reward with clicker, criterion: 34/40 correct responses. (Phase 2) Simple task (nose-butting a disc) to reinforce phase 1 association...

  6. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    International Nuclear Information System (INIS)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-01-01

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied

  7. Study of the internal confinement of concrete reinforced (in civil engineering) with woven reinforcement

    Science.gov (United States)

    Dalal, M.; Goumairi, O.; El Malik, A.

    2017-10-01

    Concrete is generally the most used material in the field of construction. Despite its extensive use in structures, it represents some drawbacks related to its properties including its low tensile strength and low ductility. To solve this problem, the use of steel reinforcement in concrete structures is possible. Another possibility is the introduction of different types of continuous fibre / staple in the concrete, such as steel fibres or synthetic fibres, to obtain ″Concretes bundles″. Many types of fibre concrete, which have been developed and for many of them, the gain provided by the fibre was rather low and no significant improvement in tensile strength was really reaching. By cons, the ductility was higher than that of ordinary concrete. The objective of this study is to examine concrete reinforcement by inserting reinforcements woven polyester. These are either woven bidirectional (2D) or three-dimensional woven (3D). So we will report the properties of each type of reinforcement and the influence of the method of weaving on the strength reinforcements and on the strength of concrete in which they are incorporated. Such influence should contribute to improving the sustainability and enhancement of reinforcement

  8. Probabilistic analysis of deformed mode of engineering constructions’ soil-cement grounds

    Directory of Open Access Journals (Sweden)

    Vynnykov Yuriy

    2017-01-01

    Full Text Available The results of the analysis of probabilistic methods that are used to assess the deformed state of the foundations of engineering structures are presented. A finite element analysis of the stress-strain state of the “man made soil ground – foundation – structure” system was carried out. A method for probabilistic calculation using the finite element method is proposed. On a real example, the level of reliability of a design decision based on a deterministic calculation is estimated by probabilistic calculation. On the basis of the statistic data obtained by imitational modeling, the probability of failure and no-failure operation of the structure regarding the absolute value of settlement and regarding the value of tilt against the reinforcement ratio of soft soil grounds settlements was determined. The probability of failure regarding the value of tilt against the reinforcement ratio was taken (15 to 25%, which is 0.03 – 0.05.

  9. The Reinforcing Event (RE) Menu

    Science.gov (United States)

    Addison, Roger M.; Homme, Lloyd E.

    1973-01-01

    A motivational system, the Contingency Management System, uses contracts in which some amount of defined task behavior is demanded for some interval of reinforcing event. The Reinforcing Event Menu, a list of high probability reinforcing behaviors, is used in the system as a prompting device for the learner and as an aid for the administrator in…

  10. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  11. Corrosion of reinforcement bars in steel ibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe

    and the influence of steel fibres on initiation and propagation of cracks in concrete. Moreover, the impact of fibres on corrosion-induced cover cracking was covered. The impact of steel fibres on propagation of reinforcement corrosion was investigated through studies of their impact on the electrical resistivity...... of concrete, which is known to affect the corrosion process of embedded reinforcement. The work concerning the impact of steel fibres on initiation and propagation of cracks was linked to corrosion initiation and propagation of embedded reinforcement bars via additional studies. Cracks in the concrete cover...... are known to alter the ingress rate of depassivating substances and thereby influence the corrosion process. The Ph.D. study covered numerical as well as experimental studies. Electrochemically passive steel fibres are electrically isolating thus not changing the electrical resistivity of concrete, whereas...

  12. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  13. Seismic response of the 'Cut-and Cover' type reactor containment considering nonlinear soil behavior

    International Nuclear Information System (INIS)

    El-Tahan, H.; Reddy, D.V.

    1979-01-01

    This paper describes some parametric studies of dynamic soil-structure interaction for the 'cut-and-cover' reactor concept. The dynamic loading considered is a horizontal earthquake motion. The high frequency ranges, which must be considered in the study of soil-structure interaction for nuclear power plants, and the nonlinearity of soil behavior during strong earthquakes are adequately taken into account. Soil nonlinearity is accounted for in an approximate manner using a combination of the 'equivalent linear method' and the method of complex response with complex moduli. The structure considered is a reinforced concrete containment for a 1100 - MWe power plant, buried in a dense sand medium. (orig.)

  14. Seismic Material Properties of Reinforced Concrete and Steel Casing Composite Concrete in Elevated Pile-Group Foundation

    Directory of Open Access Journals (Sweden)

    Zhou Mi

    2015-09-01

    Full Text Available The paper focuses on the material mechanics properties of reinforced concrete and steel casing composite concrete under pseudo-static loads and their application in structure. Although elevated pile-group foundation is widely used in bridge, port and ocean engineering, the seismic performance of this type of foundation still need further study. Four scale-specimens of the elevated pile-group foundation were manufactured by these two kinds of concrete and seismic performance characteristic of each specimen were compared. Meanwhile, the special soil box was designed and built to consider soil-pile-superstructure interaction. According to the test result, the peak strength of strengthening specimens is about 1.77 times of the others and the ultimate displacement is 1.66 times of the RC specimens. Additionally, the dissipated hysteric energy capability of strengthening specimens is more than 2.15 times of the others as the equivalent viscous damping ratio is reduced by 50%. The pinching effect of first two specimens is more obvious than latter two specimens and the hysteretic loops of reinforced specimens are more plumpness. The pseudo-static tests also provided the data to quantitatively assessment the positive effect of steel casing composite concrete in aseismatic design of bridge.

  15. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Science.gov (United States)

    Bouaricha, Leyla; Henni, Ahmed Djafar; Lancelot, Laurent

    2017-12-01

    A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand) with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°), and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%).

  16. A Laboratory Investigation on Shear Strength Behavior of Sandy Soil: Effect of Glass Fiber and Clinker Residue Content

    Directory of Open Access Journals (Sweden)

    Bouaricha Leyla

    2017-12-01

    Full Text Available A study was undertaken to investigate the shear strength parameters of treated sands reinforced with randomly distributed glass fibers by carrying out direct shear test after seven days curing periods. Firstly, we studied the fiber content and fiber length effect on the peak shear strength on samples. The second part gives a parametric analysis on the effect of glass fiber and clinker residue content on the shear strength parameters for two types of uniform Algerian sands having different particle sizes (Chlef sand and Rass sand with an average relative density Dr = 50%. Finally, the test results show that the combination of glass fiber and clinker residue content can effectively improve the shear strength parameters of soil in comparison with unreinforced soil. For instance, there is a significant gain for the cohesion and friction angle of reinforced sand of Chlef. Compared to unreinforced sand, the cohesion for sand reinforced with different ratios of clinker residue increased by 4.36 to 43.08 kPa for Chlef sand and by 3.1 to 28.64 kPa for Rass sand. The feature friction angles increased from 38.73° to 43.01° (+4.28°, and after the treatment, clinker residue content of soil evaluated to 5% (WRC = 5%.

  17. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  18. The Method of Calculating the Settlement of Weak Ground Strengthened with the Reinforced Sandy Piles

    Directory of Open Access Journals (Sweden)

    Maltseva Tatyana

    2016-01-01

    Full Text Available The paper presents an engineering method for calculating the weak clay base, strengthened with sandy piles reinforced along the contour. The method is based on the principle of layer-by-layer summation, which is used when designing the bases and foundations. The novelty of the suggested method lies in the taking account of the soil reaction along the pile lateral surface and the impact of external vertical loads on the vertical displacement of the base.

  19. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  20. The Reinforcement Learning Competition 2014

    OpenAIRE

    Dimitrakakis, Christos; Li, Guangliang; Tziortziotis, Nikoalos

    2014-01-01

    Reinforcement learning is one of the most general problems in artificial intelligence. It has been used to model problems in automated experiment design, control, economics, game playing, scheduling and telecommunications. The aim of the reinforcement learning competition is to encourage the development of very general learning agents for arbitrary reinforcement learning problems and to provide a test-bed for the unbiased evaluation of algorithms.

  1. Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints

    NARCIS (Netherlands)

    Rasmijn, L.M.; Schrier, van der G.; Bintanja, R.; Barkmeijer, J.; Sterl, A.; Hazeleger, W.

    2018-01-01

    The 2010 heatwave in eastern Europe and Russia ranks among the hottest events ever recorded in the region1,2. The excessive summer warmth was related to an anomalously widespread and intense quasi-stationary anticyclonic circulation anomaly over western Russia, reinforced by depletion of spring soil

  2. Origins of food reinforcement in infants12345

    Science.gov (United States)

    Kong, Kai Ling; Feda, Denise M; Eiden, Rina D; Epstein, Leonard H

    2015-01-01

    Background: Rapid weight gain in infancy is associated with a higher risk of obesity in children and adults. A high relative reinforcing value of food is cross-sectionally related to obesity; lean children find nonfood alternatives more reinforcing than do overweight/obese children. However, to our knowledge, there is no research on how and when food reinforcement develops. Objective: This study was designed to assess whether the reinforcing value of food and nonfood alternatives could be tested in 9- to 18-mo-old infants and whether the reinforcing value of food and nonfood alternatives is differentially related to infant weight status. Design: Reinforcing values were assessed by using absolute progressive ratio schedules of reinforcement, with presentation of food and nonfood alternatives counterbalanced in 2 separate studies. Two nonfood reinforcers [Baby Einstein–Baby MacDonald shows (study 1, n = 27) or bubbles (study 2, n = 30)] were tested against the baby’s favorite food. Food reinforcing ratio (FRR) was quantified by measuring the reinforcing value of food (Food Pmax) in proportion to the total reinforcing value of food and a nonfood alternative (DVD Pmax or BUB Pmax). Results: Greater weight-for-length z score was associated with a greater FRR of a favorite food in study 1 (FRR-DVD) (r = 0.60, P positively associated with FRR-DVD (r = 0.57, P = 0.009) and FRR-BUB (r = 0.37, P = 0.047). Conclusions: Our newly developed paradigm, which tested 2 different nonfood alternatives, demonstrated that lean infants find nonfood alternatives more reinforcing than do overweight/obese infants. This observation suggests that strengthening the alternative reinforcers may have a protective effect against childhood obesity. This research was registered at clinicaltrials.gov as NCT02229552. PMID:25733636

  3. Reinforcement of the radiative and thermic stresses of the grapevine. Repercussions on yeast surface microflora

    International Nuclear Information System (INIS)

    Salmon, J.M.; Mailhac, N.; Sauvage, F.X.; Biron, M.J.; Robin, J.P.

    1997-01-01

    All along the ripening period, the radiative and thermic stresses of the grapevine may be reinforced by the use of a reflective soil cover (aluminized film). Such a treatment leads to repercussions on the berries, on the must composition and finally on the wine quality. During such a preliminary experiment, we demonstrated that the temperature increase and/or the reinforcement of the reflected ultraviolet radiations (measured at 254 nm) at the level of grape berries severely impaired the development of yeast cells at their surfaces. By means of an artificial inoculation of grapes at the beginning of the ripening period with a mixture of four different yeast genera (Saccharomyces cerevisiae, Hanseniaspora uvarum, Pichia fermentans and Schizosaccharomyces pombe), we demonstrated that the repartition of yeast genera amongst this population was affected by the treatment of stocks with the aluminized film: during the experiment presented in this paper, the Saccharomyces genus was favoured. One may consider by extension similar effects resulting from the reflective properties of some natural soils. Such effects may considerably influence the distribution of wild yeast flora during the spontaneous fermentation of musts. If such an hypothesis is confirmed at a local or regional level, it will represent a first significant piece of the definition of one of the aspects of the ''terroir'' effect on the characteristics of wines [fr

  4. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  5. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    Science.gov (United States)

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  6. Soil functional zone management: a vehicle for enhancing production and soil ecosystem services in row-crop agroecosystems

    Directory of Open Access Journals (Sweden)

    Alwyn eWilliams

    2016-02-01

    Full Text Available There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimetre-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services; and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage and moisture regulation (regulating and supporting services. These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown. We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple

  7. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.

    Science.gov (United States)

    Kaith, B S; Jindal, R; Jana, A K; Maiti, M

    2010-09-01

    In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Structural evaluations of existing underground reinforced concrete tanks for radioactive waste storage

    International Nuclear Information System (INIS)

    Vollert, F.R.

    1979-10-01

    Structural integrity evaluations are being conducted for underground, steel-lined reinforced concrete tanks for storing radioactive wastes. The tanks sustain large soil overburden loads and elevated temperatures from the waste for long time periods. The evaluations include laboratory experiments to determine the long-term effects of elevated temperatures on the elastic properties of concrete, and to estimate the effect of the waste chemicals on concrete durability. Available concrete samples from the tanks were also tested to determine the quality of the concrete in the tanks and for comparison with the laboratory data. Finite element, nonlinear, time-dependent analyses are performed to show the thermal creep, cracking, and stresses occurring in the concrete tanks due to the service conditions. Ultimate load analyses are made to assess the safety margin in the tanks. Finally, seismic analyses of a tank in the stressed condition due to the soil and thermal loadings were conducted to determine that the structure has sufficient reserve capacity to withstand 0.25 g earthquake accelerations

  9. Seismic Retrofitting: Reinforced Concrete (RC shear wall versus Reinforcement of RC element by Carbon Fiber Reinforced Polymer (CFRP using PUSHOVER analysis

    Directory of Open Access Journals (Sweden)

    Yahya RIYAD

    2016-12-01

    Full Text Available Seismic retrofitting of constructions vulnerable to earthquakes is a current problem of great political and social relevance. During the last sixty years, moderate to severe earthquakes have occurred in Morocco (specifically in Agadir 1960 and Hoceima 2004. Such events have clearly shown the vulnerability of the building stock in particular and of the built environment in general. Hence, it is very much essential to retrofit the vulnerable building to cope up for the next damaging earthquake. In this paper, the focus will be on a comparative study between two techniques of seismic retrofitting, the first one is a reinforcement using carbon fiber reinforced polymer (CFRP applied to RC elements by bonding , and the second one is a reinforcement with a shear wall. For this study, we will use a non-linear static analysis -also known as Pushover analysis - on a reinforced concrete structure consisting of beams and columns, and composed from eight storey with a gross area of 240 m², designed conforming to the Moroccan Seismic code[1].

  10. Effect of Lime on characteristics of consolidation, strength, swelling and plasticity of fine grained soil

    Science.gov (United States)

    Estabragh, A. R.; Bordbar, A. T.; Parsaee, B.; Eskandari, Gh.

    2009-04-01

    Using Lime as an additive material to clayey soil is one of the best effective technique in building the soil structures to get some purposes such as soil stabilization, soil reinforcement and decreasing soil swelling. In this research the effect of Lime on geotechnical characteristics of a clayey soil was investigated. Soil specimen types used in this study were consisted of clayey soil as the control treatment and clay mixed with different weight fractions of lime, 4, 6, 8 & 10 percent. Some experiments such as CBR, atterburg limits, compaction, consolidation and swelling was conducted on specimens. Results revealed that adding lime to soil would change its physical and mechanical properties. Adding lime increase the compression strength and consolidation coefficient and decrease swelling potential and maximum dry density. According to the results, Atterburg experiments show that presence of lime in soil increase the liquid limit of low plasticity soil and decrease the liquid limit of high plasticity soil, but totally it decreases the plasticity index of soils. Key words: soil stabilization, lime, compression strength, swelling, atterburg limits, compaction

  11. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  12. The possibility of using high strength reinforced concrete

    International Nuclear Information System (INIS)

    Miura, Nobuaki

    1991-01-01

    There is recently much research about and developments in reinforced concrete using high strength concrete and reinforcement. As a result, some high-rise buildings and nuclear buildings have been constructed with such concrete. Reinforced concrete will be stronger in the future, but there is a limit to its strength defined by the character of the materials and also by the character of the reinforced concrete members made of the concrete and reinforcement. This report describes the merits and demerits of using high strength reinforced concrete. (author)

  13. The repair of ground cover of Bolivia-Brazil gas pipeline near Paraguay River crossing, in a swamp soft soil region, using geo synthetics reinforced backfilling; Reparo da cobertura do gasoduto Bolivia-Brasil junto ao Rio Paraguai, em trecho com solo mole, utilizando aterro reforcado com geosinteticos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cesar Augusto; Jorge, Kemal Vieira; Bechuate Filho, Pedro [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Campo Grande, MS (Brazil). Gerencia Regional Centro Oeste (CRGO); Teixeira, Sidnei H.C. [Geohydrotech Engenharia S.C. Ltda., Braganca Paulista, SP (Brazil)

    2005-07-01

    TBG - Transportadora Gasoduto Bolivia-Brasil S.A, executes routine maintenance works at the Gas Pipeline Right of Way, seeking its integrity. In the wetlands of Pantanal, near the Paraguay river crossing, the organic-alluvial soil was submitted to the process of subsidence. This process, associated with the river water flow erosion, shrank the soil volume and diminished or extinguished the pipeline land cover. The pipeline was exposed to the environment, and submitted to tension stresses and the risk of low cycle fatigue during the floods. The cathodic protection system also had to be evaluated, specially in the drought. To mitigate the problem, the embankment technique was adopted using sandy soil, reinforced with polyester geo-webs and with woven polipropene geo-textiles. The solution also used geo-webs with soil-cement as protection elements against the degradation of the geo-textiles blankets. Some monitoring works are associated with those interventions: monitoring of cathodic protection; topographical verification of horizontal and vertical displacements of the pipeline; levels of land covering, and rainfalls and flood measurement. The base of the embankment was built with hydraulic transported soil, and at the end consistently supported the gas pipeline. (author)

  14. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  15. A geosynthetic reinforcement solution to prevent the formation of localized sinkholes

    Energy Technology Data Exchange (ETDEWEB)

    Villard, P.; Gourc, J. P.; Giraud, H. [Universite Joseph Fourier, LIRIGM, Grenoble (France)

    2000-10-01

    A research program to guard against the risk of accidents linked to the presence of small diameter cavities under both road and railway lines is described. The program involves study of the complex behaviour of the overlying fill in the event of sinkhole formation, given that the deformation of the geosynthetic membrane results from the progressive loading of the overlying soil layer and not from the collapse of the underlying soil. Full-scale tests were carried out on reinforced, instrumented road and railway structures subjected to localized collapse. Experimental work was accompanied by a numerical study of the mechanics involved in sinkhole formation. Experimental results were analyzed and compared with the results of the three-dimensional finite element modeling. Similarity of the results suggests that formation of a stable arch for two metre cavities and an unstable arch for four metre cavities, filled with 1.5 m thick fill consisting of large grain size granular material, is satisfactory for small diameter cavities at moderate depths. However, this solution is not suitable for large large diameter cavities at moderate depths. 18 refs., 22 figs.

  16. Using Combustion Synthesis to Reinforce Berms and Other Regolith Structures

    Science.gov (United States)

    Rodriquez, Gary

    2013-01-01

    , developing a very irregular surface which, like sandpaper, can provide an anchor for loose soil. CS fabrics employ a coarse fiberglass weave that persists as reinforcement for the fired material. The fiberglass softens at a temperature that exceeds the combustion temperature by factors of two to three, and withstands the installation process. This type of structure should be more resistant to rocket blast effects from Lunar landers.

  17. On the weld strength of in situ tape placed reinforcements on weave reinforced structures

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Warnet, Laurent; Rietman, Bert; Akkerman, Remko

    2012-01-01

    Unidirectionally reinforced thermoplastic tapes were welded onto woven fabric reinforced laminates using a laser assisted tape placement process. A mandrel peel setup was used to quantify the interfacial fracture toughness between the tape and the laminate as a measure for weld strength. The tape

  18. Reinforcement of the radiative and thermic stresses of the grape vine. Repercussions on yeast surface microflora

    Directory of Open Access Journals (Sweden)

    Jean-Michel Salmon

    1997-12-01

    Full Text Available All along the ripening period, the radiative and thermic stresses of the grapevine may be reinforced by the use of a reflective soil cover (aluminized film. Such a treatment leads to repercussions on the berries, on the must composition and finally on the wine quality. During such a preliminary experiment, we demonstrated that the temperature increase and/or the reinforcement of the reflected ultraviolet radiations (measured at 254 nm at the level of grape berries severely impaired the development of yeast cells at their surfaces. By means of an artificial inoculation of grapes at the beginning of the ripening period with a mixture of four different yeast genera (Saccharomyces cerevisiae, Hanseniaspora uvarum, Pichiafermentans and Schizosaccharomyces pombe, we demonstrated that the repartition of yeast genera amongst this population was affected by the treatment of stocks with the aluminized film: during the experiment presented in this paper, the Saccharomyces genus was favoured. One may consider by extension similar effects resulting from the reflective properties of some natural soils. Such effects may considerably influence the distribution of wild yeast flora during the spontaneous fermentation of musts. If such an hypothesis is confirmed at a local or regional level, it will represent a first significant piece of the definition of one of the aspects of the" terroir" effect on the characteristics of wines.

  19. Reinforcement Learning State-of-the-Art

    CERN Document Server

    Wiering, Marco

    2012-01-01

    Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together the...

  20. Facilitating tolerance of delayed reinforcement during functional communication training.

    Science.gov (United States)

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading.

  1. Reinforced Conductive Polyaniline-Paper Composites

    Directory of Open Access Journals (Sweden)

    Jinhua Yan

    2015-05-01

    Full Text Available A method for direct aniline interfacial polymerization on polyamideamine-epichlorohydrin (PAE-reinforced paper substrate is introduced in this paper. Cellulose-based papers with and without reinforcement were considered. The polyaniline (PANI-paper composites had surface resistivity lower than 100 Ω/sq after more than 3 polymerizations. Their mechanical strength and thermal stability were analyzed by tensile tests and thermogravimetric analysis (TGA. Fourier transform infrared (FTIR results revealed that there was strong interaction between NH groups in aniline monomers and OH groups in fibers, which did not disappear until after 3 polymerizations. Scanning electron microscopy (SEM and field emission (FE SEM images showed morphological differences between composites using reinforced and untreated base papers. Conductive composites made with PAE-reinforced base paper had both good thermal stability and good mechanical strength, with high conductivity and a smaller PANI amount.

  2. Superelastic SMA–FRP composite reinforcement for concrete structures

    International Nuclear Information System (INIS)

    Wierschem, Nicholas; Andrawes, Bassem

    2010-01-01

    For many years there has been interest in using fiber-reinforced polymers (FRPs) as reinforcement in concrete structures. Unfortunately, due to their linear elastic behavior, FRP reinforcing bars are never considered for structural damping or dynamic applications. With the aim of improving the ductility and damping capability of concrete structures reinforced with FRP reinforcement, this paper studies the application of SMA–FRP, a relatively novel type of composite reinforced with superelastic shape memory alloy (SMA) wires. The cyclic tensile behavior of SMA–FRP composites are studied experimentally and analytically. Tests of SMA–FRP composite coupons are conducted to determine their constitutive behavior. The experimental results are used to develop and calibrate a uniaxial SMA–FRP analytical model. Parametric and case studies are performed to determine the efficacy of the SMA–FRP reinforcement in concrete structures and the key factors governing its behavior. The results show significant potential for SMA–FRP reinforcement to improve the ductility and damping of concrete structures while still maintaining its elastic characteristic, typical of FRP reinforcement

  3. Positive behavioral contrast across food and alcohol reinforcers.

    OpenAIRE

    McSweeney, F K; Melville, C L; Higa, J

    1988-01-01

    The present study examined behavioral contrast during concurrent and multiple schedules that provided food and alcohol reinforcers. Concurrent-schedule contrast occurred in the responding reinforced by food when alcohol reinforcers were removed. It also occurred in the responding reinforced by alcohol when food was removed. Multiple-schedule contrast appeared for food when alcohol reinforcers were removed, but not for alcohol when food was removed. These results show that behavioral contrast ...

  4. Learning to trade via direct reinforcement.

    Science.gov (United States)

    Moody, J; Saffell, M

    2001-01-01

    We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting models is eliminated, and better trading performance is obtained. The direct reinforcement approach differs from dynamic programming and reinforcement algorithms such as TD-learning and Q-learning, which attempt to estimate a value function for the control problem. We find that the RRL direct reinforcement framework enables a simpler problem representation, avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency. We demonstrate how direct reinforcement can be used to optimize risk-adjusted investment returns (including the differential Sharpe ratio), while accounting for the effects of transaction costs. In extensive simulation work using real financial data, we find that our approach based on RRL produces better trading strategies than systems utilizing Q-learning (a value function method). Real-world applications include an intra-daily currency trader and a monthly asset allocation system for the S&P 500 Stock Index and T-Bills.

  5. Enhancement of shear strength and ductility for reinforced concrete wide beams due to web reinforcement

    Directory of Open Access Journals (Sweden)

    M. Said

    2013-12-01

    Full Text Available The shear behavior of reinforced concrete wide beams was investigated. The experimental program consisted of nine beams of 29 MPa concrete strength tested with a shear span-depth ratio equal to 3.0. One of the tested beams had no web reinforcement as a control specimen. The flexure mode of failure was secured for all of the specimens to allow for shear mode of failure. The key parameters covered in this investigation are the effect of the existence, spacing, amount and yield stress of the vertical stirrups on the shear capacity and ductility of the tested wide beams. The study shows that the contribution of web reinforcement to the shear capacity is significant and directly proportional to the amount and spacing of the shear reinforcement. The increase in the shear capacity ranged from 32% to 132% for the range of the tested beams compared with the control beam. High grade steel was more effective in the contribution of the shear strength of wide beams. Also, test results demonstrate that the shear reinforcement significantly enhances the ductility of the wide beams. In addition, shear resistances at failure recorded in this study are compared to the analytical strengths calculated according to the current Egyptian Code and the available international codes. The current study highlights the need to include the contribution of shear reinforcement in the Egyptian Code requirements for shear capacity of wide beams.

  6. Fibre Reinforced Polymer Composites as Internal and External Reinforcements for Building Elements

    Directory of Open Access Journals (Sweden)

    Cătălin Banu

    2008-01-01

    Full Text Available During the latest decades fibre reinforced polymer (FRP composite materials have proven valuable properties and suitable to be used in construction of new buildings and in upgrading the existing ones. These materials have covered the road from research laboratory and demonstration projects to implementation in actual structures. Nowadays the civil and structural engineering communities are about to commence the stage in which the use of FRP composites is becoming a routine similar to that of traditional material such as concrete, masonry and wood. Two main issues are presented in this paper, the use of FRP composite materials for new structural members (internal reinforcements and strengthening of existing members (externally bonded reinforcements. The advantages and disadvantages as well as the problems and constraints associated with both issues are discussed in detail mainly related to concrete members.

  7. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  8. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    Science.gov (United States)

    2010-02-01

    reinforcement if the enamel is broken  Embedded cement grains hydrate if enamel is cracked to self-heal with the formation of calcium silicate hydrate Goal...Reinforced Concrete Pavement The 600% volume change in the iron to iron oxide formation put the concrete in tension and it cracks an spalls BUILDING...corrodes prematurely and delaminates the pavement  Moisture and chlorides can move through the natural porosity of concrete and the cracks in the

  9. Constitutive model for reinforced concrete

    NARCIS (Netherlands)

    Feenstra, P.H.; Borst, de R.

    1995-01-01

    A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension

  10. Tangible Reinforcers: Bonuses or Bribes?

    Science.gov (United States)

    O'Leary, K. Daniel; And Others

    1972-01-01

    Objections to the use of tangible reinforcers, such as prizes, candy, cigarettes, and money, are discussed. Treatment programs using tangible reinforcers are recommended as powerful modifers of behavior to be implemented only after less powerful means of modification have been tried. (Author)

  11. TEACHING SELF-CONTROL WITH QUALITATIVELY DIFFERENT REINFORCERS

    OpenAIRE

    Passage, Michael; Tincani, Matt; Hantula, Donald A.

    2012-01-01

    This study examined the effectiveness of using qualitatively different reinforcers to teach self-control to an adolescent boy who had been diagnosed with an intellectual disability. First, he was instructed to engage in an activity without programmed reinforcement. Next, he was instructed to engage in the activity under a two-choice fixed-duration schedule of reinforcement. Finally, he was exposed to self-control training, during which the delay to a more preferred reinforcer was initially sh...

  12. PARTIAL REINFORCEMENT (ACQUISITION) EFFECTS WITHIN SUBJECTS.

    Science.gov (United States)

    AMSEL, A; MACKINNON, J R; RASHOTTE, M E; SURRIDGE, C T

    1964-03-01

    Acquisition performance of 22 rats in a straight alley runway was examined. The animals were subjected to partial reinforcement when the alley was black (B+/-) and continuous reinforcement when it was white (W+). The results indicated (a) higher terminal performance, for partial as against continuous reinforcement conditions, for starting-time and running-time measures, and (b) lower terminal performance under partial conditions for a goal-entry-time measure. These results confirm within subjects an effect previously demonstrated, in the runway, only in between-groups tests, where one group is run under partial reinforcement and a separate group is run under continuous reinforcement in the presence of the same external stimuli. Differences between the runway situation, employing a discrete-trial procedure and performance measures at three points in the response chain, and the Skinner box situation, used in its free-operant mode with a single performance measure, are discussed in relation to the present findings.

  13. Reinforcement Learning in Repeated Portfolio Decisions

    OpenAIRE

    Diao, Linan; Rieskamp, Jörg

    2011-01-01

    How do people make investment decisions when they receive outcome feedback? We examined how well the standard mean-variance model and two reinforcement models predict people's portfolio decisions. The basic reinforcement model predicts a learning process that relies solely on the portfolio's overall return, whereas the proposed extended reinforcement model also takes the risk and covariance of the investments into account. The experimental results illustrate that people reacted sensitively to...

  14. Responding for sucrose and wheel-running reinforcement: effects of sucrose concentration and wheel-running reinforcer duration.

    Science.gov (United States)

    Belke, Terry W; Hancock, Stephanie D

    2003-03-01

    Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.

  15. Rational and Mechanistic Perspectives on Reinforcement Learning

    Science.gov (United States)

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  16. Conditioned Reinforcement Value and Resistance to Change

    Science.gov (United States)

    Shahan, Timothy A.; Podlesnik, Christopher A.

    2008-01-01

    Three experiments examined the effects of conditioned reinforcement value and primary reinforcement rate on resistance to change using a multiple schedule of observing-response procedures with pigeons. In the absence of observing responses in both components, unsignaled periods of variable-interval (VI) schedule food reinforcement alternated with…

  17. Innovative Methods for Levee Rehabilitation

    National Research Council Canada - National Science Library

    Perry, Edward

    1998-01-01

    .... This report covers analytical studies on two-dimensional slope stability analysis of geogrid mechanically stabilized slides and slope remediation using a prefabricated geocomposite drainage system...

  18. Glass FRP reinforcement in rehabilitation of concrete marine infrastructure

    International Nuclear Information System (INIS)

    Newhook, John P.

    2006-01-01

    Fiber reinforced polymer (FRP) reinforcements for concrete structures are gaining wide acceptance as a suitable alternative to steel reinforcements. The primary advantage is that they do not suffer corrosion and hence they promise to be more durable in environments where steel reinforced concrete has a limited life span. Concrete wharves and jetties are examples of structures subjected to such harsh environments and represent the general class of marine infrastructure in which glass FRP (GFRP) reinforcement should be used for improved durability and service life. General design considerations which make glass FRP suitable for use in marine concrete rehabilitation projects are discussed. A case study of recent wharf rehabilitation project in Canada is used to reinforce these considerations. The structure consisted of a GFRP reinforced concrete deck panel and steel - GFRP hybrid reinforced concrete pile cap. A design methodology is developed for the hybrid reinforcement design and verified through testing. The results of a field monitoring program are used to establish the satisfactory field performance of the GFRP reinforcement. The design concepts presented in the paper are applicable to many concrete marine components and other structures where steel reinforcement corrosion is a problem. (author)

  19. Dynamic analysis of a reactor building on alluvial soil

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Paul, D.K.

    1977-01-01

    The reactor building consists of reinforced concrete internal framed structure enclosed in double containment shells of prestressed and reinforced concrete all resting on a common massive raft. The external cylindrical shell is capped by a spherical dome while the internal shell carries a cellular grid slab. The building is partially buried under ground. The soil consists of alluvial going to 1000 m depth. The site lies in a moderate seismic zone. The paper presents the dynamic analysis of the building including soil-structure interaction. The mathematical model consists of four parallel, suitably interconnected structures, namely inner containment, outer containment, internal frame and the calandria vault. Each one of the parallel structures consists of lumped-mass beam elements. The soil below the raft and on the sides of outer containment shell is represented by elastic springs in both horizontal and vertical directions. The various assumptions required to be made in developing the mathematical model are briefly discussed in the paper. Transfer matrix technique has been used to determine the frequencies and mode shapes. The deformations due to bending, shear and effect of the rotary inertia have been included. Various alternatives of laterally interconnecting the internals and the shells have been examined and the best alternative from earthquake considerations has been obtained. In the study, the effect of internal structure flexibility and Calandria vault flexibility on the whole building have been studied. The resulting base raft motion and the structural timewise response of all floors have been determined for the design basis (safe shutdown) earthquake by mode superposition

  20. Multi-physics corrosion modeling for sustainability assessment of steel reinforced high performance fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Lepech, M.; Michel, Alexander; Geiker, Mette

    2016-01-01

    and widespread depassivation, are the mechanism behind experimental results of HPFRCC steel corrosion studies found in the literature. Such results provide an indication of the fundamental mechanisms by which steel reinforced HPFRCC materials may be more durable than traditional reinforced concrete and other......Using a newly developed multi-physics transport, corrosion, and cracking model, which models these phenomena as a coupled physiochemical processes, the role of HPFRCC crack control and formation in regulating steel reinforcement corrosion is investigated. This model describes transport of water...... and chemical species, the electric potential distribution in the HPFRCC, the electrochemical propagation of steel corrosion, and the role of microcracks in the HPFRCC material. Numerical results show that the reduction in anode and cathode size on the reinforcing steel surface, due to multiple crack formation...

  1. Hillslope Soils and Life (Invited)

    Science.gov (United States)

    Amundson, R.; Owen, J. J.; Heimsath, A. M.; Yoo, K.; Dietrich, W. E.

    2013-12-01

    That hillslope processes are impacted by biology has been long understood, but the complexities of the abiotic-biotic processes and their feedbacks are quantitatively emerging with the growing body of pertinent literature. The concept that plants modulate both the disaggregation and transport of soil particles on hillslopes was clearly articulated by G.K. Gilbert. Yet earlier, James Hutton (starting from very different intellectual boundary conditions) argued that soil, which results from the dynamic balance of rock destruction and removal, is a prerequisite for plants - a concept that underscores the need to more deeply examine the feedback of geomorphic processes on terrestrial ecosystems. We compiled the results of recent studies that have been conducted on gentle convex hillslopes across a broad range of rainfall. We found that vegetated landscapes appear to have strong controls on hillslope soil thickness, landscape denudation rates, and soil residence times. The restricted range in residence times - despite large differences in climate - appear in turn to sustain relatively high levels of both nitrogen (N) and phosphorus (P) fertility, suggesting ecological resilience and resistance to non-anthropogenic environmental perturbations. At the most arid end of Earth's climate vegetation disappears, but not all water. The loss of plants shifts soil erosion to abiotic processes, with a corresponding thinning or loss of the soil mantle. This reinforces the hypothesis that a planet without vegetation, but with a hydrologic cycle, would be largely devoid of soil-mantled hillslopes and would be driven toward hillslope morphologies that differ from the familiar convex-up forms of biotic landscapes. While our synthesis of the effects of vegetation on soil production and soil thickness provides a quantitative view of the suggestions of Gilbert, it also identifies that vegetation itself responds to the geomorphic processes, as believed by Hutton. There is a complex

  2. The critical dimensions of the response-reinforcer contingency.

    Science.gov (United States)

    Williams, B A.

    2001-05-03

    Two major dimensions of any contingency of reinforcement are the temporal relation between a response and its reinforcer, and the relative frequency of the reinforcer given the response versus when the response has not occurred. Previous data demonstrate that time, per se, is not sufficient to explain the effects of delay-of-reinforcement procedures; needed in addition is some account of the events occurring in the delay interval. Moreover, the effects of the same absolute time values vary greatly across situations, such that any notion of a standard delay-of-reinforcement gradient is simplistic. The effects of reinforcers occurring in the absence of a response depend critically upon the stimulus conditions paired with those reinforcers, in much the same manner as has been shown with Pavlovian contingency effects. However, it is unclear whether the underlying basis of such effects is response competition or changes in the calculus of causation.

  3. Soil-root Shear Strength Properties of Some Slope Plants

    International Nuclear Information System (INIS)

    Normaniza Osman; Mohamad Nordin Abdullah; Faisal Haji Ali

    2011-01-01

    Rapid development in hilly areas in Malaysia has become a trend that put a stress to the sloping area. It reduces the factor of safety by reducing the resistant force and therefore leads to slope failure. Vegetation plays a big role in reinforcement functions via anchoring the soils and forms a binding network within the soil layer that tied the soil masses together. In this research, three plant species namely Acacia mangium, Dillenia suffruticosa and Leucaena leucocaphala were assessed in term of their soil-root shear strength properties. Our results showed that Acacia mangium had the highest shear strength values, 30.4 kPa and 50.2 kPa at loads 13.3 kPa and 24.3 kPa, respectively. Leucaena leucocaphala showed the highest in cohesion factor, which was almost double the value in those of Dillenia suffruticosa and Acacia mangium. The root profile analysis indicated Dillenia suffruticosa exhibited the highest values in both root length density and root volume, whilst Leucaena leucocaphala had the highest average of root diameter. (author)

  4. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  5. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  6. Reliability evaluation of containments including soil-structure interaction

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1985-12-01

    Soil-structure interaction effects on the reliability assessment of containment structures are examined. The probability-based method for reliability evaluation of nuclear structures developed at Brookhaven National Laboratory is extended to include soil-structure interaction effects. In this method, reliability of structures is expressed in terms of limit state probabilities. Furthermore, random vibration theory is utilized to calculate limit state probabilities under random seismic loads. Earthquake ground motion is modeled by a segment of a zero-mean, stationary, filtered Gaussian white noise random process, represented by its power spectrum. All possible seismic hazards at a site, represented by a hazard curve, are also included in the analysis. The soil-foundation system is represented by a rigid surface foundation on an elastic halfspace. Random and other uncertainties in the strength properties of the structure, in the stiffness and internal damping of the soil, are also included in the analysis. Finally, a realistic reinforced concrete containment is analyzed to demonstrate the application of the method. For this containment, the soil-structure interaction effects on; (1) limit state probabilities, (2) structural fragility curves, (3) floor response spectra with probabilistic content, and (4) correlation coefficients for total acceleration response at specified structural locations, are examined in detail. 25 refs., 21 figs., 12 tabs

  7. Topology optimization of reinforced concrete beams by a spread-over reinforcement model with fixed grid mesh

    Directory of Open Access Journals (Sweden)

    Benjapon Wethyavivorn

    2011-02-01

    Full Text Available For this investigation, topology optimization was used as a tool to determine the optimal reinforcement for reinforcedconcrete beam. The topology optimization process was based on a unit finite element cell with layers of concrete and steel.The thickness of the reinforced steel layer of this unit cell was then adjusted when the concrete layer could not carry thetensile or compressive stress. At the same time, unit cells which carried very low stress were eliminated. The process wasperformed iteratively to create a topology of reinforced concrete beam which satisfied design conditions.

  8. Acquisition with partial and continuous reinforcement in pigeon autoshaping.

    Science.gov (United States)

    Gottlieb, Daniel A

    2004-08-01

    Contemporary time accumulation models make the unique prediction that acquisition of a conditioned response will be equally rapid with partial and continuous reinforcement, if the time between conditioned stimuli is held constant. To investigate this, acquisition of conditioned responding was examined in pigeon autoshaping under conditions of 100% and 25% reinforcement, holding intertrial interval constant. Contrary to what was predicted, evidence for slowed acquisition in partially reinforced animals was observed with several response measures. However, asymptotic performance was superior with 25% reinforcement. A switching of reinforcement contingencies after initial acquisition did not immediately affect responding. After further sessions, partial reinforcement augmented responding, whereas continuous reinforcement did not, irrespective of an animal's reinforcement history. Subsequent training with a novel stimulus maintained the response patterns. These acquisition results generally support associative, rather than time accumulation, accounts of conditioning.

  9. Brain network response underlying decisions about abstract reinforcers.

    Science.gov (United States)

    Mills-Finnerty, Colleen; Hanson, Catherine; Hanson, Stephen Jose

    2014-12-01

    Decision making studies typically use tasks that involve concrete action-outcome contingencies, in which subjects do something and get something. No studies have addressed decision making involving abstract reinforcers, where there are no action-outcome contingencies and choices are entirely hypothetical. The present study examines these kinds of choices, as well as whether the same biases that exist for concrete reinforcer decisions, specifically framing effects, also apply during abstract reinforcer decisions. We use both General Linear Model as well as Bayes network connectivity analysis using the Independent Multi-sample Greedy Equivalence Search (IMaGES) algorithm to examine network response underlying choices for abstract reinforcers under positive and negative framing. We find for the first time that abstract reinforcer decisions activate the same network of brain regions as concrete reinforcer decisions, including the striatum, insula, anterior cingulate, and VMPFC, results that are further supported via comparison to a meta-analysis of decision making studies. Positive and negative framing activated different parts of this network, with stronger activation in VMPFC during negative framing and in DLPFC during positive, suggesting different decision making pathways depending on frame. These results were further clarified using connectivity analysis, which revealed stronger connections between anterior cingulate, insula, and accumbens during negative framing compared to positive. Taken together, these results suggest that not only do abstract reinforcer decisions rely on the same brain substrates as concrete reinforcers, but that the response underlying framing effects on abstract reinforcers also resemble those for concrete reinforcers, specifically increased limbic system connectivity during negative frames. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Long-term performance of GFRP reinforcement : technical report.

    Science.gov (United States)

    2009-12-01

    Significant research has been performed on glass fiber-reinforced polymer (GFRP) concrete reinforcement. : This research has shown that GFRP reinforcement exhibits high strengths, is lightweight, can decrease time of : construction, and is corrosion ...

  11. The effect of concrete strength and reinforcement on toughness of reinforced concrete beams

    OpenAIRE

    Carneiro, Joaquim A. O.; Jalali, Said; Teixeira, Vasco M. P.; Tomás, M.

    2005-01-01

    The objective pursued with this work includes the evaluating of the strength and the total energy absorption capacity (toughness) of reinforced concrete beams using different amounts of steel-bar reinforcement. The experimental campaign deals with the evaluation of the threshold load prior collapse, ultimate load and deformation, as well as the beam total energy absorption capacity, using a three point bending test. The beam half span displacement was measured using a displacement transducer,...

  12. Concrete cover cracking due to uniform reinforcement corrosion

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Michel, Alexander; Geiker, Mette Rica

    2013-01-01

    and reinforcement de-passivation is a frequently used limit state. The present paper investigates an alternative limit state: corrosion-induced cover cracking. Results from numerical simulations of concrete cover cracking due to reinforcement corrosion are presented. The potential additional service life...... is calculated using literature data on corrosion rate and Faraday’s law. The parameters varied comprise reinforcement diameter, concrete cover thickness and concrete material properties, viz. concrete tensile strength and ductility (plain concrete and fibre reinforced concrete). Results obtained from......Service life design (SLD) is an important tool for civil engineers to ensure that the structural integrity and functionality of the structure is not compromised within a given time frame, i.e. the service life. In SLD of reinforced concrete structures, reinforcement corrosion is of major concern...

  13. Experimental Study on Vacuum Dynamic Consolidation Treatment of Soft Soil Foundation

    Science.gov (United States)

    Fu-lai, Ni; Xin, Wen; Xiao-bin, Zhang; Wei, Li

    2017-11-01

    In view of the deficiency of the saturated silt clay foundation reinforced by the dynamic consolidation method, combination the project of soft foundation treatment test area in Tangshan, the reaserch analysed indexes, included groundwater level, pore water pressure, settlement about soil layer and so on, by use of field tests and indoor geotechnical tests, The results showed that the whole reinforcement effect with vacuum dynamic compaction method to blow fill foundation is obvious, due to the result of vacuum precipitation, generally, the excess pore water pressure can be dissipated by 90% above in 2 days around and the effective compaction coefficient can reached more than 0.9,the research work in soft foundation treatment engineering provide a new method and thought to similar engineering.

  14. Quenched Reinforcement Exposed to Fire

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    2006-01-01

    .0% is seldom found in “slack” (not prestressed) reinforcement, but 2.0% stresses might be relevant for reinforcement in T shaped cross sections and for prestressed structures, where large strains can be applied. All data are provided in a “HOT” condition during a fire and in a “COLD” condition after a fire...

  15. Design of reinforced concrete plates and shells

    International Nuclear Information System (INIS)

    Schulz, M.

    1984-01-01

    Nowadays, the internal forces of reinforced concrete laminar structures can be easily evaluated by the finite element procedures. The longitudinal design in each direction is not adequate, since the whole set of internal forces in each point must be concomitantly considered. The classic formulation for the design and new design charts which bring reduction of the amount of necessary reinforcement are presented. A rational reinforced concrete mathematical theory which makes possible the limit state design of plates and shells is discussed. This model can also be applied to define the constitutive relationships of laminar finite elements of reinforced concrete. (Author) [pt

  16. Effect of steel reinforcement with different degree of corrosion on degeneration of mechanical performance of reinforced concrete frame joints

    Directory of Open Access Journals (Sweden)

    Wu Xu

    2016-02-01

    Full Text Available Beam-column joints which shoulders high-level and vertical shearing effect that maintains balance of beam and column end is the major component influencing the performance of the whole framework. Post earthquake investigation suggests that collapse of frame structure is induced by failure of joints in most cases. Thus, beam-column joints must have strong bearing capacity and good ductility, and reinforced concrete structure just meets the above requirement. But corrosion caused by long time use of reinforced concrete framework will lead to degeneration of mechanical performance of joints. To find out the rule of effect of steel reinforcement with different corrosion rate on degeneration of bearing capacity of reinforced concrete framework joints, this study made a nonlinear numerical analysis on fifteen models without stirrup in the core area of reinforced concrete frame joints using displacement method considering axial load ratio of column end and constraint condition. This work aims to find out the key factor that influences mechanical performance of joints, thus to provide a basis for repair and reinforcement of degenerated framework joints.

  17. Stability of reinforced cemented backfills

    International Nuclear Information System (INIS)

    Mitchell, R.J.; Stone, D.M.

    1987-01-01

    Mining with backfill has been the subject of several international meetings in recent years and a considerable research effort is being applied to improve both mining economics and ore recovery by using backfill for ground support. Classified mill tailings sands are the most commonly used backfill material but these fine sands must be stabilized before full ore pillar recovery can be achieved. Normal portland cement is generally used for stabilization but the high cost of cement prohibits high cement usage. This paper considers the use of reinforcements in cemented fill to reduce the cement usage. It is concluded that strong cemented layers at typical spacings of about 3 meters in a low cement content bulk fill can reinforce the fill and reduce the overall cement usage. Fibre reinforcements introduced into strong layers or into bulk fills are also known to be effective in reducing cement usage. Some development work is needed to produce the ideal type of anchored fibre in order to realize economic gains from fibre-reinforced fills

  18. Fatigue Performance of Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Jun, Zhang; Stang, Henrik

    1996-01-01

    The objective of the present study is to obtain basic data of fibre reinforced concrete under fatigue load and to set up a theoretical model based on micromechanics. In this study, the bridging stress in fiber reinforced concrete under cyclic tensile load was investigted in details. The damage...... mechanism of the interface between fiber and matrix was proposed and a rational model given. Finally, the response of a steel fiber reinforced concrete beam under fatigue loading was predicted based on this model and compared with experimental results....

  19. Strain rate effects on reinforcing steels in tension

    Science.gov (United States)

    Cadoni, Ezio; Forni, Daniele

    2015-09-01

    It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.

  20. Effect of kenaf fiber in reinforced concrete slab

    Science.gov (United States)

    Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.

    2018-04-01

    The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.

  1. Influence of reinforcement on strains within maxillary implant overdentures.

    Science.gov (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu

    2015-01-01

    The purpose of this study was to examine the influence of reinforcement of an embedded cast on the strains within maxillary implant overdentures. A maxillary edentulous model with implants placed bilaterally in the canine positions, dome-shaped copings, and experimental overdentures was fabricated. Rosette-type strain gauges were attached in the canine positions and at three points along the midline of the polished surface of the denture and connected to the sensor interface controlled by a personal computer. Experimental dentures with five different reinforcements were tested: without reinforcement; with a cast cobalt-chrome reinforcement over the residual ridge and the tops of the copings; with the same reinforcement from first molar to first molar, over the residual ridge and the tops of the copings; with the same reinforcement over the residual ridge and the sides of the copings; and with the same reinforcement from first molar to first molar, over the residual ridge and the sides of the copings. A vertical occlusal load of 49 N was applied to the first premolar and then to the first molar, and the strains were measured and compared by analysis of variance. In both loading situations, significantly less strain was recorded in dentures with reinforcement than in those without reinforcement. When the first premolar was loaded on dentures with and without palatal reinforcement at the first premolars, the strains on the denture with reinforcement over the tops of the copings were significantly lower than on the denture with reinforcement over the sides of the copings at the canine position. Cast reinforcement over the residual ridge and the top of copings embedded in an acrylic base reduced the strain from occlusal stress on maxillary implant overdentures.

  2. Review of Carbon Fiber Reinforced Polymer Reinforced Material in Concrete Structure

    Directory of Open Access Journals (Sweden)

    Ayuddin Ayuddin

    2016-05-01

    Full Text Available Carbon Fiber Reinforced Polymer (FRP is a material that is lightweight, strong, anti-magnetic and corrosion resistant. This material can be used as an option to replace the steel material in concrete construction or as material to improve the strength of existing construction. CFRP is quite easy to be attached to the concrete structure and proved economically used as a material for repairing damaged structures and increase the resilience of structural beams, columns, bridges and other parts of the structure against earthquakes. CFRP materials can be shaped sheet to be attached to the concrete surface. Another reason is due to the use of CFRP has a higher ultimate strength and lower weight compared to steel reinforcement so that the handling is significantly easier. Through this paper suggests that CFRP materials can be applied to concrete structures, especially on concrete columns. Through the results of experiments conducted proved that the concrete columns externally wrapped with CFRP materials can increase the strength. This treatment is obtained after testing experiments on 130 mm diameter column with a height of 700 mm with concentric loading method to collapse. The experimental results indicate that a column is wrapped externally with CFRP materials can achieve a load capacity of 250 kN compared to the concrete columns externally without CFRP material which only reached 150 kN. If the column is given internally reinforcing steel and given externally CFRP materials can reach 270 kN. It shows that CFRP materials can be used for concrete structures can even replace reinforcing steel that has been widely used in building construction in Indonesia.

  3. [Soil seed bank research of China mining areas: necessity and challenges].

    Science.gov (United States)

    Chang, Qing; Zhang, Da-Wei; Li, Xue; Peng, Jian; Guan, Ai-Nong; Liu, Xiao-Si

    2011-05-01

    Soil seed bank consists of all living seeds existed in soil and its surface litter, especially in topsoil, and can reflect the characteristics of regional biodiversity. As the base of vegetation restoration and potential greening material, topsoil and its seed bank are the limited and non-renewable resources in mining areas. The study of soil seed bank has become one of the hotspots in the research field of vegetation restoration and land reclamation in China mining areas. Owing to the special characteristics of mining industry, the soil seed bank study of mining areas should not only concern with the seed species, quantities, and their relations with ground surface vegetation, but also make use of the research results on the soil seed bank of other fragile habitats. Besides, a breakthrough should be sought in the thinking ways and research approach. This paper analyzed the particularity of mining area's soil seek bank research, summarized the research progress in the soil seed bank of mining areas and other fragile habitats, and put forward the challenges we are facing with. It was expected that this paper could help to reinforce the soil seed bank research of China mining areas, and provide scientific guidelines for taking great advantage of the significant roles of soil seed bank in land reclamation and vegetation restoration in the future.

  4. FEM performance of concrete beams reinforced by carbon fiber bars

    Directory of Open Access Journals (Sweden)

    Hasan Hashim

    2018-01-01

    Full Text Available Concrete structures may be vulnerable to harsh environment, reinforcement with Fiber Reinforced Polymer (FRP bars have an increasing acceptance than normal steel. The nature of (FRP bar is (non-corrosive which is very beneficial for increased durability as well as the reinforcement of FRP bar has higher strength than steel bar. FRP usage are being specified more and more by public structural engineers and individual companies as main reinforcement and as strengthening of structures. Steel reinforcement as compared to (FRP reinforcement are decreasingly acceptable for structural concrete reinforcement including precast concrete, cast in place concrete, columns, beams and other components. Carbon Fiber Reinforcement Polymer (CFRP have a very high modulus of elasticity “high modulus” and very high tensile strength. In aerospace industry, CFRP with high modulus are popular among all FRPs because it has a high strength to weight ratio. In this research, a finite element models will be used to represent beams with Carbon Fiber Reinforcement and beams with steel reinforcement. The primary objective of the research is the evaluation of the effect of (CFR on beam reinforcement.

  5. Depression, Activity, and Evaluation of Reinforcement

    Science.gov (United States)

    Hammen, Constance L.; Glass, David R., Jr.

    1975-01-01

    This research attempted to find the causal relation between mood and level of reinforcement. An effort was made to learn what mood change might occur if depressed subjects increased their levels of participation in reinforcing activities. (Author/RK)

  6. The genetics of speciation by reinforcement.

    Directory of Open Access Journals (Sweden)

    Daniel Ortiz-Barrientos

    2004-12-01

    Full Text Available Reinforcement occurs when natural selection strengthens behavioral discrimination to prevent costly interspecies matings, such as when matings produce sterile hybrids. This evolutionary process can complete speciation, thereby providing a direct link between Darwin's theory of natural selection and the origin of new species. Here, by examining a case of speciation by reinforcement in Drosophila,we present the first high-resolution genetic study of variation within species for female mating discrimination that is enhanced by natural selection. We show that reinforced mating discrimination is inherited as a dominant trait, exhibits variability within species, and may be influenced by a known set of candidate genes involved in olfaction. Our results show that the genetics of reinforced mating discrimination is different from the genetics of mating discrimination between species, suggesting that overall mating discrimination might be a composite phenomenon, which in Drosophila could involve both auditory and olfactory cues. Examining the genetics of reinforcement provides a unique opportunity for both understanding the origin of new species in the face of gene flow and identifying the genetic basis of adaptive female species preferences, two major gaps in our understanding of speciation.

  7. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Solgaard, Anders Ole Stubbe; Pease, Bradley Justin

    2013-01-01

    Cracks in covering concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. To minimise the impact of cracks on the deterioration of reinforced concrete structures, current approaches in (inter)national design codes often limit the concrete surface crack width....... Recent investigations however, indicate that the concrete-reinforcement interfacial condition is a more fundamental criterion related to reinforcement corrosion. This work investigates the relation between macroscopic damage at the concrete-steel interface and corrosion initiation of reinforcement...... embedded in plain and fibre reinforced concrete. Comparisons of experimental and numerical results indicate a strong correlation between corrosion initiation and interfacial condition....

  8. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    Science.gov (United States)

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  9. Reinforcement of RC structure by carbon fibers

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2016-01-01

    Full Text Available In recent years, rehabilitation has been the subject of extensive research due to the increased spending on building maintenance work and restoration of built works. In all cases, it is essential to carry out methods of reinforcement or maintenance of structural elements, following an inspection analysis and methodology of a correct diagnosis. This research focuses on the calculation of the necessary reinforcement sections of carbon fiber for structural elements with reinforced concrete in order to improve their load bearing capacity and rigidity. The different results obtained reveal a considerable gain in resistance and deformation capacity of reinforced sections without significant increase in the weight of the rehabilitated elements.

  10. Methodology of shell structure reinforcement layout optimization

    Science.gov (United States)

    Szafrański, Tomasz; Małachowski, Jerzy; Damaziak, Krzysztof

    2018-01-01

    This paper presents an optimization process of a reinforced shell diffuser intended for a small wind turbine (rated power of 3 kW). The diffuser structure consists of multiple reinforcement and metal skin. This kind of structure is suitable for optimization in terms of selection of reinforcement density, stringers cross sections, sheet thickness, etc. The optimisation approach assumes the reduction of the amount of work to be done between the optimization process and the final product design. The proposed optimization methodology is based on application of a genetic algorithm to generate the optimal reinforcement layout. The obtained results are the basis for modifying the existing Small Wind Turbine (SWT) design.

  11. Application of Soil Nailing Technique for Protection and Preservation Historical Buildings

    Science.gov (United States)

    Kulczykowski, Marek; Przewłócki, Jarosław; Konarzewska, Bogusława

    2017-10-01

    Soil nailing is one of the recent in situ techniques used for soil improvement and in stabilizing slopes. The process of soil nailing consists of reinforcing the natural ground with relatively small steel bars or metal rods, grouted in the pre-drilled holes. This method has a wide range of applications for stabilizing deep excavations and steep slopes. Soil nailing has recently become a very common method of slope stabilisation especially where situated beneath or adjacent to historical buildings. Stabilisation by nails drilled into existing masonry structures such as failing retaining walls abutments, provide long term stability without demolition and rebuilding costs. Two cases of soil nailing technology aimed at stabilising slopes beneath old buildings in Poland are presented in this paper. The first concerns application of this technology to repair a retaining wall supporting the base of the dam at the historic hydroelectric power plant in Rutki. The second regards a concept of improving the slope of the Castle Hill in Sandomierz. An analysis of the slope stability for the latter case, using stabilisation technique with the piling system and soil nailing was performed. Some advantages of soil nailing especially for protection of historical buildings, are also underlined. And, the main results of an economic comparison analysis are additionally presented.

  12. Effect of fiber content on tensile retention properties of Cellulose Microfiber Reinforced Polymer Composites for Automobile Application

    Science.gov (United States)

    Aseer, J. R.; Sankaranarayanasamy, K.

    2017-12-01

    Today, the utilization of biodegradable materials has been hogging much attention throughout the world. Due to the disposal issues of petroleum based products, there is a focus towards developing biocomposites with superior mechanical properties and degradation rate. In this research work, Hibiscus Sabdariffa (HS) fibers were used as the reinforcement for making biocomposites. The HS fibers were reinforced in the polyester resin by compression moulding method. Water absorption studies of the composite at room temperature are carried out as per ASTM D 570. Also, degradation behavior of HS/Polyester was done by soil burial method. The HS/polyester biocomposites containing 7.5 wt% of HS fiber has shown higher value of tensile strength. The tensile strength retention of the HS/Polyester composites are higher than the neat polyester composites. This value increases with increase of HS fiber loading in the composites. The results indicated that HS/polyester biocomposites can be used for making automobile components such as bumper guards etc.

  13. 3D FEM Analysis of a Pile-Supported Riverine Platform under Environmental Loads Incorporating Soil-Pile Interaction

    Directory of Open Access Journals (Sweden)

    Denise-Penelope N. Kontoni

    2018-01-01

    Full Text Available An existing riverine platform in Egypt, together with its pile group foundation, is analyzed under environmental loads using 3D FEM structural analysis software incorporating soil-pile interaction. The interaction between the transfer plate and the piles supporting the platform is investigated. Two connection conditions were studied assuming fixed or hinged connection between the piles and the reinforced concrete platform for the purpose of comparison of the structural behavior. The analysis showed that the fixed or hinged connection condition between the piles and the platform altered the values and distribution of displacements, normal force, bending moments, and shear forces along the length of each pile. The distribution of piles in the pile group affects the stress distribution on both the soil and platform. The piles were found to suffer from displacement failure rather than force failure. Moreover, the resulting bending stresses on the reinforced concrete plate in the case of a fixed connection between the piles and the platform were almost doubled and much higher than the allowable reinforced concrete stress and even exceeded the ultimate design strength and thus the environmental loads acting on a pile-supported riverine offshore platform may cause collapse if they are not properly considered in the structural analysis and design.

  14. Full Scale Model Test of Consolidation Acceleration on Soft Soil deposition with Combination of Timber Pile and PVD (Hybrid Pile)

    OpenAIRE

    Sandyutama, Y.; Samang, L.; Imran, A. M.; Harianto4, T.

    2015-01-01

    This research aims to analyze the effect of composite pile-PVD (hybrid pile) as the reinforcement in embankment on soft soil by the means of numerical simulation and Full-Scale Trial Embankment. The first phase cunducted by numerical analysis and obtained 6-8 meters hybrid pile length effective. Full-Scale trial embankment. was installed hybrid pile of 6 m and preloading of 4,50 height. Full-scale tests were performed to investigate the performances of Hybrid pile reinforcement. This research...

  15. Stability of Slopes Reinforced with Truncated Piles

    Directory of Open Access Journals (Sweden)

    Shu-Wei Sun

    2016-01-01

    Full Text Available Piles are extensively used as a means of slope stabilization. A novel engineering technique of truncated piles that are unlike traditional piles is introduced in this paper. A simplified numerical method is proposed to analyze the stability of slopes stabilized with truncated piles based on the shear strength reduction method. The influential factors, which include pile diameter, pile spacing, depth of truncation, and existence of a weak layer, are systematically investigated from a practical point of view. The results show that an optimum ratio exists between the depth of truncation and the pile length above a slip surface, below which truncating behavior has no influence on the piled slope stability. This optimum ratio is bigger for slopes stabilized with more flexible piles and piles with larger spacing. Besides, truncated piles are more suitable for slopes with a thin weak layer than homogenous slopes. In practical engineering, the piles could be truncated reasonably while ensuring the reinforcement effect. The truncated part of piles can be filled with the surrounding soil and compacted to reduce costs by using fewer materials.

  16. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    Science.gov (United States)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  17. A conditioned reinforcer did not help to maintain an operant conditioning in the absence of a primary reinforcer in horses.

    Science.gov (United States)

    Lansade, Léa; Calandreau, Ludovic

    2018-01-01

    The use of conditioned reinforcers is increasingly promoted in animal training. Surprisingly, the efficiency of their use remains to be demonstrated in horses. This study aimed to determine whether an auditory signal which had previously been associated with a food reward 288 times could be used as a conditioned reinforcer to replace the primary reinforcer in an unrelated operant conditioning procedure. Fourteen horses were divided into two groups of 7: No Reinforcement (NR) and Conditioned Reinforcement (CR). All horses underwent nine sessions of Pavlovian conditioning during which the word "good" was associated with food (32 associations/session). The horses then followed five sessions of operant conditioning (30 trials/session) during which they had to touch a cone signaled by an experimenter to receive a food reward. The last day, horses underwent one test session of the operant response: no reward was given, but the word "good" was said each time a CR horse touched the cone. Nothing was said in the NR group. CR horses did not achieve more correct trials than NR horses during the test. These findings again show that the conditioned reinforcement was ineffective when used instead of the primary reinforcement to maintain conditioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  19. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS

    International Nuclear Information System (INIS)

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-01-01

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits

  20. Geosynthetics in geoenvironmental engineering

    Directory of Open Access Journals (Sweden)

    Werner W Müller

    2015-05-01

    Full Text Available Geosynthetics are planar polymeric products, which are used in connection with soil, rock or other soil-like materials to fulfill various functions in geoenvironmental engineering. Geosynthetics are of ever-growing importance in the construction industry. Sealing of waste storage facilities to safely prevent the emission of wastewater, landfill gas and contaminated dust as well as the diffusion of pollutants into the environment and coastal protection against storms and floods and reconstruction after natural disaster are important fields of application. We will give an overview of the various geosynthetic products. Two examples of the material problems related to geosynthetics are discussed in detail: the effect of creep on the long-term performance of geocomposite drains and the numerical simulation of the interaction of soil with geogrids. Both issues are of importance for the use of these products in landfill capping systems. The various functions, which geosynthetics may fulfill in the protection of coastal lines, are illustrated by case studies. The geosynthetic market is evaluated and economical and environmental benefits, as well as environmental side effects related to the use of geosynthetics, are discussed.

  1. Limit analysis of solid reinforced concrete structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    2009-01-01

    Recent studies have shown that Semidefinite Programming (SDP) can be used effectively for limit analysis of isotropic cohesive-frictional continuums using the classical Mohr-Coulomb yield criterion. In this paper we expand on this previous research by adding reinforcement to the model and a solid...... reinforcement and it is therefore possible to analyze structures with complex reinforcement layouts. Tests are conducted to validate the method against well-known analytical solutions....

  2. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  3. Reinforced flexural elements for TEMP-STRESS Program

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-06-01

    The implementation of reinforced flexural elements into the thermal-mechanical finite element program TEMP-STRESS is described. With explicit temporal integration and dynamic relaxation capabilities in the program, the flexural elements provide an efficient method for the treatment of reinforced structures subjected to transient and static loads. The capability of the computer program is illustrated by the solution of several examples: the simulation of a reinforced concrete beam; simulations of a reinforced concrete containment shell which is subjected to internal pressurization, thermal gradients through the walls, and transient pressure loads. The results of this analysis are relevant in the structural design/safety evaluations of typical reactor containment structures. 22 refs., 13 figs

  4. Potential of Using Nanocarbons to Stabilize Weak Soils

    Directory of Open Access Journals (Sweden)

    Jamal M. A. Alsharef

    2016-01-01

    Full Text Available Soil stabilization, using a variety of stabilizers, is a common method used by engineers and designers to enhance the properties of soil. The use of nanomaterials for soil stabilization is one of the most active research areas that also encompass a number of disciplines, including civil engineering and construction materials. Soils improved by nanomaterials could provide a novel, smart, and eco- and environment-friendly construction material for sustainability. In this case, carbon nanomaterials (CNMs have become candidates for numerous applications in civil engineering. The main objective of this paper is to explore improvements in the physical properties of UKM residual soil using small amounts (0.05, 0.075, 0.1, and 0.2% of nanocarbons, that is, carbon nanotube (multiwall carbon nanotube (MWCNTs and carbon nanofibers (CNFs. The parameters investigated in this study include Atterberg’s limits, optimum water content, maximum dry density, specific gravity, pH, and hydraulic conductivity. Nanocarbons increased the pH values from 3.93 to 4.16. Furthermore, the hydraulic conductivity values of the stabilized fine-grained soil samples containing MWCNTs decreased from 2.16E-09 m/s to 9.46E-10 m/s and, in the reinforcement sample by CNFs, the hydraulic conductivity value decreased to 7.44E-10 m/s. Small amount of nanocarbons (MWCNTs and CNFs decreased the optimum moisture content, increased maximum dry density, reduced the plasticity index, and also had a significant effect on its hydraulic conductivity.

  5. Reinforcement Corrosion: Numerical Simulation and Service Life Prediction

    DEFF Research Database (Denmark)

    Michel, Alexander

    defects and b) define the end of service life once reinforcement corrosion is initiated neglecting corrosion processes during the propagation stage. The goal of this work was to develop a framework for the service life prediction of reinforced concrete covering initiation and propagation of chloride......Modelling of deterioration processes in concrete structures plays an increasing role in the design of reinforced concrete structures. Large sums are spent every year to ensure the durability of concrete structures, especially towards reinforcement corrosion. Improved durability provides increased...... structural reliability, economical improvements in form of less need for maintenance and repair as well as increased sustainability due to an increased energy and resource efficiency. Several service life prediction models dealing with reinforcement corrosion in concrete structurescan be found...

  6. A shell approach for fibrous reinforcement forming simulations

    Science.gov (United States)

    Liang, B.; Colmars, J.; Boisse, P.

    2018-05-01

    Because of the slippage between fibers, the basic assumptions of classical plate and shell theories are not verified by fiber reinforcement during a forming. However, simulations of reinforcement forming use shell finite elements when wrinkles development is important. A shell formulation is proposed for the forming simulations of continuous fiber reinforcements. The large tensile stiffness leads to the quasi inextensibility in the fiber directions. The fiber bending stiffness determines the curvature of the reinforcement. The calculation of tensile and bending virtual works are based on the precise geometry of the single fiber. Simulations and experiments are compared for different reinforcements. It is shown that the proposed fibrous shell approach not only correctly simulates the deflections but also the rotations of the through thickness material normals.

  7. The power reinforcement framework revisited

    DEFF Research Database (Denmark)

    Nielsen, Jeppe; Andersen, Kim Normann; Danziger, James N.

    2016-01-01

    Whereas digital technologies are often depicted as being capable of disrupting long-standing power structures and facilitating new governance mechanisms, the power reinforcement framework suggests that information and communications technologies tend to strengthen existing power arrangements within...... public organizations. This article revisits the 30-yearold power reinforcement framework by means of an empirical analysis on the use of mobile technology in a large-scale programme in Danish public sector home care. It explores whether and to what extent administrative management has controlled decision......-making and gained most benefits from mobile technology use, relative to the effects of the technology on the street-level workers who deliver services. Current mobile technology-in-use might be less likely to be power reinforcing because it is far more decentralized and individualized than the mainly expert...

  8. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  9. Application of Fiber Reinforcement Concrete Technique in Civil ...

    African Journals Online (AJOL)

    modulus of elasticity, high tensile strength, improved fatigue and impact resistance. Reinforcing the concrete structures with fibers such as polyester is one of the possible ways to provide all the criteria of the durable repair material. This type of reinforcement is called Fiber Reinforcement of Concrete Structures. There is an ...

  10. Design for whipping pipe impact on reinforced concrete panels

    International Nuclear Information System (INIS)

    Chen, C.C.; Gurbuz, O.

    1984-01-01

    This paper describes determination of local and overall effects on reinforced concrete panels due to whipping pipe impact in postulated pipe break events. Local damage includes the prediction of minimum concrete panel thickness required to prevent spalling from the back face of the target reinforced concrete panels. Evaluation of overall effect deals with the ductility ratio calculation for the target reinforced concrete panels. Design curves for determining the minimum panel thickness and the minimum reinforcement of reinforced concrete panels are presented in this paper for some cases commonly encountered in nuclear applications. The methodology and the results provided can be used to determine if an existing reinforced concrete wall is capable of resisting the whipping pipe impact, and consequently, if pipe whip restraints can be eliminated

  11. Scheduling reinforcement about once a day.

    Science.gov (United States)

    Eckerman, D A

    1999-04-01

    A pigeon earned its daily food by pecking a key according to reinforcement schedules that produced food about once per day. Fixed-interval (FI), Fixed-time (FT), and various complex schedules were arranged to demonstrate the degree to which a scalloped pattern of responding remained. Pausing continued until about an hour before the reinforcer could be earned for FIs of 12, 24, and 48 h. Pausing was not as long for FIs of 18, 19, and 23 h. Pausing of about 24 h was seen for FI 36 h. FT 24 h produced continued responding but at a diminished frequency. The pattern of responding was strongly controlled by the schedule of reinforcement and seemed relatively independent of the cycle of human activity in the surrounding laboratory. Effects of added ratio contingencies and of signaling the availability of reinforcement in FT were also examined. Signaled FTs of 5 min-3 h produced more responding during the signal (autoshaping) than did FTs of 19 or 24 h.

  12. LABORATORY EVALUATION ON PERFORMANCE OF GLASS FIBER REINFORCED PLASTIC MORTAR PIPE CULVERTS

    Directory of Open Access Journals (Sweden)

    Huawang Shi

    2018-04-01

    Full Text Available This paper investigated the performance and behaviour of glass fiber reinforced plastic mortar (FRPM pipes under different loading conditions. FRPM pipes with inner diameter of 1500 mm were prefabricated in factory. Mechanics performance testing (ring and axial compressive strength and elastic modulus, stiffness and fatigue test were carried out in laboratory. Ring stiffness test provided pipe stiffness (PS which is a function of geometry and material type of pipe through parallel plate loading test (PPLT. The fatigue test and micro-structure measure method were used to evaluate the durability effects of FRPM under repeated compression load. Results indicated that FRPM pipes had better mechanic performances as the road culverts under soils. It may be helpful for the design and construction of FRPM culverts.

  13. Ecological Diversity of Soil Fauna as Ecosystem Engineers in Small-Holder Cocoa Plantation in South Konawe

    Directory of Open Access Journals (Sweden)

    Laode Muhammad Harjoni Kilowasid

    2012-05-01

    Full Text Available Taxa diversity within soil fauna functional groups can affected ecosystem functioning such as ecosystem engineers,which influence decomposition and nutrient cycling. The objective of this study is to describe ecological diversityvariation within soil fauna as ecosystem engineers in soil ecosystem of cocoa (Theobroma cacao L. plantation.Sampling was conducted during one year period from five different ages of plantation. Soil fauna removed from soilcore using hand sorting methods. A total of 39 genera of soil fauna as ecosystem engineers were found during thesestudies. Thirty five genera belong to the group of Formicidae (ants, three genera of Isoptera (termites, and onegenera of Oligochaeta (earthworms. Ecological diversity variation within ecosystem engineers was detected withSimpson indices for dominance and evenness. The highest diversity of ecosystem engineers was in the young ageof plantation. This study reinforces the importance biotic interaction which contributed to the distribution andabundance within soil fauna community as ecosystem engineers in small-holder cocoa plantation.

  14. Numerical estimation of concrete beams reinforced with FRP bars

    Directory of Open Access Journals (Sweden)

    Protchenko Kostiantyn

    2016-01-01

    Full Text Available This paper introduces numerical investigation on mechanical performance of a concrete beam reinforced with Fibre Reinforced Polymer (FRP bars, which can be competitive alternative to steel bars for enhancing concrete structures. The objective of this work is being identified as elaborating of reliable numerical model for predicting strength capacity of structural elements with implementation of Finite Element Analysis (FEA. The numerical model is based on experimental study prepared for the beams, which were reinforced with Basalt FRP (BFRP bars and steel bars (for comparison. The results obtained for the beams reinforced with steel bars are found to be in close agreement with the experimental results. However, the beams reinforced with BFRP bars in experimental programme demonstrated higher bearing capacity than those reinforced with steel bars, which is not in a good convergence with numerical results. Authors did attempt to describe the reasons on achieving experimentally higher bearing capacity of beams reinforced with BFRP bars.

  15. Simulation analysis of impact tests of steel plate reinforced concrete and reinforced concrete slabs against aircraft impact and its validation with experimental results

    International Nuclear Information System (INIS)

    Sadiq, Muhammad; Xiu Yun, Zhu; Rong, Pan

    2014-01-01

    Highlights: • Simulation analysis is carried out with two constitutive concrete models. • Winfrith model can better simulate nonlinear response of concrete than CSCM model. • Performance of steel plate concrete is better than reinforced concrete. • Thickness of safety related structures can be reduced by adopting steel plates. • Analysis results, mainly concrete material models should be validated. - Abstract: The steel plate reinforced concrete and reinforced concrete structures are used in nuclear power plants for protection against impact of an aircraft. In order to compare the impact resistance performance of steel plate reinforced concrete and reinforced concrete slabs panels, simulation analysis of 1/7.5 scale model impact tests is carried out by using finite element code ANSYS/LS-DYNA. The damage modes of all finite element models, velocity time history curves of the aircraft engine and damage to aircraft model are compared with the impact test results of steel plate reinforced concrete and reinforced concrete slab panels. The results indicate that finite element simulation results correlate well with the experimental results especially for constitutive winfrith concrete model. Also, the impact resistance performance of steel plate reinforced concrete slab panels is better than reinforced concrete slab panels, particularly the rear face steel plate is very effective in preventing the perforation and scabbing of concrete than conventional reinforced concrete structures. In this way, the thickness of steel plate reinforced concrete structures can be reduced in important structures like nuclear power plants against impact of aircraft. It also demonstrates the methodology to validate the analysis procedure with experimental and analytical studies. It may be effectively employed to predict the precise response of safety related structures against aircraft impact

  16. Halloysite reinforced epoxy composites with improved mechanical properties

    Directory of Open Access Journals (Sweden)

    Saif Muhammad Jawwad

    2016-03-01

    Full Text Available Halloysite nanotubes (HNTs reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA. The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.

  17. Working Memory and Reinforcement Schedule Jointly Determine Reinforcement Learning in Children: Potential Implications for Behavioral Parent Training

    Directory of Open Access Journals (Sweden)

    Elien Segers

    2018-03-01

    Full Text Available Introduction: Behavioral Parent Training (BPT is often provided for childhood psychiatric disorders. These disorders have been shown to be associated with working memory impairments. BPT is based on operant learning principles, yet how operant principles shape behavior (through the partial reinforcement (PRF extinction effect, i.e., greater resistance to extinction that is created when behavior is reinforced partially rather than continuously and the potential role of working memory therein is scarcely studied in children. This study explored the PRF extinction effect and the role of working memory therein using experimental tasks in typically developing children.Methods: Ninety-seven children (age 6–10 completed a working memory task and an operant learning task, in which children acquired a response-sequence rule under either continuous or PRF (120 trials, followed by an extinction phase (80 trials. Data of 88 children were used for analysis.Results: The PRF extinction effect was confirmed: We observed slower acquisition and extinction in the PRF condition as compared to the continuous reinforcement (CRF condition. Working memory was negatively related to acquisition but not extinction performance.Conclusion: Both reinforcement contingencies and working memory relate to acquisition performance. Potential implications for BPT are that decreasing working memory load may enhance the chance of optimally learning through reinforcement.

  18. Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Bahman O. Taha

    2015-06-01

    Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.

  19. An evaluation of resistance to change with unconditioned and conditioned reinforcers.

    Science.gov (United States)

    Vargo, Kristina K; Ringdahl, Joel E

    2015-09-01

    Several reinforcer-related variables influence a response's resistance to change (Nevin, 1974). Reinforcer type (i.e., conditioned or unconditioned) is a reinforcer-related variable that has not been studied with humans but may have clinical implications. In Experiment 1, we identified unconditioned and conditioned reinforcers of equal preference. In Experiments 2, 3, and 4, we reinforced participants' behavior during a baseline phase using a multiple variable-interval (VI) 30-s VI 30-s schedule with either conditioned (i.e., token) or unconditioned (i.e., food; one type of reinforcement in each component) reinforcement. After equal reinforcement rates across components, we introduced a disruptor. Results of Experiments 2 and 3 showed that behaviors were more resistant to extinction and distraction, respectively, with conditioned than with unconditioned reinforcers. Results of Experiment 4, however, showed that when prefeeding disrupted responding, behaviors were more resistant to change with unconditioned reinforcers than with conditioned reinforcers. © Society for the Experimental Analysis of Behavior.

  20. Mechanical Properties of Welded Deformed Reinforcing Steel Bars

    Directory of Open Access Journals (Sweden)

    Ghafur H. Ahmed

    2015-05-01

    Full Text Available Reinforcement strength, ductility and bendability properties are important components in design of reinforced concrete members, as the strength of any member comes mainly from reinforcement. Strain compatibility and plastic behaviors are mainly depending on reinforcement ductility. In construction practice, often welding of the bars is required. Welding of reinforcement is an instant solution in many cases, whereas welding is not a routine connection process. Welding will cause deficiencies in reinforcement bars, metallurgical changes and re-crystallization of microstructure of particles. Weld metal toughness is extremely sensitive to the welding heat input that decreases both of its strength and ductility. For determining the effects of welding in reinforcement properties, 48 specimens were tested with 5 different bar diameters, divided into six groups. Investigated parameters were: properties of un-welded bars; strength, ductility and density of weld metal; strength and ductility reduction due to heat input for bundled bars and transverse bars; welding effect on bars’ bending properties; behavior of different joint types; properties of three weld groove shapes also the locations and types of failures sections. Results show that, strength and elongation of the welded bars decreased by (10-40% and (30-60% respectively. Cold bending of welded bars and groove welds shall be prevented.

  1. Deep Reinforcement Learning: An Overview

    OpenAIRE

    Li, Yuxi

    2017-01-01

    We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsuperv...

  2. Response-reinforcer dependency and resistance to change.

    Science.gov (United States)

    Cançado, Carlos R X; Abreu-Rodrigues, Josele; Aló, Raquel Moreira; Hauck, Flávia; Doughty, Adam H

    2018-01-01

    The effects of the response-reinforcer dependency on resistance to change were studied in three experiments with rats. In Experiment 1, lever pressing produced reinforcers at similar rates after variable interreinforcer intervals in each component of a two-component multiple schedule. Across conditions, in the fixed component, all reinforcers were response-dependent; in the alternative component, the percentage of response-dependent reinforcers was 100, 50 (i.e., 50% response-dependent and 50% response-independent) or 10% (i.e., 10% response-dependent and 90% response-independent). Resistance to extinction was greater in the alternative than in the fixed component when the dependency in the former was 10%, but was similar between components when this dependency was 100 or 50%. In Experiment 2, a three-component multiple schedule was used. The dependency was 100% in one component and 10% in the other two. The 10% components differed on how reinforcers were programmed. In one component, as in Experiment 1, a reinforcer had to be collected before the scheduling of other response-dependent or independent reinforcers. In the other component, response-dependent and -independent reinforcers were programmed by superimposing a variable-time schedule on an independent variable-interval schedule. Regardless of the procedure used to program the dependency, resistance to extinction was greater in the 10% components than in the 100% component. These results were replicated in Experiment 3 in which, instead of extinction, VT schedules replaced the baseline schedules in each multiple-schedule component during the test. We argue that the relative change in dependency from Baseline to Test, which is greater when baseline dependencies are high rather than low, could account for the differential resistance to change in the present experiments. The inconsistencies in results across the present and previous experiments suggest that the effects of dependency on resistance to change are

  3. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  4. Behavior of reinforced concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.

    1984-09-01

    A study is presented concerning the behavior of reinforced concrete sections at elevated temperatures. Material properties of concrete and reinforcing steel are discussed. Behavior studies are made by means of moment-curvature-axial force relationships. Particular attention is given to the load carrying capacity, thermal forces and moments, and deformation capacity. The effects on these properties of variations in the strength properties, the temperature level and distribution, the amount of reinforcing steel, and limiting values of strains are considered

  5. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete

    International Nuclear Information System (INIS)

    Michel, A.; Solgaard, A.O.S.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F.

    2013-01-01

    Highlights: •Cracked plain and steel fibre reinforced concrete flexural beams were investigated. •“Instrumented rebars” provided location- and time-dependent corrosion measurements. •Interfacial condition can be used as a reliable indicator to quantify the risk of corrosion. •Simulated interfacial conditions are in very good agreement with all experimental observations. -- Abstract: Cracks in covering concrete are known to hasten initiation of steel corrosion in reinforced concrete structures. To minimise the impact of cracks on the deterioration of reinforced concrete structures, current approaches in (inter)national design codes often limit the concrete surface crack width. Recent investigations however, indicate that the concrete-reinforcement interfacial condition is a more fundamental criterion related to reinforcement corrosion. This work investigates the relation between macroscopic damage at the concrete-steel interface and corrosion initiation of reinforcement embedded in plain and fibre reinforced concrete. Comparisons of experimental and numerical results indicate a strong correlation between corrosion initiation and interfacial condition

  6. Origins of altered reinforcement effects in ADHD

    Directory of Open Access Journals (Sweden)

    Tripp Gail

    2009-02-01

    Full Text Available Abstract Attention-deficit/hyperactivity disorder (ADHD, characterized by hyperactivity, impulsiveness and deficient sustained attention, is one of the most common and persistent behavioral disorders of childhood. ADHD is associated with catecholamine dysfunction. The catecholamines are important for response selection and memory formation, and dopamine in particular is important for reinforcement of successful behavior. The convergence of dopaminergic mesolimbic and glutamatergic corticostriatal synapses upon individual neostriatal neurons provides a favorable substrate for a three-factor synaptic modification rule underlying acquisition of associations between stimuli in a particular context, responses, and reinforcers. The change in associative strength as a function of delay between key stimuli or responses, and reinforcement, is known as the delay of reinforcement gradient. The gradient is altered by vicissitudes of attention, intrusions of irrelevant events, lapses of memory, and fluctuations in dopamine function. Theoretical and experimental analyses of these moderating factors will help to determine just how reinforcement processes are altered in ADHD. Such analyses can only help to improve treatment strategies for ADHD.

  7. Numerical modelling of reinforced concrete beams with fracture-plastic material

    Directory of Open Access Journals (Sweden)

    O. Sucharda

    2014-10-01

    Full Text Available This paper describes the use of models of fracture-plastic materials for reinforced concrete in numerical modelling of beams made from reinforced concrete. The purpose of the paper is to use of a model of concrete for modelling of a behaviour of reinforced concrete beams which have been tested at the University of Toronto within re-examination of classic concrete beam tests. The original tests were performed by Bresler- Scordelis. A stochastic modelling based on LHS (Latin Hypercube Sampling has been performed for the reinforced concrete beam. An objective of the modelling is to evaluate the total bearing capacity of the reinforced concrete beams depending on distribution of input data. The beams from the studied set have longitudinal reinforcement only. The beams do not have any shear reinforcement. The software used for the fracture-plastic model of the reinforced concrete is the ATENA.

  8. Reinforcement learning in supply chains.

    Science.gov (United States)

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  9. Rotational Capacity of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Brincker, Rune

    1995-01-01

    programme where 120 reinforced concrete beams, 54 plain concrete beams and 324 concrete cylinders are tested. For the reinforced concrete beams four different parar meters are varied. The slenderness is 6, 12 and 18, the beam depth is 100 mm, 200 mm and 400 mm giving nine different geometries, five...

  10. GLASS-FIBRE REINFORCED COMPOSITES: THE EFFECT OF ...

    African Journals Online (AJOL)

    HOD

    mechanical and corrosion wear behaviour of any reinforced composites. In other ..... physical properties of glass fibre reinforced epoxy resin and the following .... waste in concrete and cement composites," Journal of Cleaner Production, vol.

  11. Human choice among five alternatives when reinforcers decay.

    Science.gov (United States)

    Rothstein, Jacob B; Jensen, Greg; Neuringer, Allen

    2008-06-01

    Human participants played a computer game in which choices among five alternatives were concurrently reinforced according to dependent random-ratio schedules. "Dependent" indicates that choices to any of the wedges activated the random-number generators governing reinforcers on all five alternatives. Two conditions were compared. In the hold condition, once scheduled, a reinforcer - worth a constant five points - remained available until it was collected. In the decay condition, point values decreased with intervening responses, i.e., rapid collection was differentially reinforced. Slopes of matching functions were higher in the decay than hold condition. However inter-subject variability was high in both conditions.

  12. Toughened microstructures for ductile phase reinforced molybdenum disilicide

    International Nuclear Information System (INIS)

    Pickard, S.M.; Ghosh, A.K.

    1995-01-01

    Various morphologies of ductile Nb refractory metal reinforcement are incorporated into a MoSi 2 matrix using powder metallurgy, including single-ply laminates, continuous metal ribbons and sections of 2-dimensional wire mesh. Hot forging techniques are used to redistribute the reinforcement and change the dimensions and the aspect ratio of the reinforcing metal ligaments. Work-of-rupture measurements are conducted on bend test specimens and precracked tensile specimens of the composite so that the toughness contribution from the various ductile metal morphologies can be assessed according to its effectiveness. Accompanying microstructural examination of crack bridging interaction with the reinforcement is conducted

  13. Generating variable and random schedules of reinforcement using Microsoft Excel macros.

    Science.gov (United States)

    Bancroft, Stacie L; Bourret, Jason C

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values.

  14. Evaluation of the protection behaviour of reinforcement steel against corrosion induced by chlorides in reinforced mortar specimens

    International Nuclear Information System (INIS)

    Crivelaro, Marcos

    2002-01-01

    In this work various treatments for protecting reinforcing steels against corrosion induced by chlorides have been evaluated. Additives to mortars and surface treatments given to reinforcing steels were evaluated as corrosion protection measures. In the preliminary tests the corrosion resistance of a CA 50 steel treated by immersion in nearly 50 different solutions, was determined. The solutions were prepared with tannins (from various sources) and/or benzotriazole, and during immersion, a surface film formed on the steel. The corrosion resistance of the coated steels was evaluated in a saturated Ca(OH) 2 solution with 5% (wt) NaCl. Preliminary tests were also carried out with mortars reinforced with uncoated steel to which tannin or lignin was added. Two organic coatings, a monocomponent and a bicomponent type, formulated specially for this investigation, with both tannin and benzotriazole, were also tested in the preliminary tests to select the coating with better corrosion protection property. The bicomponent type (epoxy coating) showed better performance than the monocomponent type coating, and the former was therefore chosen to investigate the corrosion performance on CA 50 steel inside mortar specimens. From the preliminary tests, two solutions with tannin from two sources, Black Wattle (Acacia mearnsii) and Brazilian tea (Ilex paraguariensis St. Hill), to which benzotriazole and phosphoric acid were added, were chosen. Mortar specimens reinforced with CA50 steel treated by immersion in these two solutions were prepared. Also, epoxy coated CA50 steel was tested as reinforcement inside mortar specimens. Mortars reinforced with uncoated CA50 steel were also prepared and corrosion tested for comparison. The effect of tannin and lignin as separate additives to the mortar on the corrosion resistance of uncoated steel was also studied. The reinforced mortar specimens were tested with various cycles of immersion for 2 days in 3.5% (wt) NaCl followed by with air

  15. [The behavior of fiber-reinforced plastics during laser cutting].

    Science.gov (United States)

    Emmrich, M; Levsen, K; Trasser, F J

    1992-06-01

    The pattern of the organic emissions, which are produced by processing of fibre reinforced plastics (epoxy resins reinforced by aramid and glass fibres and phenol resins reinforced by aramid fibre) with laser beam was studied and the concentrations of the main components determined. Despite the application of plastic materials with different chemical structures, the observed patterns are very similar. Mainly aromatic hydrocarbons are emitted, especially benzene and toluene, as well as some heteroatom-containing aromatic hydrocarbons (e.g. phenol). By use of oxygen as process gas the emissions during cutting of glass fibre reinforced plastics can be reduced, while they will be constantly high with aramid fibre reinforced plastics.

  16. Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros

    Science.gov (United States)

    Bancroft, Stacie L.; Bourret, Jason C.

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time.…

  17. Redundancy Factors for the Seismic Design of Ductile Reinforced Concrete Chevron Braced Frames

    Directory of Open Access Journals (Sweden)

    Eber Alberto Godínez-Domínguez

    Full Text Available Abstract In this paper the authors summarize the results of a study devoted to assess, using nonlinear static analyses, the impact of increasing the structural redundancy in ductile moment-resisting reinforced concrete concentric braced frames structures (RC-MRCBFs. Among the studied variables were the number of stories and the number of bays. Results obtained were compared with the currently proposed values in the Manual of Civil Structures (MOC-08, a model code of Mexico. The studied frames have 4, 8, 12 and 16-story with a story height h=3.5 m. and a fixed length L=12 m., where 1, 2, 3 or 4 bays have to be located. RC-MRCBFs were assumed to be located in soft soil conditions in Mexico City and were designed using a capacity design methodology adapted to general requirements of the seismic, reinforced concrete and steel guidelines of Mexican Codes. From the results obtained in this study it is possible to conclude that a different effect is observed in overstrength redundancy factors respect to ductility redundancy factors due to an increase of the bay number considered. Also, the structural redundancy factors obtained for this particular structural system varies respect to the currently proposed in MOC-08.

  18. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.

    Science.gov (United States)

    Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S

    2017-10-06

    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Dynamic Characteristics of Saturated Silty Soil Ground Treated by Stone Column Composite Foundation

    Directory of Open Access Journals (Sweden)

    Yongxiang Zhan

    2014-01-01

    Full Text Available A shaking table model test was carried out to develop an understanding of the performance improvement of saturated silty soil ground using stone column composite foundation as reinforcement. It is found that at less than 0.161 g loading acceleration, soil between piles has not yet been liquefied, the response acceleration scarcely enlarges, and the shear displacement almost does not appear in silty soil. At 0.252 g loading acceleration, as a result of liquefaction of soil between piles, the response acceleration increases rapidly and reaches its peak, and the shear displacement of silty soil increases significantly. At 0.325 g loading acceleration, the integral rigidity of foundation decreases greatly, which reduces its capability of vibration transmission and result in the response acceleration amplification coefficient is less than that at the former loading acceleration, but the shear displacement of silty soil further increases. The stone column composite foundation can greatly reduce both the shear displacement and the settlement of ground compared with untreated foundation. Under the condition of 7-degree seismic fortification, the design meets seismic resistance requirements.

  20. Effect of the reinforcement bar arrangement on the efficiency of electrochemical chloride removal technique applied to reinforced concrete structures

    International Nuclear Information System (INIS)

    Garces, P.; Sanchez de Rojas, M.J.; Climent, M.A.

    2006-01-01

    This paper reports on the research done to find out the effect that different bar arrangements may have on the efficiency of the electrochemical chloride removal (ECR) technique when applied to a reinforced concrete structural member. Five different types of bar arrangements were considered, corresponding to typical structural members such as columns (with single and double bar reinforcing), slabs, beams and footings. ECR was applied in several steps. We observe that the extraction efficiency depends on the reinforcing bar arrangement. A uniform layer set-up favours chloride extraction. Electrochemical techniques were also used to estimate the reinforcing bar corrosion states, as well as measure the corrosion potential, and instant corrosion rate based on the polarization resistance technique. After ECR treatment, a reduction in the corrosion levels is observed falling short of the depassivation threshold

  1. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.

    Directory of Open Access Journals (Sweden)

    Ramaswamy Krishnan

    Full Text Available Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

  2. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module on concrete reinforcing is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. This module contains three instructional units that cover the following topics: (1) concrete reinforcing materials; (2) concrete reinforcing tools; and (3) concrete reinforcing basic skills. Each…

  3. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    Science.gov (United States)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  4. Equivalence relations and the reinforcement contingency.

    Science.gov (United States)

    Sidman, M

    2000-07-01

    Where do equivalence relations come from? One possible answer is that they arise directly from the reinforcement contingency. That is to say, a reinforcement contingency produces two types of outcome: (a) 2-, 3-, 4-, 5-, or n-term units of analysis that are known, respectively, as operant reinforcement, simple discrimination, conditional discrimination, second-order conditional discrimination, and so on; and (b) equivalence relations that consist of ordered pairs of all positive elements that participate in the contingency. This conception of the origin of equivalence relations leads to a number of new and verifiable ways of conceptualizing equivalence relations and, more generally, the stimulus control of operant behavior. The theory is also capable of experimental disproof.

  5. Slipforming of reinforced concrete shield building

    International Nuclear Information System (INIS)

    Hsieh, M.C.; King, J.R.

    1982-01-01

    The unique design and construction features of slipforming the heavily reinforced concrete cylindrical shield walls at the Satsop nuclear plant in Washington, D.C. site are presented. The shield walls were designed in compliance with seismic requirements which resulted in the need for reinforcing steel averaging 326 kg/m/sup 3/. A 7.6 m high, three-deck moving platform was designed to permit easy installation of the reinforcing steel, embedments, and blockouts, and to facilitate concrete placement and finishing. Two circular box trusses, one on each side of the shield wall, were used in combination with a spider truss to meet both the tolerance and strength requirements for the slipform assembly

  6. Quantitative radiographic analysis of fiber reinforced polymer composites.

    Science.gov (United States)

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  7. Behavior of reinforcement SCC beams under elevated temperatures

    Science.gov (United States)

    Fathi, Hamoon; Farhang, Kianoosh

    2015-09-01

    This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.

  8. Vicarious Reinforcement In Rhesus Macaques (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Steve W. C. Chang

    2011-03-01

    Full Text Available What happens to others profoundly influences our own behavior. Such other-regarding outcomes can drive observational learning, as well as motivate cooperation, charity, empathy, and even spite. Vicarious reinforcement may serve as one of the critical mechanisms mediating the influence of other-regarding outcomes on behavior and decision-making in groups. Here we show that rhesus macaques spontaneously derive vicarious reinforcement from observing rewards given to another monkey, and that this reinforcement can motivate them to subsequently deliver or withhold rewards from the other animal. We exploited Pavlovian and instrumental conditioning to associate rewards to self (M1 and/or rewards to another monkey (M2 with visual cues. M1s made more errors in the instrumental trials when cues predicted reward to M2 compared to when cues predicted reward to M1, but made even more errors when cues predicted reward to no one. In subsequent preference tests between pairs of conditioned cues, M1s preferred cues paired with reward to M2 over cues paired with reward to no one. By contrast, M1s preferred cues paired with reward to self over cues paired with reward to both monkeys simultaneously. Rates of attention to M2 strongly predicted the strength and valence of vicarious reinforcement. These patterns of behavior, which were absent in nonsocial control trials, are consistent with vicarious reinforcement based upon sensitivity to observed, or counterfactual, outcomes with respect to another individual. Vicarious reward may play a critical role in shaping cooperation and competition, as well as motivating observational learning and group coordination in rhesus macaques, much as it does in humans. We propose that vicarious reinforcement signals mediate these behaviors via homologous neural circuits involved in reinforcement learning and decision-making.

  9. Vicarious reinforcement in rhesus macaques (macaca mulatta).

    Science.gov (United States)

    Chang, Steve W C; Winecoff, Amy A; Platt, Michael L

    2011-01-01

    What happens to others profoundly influences our own behavior. Such other-regarding outcomes can drive observational learning, as well as motivate cooperation, charity, empathy, and even spite. Vicarious reinforcement may serve as one of the critical mechanisms mediating the influence of other-regarding outcomes on behavior and decision-making in groups. Here we show that rhesus macaques spontaneously derive vicarious reinforcement from observing rewards given to another monkey, and that this reinforcement can motivate them to subsequently deliver or withhold rewards from the other animal. We exploited Pavlovian and instrumental conditioning to associate rewards to self (M1) and/or rewards to another monkey (M2) with visual cues. M1s made more errors in the instrumental trials when cues predicted reward to M2 compared to when cues predicted reward to M1, but made even more errors when cues predicted reward to no one. In subsequent preference tests between pairs of conditioned cues, M1s preferred cues paired with reward to M2 over cues paired with reward to no one. By contrast, M1s preferred cues paired with reward to self over cues paired with reward to both monkeys simultaneously. Rates of attention to M2 strongly predicted the strength and valence of vicarious reinforcement. These patterns of behavior, which were absent in non-social control trials, are consistent with vicarious reinforcement based upon sensitivity to observed, or counterfactual, outcomes with respect to another individual. Vicarious reward may play a critical role in shaping cooperation and competition, as well as motivating observational learning and group coordination in rhesus macaques, much as it does in humans. We propose that vicarious reinforcement signals mediate these behaviors via homologous neural circuits involved in reinforcement learning and decision-making.

  10. Structural performance evaluation on aging underground reinforced concrete structures. Part 5

    International Nuclear Information System (INIS)

    Matsumura, Takuro; Matsuo, Toyofumi; Miyagawa, Yoshinori

    2009-01-01

    When we evaluate the soundness of reinforced concrete structures, it is important to assess the chloride induced deterioration. We conducted the reinforcing steel corrosion tests of reinforced concrete specimens under simulated tidal environment of sea. Parameters of the tests were water cement ratio, cement type and crack width of concrete. Periods of the tests were eighty month. The obtained results were summarized at follows: (a) The chloride ion concentration at the initiation of reinforcing steel corrosion was about 3.0 kg/m 3 in case of reinforcing steel in non-crack concrete used ordinary cement. (b) The corrosion rate of reinforcing steels was almost constant at any cement type specimens after causing crack by reinforcing steel corrosion. (c) The corrosion rate of reinforcing steels in specimens, which caused cracks by bending load, increased as crack width. In the same type specimens, the corrosion rate of reinforcing steels in fly ash cement specimens was larger than that of ordinary cement specimens. In this case, the corrosion rate of reinforcing steels was evaluated about 0.18 mm/year. (author)

  11. Disperse reinforced concrete used in obtaining prefabricated elements for roads

    Directory of Open Access Journals (Sweden)

    Bogdan MEZEI

    2014-07-01

    Full Text Available Concrete is the most used material in construction. By improving the performance of materials and of technologies, concretes with outstanding performances were also developed, in the past two decades. Concrete with dispersed reinforcement represents a new generation of reinforced concrete that combines a good behavior of concrete compressive strength with an increased tensile strength of steel fibers. Using this material, monolithic and prefabricated concrete elements with high mechanical strengths and high durability can be obtained. Technological processes for preparation of concrete with dispersed reinforcement are similar to the conventional methods and do not involve using additional equipment for dosing the dispersed reinforcement. The study aimed the development of road plates made with optimized disperse- reinforced concrete. The first tests were done on plates from the gutter roadway, having a classic reinforcement, using different percentages of fibre reinforcement in the concrete composition, leading to the development of a new optimized economical solution. The results prove the enhanced characteristics of the disperse-reinforced concrete versus conventional concrete, and hence of the developed concrete plates.

  12. Global reinforcement training of CrossNets

    Science.gov (United States)

    Ma, Xiaolong

    2007-10-01

    Hybrid "CMOL" integrated circuits, incorporating advanced CMOS devices for neural cell bodies, nanowires as axons and dendrites, and latching switches as synapses, may be used for the hardware implementation of extremely dense (107 cells and 1012 synapses per cm2) neuromorphic networks, operating up to 10 6 times faster than their biological prototypes. We are exploring several "Cross- Net" architectures that accommodate the limitations imposed by CMOL hardware and should allow effective training of the networks without a direct external access to individual synapses. Our studies have show that CrossNets based on simple (two-terminal) crosspoint devices can work well in at least two modes: as Hop-field networks for associative memory and multilayer perceptrons for classification tasks. For more intelligent tasks (such as robot motion control or complex games), which do not have "examples" for supervised learning, more advanced training methods such as the global reinforcement learning are necessary. For application of global reinforcement training algorithms to CrossNets, we have extended Williams's REINFORCE learning principle to a more general framework and derived several learning rules that are more suitable for CrossNet hardware implementation. The results of numerical experiments have shown that these new learning rules can work well for both classification tasks and reinforcement tasks such as the cartpole balancing control problem. Some limitations imposed by the CMOL hardware need to be carefully addressed for the the successful application of in situ reinforcement training to CrossNets.

  13. Strengthening of the Timber Members Using Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available The reinforcement of structural wood products has become in the last decades an efficient method of improving structural capabilities of load carrying members made of this material. Some important steps in earlier stages of research were focused on using metallic reinforcement, including steel bars, prestressed stranded cables, and bonded steel and aluminum plates. A disadvantage of the metallic reinforcement was the poor compatibility between the wood and the reinforcing materials. In comparison with metallic reinforcement, fiber reinforced polymers (FRP composites are compatible with structural wood products leading to efficient hybrid members. Some interesting strengthening alternatives using FRP applied to wood beams and to wood columns are presented in this paper.

  14. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  15. Development of an accelerated creep testing procedure for geosynthetics : technical summary.

    Science.gov (United States)

    1997-09-01

    Temperature-creep relationships in geosynthetics vary for each type of geogrid and depend on many factors such as polymer structure, manufacture process, degree of crystallinity, and glass-transition temperature. The extrapolation procedures to predi...

  16. Engineered covers for mud pit closures Central Nevada Test Area, Nevada

    International Nuclear Information System (INIS)

    Madsen, D.D.

    2000-01-01

    Two abandoned drilling mud pits impacted with petroleum hydrocarbons were determined to require closure action at the Central Nevada Test Area. The UC-4 Mud Pit C is approximately 0.12 hectares (0.3 acres) and 1.2 meters (4 feet) in depth. The UC-1 Central Mud Pit (CMP) is approximately 1.54 hectares (3.8 acres) and 2.4 meters (8 feet) in depth. Both mud pits contain bentonite drilling muds with a thin dry crust, low shear strength, low permeability, and high moisture content. The following closure methodologies were evaluated: stabilization by mixing/injection with soil, fly ash, and lime; excavation and disposal; on-site drying; thermal destruction; wick drains; administrative closure (postings and land-use restrictions); and engineered covers. Based upon regulatory closure criteria, implementation, and cost considerations, the selected remedial alternative was the construction of an engineered cover. A multilayered cover with a geo-grid and geo-synthetic clay liner (GCL) was designed and constructed over the UC-4 Mud Pit C to evaluate the constructability and applicability of the design for the CMP cover. The geo-grid provided structural strength for equipment and material loads during cover construction, and the GCL was used as a moisture infiltration barrier. The design was determined to be constructable and applicable. To reduce project costs for the CMP cover, a vegetative cover was designed with drainage toward the center of the cover rather than the perimeter. The vegetative cover with the internal drainage design resulted in a fill volume reduction of approximately 63 percent compared to the multilayered cover design with a GCL

  17. Climate interacts with soil to produce beta diversity in Californian plant communities.

    Science.gov (United States)

    Fernandez-Going, B M; Harrison, S P; Anacker, B L; Safford, H D

    2013-09-01

    Spatially distinct communities can arise through interactions and feedbacks between abiotic and biotic factors. We suggest that, for plants, patches of infertile soils such as serpentine may support more distinct communities from those in the surrounding non-serpentine matrix in regions where the climate is more productive (i.e., warmer and/or wetter). Where both soil fertility and climatic productivity are high, communities may be dominated by plants with fast-growing functional traits, whereas where either soils or climate impose low productivity, species with stress-tolerant functional traits may predominate. As a result, both species and functional composition may show higher dissimilarity between patch and matrix in productive climates. This pattern may be reinforced by positive feedbacks, in which higher plant growth under favorable climate and soil conditions leads to higher soil fertility, further enhancing plant growth. For 96 pairs of sites across a 200-km latitudinal gradient in California, we found that the species and functional dissimilarities between communities on infertile serpentine and fertile non-serpentine soils were higher in more productive (wetter) regions. Woody species had more stress-tolerant functional traits on serpentine than non-serpentine soil, and as rainfall increased, woody species functional composition changed toward fast-growing traits on non-serpentine, but not on serpentine soils. Soil organic matter increased with rainfall, but only on non-serpentine soils, and the difference in organic matter between soils was positively correlated with plant community dissimilarity. These results illustrate a novel mechanism wherein climatic productivity is associated with higher species, functional, and landscape-level dissimilarity (beta diversity).

  18. The contribution of Japanese Soil Science Societies to scientific knowledge, education and sustainability: Good practices in the International Year of Soils 2015 towards the International Decade of Soils.

    Science.gov (United States)

    Kosaki, Takashi; Matoh, Toru; Inubushi, Kazuyuki; Sakurai, Katsutoshi

    2017-04-01

    The soil science community in Japan includes ca. 15,000 individuals from a variety of sectors, i.e. research, education, extension, business, national and local government, practitioners, non-governmental or non-profit organizations, etc., who have mostly (multi-)membership(s) in some of the academic societies. Among those societies, the Japanese Society of Soil Science and Plant Nutrition, the Japanese Society of Soil Microbiology and the Japanese Society of Pedology played a leading role in the promotion of the International Year of Soils 2015. The activities, many of which were jointly organized and executed by the above three, can be summarized as follows; Scientific symposiums/workshops not only within the societies but together with other disciplines such as geosciences, quaternary research, biogeochemistry, ecology, biosciences, geotechnology, etc. in national as well as international gatherings, Symposiums, (mobile) exhibitions, photo contests, science cafes, talk shows, field days, agricultural fairs, edutainment programs for school children, etc. for promoting the public awareness of soil and soil science, Publication of the books and booklets on the topics of soils, soil science, soil and environment (and/or food, life, human security, etc.), targeting the moderately educated public, Articles in selected newspapers, Distribution or sale of the novelty/memorial goods and items, e.g. soil globe, logo stickers, specially brewed Sake wines, etc. Translation of "Vienna Soil Declaration" of the IUSS into Japanese language and its distribution to the public, and Scientific and action proposal and its international dispatch of "The need to reinforce soil science research and the information basis to respond to both gradual and sudden changes in our environment" together with the Science Council of Japan. Scientific forums and gatherings as symposiums and workshops with other disciplines were successful and satisfied by most of the participants. Those for the

  19. Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.

    Science.gov (United States)

    Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria

    2016-03-01

    Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.

  20. Tensile behavior and tension stiffening of reinforced concrete

    International Nuclear Information System (INIS)

    Choun, Young Sun; Seo, Jeong Moon

    2001-03-01

    For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building

  1. Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

    OpenAIRE

    M. Aruna

    2014-01-01

    Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. ...

  2. Seismic fragility of a reinforced concrete structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurmann, Davide [Axpo Power AG, Baden (Switzerland); Proske, Dirk [Axpo Power AG, Doettingen (Switzerland); Cervenka, Jan [Cervenka Consulting, Prague (Czech Republic)

    2013-05-15

    Structures can be exposed to seismic loading. For structures of major importance, extreme seismic loadings have to be considered. The proof of safety for such loadings requires sophisticated analysis. This paper introduces an analysis method which of course still includes simplifications, but yields to a far more realistic estimation of the seismic load bearing capacity of reinforced concrete structures compared to common methods. It is based on the development of pushover curves and the application of time-histories for the dynamic model to a representative harmonic oscillator. Dynamic parameters of the oscillator, such as modal mass and damping are computed using a soil-structure-interaction analysis. Based on the pushover-curve nonlinear force-deformation-capacities are applied to the oscillator including hysteresis behaviour characteristics. The oscillator is then exposed to time-histories of several earthquakes. Based on this computation the ductility is computed. The ductility can be scaled based upon the scaling of the time-histories. Since both, the uncertainty of the earthquake by using different timehistories and the uncertainty of the structure by using characteristic and mean material values, are considered, the uncertainty of the structure under seismic loading can be explicitly represented by a fragility. (orig.)

  3. Superconducting properties and uniaxial strain characteristics of Nb3Sn fiber-reinforced superconductors with tantalum reinforcement fibers

    International Nuclear Information System (INIS)

    Arai, Kazuaki; Umeda, Masaichi; Agatsuma, Koh; Tateishi, Hiroshi

    1998-01-01

    We have been developing fiber-reinforced superconductors (FRS) for high-field and large-scale magnets. Tungsten fibers have been selected as the reinforcement fiber for FRS so far because tungsten has the highest elastic modulus of approximately 400 GPa which can minimize the strain from electromagnetic force. The preparation process of FRS consists of sputtering deposition and heat treatment because it may be difficult to apply drawing methods to materials of high-elastic modulus such as tungsten. Tantalum has high elastic modulus of 178 GPa and its thermal expansion coefficient that is closer to that of Nb 3 Sn than tungsten's, which means prestrain in Nb 3 Sn in FRS is reduced by adopting tantalum fibers. Tantalum has been used as barriers between bronze and copper in conventional Nb 3 Sn superconductors which are usually prepared with drawing process despite of the tantalum's high elastic modulus. That implies drawing process may be applied to prepare FRS with tantalum reinforcement fibers. In this paper, FRS using tantalum fibers prepared with sputtering process are described with making comparison with FRS of tungsten to clarify the basic properties of FRS using tantalum fibers. Depth profiles in Nb 3 Sn layer in FRS were measured to examine reaction between superconducting layers and reinforcement fibers. Superconducting properties including strain and stress characteristics were shown. Those data will contribute to design of FRS using tantalum reinforcement fibers with adopts the drawing processes. (author)

  4. Use of reinforced soil foundation (RSF) to support shallow foundation : technical summary report, November 2008.

    Science.gov (United States)

    2008-11-01

    The presence of a weak soil supporting structural foundations results in low load bearing capacity and : excessive settlements, which can cause structural damage, reduction in durability, and/or deterioration in : performance level. Conventional trea...

  5. Structural performance evaluation on aging underground reinforced concrete structures. Part 6. An estimation method of threshold value in performance verification taking reinforcing steel corrosion

    International Nuclear Information System (INIS)

    Matsuo, Toyofumi; Matsumura, Takuro; Miyagawa, Yoshinori

    2009-01-01

    This paper discusses applicability of material degradation model due to reinforcing steel corrosion for RC box-culverts with corroded reinforcement and an estimation method for threshold value in performance verification reflecting reinforcing steel corrosion. First, in FEM analyses, loss of reinforcement section area and initial tension strain arising from reinforcing steel corrosion, and deteriorated bond characteristics between reinforcement and concrete were considered. The full-scale loading tests using corroded RC box-culverts were numerically analyzed. As a result, the analyzed crack patterns and load-strain relationships were in close agreement with the experimental results within the maximum corrosion ratio 15% of primary reinforcement. Then, we showed that this modeling could estimate the load carrying capacity of corroded RC box-culverts. Second, a parametric study was carried out for corroded RC box culverts with various sizes, reinforcement ratios and levels of steel corrosion, etc. Furthermore, as an application of analytical results and various experimental investigations, we suggested allowable degradation ratios for a modification of the threshold value, which corresponds to the chloride induced deterioration progress that is widely accepted in maintenance practice for civil engineering reinforced concrete structures. Finally, based on these findings, we developed two estimation methods for threshold value in performance verification: 1) a structural analysis method using nonlinear FEM included modeling of material degradation, 2) a practical method using a threshold value, which is determined by structural analyses of RC box-culverts in sound condition, is multiplied by the allowable degradation ratio. (author)

  6. Corrosion of reinforcement induced by environment containing ...

    Indian Academy of Sciences (India)

    Unknown

    carbonation and chlorides causing corrosion of steel reinforcement. ... interesting and important when the evaluation of the service life of the ... preferably in the areas of industrial and transport activities. ... For controlling the embedded corrosion sensors, elec- .... danger of corrosion of reinforcement seems to be more.

  7. How edge-reinforced random walk arises naturally

    NARCIS (Netherlands)

    Rolles, S.W.W.

    2003-01-01

    We give a characterization of a modified edge-reinforced random walk in terms of certain partially exchangeable sequences. In particular, we obtain a characterization of an edge-reinforced random walk (introduced by Coppersmith and Diaconis) on a 2-edge-connected graph. Modifying the notion of

  8. Retrofitting Of RCC Piles By Using Basalt Fiber Reinforced Polymer BFRP Composite Part 1 Review Papers On RCC Structures And Piles Retrofitting Works.

    OpenAIRE

    R. Ananda Kumar; Dr. C. Selvamony; A. Seeni; Dr. T. R. Sethuraman

    2015-01-01

    Abstract Retrofitting works are immensely essential for deteriorated and damaged structures in Engineering and Medical fields in order to keep or return to the originality for safe guarding the structures and consumers. In this paper different types of methods of retrofitting review notes are given based on the experimental numerical and analytical methods results on strengthening the Reinforced cement concrete RCC structures including RCC piles. Soil-pile interaction on axial load lateral lo...

  9. Behavioral sensitivity to changing reinforcement contingencies in attention-deficit hyperactivity disorder.

    Science.gov (United States)

    Alsop, Brent; Furukawa, Emi; Sowerby, Paula; Jensen, Stephanie; Moffat, Cara; Tripp, Gail

    2016-08-01

    Altered sensitivity to positive reinforcement has been hypothesized to contribute to the symptoms of attention-deficit hyperactivity disorder (ADHD). In this study, we evaluated the ability of children with and without ADHD to adapt their behavior to changing reinforcer availability. Of one hundred sixty-seven children, 97 diagnosed with ADHD completed a signal-detection task in which correct discriminations between two stimuli were associated with different frequencies of reinforcement. The response alternative associated with the higher rate of reinforcement switched twice during the task without warning. For a subset of participants, this was followed by trials for which no reinforcement was delivered, irrespective of performance. Children in both groups developed an initial bias toward the more frequently reinforced response alternative. When the response alternative associated with the higher rate of reinforcement switched, the children's response allocation (bias) followed suit, but this effect was significantly smaller for children with ADHD. When reinforcement was discontinued, only children in the control group modified their response pattern. Children with ADHD adjust their behavioral responses to changing reinforcer availability less than typically developing children, when reinforcement is intermittent and the association between an action and its consequences is uncertain. This may explain the difficulty children with ADHD have adapting their behavior to new situations, with different reinforcement contingencies, in daily life. © 2016 Association for Child and Adolescent Mental Health.

  10. Factors that influence the reinforcing value of foods and beverages.

    Science.gov (United States)

    Temple, Jennifer L

    2014-09-01

    Behavioral economic principles state that as the cost of a product increases, purchasing or consumption of that product will decrease. To understand the impact of behavioral economics on ingestive behavior, our laboratory utilizes an operant behavior paradigm to measure how much work an individual will engage in to get access to foods and beverages. This task provides an objective measure of the reinforcing value. We have shown that consumption of the same high fat snack food every day for two weeks reduces its reinforcing value in lean individuals, but increases its reinforcing value in a subset of obese individuals. This increase in the reinforcing value of food predicts future weight gain. Similarly, we have shown that repeated intake of caffeinated soda increases its reinforcing value in boys, but not in girls. This increase in reinforcing value is not related to usual caffeine consumption, but may be associated with positive, subjective effects of caffeine that are more likely to be reported by boys than by girls. Because food and beverage reinforcement relates to real-world consumption, it is important to determine factors that increase or decrease the reinforcing value and determine the consequences of these responses. We are especially interested in determining ways to shift the behavioral economic curve in order to develop novel strategies to decrease the reinforcing value of less healthy snack foods and beverages, such as soda, potato chips and candy and to increase the reinforcing value of healthier foods and beverages, such as water, fruits, and vegetables. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Strain Capacity of Reinforced Concrete Members Subjected to Uniaxial Tension

    DEFF Research Database (Denmark)

    Hagsten, Lars German; Rasmussen, Annette Beedholm; Fisker, Jakob

    2017-01-01

    The aim of this paper is to set up a method to determine the strain capacity of tension bars of reinforced concrete (RC) subjected to pure tension. Due to the interaction between reinforcement and concrete and due to the presence of cracks, the stresses in both reinforcement and concrete...... are varying along the length of the tension bar. The strain capacity of the tension bar is seen as the average strain in the reinforcement at the load level corresponding to the ultimate stress capacity of the reinforcement at the cracks. The result of the approach is in overall good agreement when comparing...

  12. Reinforcement, Behavior Constraint, and the Overjustification Effect.

    Science.gov (United States)

    Williams, Bruce W.

    1980-01-01

    Four levels of the behavior constraint-reinforcement variable were manipulated: attractive reward, unattractive reward, request to perform, and a no-reward control. Only the unattractive reward and request groups showed the performance decrements that suggest the overjustification effect. It is concluded that reinforcement does not cause the…

  13. Continuous jute fibre reinforced laminated paper composite

    Indian Academy of Sciences (India)

    Jute fibre; laminated paper composite; plastic bag pollution. Abstract. Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate ...

  14. Occurrence of shale soils along the Calabar-Itu highway, Southeastern Nigeria and their implication for the subgrade construction.

    Science.gov (United States)

    Ilori, Abidemi Olujide

    2016-01-01

    This study concerned a stretch of 17 km of a 94-km highway alignment in Southeastern Nigeria that has a high incidence of pavement failure arising from subgrade failure. The subgrade of this section of the roadway is composed of Ekenkpon shale, New Netim marl, and Nkporo shale. Under the Unified Soil Classification System, the shales classify as OH (organic clay) and the marl classifies as MH (inorganic silt). Under the American Association of State and Transportation Officials (AASHTO) M 145 soil classification, all these soils classify as A-7-5 soil. Using the AASHTO M 145 group index, none of these soils was considered suitable as subgrade in its native form. Therefore, cement was investigated as a stabilizing agent. Testing demonstrated that 7, 3 and 12 % by weight were the optimum cement contents to reinforce the Ekenkpon shale, New Netim marl, and Nkporo shale, respectively.

  15. Maintenance of reinforcement to address the chronic nature of drug addiction.

    Science.gov (United States)

    Silverman, Kenneth; DeFulio, Anthony; Sigurdsson, Sigurdur O

    2012-11-01

    Drug addiction can be a chronic problem. Abstinence reinforcement can initiate drug abstinence, but as with other treatments many patients relapse after the intervention ends. Abstinence reinforcement can be maintained to promote long-term drug abstinence, but practical means of implementing long-term abstinence reinforcement are needed. We reviewed 8 clinical trials conducted in Baltimore, MD from 1996 through 2010 that evaluated the therapeutic workplace as a vehicle for maintaining reinforcement for the treatment of drug addiction. The therapeutic workplace uses employment-based reinforcement in which employees must provide objective evidence of drug abstinence or medication adherence to work and earn wages. Employment-based reinforcement can initiate (3 of 4 studies) and maintain (2 studies) cocaine abstinence in methadone patients, although relapse can occur even after long-term exposure to abstinence reinforcement (1 study). Employment-based reinforcement can also promote abstinence from alcohol in homeless alcohol dependent adults (1 study), and maintain adherence to extended-release naltrexone in opioid dependent adults (2 studies). Treatments should seek to promote life-long effects in patients. Therapeutic reinforcement may need to be maintained indefinitely to prevent relapse. Workplaces could be effective vehicles for the maintenance of therapeutic reinforcement contingencies for drug abstinence and adherence to addiction medications. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Constitutive equations for cracked reinforced concrete based on a refined model

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    Nonlinear numerical methods to calculate structures of reinforced concrete or of prestressed concrete are mostly based on two idealizing assumptions: tension stiffness perpendicular to cracks is equal to the stiffness of reinforcement alone and shear modulus is taken as constant. In real reinforced concrete structures concrete contributes to the tension-stiffness perpendicular to cracks and thus to the global stiffness matrix because of bond action between concrete and reinforcement and shear transfer in cracks is depending on stresses acting in cracks. Only few authors are taking these aspects into account and only with rough semiempirical assumptions. In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include these effects, hitherto neglected, depending on the given state of stress. The model is composed of three model-elements: component u - uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r - reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c - crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). (Auth.)

  17. The role of plant-soil feedbacks in driving native-species recovery.

    Science.gov (United States)

    Yelenik, Stephanie G; Levine, Jonathan M

    2011-01-01

    The impacts of exotic plants on soil nutrient cycling are often hypothesized to reinforce their dominance, but this mechanism is rarely tested, especially in relation to other ecological factors. In this manuscript we evaluate the influence of biogeochemically mediated plant-soil feedbacks on native shrub recovery in an invaded island ecosystem. The introduction of exotic grasses and grazing to Santa Cruz Island, California, USA, converted native shrublands (dominated by Artemisia californica and Eriogonum arborescens) into exotic-dominated grasslands (dominated by Avena barbata) over a century ago, altering nutrient-cycling regimes. To test the hypothesis that exotic grass impacts on soils alter reestablishment of native plants, we implemented a field-based soil transplant experiment in three years that varied widely in rainfall. Our results showed that growth of Avena and Artemisia seedlings was greater on soils influenced by their heterospecific competitor. Theory suggests that the resulting plant-soil feedback should facilitate the recovery of Artemisia in grasslands, although four years of monitoring showed no such recovery, despite ample seed rain. By contrast, we found that species effects on soils lead to weak to negligible feedbacks for Eriogonum arborescens, yet this shrub readily colonized the grasslands. Thus, plant-soil feedbacks quantified under natural climate and competitive conditions did not match native-plant recovery patterns. We also found that feedbacks changed with climate and competition regimes, and that these latter factors generally had stronger effects on seedling growth than species effects on soils. We conclude that even when plant-soil feedbacks influence the balance between native and exotic species, their influence may be small relative to other ecological processes.

  18. Reinforcement Toolbox, a Parametric Reinforcement Modelling Tool for Curved Surface Structures

    NARCIS (Netherlands)

    Lauppe, J.; Rolvink, A.; Coenders, J.L.

    2013-01-01

    This paper presents a computational strategy and parametric modelling toolbox which aim at enhancing the design- and production process of reinforcement in freeform curved surface structures. The computational strategy encompasses the necessary steps of raising an architectural curved surface model

  19. Reinforcement Learning in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Manuela Schuetze

    2017-11-01

    Full Text Available Early behavioral interventions are recognized as integral to standard care in autism spectrum disorder (ASD, and often focus on reinforcing desired behaviors (e.g., eye contact and reducing the presence of atypical behaviors (e.g., echoing others' phrases. However, efficacy of these programs is mixed. Reinforcement learning relies on neurocircuitry that has been reported to be atypical in ASD: prefrontal-sub-cortical circuits, amygdala, brainstem, and cerebellum. Thus, early behavioral interventions rely on neurocircuitry that may function atypically in at least a subset of individuals with ASD. Recent work has investigated physiological, behavioral, and neural responses to reinforcers to uncover differences in motivation and learning in ASD. We will synthesize this work to identify promising avenues for future research that ultimately can be used to enhance the efficacy of early intervention.

  20. Mechanical properties of thermoplastic composites reinforced with Entada Mannii fibre

    Directory of Open Access Journals (Sweden)

    Oluwayomi BALOGUN

    2017-06-01

    Full Text Available The mechanical properties and fracture mechanisms of thermoplastic composites reinforced with Entada mannii fibres was investigated. Polypropylene reinforced with 1, 3, 5, and 7 wt% KOH treated and untreated Entada mannii fibres were processed using a compression moulding machine. The tensile properties, impact strength, and flexural properties of the composites were evaluated while the tensile fracture surface morphology was examined using scanning electron microscopy. The results show that reinforcing polypropylene with Entada mannii fibres resulted in improvement of the tensile strength and elastic modulus. This improvement is remarkable for 5 wt% KOH treated Entada mannii fibre reinforced composites by 28 % increase as compared with the unreinforced polypropylene. The composites reinforced with Entada mannii fibres also had impact strength values of 70 % higher than the unreinforced polypropylene. However, the polypropylene reinforced with 5 and 7wt% KOH treated fibres exhibited significantly higher flexural strength and Young’s modulus by 53% and 52% increase as compared with the unreinforced polypropylene. The fracture surface of the polypropylene composites reinforced with untreated Entada mannii fibres were characterized by fibre debonding, fibre pull-out and matrix yielding while less voids and fibre pull-outs are observed in the composites reinforced with KOH treated Entada mannii fibres. v

  1. The partial-reinforcement extinction effect and the contingent-sampling hypothesis.

    Science.gov (United States)

    Hochman, Guy; Erev, Ido

    2013-12-01

    The partial-reinforcement extinction effect (PREE) implies that learning under partial reinforcements is more robust than learning under full reinforcements. While the advantages of partial reinforcements have been well-documented in laboratory studies, field research has failed to support this prediction. In the present study, we aimed to clarify this pattern. Experiment 1 showed that partial reinforcements increase the tendency to select the promoted option during extinction; however, this effect is much smaller than the negative effect of partial reinforcements on the tendency to select the promoted option during the training phase. Experiment 2 demonstrated that the overall effect of partial reinforcements varies inversely with the attractiveness of the alternative to the promoted behavior: The overall effect is negative when the alternative is relatively attractive, and positive when the alternative is relatively unattractive. These results can be captured with a contingent-sampling model assuming that people select options that provided the best payoff in similar past experiences. The best fit was obtained under the assumption that similarity is defined by the sequence of the last four outcomes.

  2. Analysis of FRP bars used as reinforcement in concrete structures

    Directory of Open Access Journals (Sweden)

    Kinga Brózda

    2016-09-01

    Full Text Available In the design and construction of building and engineering structures, it is of utmost importance to provide their reliability and safety. The use of FRP (Fiber Reinforced Polymers bars as reinforcement of structural concrete elements could help reducing the typical defects of reinforced concrete and increase its strength parameters. In the paper the selected FRP bar characteristic properties are presented and advantages derived therefrom are specified. Furthermore, the most commonly used in construction types of FRP bars, depending on the raw material used during the production process are listed. In addition, the possibility of recycling of elements reinforced with FRP bars is presented and compared with traditional reinforced concrete (reinforced with steel bars. The production method of FRP bars (pultrusion is shown. Moreover, the advantages and disadvantages of using this method are discussed.

  3. Design of reinforced concrete members based on structural mechanics

    International Nuclear Information System (INIS)

    Diaz, B.E.; Schulz, M.

    1984-01-01

    Up to now the design of reinforced concrete linear members is performed with the help of an inconsistent design theory, which nevertherless is sufficiently safe and simple to be used in the practice. The purpose of this paper is to present a rational reinforced concrete design method which is not too dissimilar to the present design rules, but is capable of defining consistently internal stresses along a reinforced concrete section. The present status of the completed computer procedures allows the analysis of linear reinforced concrete members formed by laminar reinforced concrete plates presenting variable thickness. A practical approach is presented for which the concrete and steel section is constant along the member axis. In this case, the concept of the equivalent section is introduced, which allows a simple analysis of the stress pattern along the member section. (Author) [pt

  4. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    OpenAIRE

    Mohammed Alias Yusof; Norazman Norazman; Ariffin Ariffin; Fauzi Mohd Zain; Risby Risby; CP Ng

    2011-01-01

    This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC) subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0...

  5. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    Science.gov (United States)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  6. Episodic reinforcement learning control approach for biped walking

    Directory of Open Access Journals (Sweden)

    Katić Duško

    2012-01-01

    Full Text Available This paper presents a hybrid dynamic control approach to the realization of humanoid biped robotic walk, focusing on the policy gradient episodic reinforcement learning with fuzzy evaluative feedback. The proposed structure of controller involves two feedback loops: a conventional computed torque controller and an episodic reinforcement learning controller. The reinforcement learning part includes fuzzy information about Zero-Moment- Point errors. Simulation tests using a medium-size 36-DOF humanoid robot MEXONE were performed to demonstrate the effectiveness of our method.

  7. Experience with dynamic reinforcement rates decreases resistance to extinction.

    Science.gov (United States)

    Craig, Andrew R; Shahan, Timothy A

    2016-03-01

    The ability of organisms to detect reinforcer-rate changes in choice preparations is positively related to two factors: the magnitude of the change in rate and the frequency with which rates change. Gallistel (2012) suggested similar rate-detection processes are responsible for decreases in responding during operant extinction. Although effects of magnitude of change in reinforcer rate on resistance to extinction are well known (e.g., the partial-reinforcement-extinction effect), effects of frequency of changes in rate prior to extinction are unknown. Thus, the present experiments examined whether frequency of changes in baseline reinforcer rates impacts resistance to extinction. Pigeons pecked keys for variable-interval food under conditions where reinforcer rates were stable and where they changed within and between sessions. Overall reinforcer rates between conditions were controlled. In Experiment 1, resistance to extinction was lower following exposure to dynamic reinforcement schedules than to static schedules. Experiment 2 showed that resistance to presession feeding, a disruptor that should not involve change-detection processes, was unaffected by baseline-schedule dynamics. These findings are consistent with the suggestion that change detection contributes to extinction. We discuss implications of change-detection processes for extinction of simple and discriminated operant behavior and relate these processes to the behavioral-momentum based approach to understanding extinction. © 2016 Society for the Experimental Analysis of Behavior.

  8. Full Scale Reinforced Concrete Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems

    Directory of Open Access Journals (Sweden)

    Alessandro De Vita

    2017-07-01

    Full Text Available This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy in order to investigate the seismic performance of reinforced concrete (RC beam-column joints strengthened with steel reinforced polymer (SRP systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP, and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by carbon fiber-reinforced polymer (CFRP systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems, the performances and the failure modes experienced in the several cases studied are provided.

  9. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  10. Continuous carbon nanotube reinforced composites.

    Science.gov (United States)

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  11. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  12. Nonlinear failure analysis of a reinforced concrete containment under internal pressure

    International Nuclear Information System (INIS)

    Sharma, S.; Wang, Y.K.; Reich, M.

    1984-01-01

    A detailed nonlinear finite element model is used to investigate the failure response of the Indian Point containment building under severe accident pressures. Refined material models are used to describe the complex stress-strain behavior of the liner and rebar steels, the plain concrete and the reinforced concrete. Structural geometry of the containment is idealized by eight layers of axisymmetric finite elements through the wall thickness in order to closely model the actual placement of the rebars. Soil stiffness under the containment base mat is modeled by a series of nonlinear spring elements. Numerical results presented in the paper describe cracking and plastic deformation (in compression) of the concrete, yielding of the liner and rebar steels and eventual loss of the load carrying capacity of the containment. The results are compared with available data from the previous studies for this containment. 8 references, 9 figures

  13. Measurement of reinforcement corrosion in concrete structures. Betonirakenteiden raudoituksen korroosion tutkiminen

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, A

    1992-03-01

    Ageing and aggressive enviromental conditions of concrete structures will result in deterioration of concrete and corrosion of steel in concrete. Corrosion of steel will in time result in the end of the service life or expensive renovations, unless corrosion of steel is noticed and renovated in time. Corrosion of steel in concrete can be found out by the present corrosion measurement methods, so that renovation can be started in right time. The report presents mainly on the basis of the literature references the following corrosion measurement methods: polarisation resistance, AC-impedance, electrical resistance probe, electrochemical noice and half-cell potential mapping. The half-cell potential mapping will be presented more precisely than the other corrosion measurement methods, for the potential mapping is the most used method. Concrete and Soils Laboratory of Imatran Voima Oy uses in the measurement of reinforcement corrosion the English, eight channel potential measuring equipment.

  14. Measurement of reinforcement corrosion in concrete structures; Betonirakenteiden raudoituksen korroosion tutkiminen

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, A

    1992-03-01

    Ageing and aggressive enviromental conditions of concrete structures will result in deterioration of concrete and corrosion of steel in concrete. Corrosion of steel will in time result in the end of the service life or expensive renovations, unless corrosion of steel is noticed and renovated in time. Corrosion of steel in concrete can be found out by the present corrosion measurement methods, so that renovation can be started in right time. The report presents mainly on the basis of the literature references the following corrosion measurement methods: polarisation resistance, AC-impedance, electrical resistance probe, electrochemical noice and half-cell potential mapping. The half-cell potential mapping will be presented more precisely than the other corrosion measurement methods, for the potential mapping is the most used method. Concrete and Soils Laboratory of Imatran Voima Oy uses in the measurement of reinforcement corrosion the English, eight channel potential measuring equipment.

  15. Teaching Self-Control with Qualitatively Different Reinforcers

    Science.gov (United States)

    Passage, Michael; Tincani, Matt; Hantula, Donald A.

    2012-01-01

    This study examined the effectiveness of using qualitatively different reinforcers to teach self-control to an adolescent boy who had been diagnosed with an intellectual disability. First, he was instructed to engage in an activity without programmed reinforcement. Next, he was instructed to engage in the activity under a two-choice fixed-duration…

  16. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  17. South Oregon Coast Reinforcement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  18. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  19. Value learning through reinforcement : The basics of dopamine and reinforcement learning

    NARCIS (Netherlands)

    Daw, N.D.; Tobler, P.N.; Glimcher, P.W.; Fehr, E.

    2013-01-01

    This chapter provides an overview of reinforcement learning and temporal difference learning and relates these topics to the firing properties of midbrain dopamine neurons. First, we review the RescorlaWagner learning rule and basic learning phenomena, such as blocking, which the rule explains. Then

  20. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  1. Development of a relationship between external measurements and reinforcement stress

    Science.gov (United States)

    Brault, Andre; Hoult, Neil A.; Lees, Janet M.

    2015-03-01

    As many countries around the world face an aging infrastructure crisis, there is an increasing need to develop more accurate monitoring and assessment techniques for reinforced concrete structures. One of the challenges associated with assessing existing infrastructure is correlating externally measured parameters such as crack widths and surface strains with reinforcement stresses as this is dependent on a number of variables. The current research investigates how the use of distributed fiber optic sensors to measure reinforcement strain can be correlated with digital image correlation measurements of crack widths to relate external crack width measurements to reinforcement stresses. An initial set of experiments was undertaken involving a series of small-scale beam specimens tested in three-point bending with variable reinforcement properties. Relationships between crack widths and internal reinforcement strains were observed including that both the diameter and number of bars affected the measured maximum strain and crack width. A model that uses measured crack width to estimate reinforcement strain was presented and compared to the experimental results. The model was found to provide accurate estimates of load carrying capacity for a given crack width, however, the model was potentially less accurate when crack widths were used to estimate the experimental reinforcement strains. The need for more experimental data to validate the conclusions of this research was also highlighted.

  2. Human-level control through deep reinforcement learning

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel; Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-01

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  3. Human-level control through deep reinforcement learning.

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A; Veness, Joel; Bellemare, Marc G; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-26

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  4. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat

    International Nuclear Information System (INIS)

    Zhou, Jintang; Yao, Zhengjun; Chen, Yongxin; Wei, Dongbo; Wu, Yibing

    2013-01-01

    Highlights: • Over 10% glass fiber was used to reinforce phenolic foam in the shape of glass fiber mat. • Nucleating agents were used together with glass fiber mat and improved tensile strength of phenolic foam by 215.6%. • Nucleating agents lead to a smaller bubble size of phenolic foam. • The glass transition temperature of phenolic foam remained unchanged during the reinforcement. - Abstract: In this paper, thermomechanical analysis (TMA) and dynamic mechanical analysis were employed to study the properties of phenolic foam reinforced with glass fiber mat. Unreinforced phenolic foam was taken as the control sample. Mechanical tests and scanning electron microscopy were performed to confirm the results of TMA. The results show that glass fiber mat reinforcement improves the mechanical performance of phenolic foam, and nucleating agents improve it further. Phenolic foam reinforced with glass fiber mat has a smaller thermal expansion coefficient compared with unreinforced foam. The storage modulus of the reinforced phenolic foam is also higher than that in unreinforced foam, whereas the loss modulus of the former is lower than that of the latter. The glass transition temperature of the phenolic foam matrix remains unchanged during the reinforcement

  5. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  6. Is cascade reinforcement likely when sympatric and allopatric populations exchange migrants?

    Science.gov (United States)

    Yukilevich, Roman; Aoki, Fumio

    2016-04-01

    When partially reproductively isolated species come back into secondary contact, these taxa may diverge in mating preferences and sexual cues to avoid maladaptive hybridization, a process known as reinforcement. This phenomenon often leads to reproductive character displacement (RCD) between sympatric and allopatric populations of reinforcing species that differ in their exposure to hybridization. Recent discussions have reinvigorated the idea that RCD may give rise to additional speciation between conspecific sympatric and allopatric populations, dubbing the concept "cascade reinforcement." Despite some empirical studies supporting cascade reinforcement, we still know very little about the conditions for its evolution. In the present article, we address this question by developing an individual-based population genetic model that explicitly simulates cascade reinforcement when one of the hybridizing species is split into sympatric and allopatric populations. Our results show that when sympatric and allopatric populations reside in the same environment and only differ in their exposure to maladaptive hybridization, migration between them generally inhibits the evolution of cascade by spreading the reinforcement alleles from sympatry into allopatry and erasing RCD. Under these conditions, cascade reinforcement only evolved when migration rate between sympatric and allopatric populations was very low. This indicates that stabilizing sexual selection in allopatry is generally ineffective in preventing the spread of reinforcement alleles. Only when sympatric and allopatric populations experienced divergent ecological selection did cascade reinforcement evolve in the presence of substantial migration. These predictions clarify the conditions for cascade reinforcement and facilitate our understanding of existing cases in nature.

  7. Repair of reinforced concrete beams using carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Karzad Abdul Saboor

    2017-01-01

    Full Text Available This research paper is part of an ongoing research on the behaviour of Reinforced Concrete (RC beams retrofitted with Externally Bonded Carbon Fiber Reinforced Polymer (EB-CFRP. A total of 5 large-scale rectangular beams, previously damaged due to shear loading, were repaired and strengthened with EB-CFRP and tested in this study. The major cracks of the damaged beams were injected with epoxy and the beams were wrapped with 2 layers of EB-CFRP discrete strips with 100mm width and 150mm center to center spacing. The beams were instrumented and tested to failure under three points loading in simply supported configuration. The measured test parameters were the beams deflection, maximum load, and the strain in the FRP strips. The failure mode was also observed. The results showed that applying EB-FRP strips increased the shear strength significantly relative to the original shear capacity of the beam. The results demonstrate that the application of EB-FRP strips used in this study is an effective repair method that can be used to repair and strengthen damaged beams.

  8. Hypocretin / orexin involvement in reward and reinforcement

    Science.gov (United States)

    España, Rodrigo A.

    2015-01-01

    Since the discovery of the hypocretins/orexins, a series of observations have indicated that these peptides influence a variety of physiological processes including feeding, sleep/wake function, memory, and stress. More recently, the hypocretins have been implicated in reinforcement and reward-related processes via actions on the mesolimbic dopamine system. Although investigation into the relationship between the hypocretins and reinforcement/reward remains in relatively early stages, accumulating evidence suggests that continued research into this area may offer new insights into the addiction process and provide the foundation to generate novel pharmacotherapies for drug abuse. The current chapter will focus on contemporary perspectives of hypocretin regulation of cocaine reward and reinforcement via actions on the mesolimbic dopamine system. PMID:22640614

  9. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  10. Manipulating parameters of reinforcement to reduce problem behavior without extinction.

    Science.gov (United States)

    Kunnavatana, S Shanun; Bloom, Sarah E; Samaha, Andrew L; Slocum, Timothy A; Clay, Casey J

    2018-04-01

    Differential reinforcement of alternative behavior (DRA) most often includes extinction as a treatment component. However, extinction is not always feasible and it can be counter-therapeutic if implemented without optimal treatment integrity. Researchers have successfully implemented DRA without extinction by manipulating various parameters of reinforcement such that alternative behavior is favored. We extended previous research by assessing three participants' sensitivities to quality, magnitude, and immediacy using arbitrary responses and reinforcers that maintain problem behavior. The results were used to implement an intervention for problem behavior using DRA without extinction. Our findings indicate that arbitrary responses can be used to identify individual and relative sensitivity to parameters of reinforcement for reinforcers that maintain problem behavior. Treatment was effective for all participants when we manipulated parameters of reinforcement to which they were most sensitive, and, for two participants, the treatment was less effective when we manipulated parameters to which they were least sensitive. © 2018 Society for the Experimental Analysis of Behavior.

  11. Design Methods for Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil.......The present paper describes the outline of a research project on Fibre Reinforced Concrete (FRC) currently being carried out in Denmark under the supervision of Danish Council of Technology, Danish Technical Research Council and Danish Natural Science Research Counsil....

  12. Sisal organosolv pulp as reinforcement for cement based composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  13. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  14. Reinforcing method for reinforced concrete structures by using carbon fibers; Tanso sen`i ni yoru tekkin concrete kozobutsu no hokyo koho

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Taniki, K. [Mitsubishi Kasei Corp., Tokyo (Japan); Kojima, N.; Kimura, K.; Katsumata, H. [Obayashi Corp., Osaka (Japan)

    1994-08-15

    This paper describes the development of a reinforcing method for reinforced concrete (hereinafter RC) structures by using carbon fibers (hereinafter CF). This developed method attaches a light-weight CFUD prepreg material for reinforcement by laterally winding CF strand impregnated with epoxy resin, which is hardened under normal temperature. This method is economical because no skills and special tools are required. An RC pillar with circular cross section and a hollow RC test body assuming a chimney were used as models. The paper details the experiment. This method has been used in several ten existing RC stacks with effective reinforcing result. Resistance strengths of CF strands and UD prepregs were verified in an accelerated exposure test performed according to JIS A 1415, standard for plastic building materials. The effects of the anti-seismic reinforcement have resulted in improvement in shear resistance force in RC pillars by means of CF winding method, improvement in bending stress in RC structures as a result of CF attaching method, and effectiveness in repair of existing RC stacks. Sufficient exposure resistance has also been proved. A bending test by means of two-point concentrated loading has been performed as a weighted test. 4 figs.

  15. Investigation on reinforced concrete slabs subjeted to impact loading

    International Nuclear Information System (INIS)

    Freiman, M.; Krutzik, N.J.; Tropp, R.; Zorn, N.F.

    1984-01-01

    A comparison of experimental and computational results for tests of reinforced concrete slabs subjected to soft missile impact is presented. Numerical simulation techniques were employed to predict the target response. The objective of the calculations was to validate the material model for reinforced concrete implemented in a finite difference code. The computational results regarding displacements or strains in the reinforcement conform satisfactorily with the experimental values. (Author) [pt

  16. A new method of fully three dimensional analysis of stress field in the soil layer of a soil-mantled hillslope

    Science.gov (United States)

    Wu, Y. H.; Nakakita, E.

    2017-12-01

    Hillslope stability is highly related to stress equilibrium near the top surface of soil-mantled hillslopes. Stress field in a hillslope can also be significantly altered by variable groundwater motion under the rainfall influence as well as by different vegetation above and below the slope. The topographic irregularity, biological effects from vegetation and variable rainfall patterns couple with others to make the prediction of shallow landslide complicated and difficult. In an increasing tendency of extreme rainfall, the mountainous area in Japan has suffered more and more shallow landslides. To better assess shallow landslide hazards, we would like to develop a new mechanically-based method to estimate the fully three-dimensional stress field in hillslopes. The surface soil-layer of hillslope is modelled as a poroelastic medium, and the tree surcharge on the slope surface is considered as a boundary input of stress forcing. The modelling of groundwater motion is involved to alter effective stress state in the soil layer, and the tree root-reinforcement estimated by allometric equations is taken into account for influencing the soil strength. The Mohr-Coulomb failure theory is then used for locating possible yielding surfaces, or says for identifying failure zones. This model is implemented by using the finite element method. Finally, we performed a case study of the real event of massive shallow landslides occurred in Hiroshima in August, 2014. The result shows good agreement with the field condition.

  17. Investigation of digital light processing using fibre-reinforced polymers

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre-reinforced polym......Literature research shows multiple applications of fibre-reinforced polymers (FRP) respectively in fused deposition modelling and gypsum printing influencing the quality of the products in terms of stress and strain resistance as well as flexibility. So far, applications of fibre...... of miniaturized objects with relatively high surface quality compared to other additive manufacturing technologies. This paper aim to move fibre reinforced resin parts one step closer towards mechanically strong production-quality components....

  18. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  19. Effect of reinforcer magnitude on performance maintained by progressive-ratio schedules.

    Science.gov (United States)

    Rickard, J F; Body, S; Zhang, Z; Bradshaw, C M; Szabadi, E

    2009-01-01

    This experiment examined the relationship between reinforcer magnitude and quantitative measures of performance on progressive-ratio schedules. Fifteen rats were trained under a progressive-ratio schedule in seven phases of the experiment in which the volume of a 0.6-M sucrose solution reinforcer was varied within the range 6-300 microl. Overall response rates in successive ratios conformed to a bitonic equation derived from Killeen's (1994) Mathematical Principles of Reinforcement. The "specific activation" parameter, a, which is presumed to reflect the incentive value of the reinforcer, was a monotonically increasing function of reinforcer volume; the "response time" parameter, delta, which defines the minimum response time, increased as a function of reinforcer volume; the "currency" parameter, beta, which is presumed to reflect the coupling of responses to the reinforcer, declined as a function of volume. Running response rate (response rate calculated after exclusion of the postreinforcement pause) decayed monotonically as a function of ratio size; the index of curvature of this function increased as a function of reinforcer volume. Postreinforcement pause increased as a function of ratio size. Estimates of a derived from overall response rates and postreinforcement pauses showed a modest positive correlation across conditions and between animals. Implications of the results for the quantification of reinforcer value and for the use of progressive-ratio schedules in behavioral neuroscience are discussed.

  20. Wrinkles in reinforced membranes

    Science.gov (United States)

    Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.

    2012-02-01

    We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.

  1. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    National Research Council Canada - National Science Library

    Michalowski, Radoslw

    1999-01-01

    Fiber-reinforced ganular composites (for instance, fiber-reinforced sand) are considered as construction materials for such applications as subgrades of airfields and roads, aircraft parking facilities, etc...

  2. Punishment Insensitivity and Impaired Reinforcement Learning in Preschoolers

    Science.gov (United States)

    Briggs-Gowan, Margaret J.; Nichols, Sara R.; Voss, Joel; Zobel, Elvira; Carter, Alice S.; McCarthy, Kimberly J.; Pine, Daniel S.; Blair, James; Wakschlag, Lauren S.

    2014-01-01

    Background: Youth and adults with psychopathic traits display disrupted reinforcement learning. Advances in measurement now enable examination of this association in preschoolers. The current study examines relations between reinforcement learning in preschoolers and parent ratings of reduced responsiveness to socialization, conceptualized as a…

  3. Reinforcement learning in continuous state and action spaces

    NARCIS (Netherlands)

    H. P. van Hasselt (Hado); M.A. Wiering; M. van Otterlo

    2012-01-01

    textabstractMany traditional reinforcement-learning algorithms have been designed for problems with small finite state and action spaces. Learning in such discrete problems can been difficult, due to noise and delayed reinforcements. However, many real-world problems have continuous state or action

  4. Ultimate load capacity assessment of reinforced concrete shell structures

    International Nuclear Information System (INIS)

    Gupta, Amita; Singh, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    The objective of this study is to develop capability for prediction of ultimate load capacity of reinforced concrete shell structures. The present finite element code ULCA (Ultimate Load Capacity Assessment) adopts a degenerate concept of formulating general isoparametric shell element with a layered approach in the thickness direction. Different failure modes such as crushing, tensile cracking and reinforcement yielding are recognised for various problems. The structure fails by crushing of concrete when the concrete strain/stress reaches the ultimate stress or strain of concrete. Material nonlinearities as a result of tension cracking, tension stiffening between reinforcement and concrete in cracked region and yielding of reinforcement are considered along with geometric nonlinearity. Thus with this code it is possible to predict the pressure at which the first cracking, first through thickness cracking, first yielding of reinforcement occurs. After validating the code with few bench mark problems for different failure modes a reinforced concrete nuclear containment is analysed for its ultimate capacity and the results are matched with the published results. Further the ultimate load capacity of outer containment wall of Narora Atomic Power Station is predicted. It is observed that containment fails in membrane region and has a sufficient margin against design pressure. (author). 9 refs., 56 figs., 3 tabs., 1 appendix with 4 tabs

  5. Effect of reinforcement on plastic limit loads of branch junctions

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Myeong, Man-Sik; Yoon, Kee-Bong

    2009-01-01

    This paper provides effects of reinforcement shape and area on plastic limit loads of branch junctions under internal pressure and in-plane/out-of-plane bending, via detailed three-dimensional finite element limit analysis assuming elastic-perfectly plastic material behaviour. It is found that reinforcement is most effective when (in-plane/out-of-plane) bending is applied to the branch pipe. When bending is applied to the run pipe, reinforcement is less effective when bending is applied to the branch pipe. The reinforcement effect is the least effective for internal pressure.

  6. Nondestructive evaluation of reinforced plastics by a radiometric measurement technique

    International Nuclear Information System (INIS)

    Entine, Gerald; Afshari, Sia; Verlinden, Matt

    1990-01-01

    The demand for new high-performance plastics has greatly increased with advances in the performance characteristics of sophisticated reinforced engineering resins. However, conventional methods for the evaluation of the glass and filler contents of reinforced plastics are destructive, labor intensive, and time consuming. We have developed a new instrument, to address this problem, which provides for the rapid, accurate, and nondestructive measurement of glass or filler content in reinforced plastics. This instrument utilizes radiation transmission and scattering techniques for analytical measurement of glass, graphite and other fillers used in reinforced plastics. (author)

  7. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  8. A Comparison of Escalating versus Fixed Reinforcement Schedules on Undergraduate Quiz Taking

    Science.gov (United States)

    Mahoney, Amanda

    2017-01-01

    Drug abstinence studies indicate that escalating reinforcement schedules maintain abstinence for longer periods than fixed reinforcement schedules. The current study evaluated whether escalating reinforcement schedules would maintain more quiz taking than fixed reinforcement schedules. During baseline and for the control group, bonus points were…

  9. Neural Basis of Reinforcement Learning and Decision Making

    Science.gov (United States)

    Lee, Daeyeol; Seo, Hyojung; Jung, Min Whan

    2012-01-01

    Reinforcement learning is an adaptive process in which an animal utilizes its previous experience to improve the outcomes of future choices. Computational theories of reinforcement learning play a central role in the newly emerging areas of neuroeconomics and decision neuroscience. In this framework, actions are chosen according to their value functions, which describe how much future reward is expected from each action. Value functions can be adjusted not only through reward and penalty, but also by the animal’s knowledge of its current environment. Studies have revealed that a large proportion of the brain is involved in representing and updating value functions and using them to choose an action. However, how the nature of a behavioral task affects the neural mechanisms of reinforcement learning remains incompletely understood. Future studies should uncover the principles by which different computational elements of reinforcement learning are dynamically coordinated across the entire brain. PMID:22462543

  10. A large-scale soil-structure interaction experiment: Part I design and construction

    International Nuclear Information System (INIS)

    Tang, H.T.; Tang, Y.K.; Wall, I.B.; Lin, E.

    1987-01-01

    In the simulated earthquake experiments (SIMQUAKE) sponsored by EPRI, the detonation of vertical arrays of explosives propagated wave motions through the ground to the model structures. Although such a simulation can provide information about dynamic soil-structure interaction (SSI) characteristics in a strong motion environment, it lacks seismic wave scattering characteristics for studying seismic input to the soil-structure system and the effect of different kinds of wave composition to the soil-structure response. To supplement the inadequacy of the simulated earthquake SSI experiment, the Electric Power Research Institute (EPRI) and the Taiwan Power Company (Taipower) jointly sponsored a large scale SSI experiment in the field. The objectives of the experiment are: (1) to obtain actual strong motion earthquakes induced database in a soft-soil environment which will substantiate predictive and design SSI models;and (2) to assess nuclear power plant reactor containment internal components dynamic response and margins relating to actual earthquake-induced excitation. These objectives are accomplished by recording and analyzing data from two instrumented, scaled down, (1/4- and 1/12-scale) reinforced concrete containments sited in a high seismic region in Taiwan where a strong-motion seismic array network is located

  11. Soil-structure interaction effects on containment fragilities and floor response spectra statistics

    International Nuclear Information System (INIS)

    Pires, J.; Reich, M.; Chokshi, N.C.

    1987-01-01

    The probability-based method for the reliability evaluation of nuclear structures developed at Brookhaven National Laboratory (BNL) is extended to include soil-structure interaction effects. A reinforced concrete containment is analyzed in order to investigate the soil-structure interaction effects on: structural fragilities; floor response spectra statistics and acceleration response correlations. To include the effect of soil flexibility on the reliability assessment the following two step approach is used. In the first step, the lumped parameter method for soil-structure interaction analysis is used together with a stick model representation of the structure in order to obtain the motions of the foundation plate. These motions, which include both translations and rotations of the foundation plate, are expressed in terms of the power-spectral density of the free-field ground excitation and the transfer function of the total acceleration response of the foundation. The second step involves a detailed finite element model of the structure subjected to the interaction motions computed from step one. Making use of the structural model and interaction motion the reliability analysis method yields the limit stat probabilities and fragility data for the structure

  12. Carbon fiber reinforced asphalt concrete

    International Nuclear Information System (INIS)

    Jahromi, Saeed G.

    2008-01-01

    Fibers are often used in the manufacture of other materials. For many years, they have been utilized extensively in numerous applications in civil engineering. Fiber-reinforcement refers to incorporating materials with desired properties within some other materials lacking those properties. Use of fibers is not a new phenomenon, as the technique of fiber-reinforced bitumen began early as 1950. In all industrialized countries today, nearly all concretes used in construction are reinforced. A multitude of fibers and fiber materials are being introduced in the market regularly. The present paper presents characteristics and properties of carbon fiber-reinforced asphalt mixtures, which improve the performance of pavements. To evaluate the effect of fiber contents on bituminous mixtures, laboratory investigations were carried out on the samples with and without fibers. During the course of this study, various tests were undertaken, applying Marshall Test indirect tensile test, creep test and resistance to fatigue cracking by using repeated load indirect tensile test. Carbon fiber exhibited consistency in results and as such it was observed that the addition of fiber does affect the properties of bituminous mixtures, i.e. an increase in its stability and decrease in the flow value as well as an increase in voids in the mix. Results indicate that fibers have the potential to resist structural distress in pavement, in the wake of growing traffic loads and thus improve fatigue by increasing resistance to cracks or permanent deformation. On the whole, the results show that the addition of carbon fiber will improve some of the mechanical properties like fatigue and deformation in the flexible pavement. (author)

  13. The improved design method of shear strength of reinforced concrete beams without transverse reinforcement

    Directory of Open Access Journals (Sweden)

    Vegera Pavlo

    2017-12-01

    Full Text Available In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.

  14. Availability of polycyclic aromatic hydrocarbons to earthworms in urban soils and its implications for risk assessment.

    Science.gov (United States)

    Cachada, A; Coelho, C; Gavina, A; Dias, A C; Patinha, C; Reis, A P; da Silva, E Ferreira; Duarte, A C; Pereira, R

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a global problem, and in urban soils they can be found at potentially hazard levels. Nevertheless, the real risks that these contaminants pose to the environment are not well known, since the bioavailability of PAHs in urban soils has been poorly studied. Therefore, the bioavailability of PAHs in some selected urban soils from Lisbon (Portugal) was evaluated. Moreover, the applicability of a first screening phase based on total contents of PAHs was assessed. Results show that bioavailability of PAHs is reduced (low levels in earthworms, low accumulation percentages, and low biota-to-soil accumulation factors values), especially in more contaminated soils. The aging of these compounds explains this low availability, and confirms the generally accepted assumption that accumulation of PAHs in urban areas is mostly related with a long-term deposition of contaminated particles. The comparison of measured PAHs concentrations in earthworm tissues with the ones predicted based on theoretical models, reinforce that risks based on total levels are overestimated, but it can be a good initial approach for urban soils. This study also highlights the need of more reliable ecotoxicological data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Midbroken Reinforced Concrete Shear Frames Due to Earthquakes

    DEFF Research Database (Denmark)

    Köylüoglu, H. U.; Cakmak, A. S.; Nielsen, Søren R. K.

    A non-linear hysteretic model for the response and local damage analyses of reinforced concrete shear frames subject to earthquake excitation is proposed, and, the model is applied to analyse midbroken reinforced concrete (RC) structures due to earthquake loads. Each storey of the shear frame...

  16. Reinforcement learning in complementarity game and population dynamics.

    Science.gov (United States)

    Jost, Jürgen; Li, Wei

    2014-02-01

    We systematically test and compare different reinforcement learning schemes in a complementarity game [J. Jost and W. Li, Physica A 345, 245 (2005)] played between members of two populations. More precisely, we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue of quick adaptation as opposed to systematic exploration or the role of learning rates.

  17. Effects of Video Games as Reinforcers for Computerized Addition Performance.

    Science.gov (United States)

    Axelrod, Saul; And Others

    1987-01-01

    Four 2nd-grade students completed addition problems on a computer, using video games as reinforcers. Two variable ratio schedules of reinforcement failed to increase student accuracy or the rate of correct responses. In a no-games reinforcement condition, students had more opportunities to respond and had a greater number of correct answers.…

  18. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-01-01

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  19. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  20. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  1. Visual reinforcement shapes eye movements in visual search.

    Science.gov (United States)

    Paeye, Céline; Schütz, Alexander C; Gegenfurtner, Karl R

    2016-08-01

    We use eye movements to gain information about our visual environment; this information can indirectly be used to affect the environment. Whereas eye movements are affected by explicit rewards such as points or money, it is not clear whether the information gained by finding a hidden target has a similar reward value. Here we tested whether finding a visual target can reinforce eye movements in visual search performed in a noise background, which conforms to natural scene statistics and contains a large number of possible target locations. First we tested whether presenting the target more often in one specific quadrant would modify eye movement search behavior. Surprisingly, participants did not learn to search for the target more often in high probability areas. Presumably, participants could not learn the reward structure of the environment. In two subsequent experiments we used a gaze-contingent display to gain full control over the reinforcement schedule. The target was presented more often after saccades into a specific quadrant or a specific direction. The proportions of saccades meeting the reinforcement criteria increased considerably, and participants matched their search behavior to the relative reinforcement rates of targets. Reinforcement learning seems to serve as the mechanism to optimize search behavior with respect to the statistics of the task.

  2. Study on Electrical Properties of PALF Reinforced Bisphenol-A Composite

    Directory of Open Access Journals (Sweden)

    Vinod B.

    2018-01-01

    Full Text Available These days, composite materials successfully substitute the traditional materials due to its various significant applications. This paper examines the influence of fiber orientation and fiber length on electrical properties of PALF reinforced Bisphenol-A composite and explores the potential of using PALF as reinforcing material for electrical applications such as terminals, connectors, motor body cover, industrial and household plugs and circuit boards. The resistance and inductance of resin material is increased by 24.19% and 24.13% respectively after reinforcement of PALF in different orientations and its value increased by 37.93% and 37.81% respectively after reinforcement of PALF in different lengths. Similarly, Capacitance and Dielectric constant of resin material decreased by 19.44% and 19.39% respectively after reinforcement of PALF in different orientations and its value decreased by 27.67% and 27.50% respectively after reinforcement of PALF in different lengths. It can be inferred from this study that the fiber orientations and fiber lengths greatly effects the electrical properties of PALF composite.

  3. Three dimensional finite element linear analysis of reinforced concrete structures

    International Nuclear Information System (INIS)

    Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.

    1979-01-01

    A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)

  4. Machining of Fibre Reinforced Plastic Composite Materials

    Science.gov (United States)

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  5. Machining of Fibre Reinforced Plastic Composite Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  6. Shape and Reinforcement Optimization of Underground Tunnels

    Science.gov (United States)

    Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang

    Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.

  7. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    Science.gov (United States)

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  8. Investigation of reinforced concrete beams in serviceability limit state

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Hagsten, Lars German

    2016-01-01

    This paper investigates how cracking influence the stiffness of flexural members. Stress levels and crack development under service loads are highly dependent on the reinforcement arrangement, which is often based on the ultimate limit state design. Furthermore, practical design of the serviceabi......This paper investigates how cracking influence the stiffness of flexural members. Stress levels and crack development under service loads are highly dependent on the reinforcement arrangement, which is often based on the ultimate limit state design. Furthermore, practical design...... of the serviceability limit state is often based on empirical and conservative estimates where the influence of certain dominating mechanisms is ignored, such as tension-stiffening. The reinforcement arrangement is, therefore, frequently modified, involving an increase in the amount of reinforcement, to meet...

  9. Complementary models of tree species-soil relationships in old-growth temperate forests

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and

  10. Short Jute Fiber Reinforced Polypropylene Composites: Effect of Nonhalogenated Fire Retardants

    Directory of Open Access Journals (Sweden)

    Sk. Sharfuddin Chestee

    2017-01-01

    Full Text Available Short jute fiber reinforced polypropylene (PP composites were prepared using a single screw extrusion moulding. Jute fiber content in the composites is optimized with the extent of mechanical properties, and composites with 20% jute show higher mechanical properties. Dissimilar concentrations of several fire retardants (FRs, such as magnesium oxide (MO, aluminum oxide (AO, and phosphoric acid (PA, were used in the composites. The addition of MO, AO, and PA improved the fire retardancy properties (ignition time, flame height, and total firing time of the composites. Ignition time for 30% MO, flame height for 30% PA, and total firing time for 20% MO content composites showed good results which were 8 sec, 1 inch, and 268 sec, respectively. Mechanical properties (tensile strength, tensile modulus, bending strength, bending modulus, and elongation at break, degradation properties (soil test, weathering test, and percentage of weight loss, and water uptake were studied.

  11. Reinforcer magnitude and rate dependency: evaluation of resistance-to-change mechanisms.

    Science.gov (United States)

    Pinkston, Jonathan W; Ginsburg, Brett C; Lamb, Richard J

    2014-10-01

    Under many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs such that when schedules arrange for relatively larger reinforcer magnitudes rate dependency is attenuated compared with behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple FI schedule. Three drugs, clonidine, haloperidol, and morphine, were examined. All three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine; however, these effects were not modulated by reinforcer magnitude. In addition, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest that a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable.

  12. Central reinforcing effects of ethanol are blocked by catalase inhibition.

    Science.gov (United States)

    Nizhnikov, Michael E; Molina, Juan C; Spear, Norman E

    2007-11-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol's positive reinforcing effects. Central administrations of ethanol (25-200mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn's response to a surrogate nipple scented with the CS. It has been shown that ethanol's first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats, catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (IC) administrations of 100mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with IC administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was used as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats.

  13. Working memory and attentional bias on reinforcing efficacy of food.

    Science.gov (United States)

    Carr, Katelyn A; Epstein, Leonard H

    2017-09-01

    Reinforcing efficacy of food, or the relationship between food prices and purchasing, is related to obesity status and energy intake in adults. Determining how to allocate resources for food is a decision making process influenced by executive functions. Attention to appetitive cues, as well as working memory capacity, or the ability to flexibly control attention while mentally retaining information, may be important executive functions involved in food purchasing decisions. In two studies, we examined how attention bias to food and working memory capacity are related to reinforcing efficacy of both high energy-dense and low energy-dense foods. The first study examined 48 women of varying body mass index (BMI) and found that the relationship between attentional processes and reinforcing efficacy was moderated by working memory capacity. Those who avoid food cues and had high working memory capacity had the lowest reinforcing efficacy, as compared to those with low working memory capacity. Study 2 systematically replicated the methods of study 1 with assessment of maintained attention in a sample of 48 overweight/obese adults. Results showed the relationship between maintained attention to food cues and reinforcing efficacy was moderated by working memory capacity. Those with a maintained attention to food and high working memory capacity had higher reinforcing efficacy than low working memory capacity individuals. These studies suggest working memory capacity moderated the relationship between different aspects of attention and food reinforcement. Understanding how decision making process are involved in reinforcing efficacy may help to identify future intervention targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  15. Application of a Reinforced Self-Compacting Concrete Jacket in Damaged Reinforced Concrete Beams under Monotonic and Repeated Loading

    Directory of Open Access Journals (Sweden)

    Constantin E. Chalioris

    2013-01-01

    Full Text Available This paper presents the findings of an experimental study on the application of a reinforced self-compacting concrete jacketing technique in damaged reinforced concrete beams. Test results of 12 specimens subjected to monotonic loading up to failure or under repeated loading steps prior to total failure are included. First, 6 beams were designed to be shear dominated, constructed by commonly used concrete, were initially tested, damaged, and failed in a brittle manner. Afterwards, the shear-damaged beams were retrofitted using a self-compacting concrete U-formed jacket that consisted of small diameter steel bars and U-formed stirrups in order to increase their shear resistance and potentially to alter their initially observed shear response to a more ductile one. The jacketed beams were retested under the same loading. Test results indicated that the application of reinforced self-compacting concrete jacketing in damaged reinforced concrete beams is a promising rehabilitation technique. All the jacketed beams showed enhanced overall structural response and 35% to 50% increased load bearing capacities. The ultimate shear load of the jacketed beams varied from 39.7 to 42.0 kN, whereas the capacity of the original beams was approximately 30% lower. Further, all the retrofitted specimens exhibited typical flexural response with high values of deflection ductility.

  16. PRACTICAL STUDY ON THE CFRP REINFORCEMENT

    Directory of Open Access Journals (Sweden)

    Catalina IANASI

    2016-05-01

    Full Text Available One of the defining goals of this paper is getting new resistant material which combine the qualities of basic materials that get into its composition but not to borrow from them their negative properties. In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of CFRP composite materials as reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem which are presented in this paper.

  17. Study of Interaction of Reinforcement with Concrete by Numerical Methods

    Science.gov (United States)

    Tikhomirov, V. M.; Samoshkin, A. S.

    2018-01-01

    This paper describes the study of deformation of reinforced concrete. A mathematical model for the interaction of reinforcement with concrete, based on the introduction of a contact layer, whose mechanical characteristics are determined from the experimental data, is developed. The limiting state of concrete is described using the Drucker-Prager theory and the fracture criterion with respect to maximum plastic deformations. A series of problems of the theory of reinforced concrete are solved: stretching of concrete from a central-reinforced prism and pre-stressing of concrete. It is shown that the results of the calculations are in good agreement with the experimental data.

  18. FEM Modelling of the Evolution of Corrosion Cracks in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Corrosion cracks are caused by the increasing volume of corrosion products during the corrosion of the reinforcement. After corrosion initiation the rust products from the corroded reinforcement will initially fill the porous zone near the reinforcement and the result in an expansion of the concr......Corrosion cracks are caused by the increasing volume of corrosion products during the corrosion of the reinforcement. After corrosion initiation the rust products from the corroded reinforcement will initially fill the porous zone near the reinforcement and the result in an expansion...... of the concrete near the reinforcement. Tensile stresses are then initiated in the concrete. With increasing corrosion, the tensile stresses will at a certain time reach a critical value and cracks will be developed. The increase of the crack with after formation of the initial crack is the subject of this paper...

  19. The behavioral economics of substance use disorders: reinforcement pathologies and their repair.

    Science.gov (United States)

    Bickel, Warren K; Johnson, Matthew W; Koffarnus, Mikhail N; MacKillop, James; Murphy, James G

    2014-01-01

    The field of behavioral economics has made important inroads into the understanding of substance use disorders through the concept of reinforcer pathology. Reinforcer pathology refers to the joint effects of (a) the persistently high valuation of a reinforcer, broadly defined to include tangible commodities and experiences, and/or (b) the excessive preference for the immediate acquisition or consumption of a commodity despite long-term negative outcomes. From this perspective, reinforcer pathology results from the recursive interactions of endogenous person-level variables and exogenous environment-level factors. The current review describes the basic principles of behavioral economics that are central to reinforcer pathology, the processes that engender reinforcer pathology, and the approaches and procedures that can repair reinforcement pathologies. The overall goal of this review is to present a new understanding of substance use disorders as viewed by recent advances in behavioral economics.

  20. Using Aberrant Behaviors as Reinforcers for Autistic Children.

    Science.gov (United States)

    Charlop, Marjorie H.; And Others

    1990-01-01

    Three experiments assessed the efficacy of various reinforcers to increase correct task responding in a total of 10 autistic children, aged 6-9. Of the reinforcers used (stereotypy, delayed echolalia, perseverative behavior, and food), task performance was highest with opportunities to engage in aberrant behaviors, and lowest with edible…

  1. Visual reinforcement audiometry: an Adobe Flash based approach.

    Science.gov (United States)

    Atherton, Steve

    2010-09-01

    Visual Reinforcement Audiometry (VRA) is a key behavioural test for young children. It is central to the diagnosis of hearing-impaired infants (1) . Habituation to the visual reinforcement can give misleading results. Medical Illustration ABM University Health Board has designed a collection of Flash animations to overcome this.

  2. Measurement of reinforcement corrosion in marine structures

    International Nuclear Information System (INIS)

    Mohammad Ismail; Nordin Yahaya

    1999-01-01

    The marine environment is known to be aggressive. Structures constructed on this belt need to undergo periodic assessment in order to ensure no defects or signs of deterioration had occurred. One of the most common deterioration that occurs on marine structures is corrosion of the reinforcement. Corrosion is an electrochemical process. The product of corrosion can increase the reinforcement volume, hence causing cracking on concrete cover. If no action is taken, delamination and spalling of concrete will follow and this will affect the structures integrity. It is therefore important to know the state of the structures condition by monitoring them periodically. NDT techniques that can detect the occurrence of corrosion of reinforcement in concrete uses half cell and resistivity meter. The method of application and interpretation of results are discussed. (author)

  3. [Carbon fiber-reinforced plastics as implant materials].

    Science.gov (United States)

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  4. Stochastic Models for Chloride-Initiated Corrosion in Reinforced Concrete

    DEFF Research Database (Denmark)

    Engelund, Svend; Sørensen, John Dalsgaard

    Corrosion of the reinforcement in concrete structures can lead to a substantial decrease of the load-bearing capacity. One mode of corrosion initiation is when the chloride content around the reinforcement exceeds a threshold value. In the present paper a statistical model is developed by which...... the chloride content in a 1reinforced concrete structure can be predicted. The model parameters are estimated on the basis of measurements. The distribution of the time to initiation of corrosion is estimated by FORMISORM-analysis....

  5. Stochastic Models for Chloride-Initiated Corrosion in Reinforced Concrete

    DEFF Research Database (Denmark)

    Engelund, S.; Sørensen, John Dalsgaard

    1996-01-01

    Corrosion of the reinforcement in concrete structures can lead to a substantial decrease of the load-bearing capacity. One mode of corrosion initiation is when the chloride content around the reinforcement exceeds a threshold value. In the present paper a statistical model is developed by which...... the chloride content in a reinforced concrete structure can be predicted. The model parameters are estimated on the basis of measurements. The distribution of the time to initiation of corrosion is estimated by FORM/SORM-analysis....

  6. [Reinforcement for overdentures on abutment teeth].

    Science.gov (United States)

    Osada, Tomoko

    2006-04-01

    This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed : conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50 microm Al(2)O(3) powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37 degrees C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0 mm/min were analyzed by ANOVA/Tukey's test (alpha=0.01). There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (poverdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a long-term prognosis without denture breakage.

  7. Finite element analysis of Polymer reinforced CRC columns under close-in detonation

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Experimental and numerical results of two PCRC columns subjected to close-in detonation are presented in this paper. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description...

  8. Collaboration of polymer composite reinforcement and cement concrete

    Science.gov (United States)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  9. Folosirea pământului armat la fundaţii pe terenuri slabe

    Directory of Open Access Journals (Sweden)

    Felicia Enache Niculescu

    2011-06-01

    Full Text Available The geosynthetics term is generally regarded to encompass eight main product categories: geotextiles, geogrids, geonets, geomembranes, geocomposites, geocells and combinations of materiales. These synthetic polymeric can be fabricated from hight resistences, deformation needetand a good adherence with earth confinement.

  10. A Study of Array Direction HDPE Fiber Reinforced Mortar

    Science.gov (United States)

    Kamsuwan, Trithos

    2018-02-01

    This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.

  11. Does the context of reinforcement affect resistance to change?

    Science.gov (United States)

    Nevin, J A; Grace, R C

    1999-04-01

    Eight pigeons were trained on multiple schedules of reinforcement where pairs of components alternated in blocks on different keys to define 2 local contexts. On 1 key, components arranged 160 and 40 reinforcers/hr; on the other, components arranged 40 and 10 reinforcers/hr. Response rates in the 40/hr component were higher in the latter pair. Within pairs, resistance to prefeeding and resistance to extinction were generally greater in the richer component. The two 40/hr components did not differ in resistance to prefeeding, but the 40/hr component that alternated with 10/hr was more resistant to extinction. This discrepancy was interpreted by an algebraic model relating response strength to component reinforcer rate, including generalization decrement. According to this model, strength is independent of context, consistent with research on schedule preference.

  12. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  13. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  14. Fatigue Strength of Reinforced Concrete Flexural Members | Kuryllo ...

    African Journals Online (AJOL)

    It is well known that reinforced concrete flexural members subjected to cyclic loads behave differently compared with static bending and can collapse due to the fatigue of concrete, reinforcement or both when maximum fatigue stresses of concrete and steel are well below the corresponding static strengths. But up till now ...

  15. Nicotine Acutely Enhances Reinforcement from Non-Drug Rewards in Humans

    Directory of Open Access Journals (Sweden)

    Kenneth A. Perkins

    2017-05-01

    Full Text Available Preclinical research documents that, aside from the primary and secondary reinforcing effects of nicotine intake itself, nicotine also acutely enhances the reinforcing efficacy of non-drug reinforcers (“rewards”. Study of these effects in humans has largely been overlooked, but very recent findings suggest they may have clinical implications for more fully understanding the persistence of tobacco dependence. This overview first outlines the topic and notes some recent human studies indirectly addressing nicotine effects on related responses (e.g., subjective ratings, explaining why those findings do not directly confirm enhancement of behavioral reinforcement per se due to nicotine. Then, the methodology used in the subsequently presented studies is described, demonstrating how those studies specifically did demonstrate enhancement of reinforced responding for non-drug rewards. The main section focuses on the limited controlled research to date directly assessing nicotine’s acute reinforcement-enhancing effects in humans, particularly as it relates to reinforced behavioral responding for non-drug rewards in non-human animal models. After detailing those few existing human studies, we address potential consequences of these effects for dependence and tobacco cessation efforts and then suggest directions for future research. This research indicates that nicotine per se increases responding in humans that is reinforced by some rewards (auditory stimuli via music, visual stimuli via video, but perhaps not by others (e.g., money. These reinforcement-enhancing effects in smokers are not due to dependence or withdrawal relief and can be restored by a small amount of nicotine (similar to a smoking lapse, including from e-cigarettes, a non-tobacco nicotine product. Future clinical research should examine factors determining which types of rewards are (or are not enhanced by nicotine, consequences of the loss of these nicotine effects after quitting

  16. simulation models for presiction of structrual fibre-reinforced come

    African Journals Online (AJOL)

    user

    showed increasing flexural strength up to the optimum fibre volume fraction while the ... the analysis and design of palmnut fibre-reinforced cement composites. ..... Nilson, L. “Reinforcement of Concrete with Sisal and other Vegetable Fibres”.

  17. The Behavioral Economics of Substance Use Disorders: reinforcement pathologies and their repair

    Science.gov (United States)

    Bickel, Warren K.; Johnson, Matthew W.; Koffarnus, Mikhail N.; MacKillop, James; Murphy, James G.

    2015-01-01

    The field of behavioral economics has made important inroads into the understanding of substance use disorders through the concept of reinforcer pathology. Reinforcer pathology refers to the joint effects of (a) the persistently high valuation of a reinforcer, broadly defined to include tangible commodities and experiences, and/or (b) the excessive preference for the immediate acquisition or consumption of a commodity despite long-term negative outcomes. From this perspective, reinforcer pathology results from the recursive interactions of endogenous person-level variables and exogenous environment-level factors. The current review describes the basic principles of behavioral economics that are central to reinforcer pathology, the processes that engender reinforcer pathology, and the approaches and procedures that can repair reinforcement pathologies. The overall goal of this review is to present a new understanding of substance use disorders as viewed by recent advances in behavioral economics. PMID:24679180

  18. Parental Positive Reinforcement with Deviant Children: Does It Make a Difference?

    Science.gov (United States)

    Forehand, Rex

    1986-01-01

    Considers effectiveness of parental positive reinforcement with deviant children by reviewing the following: (1) non-intervention studies, (2) intervention studies, and (3) consumer (parental) satisfaction studies. Results indicate that parents view positive reinforcement as effective and useful although positive reinforcement is not sufficient to…

  19. The Recent Research on Bamboo Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Dewi Sri Murni

    2017-01-01

    Full Text Available The paper presents the last research on bamboo reinforced concrete in Brawijaya University Indonesia. Three kinds of structures studied in recent year, the mounting of pegs on reinforcement, the use of lightweight brick to reduce the weight of the beams, and the use the light weight aggregate for bamboo concrete composite frame. All that experiments overcome some problems exist in using bamboo as environmental acceptance structures.

  20. Performance of Lightweight Natural-Fiber Reinforced Concrete

    OpenAIRE

    Hardjasaputra Harianto; Ng Gino; Urgessa Girum; Lesmana Gabriella; Sidharta Steven

    2017-01-01

    Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC). Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material beca...

  1. Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania

    2017-10-01

    Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.

  2. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  3. Experimental investigation of the seismic control of a nonlinear soil-structure system using MR dampers

    International Nuclear Information System (INIS)

    Li, Hui; Wang, Jian

    2011-01-01

    This paper reports the results of an experimental study conducted to demonstrate the feasibility and capability of magnetorheological (MR) dampers commanded by a decentralized control algorithm for seismic control of nonlinear civil structures considering soil-structure interaction (SSI). A two-story reinforced concrete (RC) frame resting in a laminar soil container is employed as the test specimen, and two MR dampers equipped in the first story are used to mitigate the response of this frame subjected to various intensity seismic excitations. A hyperbolic tangent function is used to represent the hysteretic behavior of the MR damper and a decentralized control approach for commanding MR dampers is proposed and implemented in the shaking table tests. Only the response of the first story is feedback for control command calculation of the MR dampers. The results indicate that the MR damper can effectively reduce the response of the soil-structure system, even when the soil-structure system presents complex nonlinear hysteretic behavior. The robustness of the proposed decentralized control algorithm is validated through the shaking table tests on the soil-structure system with large uncertainty. The most interesting findings in this paper are that MR dampers not only mitigate the superstructure response, but also reduce the soil response, pile response and earth pressure on the pile foundation

  4. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  5. The influence of the damaged reinforcing bars on the stress-strain state of the rein-forced concrete beams

    Directory of Open Access Journals (Sweden)

    Zenoviy Blikharskyy

    2017-04-01

    Full Text Available The article is devoted to the overall view of experimental research of reinforced concrete beams with the simultaneous influence of the corrosion environment and loading. The tests have been carried out upon the reinforced concrete specimens considering the corrosion in the acid environment, namely 10 % H2SO4 that have been taken as a model of the aggressive environment. The beams are with span equalling to 1,9m with different series of tensile armature, concrete compressive strength and different length of impact of corrosion (continuous and local. The influence of simultaneous action of the aggressive environment and loading on strength of reinforced-concrete beams has been described. For a detailed study of the effect of individual components there was suggested additional experimental modelling of the only tensile armature damage without concrete damage. It will investigate the influence of this factor irrespective of the concrete.

  6. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    Science.gov (United States)

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Bond of reinforcing bars in self-compacting steel fiber reinforced concrete

    NARCIS (Netherlands)

    Schumacher, P.; Bigaj-van Vliet, A.J.; Braam, C.R.; Uijl, J.A. den; Walraven, J.C.

    2002-01-01

    Pull-out tests were performed on 10 mm diameter ribbed bars embedded along three times the bar diameter in 200 mm cubes made of plain and steel fiber reinforced concrete (SFRC) of normal strength (B45). The fiber content was 60 and 120 kg/m3, respectively, the aspect ratio of the fibers was 45 and

  8. Experimental study on the foundation of soft soil solidification formula based on the Design - Expert software search

    Science.gov (United States)

    Qian, Chaojun; Li, Dahua; Zhang, xian; Zhou, Dongqing; Zhang, Baoliang

    2017-08-01

    Xuan city + 1100 kv search for converter station in Anhui province, in the process of foundation treatment, there is a cloth with a large number of lacustrine soft soil can not reach the need of engineering construction, so we want to cure the soft soil. By combining ratio of blast furnace slag (GGBS), gypsum, exciting agent CaO as a main curing agent for combination of reinforcing soft soil, the indoor unconfined compressive strength test, the influence factors on blast furnace slag, exciting agent and dosage of gypsum as impact factors, response value is 7 d and 28 d unconfined compressive strength of solidified soil, the experimental method is the Box - Behnken. The results show that the 7 d gypsum and the interaction of the blast furnace slag is obvious; 28 d exciting agent and gypsum interaction is obvious. By the analysis plaster, CaO, GGBSIn 7 d optimal proportion is 3.71%, 3.62%, 12.18%, the actual strength of the solidified soil age 1479.33 kPa; 28 d optimal proportion was 4.08%, 4.50%, 11.6%, the actual strength of the solidified soil age 2936.78 kPa. In the soil and the water curing effect of GGBS solidified soil, thereby GGBS this is a kind of new solidification material that can be used as the engineering foundation treatment of soft soil stabilizer has a certain value.

  9. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  10. Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints

    Science.gov (United States)

    Rasmijn, L. M.; van der Schrier, G.; Bintanja, R.; Barkmeijer, J.; Sterl, A.; Hazeleger, W.

    2018-05-01

    The 2010 heatwave in eastern Europe and Russia ranks among the hottest events ever recorded in the region1,2. The excessive summer warmth was related to an anomalously widespread and intense quasi-stationary anticyclonic circulation anomaly over western Russia, reinforced by depletion of spring soil moisture1,3-5. At present, high soil moisture levels and strong surface evaporation generally tend to cap maximum summer temperatures6-8, but these constraints may weaken under future warming9,10. Here, we use a data assimilation technique in which future climate model simulations are nudged to realistically represent the persistence and strength of the 2010 blocked atmospheric flow. In the future, synoptically driven extreme warming under favourable large-scale atmospheric conditions will no longer be suppressed by abundant soil moisture, leading to a disproportional intensification of future heatwaves. This implies that future mid-latitude heatwaves analogous to the 2010 event will become even more extreme than previously thought, with temperature extremes increasing by 8.4 °C over western Russia. Thus, the socioeconomic impacts of future heatwaves will probably be amplified beyond current estimates.

  11. Effects of Signaled Positive Reinforcement on Problem Behavior Maintained by Negative Reinforcement

    Science.gov (United States)

    Schieltz, Kelly M.; Wacker, David P.; Romani, Patrick W.

    2017-01-01

    We evaluated the effects of providing positive reinforcement for task completion, signaled via the presence of a tangible item, on escape-maintained problem behavior displayed by three typically developing children during one-time 90-min outpatient evaluations. Brief functional analyses of problem behavior, conducted within a multielement design,…

  12. Thermally induced rock stress increment and rock reinforcement response

    International Nuclear Information System (INIS)

    Hakala, M.; Stroem, J.; Nujiten, G.; Uotinen, L.; Siren, T.; Suikkanen, J.

    2014-07-01

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the brittle

  13. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  14. Influence of sedentary, social, and physical alternatives on food reinforcement.

    Science.gov (United States)

    Carr, Katelyn A; Epstein, Leonard H

    2018-02-01

    This study examined the potential for nonfood alternative activities to compete with the reinforcing value of food. Participants rated the frequency and pleasantness of engaging in a variety of activities and made hypothetical choices between food and 4 types of alternatives; cognitive-enriching (reading, listening to music), social (attending a party or event), sedentary (watching TV), and physically active (running, biking). Two-hundred seventy-six adults completed an online survey using a crowdsourcing platform. Adults with higher BMI reported engaging in fewer activities within the cognitive-enriching, social, and physically active categories. When examining how well each alternative activity type was able to compete with food, sedentary alternatives were associated with the highest food reinforcement, or were least able to compete with food reinforcers, as compared with cognitive-enriching, social, and physical. Social activities were associated with the lowest food reinforcement, or the best able to compete with food reinforcers. These results suggest that increasing the frequency and range of nonfood alternative activities may be important to obesity. This study also suggests that the class of social activities may have the biggest impact on reducing food reinforcement, and the class of sedentary may have the smallest effect on food reinforcement. These tools have relevance to clinical interventions that capitalize on increasing access to behaviors that can reduce the motivation to eat in clinical interventions for obesity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Bamboo reinforced polymer composite - A comprehensive review

    Science.gov (United States)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  16. Performance based design of reinforced concrete beams under impact

    Directory of Open Access Journals (Sweden)

    S. Tachibana

    2010-06-01

    Full Text Available The purpose of this research is to collect fundamental data and to establish a performance-based design method for reinforced concrete beams under perpendicular impact load.

    Series of low speed impact experiments using reinforced concrete beams were performed varying span length, cross section and main reinforcement.

    The experimental results are evaluated focusing on the impact load characteristics and the impact behaviours of reinforced concrete beams. Various characteristic values and their relationships are investigated such as the collision energy, the impact force duration, the energy absorbed by the beams and the beam response values. Also the bending performance of the reinforced concrete beams against perpendicular impact is evaluated.

    An equation is proposed to estimate the maximum displacement of the beam based on the collision energy and the static ultimate bending strength. The validity of the proposed equation is confirmed by comparison with experimental results obtained by other researchers as well as numerical results obtained by FEM simulations. The proposed equation allows for a performance based design of the structure accounting for the actual deformation due to the expected impact action.

  17. Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode.

    Science.gov (United States)

    Zhu, Ji-Hua; Wei, Liangliang; Zhu, Miaochang; Sun, Hongfang; Tang, Luping; Xing, Feng

    2015-07-15

    This paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode. Carbon fiber reinforced mortar and conductive carbon paste as contact materials were used to adhere the CFRP anode to the concrete. Two current densities of 1244 and 2488 mA/m², corresponding to the steel reinforcements were applied for 25 days. Electrochemical parameters were monitored during the test period. The deterioration mechanism that occurred at the CFRP/contact material interface was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The increase of feeding voltage and the failure of bonding was observed during polarization process, which might have resulted from the deterioration of the interface between the contact material and CFRP. The formation and accumulation of NaCl crystals at the contact material/CFRP interface were inferred to be the main causes of the failure at the interface.

  18. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  19. In-plane shear test of fibre reinforced concrete panels

    DEFF Research Database (Denmark)

    Solgaard, Anders Ole Stubbe; Stang, Henrik; Goltermann, Per

    2008-01-01

    The present paper concerns the investigation of polymer Fiber Reinforced Concrete (FRC) panels subjected to in-plane shear. The use of fibers as primary reinforcement in panels is a new application of fiber reinforcement, hence test methods, design bases and models are lacking. This paper...... contributes to the investigation of fibers as reinforcement in panels with experimental results and a consistent approach to material characterization and modeling. The proposed model draws on elements from the classical yield line theory of rigid, perfectly plastic materials and the theory of fracture...... mechanics. Model panels have been cast to investigate the correlation between the load bearing capacity and the amount of fibers (vol. %) in the mixture. The type of fibers in the mixture was Poly Vinyl Alcohol (PVA) fibers, length 8 mm, diameter 0.04 mm. The mechanical properties of the FRC have been...

  20. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant