WorldWideScience

Sample records for geodesy

  1. Applied geodesy

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc

  2. NASA's Contribution to Global Space Geodesy Networks

    Science.gov (United States)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  3. Engineering Geodesy - Definition and Core Competencies

    Science.gov (United States)

    Kuhlmann, Heiner; Schwieger, Volker; Wieser, Andreas; Niemeier, Wolfgang

    2014-11-01

    This article summarises discussions concerning the definition of "engineering geodesy" within the German Geodetic Commission. It is noted that engineering geodesy by means of its tasks, methods and characteristics is an application-oriented science whose research questions often arise from observed phenomena or from unsolved practical problems. In particular it is characterised by the professional handling of geometry-related problems in a cost-effective manner that includes comprehensive quality assessment at all phases of the problem solution - from planning through measurement to data processing and interpretation. The current methodical developments are primarily characterised by the increasing integration of the measurement and analysis into challenging construction, production and monitoring processes as well as by the transition to spatially continuous methods. A modern definition of engineering geodesy is proposed at the end of this article.

  4. 48 CFR 252.245-7000 - Government-furnished mapping, charting, and geodesy property.

    Science.gov (United States)

    2010-10-01

    ... mapping, charting, and geodesy property. 252.245-7000 Section 252.245-7000 Federal Acquisition Regulations..., charting, and geodesy property. As prescribed in 245.107-70, use the following clause: Government-Furnished Mapping, Charting, and Geodesy Property (DEC 1991) (a) Definition—Mapping, charting, and geodesy (MC&G...

  5. Sciences of geodesy I advances and future directions

    CERN Document Server

    Xu, Guochang

    2010-01-01

    This series of reference books describes sciences of different elds in and around geodesy with independent chapters. Each chapter covers an individual eld and describes the history, theory, objective, technology, development, highlights of research and applications. In addition, problems as well as future directions are discussed. The subjects of this reference book include Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic Aperture Radar Interferometry. These are individual subjects in and around geodesy and are for the rst time combined in a unique book which may be used for teaching or for learning basic principles of many subjects related to geodesy. The material is suitable to provide a general overview of geodetic sciences f...

  6. 25 Years of Reports on Geodesy and Geoinformatics

    Directory of Open Access Journals (Sweden)

    Siemiątkowska Jadwiga

    2016-06-01

    Full Text Available The article presents an outline of the 25-year history of the journal “Reports on Geodesy and Geoinformatics”. The source of information was mainly the journal issues themselves. Attention was drawn to changes that the journal underwent over a quarter of a century and its relationship with the Institute of Geodesy and Geodetic Astronomy and later the Department of Geodesy and Geodetic Astronomy. Many issues were dedicated to materials from Polish conferences - those organised by the Institute and the international ones attended by the employees of the Institute, which was indicated in the section on the history of the journal.

  7. Advancing geodesy in the U.S. Midcontinent: workshop report

    Science.gov (United States)

    Hamburger, Michael W.; Boyd, Oliver S.; Calais, Eric; King, Nancy E.; Stein, Seth A.

    2014-01-01

    The workshop on “Advancing Geodesy in the U.S. Midcontinent” was held from October 31 to November 1, 2012, at Northwestern University in Evanston, Illinois. The workshop included 28 participants from academia, government, and private-sector organizations that are involved in research on geodesy and earthquake hazards in the seismically active areas of the U.S. midcontinent (the region of relatively undeformed crust roughly between the Great Plains and Appalachian Mountains). The workshop was intended to provide guidance to the U.S. Geological Survey’s internal and external Earthquake Hazards research programs in the U.S. midcontinent. The 2012 workshop was developed as a follow-up to the “Workshop on New Madrid Geodesy and Understanding Intraplate Earthquakes,” held in Norwood, Massachusetts, in March 2011. The goal of the 2012 workshop was to provide specific recommendations to the U.S. Geological Survey on priorities for infrastructure and research investments related to geodesy in the U.S. midcontinent.

  8. Tides and Modern Geodesy

    Science.gov (United States)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    In modem high-precision geodesy, and especially in modem space geodesy, every measurement that one makes contains tidal signals. Generally these signals are considered noise and must somehow be eliminated. The stringent requirements of the latest space geodetic missions place severe demands on tidal models. On the other hand, these missions provide the strongest data for improving tidal models. In particular, TOPEX/POSEIDON altimetry and LAGEOS laser ranging have improved models to such an extent that new geophysical information about the ocean and the solid Earth are coming to light. Presumably GRACE intersatellite ranging data will also add to this information. This paper discusses several of these new geophysical results, with special emphasis given to the dissipation of tidal energy. Strong constraints have recently been placed on the partitioning of energy dissipation among the ocean, atmosphere, and solid earth and between the deep and shallow ocean. The dissipation in deep water is associated with internal tides and has potentially important implications for understanding the ocean's thermohaline circulation.

  9. Physical applications of GPS geodesy: a review.

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  10. Improved DORIS accuracy for precise orbit determination and geodesy

    Science.gov (United States)

    Willis, Pascal; Jayles, Christian; Tavernier, Gilles

    2004-01-01

    In 2001 and 2002, 3 more DORIS satellites were launched. Since then, all DORIS results have been significantly improved. For precise orbit determination, 20 cm are now available in real-time with DIODE and 1.5 to 2 cm in post-processing. For geodesy, 1 cm precision can now be achieved regularly every week, making now DORIS an active part of a Global Observing System for Geodesy through the IDS.

  11. Mathematical foundation of geodesy selected papers of Torben Krarup

    CERN Document Server

    Borre, K

    2006-01-01

    This volume contains selected papers by Torben Krarup, one of the most important geodesists of the 20th century. The collection includes the famous booklet "A Contribution to the Mathematical Foundation of Physical Geodesy" from 1969, the unpublished "Molodenskij letters" from 1973, the final version of "Integrated Geodesy" from 1978, "Foundation of a Theory of Elasticity for Geodetic Networks" from 1974, as well as trend-setting papers on the theory of adjustment.

  12. Geodesy and Mapping (Selected Articles),

    Science.gov (United States)

    1979-08-16

    August 1979 MICROFICHE NR. C-0/O GEODESY AND MAPPING (SELECTED ARTICLES) English pages: 53 Source: Geodezja i Kartograflia, Vol. 27, Nr. 2, 1978, pp. 83...Hausbrandt S., Wyrdwnanie sieci trygonemetryernych z odrzuceniem zalolenia bezbIfdneil pwo- ktdw dowiqzania, Geodezja i Kartografia. T III, z. 1, 1954. [2

  13. Integration of space geodesy: A US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth E.

    2005-11-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.

  14. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  15. Friedrich Robert Helmert, founder of modern geodesy, on the occasion of the centenary of his death

    Science.gov (United States)

    Ihde, Johannes; Reinhold, Andreas

    2017-08-01

    Friedrich Robert Helmert died in Potsdam in 1917 at the age of 74 after serving for over 30 years as director of the Royal Prussian Geodetic Institute and of the Central Bureau of the Internationale Erdmessung, the forerunner of today's International Association of Geodesy. He dedicated his life and his scientific career to the field of geodesy. His teachings on theoretical and physical geodesy were incorporated into university curricula around the world and hence into international endeavours to measure planet Earth. The purpose of this article is to illustrate the impact he has had on the development of modern geodesy and on the related sciences.

  16. Volcano Geodesy: Recent developments and future challenges

    Science.gov (United States)

    Fernandez, Jose F.; Pepe, Antonio; Poland, Michael; Sigmundsson, Freysteinn

    2017-01-01

    Ascent of magma through Earth's crust is normally associated with, among other effects, ground deformation and gravity changes. Geodesy is thus a valuable tool for monitoring and hazards assessment during volcanic unrest, and it provides valuable data for exploring the geometry and volume of magma plumbing systems. Recent decades have seen an explosion in the quality and quantity of volcano geodetic data. New datasets (some made possible by regional and global scientific initiatives), as well as new analysis methods and modeling practices, have resulted in important changes to our understanding of the geodetic characteristics of active volcanism and magmatic processes, from the scale of individual eruptive vents to global compilations of volcano deformation. Here, we describe some of the recent developments in volcano geodesy, both in terms of data and interpretive tools, and discuss the role of international initiatives in meeting future challenges for the field.

  17. The New Geodesy: A Powerful Tool in the Mitigation of Natural Hazards

    Science.gov (United States)

    LaBrecque, J. L.

    2017-12-01

    Geodesy has transitioned from a little understood arcane science into an indispensible tool that is used by most citizens in their everyday lives. Who does not use GNSS to navigate with little thought to the contributions of geodecists, physicists and the technological marvels that made this possible. Less understood is how geodetic science and technology is transforming our approach to disaster warning and mitigation. Space Geodesy and the Global Navigation Satellite Systems (GNSS) are directly impacting the effectiveness and efficiency of understanding, preparedness and response in such disparate areas as weather, water resources, earthquakes, climate change impacts, soil moisture, land cover, and tsunami early warning. However, the full benefits of geodesy to society cannot be achieved without international accords and investments to access the full spectrum geodetic information with minimal latency.

  18. Geodesy and Cartography (Selected Articles),

    Science.gov (United States)

    1979-08-10

    C-OO/b73 GEODESY AND CARTOGRAPHY (SELECTED ARTICLES) English pages: 40 Source: GeodezJa i Kartografia, Vol. 27, Nr. 1, 1978, PP. 3-27 Country of...1976. 14) kledzixski, J., Zibek, Z., Czarnecki, K., Rogowski, J.B., Problems in Using Satellite Surveys in an Astronomical-Geodesic Network, Geodezja i...Based on Observations of Low-Low Satellites Using Collocation Methods, Geodezja i Kartografia, Vol. XXVI, No. 4, 1977. [-7. Krynski, J., Schwarz, K.P

  19. CDDIS: NASA's Archive of Space Geodesy Data and Products Supporting GGOS

    Science.gov (United States)

    Noll, Carey; Michael, Patrick

    2016-01-01

    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data and products in a central archive, to maintain information about the archival of these data,to disseminate these data and information in a timely manner to a global scientific research community, and provide user based tools for the exploration and use of the archive. The CDDIS data system and its archive is a key component in several of the geometric services within the International Association of Geodesy (IAG) and its observing systemthe Global Geodetic Observing System (GGOS), including the IGS, the International DORIS Service (IDS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth Rotation and Reference Systems Service (IERS). The CDDIS provides on-line access to over 17 Tbytes of dataand derived products in support of the IAG services and GGOS. The systems archive continues to grow and improve as new activities are supported and enhancements are implemented. Recently, the CDDIS has established a real-time streaming capability for GNSS data and products. Furthermore, enhancements to metadata describing the contents ofthe archive have been developed to facilitate data discovery. This poster will provide a review of the improvements in the system infrastructure that CDDIS has made over the past year for the geodetic community and describe future plans for the system.

  20. Geodesy introduction to geodetic datum and geodetic systems

    CERN Document Server

    Lu, Zhiping; Qiao, Shubo

    2014-01-01

    A full introduction to geodetic data and systems written by well-known experts in their respective fields, this book is an ideal text for courses in geodesy and geomatics covering everything from coordinate and gravimetry data to geodetic systems of all types.

  1. Reference Ellipsoid and Geoid in Chronometric Geodesy

    Science.gov (United States)

    Kopeikin, Sergei M.

    2016-02-01

    Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in chronometric

  2. Integration of space geodesy: a US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth

    2003-01-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the U.S., in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO).

  3. Geodesy problems in nuclear power plant construction

    International Nuclear Information System (INIS)

    Eory, K.

    1981-01-01

    The special geodetic problems encountered during the construction of the Paks nuclear power plants are treated. The main building with its hermetically connected components including the reactor, the steam generators, the circulation pumps etc. impose special requirements on the control net of datum points. The geodesy tasks solved during the construction of the main building are presented in details. (R.P.)

  4. Space Geodesy Project Information and Configuration Management Procedure

    Science.gov (United States)

    Merkowitz, Stephen M.

    2016-01-01

    This plan defines the Space Geodesy Project (SGP) policies, procedures, and requirements for Information and Configuration Management (CM). This procedure describes a process that is intended to ensure that all proposed and approved technical and programmatic baselines and changes to the SGP hardware, software, support systems, and equipment are documented.

  5. Archiving Space Geodesy Data for 20+ Years at the CDDIS

    Science.gov (United States)

    Noll, Carey E.; Dube, M. P.

    2004-01-01

    Since 1982, the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by NASA programs. These data include GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), SLR (Satellite Laser Ranging), VLBI (Very Long Baseline Interferometry), and DORIS (Doppler Orbitography and Radiolocation Integrated by Satellite). The data archive supports NASA's space geodesy activities through the Solid Earth and Natural Hazards (SENH) program. The CDDIS data system and its archive have become increasingly important to many national and international programs, particularly several of the operational services within the International Association of Geodesy (IAG), including the International GPS Service (IGS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), the International DORIS Service (IDS), and the International Earth Rotation Service (IERS). The CDDIS provides easy and ready access to a variety of data sets, products, and information about these data. The specialized nature of the CDDIS lends itself well to enhancement and thus can accommodate diverse data sets and user requirements. All data sets and metadata extracted from these data sets are accessible to scientists through ftp and the web; general information about each data set is accessible via the web. The CDDIS, including background information about the system and its user communities, the computer architecture, archive contents, available metadata, and future plans will be discussed.

  6. Post-Newtonian reference ellipsoid for relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena

    2016-02-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to

  7. Reference ellipsoid and geoid in chronometric geodesy

    Directory of Open Access Journals (Sweden)

    Sergei M Kopeikin

    2016-02-01

    Full Text Available Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height. We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it

  8. Reference Ellipsoid and Geoid in Chronometric Geodesy

    Energy Technology Data Exchange (ETDEWEB)

    Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO (United States); Department of Physical Geodesy and Remote Sensing, Siberian State University of Geosystems and Technologies, Novosibirsk (Russian Federation)

    2016-02-25

    Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in

  9. Geodesy, a Bibliometric Approach for 2000-2006

    Science.gov (United States)

    Vazquez, G.; Landeros, C. F.

    2007-12-01

    In recent years, bibliometric science has been frequently applied in the development and evaluation of scientific research. This work presents a bibliometric analysis for the research work performed in the field of geodesy "science of the measurement and mapping of the earth surface including its external gravity field". The objective of this work is to present a complete overview of the generated research on this field to assemble and study the most important publications occurred during the past seven years. The analysis was performed including the SCOPUS and WEB OF SCIENCE databases for all the geodetic scientific articles published between 2000 and 2006. The search profile was designed considering a strategy to seek for titles and article descriptors using the terms geodesy and geodetic and some other terms associated with the topics: geodetic surfaces, vertical measurements, reference systems and frames, modern space-geodetic techniques and satellite missions. Some preliminary results had been achieved specifically Bradford law of distribution for journals and education institutes, and Lotka's law for authors that also includes the cooperation between countries in terms of writing together scientific articles. In the particular case of distributions, the model suggested by Egghe (2002) was adopted for determining the cores.

  10. Studying geodesy and earthquake hazard in and around the New Madrid Seismic Zone

    Science.gov (United States)

    Boyd, Oliver Salz; Magistrale, Harold

    2011-01-01

    Workshop on New Madrid Geodesy and the Challenges of Understanding Intraplate Earthquakes; Norwood, Massachusetts, 4 March 2011 Twenty-six researchers gathered for a workshop sponsored by the U.S. Geological Survey (USGS) and FM Global to discuss geodesy in and around the New Madrid seismic zone (NMSZ) and its relation to earthquake hazards. The group addressed the challenge of reconciling current geodetic measurements, which show low present-day surface strain rates, with paleoseismic evidence of recent, relatively frequent, major earthquakes in the region. The workshop presentations and conclusions will be available in a forthcoming USGS open-file report (http://pubs.usgs.gov).

  11. Next Generation NASA Initiative for Space Geodesy

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  12. Potential capabilities of lunar laser ranging for geodesy and relativity

    Science.gov (United States)

    Muller, Jurgen; Williams, James G.; Turshev, Slava G.; Shelus, Peter J.

    2005-01-01

    Here, we review the LLR technique focusing on its impact on Geodesy and Relativity. We discuss the modem observational accuracy and the level of existing LLR modeling. We present the near-term objectives and emphasize improvements needed to fully utilize the scientific potential of LLR.

  13. The Use of Resonant Orbits in Satellite Geodesy: A Review

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Gooding, R. H.; Wagner, C. A.; Kostelecký, J.; Bezděk, Aleš

    2013-01-01

    Roč. 34, č. 1 (2013), s. 43-72 ISSN 0169-3298 Grant - others:ESA(XE) ESA- PECS project No. 98056 Institutional support: RVO:67985815 Keywords : satellite geodesy * Earth's gravitational field * geopotential Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.112, year: 2013

  14. Preparation and concept of geodesy work on the Temelin nuclear power plant site

    International Nuclear Information System (INIS)

    Vincik, K.; Zdobinsky, J.

    1989-01-01

    Listed are the main partners in the Temelin nuclear power plant construction (investor, general designer, building and equipment parts suppliers), the main specifications of the power plant, the layout of buildings, the types of construction documentation, and the concept of geodesy work. A network was laid out comprising 9 points and a local coordinate system and an elevation system for design work were determined. Within the layout, a network of basic elevation points with depth stabilization and a starting 6-point level network were proposed. The updating is described of the layout network and of the organization of geodesy work during the construction of the Temelin nuclear power plant. (E.J.)

  15. Contribution of GNSS CORS Infrastructure to the Mission of Modern Geodesy and Status of GNSS CORS in Thailand

    Directory of Open Access Journals (Sweden)

    Chalermchon Satirapod

    2011-01-01

    Full Text Available Geodesy is the science of measuring and mapping the geometry, orientation and gravity field of the Earth including the associated variations with time. Geodesy has also provided the foundation for high accuracy surveying and mapping. Modern Geodesy involves a range of space and terrestrial technologies that contribute to our knowledge of the solid earth, atmosphere and oceans. These technologies include: Global Positioning System/Global Navigation Satellite Systems (GPS/GNSS, Satellite Laser Ranging (SLR, Very Long Baseline Interferometry (VLBI, Satellite Altimetry, Gravity Mapping Missions such as GRACE, CHAMP and GOCE, satelliteborne Differential Interferometric Synthetic Aperture Radar (DInSAR, Absolute and Relative Gravimetry, and Precise Terrestrial Surveying (Levelling and Traversing. A variety of services have been established in recent years to ensure high accuracy and reliable geodetic products to support geoscientific research. The reference frame defined by Modern Geodesy is now the basis for most national and regional datums. Furthermore, the GPS/GNSS technology is a crucial geopositioning tool for both Geodesy and Surveying. There is therefore a blurring of the distinction between geodetic and surveying GPS/GNSS techniques, and increasingly the ground infrastructure of continuously operating reference stations (CORS receivers attempts to address the needs of both geodesists and other positioning professionals. Yet Geodesy is also striving to increase the level of accuracy by a factor of ten over the next decade in order to address the demands of “global change” studies. The Global Geodetic Observing System (GGOS is an important component of the International Association of Geodesy. GGOS aims to integrate all geodetic observations in order to generate a consistent high quality set of geodetic parameters for monitoring the phenomena and processes within the “System Earth”. Integration implies the inclusion of all relevant

  16. Cooperative research in space geodesy and crustal dynamics

    Science.gov (United States)

    1994-01-01

    This research grant, which covered the period of July 1991 to August 1994, was concerned with a variety of topics within the geodesy and crustal dynamics fields. The specific topics of this grant included satellite tracking and gravity field determinations and crustal dynamics (this concentrated of space geodetic site stability for VLBI sites). Summaries of the specific research projects are included along with a list of publications and presentations supported by this research grant.

  17. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  18. VLBI2010 in NASA's Space Geodesy Project

    Science.gov (United States)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  19. A Lifetime of Geodesy and Geophysics: In Rememberence of Bill Kaula

    Science.gov (United States)

    Smith, David E.

    2000-01-01

    In the early 1960's the secrets that knowledge of the Earth's gravity field would eventually reveal about the processes that govern our planet were yet to be appreciated. It was the beginning of a new science known as space geodesy, which arose at a time when most efforts were devoted to understanding how to extract precise measurements of Earth structure and motions from an orbiting spacecraft. Bill Kaula was central to that beginning and showed the way for many who were to follow, both in time and in the development of approaches most likely to yield results. Bill laid out the theory, analyzed the data, and argued strenuously for a spacecraft mission devoted to measuring gravity to make it all come true in the way he knew it really could. That mission, GRACE, was a long time coming and Bill would not see its final staging, but his influence in making it happen was everywhere. With time, the concepts for measuring the static gravity field of the Earth and terrestrial planets became well advanced, although not universally agreed upon, and certainly not by Bill, who was always eager to argue and challenge traditional methods and thinking. The extension of space geodetic techniques to the planets and the development of new techniques to measure time variations in gravity have recently brought geodesy even closer to the geophysical processes that Bill sought to understand. This presentation will contain a little geodesy, a little history, and a little reminiscing about the leader in our field.

  20. Introduction to Individual Contribution by the VI Scientific and Professional Conferences with International Participation Geodesy, Cartography and Geographic Information Systems 2010

    Directory of Open Access Journals (Sweden)

    Janka Sabová

    2011-12-01

    Full Text Available This contribution contains a selection of articles from 6th Scientific Conference with International Participation "Geodesy,Cartography and Geographical Information Systems 2010". Particular articles are focused on the field of geodesy, engineeringsurveying, mining surveying, deformation analysis, digital photogrammetry, cartography, cadastre of real estates and terrestrial laserscanning. The reader will become familiar with the recent trends and results of research that have been achieved in these areasat universities, as well as in the commercial sector that act in branch of geodesy in the Czech and Slovak Republic.

  1. Education of geodesy and cartography at the School of Higher Education In National Economy In Kutno, Poland.

    Science.gov (United States)

    Sledzinski, Janusz

    2013-04-01

    School of Higher (university degree) Education in National Economy in Kutno is one of the rather younger university schools in Poland that were established in the last years of the XX century. It was founded in 1998, but the convenient location of Kutno in Central Poland seems to be a good opportunity for students coming from all parts of Poland. The School is continuously developed, number of faculties and new study directions and specialisations are steadily growing. The offer of the School include studies in the stationary, extra-mural and post-graduate systems in two Engineering (or licenciate) and M.Sc. levels. At the moment the geodesy and cartography is a part of the Faculty of Technical Sciences; students can chose one of three specialisations: 1.Economic geodesy, property and estate management, 2. Rural (agriculture) geodesy and property engineering and 3. Geoinformatic sciences.

  2. Global tectonics and space geodesy

    Science.gov (United States)

    Gordon, Richard G.; Stein, Seth

    1992-01-01

    Much of the success of plate tectonics can be attributed to the near rigidity of tectonic plates and the availability of data that describe the rates and directions of motion across narrow plate boundaries of about 1 to 60 kilometers. Nonetheless, many plate boundaries in both continental and oceanic lithosphere are not narrow but are hundreds to thousands of kilometers wide. Wide plate boundary zones cover approximately 15 percent of earth's surface area. Space geodesy, which includes very long baseline radio interferometry, satellite laser ranging, and the global positioning system, provides the accurate long-distance measurements needed to estimate the present motion across and within wide plate boundary zones. Space geodetic data show that plate velocities averaged over years are remarkably similar to velocities avaraged over millions of years.

  3. NASA space geodesy program: Catalogue of site information

    Science.gov (United States)

    Bryant, M. A.; Noll, C. E.

    1993-01-01

    This is the first edition of the NASA Space Geodesy Program: Catalogue of Site Information. This catalogue supersedes all previous versions of the Crustal Dynamics Project: Catalogue of Site Information, last published in May 1989. This document is prepared under the direction of the Space Geodesy and Altimetry Projects Office (SGAPO), Code 920.1, Goddard Space Flight Center. SGAPO has assumed the responsibilities of the Crustal Dynamics Project, which officially ended December 31, 1991. The catalog contains information on all NASA supported sites as well as sites from cooperating international partners. This catalog is designed to provde descriptions and occupation histories of high-accuracy geodetic measuring sites employing space-related techniques. The emphasis of the catalog has been in the past, and continues to be with this edition, station information for facilities and remote locations utilizing the Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI) techniques. With the proliferation of high-quality Global Positioning System (GPS) receivers and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) transponders, many co-located at established SLR and VLBI observatories, the requirement for accurate station and localized survey information for an ever broadening base of scientists and engineers has been recognized. It is our objective to provide accurate station information to scientific groups interested in these facilities.

  4. [Surveying a zoological facility through satellite-based geodesy].

    Science.gov (United States)

    Böer, M; Thien, W; Tölke, D

    2000-06-01

    In the course of a thesis submitted for a diploma degree within the Fachhochschule Oldenburg the Serengeti Safaripark was surveyed in autumn and winter 1996/97 laying in the planning foundations for the application for licences from the controlling authorities. Taking into consideration the special way of keeping animals in the Serengeti Safaripark (game ranching, spacious walk-through-facilities) the intention was to employ the outstanding satellite based geodesy. This technology relies on special aerials receiving signals from 24 satellites which circle around the globe. These data are being gathered and examined. This examination produces the exact position of this aerial in a system of coordinates which allows depicting this point on a map. This procedure was used stationary (from a strictly defined point) as well as in the movement (in a moving car). Additionally conventional procedures were used when the satellite based geodesy came to its limits. Finally a detailed map of the Serengeti Safaripark was created which shows the position and size of stables and enclosures as well as wood and water areas and the sectors of the leisure park. Furthermore the established areas of the enclosures together with an already existing animal databank have flown into an information system with the help of which the stock of animals can be managed enclosure-orientated.

  5. Data management and processing plan, Department of Applied Geodesy

    International Nuclear Information System (INIS)

    1992-08-01

    This plan outlines Data Management and Data Processing requirements of the Department of Applied Geodesy (DAG) and presents the plan to meet these requirements (These requirements are derived from the functional needs of the Department to meet the SSCL alignment tolerances and schedules). In addition, this document presents a schedule for the implementation of this plan. This document is an integral part of the Alignment Plan of the SSCL

  6. International VLBI Service for Geodesy and Astrometry

    Science.gov (United States)

    Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)

    2001-01-01

    This volume of reports is the 2000 Annual Report of the International Very Long Base Interferometry (VLBI) Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2000 Annual Report documents the work of these IVS components over the period March 1, 1999, through December 31, 2000. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS web site at http://ivscc.gsfc.nasa.gov/publications/ar2000.

  7. Solving algebraic computational problems in geodesy and geoinformatics the answer to modern challenges

    CERN Document Server

    Awange, Joseph L

    2004-01-01

    While preparing and teaching 'Introduction to Geodesy I and II' to - dergraduate students at Stuttgart University, we noticed a gap which motivated the writing of the present book: Almost every topic that we taughtrequiredsomeskillsinalgebra,andinparticular,computeral- bra! From positioning to transformation problems inherent in geodesy and geoinformatics, knowledge of algebra and application of computer algebra software were required. In preparing this book therefore, we haveattemptedtoputtogetherbasicconceptsofabstractalgebra which underpin the techniques for solving algebraic problems. Algebraic c- putational algorithms useful for solving problems which require exact solutions to nonlinear systems of equations are presented and tested on various problems. Though the present book focuses mainly on the two ?elds,theconceptsand techniquespresented hereinarenonetheless- plicable to other ?elds where algebraic computational problems might be encountered. In Engineering for example, network densi?cation and robo...

  8. Normal gravity field in relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao

    2018-02-01

    Modern geodesy is subject to a dramatic change from the Newtonian paradigm to Einstein's theory of general relativity. This is motivated by the ongoing advance in development of quantum sensors for applications in geodesy including quantum gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of the geoid and multipolar structure of the Earth's gravitational field. At the same time, very long baseline interferometry, satellite laser ranging, and global navigation satellite systems have achieved an unprecedented level of accuracy in measuring 3-d coordinates of the reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of the of Earth's gravitational field are referred is a normal gravity field represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid of which mass and quadrupole momentum are equal to the total mass and (tide-free) quadrupole moment of Earth's gravitational field. The present paper extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus our attention on the calculation of the post-Newtonian approximation of the normal field that is sufficient for current and near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order with respect to the geodetic Cartesian coordinates. At the same time, admitting a post-Newtonian inhomogeneity of the mass density in the form of concentric elliptical shells allows one to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level surface with two parameters which are

  9. International VLBI Service for Geodesy and Astrometry: General Meeting Proceedings

    Science.gov (United States)

    Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)

    2002-01-01

    This volume contains the proceedings of the second General Meeting of the International VLBI Service for Geodesy and Astrometry (IVS), held in Tsukuba, Japan, February 4-7, 2002. The contents of this volume also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/gm2002. The key-note of the second GM was prospectives for the future, in keeping with the re-organization of the IAG around the motivation of geodesy as 'an old science with a dynamic future' and noting that providing reference frames for Earth system science that are consistent over decades on the highest accuracy level will provide a challenging role for IVS. The goal of the meeting was to provide an interesting and informative program for a wide cross section of IVS members, including station operators, program managers, and analysts. This volume contains 72 papers and five abstracts of papers presented at the GM. The volume also includes reports about three splinter meetings held in conjunction with the GM: a mini-TOW (Technical Operations Workshop), the third IVS Analysis Workshop and a meeting of the analysis working group on geophysical modeling.

  10. [Value of the space perception test for evaluation of the aptitude for precision work in geodesy].

    Science.gov (United States)

    Remlein-Mozolewska, G

    1982-01-01

    The visual spatial localization ability of geodesy and cartography - employers and of the pupils trained for the mentioned profession has been examined. The examination has been based on work duration and the time of its performance. A correlation between the localization ability and the precision of the hand - movements required in everyday work has been proven. The better the movement precision, the more efficient the visual spatial localization. The length of work has not been significant. The test concerned appeared to be highly useful in geodesy for qualifying workers for the posts requiring good hands efficiency.

  11. Application of artificial intelligence in Geodesy - A review of theoretical foundations and practical examples

    Science.gov (United States)

    Reiterer, Alexander; Egly, Uwe; Vicovac, Tanja; Mai, Enrico; Moafipoor, Shahram; Grejner-Brzezinska, Dorota A.; Toth, Charles K.

    2010-12-01

    Artificial Intelligence (AI) is one of the key technologies in many of today's novel applications. It is used to add knowledge and reasoning to systems. This paper illustrates a review of AI methods including examples of their practical application in Geodesy like data analysis, deformation analysis, navigation, network adjustment, and optimization of complex measurement procedures. We focus on three examples, namely, a geo-risk assessment system supported by a knowledge-base, an intelligent dead reckoning personal navigator, and evolutionary strategies for the determination of Earth gravity field parameters. Some of the authors are members of IAG Sub-Commission 4.2 - Working Group 4.2.3, which has the main goal to study and report on the application of AI in Engineering Geodesy.

  12. International VLBI Service for Geodesy and Astronomy

    Science.gov (United States)

    Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)

    2004-01-01

    This volume of reports is the 2003 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2003 Annual Report documents the work of the IVS components for the calendar year 2003, our fifih year of existence. The reports describe changes, activities, and progress of the IVS. Many thanks to all IVS components who contributed to this Annual Report. The entire contents of this Annual Report also appear on the IVS web site at http://ivscc.gsfc.nasa.gov/publications/ar2OO3

  13. UNAVCO: A Decade Supporting EarthScope - Three Decades of Supporting Geodesy for Science Innovation

    Science.gov (United States)

    Miller, M.

    2013-12-01

    UNAVCO supports research that establishes Earth's reference frame, enabling mapping of the planet's shape and mass; determines changes in the distribution of ice, water resources, and sea level; characterizes processes that contribute to natural and man-made hazards; and recognizes land-use changes (including subsidence, soil moisture, and health of wetlands). UNAVCO began as an investigator cooperative in 1984 - with the goal of sharing equipment and technologies that were expensive, rapidly changing, and extraordinarily powerful. Today as NSF's National Earth Science Geodetic Facility, on the eve of our 30th anniversary, we are excited to highlight a decade of support for major components of EarthScope, especially the Plate Boundary Observatory (PBO). Innovations by UNAVCO and the UNAVCO community have supported steady advancement towards millimeter-level global geodesy. Modern space geodesy provides new observational capability for contemporary deformation and magmatism in active convergent margin systems that operate over a spectrum of temporal and spatial scales, especially the PBO. Time scales vary from seconds to millennia, and spatial scales from borehole nanostrains to the global plate circuit. High-precision strain or 3-D point observations with borehole strainmeter or Global Positioning System (GPS) observations and geodetic imaging with SAR and LiDAR are used in combination to reveal these complex systems. GPS now combines with strong ground motion accelerometer time series to provide important enhancements to conventional seismology. The resulting 3-D fully georeferenced dynamic positioning time series are free of ambiguities associated with seismometer tilt and displacement. Geodesy constrains plate kinematics for convergence rate and direction, co-seismic deformation during great and moderate earthquakes, episodic tremor and slip events and related transient deformation, tectono-magmatic interactions, and the possible triggering effects of

  14. An overview of remote sensing and geodesy for epidemiology and public health application.

    Science.gov (United States)

    Hay, S I

    2000-01-01

    The techniques of remote sensing (RS) and geodesy have the potential to revolutionize the discipline of epidemiology and its application in human health. As a new departure from conventional epidemiological methods, these techniques require some detailed explanation. This review provides the theoretical background to RS including (i) its physical basis, (ii) an explanation of the orbital characteristics and specifications of common satellite sensor systems, (iii) details of image acquisition and procedures adopted to overcome inherent sources of data degradation, and (iv) a background to geophysical data preparation. This information allows RS applications in epidemiology to be readily interpreted. Some of the techniques used in geodesy, to locate features precisely on Earth so that they can be registered to satellite sensor-derived images, are also included. While the basic principles relevant to public health are presented here, inevitably many of the details must be left to specialist texts.

  15. Space geodesy validation of the global lithospheric flow

    Science.gov (United States)

    Crespi, M.; Cuffaro, M.; Doglioni, C.; Giannone, F.; Riguzzi, F.

    2007-02-01

    Space geodesy data are used to verify whether plates move chaotically or rather follow a sort of tectonic mainstream. While independent lines of geological evidence support the existence of a global ordered flow of plate motions that is westerly polarized, the Terrestrial Reference Frame (TRF) presents limitations in describing absolute plate motions relative to the mantle. For these reasons we jointly estimated a new plate motions model and three different solutions of net lithospheric rotation. Considering the six major plate boundaries and variable source depths of the main Pacific hotspots, we adapted the TRF plate kinematics by global space geodesy to absolute plate motions models with respect to the mantle. All three reconstructions confirm (i) the tectonic mainstream and (ii) the net rotation of the lithosphere. We still do not know the precise trend of this tectonic flow and the velocity of the differential rotation. However, our results show that assuming faster Pacific motions, as the asthenospheric source of the hotspots would allow, the best lithospheric net rotation estimate is 13.4 +/- 0.7 cm yr-1. This superfast solution seems in contradiction with present knowledge on the lithosphere decoupling, but it matches remarkably better with the geological constraints than those retrieved with slower Pacific motion and net rotation estimates. Assuming faster Pacific motion, it is shown that all plates move orderly `westward' along the tectonic mainstream at different velocities and the equator of the lithospheric net rotation lies inside the corresponding tectonic mainstream latitude band (~ +/-7°), defined by the 1σ confidence intervals.

  16. New Collaboration Among Geodesy Data Centers in Europe and the US Facilitates Data Discovery and Access

    Science.gov (United States)

    Boler, Fran; Wier, Stuart; D'Agostino, Nicola; Fernandes, Rui R. M.; Ganas, Athanassios; Bruyninx, Carine; Ofeigsson, Benedikt

    2014-05-01

    COOPEUS, the European Union project to strengthen the cooperation between the US and the EU in the field of environmental research infrastructures, is linking the US NSF-supported geodesy Facility at UNAVCO with the European Plate Observing System (EPOS) in joint research infrastructure enhancement activities that will ultimately advance international geodesy data discovery and access. (COOPEUS also links a broad set of additional EU and US based Earth, oceans, and environmental science research entities in joint research infrastructure enhancement activities.) The UNAVCO Data Center in Boulder, Colorado, archives for preservation and distributes geodesy data and products, including hosting GNSS data from 2,500 continuously operating stations around the globe. UNAVCO is only one of several hundred data centers worldwide hosting GNSS data, which are valuable for scientific research, education, hazards assessment and monitoring, and emergency management. However, the disparate data holdings structures, metadata encodings, and infrastructures at these data centers represent a significant obstacle to use by scientists, government entities, educators and the public. Recently a NASA-funded project at UNAVCO and two partner geodesy data centers in the US (CDDIS and SOPAC) has successfully designed and implemented software for simplified data search and access called the Geodesy Seamless Archive Centers (GSAC). GSAC is a web services based technology that is intended to be simple to install and run for most geodesy data centers. The GSAC services utilize a repository layer and a service layer to identify and present both the required metadata elements along with any data center-specific services and capabilities. In addition to enabling web services and related capabilities at the data center level, GSAC repository code can be implemented to federate two or more GSAC-enabled data centers wishing to present a unified search and access capability to their user community. In

  17. Seismology and space-based geodesy

    Science.gov (United States)

    Tralli, David M.; Tajima, Fumiko

    1993-01-01

    The potential of space-based geodetic measurement of crustal deformation in the context of seismology is explored. The achievements of seismological source theory and data analyses, mechanical modeling of fault zone behavior, and advances in space-based geodesy are reviewed, with emphasis on realizable contributions of space-based geodetic measurements specifically to seismology. The fundamental relationships between crustal deformation associated with an earthquake and the geodetically observable data are summarized. The response and spatial and temporal resolution of the geodetic data necessary to understand deformation at various phases of the earthquake cycle is stressed. The use of VLBI, SLR, and GPS measurements for studying global geodynamics properties that can be investigated to some extent with seismic data is discussed. The potential contributions of continuously operating strain monitoring networks and globally distributed geodetic observatories to existing worldwide modern digital seismographic networks are evaluated in reference to mutually addressable problems in seismology, geophysics, and tectonics.

  18. Improvements in Space Geodesy Data Discovery at the CDDIS

    Science.gov (United States)

    Noll, C.; Pollack, N.; Michael, P.

    2011-01-01

    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank. to maintain information about the archival of these data, and to disseminate these data and information in a timely manner to a global scientific research community. The archive consists of GNSS, laser ranging, VLBI, and DORIS data sets and products derived from these data. The CDDIS is one of NASA's Earth Observing System Data and Information System (EOSDIS) distributed data centers; EOSDIS data centers serve a diverse user community and arc tasked to provide facilities to search and access science data and products. Several activities are currently under development at the CDDIS to aid users in data discovery, both within the current community and beyond. The CDDIS is cooperating in the development of Geodetic Seamless Archive Centers (GSAC) with colleagues at UNAVCO and SIO. TIle activity will provide web services to facilitate data discovery within and across participating archives. In addition, the CDDIS is currently implementing modifications to the metadata extracted from incoming data and product files pushed to its archive. These enhancements will permit information about COOlS archive holdings to be made available through other data portals such as Earth Observing System (EOS) Clearinghouse (ECHO) and integration into the Global Geodetic Observing System (GGOS) portal.

  19. Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)

    Science.gov (United States)

    Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.

    2012-04-01

    Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the

  20. Digital Mapping Charting and Geodesy analysis Program (DMAP) Review of Technical Initiatives for FY03

    National Research Council Canada - National Science Library

    Breckenridge, John

    2003-01-01

    The Naval DMAP serves as a technical representative for the Oceanographer of the Navy, NO96 to address significant issues relevant to the Navy's use and development of digital Mapping, Charting & Geodesy (MC&G) data...

  1. RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)

    Science.gov (United States)

    Hilliard, L. M.; Rajagopalan, Ganesh; Turner, Charles; Stevenson, Thomas; Bulcha, Berhanu

    2017-01-01

    Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.

  2. Atomic clocks for geodesy

    Science.gov (United States)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  3. Sciences of geodesy II innovations and future developments

    CERN Document Server

    Xu, Guochang

    2014-01-01

    This series of reference books describes the sciences of different fields in and around geodesy. Each chapter, is written by experts in the respective fields and covers an individual field and describes the history, theory, the objective, the technology, and the development, the highlight of the research, the applications, the problems, as well as future directions. Contents of Volume II include: Geodetic LEO Satellite Missions, Satellite Altimetry, Airborne Lidar, GNSS Software Receiver, Geodetic Boundary Problem, GPS and INS, VLBI, Geodetic Reference Systems, Spectral Analysis, Earth Tide and Ocean Loading Tide, Remote Sensing, Photogrammetry, Occultation, Geopotential Determination, Geoid Determination, Local Gravity Field, Geopotential Determination, Magnet Field, Mobile Mapping, General Relativity, Wide-area Precise Positioning etc.

  4. Investigation of a geodesy coexperiment to the Gravity Probe B relativity gyroscope program

    Science.gov (United States)

    Everitt, C. W. F.; Parkinson, Bradford W.; Tapley, Mark

    1993-01-01

    Geodesy is the science of measuring the gravitational field of and positions on the Earth. Estimation of the gravitational field via gravitation gradiometry, the measurement of variations in the direction and magnitude of gravitation with respect to position, is this dissertation's focus. Gravity Probe B (GP-B) is a Stanford satellite experiment in gravitational physics. GP-B will measure the precession the rotating Earth causes on the space time around it by observing the precessions of four gyroscopes in a circular, polar, drag-free orbit at 650 km altitude. The gyroscopes are nearly perfect niobium-coated spheres of quartz, operating at 1.8 K to permit observations with extremely low thermal noise. The permissible gyroscope drift rate is miniscule, so the torques on the gyros must be tiny. A drag-free control system, by canceling accelerations caused by nongravitational forces, minimizes the support forces and hence torques. The GP-B system offers two main possibilities for geodesy. One is as a drag-free satellite to be used in trajectory-based estimates of the Earth's gravity field. We described calculations involving that approach in our previous reports, including comparison of laser only, GPS only, and combined tracking and a preliminary estimate of the possibility of estimating relativistic effects on the orbit. The second possibility is gradiometry. This technique has received a more cursory examination in previous reports, so we concentrate on it here. We explore the feasibility of using the residual suspension forces centering the GP-B gyros as gradiometer signals for geodesy. The objective of this work is a statistical prediction of the formal uncertainty in an estimate of the Earth's gravitation field using data from GP-B. We perform an instrument analysis and apply two mathematical techniques to predict uncertainty. One is an analytical approach using a flat-Earth approximation to predict geopotential information quality as a function of spatial

  5. International VLBI Service for Geodesy and Astrometry 2007 Annual Report

    Science.gov (United States)

    Behrend, D. (Editor); Baver, K. D. (Editor)

    2008-01-01

    This volume of reports is the 2007 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2007 Annual Report documents the work of these IVS components over the period January 1, 2007 through December 31, 2007. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2007.

  6. International VLBI Service for Geodesy and Astrometry 2008 Annual Report

    Science.gov (United States)

    Behrend, Dirk; Baver, Karen D.

    2009-01-01

    This volume of reports is the 2008 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2008 Annual Report documents the work of these IVS components over the period January 1, 2008 through December 31, 2008. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2008.

  7. International VLBI Service for Geodesy and Astrometry 2011 Annual Report

    Science.gov (United States)

    Baver, Karen D. (Editor); Behrend, Dirk

    2012-01-01

    This volume of reports is the 2011 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2011 Annual Report documents the work of these IVS components over the period January 1, 2011 through December 31, 2011. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2011.

  8. International VLBI Service for Geodesy and Astrometry 2005 Annual Report

    Science.gov (United States)

    Behrend, Dirk (Editor); Baver, Karen D. (Editor)

    2006-01-01

    This volume of reports is the 2005 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the components of IVS. The 2005 Annual Report documents the work of these IVS components over the period January 1, 2005 through December 31, 2005. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2005.

  9. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  10. Geodesy in construction of the Belchatow brown coal mine. Geodezja w budowie KWB Belchatow

    Energy Technology Data Exchange (ETDEWEB)

    Poltoranos, J.

    1984-01-01

    Nine papers were delivered at the conference on geodesy in construction of the Belchatow brown coal mine held in October 1984 in Belchatow. Participants representing the Belchatow mine, Technical Institutes in Warsaw and Wroclaw, the Academy of Mining and Metallurgy im. Stanislaw Staszic in Cracow, the Central Mining Institute in Katowice, other research institutes in Poland and the Ministry of Mining and Power Generation attended the conference, sponsored by the Committee of Geodesy of the Polish Academy of Sciences. The following problems were discussed: types of geodetic measuring networks used in coal surface mining, criteria for optimization of geodetic measuring networks, kinematic problems in surveying displacements in coal mines, investigating strata movement in slopes of large and deep coal surface mines using geodetic surveying, mine surveying in the Belchatow mine, recommendations for amendment of regulations for geodetic surveying in coal surface mines in Poland, character of coal deposit in the Belchatow fault valley, its origin and geology, and causes of seismicity induced by mining in Belchatow. Eight papers have been abstracted separately.

  11. Closed-loop automatic photogrammetry-geodesy information system for the construction of the Paks nuclear power plant

    International Nuclear Information System (INIS)

    Detrekoei, Akos; Eoery, Karacson; Sarkoezy, Ferenc

    1984-01-01

    The stereo photogrammetric data collection, measurement and data processing system operating within the Geodesy Plan of the Paks nuclear power plant is described. The interactive graphic computer system, its functions and operation, together with plotters and displays for the generation of graphic output are presented. (R.P.)

  12. CAS CERN Accelerator School: Applied geodesy for particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This specialized course addresses the many topics involved in the application of geodesy to large particle accelerators, though many of the techniques described are equally applicable to large construction projects and surveillance systems where the highest possible surveying accuracies are required. The course reflects the considerable experience gained over many years, not only at CERN but in projects all over the world. The methods described range from the latest approach using satellites to recent developments in conventional techniques. They include the global positioning system (GPS), its development, deployment and precision, the use of the Terrameter and the combination or comparison of its results with those of the GPS, the automation of instruments, the management of measurements and data, and the highly evolved treatment of the observations. (orig.)

  13. Development of web tools to disseminate space geodesy data-related products

    Science.gov (United States)

    Soudarin, Laurent; Ferrage, Pascale; Mezerette, Adrien

    2015-04-01

    In order to promote the products of the DORIS system, the French Space Agency CNES has developed and implemented on the web site of the International DORIS Service (IDS) a set of plot tools to interactively build and display time series of site positions, orbit residuals and terrestrial parameters (scale, geocenter). An interactive global map is also available to select sites, and to get access to their information. Besides the products provided by the CNES Orbitography Team and the IDS components, these tools allow comparing time evolutions of coordinates for collocated DORIS and GNSS stations, thanks to the collaboration with the Terrestrial Frame Combination Center of the International GNSS Service (IGS). A database was created to improve robustness and efficiency of the tools, with the objective to propose a complete web service to foster data exchange with the other geodetic services of the International Association of Geodesy (IAG). The possibility to visualize and compare position time series of the four main space geodetic techniques DORIS, GNSS, SLR and VLBI is already under way at the French level. A dedicated version of these web tools has been developed for the French Space Geodesy Research Group (GRGS). It will give access to position time series provided by the GRGS Analysis Centers involved in DORIS, GNSS, SLR and VLBI data processing for the realization of the International Terrestrial Reference Frame. In this presentation, we will describe the functionalities of these tools, and we will address some aspects of the time series (content, format).

  14. International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings

    Science.gov (United States)

    Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)

    2004-01-01

    This volume is the proceedings of the third General Meeting of the International VLBI Service for Geodesy and Astromctry IVS), held in Otlawa, Canada, February 9-11,2004. The keynote of the third GM was visions for the next decade following the main theme of "Today's Results and Tomorrow's Vision". with a recognition that the outstanding VLBI results available today are the foundation and motivation for the next generation VLBI system requirements. The goal of the meeting was to provide an interesting and informative program for a wide cross section of IVS members, including station operators, program managers, and analysts.

  15. VLBI: A Fascinating Technique for Geodesy and Astrometry

    Science.gov (United States)

    Schuh, H.; Behrend, Dirk

    2012-01-01

    Since the 1970s Very Long Baseline Interferometry (VLBI) has proven to be a primary space-geodetic technique by determining precise coordinates on the Earth, by monitoring the variable Earth rotation and orientation with highest precision, and by deriving many other parameters of the Earth system. VLBI provides an important linkage to astronomy through, for instance, the determination of very precise coordinates of extragalactic radio sources. Additionally, it contributes to determining parameters of relativistic and cosmological models. After a short review of the history of geodetic VLBI and a summary of recent results, this paper describes future perspectives of this fascinating technique. The International VLBI Service for Geodesy and Astrometry (IVS), as a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), is well on its way to fully defining a next generation VLBI system, called VLBI2010. The goals of the new system are to achieve on scales up to the size of the Earth an accuracy of 1 mm in position and of 0.1 mm/year in velocity. Continuous observations shall be carried out 24 h per day 7 days per week in the future with initial results to be delivered within 24 h after taking the data. Special sessions, e.g. for monitoring the Earth rotation parameters, will provide the results in near real-time. These goals require a completely new technical and conceptual design of VLBI measurements. Based on extensive simulation studies, strategies have been developed by the IVS to significantly improve its product accuracy through the use of a network of small (approx 12 m) fast-slewing antennas. A new method for generating high precision delay measurements as well as improved methods for handling biases related to radio source structure, system electronics, and deformations of the antenna structures has been developed. Furthermore, as of January 2012, the construction of ten new VLBI2010 sites has been funded, with

  16. Establishing a Modern Ground Network for Space Geodesy Applications

    Science.gov (United States)

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.

    2010-01-01

    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine

  17. International VLBI Service for Geodesy and Astrometry 2013 Annual Report

    Science.gov (United States)

    Baver, Karen D.; Behrend, Dirk; Armstrong, Kyla L.

    2014-01-01

    This volume of reports is the 2013 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2013 Annual Report documents the work of the IVS components for the calendar year 2013, our fifteenth year of existence. The reports describe changes, activities, and progress of the IVS. Many thanks to all IVS components who contributed to this Annual Report. With the exception of the first section and the last section, the contents of this Annual Report also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/ar2013.

  18. Theoretical Tools for Relativistic Gravimetry, Gradiometry and Chronometric Geodesy and Application to a Parameterized Post-Newtonian Metric

    Directory of Open Access Journals (Sweden)

    Pacôme Delva

    2017-03-01

    Full Text Available An extensive review of past work on relativistic gravimetry, gradiometry and chronometric geodesy is given. Then, general theoretical tools are presented and applied for the case of a stationary parameterized post-Newtonian metric. The special case of a stationary clock on the surface of the Earth is studied.

  19. Geodesy and metrology with a transportable optical clock

    Science.gov (United States)

    Grotti, Jacopo; Koller, Silvio; Vogt, Stefan; Häfner, Sebastian; Sterr, Uwe; Lisdat, Christian; Denker, Heiner; Voigt, Christian; Timmen, Ludger; Rolland, Antoine; Baynes, Fred N.; Margolis, Helen S.; Zampaolo, Michel; Thoumany, Pierre; Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Tampellini, Anna; Barbieri, Piero; Zucco, Massimo; Costanzo, Giovanni A.; Clivati, Cecilia; Levi, Filippo; Calonico, Davide

    2018-05-01

    Optical atomic clocks, due to their unprecedented stability1-3 and uncertainty3-6, are already being used to test physical theories7,8 and herald a revision of the International System of Units9,10. However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy11, a major challenge remains: their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations12-14. Here, we report the first field measurement campaign with a transportable 87Sr optical lattice clock12. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km away, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171Yb lattice clock15 also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.

  20. International VLBI Service for Geodesy and Astrometry 2012 Annual Report

    Science.gov (United States)

    Baver, Karen D.; Behrend, Dirk; Armstrong, Kyla L.

    2013-01-01

    This volume of reports is the 2012 Annual Report of the International VLBI Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2012 Annual Report documents the work of the IVS components for the calendar year 2012, our fourteenth year of existence. The reports describe changes, activities, and progress ofthe IVS. Many thanks to all IVS components who contributed to this Annual Report. With the exception of the first section and parts of the last section (described below), the contents of this Annual Report also appear on the IVS Web site athttp:ivscc.gsfc.nasa.gov/publications/ar2012

  1. Mars geodesy, rotation and gravity

    International Nuclear Information System (INIS)

    Rosenblatt, Pascal; Dehant, Veronique

    2010-01-01

    This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars. (invited reviews)

  2. Lunar geodesy and cartography: a new era

    Science.gov (United States)

    Duxbury, Thomas; Smith, David; Robinson, Mark; Zuber, Maria T.; Neumann, Gregory; Danton, Jacob; Oberst, Juergen; Archinal, Brent; Glaeser, Philipp

    The Lunar Reconnaissance Orbiter (LRO) ushers in a new era in precision lunar geodesy and cartography. LRO was launched in June, 2009, completed its Commissioning Phase in Septem-ber 2009 and is now in its Primary Mission Phase on its way to collecting high precision, global topographic and imaging data. Aboard LRO are the Lunar Orbiter Laser Altimeter (LOLA -Smith, et al., 2009) and the Lunar Reconnaissance Orbiter Camera (LROC -Robinson, et al., ). LOLA is a derivative of the successful MOLA at Mars that produced the global reference surface being used for all precision cartographic products. LOLA produces 5 altimetry spots having footprints of 5 m at a frequency of 28 Hz, significantly bettering MOLA that produced 1 spot having a footprint of 150 m at a frequency of 10 Hz. LROC has twin narrow angle cameras having pixel resolutions of 0.5 meters from a 50 km orbit and a wide-angle camera having a pixel resolution of 75 m and in up to 7 color bands. One of the two NACs looks to the right of nadir and the other looks to the left with a few hundred pixel overlap in the nadir direction. LOLA is mounted on the LRO spacecraft to look nadir, in the overlap region of the NACs. The LRO spacecraft has the ability to look nadir and build up global coverage as well as looking off-nadir to provide stereo coverage and fill in data gaps. The LROC wide-angle camera builds up global stereo coverage naturally from its large field-of-view overlap from orbit to orbit during nadir viewing. To date, the LROC WAC has already produced global stereo coverage of the lunar surface. This report focuses on the registration of LOLA altimetry to the LROC NAC images. LOLA has a dynamic range of tens of km while producing elevation data at sub-meter precision. LOLA also has good return in off-nadir attitudes. Over the LRO mission, multiple LOLA tracks will be in each of the NAC images at the lunar equator and even more tracks in the NAC images nearer the poles. The registration of LOLA

  3. Workshop on New Madrid geodesy and the challenges of understanding intraplate earthquakes

    Science.gov (United States)

    Boyd, Oliver; Calais, Eric; Langbein, John; Magistrale, Harold; Stein, Seth; Zoback, Mark

    2013-01-01

    On March 4, 2011, 26 researchers gathered in Norwood, Massachusetts, for a workshop sponsored by the U.S. Geological Survey and FM Global to discuss geodesy in and around the New Madrid seismic zone (NMSZ) and its relation to earthquake hazard. The group addressed the challenge of reconciling current geodetic measurements, which show low present-day surface strain rates, with paleoseismic evidence of recent, relatively frequent, major earthquakes in the region. Several researchers were invited by the organizing committee to give overview presentations while all participants were encouraged to present their most recent ideas. The overview presentations appear in this report along with a set of recommendations.

  4. The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation

    Science.gov (United States)

    Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John

    2013-01-01

    The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.

  5. International VLBI Service for Geodesy and Astrometry: 2000 General Meeting Proceedings

    Science.gov (United States)

    Vandenberg, Nancy R. (Editor); Baver, Karen D. (Editor)

    2000-01-01

    This volume is the proceedings of the first General Meeting of the International Very Long Base Interferometry (VLBI) Service for Geodesy and Astrometry (IVS), held in Koetzting, Germany, February 21-24, 2000. The content of this volume also appears on the IVS web site at: http://ivscc.gsfc.nasa.gov/publications/gm2000. The goal of the program committee for the General Meeting was to provide an interesting and informative program for a wide cross section of IVS members, including station operators, program managers, and analysts. The program included reports, tutorials, invited and contributed papers, and poster presentations. The tutorial papers should be particularly useful references because each one provides an overview and introduction to a topic relevant to VLBI.

  6. How the continents deform: The evidence from tectonic geodesy

    Science.gov (United States)

    Thatcher, Wayne R.

    2009-01-01

    Space geodesy now provides quantitative maps of the surface velocity field within tectonically active regions, supplying constraints on the spatial distribution of deformation, the forces that drive it, and the brittle and ductile properties of continental lithosphere. Deformation is usefully described as relative motions among elastic blocks and is block-like because major faults are weaker than adjacent intact crust. Despite similarities, continental block kinematics differs from global plate tectonics: blocks are much smaller, typically ∼100–1000 km in size; departures from block rigidity are sometimes measurable; and blocks evolve over ∼1–10 Ma timescales, particularly near their often geometrically irregular boundaries. Quantitatively relating deformation to the forces that drive it requires simplifying assumptions about the strength distribution in the lithosphere. If brittle/elastic crust is strongest, interactions among blocks control the deformation. If ductile lithosphere is the stronger, its flow properties determine the surface deformation, and a continuum approach is preferable.

  7. A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Sindoni, Giampiero; Koenig, Rolf; Ries, John C.; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger; Rubincam, David; Paris, Claudio

    2017-08-01

    We introduce the LARES 2 space experiment recently approved by the Italian Space Agency (ASI). The LARES 2 satellite is planned for launch in 2019 with the new VEGA C launch vehicle of ASI, ESA and ELV. The orbital analysis of LARES 2 experiment will be carried out by our international science team of experts in General Relativity, theoretical physics, space geodesy and aerospace engineering. The main objectives of the LARES 2 experiment are gravitational and fundamental physics, including accurate measurements of General Relativity, in particular a test of frame-dragging aimed at achieving an accuracy of a few parts in a thousand, i.e., aimed at improving by about an order of magnitude the present state-of-the-art and forthcoming tests of this general relativistic phenomenon. LARES 2 will also achieve determinations in space geodesy. LARES 2 is an improved version of the LAGEOS 3 experiment, proposed in 1984 to measure frame-dragging and analyzed in 1989 by a joint ASI and NASA study.

  8. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    Science.gov (United States)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  9. International VLBI Service for Geodesy and Astrometry: 1999 Annual Report

    Science.gov (United States)

    Vandenberg, Nancy R. (Editor)

    1999-01-01

    This volume of reports is the 1999 Annual Report of the International VLBI Service for Geodesy and Astrometry -IVS. The individual reports were contributed by VLBI groups in the international geodetic community who constitute the components of IVS. The 1999 Annual Report documents the work of the IVS components for the year ending March 1, 1999, the official inauguration date of IVS. As the newest of the space technique services, IVS decided to publish this Annual Report as a reference to our organization and its components. The entire contents of this Annual Report also appear on the IVS website at: http://ivscc.gsfc.nasa.gov/pub/arl999. The IVS 1999 Annual Report will be a valuable reference for information about IVS and its components. This Annual Report will serve as a baseline from which we can measure the anticipated progress of IVS in coming years.

  10. NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992

    Science.gov (United States)

    Ma, Chopo; Ryan, James W.; Caprette, Douglas S.

    1994-01-01

    The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.

  11. Research-related intercultural higher education in satellite geodesy

    Science.gov (United States)

    Mayer, M.; Heck, B.; Krueger, C. P.

    2009-04-01

    In order to improve the education of young researchers (master degree, PhD, PostDocs) a cooperation between the Department of Geomatics (DGEOM), Federal University of Paraná (UFPR), Curitiba (Brazil) and the Geodetic Institute (GIK), University Karlsruhe (TH), Karlsruhe (Germany) was established which now exists since more than five years. The joint venture is actually called "PROBRAL: Precise positioning and height determination by means of GPS: Modeling of errors and transformation into physical heights" and focuses on research and education within the field of satellite geodesy. PROBRAL is funded by the Brazilian academic exchange service CAPES and the German academic exchange service DAAD. The geodetic aim of the research project is to validate and improve the quality of 3d positions derived from observations related to satellite navigation systems like GPS. In order to fulfill this ambitious goal sustainably, research has to be carried out in close cooperation. At the same time, e.g. to guarantee continuous success, a coordinated education has to be ensured. Besides technical education aspects key competences (e.g. language, capacity for teamwork, project management skills) are trained. Within the presentation the lessons which were learned from this project are discussed in detail.

  12. The Application of the Complex Field of Geodesy to an Entrance Level College Course using Cognitive Learning Techniques.

    Science.gov (United States)

    Menard, J.; Beall King, A.; Larson, P. B.

    2017-12-01

    The study of the shape of the Earth is called geodesy. It is a complex and rich field, encompassing GPS, the development of satellites to measure Earth, and the many applications of these measurements to better understand our planet. What is the best way to explain complex concepts to an entry-level college student, such as geodesy or gravitation? What is the most efficient way to peek a student's interest in an abstract field? Two people are walking side by side on a crowded street. Do they talk? Do they look at each other? Do they laugh together? Do they touch? Even though the bond between these two people cannot necessarily be physically seen, it is possible, by looking at their behavior towards each other, to determine whether or not they know each other. If they do, they are attracted to one another, walking together in the same direction, exchanging ideas or laughs. The Moon attracts the Earth's oceans, forming tides. The Earth attracts the Moon into staying in orbit. They are attracted to each other by the invisible yet quantifiable force of gravitation. In order to ensure that first year college students understand the concept and applications of geodesy, and find interest in the field, several teaching and learning techniques must be used. These techniques are compared to one another in terms of efficiency both by comparing the students' success through quizzes and discussions, and by comparing the students' enjoyment of and interest in the class through evaluations at the beginning and end of each class in order to assess how much material was learned, understood, and retained. This study is conducted via a short course with volunteer students. The course is a combination of lecture, discussion, experiments, and field work. Quizzes are used to evaluate not the students, but their improvement as a result of the efficacy of the teaching method. In class group and one on one discussions are used as the main part of the final grade.

  13. Compilation of Published Estimates of Annual Geocenter Motions Using Space Geodesy

    Science.gov (United States)

    Elosegui, P.

    2005-01-01

    The definition of the term "geocenter motion" depends on the adopted origin of the reference frame. Common reference frames used in Space Geodesy include: the center of mass of the whole Earth (CM), the center of mass of the Solid Earth without mass load (CE), and the center of figure of the outer surface of the Solid Earth (CF). There are two established definitions of the term geocenter: one, the vector offset of CF relative to CM and, two, the reverse, the vector offset of CM relative to CF. Obviously, their amplitude is the same and their phase differs by 180 deg. Following Dong et al. [2003], we label the first X(sub CF, sup CM) and the second X(sup CF, sup CM) (i.e., the superscript represents the frame, the subscript represents any point in the frame).

  14. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  15. Undergraduate teaching modules featuring geodesy data applied to critical social topics (GETSI: GEodetic Tools for Societal Issues)

    Science.gov (United States)

    Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Charlevoix, D. J.; Miller, M. M.

    2015-12-01

    The GETSI project, funded by NSF TUES, is developing and disseminating teaching and learning materials that feature geodesy data applied to critical societal issues such as climate change, water resource management, and natural hazards (serc.carleton.edu/getsi). It is collaborative between UNAVCO (NSF's geodetic facility), Mt San Antonio College, and Indiana University. GETSI was initiated after requests by geoscience faculty for geodetic teaching resources for introductory and majors-level students. Full modules take two weeks but module subsets can also be used. Modules are developed and tested by two co-authors and also tested in a third classroom. GETSI is working in partnership with the Science Education Resource Center's (SERC) InTeGrate project on the development, assessment, and dissemination to ensure compatibility with the growing number of resources for geoscience education. Two GETSI modules are being published in October 2015. "Ice mass and sea level changes" includes geodetic data from GRACE, satellite altimetry, and GPS time series. "Imaging Active Tectonics" has students analyzing InSAR and LiDAR data to assess infrastructure earthquake vulnerability. Another three modules are in testing during fall 2015 and will be published in 2016. "Surface process hazards" investigates mass wasting hazard and risk using LiDAR data. "Water resources and geodesy" uses GRACE, vertical GPS, and reflection GPS data to have students investigating droughts in California and the High Great Plains. "GPS, strain, and earthquakes" helps students learn about infinitesimal and coseismic strain through analysis of horizontal GPS data and includes an extension module on the Napa 2014 earthquake. In addition to teaching resources, the GETSI project is compiling recommendations on successful development of geodesy curricula. The chief recommendations so far are the critical importance of including scientific experts in the authorship team and investing significant resources in

  16. Seafloor geodesy: Measuring surface deformation and strain-build up

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  17. Super-large optical gyroscopes for applications in geodesy and seismology: state-of-the-art and development prospects

    International Nuclear Information System (INIS)

    Velikoseltsev, A A; Luk'yanov, D P; Vinogradov, V I; Shreiber, K U

    2014-01-01

    A brief survey of the history of the invention and development of super-large laser gyroscopes (SLLGs) is presented. The basic results achieved using SLLGs in geodesy, seismology, fundamental physics and other fields are summarised. The concept of SLLG design, specific features of construction and implementation are considered, as well as the prospects of applying the present-day optical technologies to laser gyroscope engineering. The possibilities of using fibre-optical gyroscopes in seismologic studies are analysed and the results of preliminary experimental studies are presented. (laser gyroscopes)

  18. Super-large optical gyroscopes for applications in geodesy and seismology: state-of-the-art and development prospects

    Energy Technology Data Exchange (ETDEWEB)

    Velikoseltsev, A A; Luk' yanov, D P [St. Petersburg Electrotechnical University ' ' LETI' ' , St. Petersburg (Russian Federation); Vinogradov, V I [OJSC Tambov factory Elektropribor (Russian Federation); Shreiber, K U [Forschungseinrichtung Satellitengeodaesie, Technosche Universitaet Muenchen, Geodaetisches Observatorium Wettzell, Sackenrieder str. 25, 93444 Bad Koetzting (Germany)

    2014-12-31

    A brief survey of the history of the invention and development of super-large laser gyroscopes (SLLGs) is presented. The basic results achieved using SLLGs in geodesy, seismology, fundamental physics and other fields are summarised. The concept of SLLG design, specific features of construction and implementation are considered, as well as the prospects of applying the present-day optical technologies to laser gyroscope engineering. The possibilities of using fibre-optical gyroscopes in seismologic studies are analysed and the results of preliminary experimental studies are presented. (laser gyroscopes)

  19. 3rd Course of the International School of Advanced Geodesy

    CERN Document Server

    Sansò, Fernando

    1985-01-01

    During the period April 25th to May 10th, 1984 the 3rd Course of the International School of Advanced Geodesy entitled "Optimization and Design of Geodetic Networks" took place in Erice. The main subject of the course is clear from the title and consisted mainly of that particular branch of network analysis, which results from applying general concepts of mathematical optimization to the design of geodetic networks. As al­ ways when dealing with optimization problems, there is an a-priori choice of the risk (or gain) function which should be minimized (or maximized) according to the specific interest of the "designer", which might be either of a scientific or of an economic nature or even of both. These aspects have been reviewed in an intro­ ductory lecture in which the particular needs arising in a geodetic context and their analytical representations are examined. Subsequently the main body of the optimization problem, which has been conven­ tionally divided into zero, first, second and third order desi...

  20. Linear homotopy solution of nonlinear systems of equations in geodesy

    Science.gov (United States)

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  1. Geodetic Imaging: Expanding the Boundaries of Geodesy in the 21st Century

    Science.gov (United States)

    Fernandez Diaz, J. C.; Carter, W. E.; Shrestha, R. L.; Glennie, C. L.

    2013-12-01

    High resolution (sub-meter) geodetic images covering tens to thousands of square kilometers have extended the boundaries of geodesy into related areas of the earth sciences, such as geomorphology and geodynamics, during the past decade, to archaeological exploration and site mapping during the past few years, and are now poised to transform studies of flora and fauna in the more remote regions of the world. Geodetic images produced from airborne laser scanning (ALS), a.k.a. airborne light detection and ranging (LiDAR) have proven transformative to the modern practice of geomorphology where researchers have used decimeter resolution digital elevation models (DEMs) to determine the spatial frequencies of evenly spaced features in terrain, and developed models and mathematical equations to explain how the terrain evolved to its present state and how it is expected to change in the future (Perron et al., 2009). In geodynamics researchers have used ';before' and ';after' geodetic images of the terrain near earthquakes, such as the 2010 El Mayor-Cucapah Earthquake, to quantify surface displacements and suggest models to explain the observed deformations (Oskin et. al., 2012). In archaeology, the ability of ALS to produce ';bare earth' DEMs of terrain covered with dense vegetation, including even tropical rain forests, has revolutionized the study of archaeology in highly forested areas, finding ancient structures and human modifications of landscapes not discovered by archaeologists working at sites for decades (Chase et al., 2011 & Evans et al., 2013), and finding previously unknown ruins in areas that ground exploration has not been able to penetrate since the arrival of the conquistadors in the new world in the 17th century (Carter et al., 2012). The improved spatial resolution and ability of the third generation ALS units to obtain high resolution bare earth DEMs and canopy models in areas covered in dense forests, brush, and even shallow water (steams, lakes, and

  2. Space Geodesy: The Cross-Disciplinary Earth science (Vening Meinesz Medal Lecture)

    Science.gov (United States)

    Shum, C. K.

    2012-04-01

    Geodesy during the onset of the 21st Century is evolving into a transformative cross-disciplinary Earth science field. The pioneers before or after the discipline Geodesy was defined include Galileo, Descartes, Kepler, Newton, Euler, Bernoulli, Kant, Laplace, Airy, Kelvin, Jeffreys, Chandler, Meinesz, Kaula, and others. The complicated dynamic processes of the Earth system manifested by interactions between the solid Earth and its fluid layers, including ocean, atmosphere, cryosphere and hydrosphere, and their feedbacks are linked with scientific problems such as global sea-level rise resulting from natural and anthropogenic climate change. Advances in the precision and stability of geodetic and fundamental instrumentations, including clocks, satellite or quasar tracking sensors, altimetry and lidars, synthetic aperture radar interferometry (InSAR), InSAR altimetry, gravimetry and gradiometry, have enabled accentuate and transformative progress in cross-disciplinary Earth sciences. In particular, advances in the measurement of the gravity with modern free-fall methods have reached accuracies of 10-9 g (~1 μGal or 10 nm/s2) or better, allowing accurate measurements of height changes at ~3 mm relative to the Earth's center of mass, and mass transports within the Earth interior or its geophysical fluids, enabling global quantifications of climate-change signals. These contemporary space geodetic and in situ sensors include, but not limited to, satellite radar and laser altimetry/lidars, GNSS/SLR/VLBI/DORIS, InSAR, spaceborne gravimetry from GRACE (Gravity Recovery And Climate Experiment twin-satellite mission) and gradiometry from GOCE (Global Ocean Circulation Experiment), tide gauges, and hydrographic data (XBT/MBT/Argo). The 2007 Intergovernmental Panel for Climate Change (IPCC) study, the Fourth Assessment Report (AR4), substantially narrowed the discrepancy between observation and the known geophysical causes of sea-level rise, but significant uncertainties

  3. The Crustal Dynamics Data Information System: A Resource to Support Scientific Analysis Using Space Geodesy

    Science.gov (United States)

    Noll. Carey E.

    2010-01-01

    Since 1982. the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by the National Aeronautics and Space Administration (NASA) as well as national and international programs. The CDDIS provides easy, timely, and reliable access to a variety of data sets, products, and information about these data. These measurements. obtained from a global network of nearly 650 instruments at more than 400 distinct sites, include DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), GNSS (Global Navigation Satellite System), SLR and LLR (Satellite and Lunar Laser Ranging), and VLBI (Very Long Baseline Interferometry). The CDDIS data system and its archive have become increasingly important to many national and international science communities, particularly several of the operational services within the International Association of Geodesy (IAG) and its observing system the Global Geodetic Observing System (GGOS), including the International DORIS Service (IDS), the International GNSS Service (IGS). the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS). and the International Earth rotation and Reference frame Service (IERS), Investigations resulting from the data and products available through the CDDIS support research in many aspects of Earth system science and global change. Each month, the CDDIS archives more than one million data and derived product files totaling over 90 Gbytes in volume. In turn. the global user community downloads nearly 1.2 TBytes (over 10.5 million files) of data and products from the CDDIS each month. The requirements of analysts have evolved since the start of the CDDIS; the specialized nature of the system accommodates the enhancements required to support diverse data sets and user needs. This paper discusses the CDDIS. including background information about the system and its. user communities

  4. Contribution of branch of the Geodesy, Cartography and Cadastre Authority of the Slovak Republic to the construction of information society in the Slovak Republic and in the European Union

    International Nuclear Information System (INIS)

    Sokacova, P.; Ofukany, M.

    2005-01-01

    In this paper authors deals with responsibilities of the Geodesy, Cartography and Cadastre Authority of the Slovak Republic in building of information society in the Slovak Republic and in the European Union

  5. Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry

    Science.gov (United States)

    Böhm, Johannes; Böhm, Sigrid; Boisits, Janina; Girdiuk, Anastasiia; Gruber, Jakob; Hellerschmied, Andreas; Krásná, Hana; Landskron, Daniel; Madzak, Matthias; Mayer, David; McCallum, Jamie; McCallum, Lucia; Schartner, Matthias; Teke, Kamil

    2018-04-01

    The Vienna VLBI and Satellite Software (VieVS) is state-of-the-art Very Long Baseline Interferometry (VLBI) analysis software for geodesy and astrometry. VieVS has been developed at Technische Universität Wien (TU Wien) since 2008, where it is used for research purposes and for teaching space geodetic techniques. In the past decade, it has been successfully applied on Very Long Baseline Interferometry (VLBI) observations for the determination of celestial and terrestrial reference frames as well as for the estimation of celestial pole offsets, universal Time (UT1-UTC), and polar motion based on least-squares adjustment. Furthermore, VieVS is equipped with tools for scheduling and simulating VLBI observations to extragalactic radio sources as well as to satellites and spacecraft, features which proved to be very useful for a variety of applications. VieVS is now available as version 3.0 and we do provide the software to all interested persons and institutions. A wiki with more information about VieVS is available at http://vievswiki.geo.tuwien.ac.at/.

  6. Geodezija od Mesopotamije do Globalnog geodetskog opažačkog sistema : Geodesy from Mesopotamie to Global Geodetic Observing System

    Directory of Open Access Journals (Sweden)

    Medžida Mulić

    2015-12-01

    Full Text Available Tokom šest milenijuma postojanja civilizacije na Zemlji, geodetske tehnike su doživjele teško sagledive promjene. Definicija i uloga geodezije su se mijenjale u skladu s tim promijenila. Geodezija (viša je evoluirala od svoje originalne klasične definicije da „proučava kretanja nebeskih tijela, oblik i dimenzije Zemlje“ u „znanost koja osim naprijed rečenog, proučava njene promjene i kompleksne dinamičke procese, koji djeluju unutar Zemlje, na njenoj površini i iznad njene površine, kao i u svemiru koji je okružuje. Rad predstavlja detaljan pregled geodetskih tehnika, instrumenata, katastra i kartografije kod starih civilizacija: Mesopotamije, starog Egipta, antičke Grčke, starog Rima, pa sve do Evropljana, između 17. stoljeća do modernog doba. Posebno su opisani geodetski radovi u Bosni i Hercegovini, od doba osmanlija, austro-ugarskog premjera, do savremenih dostignuća u polju premjera i primjene satelitskih modernih tehnika. Globalni geodetski opažački sistem-GGOS, glavna komponenta Internacionalne asocijacije za geodeziju, kao projekat za buduće generacije geodeta, opisan je na kraju. : During the six millennia of the existence of the civilization on the Earth, surveying techniques have been experienced difficult foreseeable changes. The definition and role of geodesy have been changing accordingly. Geodesy has evolved from its original classic definition that "studying the movements of celestial bodies, the shape and dimensions of the Earth" in the "science which, beside it noted above, studies its changes and complex dynamic processes that ongoing inside the Earth, on the surface, above its surfaces, and evironment. The paper is overview of the geodetic techniques and the surveying instruments, cadastre and cartography in the ancien civilizations: Mesopotamia, ancient Egypt, antic Greece, ancient Rome, to the Europeans, from the 17th century to modern times. A detailed description devoted to surveying and geodetic

  7. Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry

    Science.gov (United States)

    Behrend, Dirk (Editor); Baver, Karen D. (Editor)

    2010-01-01

    This volume is the proceedings of the sixth General Meeting of the International VLBI Service for Geodesy and Astrometry (IVS), held in Hobart, Tasmania, Australia, February 7-13, 2010. The contents of this volume also appear on the IVS Web site at http://ivscc.gsfc.nasa.gov/publications/gm2010. The keynote of the sixth GM was the new perspectives of the next generation VLBI system under the theme "VLBI2010: From Vision to Reality". The goal of the meeting was to provide an interesting and informative program for a wide cross-section of IVS members, including station operators, program managers, and analysts. This volume contains 88 papers. All papers were edited by the editors for usage of the English language, form, and minor content-related issues.

  8. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project

    Science.gov (United States)

    Nahmani, S.; Coulot, D.; Biancale, R.; Bizouard, C.; Bonnefond, P.; Bouquillon, S.; Collilieux, X.; Deleflie, F.; Garayt, B.; Lambert, S. B.; Laurent-Varin, S.; Marty, J. C.; Mercier, F.; Metivier, L.; Meyssignac, B.; Pollet, A.; Rebischung, P.; Reinquin, F.; Richard, J. Y.; Tertre, F.; Woppelmann, G.

    2017-12-01

    Many major indicators of climate change are monitored with space observations. This monitoring is highly dependent on references that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. Thus, in the framework of the GGOS, stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination of the space-geodetic measurements used to compute the official references of the IERS. The GEODESIE project aims at (i) determining highly-accurate global and consistent references and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available at geodesie_anr.ign.fr.This project, supported by the French Agence Nationale de la Recherche (ANR) for the period

  9. Round-Trip System Available to Measure Path Length Variation in Korea VLBI System for Geodesy

    Science.gov (United States)

    Oh, Hongjong; Kondo, Tetsuro; Lee, Jinoo; Kim, Tuhwan; Kim, Myungho; Kim, Suchul; Park, Jinsik; Ju, Hyunhee

    2010-01-01

    The construction project of Korea Geodetic VLBI officially started in October 2008. The construction of all systems will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room with an H-maser frequency standard is located in a building separated from the antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with reduction of the effect of path length variations. KVG s round-trip system is designed not only to use either metal or optical fiber cables, but also to measure path length variations directly. We present this unique round trip system for KVG.

  10. 25 Jahre - Institut fuer Geodaesie, Teil 3: Aus dem Leben des Instituts (25 Years - Institute of Geodesy, Part 3: The Life of the Institute)

    Science.gov (United States)

    2000-01-01

    Welsch SCHRIFTENREIHE UNIVERSITAT DER BUNDESWEHR MONCHEN 20080707 028 A %°(w Der Druck dieses Heftes wurde aus Haushaltsmitteln der Universitdt der...Verwendung hi prliziser Ephemeriden. Espe Das Ergebnis der Be- Sali ferr ktal echnungen waren 3d - @ Koordinaten sowie geo- s1fr graphische Koordinaten...1982, Aalborg Un- B. Eissfeller, G. W. Hein: A Contribution to 3d - versity Centre, Denmark. 431 S. Operational Geodesy. Part 4: The Observation Heft 8

  11. Surface and Subsurface Geodesy Combined with Active Borehole Experimentation for the Advanced Characterization of EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Elsworth, Derek [Pennsylvania State Univ., University Park, PA (United States); Im, Kyungjae [Pennsylvania State Univ., University Park, PA (United States); Guglielmi, Yves [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mattioli, Glen [Univ. of Texas, Arlington, TX (United States). UNAVCO

    2016-11-14

    We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristics (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).

  12. Preface to the Special Issue on "Geophysical and Climate Change Studies in Tibet, Xinjiang, and Siberia (TibXS from Satellite Geodesy"

    Directory of Open Access Journals (Sweden)

    Cheinway Hwang

    2013-01-01

    Full Text Available This special issue publishes papers on recent results in geophysical and climate change studies over Tibet, Xinjiang and Siberia (TibXS based upon some of the key sensors used in satellite geodesy, including satellite gravimetric sensors (GRACE and GOCE, satellite altimeters (TOPEX, Jason-1 and -2, and ENVISAT, and Global Positioning System satellites. Results from ground- and airborne-based geodetic observations, notably those based on airborne gravimeter, superconducting gravimeter (SG and seismometers are also included in the special issue. In all, 22 papers were submitted for this special issue; 17 papers were accepted.

  13. Application of the Allan Variance to Time Series Analysis in Astrometry and Geodesy: A Review.

    Science.gov (United States)

    Malkin, Zinovy

    2016-04-01

    The Allan variance (AVAR) was introduced 50 years ago as a statistical tool for assessing the frequency standards deviations. For the past decades, AVAR has increasingly been used in geodesy and astrometry to assess the noise characteristics in geodetic and astrometric time series. A specific feature of astrometric and geodetic measurements, as compared with clock measurements, is that they are generally associated with uncertainties; thus, an appropriate weighting should be applied during data analysis. In addition, some physically connected scalar time series naturally form series of multidimensional vectors. For example, three station coordinates time series X, Y, and Z can be combined to analyze 3-D station position variations. The classical AVAR is not intended for processing unevenly weighted and/or multidimensional data. Therefore, AVAR modifications, namely weighted AVAR (WAVAR), multidimensional AVAR (MAVAR), and weighted multidimensional AVAR (WMAVAR), were introduced to overcome these deficiencies. In this paper, a brief review is given of the experience of using AVAR and its modifications in processing astrogeodetic time series.

  14. Compositions of fuzzy relations applied to veryfication learning outcomes on the example of the major “Geodesy and Cartography”

    Directory of Open Access Journals (Sweden)

    A. Mreła

    2015-05-01

        Abstract The paper presents discussion about using mathematical functions in order to help academic teachers to verify acquirement of learning outcomes by students on the example of the major “geodesy and cartography”. It is relatively easy to build fuzzy relation describing levels of realization and validation learning outcomes during subject examinations and the fuzzy relation with students’ grades is already built by teachers, the problem is to combine these two relations to get one which describes the level of acquiring learning outcomes by students. There are two main requirements facing this combinations and the paper shows that the best combination according to these requirements is algebraic composition.   Keywords: learning outcome, fuzzy relation, algebraic composition.

  15. A New Era in Geodesy and Cartography: Implications for Landing Site Operations

    Science.gov (United States)

    Duxbury, T. C.

    2001-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global dataset has ushered in a new era for Mars local and global geodesy and cartography. These data include the global digital terrain model (Digital Terrain Model (DTM) radii), the global digital elevation model (Digital Elevation Model (DEM) elevation with respect to the geoid), and the higher spatial resolution individual MOLA ground tracks. Currently there are about 500,000,000 MOLA points and this number continues to grow as MOLA continues successful operations in orbit about Mars, the combined processing of radiometric X-band Doppler and ranging tracking of MGS together with millions of MOLA orbital crossover points has produced global geodetic and cartographic control having a spatial (latitude/longitude) accuracy of a few meters and a topographic accuracy of less than 1 meter. This means that the position of an individual MOLA point with respect to the center-of-mass of Mars is know to an absolute accuracy of a few meters. The positional accuracy of this point in inertial space over time is controlled by the spin rate uncertainty of Mars which is less than 1 km over 10 years that will be improved significantly with the next landed mission.

  16. Seafloor Geodesy usi­ng Wave Gliders to study Earthquake and Tsunami Hazards at Subduction Zones

    Science.gov (United States)

    Sathiakumar, S.; Barbot, S.; Hill, E.; Peng, D.; Zerucha, J.; Suhaimee, S.; Chia, G.; Salamena, G. G.; Syahailatua, A.

    2016-12-01

    Land-based GNSS networks are now in place to monitor most subduction zones of the world. These provide valuable information about the amount of­ geodetic strain accumulated in the region, which in turn gives insight into the seismic potential. However, it is usually impossible to resolve activity on the megathrust near the trench using land-based GNSS data alone, given typical signal-to-noise ratios. Ship-based seafloor geodesy is being used today to fill this observation gap. However, surveys using ships are very expensive, tedious and impractical due to the large areas to be covered. Instead of discrete missions using ships, continuous monitoring of the seafloor using autonomous marine robots would aid in understanding the tectonic setting of the seafloor better at a potentially lower cost, as well as help in designing better warning systems. Thus, we are developing seafloor geodesy capabilities using Wave Gliders, a new class of wave-propelled, persistent marine autonomous vehicle using a combination of acoustic and GNSS technologies. We use GNSS/INS to position the platform, and acoustic ranging to locate the seafloor. The GNSS/INS system to be integrated with the Wave Gliders has stringent requirements of low power, light weight, and high accuracy. All these factors are equally important due to limited power and space in the Wave Gliders and the need for highly accurate and precise measurements. With this hardware setup, a limiting factor is the accuracy of measurement of the sound velocity in the water column. We plan to obtain precise positioning of seafloor by exploring a measurement setup that minimizes uncertainties in sound velocity. This will be achieved by making fine-resolution measurements of the two-way travel time of the acoustic waves underwater using the Wave Gliders, and performing statistical signal processing on this data to obtain more reliable sound velocity measurement. This enhanced seafloor geodetic technique using Wave Gliders should

  17. Engaging students in geodesy: A quantitative InSAR module for undergraduate tectonics and geophysics classes

    Science.gov (United States)

    Taylor, H.; Charlevoix, D. J.; Pritchard, M. E.; Lohman, R. B.

    2013-12-01

    In the last several decades, advances in geodetic technology have allowed us to significantly expand our knowledge of processes acting on and beneath the Earth's surface. Many of these advances have come as a result of EarthScope, a community of scientists conducting multidisciplinary Earth science research utilizing freely accessible data from a variety of instruments. The geodetic component of EarthScope includes the acquisition of synthetic aperture radar (SAR) images, which are archived at the UNAVCO facility. Interferometric SAR complements the spatial and temporal coverage of GPS and allows monitoring of ground deformation in remote areas worldwide. However, because of the complex software required for processing, InSAR data are not readily accessible to most students. Even with these challenges, exposure at the undergraduate level is important for showing how geodesy can be applied in various areas of the geosciences and for promoting geodesy as a future career path. Here we present a module focused on exploring the tectonics of the western United States using InSAR data for use in undergraduate tectonics and geophysics classes. The module has two major objectives: address topics concerning tectonics in the western U.S. including Basin and Range extension, Yellowstone hotspot activity, and creep in southern California, and familiarize students with how imperfect real-world data can be manipulated and interpreted. Module questions promote critical thinking skills and data literacy by prompting students to use the information given to confront and question assumptions (e.g. 'Is there a consistency between seismic rates and permanent earthquake deformation? What other factors might need to be considered besides seismicity?'). The module consists of an introduction to the basics of InSAR and three student exercises, each focused on one of the topics listed above. Students analyze pre-processed InSAR data using MATLAB, or an Excel equivalent, and draw on GPS and

  18. Geodesy and the UNAVCO Consortium: Three Decades of Innovations

    Science.gov (United States)

    Rowan, L. R.; Miller, M. M.; Meertens, C. M.; Mattioli, G. S.

    2015-12-01

    UNAVCO, a non-profit, university consortium that supports geoscience research using geodesy, began with the ingenious recognition that the nascent Global Positioning System constellation (GPS) could be used to investigate earth processes. The consortium purchased one of the first commercially available GPS receivers, Texas Instrument's TI-4100 NAVSTAR Navigator, in 1984 to measure plate deformation. This early work was highlighted in a technology magazine, GPSWorld, in 1990. Over a 30-year period, UNAVCO and the community have helped advance instrument design for mobility, flexibility, efficiency and interoperability, so research could proceed with higher precision and under ever challenging conditions. Other innovations have been made in data collection, processing, analysis, management and archiving. These innovations in tools, methods and data have had broader impacts as they have found greater utility beyond research for timing, precise positioning, safety, communication, navigation, surveying, engineering and recreation. Innovations in research have expanded the utility of geodetic tools beyond the solid earth science through creative analysis of the data and the methods. For example, GPS sounding of the atmosphere is now used for atmospheric and space sciences. GPS reflectrometry, another critical advance, supports soil science, snow science and ecological research. Some research advances have had broader impacts for society by driving innovations in hazards risk reduction, hazards response, resource management, land use planning, surveying, engineering and other uses. Furthermore, the geodetic data is vital for the design of space missions, testing and advancing communications, and testing and dealing with interference and GPS jamming. We will discuss three decades (and counting) of advances by the National Science Foundation's premiere geodetic facility, consortium and some of the many geoscience principal investigators that have driven innovations in

  19. New geoscience techniques for Earth and planetary studies developed in Moscow State University of Geodesy and Cartography (MIIGAiK)

    Science.gov (United States)

    Mayorov, Andrey; Karachevtseva, Irina; Oberst, Jürgen

    2015-04-01

    The University was established in 1779 and for all these years it has been the centre of higher geodetic education in Russia, the largest specialized educational institution of this profile in Europe. The great historical past, long pedagogical and scientific traditions developed throughout almost the two and a half centuries' history of the University, importance of geodetic sciences and land survey branch for many fields of knowledge and national economy, a wide range of specialties in which MIIGAiK trains specialists have given the University the leading position as a specialized higher educational institution [1]. Now, the University is a large educational-and-scientific and production complex including six faculties of full-time training, a faculty of distance learning, a Training Centre for teachers of high schools and retraining of experts, postgraduate and doctoral courses, educational specialized laboratories in various directions of geodesy, cartography and remote sensing. In the University structure, there are also research-and-production centers Geodynamics, Geomonitoring, a Center for satellite technologies in geodesy, a Cartographic centre, Geodesy and Air Photography Journal Publishing House, two educational test fields, computing centers, an educational-and-geodetic museum and a library. New MIIGAiK Extraterrestrial Laboratory (MExLab) [2], which was established in 2010 under the leadership of invited scientist Prof. Dr. Jürgen Oberst (DLR, TUB, Germany), studies of characteristics of Solar System bodies with geodetic and cartographic methods. The several celestial bodies are chosen as subjects for new planetary project: Europa, Ganymede, Callisto (Galilean satellites of Jupiter), and Enceladus (a satellite of Saturn), as well as the Moon, Mars, its satellite Phobos, and Mercury. The significance of the project objectives is defined both by necessity of gaining fundamental knowledge about properties of the Solar System bodies, and practical needs

  20. International VLBI Service for Geodesy and Astrometry 2000 Annual Report

    Science.gov (United States)

    Vandenberg, N. R. (Editor); Baver, K. D. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    This volume of reports is the 2000 Annual Report of the International Very Long Base Interferometry (VLBI) Service for Geodesy and Astrometry (IVS). The individual reports were contributed by VLBI groups in the international geodetic and astrometric community who constitute the permanent components of IVS. The IVS 2000 Annual Report documents the work of the IVS components for the period March 1, 1999 (the official inauguration date of IVS) through December 31, 2000. The reports document changes, activities, and progress of the IVS. The entire contents of this Annual Report also appear on the IVS web site at http://ivscc.gsfc.nasa.gov/publications/ar2000. This book and the web site are organized as follows: (1) The first section contains general information about IVS, a map showing the location of the components, information about the Directing Board members, and the report of the IVS Chair; (2) The second section of Special Reports contains a status report of the IVS Working Group on GPS phase center mapping, a reproduction of the resolution making IVS a Service of the International Astronomical Union (IAU), and a reprint of the VLBI Standard Interface (VSI); (3) The next seven sections hold the component reports from the Coordinators, Network Stations, Operation Centers, Correlators, Data Centers, Analysis Centers, and Technology Development Centers; and (4) The last section includes reference information about IVS: the Terms of Reference, the lists of Member and Affiliated organizations, the IVS Associate Member list, a complete list of IVS components, the list of institutions contributing to this report, and a list of acronyms. The 2000 Annual Report demonstrates the vitality of the IVS and the outstanding progress we have made during our first 22 months.

  1. Time biases in laser ranging observations: A concerning issue of Space Geodesy

    Science.gov (United States)

    Exertier, Pierre; Belli, A.; Lemoine, J. M.

    2017-09-01

    Time transfer by Laser Ranging (LR) recently demonstrated a remarkable stability (a few ps over ∼1000 s) and accuracy (synchronizing both space and ground clocks over distances from a few thousands to tens of thousands kilometers. Given its potential role in navigation, fundamental physics and metrology, it is crucial that synergy between laser ranging and Time&Frequency (T/F) technologies improves to meet the present and future space geodesy requirements. In this article, we examine the behavior of T/F systems that are used in LR tracking stations of the international laser ranging service. The approach we investigate is to compute time synchronization between clocks used at LR stations using accurate data of the Time Transfer by Laser Link (T2L2) experiment onboard the satellite Jason-2 (Samain et al., 2014). Systematic time biases are estimated against the UTC time scale for a set of 22 observing stations in 2013, in the range of zero to a few μ s. Our results suggest that the ILRS network suffers from accuracy issues, due to time biases in the laser ranging observations. We discuss how these systematic effects impact the precise orbit determination of LAGEOS geodetic satellites over a 1-year analysis, and additionally give a measure of the local effect into station coordinates, regarding in particular the effect in the east-west component that is of 2-6 mm for a typical systematic time bias of one μ s.

  2. Theoretical and Applied Research in the Field of Higher Geodesy Conducted in Rzeszow

    Directory of Open Access Journals (Sweden)

    Kadaj Roman

    2016-06-01

    Full Text Available Important qualitative changes were taking place in polish geodesy in last few years. It was related to application of new techniques and technologies and to introduction of European reference frames in Poland. New reference stations network ASG-EUPOS, together with Internet services which helps in precise positioning was created. It allows to fast setting up precise hybrid networks. New, accurate satellite networks became the basis of new definitions in the field of reference systems. Simultaneously arise the need of new software, which enables to execute the geodetic works in new technical conditions. Authors had an opportunity to participate in mentioned undertakings, also under the aegis of GUGiK, by creation of methods, algorithms and necessary software tools. In this way the automatic postprocessing module (APPS in POZGEO service, a part of ASG-EUPOS system came into being. It is an entirely polish product which works in Trimble environment. Universal software for transformation between PLETRF89, PL-ETRF2000, PULKOWO’42 reference systems as well as defined coordinate systems was created (TRANSPOL v. 2.06 and published as open product. An essential functional element of the program is the quasi-geoid model PL-geoid-2011, which has been elaborated by adjustment (calibration of the global quasi-geoid model EGM2008 to 570 geodetic points (satellite-leveling points. Those and other studies are briefly described in this paper.

  3. Geodesy- and geology-based slip-rate models for the Western United States (excluding California) national seismic hazard maps

    Science.gov (United States)

    Petersen, Mark D.; Zeng, Yuehua; Haller, Kathleen M.; McCaffrey, Robert; Hammond, William C.; Bird, Peter; Moschetti, Morgan; Shen, Zhengkang; Bormann, Jayne; Thatcher, Wayne

    2014-01-01

    The 2014 National Seismic Hazard Maps for the conterminous United States incorporate additional uncertainty in fault slip-rate parameter that controls the earthquake-activity rates than was applied in previous versions of the hazard maps. This additional uncertainty is accounted for by new geodesy- and geology-based slip-rate models for the Western United States. Models that were considered include an updated geologic model based on expert opinion and four combined inversion models informed by both geologic and geodetic input. The two block models considered indicate significantly higher slip rates than the expert opinion and the two fault-based combined inversion models. For the hazard maps, we apply 20 percent weight with equal weighting for the two fault-based models. Off-fault geodetic-based models were not considered in this version of the maps. Resulting changes to the hazard maps are generally less than 0.05 g (acceleration of gravity). Future research will improve the maps and interpret differences between the new models.

  4. 'A thorn in the side of European geodesy': measuring Paris-Greenwich longitude by electric telegraph.

    Science.gov (United States)

    Kershaw, Michael

    2014-12-01

    The difference in longitude between the observatories of Paris and Greenwich was long of fundamental importance to geodesy, navigation and timekeeping. Measured many times and by many different means since the seventeenth century, the preferred method of the later nineteenth and early twentieth centuries made use of the electric telegraph. I describe here for the first time the four Paris-Greenwich telegraphic longitude determinations made between 1854 and 1902. Despite contemporary faith in the new technique, the first was soon found to be inaccurate; the second was a failure, ending in Anglo-French dispute over whose result was to be trusted; the third failed in exactly the same way; and when eventually the fourth was presented as a success, the evidence for that success was far from clear-cut. I use this as a case study in precision measurement, showing how mutual grounding between different measurement techniques, in the search for agreement between them, was an important force for change and improvement. I also show that better precision had more to do with the gradually improving methods of astronomical, time determination than with the singular innovation of the telegraph, thus emphasizing the importance of what have been described as 'observatory techniques' to nineteenth-century practices of precision measurement.

  5. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents

    Science.gov (United States)

    Dvorak, J.J.; Dzurisin, D.

    1997-01-01

    Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.

  6. A New Solution Assessment Approach and Its Application to Space Geodesy Data Analysis

    Science.gov (United States)

    Hu, X.; Huang, C.; Liao, X.

    2001-12-01

    The statistics of the residuals are used in this paper to perform a quality assessment of the solutions from space geodesy data analysis. With the stochastic estimation and the relatively arbitrary empirical parameters being employed to absorb unmodelled errors, it has long been noticed that different estimate combinations or analysis strategies may achieve the same level of fitting yet result in significantly different solutions. Based on the postulate that no conceivable signals should remain in the residuals, solutions of the same level of root mean square error (RMS) and variance-covariance may be differentiated in the sense that for reasonable solutions, the residuals are virtually identical with noise. While it is possible to develop complex noise models, the Gaussian white noise model simplifies the solution interpretation and implies the unmodelled errors have been smoothed out. Statistical moments of the residuals as well as the Pearson chi-square are computed in this paper to measure the discrepancies between the residuals and Gaussian white noise. Applying to both satellite laser ranging (SLR) and global positioning system (GPS) data analysis, we evaluate different parameter estimate combinations and/or different strategies that would be hardly discriminated by the level of fitting. Unlike most solution assessment methods broadly termed as external comparison, no information independent of the data analyzed is required. This makes the immediate solution assessment possible and easy to carry out. While the external comparison is the best and most convincing quality assessment of the solution, the statistics of the residuals provide important information on the solutions and, in some cases as discussed in this paper, can be supported with external comparison.

  7. International VLBI Service for Geodesy and Astrometry. Delivering high-quality products and embarking on observations of the next generation

    Science.gov (United States)

    Nothnagel, A.; Artz, T.; Behrend, D.; Malkin, Z.

    2017-07-01

    The International VLBI Service for Geodesy and Astrometry (IVS) regularly produces high-quality Earth orientation parameters from observing sessions employing extensive networks or individual baselines. The master schedule is designed according to the telescope days committed by the stations and by the need for dense sampling of the Earth orientation parameters (EOP). In the pre-2011 era, the network constellations with their number of telescopes participating were limited by the playback and baseline capabilities of the hardware (Mark4) correlators. This limitation was overcome by the advent of software correlators, which can now accommodate many more playback units in a flexible configuration. In this paper, we describe the current operations of the IVS with special emphasis on the quality of the polar motion results since these are the only EOP components which can be validated against independent benchmarks. The polar motion results provided by the IVS have improved continuously over the years, now providing an agreement with IGS results at the level of 20-25 μas in a WRMS sense. At the end of the paper, an outlook is given for the realization of the VLBI Global Observing System.

  8. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipt. Ingegneria dell' Innovazione, Lecce (Italy); Centro Fermi, Rome (Italy); Matzner, Richard [University of Texas, Theory Group, Austin (United States); Gurzadyan, Vahe [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom)

    2017-12-15

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  9. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    International Nuclear Information System (INIS)

    Ciufolini, Ignazio; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger

    2017-01-01

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  10. Geodesy and cartography methods of exploration of the outer planetary systems: Galilean satellites and Enceladus

    Science.gov (United States)

    Zubarev, Anatoliy; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Nadezhdina, Irina; Patraty, Vyacheslav; Karachevtseva, Irina

    Introduction. While Galilean satellites have been observed by different spacecrafts, including Pioneer, Voyager-1 and -2, Galileo, New Horizons, and Enceladus by Cassini and Voyager-2, only data from Galileo, Cassini and the two Voyagers are useful for precise mapping [1, 2]. For purposes of future missions to the system of outer planets we have re-computed the control point network of the Io, Ganymede and Enceladus to support spacecraft navigation and coordinate knowledge. Based on the control networks, we have produced global image mosaics and maps. Geodesy approach. For future mission Laplace-P we mainly focused on Ganymede which coverage is nearly complete except for polar areas (which includes multispectral data). However, large differences exist in data resolutions (minimum global resolution: 30 km/pixel). Only few areas enjoy coverage by highest resolution images, so we suggest to obtain regional Digital Elevation Models (DEMs) from stereo images for selected areas. Also using our special software, we provide calculation of illumination conditions of Ganymede surface in various representations [3]. Finally, we propose a careful evaluation of all available data from the previous Voyager and Galileo missions to re-determine geodetic control and rotation model for other Galilean satellites - Callisto and Europe. Mapping. Based on re-calculated control point networks and global mosaics we have prepared new maps for Io, Ganymede and Enceladus [4]. Due to the difference in resolution between the images, which were also taken from different angles relative to the surface, we can prepare only regional high resolution shape models, so for demonstrating of topography and mapping of the satellites we used orthographic projection with different parameters. Our maps, which include roughness calculations based on our GIS technologies [5], will also be an important tool for studies of surface morphology. Conclusions. Updated data collection, including new calculation of

  11. Revealing climate modes in steric sea levels: lessons learned from satellite geodesy, objective analyses and ocean reanalyses

    Science.gov (United States)

    Pfeffer, J.; Tregoning, P.; Purcell, A. P.

    2017-12-01

    Due to increased greenhouse gases emissions, the oceans are accumulating heat. In response to the ocean circulation and atmospheric forcing, the heat is irregularly redistributed within the oceans, causing sea level to rise at variable rates in space and time. These rates of steric expansion are extremely difficult to assess because of the sparsity of in-situ hydrographic observations available within the course of the 20th century. We compare here three methods to reconstruct the steric sea levels over the past 13, 25 and 58 years based on satellite geodesy, objective analyses and ocean reanalyses. The interannual to decadal variability of each dataset is explored with a model merging six climate indices representative of the natural variability of the ocean and climate system. Consistent regional patterns are identified for the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) in all datasets at all timescales. Despite the short time coverage (13 years), the combination of satellite geodetic data (altimetry and GRACE) also reveals significant steric responses to the North Pacific Gyre Oscillation (NPGO), Indian Dipole (IOD) and Indian ocean basinwide (IOBM) mode. The richer information content in the ocean reanalyses allows us to recover the regional fingerprints of the PDO, ENSO, NPGO, IOD and IOBM, but also of the Atlantic Multidecadal Oscillation (AMO) acting over longer time scales (40 to 60 years). Therefore, ocean reanalyses, coupled with climate mode analyses, constitute innovative and promising tools to investigate the mechanisms triggering the variability of sea level rise over the past decades.

  12. Analytical solution of perturbed relative motion: an application of satellite formations to geodesy

    Science.gov (United States)

    Wnuk, Edwin

    In the upcoming years, several space missions will be operated using a number of spacecraft flying in formation. Clusters of spacecraft with a carefully designed orbits and optimal formation geometry enable a wide variety of applications ranging from remote sensing to astronomy, geodesy and basic physics. Many of the applications require precise relative navigation and autonomous orbit control of satellites moving in a formation. For many missions a centimeter level of orbit control accuracy is required. The GRACE mission, since its launch in 2002, has been improving the Earth's gravity field model to a very high level of accuracy. This mission is a formation flying one consisting of two satellites moving in coplanar orbits and provides range and range-rate measurements between the satellites in the along-track direction. Future geodetic missions probably will employ alternative architectures using additional satellites and/or performing out-of-plane motion, e.g cartwheel orbits. The paper presents an analytical model of a satellite formation motion that enables propagation of the relative spacecraft motion. The model is based on the analytical theory of satellite relative motion that was presented in the previous our papers (Wnuk and Golebiewska, 2005, 2006). This theory takes into account the influence of the following gravitational perturbation effects: 1) zonal and tesseral harmonic geopotential coefficients up to arbitrary degree and order, 2) Lunar gravity, 3) Sun gravity. Formulas for differential perturbations were derived with any restriction concerning a plane of satellite orbits. They can be applied in both: in plane and out of plane cases. Using this propagator we calculated relative orbits and future relative satellite positions for different types of formations: in plane, out of plane, cartwheel and others. We analyzed the influence of particular parts of perturbation effects and estimated the accuracy of predicted relative spacecrafts positions

  13. The Phobos Atlas and Geo-portal: geodesy and cartography approach for planetary exploration

    Science.gov (United States)

    Karachevtseva, Irina; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Konopikhin, Anatoliy; Garov, Andrey

    New Phobos mapping. Methods of image processing and modern GIS technologies provide the opportunity for high quality planetary mapping. The new Phobos DTM and global orthomosaic have been used for developing a geodatabase (Karachevtseva et al., 2012) which provides data for various surface spatial analyses: statistics of crater density, as well as studies of gravity field, geomorphology, and photometry. As mapping is the best way to visualize results of research based on spatial context we created the Phobos atlas. The new Phobos atlas includes: control points network which were calculated during photogrammetry processing of SRC images (Zubarev et al., 2012) and fundamental body parameters as a reference basis for Phobos research as well as GIS analyses of surface objects and geomorphologic studies. According to the structure of the atlas we used various scales and projections based on different coordinate system, including three-axial ellipsoid which parameters (a=13.24 km, b=11.49 km, c=9.48 km) derived from new Phobos shape model (Nadezhdina and Zubarev, 2014). The new Phobos atlas includes about 30 thematic original maps that illustrate the surface of the small body based on Mars Express data (Oberst et al., 2008) and illustrates results of various studies of Phobos:, geomorphology parameters of craters (Basilevsky et al., 2014), morphometry studies (Koknanov et al., 2012), statistics of crater size-frequency distributions based on multi-fractal approach (Uchaev Dm. et al., 2012). Phobos Geo-portal. The spatial data products which used for preparing maps for the Phobos atlas are available at the planetary data storage with access via Geo-portal (http://cartsrv.mexlab.ru/geoportal/), based on modern spatial and web-based technologies (Karachevtseva et al., 2013). Now we are developing Geodesy and Cartography node which can integrate various types of information not only for Phobos data, but other planets and their satellites, and it can be used for geo

  14. Ensuring Credit to Data Creators: A Case Study for Geodesy

    Science.gov (United States)

    Boler, F. M.; Gorman, A.

    2011-12-01

    facilitate citation for the purpose of ensuring credit to the data creators. UNAVCO's archiving and metadata management systems are generally well-suited to assigning and maintaining DOIs for two styles of logical collections of data: campaigns, which are spatially and temporally well-defined; and stations, which represent ongoing collection at a single spatial position at the Earth's surface. These two styles form the basis for implementing approximately 3,000 DOIs that can encompass the current holdings in the UNAVCO Archive. In addition, aggregations of DOIs into a superset DOI is advantageous for numerous cases where groupings of stations are naturally used in research studies. There are about 100 such natural collections of stations. However, research using GNSS data can also utilize several hundred or more stations in unique combinations, where tallying the individual DOIs within a reference list is cumbersome. We are grappling with the complexities that inevitably crop up when assigning DOIs, including subsetting, versioning, and aggregating. We also foresee the need for mechanisms for users to go beyond our predefined collections and/or aggregations to define their own ad-hoc collections. Our goal is to create a system for DOI assignment and utilization that succeeds in facilitating data citation within our community of geodesy scientists.

  15. On the motion od the Caribbean relative to South-America: New results from GPS geodesy 1999-2012

    Science.gov (United States)

    De La Rosa, R.; Marquez, J.; Bravo, M.; Madriz, Y.; Mencin, D.; Wesnousky, S. G.; Molnar, P. H.; Bilham, R.; Perez, O. J.

    2013-05-01

    Our previous (1994-2006) collaborative GPS studies in southern Caribbean and northern South-America (SA) show that along its southern boundary in north-central and northeastern Venezuela (Vzla) the Caribbean plate (CP) slips easterly at ~20 mm/a relative to SA, and that in northwestern South-America slip-partitioning takes place resulting in 12 mm/a of dextral motion across the Venezuelan Andes, ~6 mm/a of which occur along the main trace of the NE-trending Bocono fault, and the rest is taken up by SE-subduction of the CP beneath northwestern SA. A series of new velocity vectors obtained in the region from GPS geodesy in 1999-2012 and their corresponding elastic modelings shows that in north-central Vzla part (~3 mm/a) of the C-SA relative dextral shear is taken up by the east-trending continental La Victoria fault, which runs ~50 kms south of San Sebastian fault off-shore and is sub-parallel to it, the later taken up the rest of the motion. The velocity we find for Aruba Is (~20 mm/y due ~east) is consistent with the motion predicted by the Euler pole (61,9° N; 75,7 °W; ω = 0,229 °/Ma) we previously calculated to describe the C-SA relative plate motion. New velocity vectors obtained across the Venezuelan Andes are consistent with a modeled surface velocity due to 12 mm/a of dextral shear below a locking depth of 14 km on one or more vertical N50°E striking faults located within the 100-km wide Andean ranges. The Andes also show a horizontal convergence rate of 2 to 4 mm/a suggesting an uplift rate of ~1.7 mm/a if thrust motion takes place on shallowly dipping faults parallel to the Andes.

  16. Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)

    Science.gov (United States)

    Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael

    2017-04-01

    The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We

  17. 75 FR 75444 - Defense Federal Acquisition Regulation Supplement; Government Property (DFARS Case 2009-D008)

    Science.gov (United States)

    2010-12-03

    ... clauses. (a) Use the clause at 252.245-7000, Government-Furnished Mapping, Charting, and Geodesy Property, in solicitations and contracts when mapping, charting, and geodesy property is to be furnished. (b... Government-Furnished Mapping, Charting, and Geodesy Property. As prescribed in 245.107(a), use the following...

  18. Seismology and geodesy of the sun: Solar geodesy.

    Science.gov (United States)

    Dicke, R H

    1981-03-01

    Measurements of the elliptical figure of the sun made in 1966 are analyzed on an hourly basis. This analysis yields an improved measure of the previously found solar distortion, rotating rigidly with a sidereal period of 12.38+/-0.10 days. It also yields a set of residùals used to search for signals due to low-frequency solar oscillations.

  19. Global Empirical Model of the TEC Response to Geomagnetic Activity and Forcing from Below

    Science.gov (United States)

    2014-04-01

    Pancheva Plamen Mukhtarov Borislav Andonov National Institute of Geophysics, Geodesy and Geography Bulgarian Academy of Sciences BL. 3...Geophysics, Geodesy and Geography Bulgarian Academy of Sciences BL. 3 Acad. Georgi Bonchev Sofia 1000 BULGARIA 8. PERFORMING ORGANIZATION... Geodesy and Geography, Bulgarian Academy of Sciences) April 2014 Distribution A: Approved for public release

  20. Characterization of Material Properties at Brady Hot Springs, Nevada by Inverse Modeling of Data from Seismology, Geodesy, and Hydrology

    Science.gov (United States)

    Wang, H. F.; Feigl, K. L.; Patterson, J.; Parker, L.; Reinisch, E. C.; Zeng, X.; Cardiff, M. A.; Fratta, D.; Lord, N. E.; Thurber, C. H.; Robertson, M.; Miller, D. E.; Akerley, J.; Kreemer, C.; Morency, C.; Davatzes, N. C.

    2017-12-01

    The PoroTomo project consists of poroelastic tomography by adjoint inverse modeling of data from seismology, geodesy, and hydrology. The goal of the PoroTomo project is to assess an integrated technology for characterizing and monitoring changes in the rock mechanical properties of an enhanced geothermal system in 3 dimensions with a spatial resolution better than 50 meters. In March 2016, we deployed the integrated technology in a 1500-by-500-by-400-meter volume at Brady. The 15-day deployment included 4 distinct time intervals with intentional manipulations of the pumping rates in injection and production wells. The data set includes: active seismic sources, fiber-optic cables for Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) arranged vertically in a borehole to 400 m depth and horizontally in a trench 8700 m in length and 0.5 m in depth; 244 seismometers on the surface, 3 pressure sensors in observation wells, continuous geodetic measurements at 3 GPS stations, and 7 InSAR acquisitions. To account for the mechanical behavior of both the rock and the fluids, we are developing numerical models for the 3-D distribution of the material properties. We present an overview of results, including:Tomographic images of P-wave velocity estimated from seismic body waves [Thurber et al., this meeting].Tomographic images of phase velocity estimated from ambient noise correlation functions [Zeng et al., this meeting].Models of volumetric contraction to account for subsidence observed by InSAR and GPS [Reinisch et al., this meeting].Interpretation of pressure and temperature data [Patterson et al., this meeting].Taken together, these results support a conceptual model of highly permeable conduits along faults channeling fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells. The PoroTomo project is funded by a grant from the U.S. Department of Energy.

  1. Lander Radioscience LaRa, a Space Geodesy Experiment to Mars within the ExoMars 2020 mission.

    Science.gov (United States)

    Dehant, V. M. A.; Le Maistre, S.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Van Hove, B.; Rivoldini, A.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the 2020 ExoMars lander and Earth over at least one Martian year. The LaRa instrument consists of a coherent transponder with up- and downlinks at X-band radio frequencies. The signal received from Earth is a pure carrier at 7.178 GHz; it is transponded back to Earth at a frequency of 8.434 GHz. The transponder is designed to maintain its lock and coherency over its planed one-hour observation sessions. The transponder mass is at the one-kg level. There are one uplink antenna and two downlink antennas. They are small patch antennas covered by a radome of 130gr for the downlink ones and of 200gr for the uplink. The signals will be generated and received by Earth-based radio antennas belonging to the NASA deep space network (DSN), the ESA tracking station network, or the Russian ground stations network. The instrument lifetime is more than twice the nominal mission duration of one Earth year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information/constraints on the Martian interior, and on the sublimation/condensation cycle of atmospheric CO2. Orientation and rotational variations will allow us to constrain the moment of inertia of the entire planet, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other previous radio science experiments such as the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) RISE experiment (Rotation and Interior Structure Experiment) with radio science data of the NASA Viking landers, Mars Pathfinder and Mars Exploration Rovers. In addition, other ExoMars2020 and TGO (Trace Gas Orbiter) experiments providing

  2. The Geodetic Seamless Archive Centers Service Layer: A System Architecture for Federating Geodesy Data Repositories

    Science.gov (United States)

    McWhirter, J.; Boler, F. M.; Bock, Y.; Jamason, P.; Squibb, M. B.; Noll, C. E.; Blewitt, G.; Kreemer, C. W.

    2010-12-01

    Three geodesy Archive Centers, Scripps Orbit and Permanent Array Center (SOPAC), NASA's Crustal Dynamics Data Information System (CDDIS) and UNAVCO are engaged in a joint effort to define and develop a common Web Service Application Programming Interface (API) for accessing geodetic data holdings. This effort is funded by the NASA ROSES ACCESS Program to modernize the original GPS Seamless Archive Centers (GSAC) technology which was developed in the 1990s. A new web service interface, the GSAC-WS, is being developed to provide uniform and expanded mechanisms through which users can access our data repositories. In total, our respective archives hold tens of millions of files and contain a rich collection of site/station metadata. Though we serve similar user communities, we currently provide a range of different access methods, query services and metadata formats. This leads to a lack of consistency in the userís experience and a duplication of engineering efforts. The GSAC-WS API and its reference implementation in an underlying Java-based GSAC Service Layer (GSL) supports metadata and data queries into site/station oriented data archives. The general nature of this API makes it applicable to a broad range of data systems. The overall goals of this project include providing consistent and rich query interfaces for end users and client programs, the development of enabling technology to facilitate third party repositories in developing these web service capabilities and to enable the ability to perform data queries across a collection of federated GSAC-WS enabled repositories. A fundamental challenge faced in this project is to provide a common suite of query services across a heterogeneous collection of data yet enabling each repository to expose their specific metadata holdings. To address this challenge we are developing a "capabilities" based service where a repository can describe its specific query and metadata capabilities. Furthermore, the architecture of

  3. Application of Mensuration Technology to Improve the Accuracy of Field Artillery Firing Unit Location

    Science.gov (United States)

    2013-12-13

    8 U.S. Army Field Artillery Operations ............................................................................ 8 Geodesy ...Experts in this field of study have a full working knowledge of geodesy and the theory that allows mensuration to surpass the level of accuracy achieved...desired. (2) Fire that is intended to achieve the desired result on target.”6 Geodesy : “that branch of applied mathematics which determines by observation

  4. Intrinsic Geodesy

    Science.gov (United States)

    1952-03-01

    to which astro - nomical latitudes and longitudes are referred. Moreover, the direction in space of the axis has a physical reality and maV be used for...product, or mixed product, or box product of three vectors i, U, E is the scalar V -i Bi~ F- iXiU.E - ’Exg . B - FXc i a- =1. .X F- F.x = .cx5 (EI-1) Z

  5. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  6. The Differential Vector Phase-Locked Loop for Global Navigation Satellite System Signal Tracking

    Science.gov (United States)

    2014-06-01

    Precise Positioning”. Reports on Geodesy , 87(2):77–85, 2009. [6] Cellmer, S. “The Real-Time Precise Positioning Using MAFA Method”. Proceedings of...Wielgosz, and Z. Rzepecka. “Modified Ambiguity Function Approach for GPS Carrier Phase Positioning”. Journal of Geodesy , 84(4):267–275, 2010. [10] Chan, B...Journal of Geodesy , 70:330–341, 1996. [30] Hatch, R. “Instantaneous Ambiguity Resolution”. Proceedings of the International Symposium 107 on Kinematic

  7. 48 CFR 245.102 - Policy.

    Science.gov (United States)

    2010-10-01

    ... DEFENSE CONTRACT MANAGEMENT GOVERNMENT PROPERTY General 245.102 Policy. (1) Mapping, charting, and geodesy property. All Government-furnished mapping, charting, and geodesy (MC&G) property is under the control of...

  8. 76 FR 6003 - Defense Federal Acquisition Regulation Supplement; Marking of Government-Furnished Property

    Science.gov (United States)

    2011-02-02

    ...-7000, Government-Furnished Mapping, Charting, and Geodesy Property, in solicitations and contracts when mapping, charting, and geodesy property is to be furnished. (b) Use the clause at 252.245-7001, Tagging...

  9. Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020

    CERN Document Server

    Plag, Hans-Peter

    2009-01-01

    Geodesy plays a key role in geodynamics, geohazards, the global water cycle, global change, atmosphere and ocean dynamics. This book covers geodesy's contribution to science and society and identifies user needs regarding geodetic observations and products.

  10. EIGEN-5C - the new GeoForschungsZentrum Potsdam / Groupe de Recherche de Geodesie Spatiale combined gravity field model

    Science.gov (United States)

    Foerste, C.; Flechtner, F.; Stubenvoll, R.; Rothacher, M.; Kusche, J.; Neumayer, H. K.; Biancale, R.; Lemoine, J.; Barthelmes, F.; Bruinsma, S.; Koenig, R.; Dahle, C.

    2008-12-01

    Global gravity field models play a fundamental role in geodesy and Earth sciences, ranging from practical purposes, like precise orbit determination, to applications in geosciences, like investigations of the density structure of the Earth's interior. In this presentation we report on the latest, recently released EIGEN-model, EIGEN-5C (EIGEN = European Improved Gravity model of the Earth by New techniques) and its associated satellite-only model EIGEN-5S. The global gravity field model EIGEN-5C is complete to degree and order 360 (corresponding to half-wavelength of 55 km) and was jointly elaborated by GFZ Potsdam and CNES/GRGS Toulouse. As its precursor EIGEN-GL04C (released in March 2006), this model is inferred from a combination of GRACE and LAGEOS satellite tracking data with surface gravity data, based on the accumulation of normal equations. However, this new model presents remarkable changes and improvements compared to its precursors. EIGEN-5C incorporates a further extended GRACE and LAGEOS data set, covering almost the entire GRACE period from mid 2002 to end of 2007, but also newly available gravity anomaly data sets for Europe and Australia. New processing features are the complete reprocessing of the GRACE and LAGEOS data using the recent RL04 standards and background models by GFZ (combined with the GRACE/LAGEOS 10-days time series derived at GRGS based on nearly identical standards and background models) and a further extension of the full normal equations (in contrast to block diagonal form) derived from terrestrial data to a maximum degree and order of 280 (which was restricted to 179 for EIGEN-GL04C). In particular, this presentation focuses on the inter-comparison of this latest EIGEN model with the recently presented EGM08 model, which was developed by the National Geospatial-Intelligence Agency (NGA) of the USA. The EIGEN-5C model and its associated satellite-only model EIGEN-5S are available for download at the ICGEM data base (International

  11. IERS and its importance for global geodynamics

    Czech Academy of Sciences Publication Activity Database

    Kostelecký, J.; Vondrák, Jan

    2003-01-01

    Roč. 24, č. 131 (2003), s. 7-15 ISSN 1211-1910 R&D Projects: GA MŠk LN00A005 Institutional research plan: CEZ:AV0Z1003909 Keywords : astrometry * geodesy * geodynamics Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  12. Laboratory volcano geodesy

    Science.gov (United States)

    Færøvik Johannessen, Rikke; Galland, Olivier; Mair, Karen

    2014-05-01

    Magma transport in volcanic plumbing systems induces surface deformation, which can be monitored by geodetic techniques, such as GPS and InSAR. These geodetic signals are commonly analyzed through geodetic models in order to constrain the shape of, and the pressure in, magma plumbing systems. These models, however, suffer critical limitations: (1) the modelled magma conduit shapes cannot be compared with the real conduits, so the geodetic models cannot be tested nor validated; (2) the modelled conduits only exhibit shapes that are too simplistic; (3) most geodetic models only account for elasticity of the host rock, whereas substantial plastic deformation is known to occur. To overcome these limitations, one needs to use a physical system, in which (1) both surface deformation and the shape of, and pressure in, the underlying conduit are known, and (2) the mechanical properties of the host material are controlled and well known. In this contribution, we present novel quantitative laboratory results of shallow magma emplacement. Fine-grained silica flour represents the brittle crust, and low viscosity vegetable oil is an analogue for the magma. The melting temperature of the oil is 31°C; the oil solidifies in the models after the end of the experiments. At the time of injection the oil temperature is 50°C. The oil is pumped from a reservoir using a volumetric pump into the silica flour through a circular inlet at the bottom of a 40x40 cm square box. The silica flour is cohesive, such that oil intrudes it by fracturing it, and produces typical sheet intrusions (dykes, cone sheets, etc.). During oil intrusion, the model surface deforms, mostly by doming. These movements are measured by an advanced photogrammetry method, which uses 4 synchronized fixed cameras that periodically image the surface of the model from different angles. We apply particle tracking method to compute the 3D ground deformation pattern through time. After solidification of the oil, the intrusion can be excavated and photographed from several angles to compute its 3D shape with the same photogrammetry method. Then, the surface deformation pattern can be directly compared with the shape of underlying intrusion. This quantitative dataset is essential to quantitatively test and validate classical volcano geodetic models.

  13. Laboratory Volcano Geodesy

    OpenAIRE

    Johannessen, Rikke Færøvik

    2014-01-01

    Magma transport in volcanic plumbing systems induces surface deformation, which can be monitored by geodetic techniques, such as GPS and InSAR. These geode- tic signals are commonly analyzed through geodetic models in order to constrain the shape of, and the pressure in, magma plumbing systems. These models, how- ever, suffer critical limitations: (1) the modelled magma conduit shapes cannot be compared with the real conduits, so the geodetic models cannot be tested nor validated; (2) the mod...

  14. The Future of the U.S. Intercontinental Ballistic Missile Force

    Science.gov (United States)

    2014-01-01

    components included accelerometer scale factor, gyro drift rates, gravity and geodesy models of both the launch area and the target area, winds and...Defense Research and Engineering John Walsh described the situation very candidly in 1976:17 In 1971 the gravity and geodesy term decreased

  15. Relevancy of mathematical support for geophysics determinations

    Science.gov (United States)

    Vîlceanu, Clara-Beatrice; Grecea, Carmen; Muşat, Cosmin

    2017-07-01

    The importance of gravity in geodesy is recognized even since the 16th century. Starting with the experiments and theories of Galileo Galilei, the gravity and its global variation has continued to play an important role for those preoccupied with measuring the Earth's surface. The benefits of Physical Geodesy (studying the Earth's gravitational field) are extended to other disciplines such as Seismology, Oceanography, Volcanology etc. The aim of the present paper consists in highlighting the connection between gravity and the geodesist's profession. This was possible only throughout an extended study of Physical Geodesy realized with the support given by the International Gravity Office, Military Topographic Direction, The National Centre of Cartography and different specialists from these domains. Gravity represents the main factor which influences the Earth's shape and dimensions and when it comes to geodetic measurements, the gravity and its influence upon the measurements realized by specialists in geodesy has to be considered.

  16. Time-variable gravity fields derived from GPS tracking of Swarm

    Czech Academy of Sciences Publication Activity Database

    Bezděk, Aleš; Sebera, Josef; da Encarnacao, J.T.; Klokočník, Jaroslav

    2016-01-01

    Roč. 205, č. 3 (2016), s. 1665-1669 ISSN 0956-540X R&D Projects: GA MŠk LG14026; GA ČR GA13-36843S Institutional support: RVO:67985815 Keywords : satellite geodesy * time variable gravity * global change from geodesy Subject RIV: DD - Geochemistry Impact factor: 2.414, year: 2016

  17. Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru)

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Novotný, J.; Novotná, I.; Urries de, B.J.; Vilímek, V.; Emmer, Adam; Strozzi, T.; Kusák, Michal; Rapre, A.C.; Hartvich, Filip; Frey, H.

    2016-01-01

    Roč. 13, č. 6 (2016), s. 1461-1477 ISSN 1612-510X R&D Projects: GA ČR(CZ) GAP209/11/1000 Institutional support: RVO:67985891 ; RVO:67179843 Keywords : landslides * moraines * glacial lakes * slope stability calculation * glacial lake outburst floods * impact wave models * Cordillera Blanca Subject RIV: DE - Earth Magnetism, Geodesy, Geography; DE - Earth Magnetism, Geodesy, Geography (UEK-B) Impact factor: 3.657, year: 2016

  18. Transformation procedures in 3D terrestrial coordinate systems

    Directory of Open Access Journals (Sweden)

    Sedlák Vladimír

    2001-12-01

    Full Text Available Transformation procedures belong to the main tasks of surveyor working in a field of geodesy, for example in satellite geodesy or astronomical geodesy. It is necessary to know transformation procedures in 3D terrestrial (Earth coordinate systems. Increasingly a dynamic advance growth of application of satellite navigation systems, for example GPS (Global Positioning System into engineering surveying, real estate register and others spheres of applied geodesy and geo-surveying (mine surveying exacts knowledge of these transformation procedures between coordinates in various coordinate systems. These tasks are common for daily work for various practical surveyors too, not only for theoretical scientific working surveyors.Conventional Terrestrial System is 3D coordinate system what is the most important coordinate system in global geodesy. Conventional Terrestrial System is an approximation of the nature coordinate system of the Earth. The origin of this coordinate system is placed in the earth substantial centre of gravity and in the centre of geoid. Conventional Terrestrial System is the Cartesian right-handed coordinate system, i.e. positive one. The Local Astronomical System is 3D coordinate system too and it belongs to an important coordinate system in geodesy from its practical point of view. Many geodetic measurements are realized in this coordinate system. Designation of this coordinate system as astronomical system expresses its sticking to a normal line to an equipotential plane, i.e. to a vertical. Local Astronomical system is the left-handed cartesian coordinate system.Transformation procedures in 3D terrestrial coordinate systems with theory of these systems are presented in the paper. Transformation in the local astronomical coordinate system presents common transformation in a frame of an adjustment of various local geodetic networks. In a case of satellite measurements (GPS, satellite altimetry, etc. transformation between local and

  19. Present consequences of the post-war migration in the Czech borderland for regional developemnt

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Dvořák, Petr; Nosková, Helena; Zapletalová, Jana

    2017-01-01

    Roč. 36, č. 4 (2017), s. 5-15 ISSN 2081-6383 Institutional support: RVO:68145535 ; RVO:68378114 Keywords : borderland regions * resettlement * social consequences Subject RIV: DE - Earth Magnetism, Geodesy, Geography ; DE - Earth Magnetism, Geodesy, Geography (USD-C) OBOR OECD: Environmental sciences (social aspects); Environmental sciences (social aspects) (USD-C) https://www.degruyter.com/view/j/quageo.2017.36.issue-4/quageo-2017-0032/quageo-2017-0032.xml?format=INT

  20. Geography From Another Dimension

    Science.gov (United States)

    2002-01-01

    The GEODESY software program is intended to promote geographical awareness among students with its remote sensing capabilities to observe the Earth's surface from distant vantage points. Students and teachers using GEODESY learn to interpret and analyze geographical data pertaining to the physical attributes of their community. For example, the program provides a digital environment of physical features, such as mountains and bodies of water, as well as man-made features, such as roads and parks, using aerial photography, satellite imagery, and geographic information systems data in accordance with National Geography Standards. The main goal is to have the students and teachers gain a better understanding of the unique forces that drive their coexistence. GEODESY was developed with technical assistance and financial support from Stennis Space Center's Commercial Remote Sensing Program Office, now known as the Earth Science Applications Directorate.

  1. Danko Markovinović, PhD in Technical Sciences

    Directory of Open Access Journals (Sweden)

    Miljenko Lapaine

    2009-12-01

    Full Text Available Danko Markovinović defended his dissertation Gravimetric Reference System of the Republic of Croatia at the Faculty of Geodesy of the University of Zagreb on October 16, 2009. The dissertation was defended in front of the committee: Prof. Dr. Mario Brkić, Prof. Dr. Tomislav Bašić (mentor and Assist. Prof. Dr. Miran Kuhar from the Faculty of Civil Engineering and Geodesy of the University of Ljubljana.

  2. Ivan Landek, PhD in Technical Sciences

    Directory of Open Access Journals (Sweden)

    Stanislav Frangeš

    2017-12-01

    Full Text Available On 12 June 2017, Ivan Landek, MSc defended his doctoral thesis Improvements to the Model of Topographic Data of the Republic of Croatia at the Faculty of Geodesy of the University of Zagreb, before a Commission whose members were Prof. Dr. Damir Medak, Assoc. Prof. Dr. Robert Župan and Assist. Prof. Dr. Slobodanka Ključanin, University of Sarajevo, Faculty of Civil Engineering, Institue of Geodesy. The mentor was Prof. Dr. Stanislav Frangeš.

  3. Mladen Zrinjski, PhD in Technical Sciences

    Directory of Open Access Journals (Sweden)

    Tomislav Bašić

    2010-12-01

    Full Text Available Mladen Zrinjski defended his PhD thesis Defining the Calibration Baseline Scale of the Faculty of Geodesy by Applying Precise Electro-Optical Distance Meter and GPS at the Faculty of Geodesy of the University of Zagreb on April 8, 2010. The Defence Committee included Prof. Dr. Vedran Mudronja from the Faculty of Mechanical Engineering and Naval Architecture of the University of Zagreb, Prof. Dr. Tomislav Bašić (mentor 1 and Prof. Emeritus Nikola Solarić (mentor 2.

  4. Characterization of chlorophyll-a over CAL-VAL site at Kavaratti in the Lakshadweep Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, K.N.; Shukla, A.K.; Matondkar, S.G.P.; Singh, S.K.; Sawant, S.S.

    Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Marine Geodesy Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713657895 Characterization...',Marine Geodesy,32:4,345 — 354 To link to this Article: DOI: 10.1080/01490410903297733 URL: http://dx.doi.org/10.1080/01490410903297733 Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used...

  5. Coordinate systems and map projections

    CERN Document Server

    Maling, DH

    1992-01-01

    A revised and expanded new edition of the definitive English work on map projections. The revisions take into account the huge advances in geometrical geodesy which have occurred since the early years of satellite geodesy. The detailed configuration of the geoid resulting from the GEOS and SEASAT altimetry measurements are now taken into consideration. Additionally, the chapter on computation of map projections is updated bearing in mind the availability of pocket calculators and microcomputers. Analytical derivation of some map projections including examples of pseudocylindrical and polyconic

  6. Ocean tides for satellite geodesy

    Science.gov (United States)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  7. At the dawn of geodesy

    Science.gov (United States)

    Fischer, Irene K.

    1981-06-01

    The first land surveyors were rope stretchers and rope knotters, remembered in ancient documents and tomb paintings and also in some terminology. The L-shaped carpenter’s square, one of the earliest and most versatile basic tools, represents the observed direction of the plumb line versus the water level and appears as the shadow-casting gnomon and also as the geometrical gnomon in magically-restricted enlargements of altars. The related “Pythagorean” theorem was known in antiquity centuries before Pythagoras, with algebraic proofs in Babylonia and China. The spherical shape of the earth, deduced from the observation of circumpolar stars, was part of a complete equatorial astronomical system in ancient China. But although shadow measurements were generally used to establish north-south distances, only the Greeks derived from them the size of the earth. The striking difference between the abstract, geometric approach of Greece and the concrete, algebraic approach of Babylonia and China represents not a difference in talents but a difference in culture-bound interests.

  8. Lunar geophysics, geodesy, and dynamics

    Science.gov (United States)

    Williams, J. G.; Dickey, J. O.

    2002-01-01

    Experience with the dynamics and data analyses for earth and moon reveals both similarities and differences. Analysis of Lunar Laser Ranging (LLR) data provides information on the lunar orbit, rotation, solid-body tides, and retroreflector locations.

  9. Geodesy at Mercury with MESSENGER

    Science.gov (United States)

    Smith, David E.; Zuber, Maria t.; Peale, Stanley J.; Phillips, Roger J.; Solomon, Sean C.

    2006-01-01

    In 2011 the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft will enter Mercury orbit and begin the mapping phase of the mission. As part of its science objectives the MESSENGER mission will determine the shape and gravity field of Mercury. These observations will enable the topography and the crustal thickness to be derived for the planet and will determine the small libration of the planet about its axis, the latter critical to constraining the state of the core. These measurements require very precise positioning of the MESSENGER spacecraft in its eccentric orbit, which has a periapsis altitude as low as 200 km, an apoapsis altitude near 15,000 km, and a closest approach to the surface varying from latitude 60 to about 70 N. The X-band tracking of MESSENGER and the laser altimetry are the primary data that will be used to measure the planetary shape and gravity field. The laser altimeter, which has an expected range of 1000 to 1200 km, is expected to provide significant data only over the northern hemisphere because of MESSENGER's eccentric orbit. For the southern hemisphere, radio occultation measurements obtained as the spacecraft passes behind the planet as seen from Earth and images obtained with the imaging system will be used to provide the long-wavelength shape of the planet. Gravity, derived from the tracking data, will also have greater resolution in the northern hemisphere, but full global models for both topography and gravity will be obtained at low harmonic order and degree. The limiting factor for both gravity and topography is expected to be knowledge of the spacecraft location. Present estimations are that in a combined tracking, altimetry, and occultation solution the spacecraft position uncertainty is likely to be of order 10 m. This accuracy should be adequate for establishing an initial geodetic coordinate system for Mercury that will enable positioning of imaged features on the surface, determination of the planet's obliquity, and detection of the librational motion of the planet about its axis.

  10. Twin probes for space geodesy

    International Nuclear Information System (INIS)

    Bertotti, B.

    1978-01-01

    The twin probe method, proposed by Bertotti and Colombo (1972) to get rid of nongravitational forces in interplanetary space, can be applied to a near-Earth orbit to eliminate the atmospheric drag. Two equal pairs of probes, each pair consisting of two passive, small and dense spheres of equal surface and different masses, are flown on a circular orbit at an altitude of about 300 km. Each pair determines the motion of an ideal point which feels only the gravitational forces. They are separated by a distance d of (100/200) km and are tracked from a spacecraft or the Space Shuttle, flying at the same altitude. The relative motion of the two ideal points is reconstructed and yields a measurement of the fine structure of the Earth gravitational field, corresponding to a harmonic order l approximately a/d (a is the radius of the Earth). The tracking can be done by laser ranging to the four spheres, covered by corner reflectors; Doppler ranging is more convenient for higher values of l and can also be used. The accuracy in the compensation of the non-gravitational forces and in the measurements one needs for a given l are discussed in detail. (author)

  11. Precise GPS orbits for geodesy

    Science.gov (United States)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  12. Precision Geodesy via Radio Interferometry.

    Science.gov (United States)

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  13. Milan Rezo, PhD in Technical Sciences

    Directory of Open Access Journals (Sweden)

    Tomislav Bašić

    2010-12-01

    Full Text Available On October, 7th 2010, Milan Rezo defended his dissertation The Meaning and the Application of Physical Parameters in Modern Approach in State Survey at the Faculty of Geodesy of the University of Zagreb, and in front of the Commission consisting of Assoc. Prof. Dr. Željko Bačić, Prof. Dr. Tomislav Bašić (mentor, both from the Faculty of Geodesy, University of Zagreb, and Assist. Prof. Božo Soldo from the Faculty of Geotechnical Engineering Varaždin of University of Zagreb.

  14. Teaching Resources and Instructor Professional Development for Integrating Laser Scanning, Structure from Motion, and GPS Surveying into Undergraduate Field Courses

    Science.gov (United States)

    Pratt-Sitaula, B.; Charlevoix, D. J.; Douglas, B. J.; Crosby, B. T.; Crosby, C. J.; Lauer, I. H.; Shervais, K.

    2017-12-01

    Field experiences have long been considered an integral part of geoscience learning. However, as data acquisition technologies evolve, undergraduate field courses need to keep pace so students gain exposure to new technologies relevant to the modern workforce. Maintaining expertise on new technologies is also challenging to established field education programs. Professional development and vetted curriculum present an opportunity to advance student exposure to new geoscience data acquisition technology. The GEodesy Tools for Societal Issues (GETSI) Field Collection, funded by NSF's Improving Undergraduate STEM Education program, addresses these needs in geodesy field education. Geodesy is the science of accurately measuring Earth's size, shape, orientation, mass distribution and the variations of these with time. Modern field geodesy methods include terrestrial laser scanning (TLS), kinematic and static GPS/GNSS surveying (global positioning system/global navigation satellite system), and structure from motion (SfM) photogrammetry. The GETSI Field Collection is a collaborative project between UNAVCO, Indiana University, and Idaho State University. The project is provides curriculum modules and instructor training (in the form of short courses) to facilitate the inclusion of SfM, TLS, and GPS surveying into geoscience courses with field components. The first module - Analyzing High Resolution Topography with TLS and SfM - is available via SERC; (serc.carleton.edu/getsi/teaching_materials/high-rez-topo) the second module - "High Precision Positioning with Static and Kinematic GPS/GNSS" - will be published in 2018. The module development and assessment follows the standards of the InTeGrate Project (an NSF STEP Center)previously tested on geodesy content in the GETSI classroom collection (serc.carleton.edu/getsi). This model emphasizes use of best practices in STEM education, including situating learning in the context of societal importance. Analysis of student work

  15. In memoriam: Mirjanka Lechthaler

    Directory of Open Access Journals (Sweden)

    Nedjeljko Frančula

    2016-12-01

    Full Text Available Mirjanka Lechthaler, who friends referred to as Mika, passed away due to seriuos illness. She fought it bravely and we were surprised to hear about her death. Mirjanka (born Zdenković was born in Zagreb on September 9, 1947. After finishing high school, she studied at the Faculty of Geodesy of the University of Zagreb, and graduated in 1972. She finished postgraduate studies of informatics at the University of Zagreb with the thesis “Cartographic communication and information content of 1 cm2 of the topographic map 1:1 000 000" in 1976. Mirjanka Lechthaler finished her PhD studies at the Faculty of Geodesy with the dissertation “Entropy of relief representation using contour lines on a series of topographic maps“ in 1985. She passed the state geodesy exam in 1984. She started working at the Institute for Cartography of the Faculty of Geodesy of the University of Zagreb in 1972 and became a scientific assistant in 1976. In 1985, she moved to Vienna, where her Croatian doctoral dissertation was nostrificated at the University of Technology. From 1990, she worked as an assistant and deputy head of the Institut für Kartographie und Geo-Medientechnik at the Vienna University of Technology. From 1999, she worked as an assistant professor in the Research Group of Cartography at the Vienna University of Technology. She lectured basic and advanced courses in analogous, digital and web cartography. She was retired in 2011 and died in Vienna on November 16, 2016.

  16. Studies on selected landslides and their societal impacts: activity report of the Prague World Centre of Excellence, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Hartvich, Filip; Tábořík, Petr; Blahůt, Jan; Briestenský, Miloš; Stemberk, Josef; Emmer, Adam; Vargas, R.; Balek, Jan

    2017-01-01

    Roč. 14, č. 4 (2017), s. 1547-1553 ISSN 1612-510X R&D Projects: GA MŠk(CZ) LG15007; GA MŠk(CZ) LO1415; GA ČR(CZ) GJ16-12227Y; GA MŠk(CZ) LM2015079 Grant - others:Česká rozvojová agentura(CZ) 25/2015/03 Institutional support: RVO:67985891 ; RVO:86652079 Keywords : Landslide hazard * Monitoring * Result dissemination * EarthCaching Subject RIV: DE - Earth Magnetism, Geodesy, Geography; DE - Earth Magnetism, Geodesy, Geography (UEK-B) OBOR OECD: Physical geography; Physical geography (UEK-B) Impact factor: 3.657, year: 2016

  17. TRANSFER OF TECHNOLOGY FOR CADASTRAL MAPPING IN TAJIKISTAN USING HIGH RESOLUTION SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    R. Kaczynski

    2012-07-01

    Full Text Available European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m

  18. CityGuideTour Toruń - tourist application using augmented reality

    Science.gov (United States)

    Węgrzyn, Magdalena; Mościcka, Albina

    2017-12-01

    The aim of the article is to show the possibilities of augmented reality in the fi eld of geodesy and cartography. It discusses the concept of augmented reality, its origins and development, as well as areas of the existing applications. The practical functioning of augmented reality in the area of geodesy and cartography is presented on the example of an application developed for the tourist city of Toruń, created with the use of CityGuideTour software. The principles of developing an application and the way it operates are also discussed. As a result, a fully operational bilingual application is available free of charge on the Web.

  19. GEOSUD/SUDETEN network GPS data reprocessing and horizontal site velocity estimation

    Czech Academy of Sciences Publication Activity Database

    Kaplon, J.; Kontny, B.; Grzempowski, P.; Schenk, Vladimír; Schenková, Zdeňka; Balek, Jan; Holešovský, Jan

    2014-01-01

    Roč. 11, č. 1 (2014), s. 65-75 ISSN 1214-9705 R&D Projects: GA MŠk LN00A005; GA MŠk(CZ) LC506; GA MŠk 1P05ME781; GA MŠk LM2010008; GA ČR GA205/01/0480; GA ČR GA205/05/2287; GA AV ČR 1QS300460551; GA AV ČR IAA300460507 Institutional research plan: CEZ:AV0Z30460519 Keywords : geodesy * GPS * data processing * geodynamics Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.389, year: 2014 http://www.irsm.cas.cz/index_en.php?page=acta_detail_doi&id=70

  20. INTERNATIONAL SUMMER STUDENT SEMINAR (3S, FROM IDEA TO REALIZATION

    Directory of Open Access Journals (Sweden)

    A. P. Karpik

    2012-08-01

    Full Text Available The article gives a spotlight on a three universities (Moscow State University of Geodesy and Cartography, Siberian State Academy of Geodesy, Wuhan University and ISPRS’ cooperation in organizing and holding summer student seminars for undergraduate, master, and PhD students of the universities specializing in photogrammetry, remote sensing, GIS, aerial and space cartography. Principles of topics of the seminar selection, lecture courses delivering and practical training as well as international joint team work on projects and their defence are described. The description of the basic stages of 3S implementation, and the goals of this sort of the international event is given.

  1. Geodesy and metrology of the LEP

    International Nuclear Information System (INIS)

    Mayoud, M.

    1985-01-01

    The accurate installation of an accelerator of 8,500 m diameter requires the most refined geodetic techniques. The instrumentation in use incorporates not only lasers and eventually satellites, but also the simple nylon wire. Over 20,000 measurement will be made to install to within 0.1 mm the 5,000 fonctional elements of the LEP machine (Large Electron-Positron Collider). This work will be controlled and checked by portable computers. Each instrument will be automatic and will contain a miniature micro-computer (on a ''flexible-rigid'' card) [fr

  2. Equilibrium figures in geodesy and geophysics.

    Science.gov (United States)

    Moritz, H.

    There is an enormous literature on geodetic equilibrium figures, but the various works have not always been interrelated, also for linguistic reasons (English, French, German, Italian, Russian). The author attempts to systematize the various approaches and to use the standard second-order theory for a study of the deviation of the actual earth and of the equipotential reference ellipsoid from an equilibrium figure.

  3. Andean tectonics: Implications for Satellite Geodesy

    Science.gov (United States)

    Allenby, R. J.

    1984-01-01

    Current knowledge and theories of large scale Andean tectonics as they relate to site planning for the NASA Crustal Dynamics Program's proposed high precision geodetic measurements of relative motions between the Nazca and South American plates are summarized. The Nazca Plate and its eastern margin, the Peru-Chile Trench, is considered a prototype plate marked by rapid motion, strong seismicity and well defined boundaries. Tectonic activity across the Andes results from the Nazca Plate subducting under the South American plate in a series of discrete platelets with different widths and dip angles. This in turn, is reflected in the tectonic complexity of the Andes which are a multitutde of orogenic belts superimposed on each other since the Precambrian. Sites for Crustal Dynamics Program measurements are being located to investigate both interplate and extraplate motions. Observing operations have already been initiated at Arequipa, Peru and Easter Island, Santiago and Cerro Tololo, Chile. Sites under consideration include Iquique, Chile; Oruro and Santa Cruz, Bolivia; Cuzco, Lima, Huancayo and Bayovar, Peru; and Quito and the Galapagos Islands, Ecuador. Based on scientific considerations, Santa Cruz, Huancayo (or Lima), Quito and the Galapagos Islands should be replaced by Isla San Felix, Chile; Brazilia or Petrolina, Brazil; and Guayaquil, Ecuador. If resources permit, additional important sites would be Buenaventura and Villavicencio or Puerto La Concordia, Colombia; and Mendoza and Cordoba, Argentina.

  4. Data assimilation strategies for volcano geodesy

    Science.gov (United States)

    Zhan, Yan; Gregg, Patricia M.

    2017-09-01

    Ground deformation observed using near-real time geodetic methods, such as InSAR and GPS, can provide critical information about the evolution of a magma chamber prior to volcanic eruption. Rapid advancement in numerical modeling capabilities has resulted in a number of finite element models targeted at better understanding the connection between surface uplift associated with magma chamber pressurization and the potential for volcanic eruption. Robust model-data fusion techniques are necessary to take full advantage of the numerical models and the volcano monitoring observations currently available. In this study, we develop a 3D data assimilation framework using the Ensemble Kalman Filter (EnKF) approach in order to combine geodetic observations of surface deformation with geodynamic models to investigate volcanic unrest. The EnKF sequential assimilation method utilizes disparate data sets as they become available to update geodynamic models of magma reservoir evolution. While the EnKF has been widely applied in hydrologic and climate modeling, the adaptation for volcano monitoring is in its initial stages. As such, our investigation focuses on conducting a series of sensitivity tests to optimize the EnKF for volcano applications and on developing specific strategies for assimilation of geodetic data. Our numerical experiments illustrate that the EnKF is able to adapt well to the spatial limitations posed by GPS data and the temporal limitations of InSAR, and that specific strategies can be adopted to enhance EnKF performance to improve model forecasts. Specifically, our numerical experiments indicate that: (1) incorporating additional iterations of the EnKF analysis step is more efficient than increasing the number of ensemble members; (2) the accuracy of the EnKF results are not affected by initial parameter assumptions; (3) GPS observations near the center of uplift improve the quality of model forecasts; (4) occasionally shifting continuous GPS stations to provide variability in the locations of observations results in better model predictions than utilizing fixed locations when the number of available instruments is limited; (5) spotty InSAR data coverage on the flanks of a volcano due to topographic shadows and/or atmospheric interference does not adversely impact the effectiveness of EnKF if the available coverage is > 50%; and (6) snow or glacial obstruction in the center of uplift can adversely impact EnKF forecasts. By utilizing these strategies, we conclude that the EnKF is an effective sequential model-data fusion technique for assimilating multiple geodetic observations to forecast volcanic activity at restless volcanoes.

  5. There is no one-size-fits-all product for InSAR; on the inclusion of contextual information for geodetically-proof InSAR data products

    Science.gov (United States)

    Hanssen, R. F.

    2017-12-01

    In traditional geodesy, one is interested in determining the coordinates, or the change in coordinates, of predefined benchmarks. These benchmarks are clearly identifiable and are especially established to be representative of the signal of interest. This holds, e.g., for leveling benchmarks, for triangulation/trilateration benchmarks, and for GNSS benchmarks. The desired coordinates are not identical to the basic measurements, and need to be estimated using robust estimation procedures, where the stochastic nature of the measurements is taken into account. For InSAR, however, the `benchmarks' are not predefined. In fact, usually we do not know where an effective benchmark is located, even though we can determine its dynamic behavior pretty well. This poses several significant problems. First, we cannot describe the quality of the measurements, unless we already know the dynamic behavior of the benchmark. Second, if we don't know the quality of the measurements, we cannot compute the quality of the estimated parameters. Third, rather harsh assumptions need to be made to produce a result. These (usually implicit) assumptions differ between processing operators and the used software, and are severely affected by the amount of available data. Fourth, the `relative' nature of the final estimates is usually not explicitly stated, which is particularly problematic for non-expert users. Finally, whereas conventional geodesy applies rigorous testing to check for measurement or model errors, this is hardly ever done in InSAR-geodesy. These problems make it rather impossible to provide a precise, reliable, repeatable, and `universal' InSAR product or service. Here we evaluate the requirements and challenges to move towards InSAR as a geodetically-proof product. In particular this involves the explicit inclusion of contextual information, as well as InSAR procedures, standards and a technical protocol, supported by the International Association of Geodesy and the

  6. The Contribution of GGOS to Understanding Dynamic Earth Processes

    Science.gov (United States)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  7. Analysis of geodetic surveying on the margin of subsidence depression

    Czech Academy of Sciences Publication Activity Database

    Doležalová, Hana; Müller, Karel; Bláha, P.

    -, č. 273 (2006), s. 103-112 ISSN 0372-9508 Institutional research plan: CEZ:AV0Z30860518 Keywords : subsidence depression * levelling * height changes Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. Semiconductor Master Oscillator Power Amplifier for Gravity Gradiometer and Other Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GSFC has been working on an ESTO funded Instrument Incubator Program (IIP) Cold Atom Gravity Gradiometer for Geodesy since 2014. Significant progresses have...

  9. Revize speleologické dokumentace pseudokrasových jeskyní „Ledové sluje“ z archívu Správy Národního parku Podyjí a její implementace do GIS

    Czech Academy of Sciences Publication Activity Database

    Kuda, František

    2013-01-01

    Roč. 10, č. 10 (2013), s. 17-25 ISSN 1212-3560 Institutional support: RVO:68145535 Keywords : Podyji National Park * ice caves * speleological exploration Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  10. Spolupráce s vojenskou zeměpisnou službou při budování gravimetrických základů České republiky

    Czech Academy of Sciences Publication Activity Database

    Lederer, M.; Dušátko, D.; Mrlina, Jan

    -, č. 1 (2009), s. 24-30 ISSN 1214-3707 Institutional research plan: CEZ:AV0Z30120515 Keywords : gravimetric base network * Czechoslovak levelling network * history Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Assessment and Risk Mitigation Strategies for the Atom Interferometer Gravity Gradiometer Seed Lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GSFC has been working on an ESTO IIP - Cold Atom Gravity Gradiometer (CAGG)/Atom Interferometer Gravity Gradiometer (AIGG) for Geodesy since 2014 (Saif/551 –...

  12. Relief of the Podyjí National Park and Geomorphologic Aspects of its Protection (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Demek, J.

    2009-01-01

    Roč. 83, č. 1 (2009), s. 91-98 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomorphology * landscape protection * nature conservation * NP Podyji Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  13. Analysis of the influence of tectonics on the evolution of valley networks based on SRTM DEM, Jemma River basin, Ethiopia

    Czech Academy of Sciences Publication Activity Database

    Kusák, Michal; Kropáček, J.; Vilímek, V.; Schillaci, C.

    2016-01-01

    Roč. 39, č. 1 (2016), 37-50 ISSN 1724-4757 Institutional support: RVO:67985891 Keywords : valley network * tectonic lineaments * Jemma River basin * Ethiopian Highlands Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  14. Nelinejnyje UNČ elektromagnitnyje volny Gercovogo diapazona

    Czech Academy of Sciences Publication Activity Database

    Feygin, F. Z.; Kleimenova, N. G.; Khabazin, J. G.; Prikner, Karel

    2009-01-01

    Roč. 10, č. 1 (2009), s. 27-37 ISSN 1818-3735 Institutional research plan: CEZ:AV0Z30120515 Keywords : magnetosphere * ionosphere * nonlinearity * pulsing Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  15. 29TH Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

    National Research Council Canada - National Science Library

    1998-01-01

    ...) Applications of PTTI technology to evolving military navigation and communication systems; geodesy; aviation; and pulsars; 4) Dissemination of precise time and frequency by means of GPS, geosynchronous communication satellites, and computer networks.

  16. Earth's Rotation: A Challenging Problem in Mathematics and Physics

    Science.gov (United States)

    Ferrándiz, José M.; Navarro, Juan F.; Escapa, Alberto; Getino, Juan

    2015-01-01

    A suitable knowledge of the orientation and motion of the Earth in space is a common need in various fields. That knowledge has been ever necessary to carry out astronomical observations, but with the advent of the space age, it became essential for making observations of satellites and predicting and determining their orbits, and for observing the Earth from space as well. Given the relevant role it plays in Space Geodesy, Earth rotation is considered as one of the three pillars of Geodesy, the other two being geometry and gravity. Besides, research on Earth rotation has fostered advances in many fields, such as Mathematics, Astronomy and Geophysics, for centuries. One remarkable feature of the problem is in the extreme requirements of accuracy that must be fulfilled in the near future, about a millimetre on the tangent plane to the planet surface, roughly speaking. That challenges all of the theories that have been devised and used to-date; the paper makes a short review of some of the most relevant methods, which can be envisaged as milestones in Earth rotation research, emphasizing the Hamiltonian approach developed by the authors. Some contemporary problems are presented, as well as the main lines of future research prospected by the International Astronomical Union/International Association of Geodesy Joint Working Group on Theory of Earth Rotation, created in 2013.

  17. 20 let Oddělení environmentální geografie Ústavu geoniky AV ČR, v.v.i

    Czech Academy of Sciences Publication Activity Database

    Frantál, Bohumil; Kirchner, Karel; Klusáček, Petr

    2013-01-01

    Roč. 32, č. 2 (2013), s. 54-56 ISSN 1213-1075 Institutional support: RVO:68145535 Keywords : Department of environmental geography * 20 years of founding * Brno Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  18. Přírodní prostředí Etiopské vysočiny a jeho predispozice ke svahovým pohybům a říční erozi jako podkladový materiál pro výuku regionální geografie v souvislostech

    Czech Academy of Sciences Publication Activity Database

    Kusák, Michal; Máca, V.; Stacke, V.

    2016-01-01

    Roč. 6, 1/2 (2016), s. 20-30 ISSN 1804-8366 Institutional support: RVO:67985891 Keywords : Ethiopian Highland * mass movement * erosion Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  19. Micro-gravity studies in archeo-prospecting of the Valley of the Kings, Luxor, Egypt

    Czech Academy of Sciences Publication Activity Database

    Issawy, E. A.; Tealeb, A. A.; Mrlina, Jan; Radwan, A. H.; Hassan, G. S.; Sakr, K. O.

    - (2001), s. 201-212 ISSN 1110-6417 Institutional research plan: CEZ:AV0Z3012916 Keywords : micro-gravity investigations * archaeo-prospecting * Valley of the Kings * Egypt Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. Ohrožení mokřadů a vodní biodiverzity v Nepálu

    Czech Academy of Sciences Publication Activity Database

    Bhatta, B. P.; Kolejka, Jaromír; Silval, T.

    2013-01-01

    Roč. 47, č. 3 (2013), s. 20-23 ISSN 0044-4863 Institutional support: RVO:68145535 Keywords : wetland animals * wetland types * degradation factors * policy protection measures Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Podoby městského zemědělství: příklad městečka Côte Saint-Luc

    Czech Academy of Sciences Publication Activity Database

    Duží, Barbora

    2016-01-01

    Roč. 7, Podzim-zima/2016/2017 (2016), s. 6-6 Institutional support: RVO:68145535 Keywords : urban agriculture * Côte Saint-Luc in Canada * local municipality Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Large earthquake rates from geologic, geodetic, and seismological perspectives

    Science.gov (United States)

    Jackson, D. D.

    2017-12-01

    Earthquake rate and recurrence information comes primarily from geology, geodesy, and seismology. Geology gives the longest temporal perspective, but it reveals only surface deformation, relatable to earthquakes only with many assumptions. Geodesy is also limited to surface observations, but it detects evidence of the processes leading to earthquakes, again subject to important assumptions. Seismology reveals actual earthquakes, but its history is too short to capture important properties of very large ones. Unfortunately, the ranges of these observation types barely overlap, so that integrating them into a consistent picture adequate to infer future prospects requires a great deal of trust. Perhaps the most important boundary is the temporal one at the beginning of the instrumental seismic era, about a century ago. We have virtually no seismological or geodetic information on large earthquakes before then, and little geological information after. Virtually all-modern forecasts of large earthquakes assume some form of equivalence between tectonic- and seismic moment rates as functions of location, time, and magnitude threshold. That assumption links geology, geodesy, and seismology, but it invokes a host of other assumptions and incurs very significant uncertainties. Questions include temporal behavior of seismic and tectonic moment rates; shape of the earthquake magnitude distribution; upper magnitude limit; scaling between rupture length, width, and displacement; depth dependence of stress coupling; value of crustal rigidity; and relation between faults at depth and their surface fault traces, to name just a few. In this report I'll estimate the quantitative implications for estimating large earthquake rate. Global studies like the GEAR1 project suggest that surface deformation from geology and geodesy best show the geography of very large, rare earthquakes in the long term, while seismological observations of small earthquakes best forecasts moderate earthquakes

  3. Fully automated measurement of anisotropy of magnetic susceptibility using 3D rotator

    Czech Academy of Sciences Publication Activity Database

    Studýnka, J.; Chadima, Martin; Suza, P.

    2014-01-01

    Roč. 629, 26 August (2014), s. 6-13 ISSN 0040-1951 Institutional support: RVO:67985831 Keywords : AMS * Kappabridge * susceptibility tensor Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.872, year: 2014

  4. Local perceptions of climate change impacts and migration patterns in Male, Maldives

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Duží, Barbora; Kelman, I.; Němec, D.; Procházka, D.

    -, 18. April 2016 (2016) ISSN 1475-4959 Institutional support: RVO:68145535 Keywords : Maldives * climate change impacts * migration Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://onlinelibrary.wiley.com/doi/10.1111/geoj.12177/full

  5. Characterisation of induced fracture networks within an enhanced geothermal system using anisotropic electromagnetic modelling

    Czech Academy of Sciences Publication Activity Database

    MacFarlane, J.; Thiel, S.; Pek, Josef; Peacock, J.; Heinson, G.

    2014-01-01

    Roč. 288, November (2014), s. 1-7 ISSN 0377-0273 Institutional support: RVO:67985530 Keywords : geothermal systems * magnetotellurics * fluid injection Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.543, year: 2014

  6. Magnetické pole Země a jeho možný vliv na živé organizmy

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2004-01-01

    Roč. 54, č. 4 (2004), s. 249-251 ISSN 0009-0700 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic activity * geomagnetic storms * human beings Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  7. Extreme events in the Dudetes Mountains - Their long-term geomorphic impact and possible controlling factors

    Czech Academy of Sciences Publication Activity Database

    Migon, P.; Hrádek, Mojmír; Parzoch, K.

    2002-01-01

    Roč. 36, č. 36 (2002), s. 29-49 ISSN 0081-6434 Institutional research plan: CEZ:AV0Z3086906 Keywords : extreme events * debris flow * landslide-floods Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. Trendy v problematice panelových sídlišť s důrazem na filozofii jejich regenerace ů s příklady z České republiky

    Czech Academy of Sciences Publication Activity Database

    Kallabová, Eva

    2002-01-01

    Roč. 10, č. 1 (2002), s. 26-31 ISSN 1210-8812 R&D Projects: GA AV ČR KSK3046108 Keywords : prafab housing estates * humanization * regeneration Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  9. 5th International Conference on Engineering Surveying Brijuni, September 22-24, 2011

    Directory of Open Access Journals (Sweden)

    Rinaldo Paar

    2011-12-01

    Full Text Available 5th International Conference on Engineering Surveying was held on the Brijuni Islands from 22 to 24 September 2011. The conference organizers were the Department of Surveying Faculty of Civil Engineering at the Slovak University of Technology in Bratislava and the Institute for Applied Geodesy at the Faculty of Geodesy, University of Zagreb, with the FIG Commission 6. The conference was held under the patronage of the Ministry of Environmental Protection, Physical Planning and Construction of the Republic of Croatia. The conference took place in the Castrum Congress Hall of Hotel Neptun-Istra. The official language of the conference was English. The conference was attended by 70 representatives from Croatia, Slovenia, Serbia, Kosovo, Austria, Germany, Hungary, Greece, Czech Republic and Slovakia, and a total of 40 papers were presented.

  10. Global Geodesy Using GPS Without Fiducial Sites

    Science.gov (United States)

    Heflin, Michael B.; Blewitt, Geoffrey

    1994-01-01

    Global Positioning System, GPS, used to make global geodetic measurements without use of fiducial site coordinates. Baseline lengths and geocentric radii for each site determined without having to fix any site coordinates. Given n globally distributed sites, n baseline lengths and n geocentric radii form polyhedron with each site at vertex and with geocenter at intersection of all radii. Geodetic information derived from structure of polyhedron and its change with time. Approach applied to any global geodetic technique.

  11. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic-tectonic interactions, and loss of volatiles plus densification of magma. The Cascade Range thus offers an outstanding opportunity for investigating a wide range of volcanic processes. Indeed, there may be areas of geodetic change that have yet to be discovered, and there is good potential for addressing a number of important questions about how arc volcanoes work before, during, and after eruptions by continuing geodetic research in the Cascade Range.

  12. Alignment and geodesy for the ESRF project

    International Nuclear Information System (INIS)

    Roux, D.

    1990-01-01

    New generation accelerators and storage rings for synchrotron radiation require ever increasing precision of alignment, precision which moreover must be preserved over a maximum length of time. The use of ever smaller beam dimensions, and ever narrower vacuum chambers leads the magnet positioning tolerances to be reduced to a minimum. Thus, unlike in the past, annual realignment due to progressive deterioration of the ground stability can no longer be envisaged. Permanent monitoring of the ground stability must be guaranteed and its effects compensated, as soon as significant deterioration is recorded. It is this viewpoint that has dictated the choices made by ESRF in the field of alignment and monitoring

  13. MODEST: A Tool for Geodesy and Astronomy

    Science.gov (United States)

    Sovers, Ojars J.; Jacobs, Christopher S.; Lanyi, Gabor E.

    2004-01-01

    Features of the JPL VLBI modeling and estimation software "MODEST" are reviewed. Its main advantages include thoroughly documented model physics, portability, and detailed error modeling. Two unique models are included: modeling of source structure and modeling of both spatial and temporal correlations in tropospheric delay noise. History of the code parallels the development of the astrometric and geodetic VLBI technique and the software retains many of the models implemented during its advancement. The code has been traceably maintained since the early 1980s, and will continue to be updated with recent IERS standards. Scripts are being developed to facilitate user-friendly data processing in the era of e-VLBI.

  14. Art and science: geodesy in materials science.

    Science.gov (United States)

    Kroto, Harold

    2010-09-01

    A 3-dimensional model based on a molecular structural recipe having some unique and unexpected shape characteristics is demonstrated. The project was originally initiated to satisfy the aesthetic creative impulse to build a 3-dimensional model or sculpture. Further scientific investigation explained some important nanoscale structural observations that had been seen many years beforehand and mistakenly explained. This is a rare example of artistic creativity resulting in a key scientific advance.

  15. Monitoring Global Geophysical Fluids by Space Geodesy

    Science.gov (United States)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  16. Geodesy and cartography of the Martian satellites

    Science.gov (United States)

    Batson, R. M.; Edwards, Kathleen; Duxbury, T. C.

    1992-01-01

    The difficulties connected with conventional maps of Phobos and Deimos are largely overcome by producing maps in digital forms, i.e., by projecting Viking Orbiter images onto a global topographic model made from collections of radii derived by photogrammetry. The resulting digital mosaics are then formatted as arrays of body-centered latitudes, longitudes, radii, and brightness values of Viking Orbiter images. The Phobos mapping described was done with Viking Orbiter data. Significant new coverage was obtained by the Soviet Phobos mission. The mapping of Deimos is in progress, using the techniques developed for Phobos.

  17. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic-tectonic interactions, and loss of volatiles plus densification of magma. The Cascade Range thus offers an outstanding opportunity for investigating a wide range of volcanic processes. Indeed, there may be areas of geodetic change that have yet to be discovered, and there is good potential for addressing a number of important questions about how arc volcanoes work before, during, and after eruptions by continuing geodetic research in the Cascade Range.

  18. Geometrical geodesy using information and computer technology

    CERN Document Server

    Hooijberg, Maarten

    2008-01-01

    Surveying a Century Ago As it was based on the principles of geometry and trigonometry, surveying may be may be looked upon as a branch of practical mathematics. Hence, it was necessary that land surveyors and hydrographers should have a fair general knowledge, not only of these subjects, but also of all the subjects comprised by the term mathemat­ ics. In addition, the knowledge of mathematics required in ordinary chain surveying and levelling was not very extensive but in geodetical work, the highest mathematical ability and great organising power were required for a proper conception and supervision of the operations (Threlfall, 1940). Only small area of a few hundred square kilometres can be accurately mapped and surveyed without a frame­ work, since no difficulty is encountered because of Earth-curvature. In the past, especially in hydrography due to the type of work, surveying was carried out on the principles of ordinary practice, but in a very rough man­ ner, rapidity of execution being of paramoun...

  19. A Seafloor Benchmark for 3-dimensional Geodesy

    Science.gov (United States)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2014-12-01

    We have developed an inexpensive, permanent seafloor benchmark to increase the longevity of seafloor geodetic measurements. The benchmark provides a physical tie to the sea floor lasting for decades (perhaps longer) on which geodetic sensors can be repeatedly placed and removed with millimeter resolution. Global coordinates estimated with seafloor geodetic techniques will remain attached to the benchmark allowing for the interchange of sensors as they fail or become obsolete, or for the sensors to be removed and used elsewhere, all the while maintaining a coherent series of positions referenced to the benchmark. The benchmark has been designed to free fall from the sea surface with transponders attached. The transponder can be recalled via an acoustic command sent from the surface to release from the benchmark and freely float to the sea surface for recovery. The duration of the sensor attachment to the benchmark will last from a few days to a few years depending on the specific needs of the experiment. The recovered sensors are then available to be reused at other locations, or again at the same site in the future. Three pins on the sensor frame mate precisely and unambiguously with three grooves on the benchmark. To reoccupy a benchmark a Remotely Operated Vehicle (ROV) uses its manipulator arm to place the sensor pins into the benchmark grooves. In June 2014 we deployed four benchmarks offshore central Oregon. We used the ROV Jason to successfully demonstrate the removal and replacement of packages onto the benchmark. We will show the benchmark design and its operational capabilities. Presently models of megathrust slip within the Cascadia Subduction Zone (CSZ) are mostly constrained by the sub-aerial GPS vectors from the Plate Boundary Observatory, a part of Earthscope. More long-lived seafloor geodetic measures are needed to better understand the earthquake and tsunami risk associated with a large rupture of the thrust fault within the Cascadia subduction zone. Using a ROV to place and remove sensors on the benchmarks will significantly reduce the number of sensors required by the community to monitor offshore strain in subduction zones.

  20. Regional Geography is Dead. Long Live Regional Geography!

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Werner, M.

    2006-01-01

    Roč. 14, č. 3 (2006), s. 2-8 ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : regional geography * regions * geography * methodology * Ostrava region Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Utajovaná přívalová povodeň na jižní Moravě 9. června 1970. K 40. výročí přírodní katastrofy, která si vyžádala 35 lidských životů

    Czech Academy of Sciences Publication Activity Database

    Munzar, Jan; Ondráček, Stanislav

    2010-01-01

    Roč. 89, č. 6 (2010), s. 376-379 ISSN 0042-4544 Institutional research plan: CEZ:AV0Z30860518 Keywords : catastrophic flash flood * Southern Moravia * communist censorship Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Studium geografie na univerzitách v Tatarstánu

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír

    2009-01-01

    Roč. 28, č. 1 (2009), s. 31-32 Institutional research plan: CEZ:AV0Z30860518 Keywords : geography * education * Tatarstan Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://geography.cz/2009/10/informace-cgs/

  3. Geografická analýza vybraných populačních a sídelních charakteristik Krkonoš (1850–2001)

    Czech Academy of Sciences Publication Activity Database

    Klapka, Pavel; Martinát, Stanislav

    2005-01-01

    Roč. 42, č. 42 (2005), s. 139-152 ISSN 0139-925X Institutional research plan: CEZ:AV0Z30860518 Keywords : population * settlement * spatiotemporal comparison * Giant Mountains Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  4. United States Air Force Summer Faculty Research Program (1984). Program Management Report.

    Science.gov (United States)

    1984-12-01

    6 Two-Color Refractometry for Dr. John D. R. Bahng Astronomical Geodesy 7 Long Wavelength infrared Emissions Dr. James C. Baird from a Recomnining...hardware, and conducting the experiment. 4 114 , -. ., -. . . . . . . . - ... . . .. . . . . . . . . . . . . . . . . . . TWO-ODLOR REFRACTOMETRY FOR

  5. Životní jubileum prof. RNDr. Jaromíra Demka, DrSc.

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Mackovčin, P.

    2010-01-01

    Roč. 29, č. 2 (2010), s. 75-75 ISSN 1213-1075 Institutional research plan: CEZ:AV0Z30860518 Keywords : life anniversary * Jaromír Demek * geography Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  6. Confirmation of a theory: reconstruction of an alluvial plain development in a flume experiment

    Czech Academy of Sciences Publication Activity Database

    Bertalan, L.; Tóth, C. A.; Szabó, G.; Nagy, G.; Kuda, František; Szabó, S.

    2016-01-01

    Roč. 70, č. 3 (2016), s. 271-285 ISSN 0014-0015 Institutional support: RVO:68145535 Keywords : fluvial geomorphology * flume experiment * avulsion Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.923, year: 2016

  7. Analysis of the relationship of automatically and manually extracted lineaments from DEM and geologically mapped tectonic faults around the Main Ethiopian Rift and the Ethiopian highlands, Ethiopia

    Czech Academy of Sciences Publication Activity Database

    Kusák, Michal; Krbcová, K.

    2017-01-01

    Roč. 52, č. 1 (2017), s. 5-17 ISSN 0300-5402 Institutional support: RVO:67985891 Keywords : azimuth * faults * lineaments * Main Ethiopian Rift * morphometry Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  8. Chronologie akutního koronárního syndromu

    Czech Academy of Sciences Publication Activity Database

    Sitar, J.; Střeštík, Jaroslav

    2009-01-01

    Roč. 11, č. 1 (2009), s. 32-34 ISSN 1212-4540 Institutional research plan: CEZ:AV0Z30120515 Keywords : acute myocardial infarction * weekly variation * annual variation Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  9. Unseen space weather also relates to cardiac events

    Czech Academy of Sciences Publication Activity Database

    Cornélissen, G.; Halberg, F.; Singh, R. B.; Dušek, J.; Fišer, B.; Homolka, P.; Siegelová, J.; Střeštík, Jaroslav

    2008-01-01

    Roč. 1, č. 1 (2008), s. 15-21 ISSN 1556-4002 Institutional research plan: CEZ:AV0Z30120515 Keywords : coronary artery disease * seasonal variation * geographic distribution Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  10. Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Pal, B.; Heilig, B.; Zieger, B.; Szendröi, J.; Verö, J.; Lühr, H.; Yumoto, K.; Tanaka, Y.; Střeštík, Jaroslav

    2007-01-01

    Roč. 42, č. 1 (2007), s. 23-58 ISSN 1217-8977 Institutional research plan: CEZ:AV0Z30120515 Keywords : field line resonance * geomagnetic pulsations * solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Ekologické formy zemědělství v Krkonoších: krajina, ekoturismus, udržitelnost

    Czech Academy of Sciences Publication Activity Database

    Klapka, Pavel; Klapková, E.; Martinát, Stanislav

    2005-01-01

    Roč. 42, č. 42 (2005), s. 127-137 ISSN 0139-925X Institutional research plan: CEZ:AV0Z3086906 Keywords : environmental-friendly farming * ecotourism * regional development * sustainability Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  12. GCCS Spatial Data Base Module Extensions

    National Research Council Canada - National Science Library

    Bell, Paul

    1998-01-01

    .... JMTK is divided into three primary areas: (1) Visual, (2) Analysis (nonvisual), and (3) Spatial Data Base (SDBM). The primary objective of the SDBM effort is to define, design, develop and test mapping, charting and geodesy...

  13. Teplotní pole zemské kůry jako archiv klimatických změn

    Czech Academy of Sciences Publication Activity Database

    Šafanda, Jan

    Roč. 26, č. 3 (2016/2017), s. 4-5 ISSN 1210-3004 Institutional support: RVO:67985530 Keywords : deep boreholes * ground surface temperature * transient component Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  14. Klippen Belt, Flysch Belt and Inner Western Carpathian Paleogene Basin Relations in the Northern Slovakia by Magnetotelluric Imaging

    Czech Academy of Sciences Publication Activity Database

    Majcin, D.; Bezák, V.; Klanica, Radek; Vozár, J.; Pek, Josef; Bilčík, D.; Telecký, Josef

    (2018) ISSN 0033-4553 Institutional support: RVO:67985530 Keywords : magnetotellurics * Western Carpathians * Klippen Belt * Flysch Belt * Inner Carpathian Paleogene Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 1.591, year: 2016

  15. A new method to quantify carbonate rock weathering

    Czech Academy of Sciences Publication Activity Database

    Dubois, C.; Deceuster, J.; Kaufmann, O.; Rowberry, Matthew David

    2015-01-01

    Roč. 47, č. 8 (2015), s. 889-935 ISSN 1874-8961 Institutional support: RVO:67985891 Keywords : weathering index * alterite * limestone * physical model Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.777, year: 2015

  16. Geografie na Kamčatce

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír

    2009-01-01

    Roč. 114, č. 1 (2009), s. 73-74 ISSN 1212-0014 Institutional research plan: CEZ:AV0Z30860518 Keywords : geography * education/research * Kamchatka Subject RIV: DE - Earth Magnetism, Geodesy, Geography http:// geography .cz/sbornik

  17. Contrasting patterns of hot spell effects on morbidity and mortality for cardiovascular diseases in the Czech Republic, 1994-2009

    Czech Academy of Sciences Publication Activity Database

    Hanzlíková, Hana; Plavcová, E.; Kynčl, J.; Kříž, B.; Kyselý, J.

    2015-01-01

    Roč. 59, č. 11 (2015), s. 1673-1684 ISSN 0020-7128 Institutional support: RVO:67985530 Keywords : hot spells * cardiovascular disease * cerebrovascular disease Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.309, year: 2015

  18. GCCS Spatial Data Base Module

    National Research Council Canada - National Science Library

    Bell, Paul

    1998-01-01

    .... JMTK is divided into three primary areas: (1) Visual, (2) Analysis (non-visual), and (3) Spatial Data Base (SDBM). The primary objective of the SDBM effort is to define, design, develop and test mapping, charting and geodesy...

  19. Using the LANDSAT data collection system for field geophysics: Operations in the British Virgin Islands. [relaying borehole tiltmeter data

    Science.gov (United States)

    Webster, W. J., Jr.; Allen, W. K.; Gilbert, E. L.; Painter, J. E. (Principal Investigator)

    1980-01-01

    This particular application was to vertical geodesy by tide gauge and tiltmeter on a small desert island in the British Virgin Islands. The performance of the LANDSAT system under potentially marginal circumstances was found to be excellent.

  20. Netradiční oblasti svahových nestabilit v ČR a rozdílný způsob jejich mapování

    Czech Academy of Sciences Publication Activity Database

    Krejčí, O.; Kirchner, Karel

    -, - (2009) [Svahové deformace a pseudokras 2009. 13.05.2009-15.05.2009, Vsetín] Institutional research plan: CEZ:AV0Z30860518 Keywords : slope instabilities * mapping * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Investigation of polluted alluvial soils by magnetic susceptibility methods: a case study of the Litavka River

    Czech Academy of Sciences Publication Activity Database

    Dlouhá, Šárka; Petrovský, Eduard; Kapička, Aleš; Borůvka, L.; Ash, Ch.; Drábek, O.

    2013-01-01

    Roč. 8, č. 4 (2013), s. 151-157 ISSN 1801-5395 Institutional support: RVO:67985530 Keywords : environmental magnetism * Fluvisols * magnetite/maghemite * risk elements Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.615, year: 2013

  2. Assessment of Landscape Changes: Theoretical Starting Points for Study and the Research Reality

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Trnka, P.

    2008-01-01

    Roč. 16, č. 3 (2008), s. 2-15 ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : criteria of landscape changes * landscape structures * space- time - dynamics Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  3. Historický a současný vývoj sesuvného území u Třebenic

    Czech Academy of Sciences Publication Activity Database

    Balek, Jan; Marek, Tomáš; Kadlečík, Pavel

    2015-01-01

    Roč. 2014, podzim (2015), s. 51-54 ISSN 0514-8057 Institutional support: RVO:67985891 Keywords : České středohoří Mts. * historical * current * landslide activity * monitoring Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  4. Mezinárodní workshop k rizikům připravil Ústav geoniky AV ČR

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Kirchner, Karel

    2017-01-01

    Roč. 36, č. 1 (2017), s. 51-53 ISSN 1213-1075 Institutional support: RVO:68145535 Keywords : international workshop * Strategy AV21 * Research Programme Natural hazards Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  5. Výstraha před nebezpečím sesouvání na svazích

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Rapant, P.; Batelková, Kateřina; Kirchner, Karel

    2016-01-01

    Roč. 50, č. 3 (2016), s. 136-140 ISSN 0044-4863 R&D Projects: GA MV VG20132015106 Institutional support: RVO:68145535 Keywords : landslide * risk assessment * landslide warning * GIS Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  6. Alternatívne prístupy k štúdiu územných identít obyvateľstva. Miera lokálneho povedomia na základe analýzy užívateľských profilov na sociálnej sieti

    Czech Academy of Sciences Publication Activity Database

    Nikischer, Richard

    2014-01-01

    Roč. 16, č. 3 (2014), s. 381- 406 ISSN 1212-8112 R&D Projects: GA MŠk(CZ) LG12023 Institutional support: RVO:68378025 Keywords : local consciousness * identification * regional identity Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  7. The catastrophic flood in February/March 1784 - a natural disaster of European scope

    Czech Academy of Sciences Publication Activity Database

    Munzar, Jan; Elleder, L.; Deutsch, M.

    2005-01-01

    Roč. 13, č. 1 (2005), s. 8-25 ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : winter flood 1784 * Central and West Europe * documentation and impacts Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. Hajnova lípa a Žižkův stolec u Laviček

    Czech Academy of Sciences Publication Activity Database

    Cendelín, D.; Havlát, J.; Kirchner, Karel; Lacina, Jan; Maštera, L.; Štindl, M.; Unger, J.; Velek, J.

    2014-01-01

    Roč. 18, 11/2014 (2014), s. 297-304 ISSN 1211-8931 Institutional support: RVO:68145535 Keywords : Locality Hajn linden and Žižka seat * cult historical place * landscape monument Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  9. Magnetic fabric and petrology of Miocene sub-volcanic sills and dykes emplaced into the SW Flysch Belt of the West Carpathians (S Moravia, Czech Republic) and their volcanological and tectonic implications

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Buriánek, D.; Krejčí, O.; Chadima, Martin

    2015-01-01

    Roč. 290, č. 1 (2015), s. 38 ISSN 0377-0273 Institutional support: RVO:67985831 Keywords : Miocene volcanics * Outer Western Carpathian Flysch belt * magnetic fabric Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.674, year: 2015

  10. Rozvojové zájmy území Orlicka ve světle regionální a environmentální politiky

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Nosková, Helena

    2006-01-01

    Roč. 45, - (2006), s. 532-539 ISSN 1336-6149 Institutional research plan: CEZ:AV0Z30860518 Keywords : marginality * ethnical changes * regional policy * environmental protection * Králíky Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Jižní Sachalin: Rusko, Japonsko, SSSR/Rusko

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír

    2013-01-01

    Roč. 127, č. 3 (2013), s. 1-5 ISSN 1214-083X Institutional support: RVO:68145535 Keywords : Karafuto * history * economy * population * present state Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://zemces.sweb.cz/cislo127.htm

  12. Determination of the Overhauser magnetometer uncertainty

    Czech Academy of Sciences Publication Activity Database

    Ulvr, M.; Zikmund, A.; Kupec, J.; Janošek, M.; Vlk, Michal; Bayer, Tomáš

    2015-01-01

    Roč. 66, 7/s (2015), s. 26-29 ISSN 1335-3632 Institutional support: RVO:67985530 Keywords : Overhauser magnetometer * Earth `s magnetic field * comparison * uncertainty Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.407, year: 2015

  13. Geomorfologické a petrografické aspekty fluviálních sedimentů v oblasti dolní Rokytné

    Czech Academy of Sciences Publication Activity Database

    Roštínský, Pavel; Šmerda, J.; Nováková, Eva

    2016-01-01

    Roč. 13, č. 13 (2016), s. 15-58 ISSN 1212-3560 Institutional support: RVO:68145535 Keywords : valley system * fluvial sediments * Boskovická brázda half-graben Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Geology

  14. Industrial metrology as applied to large physics experiments

    International Nuclear Information System (INIS)

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m 3 , 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ''survey alignment toolbox'' measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require a heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments

  15. Industrial metrology as applied to large physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m{sup 3}, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ``survey alignment toolbox`` measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require a heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments.

  16. Mathematics in narratives of Geodetic expeditions.

    Science.gov (United States)

    Terrall, Mary

    2006-12-01

    In eighteenth-century France, geodesy (the measure of the earth's shape) became an arena where mathematics and narrative intersected productively. Mathematics played a crucial role not only in the measurements and analysis necessary to geodesy but also in the narrative accounts that presented the results of elaborate and expensive expeditions to the reading public. When they returned to France to write these accounts after their travels, mathematician-observers developed a variety of ways to display numbers and mathematical arguments and techniques. The numbers, equations, and diagrams they produced could not be separated from the story of their acquisition. Reading these accounts for the interplay of these two aspects--the mathematical and the narrative--shows how travelers articulated the intellectual and physical difficulties of their work to enhance the value of their results for specialist and lay readers alike.

  17. Responses of the basic cycles of 178.7 and 2402 yr in solar–terrestrial phenomena during the Holocene

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka; Hejda, Pavel

    2014-01-01

    Roč. 2, January (2014), s. 21-26 ISSN 2195-9242 R&D Projects: GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : solar inertial motion * solar activity cycle * climatic variability Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  18. Global conservation model for a mushy region over a moving substrate

    Czech Academy of Sciences Publication Activity Database

    Kyselica, Juraj; Šimkanin, Ján

    2018-01-01

    Roč. 276, March (2018), s. 60-67 ISSN 0031-9201 Institutional support: RVO:67985530 Keywords : solidification * binary alloy * mushy region * global conservation * boundary-layer flow Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.075, year: 2016

  19. General conclusions regarding the planetary–solar–terrestrial interaction

    Czech Academy of Sciences Publication Activity Database

    Mörner, N.-A.; Tattersall, R.; Solheim, J.-E.; Charvátová, Ivanka; Scafetta, N.; Jelbring, H.; Wilson, I. R.; Salvador, R.; Willson, R. C.; Hejda, Pavel; Soon, W.; Velasco Herrera, V. M.; Humlum, O.; Archibald, D.; Yndestad, H.; Easterbrook, D.; Casey, J.; Gregori, G.; Henriksson, G.

    2013-01-01

    Roč. 1, č. 1 (2013), s. 205-206 ISSN 2195-9242 R&D Projects: GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : solar variability * solar inertial motion * climate change Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. Speleogenesis of the Hermannshöhle cave system (Austria): Constraints from .sup. 230./sup.Th/U-dating and palaeomagnetic analysis

    Czech Academy of Sciences Publication Activity Database

    Plan, L.; Schober, A.; Scholz, D.; Spötl, C.; Pruner, Petr; Bosák, Pavel

    2015-01-01

    Roč. 44, č. 3 (2015), s. 315-326 ISSN 0392-6672 Institutional support: RVO:67985831 Keywords : 230 Th/U-dating * palaeomagnetics * paragenesis * speleogenesis * valley incision Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.559, year: 2015

  1. Kuřim–the largest small town in the South-Moravian Region (Czechia)

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín

    2015-01-01

    Roč. 8, č. 8 (2015), s. 135-147 ISSN 2084-5456 Institutional support: RVO:68145535 Keywords : small town * suburbanization * Kuřim Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://annalesgeo.up.krakow.pl/article/view/2839/2502

  2. Magnetic susceptibility and spectral gamma logs in the Tithonian-Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary

    Czech Academy of Sciences Publication Activity Database

    Grabowski, J.; Schnyder, J.; Sobien, K.; Koptíková, Leona; Krzemiński, L.; Pszczółkowski, A.; Hejnar, J.; Schnabl, Petr

    2013-01-01

    Roč. 43, June 2013 (2013), s. 1-17 ISSN 0195-6671 Institutional support: RVO:67985831 Keywords : Berriasian * Gamma-ray spectrometry * magnetic susceptibility * palaeoenvironmental trends * Tithonian Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.390, year: 2013

  3. Magnetic fabric and modeled strain distribution in the head of a nested granite diapir, the Melechov pluton, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Trubač, Jakub; Žák, J.; Chlupáčová, M.; Janoušek, V.

    2014-01-01

    Roč. 66, September (2014), s. 271-283 ISSN 0191-8141 Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility (AMS) * diapir * emplecement * fabric * granite * strain Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.884, year: 2014

  4. Vývoj sesuvného území Malá kozí horka u Třebenic (České středohoří) v roce 2013

    Czech Academy of Sciences Publication Activity Database

    Marek, Tomáš; Balek, Jan

    2014-01-01

    Roč. 47, říjen (2014), s. 64-68 ISSN 0514-8057 Institutional support: RVO:67985891 Keywords : České středohoří Mts. * slope deformation * above-average precipitation Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  5. ASCHFLOW - A dynamic landslide run-out model for medium scale hazard analysis

    Czech Academy of Sciences Publication Activity Database

    Quan Luna, B.; Blahůt, Jan; van Asch, T.W.J.; van Westen, C.J.; Kappes, M.

    2016-01-01

    Roč. 3, 12 December (2016), č. článku 29. E-ISSN 2197-8670 Institutional support: RVO:67985891 Keywords : landslides * run-out models * medium scale hazard analysis * quantitative risk assessment Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  6. Geomagnetic activity and the North Atlantic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2014-01-01

    Roč. 58, č. 3 (2014), s. 461-472 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : geomagnetic activity * solar wind * polar vortex intensification * downward winds Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  7. Fyzická geografie na Univerzitě Gent

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír

    2014-01-01

    Roč. 33, č. 1 (2014), s. 33-35 ISSN 1213-1075 Institutional support: RVO:68145535 Keywords : Gent university * Ethiopia * landscape * soil erosion * Pleistocene Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://geography.cz/informace-cgs/category/ke-ztazeni/

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Li Wei1 2 Cheng Pengfei2 Bei Jinzhong2 Wen Hanjiang2 Wang Hua1 2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430 079, China. Chinese Academic of Surveying and Mapping, Beijing 100 830, China.

  9. GPS-based ionospheric tomography with a constrained adaptive ...

    Indian Academy of Sciences (India)

    Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the ... the research focus in the fields of space geodesy and ... ment of GNSS such as GPS, Glonass, Galileo and. Compass, as these ...

  10. Gravity signal at Ghawar, Saudi Arabia, from the global gravitational field model EGM 2008 and similarities around

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Kostelecký, J.

    2015-01-01

    Roč. 8, č. 6 (2015), s. 3515-3522 ISSN 1866-7511 Institutional support: RVO:67985815 Keywords : gravity disturbance (anomaly) * Marussi tensor * invariants of the gravity field Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.224, year: 2014

  11. The Role of Social Capital in Economic Life of the Ukrainian Entrepreneurs in Czechia

    Czech Academy of Sciences Publication Activity Database

    Kovály, K.; Čermáková, Dita

    2016-01-01

    Roč. 51, č. 2 (2016), s. 135-144 ISSN 0300-5402 Institutional support: RVO:68378025 Keywords : social capital * migrant entrepreneurship * Ukrainian migrants Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.aucgeographica.cz/index.php/AUC_Geographica/article/view/64

  12. Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility

    Czech Academy of Sciences Publication Activity Database

    Knab, M.; Hoffmann, V.; Petrovský, Eduard; Kapička, Aleš; Jordanova, N.; Appel, E.

    2006-01-01

    Roč. 49, č. 4 (2006), s. 527-535 ISSN 0943-0105 Institutional research plan: CEZ:AV0Z3012916 Keywords : Moldau river sediments * magnetic susceptibility * anthropogenic impact Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.610, year: 2006

  13. Landslide temporal analysis and susceptibility assessment as bases for landslide mitigation, Machu Picchu, Peru

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan

    2013-01-01

    Roč. 70, č. 2 (2013), s. 913-925 ISSN 1866-6280 Institutional research plan: CEZ:AV0Z30460519 Keywords : landslide inventory * landslide frequency * susceptibility map Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.572, year: 2013

  14. Vybrané abiotické charakteristiky krajinně-ekologických segmentů Národního parku Podyjí

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Cibulková, P.; Demek, J.; Havlíček, M.; Škorpík, M.

    2007-01-01

    Roč. 7, č. 1 (2007), s. 55-73 ISSN 1212-3560 Institutional research plan: CEZ:AV0Z30860518 Keywords : Podyjí National Park * detailed geomorphological mapping * nature conservation * landscape- ecological segments Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  15. Seismic anisotropy of serpentinite from Val Malenco, Italy

    Czech Academy of Sciences Publication Activity Database

    Kern, H.; Lokajíček, Tomáš; Svitek, Tomáš; Wenk, H.-R.

    2015-01-01

    Roč. 120, č. 6 (2015), s. 4113-4129 ISSN 2169-9313 R&D Projects: GA MŠk LH13102 Institutional support: RVO:67985831 Keywords : serpentinite * anisotropy Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.318, year: 2015

  16. Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria

    Czech Academy of Sciences Publication Activity Database

    Emmer, Adam; Merkl, S.; Mergili, M.

    2015-01-01

    Roč. 246, oct (2015), s. 602-616 ISSN 0169-555X Institutional support: RVO:67179843 Keywords : lake development * geoenvironmental change * GLOF * high-mountain lakes * susceptibility analysis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.813, year: 2015

  17. Magnetic mapping of distribution of wood ash used for fertilization of forest soil

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Remeš, J.; Kapička, Aleš; Podrázský, V.; Grison, Hana; Borůvka, L.

    2018-01-01

    Roč. 626, June (2018), s. 228-234 ISSN 0048-9697 Institutional support: RVO:67985530 Keywords : forest soil * wood ash * fertilizing * tree plants * iron oxides * rock magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.900, year: 2016

  18. Earth study from space

    Science.gov (United States)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  19. Velké povodně na území České republiky – ztráta historické paměti

    Czech Academy of Sciences Publication Activity Database

    Munzar, Jan; Ondráček, Stanislav

    2005-01-01

    Roč. 33, - (2005), s. 97-118 ISSN 0323-0988 R&D Projects: GA AV ČR(CZ) IAA3086401 Institutional research plan: CEZ:AV0Z30860518 Keywords : floods * historical memory * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. Pedogennyje i litogennyje osobennosti mineralogičeskogo sostava černozema na krasnocvetnych porodach

    Czech Academy of Sciences Publication Activity Database

    Lesovaja, S. N.; Kapička, Aleš; Petrovský, Eduard; Aparin, B. F.

    2003-01-01

    Roč. 36, č. 12 (2003), s. 1482-1490 ISSN 0032-180X Grant - others:RFFI(RU) 01-04-48815 Institutional research plan: CEZ:AV0Z3012916 Keywords : mineralogical composition * chernozem * magnetic minerals Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Implications of geomorphological research for recent and prehistoric avalanches and related hazards at Huascaran, Peru

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Vilímek, V.; Omelka, M.

    2009-01-01

    Roč. 50, č. 1 (2009), s. 193-209 ISSN 0921-030X Institutional research plan: CEZ:AV0Z30460519 Keywords : rock debris avalanches * natural hazards * Huascaran Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.217, year: 2009

  2. Temporal behavior of deep-seated gravitational slope deformations: A review

    Czech Academy of Sciences Publication Activity Database

    Pánek, T.; Klimeš, Jan

    2016-01-01

    Roč. 156, MAY (2016), s. 14-38 ISSN 0012-8252 Institutional support: RVO:67985891 Keywords : deep-seated gravitational slope deformations * catastrophic slope failures * deformation rates * dating * monitoring Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 7.051, year: 2016

  3. Dimension of the Earth's general ellipsoid

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Raděj, K.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2002-01-01

    Roč. 91, č. 1 (2002), s. 31-41 ISSN 0167-9295 Institutional research plan: CEZ:AV0Z1003909 Keywords : Earth's dimensions * Earth's ellipsoid * fundamental constants Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.364, year: 2002

  4. Results of the Sixth International Comparison of Absolute Gravimeters, ICAG-2001

    Czech Academy of Sciences Publication Activity Database

    Vitushkin, L.; Becker, M.; Jiang, Z.; Francis, O.; van Dam, T. M.; Faller, J.; Chartier, J.M.; Amalvict, M.; Bonvalot, S.; Debeglia, N.; Desogus, S.; Diament, M.; Dupont, F.; Falk, R.; Gabalda, G.; Gagnon, C. G. L.; Gattacceca, T.; Germak, A.; Hinderer, J.; Jamet, O.; Jeffries, G.; Käker, R.; Kopaev, A.; Liard, J.; Lindau, A.; Longuevergne, L.; Luck, B.; Maderal, E. N.; Mäkinen, J.; Meurers, B.; Mizushima, S.; Mrlina, Jan; Newell, D.; Origlia, C.; Pujol, E. R.; Reinhold, A.; Richard, P.; Robinson, I. A.; Ruess, D.; Thies, S.; Van Camp, M.; Van Ruymbeke, M.; de Villalta Compagni, M. F.; Williams, S.

    2002-01-01

    Roč. 39, č. 5 (2002), s. 407-424 ISSN 0026-1394 Institutional research plan: CEZ:AV0Z3012916 Keywords : absolute gravimeters * BIPM gravity network * measurement Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.842, year: 2002

  5. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    Science.gov (United States)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  6. Geomagnetic activity and the global temperature

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2009-01-01

    Roč. 53, č. 4 (2009), s. 571-573 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : global warming * Southern Oscillation * geomagnetic storms Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.000, year: 2009

  7. Paleomagnetne datacije fluvialnih sedimentov iz Postojnske Jame, Zgube Jame in Planinske jame

    Czech Academy of Sciences Publication Activity Database

    Zupan Hajna, N.; Mihevc, A.; Pruner, Petr; Bosák, Pavel

    2008-01-01

    Roč. 88, - (2008), s. 46-51 ISSN 1318-3257 R&D Projects: GA AV ČR IAA300130701 Institutional research plan: CEZ:AV0Z30130516 Keywords : paleomagnetic datting * cave sediments * Slovenia Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. Post-Industrial Landscape: The Case of the Liberec Region, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Klimánek, M.; Fragner, B.

    2011-01-01

    Roč. 19, č. 4 (2011), s. 3-17 ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : post-industrial landscapes * data sources * identification Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/EN/research/ENMgr/MGR_2011_04.pdf

  9. Stržový systém v Bosonožském hájku – jedinečný geomorfologický fenomén západně od Brna

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Münster, P.; Máčka, Z.

    2011-01-01

    Roč. 18, č. 2 (2011), s. 32-35 ISSN 1212-6209 Institutional research plan: CEZ:AV0Z30860518 Keywords : gully networks * loess * Bosonožský hájek area * Brno region Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  10. The variability of surface water quality indicators in relation to watercourse typology, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Langhammer, J.; Hartvich, Filip; Mattas, D.; Rödlová, S.; Zbořil, A.

    2012-01-01

    Roč. 184, č. 6 (2012), s. 3983-3999 ISSN 0167-6369 Institutional research plan: CEZ:AV0Z30460519 Keywords : water framework directive * typology * Surface water quality Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.592, year: 2012

  11. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    Science.gov (United States)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  12. Long-term trends in geomagnetic and climatic variability

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2002-01-01

    Roč. 27, 6/7 (2002), s. 427-731 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3012806 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic forcing * climatic variability * global warming Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  13. Inertial effects on thermochemically driven convection and hydromagnetic dynamos in a spherical shell

    Czech Academy of Sciences Publication Activity Database

    Šimkanin, Ján; Kyselica, Juraj; Guba, P.

    2018-01-01

    Roč. 212, č. 3 (2018), s. 2194-2205 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : composition and structure of the core * dynamo * nonlinear differential equations * numerical modelling Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.414, year: 2016

  14. Debris flows risk analysis and direct loss estimation: the case study of Valtellina di Tirano, Italy

    Czech Academy of Sciences Publication Activity Database

    Blahůt, Jan; Glade, T.; Sterlacchini, S.

    2014-01-01

    Roč. 11, č. 2 (2014), s. 288-307 ISSN 1672-6316 Institutional support: RVO:67985891 Keywords : Debris flows * Risk analysis * Economic losses * Central Alps * Italy Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.963, year: 2014

  15. 48 CFR 242.202 - Assignment of contract administration.

    Science.gov (United States)

    2010-10-01

    ..., charting, and geodesy services; (F) Base, post, camp, and station purchases; (G) Operation or maintenance of, or installation of equipment at, radar or communication network sites; (H) Communications..., post, camp, and station contracts on a military installation are normally the responsibility of the...

  16. Změny využití krajiny u jihomoravských vodních nádrží

    Czech Academy of Sciences Publication Activity Database

    Havlíček, M.; Halas, Petr; Lacina, Jan; Mlejnková, H.

    2014-01-01

    Roč. 2014, č. 108 (2014), s. 25-35 ISSN 1805-921X Institutional support: RVO:68145535 Keywords : land use * water reservoir * vegetation Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.vukoz.cz/acta/dokumenty/acta_108/Acta-108_komplet-cz.pdf

  17. The HISTMAG database: combining historical, archaeomagnetic and volcanic data

    Czech Academy of Sciences Publication Activity Database

    Arneitz, P.; Leonhardt, R.; Schnepp, E.; Heilig, B.; Mayrhofer, F.; Kovacs, P.; Hejda, Pavel; Valach, F.; Vadasz, G.; Hammerl, Ch.; Egli, R.; Fabian, K.; Kompein, N.

    2017-01-01

    Roč. 210, č. 3 (2017), s. 1347-1359 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : Europe * archaeomagnetism * magnetic field variations * through time * palaeomagnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.414, year: 2016

  18. An optical clock to go

    Science.gov (United States)

    Ludlow, Andrew D.

    2018-05-01

    Bringing next-generation atomic clocks out of the lab is not an easy task, but doing so will unlock many new possibilities. As a crucial first step, a portable atomic clock has now been deployed for relativistic geodesy measurements in the Alps.

  19. Modelirovanije zemnoj kory Ukrajiny po rezultatam magnitotelluričeskich issledovanij s ispolzovanijem novych metodik inversij

    Czech Academy of Sciences Publication Activity Database

    Kováčiková, Světlana; Logvinov, I. M.; Pek, Josef; Tarasov, V. N.

    2016-01-01

    Roč. 38, č. 6 (2016), s. 83-100 ISSN 0203-3100 Institutional support: RVO:67985530 Keywords : conductivity structure * Earth’s crust * Ukrainian Carpathians * Kirovograd anomaly of conductivity * Voronezh massif decline Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  20. Magnetic properties of floodplain deposits along the banks of the Morava River (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jaroslav; Diehl, J. F.

    2005-01-01

    Roč. 5, č. 3 (2005), s. 2-3 R&D Projects: GA AV ČR(CZ) IAA3013201 Institutional research plan: CEZ:AV0Z30130516 Keywords : rock magnetic properties * floodplain deposits * Morava River Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Landslide and glacial lake outburst flood hazard in the Chucchún river basin, Cordillera Blanca, Peru

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Vilímek, V.; Benešová, M.

    2015-01-01

    Roč. 50, č. 2 (2015), s. 173-180 ISSN 0300-5402 R&D Projects: GA ČR(CZ) GAP209/11/1000 Institutional support: RVO:67985891 Keywords : landslide hazard * GLOFs * flood hazard * Cordillera Blanca * Peru Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Settlement problems in the Czech borderland

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Dvořák, Petr; Nováková, Eva; Zapletalová, Jana

    2008-01-01

    Roč. 60, č. 3 (2008), s. 241-253 ISSN 0016-7193 R&D Projects: GA MŠk 2D06001 Institutional research plan: CEZ:AV0Z30860518 Keywords : borderland * social infrastructure * education * micro-regions Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  3. Povodně v povodí Moravy v srpnu 1880 – obdoba přírodní katastrofy v roce 1997?

    Czech Academy of Sciences Publication Activity Database

    Munzar, Jan; Ondráček, Stanislav; Řehánek, T.

    2007-01-01

    Roč. 2007, č. 34 (2007), s. 149-161 ISSN 0323-0988 R&D Projects: GA AV ČR IAA300860601 Institutional research plan: CEZ:AV0Z30860518 Keywords : floods * Morava river basin * August 1880 Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  4. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses

    Czech Academy of Sciences Publication Activity Database

    Bućko, M. S.; Magiera, T.; Johanson, B.; Petrovský, Eduard; Pesonen, L. J.

    2011-01-01

    Roč. 159, č. 5 (2011), s. 1266-1276 ISSN 0269-7491 Institutional research plan: CEZ:AV0Z30120515 Keywords : road dust * vehicle emissions * magnetic properties * snow * geochemical analyses Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.746, year: 2011

  5. Gd.sub.90./sub.Co.sub.2.5./sub.Fe.sub.7.5./sub. alloy displaying enhanced magnetocaloric properties.

    Czech Academy of Sciences Publication Activity Database

    Provenzano, V.; Shull, R. D.; Kletetschka, Günther; Stutzman, P. E.

    2015-01-01

    Roč. 622, February (2015), s. 1061-1067 ISSN 0925-8388 Institutional support: RVO:67985831 Keywords : magnetocaloric properties * bulk gadolinium * gadolinium-based alloy * magnetic refrigeration * magnetic hysteresis * refrigeration capacity Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.014, year: 2015

  6. Der Strukturwandel der Kleinstädte in Mähren

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Kallabová, Eva; Trávníček, Bohumír

    2002-01-01

    Roč. 10, č. 4 (2002), s. 166-176 ISSN 0943-7142 R&D Projects: GA AV ČR IAA3086301 Institutional research plan: CEZ:AV0Z3086906 Keywords : small cities * processes of urbanization * restructuralization Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  7. Tomb of Nefertari signature in microgravity observations in the Valley of the Queens, Luxor, Egypt

    Czech Academy of Sciences Publication Activity Database

    Issawy, E. S. A.; Mrlina, Jan; Radwan, A. H.; Hassan, G. S.; Sakr, K. O.

    2002-01-01

    Roč. 1, č. 1 (2002), s. 23-32 ISSN 1687-0999 R&D Projects: GA ČR GA205/00/1470 Institutional research plan: CEZ:AV0Z3012916 Keywords : archaeological prospecting * Luxor * microgravity observations Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. Czech Republic - August 2002: another flood disaster of century after five years

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Stanislav; Klusáček, Petr; Munzar, Jan

    2002-01-01

    Roč. 10, č. 2 (2002), s. 53-62 ISSN 1210-8812 R&D Projects: GA AV ČR IAA3086903 Institutional research plan: CEZ:AV0Z3086906 Keywords : flood disaster * Czech Republic * August 2002 Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  9. Pc1 pearl waves with magnetosonic dispersion

    Czech Academy of Sciences Publication Activity Database

    Feygin, F. Z.; Nekrasov, A. K.; Pikkarainen, T.; Raita, T.; Prikner, Karel

    2007-01-01

    Roč. 69, č. 14 (2007), s. 1644-1650 ISSN 1364-6826 Institutional research plan: CEZ:AV0Z30120515 Keywords : magnetosphere * geomagnetic pulsations * Alfvén waves * magnetosonic waves Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.566, year: 2007

  10. Structural Control and Human Impacts on the Opava River Fluvial System, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hrádek, Mojmír; Loučková, B.

    -, č. 6 (2009), s. 23-30 ISSN 1897-5100 R&D Projects: GA AV ČR IAA300860903 Institutional research plan: CEZ:AV0Z30860518 Keywords : structural control * gold mining * alluvial placers * floods * wandering river Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Integrating AR services for the masses: geotagged POI transformation platform

    Czech Academy of Sciences Publication Activity Database

    Trojan, Jakub

    2016-01-01

    Roč. 7, č. 3 (2016), s. 254-265 ISSN 1757-9880 Institutional support: RVO:68145535 Keywords : augmented reality * location-based services * geotagging * points of interest Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://dx.doi.org/10.1108/JHTT-07-2015-0028

  12. Anglers’ Fishing Site Choice on a Large Scale: The Case of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Josef; Martinát, Stanislav; Pícha, K.; Navrátilová, Jana

    2011-01-01

    Roč. 19, č. 3 (2011), s. 18-29 ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : geography of tourism * fisheries * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/CZ/CZresearch/CZMgrArchive.html

  13. Using magnetic susceptibility mapping for assessing soil degradation due to water erosion

    Czech Academy of Sciences Publication Activity Database

    Jakšík, O.; Kodešová, R.; Kapička, Aleš; Klement, A.; Fér, M.; Nikodém, A.

    2016-01-01

    Roč. 11, č. 2 (2016), s. 105-113 ISSN 1801-5395 R&D Projects: GA MZe QJ1230319 Institutional support: RVO:67985530 Keywords : arable land * geomorphologically diverse areas * Chernozem Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.934, year: 2016

  14. Changes in geomagnetic activity and global temperature during the past 40 years

    Czech Academy of Sciences Publication Activity Database

    Bucha, Václav

    2012-01-01

    Roč. 56, č. 4 (2012), s. 1095-1107 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : geomagnetic activity * polar vortex * climate indices * global temperature Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.975, year: 2012

  15. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments

    Czech Academy of Sciences Publication Activity Database

    Rijal, M. L.; Appel, E.; Petrovský, Eduard; Blaha, U.

    2010-01-01

    Roč. 158, č. 5 (2010), s. 1756-1762 ISSN 0269-7491 Institutional research plan: CEZ:AV0Z30120515 Keywords : hydrocarbon contamination * groundwater table fluctuation * magnetic properties * environmental magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.395, year: 2010

  16. Biogeografický model změn klimatických podmínek vegetační stupňovitosti v Česku

    Czech Academy of Sciences Publication Activity Database

    Machar, I.; Voženílek, V.; Kirchner, Karel; Vlčková, V.; Buček, A.

    2017-01-01

    Roč. 122, č. 1 (2017), s. 64-82 ISSN 1212-0014 Institutional support: RVO:68145535 Keywords : climate change * landscape * mathematical model * register of biogeography Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.580, year: 2016

  17. Adaptation to the Impacts of Climate Extremes in Central Europe: A Case Study in Rural Area in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Duží, Barbora; Daněk, T.; Němec, D.; Procházka, D.

    2015-01-01

    Roč. 7, č. 3 (2015), s. 12758-12786 ISSN 2071-1050 Institutional support: RVO:68145535 Keywords : household * floods * adaptation Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.343, year: 2015 http://www.mdpi.com/2071-1050/7/9/12758/htm

  18. Polarization characteristics of standing wave electromagnetic fields at the ionospheric Alfvén resonator lower harmonics: altitude profiles

    Czech Academy of Sciences Publication Activity Database

    Prikner, Karel; Feygin, F. Z.; Raita, T.

    2014-01-01

    Roč. 58, č. 2 (2014), s. 338-341 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : ionospheric Alfvén resonator * EMIC waves * EISCAT measurements Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  19. Analysis of rainfall preceding debris flows on the Smědavská hora Mt., Jizerské hory Mts., Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Smolíková, J.; Blahůt, Jan; Vilímek, V.

    2016-01-01

    Roč. 13, č. 4 (2016), s. 683-696 ISSN 1612-510X Institutional support: RVO:67985891 Keywords : debris flow * rainfall pattern * rainfall thresholds * Jizerské hory Mts. * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.657, year: 2016

  20. Geoelectrical and geological structure of the crust in Western Slovakia

    Czech Academy of Sciences Publication Activity Database

    Bezák, V.; Pek, Josef; Vozár, J.; Bielik, M.; Vozár, J.

    2014-01-01

    Roč. 58, č. 3 (2014), s. 473-488 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : magnetotellurics * MT15 profile * Western Carpathians * applied geophysics * Earth ’s crust Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  1. Exploatace surovin vhodných k výrobě broušené kamenné industrie ve spojitosti s antropogenním ovlivněním reliéfu v údolí střední Svratky (Morava, Česká republika)

    Czech Academy of Sciences Publication Activity Database

    Kuča, M.; Kirchner, Karel; Kallabová, Eva

    2009-01-01

    Roč. 11, č. 1 (2009), s. 38-42 ISSN 1802-5463 Grant - others:GA ČR(CZ) GA404/02/1038 Institutional research plan: CEZ:AV0Z30860518 Keywords : neolithic * polished stone industry * exploitation Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Visual Analysis Based on the Data of Chinese Surveying and Mapping Journals

    Science.gov (United States)

    Li, Jing; Liu, Haiyan; Guo, Wenyue; Yu, Anzhu

    2016-06-01

    Taking four influential Chinese surveying and mapping journals as the data source, 5863 papers published during the period of 2003-2013 were obtained. Using the method of bibliometrics and visual analysis, summarizing the surveying and mapping papers in the past ten years (2003-2013), research themes, authors, and geographical distribution were analyzed. In the study, the papers of geodesy, cartography and GIS are 59.9%, more than half of all the papers. We also determine that the core author group has 131 authors, mainly of whom are from big cities. 90% of top ten cities on the number of publishing papers are capital cities or municipalities directly under the central government.In conclusion, we found that the research focus was different every year, and the research content was richness, the content of geodesy, cartography and GIS were widely researched, and the development of surveying and mapping is imbalanced in China.

  3. IAU Symposium No. 32

    CERN Document Server

    Guinot, B

    1968-01-01

    AGU American Geophysical Union BIH Bureau International de l'Heure FAGS Federation of Astronomical and Geophysical Services lAG International Association of Geodesy IAU International Astronomical Union ICSU International Council of Scientific Unions ILS International Latitude Service IPMS International Polar Motion Service International Union of Geodesy and Geophysics IUGG PZT Photographic Zenith Tube UNESCO United Nations Educational, Scientific and Cultural Organization INTRODUCTION The hypothesis of continental drift has become of increasing interest to geophysicists in recent years. The IUGG Upper Mantle Committee has stated that the hypothesis of continental drift envisages horizontal displacements of the continents over th- sands of kilometers, and that it is a principal objective of the Upper Mantle Project to prove whether or not continental drift has occurred. The origin of the hypothesis may be traced to the close similarity in outlines of the coasts on the two sides of the Atlantic Ocean. The theor...

  4. Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity

    Czech Academy of Sciences Publication Activity Database

    Barlow, P. W.; Mikulecký, M.; Střeštík, Jaroslav

    2010-01-01

    Roč. 247, č. 1-2 (2010), s. 25-43 ISSN 0033-183X Institutional research plan: CEZ:AV0Z30120515 Keywords : lunisolar tidal acceleration * stem diameter variation * transpiration * Thule index Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.488, year: 2010

  5. 76 FR 32957 - Hydrographic Services Review Panel

    Science.gov (United States)

    2011-06-07

    .... SUMMARY: This notice responds to the Hydrographic Service Improvements Act Amendments of 2002, Public Law...), to solicit nominations for membership on the Hydrographic Services Review Panel (HSRP). The HSRP, a...; fisheries management; coastal and marine spatial planning; geodesy; water levels; and other science-related...

  6. Změny využití krajiny v environmentálních souvislostech Slovácka - případová studie Vlčnovska

    Czech Academy of Sciences Publication Activity Database

    Trojan, Jakub; Milička, R.

    2015-01-01

    Roč. 2, č. 2 (2015), s. 43-46 ISSN 1337-9054 Institutional support: RVO:68145535 Keywords : land use * landscape * Slovacko region Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.sevs.sk/sites/default/files/images/Dokumenty/01_vedecky_obzor_ekologia_201502.pdf

  7. Observatory data as a proxy of space weather parameters: The importance of historical archives

    Czech Academy of Sciences Publication Activity Database

    Hejda, Pavel

    2016-01-01

    Roč. 20, Č. 2 (2016), s. 47-53 ISSN 0257-7968 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : geomagnetic observatory * geomagnetic indices * sunspot members * space weather Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  8. Magnetic record of extreme marine inundation events at Las Salinas site, Jalisco, Mexican Pacific coast

    Czech Academy of Sciences Publication Activity Database

    Černý, Jan; Ramírez-Herrera, M.-T.; Bógalo, M.-F.; Goguitchaichvili, A.; Castillo-Aja, R.; Morales, J.; Sanchez-Cabeza, J. A.; Ruiz-Fernandez, A. C.

    2016-01-01

    Roč. 58, č. 3 (2016), s. 342-357 ISSN 0020-6814 Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility (AMS) * rock magnetic properties * tsunami * thermomagnetic curves * Mexican Pacific coast * variability Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.262, year: 2016

  9. Restoration of forest soils after bulldozer site preparation in the Ore Mountains over 20 years development

    Czech Academy of Sciences Publication Activity Database

    Podrázský, V.; Kapička, Aleš; Kouba, M.

    2010-01-01

    Roč. 29, č. 3 (2010), s. 281-289 ISSN 1335-342X R&D Projects: GA ČR GA205/07/0941 Institutional research plan: CEZ:AV0Z30120515 Keywords : immission areas * soil degradation * trace elements Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  10. Algorithms for Global Positioning

    DEFF Research Database (Denmark)

    Borre, Kai; Strang, Gilbert

    and replaces the authors' previous work, Linear Algebra, Geodesy, and GPS (1997). An initial discussion of the basic concepts, characteristics and technical aspects of different satellite systems is followed by the necessary mathematical content which is presented in a detailed and self-contained fashion...

  11. The impact of disturbance on the dynamics of fluvial processes in mountain landscapes

    Czech Academy of Sciences Publication Activity Database

    Langhammer, J.; Hartvich, Filip; Kliment, Z.; Jeníček, M.; Bernsteinová (Kaiglová), J.; Vlček, L.; Su, Y.; Štych, P.; Miřijovský, J.

    2015-01-01

    Roč. 21, č. 1 (2015), s. 105-116 ISSN 1211-7420 Institutional support: RVO:67985891 Keywords : runoff * fluvial dynamics * forest disturbance * climate change * Bohemian Forest Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.npsumava.cz/gallery/31/9345-sg_21_1_langhammeretal.pdf

  12. The flood in August 1880 – one of the most severe natural disasterts of the 19th century in the Ostrava region (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Munzar, Jan; Ondráček, Stanislav; Řehánek, T.

    2007-01-01

    Roč. 15, č. 3 (2007), s. 25-33 ISSN 1210-8812 R&D Projects: GA AV ČR IAA300860601 Institutional research plan: CEZ:AV0Z30860518 Keywords : flood * Odra river * Ostrava region * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  13. Environmental factors influenting species composition of acidophilous grasslands patches in agricultural landscape

    Czech Academy of Sciences Publication Activity Database

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27 ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : acidophilous grasslands * hemeroby * patch isolation * patch area * regression trees Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/EN/research/ENMgr/MGR_2012_01.pdf

  14. Geophysical research at the Obora lokality (NW from Brno) and its aplication to the knowledge of the Svratka River development between the Veverská Bítýška and Brno.

    Czech Academy of Sciences Publication Activity Database

    Peterková, L.; Kirchner, Karel; Hubatka, F.; Nehyba, S.

    -, č. 1 (2008), s. 55-62 ISSN 1337-6799 R&D Projects: GA ČR GA205/06/1024 Institutional research plan: CEZ:AV0Z30860518 Keywords : The Svratka River * ground penetrating radar * vertical electrical sounding Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  15. Rock glaciers in the Western and High Tatra Mountains, Western Carpathians

    Czech Academy of Sciences Publication Activity Database

    Uxa, Tomáš; Mida, P.

    2017-01-01

    Roč. 13, č. 2 (2017), s. 844-857 ISSN 1744-5647 Institutional support: RVO:67985530 Keywords : rock glaciers * inventory * Western and High Tatra Mts * Carpathians * Slovakia * Poland Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.174, year: 2016

  16. A kinematic model of vertical geomagnetic field variation resulting from a steady convective flow

    Czech Academy of Sciences Publication Activity Database

    Marsenić, Alexandra

    2014-01-01

    Roč. 108, č. 2 (2014), s. 191-212 ISSN 0309-1929 Grant - others:VEGA(SK) 2/0137/12 Institutional support: RVO:67985530 Keywords : magnetohydrodynamics * induction equation * geomagnetic variation * reversed flux patches Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.924, year: 2013

  17. Mapy energií v Atlase krajiny České republiky

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír

    2008-01-01

    Roč. 42, č. 6 (2008), s. 292-297 ISSN 0044-4863 Grant - others:GA MŽP(CZ) SK/600/1/03 Institutional research plan: CEZ:AV0Z30860518 Keywords : map * energy * Landscape atlas of Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  18. Využití laserových modelů terénu v geomorfologickém výzkumu

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Tejkal, M.

    2011-01-01

    Roč. 11, č. 1 (2011), s. 7-17 ISSN 1337-6799 Institutional support: RVO:68145535 Keywords : ground and airborne laser scanning * DTM * land form research application Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.asg.sav.sk/gfsb/v0111/gfsb0110101.pdf

  19. Vodní nádrže a jejich krajina ve výtvarném umění

    Czech Academy of Sciences Publication Activity Database

    Lacina, Jan; Halas, Petr

    2017-01-01

    Roč. 1, č. 1 (2017), s. 31-39 ISSN 0322-8916 Institutional support: RVO:68145535 Keywords : landscape painting * dam * landscape changes Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: 60500 http://www.vtei.cz/wp-content/uploads/2015/08/5782-VTEI.pdf

  20. Limits of out-of-phase susceptibility in magnetic granulometry of rocks and soils

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Pokorný, J.; Chadima, Martin

    2015-01-01

    Roč. 59, č. 2 (2015), s. 294-308 ISSN 0039-3169 Institutional support: RVO:67985831 Keywords : out-of-phase susceptibility * frequency-dependent susceptibility measurement accuracy * environmetal magnetism * loess * soil * paleoclimatic reconstruction Subject RIV: DE - Earth Magnetism , Geodesy, Geography Impact factor: 0.818, year: 2015

  1. Quietly Does It: Questioning assumptions about class, sustainability and consumption

    Czech Academy of Sciences Publication Activity Database

    Smith, J.; Kostelecký, Tomáš; Jehlička, P.

    2015-01-01

    Roč. 67, č. 10 (2015), s. 223-232 ISSN 0016-7185 Institutional support: RVO:68378025 Keywords : Sustainability * Ethical consumption * Class Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.397, year: 2015 http://dx.doi.org/10.1016/j.geoforum.2015.03.017

  2. Biogeographical relationship between landscapes pattern, chosen local abiotic factors and vegetation in forest edges

    Czech Academy of Sciences Publication Activity Database

    Lacina, Jan; Halas, Petr; Švec, P.

    2012-01-01

    Roč. 20, č. 4 (2012), s. 2-12 ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : patch isolation * patch area * agricultural landscape * Bohemian-Moravian Upland Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/EN/research/ENMgr/MGR_2012_04.pdf

  3. Historical floods in central Europe and their documentation by means of floodmarks and other epigraphical monuments

    Czech Academy of Sciences Publication Activity Database

    Munzar, Jan; Deutsch, M.; Elleder, L.; Ondráček, Stanislav; Kallabová, Eva; Hrádek, Mojmír

    2006-01-01

    Roč. 14, č. 3 (2006), s. 26-44 ISSN 1210-8812 R&D Projects: GA AV ČR IAA3086601 Institutional research plan: CEZ:AV0Z30860518 Keywords : historical floods * floodmarks * epigraphical monuments * Central Europe Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  4. A clock network for geodesy and fundamental science.

    Science.gov (United States)

    Lisdat, C; Grosche, G; Quintin, N; Shi, C; Raupach, S M F; Grebing, C; Nicolodi, D; Stefani, F; Al-Masoudi, A; Dörscher, S; Häfner, S; Robyr, J-L; Chiodo, N; Bilicki, S; Bookjans, E; Koczwara, A; Koke, S; Kuhl, A; Wiotte, F; Meynadier, F; Camisard, E; Abgrall, M; Lours, M; Legero, T; Schnatz, H; Sterr, U; Denker, H; Chardonnet, C; Le Coq, Y; Santarelli, G; Amy-Klein, A; Le Targat, R; Lodewyck, J; Lopez, O; Pottie, P-E

    2016-08-09

    Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10(-17) is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

  5. Space geodesy: subsidence and flooding in New Orleans.

    Science.gov (United States)

    Dixon, Timothy H; Amelung, Falk; Ferretti, Alessandro; Novali, Fabrizio; Rocca, Fabio; Dokka, Roy; Sella, Giovanni; Kim, Sang-Wan; Wdowinski, Shimon; Whitman, Dean

    2006-06-01

    It has long been recognized that New Orleans is subsiding and is therefore susceptible to catastrophic flooding. Here we present a new subsidence map for the city, generated from space-based synthetic-aperture radar measurements, which reveals that parts of New Orleans underwent rapid subsidence in the three years before Hurricane Katrina struck in August 2005. One such area is next to the Mississippi River-Gulf Outlet (MRGO) canal, where levees failed during the peak storm surge: the map indicates that this weakness could be explained by subsidence of a metre or more since their construction.

  6. Improving InSAR geodesy using Global Atmospheric Models

    Science.gov (United States)

    Jolivet, Romain; Agram, Piyush Shanker; Lin, Nina Y.; Simons, Mark; Doin, Marie-Pierre; Peltzer, Gilles; Li, Zhenghong

    2014-03-01

    Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.

  7. Central and South America GPS geodesy - CASA Uno

    Science.gov (United States)

    Kellogg, James N.; Dixon, Timothy H.

    1990-01-01

    In January 1988, scientists from over 25 organizations in 13 countries and territories cooperated in the largest GPS campaign in the world to date. A total of 43 GPS receivers collected approximately 590 station-days of data in American Samoa, Australia, Canada, Colombia, Costa Rica, Ecuador, New Zealand, Norway, Panama, Sweden, United States, West Germany, and Venezuela. The experiment was entitled CASA Uno. Scientific goals of the project include measurements of strain in the northern Andes, subduction rates for the Cocos and Nazca plates beneath Central and South America, and relative motion between the Caribbean plate and South America. A second set of measurements are planned in 1991 and should provide preliminary estimates of crustal deformation and plate motion rates in the region.

  8. GPS-based system for satellite tracking and geodesy

    Science.gov (United States)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  9. Rozšíření a modernizace systému náklonoměrného monitorování rizikových svahů velkolomu ČSA v Mostě

    Czech Academy of Sciences Publication Activity Database

    Chán, Bohumil; Mrlina, Jan; Polák, Václav

    č. 2 (2003), s. 28-39 ISSN 1213-1660 R&D Projects: GA AV ČR IBS3012008; GA AV ČR IBS3012353 Institutional research plan: CEZ:AV0Z3012916 Keywords : cant-measuring system * monitoring * hazardous slopes Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  10. Microregional development in border regions of Czechia

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Zapletalová, Jana

    2009-01-01

    Roč. 20, č. 20 (2009), s. 89-106. ISBN 978-83-924797-6-5. ISSN 1642-4689 R&D Projects: GA MŠk 2D06001 Institutional research plan: CEZ:AV0Z30860518 Keywords : borderland * microregions * Czechia Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Effect of climate on morphology and development of sorted circles and polygons

    Czech Academy of Sciences Publication Activity Database

    Uxa, Tomáš; Mida, P.; Křížek, M.

    2017-01-01

    Roč. 28, č. 4 (2017), s. 663-674 ISSN 1045-6740 Institutional support: RVO:67985530 Keywords : patterned ground * sorted circles and polygons * morphology * active layer * Svalbard * high Arctic Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.815, year: 2016

  12. Chinese tombs oriented by a compass: evidence from paleomagnetic changes versus the age of tombs

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka; Klokočník, Jaroslav; Kolmaš, J.; Kostelecký, J.

    2011-01-01

    Roč. 55, č. 1 (2011), s. 159-174 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515; CEZ:AV0Z10030501 Keywords : Chinese tombs * magnetic compass * paleomagnetic declination * Fuson hypothesis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.700, year: 2011

  13. Factors of the uneven regional development of wind energy projects (a case of the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Frantál, Bohumil; Kunc, Josef

    2010-01-01

    Roč. 62, č. 3 (2010), s. 183-199 ISSN 0016-7193 R&D Projects: GA AV ČR(CZ) KJB700860801 Institutional research plan: CEZ:AV0Z30860518 Keywords : wind energy * diffusion of innovation * social acceptance * uneven development Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  14. A MATLAB code for counting the moiré interference fringes recorded by the optical-mechanical crack gauge TM-71

    Czech Academy of Sciences Publication Activity Database

    Marti, X.; Rowberry, Matthew David; Blahůt, Jan

    2013-01-01

    Roč. 52, MAR (2013), s. 164-167 ISSN 0098-3004 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : MATLAB code * TM-71 * moiré interference fringes * relative displacement Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.562, year: 2013

  15. Problems of European inner cities and their residential environments

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Zapletalová, Jana

    2003-01-01

    Roč. 11, č. 2 (2003), s. 24-35 ISSN 1210-8812 Grant - others:Evropská unie(XE) EVK4-CT-2002-00086 Institutional research plan: CEZ:AV0Z3086906 Keywords : inner city, residential environment, sustainibility, re- urbanization , Brno Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  16. Magnetic particles as tracers of industrial pollution

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Kapička, Aleš; Jordanova, Neli; Fialová, Hana

    č. 26 (2002), s. 131-132 ISSN 1590-2595. [Fundamental rock magnetism and environmental applications. Erice, 26.06.2002-01.07.2002] Institutional research plan: CEZ:AV0Z3012916 Keywords : magnetic particles * industrial pollution * fly ashes * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  17. Modelování kamenitohlinitých přívalových proudů na Smědavské hoře v Jizerských horách

    Czech Academy of Sciences Publication Activity Database

    Blahůt, Jan; Smolíková, J.; Vilímek, V.

    2012-01-01

    Roč. 2011, podzim (2012), s. 66-69 ISSN 0514-8057 Institutional research plan: CEZ:AV0Z30460519 Keywords : Jizerské hory Mts. * debris flow * empirical modelling Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geology.cz/zpravy/obsah/2011/zpravy_2011-15.pdf

  18. Impact of Polycentric Urban Systems on Intra-regional Disparities: A Microregional Approach

    Czech Academy of Sciences Publication Activity Database

    Malý, Jiří

    2016-01-01

    Roč. 24, č. 1 (2016), s. 116-138 ISSN 0965-4313 Institutional support: RVO:68145535 Keywords : spatial development * polycentricity * intra-regional disparities * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.332, year: 2016 http://dx.doi.org/10.1080/09654313.2015.1054792

  19. Environmental factors influencing the species composition of acidophilous grassland patches in agricultural lanscapes

    Czech Academy of Sciences Publication Activity Database

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27 ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : acidophilous grasslands * hemeroby * patch isolation * regression trees * Bohemian-Moravian Highland Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/CZ/CZresearch/CZMgrArchive.html

  20. Pedogenic and lithogenic features in the mineralogical composition of chernozem developed from red-earth deposits

    Czech Academy of Sciences Publication Activity Database

    Lesovaya, S. N.; Kapička, Aleš; Petrovský, Eduard; Aparin, B. F.

    2003-01-01

    Roč. 36, č. 12 (2003), s. 1325-1333 ISSN 1064-2293 Grant - others:RFFI(RU) 01-04-48815 Institutional research plan: CEZ:AV0Z3012916 Keywords : mineralogical composition * chernozem * magnetic minerals Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.136, year: 2003

  1. Landscape classification of the Czech Republic based on the distribution of natural habitats

    Czech Academy of Sciences Publication Activity Database

    Divíšek, Jan; Chytrý, M.; Grulich, V.; Poláková, L.

    2014-01-01

    Roč. 86, č. 3 (2014), s. 209-231 ISSN 0032-7786 Institutional support: RVO:68145535 Keywords : biogeographical division * biotopes * constrained clustering * phytogeographical division * regionalization Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.104, year: 2014 http://www.preslia.cz/P143Divisek.pdf

  2. A neural network Dst index model driven by input time histories of the solar wind–magnetosphere interaction

    Czech Academy of Sciences Publication Activity Database

    Revallo, M.; Valach, F.; Hejda, Pavel; Bochníček, Josef

    110-111, April (2014), s. 9-14 ISSN 1364-6826 R&D Projects: GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : solar wind * magnetosphere * geomagnetic storm * Dst index * artificial neural network Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.474, year: 2014

  3. Towards the spatial coherence of biogeographical regionalizations at subcontinental and landscape scales

    Czech Academy of Sciences Publication Activity Database

    Divíšek, Jan; Storch, D.; Zelený, D.; Culek, M.

    2016-01-01

    Roč. 43, č. 43 (2016), s. 2489-2501 ISSN 0305-0270 Institutional support: RVO:68145535 Keywords : beta diversity * biogeographical regions * spatial scale Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.248, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/jbi.12832/full

  4. Secondary geodiversity and its potential for urban geotourism: a case study from Brno city, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kubalíková, Lucie; Kirchner, Karel; Bajer, A.

    2017-01-01

    Roč. 56, č. 3 (2017), s. 63-73 ISSN 0137-477X Institutional support: RVO:68145535 Keywords : geosites * geodiversity * anthropogenic landforms * recreation * geoeducation Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography http://geoinfo.amu.edu.pl/qg/current/05quageo-2017-0024.pdf

  5. Geosite and geomorphosite assessment as a tool for geoconservation and geotourism purposes: a case study from Vizovická vrchovina Highland (eastern part of the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Kubalíková, L.; Kirchner, Karel

    2016-01-01

    Roč. 8, č. 8 (2016), s. 5-14 ISSN 1867-2485 Institutional support: RVO:68145535 Keywords : geotourism, geoconservation * geosite and geomorphosite assessment * Vizovická vrchovina Highland Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://link.springer.com/article/10.1007%2Fs12371-015-0143-2

  6. Low-temperature magnetic transition in troilite: A simple marker for highly stoichiometric FeS systems

    Czech Academy of Sciences Publication Activity Database

    Čuda, J.; Kohout, Tomáš; Tuček, J.; Haloda, J.; Filip, J.; Prucek, R.; Zbořil, J.

    2011-01-01

    Roč. 116, č. 11 (2011), art. B11205-B11205 ISSN 0148-0227 Institutional research plan: CEZ:AV0Z30130516 Keywords : troilite * meteorite * Mössbauer spectroscopy * low-temperature magnetic behavior * magnetic transition Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.021, year: 2011

  7. Between Urban and Rural: Sustainability of Small Towns in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Nováková, Eva; Zapletalová, Jana

    2016-01-01

    Roč. 6, č. 4 (2016), s. 351-372 ISSN 1803-8417 Institutional support: RVO:68145535 Keywords : small towns * sustainability * Czechia Subject RIV: DE - Earth Magnetism, Geodesy, Geography https://www.degruyter.com/downloadpdf/j/euco.2016.8.issue-4/euco-2016-0025/euco-2016-0025.xml

  8. Landslide risk analysis and its application in regional planning: an example from the highlands of the Outer Western Carpathians, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Blahůt, Jan

    2012-01-01

    Roč. 64, č. 2 (2012), s. 1779-1803 ISSN 0921-030X R&D Projects: GA ČR GP205/09/P383 Institutional support: RVO:67985891 Keywords : landslides * risk analysis * susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.639, year: 2012

  9. Permeability of Czech-Polish Border Using by Selected Criteria

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Zyszkowska, K.; Batelková, Kateřina; Ciok, S.; Dolzblasz, K.; Kirchner, Karel; Krejčí, Tomáš; Raczyk, A.; Spaller, W.; Zapletalová, Jana

    2015-01-01

    Roč. 10, č. 1 (2015), s. 51-65 ISSN 1842-5135 Institutional support: RVO:68145535 Keywords : natural barrier * cross border co-operation * population pressure * border segments * Poland and Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://technicalgeography.org/pdf/1_2015/06_kolejka.pdf

  10. The process of ghost-rock karstification and its role in the formation of cave systems

    Czech Academy of Sciences Publication Activity Database

    Dubois, C.; Quinif, Y.; Baele, J.-M.; Barriquand, L.; Bini, A.; Bruxelles, L.; Dandurand, G.; Havron, C.; Kaufmann, O.; Lans, B.; Maire, R.; Martin, J.; Rodet, J.; Rowberry, Matthew David; Tognini, P.; Vergari, A.

    2014-01-01

    Roč. 131, APR (2014), s. 116-148 ISSN 0012-8252 Institutional support: RVO:67985891 Keywords : chemical weathering * ghost-rock * karstification * limestone dissolution * speleogenesis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 7.885, year: 2014 http://www.sciencedirect.com/science/article/pii/S0012825214000154

  11. New details of bio- and magnetostratigraphical correlations in the Jurassic/Cretaceous boundary interval: Lókút (Transdanubial Range, Hngary), Veliky Kamenets (Pieniny Klippen Belt, Ukraine), Barlya (Western Balkan, Bulgaria)

    Czech Academy of Sciences Publication Activity Database

    Grabowski, J.; Bakhmutov, V.; Haas, J.; Krobicki, M.; Lakova, I.; Petrova, S.; Reháková, D.; Schnabl, Petr; Stoykova, K.; Sobien, K.

    2017-01-01

    Roč. 120 (2017), s. 100-100 ISSN 1017-8880. [International Symposium on the Cretaceous /10./. 21.08.2017-26.08.2017, Vienna] Institutional support: RVO:67985831 Keywords : magnetostratigraphy * Jurassic/Cretaceous boundary interval * Transdanubian Range * Pieniny Klippen Belt * Western Balkan Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  12. From Wasted Land to Megawatts: How to Convert Brownfi elds Into Solar Power Plants (the Case of the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Klusáček, Petr; Havlíček, M.; Dvořák, Petr; Kunc, Josef; Martinát, Stanislav; Petr, T.

    2014-01-01

    Roč. 62, č. 3 (2014), s. 517-528 ISSN 1211-8516 R&D Projects: GA TA ČR(CZ) TD020259 Institutional support: RVO:68145535 Keywords : brownfields * solar energy * regeneration Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://dx.doi.org/10.11118/actaun201462030517

  13. Questioning territorial cohesion: (Un)equal access to services of general interest

    Czech Academy of Sciences Publication Activity Database

    Malý, Jiří

    -, August 2016 (2016), s. 1-21 ISSN 1056-8190 Institutional support: RVO:68145535 Keywords : territorial cohesion * services of general interest * accessibility * spatial justice * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.272, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/pirs.12250/full

  14. 3D pilot. Eindrapport werkgroep technische specificaties voor de opbouw van de 3D IMGeo-CityGML

    NARCIS (Netherlands)

    Blaauboer, J.; Goos, J.; Ledoux, H.; Penninga, F.; Reuvers, M.; Stoter, J.E.; Vosselman, M.G.

    2012-01-01

    Deze notitie is de eindrapportage van Activiteit 3 van de zes 3D Pilot NL Fase II activiteiten: Technische specificaties bestekteksten voor de opbouw van IMGeo-CityGML. De 3D Pilot is een initiatief van het Kadaster, Geonovum, de Nederlandse Commissie voor Geodesie en het Ministerie van

  15. The Footfall of Shopping Centres in Olomouc (Czech Republic): An Application of the Gravity Model

    Czech Academy of Sciences Publication Activity Database

    Klapka, Pavel; Erlebach, M.; Král, O.; Lehnert, M.; Mička, T.

    2013-01-01

    Roč. 21, č. 3 (2013), s. 12-26 ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : footfall * spatial interaction * gravity model * shopping centre * Olomouc Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.341, year: 2013 http://www.geonika.cz/EN/research/ENMgr/MGR_2013_03.pdf

  16. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France

    Czech Academy of Sciences Publication Activity Database

    Desenfant, F.; Petrovský, Eduard; Rochette, P.

    2004-01-01

    Roč. 152, 1/4 (2004), s. 297-312 ISSN 0049-6979 R&D Projects: GA AV ČR KSK3012103 Institutional research plan: CEZ:AV0Z3012916 Keywords : Arc river * heavy metals * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.058, year: 2004

  17. Geomagnetic response to solar and interplanetary disturbances

    Czech Academy of Sciences Publication Activity Database

    Saiz, E.; Cerrato, Y.; Cid, C.; Dobrica, V.; Hejda, Pavel; Nenovski, P.; Stauning, P.; Bochníček, Josef; Danov, D.; Demetrescu, C.; Gonzalez, W. D.; Maris, G.; Teodosiev, D.; Valach, F.

    2013-01-01

    Roč. 3, July (2013), A26/1-A26/20 ISSN 2115-7251 R&D Projects: GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : solar activity * interplanetary medium * indices * ionosphere (general) * ring current Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.519, year: 2013

  18. Nonlinearity in a dynamo

    Czech Academy of Sciences Publication Activity Database

    Hejda, Pavel; Reshetnyak, M.

    2010-01-01

    Roč. 104, č. 5-6 (2010), s. 491-504 ISSN 0309-1929 R&D Projects: GA AV ČR IAA300120704 Institutional research plan: CEZ:AV0Z30120515 Keywords : Boussinesq convection * geostrophy * quenching * triads Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.831, year: 2010

  19. The small towns in rural areas as an undersearched type of settlement. Editors´ introduction to the special issue

    Czech Academy of Sciences Publication Activity Database

    Steinführer, A.; Vaishar, Antonín; Zapletalová, Jana

    2016-01-01

    Roč. 4, č. 6 (2016), s. 322-332 ISSN 1803-8417 Institutional support: RVO:68145535 Keywords : small towns * rural areas * urban-rural continuum Subject RIV: DE - Earth Magnetism, Geodesy, Geography https://www.degruyter.com/downloadpdf/j/euco.2016.8.issue-4/euco-2016-0023/euco-2016-0023.xml

  20. Větrná energie, člověk a krajina v proměnách času

    Czech Academy of Sciences Publication Activity Database

    Kallabová, Eva; Frantál, Bohumil; Nováková, Eva

    2009-01-01

    Roč. 35, č. 1 (2009), s. 379-396 ISSN 0323-0988 R&D Projects: GA AV ČR(CZ) KJB700860801 Institutional research plan: CEZ:AV0Z30860518 Keywords : wind * regionalization * wind power plants * local identity * Czech republic * wind energy Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Assessing Success Factors of Brownfields Regeneration: International and Inter-stakeholder Perspective

    Czech Academy of Sciences Publication Activity Database

    Frantál, Bohumil; Kunc, Josef; Klusáček, Petr; Martinát, Stanislav

    44E, 44E (2015), s. 91-107 ISSN 2247-8310 R&D Projects: GA TA ČR(CZ) TD020259 Institutional support: RVO:68145535 Keywords : brownfields * success factors * stakeholders perception Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://rtsa.ro/tras/index.php/tras/article/view/427/417

  2. Demographic Prognoses for Some Seats in the Ostrava Region

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín

    2006-01-01

    Roč. 14, č. 2 (2006), s. 16-26 ISSN 1210-8812 R&D Projects: GA AV ČR IBS3086005 Institutional research plan: CEZ:AV0Z30860518 Keywords : economic restructuring * settlement system * population development * demographic prognoses * unemployment * Ostrava region Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  3. Kinematic behaviour of a large earthflow defined by surface displacement monitoring, DEM differencing, and ERT imaging

    Czech Academy of Sciences Publication Activity Database

    Prokešová, R.; Kardoš, M.; Tábořík, Petr; Medveďová, A.; Stacke, V.; Chudý, F.

    2014-01-01

    Roč. 224, NOV 1 (2014), s. 86-101 ISSN 0169-555X R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : earthflow * surface displacement * strain modelling * DEM differencing * kinematic behaviour Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.577, year: 2013

  4. Antropogenní transformace reliéfu v oblasti dolu Jeroným

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Roštínský, Pavel

    2011-01-01

    Roč. 18, č. 1 (2011), s. 92-98 ISSN 1803-1447 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomorphology * anthropogenic transformation * Slavkovský les Forest Subject RIV: DE - Earth Magnetism, Geodesy, Geography www.caag.cz

  5. Evaluation of the subsidence based on dInSAR and GPS measurements near Karviná, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kadlečík, Pavel; Kajzar, Vlastimil; Nekvasilová, Z.; Wegmüller, U.; Doležalová, Hana

    2015-01-01

    Roč. 50, č. 1 (2015), s. 51-61 ISSN 0300-5402 R&D Projects: GA MŠk(CZ) LC506; GA MŠk(CZ) LO1406 Institutional support: RVO:67985891 ; RVO:68145535 Keywords : InSAR * subsidence * Karviná region * undermining Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  6. Geomorphological Inventory as a Tool for Proclaiming Geomorphosite (a Case Study of Mt. Myslivna in the Novohradské hory Mts. — Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Rypl, J.; Kirchner, Karel; Dvořáčková, S.

    2016-01-01

    Roč. 8, č. 1 (2016), s. 393-400 ISSN 1867-2485 Institutional support: RVO:68145535 Keywords : geomorphological inventory * GPS mapping * Novohradské hory Mts. * Mt. Myslivna * geomorphosite Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://link.springer.com/article/10.1007%2Fs12371-015-0169-5

  7. Aplikace metod vizualizace v prostorovém plánování: příklad výstavby větrných elektráren

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Frantál, Bohumil

    2009-01-01

    Roč. 55, č. 5 (2009), s. 1-3 ISSN 0016-7096 R&D Projects: GA AV ČR(CZ) KJB700860801 Institutional research plan: CEZ:AV0Z30860518 Keywords : visualization * mental mapping * wind turbines * visibility analyses * GIS * spatial planning Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  8. Využití podrobného digitálního modelu reliéfu pro analýzu morfologie hluboké svahové deformace Čeřeniště

    Czech Academy of Sciences Publication Activity Database

    Blahůt, Jan; Dušánek, P.; Klimeš, Jan

    2012-01-01

    Roč. 2011, podzim (2012), s. 63-65 ISSN 0514-8057 Institutional research plan: CEZ:AV0Z30460519 Keywords : DTM * LIDAR * Čeřeniště landslide Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geology.cz/zpravy/obsah/2011/zpravy_2011-14.pdf

  9. Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Martinát, Stanislav; Navrátil, J.; Dvořák, Petr; Van der Horst, D.; Klusáček, Petr; Kunc, Josef; Frantál, Bohumil

    2016-01-01

    Roč. 95, September 2016 (2016), s. 85-97 ISSN 0960-1481 Institutional support: RVO:68145535 Keywords : agricultural anaerobic digestion plants * Czech Republic * spatial determinants * Spatial analysis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.357, year: 2016 http://www.sciencedirect.com/science/article/pii/S0960148116302610

  10. Geomorphological aspects of slope deformations in Outer Western Carpathians (Eastern Moravia)

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Roštínský, P.; Krejčí, O.

    2003-01-01

    Roč. 3, č. 1 (2003), s. 38-38 ISSN 1335-9541 R&D Projects: GA ČR GA205/03/0211 Institutional research plan: CEZ:AV0Z3086906 Keywords : svahové pohyby * sesuvy * vývoj reliéfu Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Litice – český dvojník peruánského Machu Picchu

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Skořepa, H.

    2016-01-01

    Roč. 23, 1/2 (2016), s. 19-34 ISSN 0475-0640 R&D Projects: GA MŠk(CZ) LG15007 Institutional support: RVO:67985891 Keywords : Medieval castle * Inca town * Divoká Orlice valley * Urubamba valley * landslides Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography

  12. A catastrophic landslide near Rampac Grande in the Cordillera Negra, northern Peru

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Vilímek, V.

    2011-01-01

    Roč. 8, č. 3 (2011), s. 309-320 ISSN 1612-510X Institutional research plan: CEZ:AV0Z30460519 Keywords : landslide * precipitation * evapotranspiration Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.216, year: 2011 http://www.springerlink.com/content/911l1026vr358424/

  13. KLY5 Kappabridge: High sensitivity susceptibility and anisotropy meter precisely decomposing in-phase and out-of-phase components

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Pokorný, J.; Chadima, Martin; Hrouda, F.; Studynka, J.; Vejlupek, J.

    2016-01-01

    Roč. 18 (2016), EGU2016-15806 ISSN 1607-7962. [European Geosciences Union General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985831 Keywords : palaeomagnetism * magnetic susceptibility * anisotropy Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2016/EGU2016-15806.pdf

  14. Biogeographical patterns in vertebrate assemblages of the Czech Republic: regional division in the context of species’ distributions in Europe

    Czech Academy of Sciences Publication Activity Database

    Divíšek, Jan; Culek, M.; Šťastný, K.; Anděra, M.

    2016-01-01

    Roč. 65, č. 3 (2016), s. 169-182 ISSN 0139-7893 Institutional support: RVO:68145535 Keywords : beta diversity * biogeographical regions * terrestrial vertebrates Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.739, year: 2016 http://www.ivb.cz/folia-zoologica-archive.html?vol=65&no=3

  15. Some aspects of cross-border cooperation in euroregions of the Czech Republic on example of the Šumava region

    Czech Academy of Sciences Publication Activity Database

    Cetkovský, Stanislav; Klusáček, Petr; Martinát, Stanislav; Zapletalová, Jana

    2007-01-01

    Roč. 15, č. 1 (2007), s. 43-55 ISSN 1210-8812 R&D Projects: GA AV ČR IAA7118301 Institutional research plan: CEZ:AV0Z30860518 Keywords : Euroregions * cross-border cooperation * Šumava * regional development * environmental protection * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  16. Magnetic study of weakly contaminated forest soils

    Czech Academy of Sciences Publication Activity Database

    Kapička, Aleš; Jordanova, Neli; Petrovský, Eduard; Podrázský, V.

    2003-01-01

    Roč. 148, 1/4 (2003), s. 31-44 ISSN 0049-6979 R&D Projects: GA AV ČR IAA3012905 Institutional research plan: CEZ:AV0Z3012916 Keywords : anthropogenic ferrimagnetics * environmental magnetism * soil pollution Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.883, year: 2003

  17. Magnetic response of soils and vegetation to heavy metal pollution - a case study

    Czech Academy of Sciences Publication Activity Database

    Jordanova, N. V.; Jordanova, D. V.; Veneva, L.; Yorova, K.; Petrovský, Eduard

    2003-01-01

    Roč. 37, č. 19 (2003), s. 4417-4424 ISSN 0013-936X Grant - others:BMSE(BG) MU-F-1201/02 Institutional research plan: CEZ:AV0Z3012916 Keywords : environmental pollution * magnetometric method * heavy metals Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.592, year: 2003

  18. Non-scaled analogue modelling of AMS development during viscous flow: a simulation on diapir-like structures

    Czech Academy of Sciences Publication Activity Database

    Kratinová, Zuzana; Závada, P.; Hrouda, F.; Schulmann, K.

    2006-01-01

    Roč. 418, č. 1-2 (2006), s. 51-61 ISSN 0040-1951 R&D Projects: GA ČR GA205/03/0204 Institutional research plan: CEZ:AV0Z30120515 Keywords : analogue modelling * AMS * diapir Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.675, year: 2006

  19. Down-scaling of bituminous coal mining, restructuring of steel works and heavy engineering in the Ostrava region

    Czech Academy of Sciences Publication Activity Database

    Klusáček, Petr

    2005-01-01

    Roč. 13, č. 2 (2005), s. 3-12 ISSN 1210-8812 R&D Projects: GA AV ČR(CZ) IBS3086005 Institutional research plan: CEZ:AV0Z30860518 Keywords : Ostrava region * restructuring * steemaking and heavy industry * downscaling of coal-mining Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. Inventory of anthropogenic landforms for flood management in small catchments of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Slabá, E.; Jakubínský, Jiří; Báčová, R.; Herber, V.; Kubíček, P.

    2015-01-01

    Roč. 59, č. 2 (2015), s. 075-093 ISSN 0372-8854 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Anthropogenic landforms * fluvial geomorphology * flood risk * small catchments * landscape degradation Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.103, year: 2015

  1. Svahové deformace v Bílých Karpatech v oblasti Velké Javořiny a Velkého Lopeníku

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Roštínský, Pavel; Máčka, Z.

    s. 95-98. ISBN 978-80-7075-708-6. ISSN 0514-8057. [Svahové deformace a pseudokras. Vsetín, 29.05.2007-31.05.2007] Institutional research plan: CEZ:AV0Z30860518 Keywords : White Carpathiants Mts * slope deformations * structural conditions Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Vymezení a typologie postindustriální krajiny Česka

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Klimánek, M.

    2012-01-01

    Roč. 117, č. 3 (2012), s. 289-307 ISSN 1212-0014 Institutional support: RVO:68145535 Keywords : typology * post-industrial landscape * PIL mapping * Czechia Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.500, year: 2012 http:// geography .cz/sbornik/clanky-z-geografie-20123-ke-stazeni-251/

  3. Education of specialists-cartographers in Lviv Polytechnic National University

    Directory of Open Access Journals (Sweden)

    Наталія Ярема

    2017-09-01

    Full Text Available This paper describes the system of future specialists-cartographers education in Lviv polytechnic national university. Main targets of the department of cartography and geospatial modelling are listed. Key research areas of the department, the educational specifics of students at «Bachelor» and «Master‘s» levels are described. At present, the main task of the department is to train specialists with good knowledge of cartographic investigation method, GIS technologies, because digital cartography, web-mapping, web-portal are things of the future. Cartography specialists must know how to create traditional maps (topographic, thematic, tourist using computer technologies and electronic maps that can be used in the creation of GIS systems, informational resources in navigation, military affairs and so on. The main scientific direction of the department is general geographic and thematic mapping, GIS mapping and development of GIS, history of the cartography, mathematic modelling in geodesy, astronomy and geophysics. The department trains bachelors on specialty 103 «Earth sciences», specialization 103.02 «Cartography». The feature of master’s education is maximum approach to education content for future employment. Master degree students are improving their professional knowledge and skills received during their study for the bachelor’s degree. They are deeply studying modern methods of cartographic digital terrain models with GIS technologies, combining their work with development of cartographic databases. They get acquainted with the principles of base sets of geospatial data, conduct thematic evaluation and forecast maps, using GIS. The students also study methods and order of design, edition, and maps development in detail. Modern mapping needs to be more efficient in the use of both natural and human resources, reflect a complex system man - society - environment. Such problem can be solved using various modeling techniques with

  4. Regionální diferenciace rozvoje větrné energetiky

    Czech Academy of Sciences Publication Activity Database

    Frantál, Bohumil; Nováková, Eva

    2017-01-01

    Roč. 4, č. 4 (2017), s. 18-20 ISSN 1803-0394 R&D Projects: GA ČR GA16-04483S Institutional support: RVO:68145535 Keywords : wind energy * spatial patterns * regional differentiation Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Environmental sciences (social aspects) http://energie21.cz/

  5. A magnetotelluric profile across the German Deep Drilling Project (KTB) area: Two- and three-dimensional modeling results

    Czech Academy of Sciences Publication Activity Database

    Eisel, M.; Haak, V.; Pek, Josef; Červ, Václav

    2001-01-01

    Roč. 106, B8 (2001), s. 16061-16073 ISSN 0148-0227 R&D Projects: GA ČR GA205/99/0917 Institutional research plan: CEZ:AV0Z3012916 Keywords : magnetotelluric profile * KTB * German Deep Drilling Project Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.609, year: 2001

  6. The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru

    Czech Academy of Sciences Publication Activity Database

    Klimeš, Jan; Benešová, M.; Vilímek, V.; Bouška, P.; Rapre, A.C.

    2014-01-01

    Roč. 71, č. 3 (2014), s. 1617-1638 ISSN 0921-030X R&D Projects: GA ČR(CZ) GAP209/11/1000 Institutional support: RVO:67985891 Keywords : GLOFs * debris flow * natural hazard * HEC-RAS * Cordillera Blanca Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.719, year: 2014

  7. South-Moravian Rural Borderland

    Czech Academy of Sciences Publication Activity Database

    Vaishar, A.; Šťastná, M.; Trnka, P.; Dvořák, Petr; Zapletalová, Jana

    2013-01-01

    Roč. 5, č. 2 (2013), s. 115-132 ISSN 1803-8417 Institutional support: RVO:68145535 Keywords : borderland * landscape * rural settlement * economy * Moravia Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.degruyter.com/view/j/euco.2013.5.issue-2/euco-2013-0008/euco-2013-0008.xml?format=INT

  8. Metody urgentního mapování v krizových situacích s využitím komunitních a participativních nástrojů GIS

    Czech Academy of Sciences Publication Activity Database

    Trojan, Jakub

    2015-01-01

    Roč. 2, č. 2 (2015), s. 1-6 ISSN 1804-1795 Institutional support: RVO:68145535 Keywords : crisis mapping * participative GIS * geoinformatics * crisis management * Ushahidi Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://trilobit.fai.utb.cz/metody-urgentniho-mapovani-v-krizovych-situacich-s-vyuzitim-komunitnich-a-participativnich-nastroju-gis

  9. Magnetometric method as a tool of measuring pollution of forest soils by heavy metals - example of the Orlické hory Mts

    Czech Academy of Sciences Publication Activity Database

    Semelová, V.; Fialová, Hana; Kapička, Aleš; Kacálek, D.

    2009-01-01

    Roč. 55, č. 4 (2009), s. 385-393 ISSN 0323-1046 R&D Projects: GA ČR GA205/07/0941 Institutional research plan: CEZ:AV0Z30120515 Keywords : atmospheric deposition * forest soils * magnetic susceptibility * heavy metals * Orlické hory Mts. Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  10. Strongly magnetic soil developed on a non-magnetic rock basement: A case study from NW Bulgaria

    Czech Academy of Sciences Publication Activity Database

    Grison, Hana; Petrovský, Eduard; Jordanova, N.; Kapička, Aleš

    2011-01-01

    Roč. 55, č. 4 (2011), s. 697-716 ISSN 0039-3169 R&D Projects: GA AV ČR(CZ) KJB300120604 Institutional research plan: CEZ:AV0Z30120515 Keywords : magnetic susceptibility * magnetite * soil * pollution * climate * limestone Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.700, year: 2011

  11. Out-of-phase magnetic susceptibility and environmental magnetism

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.

    2016-01-01

    Roč. 18 (2016), EGU2016-6808 ISSN 1607-7962. [European Geosciences Union General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985831 Keywords : paleomagnetism * magnetic susceptibility * environmental magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2016/EGU2016-6808.pdf

  12. Correlation between anisotropy of frequency-dependent susceptibility and anisotropy of out-of-phase susceptibility in loess/paleosol sequences

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin; Hrouda, F.; Kadlec, Jaroslav; Ježek, J.

    2016-01-01

    Roč. 18 (2016), EGU2016-7053 ISSN 1607-7962. [European Geosciences Union General Assembly 2016. 17.04.2016-22.04.2016, Vienna] Institutional support: RVO:67985831 ; RVO:67985530 Keywords : palaeomagnetism * magnetic sdusceptibility * AMS Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2016/EGU2016-7053.pdf

  13. An account of the bio- and magnetostratigraphy of the Upper Tithonian—Lower Berriasian interval at Le Chouet, Drôme (SE France)

    Czech Academy of Sciences Publication Activity Database

    Wimbledon, W. A. P.; Reháková, D.; Pszczółkowski, A.; Casellato, K.; Halásová, E.; Frau, C.; Bulot, L. G.; Grabowski, J.; Sobien, K.; Pruner, Petr; Schnabl, Petr; Čížková, Kristýna

    2013-01-01

    Roč. 64, č. 6 (2013), s. 437-460 ISSN 1335-0552 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : Tithonian * Berriasian * integrated biostratigraphy * magnetostratigraphy * microfacies * ammonites * calcareous nannofossils * calcareous dinoflagellates * calpionellids Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.835, year: 2013

  14. Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians)

    Czech Academy of Sciences Publication Activity Database

    Tábořík, Petr; Lenart, J.; Blecha, V.; Vilhelm, J.; Turský, O.

    2017-01-01

    Roč. 276, JAN 1 (2017), s. 59-70 ISSN 0169-555X Institutional support: RVO:67985891 Keywords : multidisciplinary geophysical survey * deep-seated landslide * integrated interpretation * counter-slope scarp * underground discontinuities * flysch rock Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.958, year: 2016

  15. Mineral magnetic environmental record in clastic cave deposits

    Czech Academy of Sciences Publication Activity Database

    Šlechta, Stanislav; Kadlec, Jaroslav

    2008-01-01

    Roč. 38, special issue (2008), s. 134-134 ISSN 1335-2806. [Paleo, Rock and Environmental Magnetism. Castle Meeting /11./. 22.06.2008-28.06.2008, Bojnice] Institutional research plan: CEZ:AV0Z30130516 Keywords : mineral magnetic environmental reconstruction * cave sediments * Moravian Karst Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  16. Decadal Cycles of Earth Rotation, Mean Sea Level and Climate, Excited by Solar Activity

    Czech Academy of Sciences Publication Activity Database

    Chapanov, Y.; Ron, Cyril; Vondrák, Jan

    2017-01-01

    Roč. 14, č. 2 (2017), s. 241-250 ISSN 1214-9705 R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : Earth rotation * solar activity * mean sea level Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.699, year: 2016

  17. Spatio-temporal patterns of recurrent slope instabilities affecting undercut slopes in flysch: A dendrogeomorphic approach using broad-leaved trees

    Czech Academy of Sciences Publication Activity Database

    Šilhán, K.; Pánek, T.; Turský, O.; Brázdil, R.; Klimeš, Jan; Kašičková, L.

    2014-01-01

    Roč. 213, MAY 15 (2014), s. 240-254 ISSN 0169-555X Institutional support: RVO:67985891 Keywords : dendrogeomorphology * tree-ring eccentricity * bedrock landslides * hydrometeorological triggers Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.577, year: 2013 http://www.sciencedirect.com/science/article/pii/S0169555X14000506

  18. Sinchronnyje magnitotelluričeskije i magnitovariacionnyje zondirovanija na zapadnom skloně Voroněžskogo massiva

    Czech Academy of Sciences Publication Activity Database

    Varencov, I. M.; Kováčiková, Světlana; Kulikov, V. A.; Logvinov, I. M.; Tregubenko, V. I.; Jakovlev, A. G.

    2012-01-01

    Roč. 34, č. 4 (2012), s. 90-107 ISSN 0203-3100 R&D Projects: GA ČR GAP210/10/2227 Institutional research plan: CEZ:AV0Z30120515 Keywords : synchronous MT and MV soundings * project KIROVOGRAD * western slope of Voronezh Massive Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  19. Magnetic scanning and interpretation of paleomagnetic data from Prague Synform’s volcanics

    Czech Academy of Sciences Publication Activity Database

    Kletetschka, Günther; Schnabl, Petr; Šifnerová, Kristýna; Tasáryová, Z.; Manda, Š.; Pruner, Petr

    2013-01-01

    Roč. 57, č. 1 (2013), s. 103-117 ISSN 0039-3169 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 Keywords : paleomagnetism * magnetic scanner * magnetic mineralogy * amygdales * magnetic anomalies * magnetic texture * Barrandian Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.752, year: 2013

  20. Dendrochronological records of the floodplain morphology transformation of Desná river valley in the last 150 years, The Hrubý Jeseník Mts., Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hrádek, Mojmír

    2007-01-01

    Roč. 15, č. 3 (2007), s. 2-15 ISSN 1210-8812 R&D Projects: GA AV ČR IAA300860601 Institutional research plan: CEZ:AV0Z30860518 Keywords : floodplain morphology * palaeochannels * historical floods * tree ring reductions * abrupt growth release * exposed roots Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  1. Determination of extent of the subsiding areas in the Czech part of Upper Silesian Basin

    Czech Academy of Sciences Publication Activity Database

    Kadlečík, Pavel; Kajzar, Vlastimil; Marek, Tomáš

    -, Part 2 (2012), s. 715-721 ISSN 1314-2704. [International Multidisciplinary Scientific GeoConference & EXPO SGEM 2012 /12./. Albena, 17.06.2012-23.06.2012] Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z30860518 Keywords : Upper Silesian Basin * mining * subsidence Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Perception of Urban Renewal: Reflexions and Coherences of Socio-Spatial Patterns (Brno, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Kunc, J.; Navrátil, J.; Tonev, P.; Frantál, Bohumil; Klusáček, Petr; Martinát, Stanislav; Havlíček, M.; Černík, J.

    2014-01-01

    Roč. 9, č. 1 (2014), s. 66-77 ISSN 2065-4421 R&D Projects: GA MŠk EE2.3.20.0025 Institutional support: RVO:68145535 Keywords : urban environment * revitalization * perception * Brno * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://technicalgeography.org/pdf/1_2014/07_kunc.pdf

  3. Gorstian palaeoposition and geotectonic setting of Suchomasty Volcanic Centre (Silurian, Prague Basin, Teplá-Barrandian Unit, Bohemian Massif)

    Czech Academy of Sciences Publication Activity Database

    Tasáryová, Z.; Schnabl, Petr; Čížková, Kristýna; Pruner, Petr; Janoušek, V.; Rapprich, V.; Štorch, Petr; Manda, Š.; Frýda, J.; Trubač, J.

    2014-01-01

    Roč. 136, č. 1 (2014), s. 262-265 ISSN 1103-5897 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 Keywords : basalt geochemistry * Gorstian * palaeolatitude * Prague Basin * Silurian * Suchomasty Volcanic Centre Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.309, year: 2014

  4. Out-of-phase susceptibility and viscous magnetization: alternative tools for magnetic granulometry of sediments and soils

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin

    2016-01-01

    Roč. 6, Special issue (2016) ISSN 2007-9656. [Biennial Meeting Latinmag /4./. 23.11.2015-27.11.2015, Sao Paulo] Institutional support: RVO:67985831 Keywords : palaeomagnetism * sediments * soils Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www. geofisica .unam.mx/LatinmagLetters/LL16-01-SP/D/D07.pdf

  5. Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: examples from regions with different historical development

    Czech Academy of Sciences Publication Activity Database

    Raška, P.; Klimeš, Jan; Ďubišar, J.

    2015-01-01

    Roč. 26, č. 2 (2015), s. 142-157 ISSN 1085-3278 R&D Projects: GA ČR GP205/09/P383 Institutional support: RVO:67985891 Keywords : landslides * rockfalls * landslide inventory * documentary sources * historical geomorphology * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 8.145, year: 2015

  6. Landscape Painting in Evaluation of Changes in Landscape

    Czech Academy of Sciences Publication Activity Database

    Lacina, Jan; Halas, Petr

    2015-01-01

    Roč. 8, č. 2 (2015), s. 60-68 ISSN 1803-2427 Institutional support: RVO:68145535 Keywords : landscape painting * landscape ecology * land-use changes * biodiversity Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.degruyter.com/view/j/jlecol.2015.8.issue-2/jlecol-2015-0009/jlecol-2015-0009. xml

  7. Geomorphologic impacts of the glacial lake outburst flood from Lake No. 513 (Peru)

    Czech Academy of Sciences Publication Activity Database

    Vilímek, V.; Klimeš, Jan; Emmer, A.; Benešová, M.

    2015-01-01

    Roč. 73, č. 9 (2015), s. 5233-5244 ISSN 1866-6280 R&D Projects: GA ČR(CZ) GAP209/11/1000 Institutional support: RVO:67985891 Keywords : GLOF * debris flow * natural hazard * deglaciation * Cordillera Blanca * Peru Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.765, year: 2014

  8. Grain size distribution of soils within the Cordillera Blanca, Peru: An indicator of basic mechanical properties for slope stability evaluation

    Czech Academy of Sciences Publication Activity Database

    Novotný, J.; Klimeš, Jan

    2014-01-01

    Roč. 11, č. 3 (2014), s. 563-577 ISSN 1672-6316 R&D Projects: GA ČR(CZ) GAP209/11/1000 Institutional support: RVO:67985891 Keywords : moraines * grain size distribution * shear strength * hydraulic conductivity * Cordillera Blanca Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.963, year: 2014

  9. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    Science.gov (United States)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  10. Effect of hydrocarbon-contaminated fluctuating groundwater on magnetic properties of shallow sediments

    Czech Academy of Sciences Publication Activity Database

    Ameen, N. N.; Klueglein, N.; Appel, E.; Petrovský, Eduard; Kappler, A.; Leven, C.

    2014-01-01

    Roč. 58, č. 3 (2014), s. 442-460 ISSN 0039-3169 R&D Projects: GA MŠk(CZ) LG13042 Institutional support: RVO:67985530 Keywords : environmental magnetism * magnetic susceptibility * groundwater table fluctuation * hydrocarbon contamination * magnetite formation Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  11. Analysis of the development of land use in the Morava River floodplain, with special emphasis on the landscape matrix

    Czech Academy of Sciences Publication Activity Database

    Kilianová, H.; Pechanec, V.; Brus, J.; Kirchner, Karel; Machar, I.

    2017-01-01

    Roč. 25, č. 1 (2017), s. 35-48 ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : historical maps * land use changes * floodplain * Morava River * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.149, year: 2016 http://www.geonika.cz/mgr.html#articles

  12. Snow avalanche hazard of the Krkonose National Park, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Blahůt, Jan; Klimeš, Jan; Balek, Jan; Hájek, P.; Červená, L.; Lysák, J.

    2017-01-01

    Roč. 13, č. 2 (2017), s. 86-90 ISSN 1744-5647 R&D Projects: GA MV VG20132015115 Institutional support: RVO:67985891 Keywords : snow avalanches * hazard * inventory * hazard mitigation * Krkonoše Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.174, year: 2016

  13. Township boundaries and the colonization of the Moravian landscape

    Czech Academy of Sciences Publication Activity Database

    Szabó, Péter; Šipoš, Jan; Müllerová, Jana

    2017-01-01

    Roč. 57, JUL 2017 (2017), s. 89-99 ISSN 0305-7488 R&D Projects: GA ČR(CZ) GA15-11805S Institutional support: RVO:67985939 Keywords : settlement morphology * township size * historical GIS Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.772, year: 2016

  14. Scientific values of landforms as the basis for the declaration of protected sites (a case study of Mt. Kraví hora in the Novohradské hory Mts., Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Rypl, J.; Kirchner, Karel

    2017-01-01

    Roč. 15, č. 3 (2017), s. 1537-1550 ISSN 1589-1623 Institutional support: RVO:68145535 Keywords : geomorphological inventory * geomorphologically significant sites * geoeducation * geotourism * geoconservation Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.681, year: 2016 http://www.aloki.hu/pdf/1503_15371550.pdf

  15. Landscape of Dolní Kounice from the perspective of the authors of the Franciscan (“Stabile”) Cadastre

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Petr

    2010-01-01

    Roč. 11, č. 2 (2010), s. 3-17 ISSN 0300-5402 Institutional research plan: CEZ:AV0Z30860518 Keywords : landscape * Franciscan Cadastre * land use changes Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://web.natur.cuni.cz/ksgrrsek/acta/2010/AUC_2010_45_Dvorak_Landscape_of_Dolni.pdf

  16. Local expert experiences and perceptions of environmentally induced migration from Bangladesh to India

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Boas, I.; Kelman, I.; Duží, Barbora

    2017-01-01

    Roč. 58, č. 3 (2017), s. 347-361 ISSN 1360-7456 Institutional support: RVO:68145535 Keywords : perception * migration * climate change Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Cultural and economic geography Impact factor: 1.212, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/apv.12156/full

  17. Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Kapička, Aleš; Jordanova, Neli; Borůvka, L.

    2001-01-01

    Roč. 48, č. 2 (2001), s. 12-136 ISSN 0926-9851 R&D Projects: GA ČR GA205/96/0260 Institutional research plan: CEZ:AV0Z3012916 Keywords : magnetic properties * alluvial soil * heavy metals Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.390, year: 2001

  18. New results for Palaeozoic volcanic phases in the Prague Basin – magnetic and geochemical studies of Lištice, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Elbra, Tiiu; Schnabl, Petr; Tasáryová, Z.; Čížková, Kristýna; Pruner, Petr

    2015-01-01

    Roč. 64, č. 1 (2015), s. 31-35 ISSN 1736-4728 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 Keywords : Teplá–Barrandian Unit * Prague Basin * palaeomagnetism * rock magnetism * geochemistry Subject RIV: DE - Earth Magnetism , Geodesy, Geography Impact factor: 0.732, year: 2015

  19. Post-industrial landscapes in the Czech Republic - A GIS assisted search for present state

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Klimánek, M.

    2012-01-01

    Roč. 6, č. 2 (2012), s. 7-16 ISSN 1843-5920 R&D Projects: GA AV ČR IAA300860903 Keywords : post-industrial landscape * identification criteria * GIS classification and typology * territorial distribution Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://geographianapocensis.acad-cluj.ro/Revista/Revista_eng/index.htm

  20. Regional identities of Czech historical lands

    Czech Academy of Sciences Publication Activity Database

    Vaishar, Antonín; Zapletalová, Jana

    2016-01-01

    Roč. 65, č. 1 (2016), s. 15-25 ISSN 2064-5031 Institutional support: RVO:68145535 Keywords : regional identity * administrative division * historical lands * Bohemia * Moravia - Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.mtafki.hu/konyvtar/kiadv/HunGeoBull2016/HunGeoBull_65_1_2.pdf

  1. Coherence of Czech migration and development policy at the beginning of a recession (2008–2010)

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Duží, Barbora; Bureš, O.

    2016-01-01

    Roč. 121, č. 3 (2016), s. 419-436 ISSN 1212-0014 Institutional support: RVO:68145535 Keywords : international migration * development policy * migration policy Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.580, year: 2016 http://geography.cz/sbornik/wp-content/uploads/downloads/2016/10/gcgs032016_stojanov.pdf

  2. Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Pánek, T.; Brázdil, R.; Klimeš, Jan; Smolková, V.; Hradecký, J.; Zahradníček, P.

    2011-01-01

    Roč. 8, č. 4 (2011), s. 507-516 ISSN 1612-510X Institutional research plan: CEZ:AV0Z30460519 Keywords : extreme precipitation * rockslide * recurrent landslides Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.216, year: 2011 http://www.springerlink.com/content/j61p137053130xj1/

  3. Energogeografická regionalizace území České republiky

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír

    2009-01-01

    Roč. 28, č. 1 (2009), s. 3-8 Grant - others:GA MŽP SK/600/1/03 Institutional research plan: CEZ:AV0Z30860518 Keywords : natural * energy * region Subject RIV: DE - Earth Magnetism, Geodesy, Geography http:// geography .cz/wp-content/uploads/2009/10/icgs012009_kolejka2.pdf

  4. The Post-Industrial Landscape In Relation To Local Self-Government In The Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Klusáček, Petr; Krejčí, Tomáš; Kunc, Josef; Martinát, Stanislav; Nováková, Eva

    2011-01-01

    Roč. 19, č. 4 (2011), s. 18-28 ISSN 1210-8812 R&D Projects: GA AV ČR IAA300860903 Institutional research plan: CEZ:AV0Z30860518 Keywords : brownfields redevelopment * municipalities * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/CZ/CZresearch/CZMgrArchive.html

  5. The response of the 11 August 1999 total solar eclipse in the geomagnetic field

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    85-86, 1/3 (2001), s. 561-566 ISSN 0167-9295 R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic pulsations * geomagnetic variations * total solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.457, year: 2001

  6. Geomagnetic Pc3 pulsations during the total solar eclipse on Aug 11, 1999

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav; Prikner, Karel

    2003-01-01

    Roč. 47, č. 3 (2003), s. 565-578 ISSN 0039-3169 R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic pulsations * solar eclipse * MHD waves Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.426, year: 2003

  7. Application of magnetic susceptibility as a paleoclimatic proxy on Paleozoic sedimentary rocks and characterization of the magnetic signal – IGCP-580 projects and event

    Czech Academy of Sciences Publication Activity Database

    da Silva, A-Ch.; Whalen, M. T.; Hladil, Jindřich; Koptíková, Leona; Chen, D.; Spassov, S.; Boulvain, F.; Devleeschouwer, X.

    2014-01-01

    Roč. 37, č. 2 (2014), s. 87-95 ISSN 0705-3797 Institutional support: RVO:67985831 Keywords : rock magnetism * high-resolution stratigraphy * palaeoclimatic archives * computing * Paleozoic * Phanerozoic * Recent Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.000, year: 2014 http://www.episodes.co.in/contents/2014/june/pp87-95.pdf

  8. Comparative Study of the Spherical Downward Continuation

    Czech Academy of Sciences Publication Activity Database

    Sebera, Josef; Pitoňák, M.; Hamáčková, E.; Novák, P.

    2015-01-01

    Roč. 36, č. 2 (2015), s. 253-267 ISSN 0169-3298 Grant - others:GA MŠk(CZ) CZ.1.05/1.1.00/02.0090 Institutional support: RVO:67985815 Keywords : limited airborne gravity * potential-field data * horizontal plane Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.622, year: 2015

  9. Semantic map: the case of Ústí nad Orlicí

    Czech Academy of Sciences Publication Activity Database

    Osman, Robert

    2016-01-01

    Roč. 121, č. 3 (2016), s. 463-492 ISSN 1212-0014 Institutional support: RVO:68145535 Keywords : image of the city * mental map * semantic map Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.580, year: 2016 http://geography.cz/sbornik/wp-content/uploads/downloads/2016/10/gcgs032016_osman.pdf

  10. Results of palaeomagnetic research of karst sediments in Slovenia

    Czech Academy of Sciences Publication Activity Database

    Zupan Hajna, N.; Mihevc, A.; Pruner, Petr; Bosák, Pavel

    2008-01-01

    Roč. 34, 4/6 (2008), s. 1324797-1324797 ISSN 0161-6951. [International Geological Congress /33./. 06.08.2008-14.08.2008, Oslo ] R&D Projects: GA AV ČR IAA300130701 Institutional research plan: CEZ:AV0Z30130516 Keywords : palaeomagnetism * magnetostratigraphy * cave sediments Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  11. Cycle Transport in Cities – Best Practices versus Brno

    Czech Academy of Sciences Publication Activity Database

    Kallabová, Eva; Navrátil, Josef; Zemanová, V.

    2009-01-01

    Roč. 17, č. 2 (2009), s. 16-27 ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : cycle transport, Brno * good examples * questionnaire survey * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.scopus.com/record/display.url?eid=2-s2.0-70449368206&origin=resultslist&sort

  12. Energy tourism: An emerging field of study

    Czech Academy of Sciences Publication Activity Database

    Frantál, Bohumil; Urbánková, R.

    -, 12/2014 (2014) ISSN 1368-3500 R&D Projects: GA MŠk EE2.3.20.0025 Institutional support: RVO:68145535 Keywords : energy tourism * industrial tourism * special interest tourism * energy landscapes Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.918, year: 2014 http://dx.doi.org/10.1080/13683500.2014.987734

  13. Environmental statement for Applications Technology Satellite program

    Science.gov (United States)

    1971-01-01

    The experiments, environmental impact, and applications of data collected by ATS are discussed. Data cover communications, navigation, meteorology, data collection (including data from small unattended remote stations such as buoys, seismology and hydrology monitors, etc.), geodesy, and scientific experiments to define the environment at synchronous orbit, and to monitor emissions from the sun.

  14. Accuracy and Sensitivity of a Method of Jump Detection, Evaluated by Simulated Time Series

    Czech Academy of Sciences Publication Activity Database

    Chapanov, Y.; Ron, Cyril; Vondrák, Jan

    2017-01-01

    Roč. 14, č. 1 (2017), s. 73-82 ISSN 1214-9705 R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : time series * data jump detection * high-sensitive method Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.699, year: 2016

  15. Fyzická geografie – vize české vědy pro 21. století

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Kolejka, Jaromír

    -, - (2009), s. 25-25 [Mezinárodní vědecká konference k 50. výročí geografie na PřF UP v Olomouci. 10.06.2009-11.06.2009, Olomouc] Institutional research plan: CEZ:AV0Z30860518 Keywords : physical geography * landscape Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  16. Effects of dwarf pine stands on slope deformation processes, as a basis for their management in the Hrubý Jeseník Mts

    Czech Academy of Sciences Publication Activity Database

    Roštínský, Pavel; Šenfeldr, M.; Maděra, P.

    2013-01-01

    Roč. 6, č. 1 (2013), s. 63-83 ISSN 1803-2427 Grant - others:GA MŠk(CZ) EE2.3.20.0004 Institutional support: RVO:68145535 Keywords : hazardous slope deformation * non-indigenous dwarf pine * management approach Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.journaloflandscapeecology.cz/index.php?page=issues

  17. Realnosť modeli bauns-dviženija volnovych paketov geomagnitnych pulsacij Pc1 v magnitosfere Zemli

    Czech Academy of Sciences Publication Activity Database

    Fejgin, F. Z.; Prikner, Karel; Nekrasov, A. K.

    2003-01-01

    Roč. 43, č. 6 (2003), s. 752-759 ISSN 0016-7940 Grant - others:INTAS(XE) 99-0335; RFFR(RU) 02-05-64610; RFFR(RU) 02-05-64612 Institutional research plan: CEZ:AV0Z3012916 Keywords : Pc1 bounce effect * ionosphere reflection coefficient * Poynting vector Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  18. Application of magnetic methods for assessment of soil restoration in the vicinity of metallurgical copper-processing plant in Bulgaria

    Czech Academy of Sciences Publication Activity Database

    Jordanova, N.; Petrovský, Eduard; Kapička, Aleš; Jordanova, D.; Petrov, P.

    2017-01-01

    Roč. 189, č. 4 (2017), 158/1-158/14 ISSN 0167-6369 R&D Projects: GA MŠk(CZ) LG15036 Institutional support: RVO:67985530 Keywords : environmental magnetism * copper mining * technosols * pedogenic magnetic minerals Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 1.687, year: 2016

  19. Character and dynamics of the floodplain of the Losenice River, Šumava Mts

    Czech Academy of Sciences Publication Activity Database

    Hartvich, Filip

    2008-01-01

    Roč. 13, č. 3 (2008), s. 237-249 ISSN 1211-7420 R&D Projects: GA AV ČR(CZ) KJB300460501 Grant - others:MŽP(CZ) SM/2/57/05 Institutional research plan: CEZ:AV0Z30460519 Keywords : floodplain * GIS delineation * flood consequences Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. Paleomagnetism and integrated stratigraphy of the Upper Berriasian hemipelagic succession in the Barlya section Western Balkan, Bulgaria: Implications for lithogenic input and paleoredox variations

    Czech Academy of Sciences Publication Activity Database

    Grabowski, J.; Lakova, I.; Petrova, S.; Stoykova, K.; Ivanova, D.; Wójcik-Tabol, P.; Sobien, K.; Schnabl, Petr

    2016-01-01

    Roč. 461, 1 November (2016), s. 156-177 ISSN 0031-0182 R&D Projects: GA ČR(CZ) GA16-09979S Institutional support: RVO:67985831 Keywords : biostratigraphy * carbon isotope stratigraphy * climate * magnetic susceptibility * magnetostratigraphy * sea-level changes Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.578, year: 2016

  1. Bouguer gravity anomalies for terrain modeling | Orupabo | Journal ...

    African Journals Online (AJOL)

    Gravity anomalies have been applied in geodesy to determine the geoid, and the associated composition and crustal properties of the earth. Applications of solution of the gravity inversion problems include the study of crustal dynamics as a result of the extraction of fluids in the form of oil, gas and water from ...

  2. Effects of anisotropy in geostrophic turbulence

    Czech Academy of Sciences Publication Activity Database

    Hejda, Pavel; Reshetnyak, M.

    2009-01-01

    Roč. 177, č. 3-4 (2009), s. 152-160 ISSN 0031-9201 R&D Projects: GA AV ČR IAA300120704 Institutional research plan: CEZ:AV0Z30120515 Keywords : liquid core * thermal convection * geostrophic balance * cascade processes Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.993, year: 2009

  3. 882 lakes of the Cordillera Blanca: An inventory, classification, evolution and assessment of susceptibility to outburst floods

    Czech Academy of Sciences Publication Activity Database

    Emmer, Adam; Klimeš, Jan; Mergili, M.; Vilímek, V.; Cochachin, A.

    2016-01-01

    Roč. 147, DEC (2016), s. 269-279 ISSN 0341-8162 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67985891 ; RVO:67179843 Keywords : high mountain lakes * GLOFs * environmental change * natural dams * Huascarán NP Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 3.191, year: 2016

  4. Assessment of wind turbines impact on landscape character and landscape planning

    Czech Academy of Sciences Publication Activity Database

    Cetkovský, Stanislav; Nováková, Eva

    2009-01-01

    Roč. 17, č. 2 (2009), s. 28-34 ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : landscape character * wind turbines * landscape planning * GIS * visualisation * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.scopus.com/record/display.url?eid=2-s2.0-70449368205&origin

  5. Modeling of CME and CIR driven geomagnetic storms by means of artificial neural networks

    Czech Academy of Sciences Publication Activity Database

    Revallo, M.; Valach, F.; Hejda, Pavel; Bochníček, Josef

    2015-01-01

    Roč. 45, č. 1 (2015), s. 53-65 ISSN 1335-2806 Institutional support: RVO:67985530 Keywords : space weather * coronal mass ejections * corotating interaction regions * geomagnetic storms * magnetosphere Subject RIV: DE - Earth Magnetism, Geodesy, Geography https://www.degruyter.com/downloadpdf/j/congeo.2015.45.issue-1/congeo-2015-0013/congeo-2015-0013.pdf

  6. On the state of the TM 71 extensometer monitoring in Slovenia: seven years of micro-tectonic displacement measurements

    Czech Academy of Sciences Publication Activity Database

    Gosar, A.; Šebela, S.; Košťák, Blahoslav; Stemberk, Josef

    2011-01-01

    Roč. 8, č. 4 (2011), s. 389-402 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : geodynamics * TM 71 extensometer * micro-tectonic displacements Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/04_11/2_Gosar.pdf

  7. Czech Post-industrial Landscapes in the Border Zone with Austria: Identification, Typology nad Value

    Czech Academy of Sciences Publication Activity Database

    Kolejka, Jaromír; Klimánek, M.; Hrádek, Mojmír; Kirchner, Karel

    2017-01-01

    Roč. 159, č. 159 (2017), s. 221-242 ISSN 0029-9138 R&D Projects: GA AV ČR IAA300860903 Institutional support: RVO:68145535 Keywords : post-industrial landscape * mapping * GIS * border zone with Austria * classification Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.167, year: 2016

  8. Dimensions of a Planet.

    Science.gov (United States)

    Hayward, O. T.; And Others

    This publication is one of a series of single-topic problem modules designed for use in undergraduate geology and earth science courses. The first section, "Ain't It Flat? A Series of Experiments in Geodesy," presents various experiments for determining the earth's circumference (historically) and describes the use of satellites in determining the…

  9. Anisotropies of field-dependent in-phase and out-of-phase magnetic susceptibilities of some pyrrhotite-bearing rocks

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.

    2017-01-01

    Roč. 19, EGU General Assembly 2017 (2017) ISSN 1029-7006. [European Geosciences Union General Assembly. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility * field-dependent susceptibility * pyrrhotite Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2017/EGU2017-7091.pdf

  10. The Path From Passivity Toward Entrepreneurship: Public Sector Actors in Brownfield Regeneration Processes in Central Eastern Europe

    Czech Academy of Sciences Publication Activity Database

    Alexandrescu, F.; Martinát, Stanislav; Klusáček, Petr; Bartke, S.

    2014-01-01

    Roč. 27, č. 2 (2014), s. 181-201 ISSN 1086-0266 Institutional support: RVO:68145535 Keywords : brownfield regeneration * institutional entrepreneurs * Tailored Improvement of Brownfield Regeneration in Europe Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.386, year: 2013 http://oae.sagepub.com/content/27/2/181.full.pdf+html

  11. Predikce rizika vzniku přívalové povodně s využitím dat meteorologických radarů

    Czech Academy of Sciences Publication Activity Database

    Rapant, P.; Kolejka, Jaromír; Inspektor, T.

    2016-01-01

    Roč. 50, č. 3 (2016), s. 162-166 ISSN 0044-4863 R&D Projects: GA MV VG20132015106 Institutional support: RVO:68145535 Keywords : flash floods * prediction * weather radar * early warning Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://147.213.211.222/sites/ default /files/2016_3_162_166_Rapant_a_kol.pdf

  12. A support for the existence of paleolakes and paleorivers buried under Saharan sand by means of “gravitational signal” from EIGEN 6C4

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Kostelecký, J.; Cílek, Václav; Bezděk, Aleš; Pešek, I.

    2017-01-01

    Roč. 10, č. 9 (2017), 199/1-199/28 ISSN 1866-7511 Institutional support: RVO:67985815 ; RVO:67985831 Keywords : gravitational field model EIGEN 6C4 * functions of disturbing geopotential * satellite digital topography models Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography; Geology (GLU-S) Impact factor: 0.955, year: 2016

  13. Social developmnet of ecologically sensitive rural areas: Case studies of the Moravian Karst (Czech Republic) and the Devetashko Plato (Bulgaria)

    Czech Academy of Sciences Publication Activity Database

    Zapletalová, Jana; Stefanová, D.; Vaishar, Antonín; Stefanov, P.; Dvořák, Petr; Tcherkezova, E.

    3-4, 3-4 (2016), s. 65-84 ISSN 0204-7209 Institutional support: RVO:68145535 Keywords : social development * rural sensitive areas * Devetashko Plato * Bulgaria * Moravian karst - Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Cultural and economic geography http://geoproblems.eu/wp-content/uploads/2017/04/2016_34/4_zapletalova.pdf

  14. Vývoj antropogenních transformací reliéfu v oblasti historického Dolu Jeroným ve Slavkovském lese

    Czech Academy of Sciences Publication Activity Database

    Kirchner, Karel; Roštínský, Pavel

    Prosinec, č. 2012 (2013), s. 132-136 ISSN 0514-8057 R&D Projects: GA ČR GA105/09/0089 Institutional support: RVO:68145535 Keywords : Slavkovský les Mts. * Historical Jeroným Mine * anthropogenic landforms Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geology.cz/zpravy/obsah/2012/Zpravy_2012-24.pdf

  15. Magnetic characteristics and trace elements concentration in soils from Anthemountas River basin (North Greece): discrimination of different sources of magnetic enhancement

    Czech Academy of Sciences Publication Activity Database

    Aidona, E.; Grison, Hana; Petrovský, Eduard; Kazakis, N.; Papadopoulou, L.; Voudouris, K.

    2016-01-01

    Roč. 75, č. 20 (2016), 1375/1-1375/16 ISSN 1866-6280 R&D Projects: GA ČR GA13-10775S; GA MŠk(CZ) LG15036 Institutional support: RVO:67985530 Keywords : magnetic susceptibility * day plot * trace elements * pollution * Greece Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.569, year: 2016

  16. A Model for the Identification of Areas Favourable for the Development of Tourism: A Case Study of the Šumava Mts. and South Bohemia Tourist Regions (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Navrátil, J.; Pícha, K.; Martinát, Stanislav; Knotek, J.; Kučera, T.; Balounová, Z.; White Baravalle Gilliam, V. L.; Švec, R.; Rajchard, J.

    2013-01-01

    Roč. 21, č. 1 (2013), s. 25-40 ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : GIS * tourism * Czech Republic * Šumava Mts. and South Bohemia tourist regions * development Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.341, year: 2013 http://www.geonika.cz/EN/research/ENMgr/MGR_2013_01.pdf

  17. Geodetic alignment of laser power installations

    International Nuclear Information System (INIS)

    Shtorm, V.V.; Gostev, A.M.; Drobikov, A.V.

    1989-01-01

    Main problems occuring in applied geodesy under initial alignment of laser power installation optical channel are considered. Attention is paid to alignment of lens beamguide telescopic pairs and alignment quality control. Methods and means of geodetic measurements under alignment are indicated. Conclusions are made about the degree of working through certain aspects of the problem

  18. Možnosti studia antropogenních změn říční sítě na příkladech z povodí Sázavy a Svitavy

    Czech Academy of Sciences Publication Activity Database

    Svobodová, E.; Kirchner, Karel

    2013-01-01

    Roč. 47, č. 3 (2013), s. 172-174 ISSN 0044-4863 Institutional support: RVO:68145535 Keywords : anthropogenic changes * river bed * quantification human impact * protected areas Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.elis.sk/index.php?page=shop.browse&category_id=41&option=com_virtuemart&Itemid=1&vmcchk=1&Itemid=1

  19. Local perceptions of climate change impacts and migration patterns in Malé, Maldives

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Duží, Barbora; Kelman, I.; Němec, D.; Procházka, D.

    2017-01-01

    Roč. 183, č. 4 (2017), s. 370-385 ISSN 0016-7398 Institutional support: RVO:68145535 Keywords : Maldives * climate change impacts * migration * risk management * quantitative survey Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Cultural and economic geography Impact factor: 3.132, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/geoj.12177/abstract

  20. Recent evolution and degradation of the bent Jatunraju glacier (Cordillera Blanca, Peru)

    Czech Academy of Sciences Publication Activity Database

    Emmer, A.; Loarte, E.C.; Klimeš, Jan; Vilímek, V.

    2015-01-01

    Roč. 228, JAN 1 (2015), s. 345-355 ISSN 0169-555X R&D Projects: GA ČR(CZ) GAP209/11/1000 Institutional support: RVO:67985891 Keywords : debris-covered glacier * rock glacier * surface movements * buried ice degradation * supraglacial lakes Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.813, year: 2015

  1. Geomorphological inventory of rock landforms on Mt. Kamenec in the Novohradské hory Mts. (the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Rypl, J.; Kirchner, Karel; Dvořáčková, S.

    2014-01-01

    Roč. 9, č. 3 (2014), s. 253-260 ISSN 1842-4090 Institutional support: RVO:68145535 Keywords : Novohradské hory Mts. * large protection * Mt. Kamenec * GPS mapping * geomorphological inventory Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.630, year: 2014 http://www.ubm.ro/sites/CJEES/viewTopic.php?topicId=464

  2. Bloková svahová deformace v krystalických horninách v údolí Svratky severozápadně od Tišnova

    Czech Academy of Sciences Publication Activity Database

    Roštínský, Pavel; Kirchner, Karel

    2006-01-01

    Roč. 111, č. 2 (2006), s. 217-220 ISSN 1210-115X. [Svahové deformace a pseudokras. Ostravice, 10.05.2006-13.05.2006] R&D Projects: GA ČR(CZ) GA205/03/0211 Keywords : Svratka river valley * slope deformations * crystalline rocks * tectonics * pseudokarst forms Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  3. Targeted selection of brownfields from portfolios for sustainable regeneration: User experiences from five cases testing the Timbre\

    Czech Academy of Sciences Publication Activity Database

    Bartke, S.; Martinát, Stanislav; Klusáček, Petr; Pizzol, L.; Alexandrescu, F.; Frantál, Bohumil; Critto, A.; Zabeo, A.

    2016-01-01

    Roč. 184, č. 1 (2016), s. 94-107 ISSN 0301-4797 R&D Project s: GA MŠk(CZ) 7E11035 Institutional support: RVO:68145535 Keywords : brownfields * prioritisation * sustainability Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.010, year: 2016 http://dx.doi.org/10.1016/j.jenvman.2016.07.037

  4. Geodynamic evolution of Permian to Neogene rock formations in the W. Carpathians based on summary of previously and recently derived palaeomagnetic data

    Czech Academy of Sciences Publication Activity Database

    Krs, Miroslav; Krsová, M.; Pruner, Petr; Man, Otakar; Venhodová, Daniela

    1998-01-01

    Roč. 16, Supplement 1, Part 1 (1998), s. C 221 ISSN 0992-7689. [European Geophysical Society General Assembly /23./. Nice, 20.04.1998-24.04.1998] R&D Projects: GA AV ČR KSK1042603; GA AV ČR KSK1012601 Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.423, year: 1998

  5. Clastic cave deposits in Botovskaya cave (Eastern Siberia, Russian Federation)

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jaroslav; Chadima, Martin; Lisá, Lenka; Hercman, H.; Osintsev, A.; Oberhänsli, H.

    2008-01-01

    Roč. 70, č. 3 (2008), s. 142-155 ISSN 1090-6924 Institutional research plan: CEZ:AV0Z30130516 Keywords : cave sediments * mineral magnetism * Botovskaya Cave Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.532, year: 2008 http://www.caves.org/pub/journal/Journal_of_Cave_and_Karst_Studies_volume_70.htm

  6. Brownfield regeneration from the perspective of residents: Place circumstances versus character of respondents

    Czech Academy of Sciences Publication Activity Database

    Martinát, S.; Navrátil, J.; Pícha, K.; Turečková, K.; Klusáček, Petr

    2017-01-01

    Roč. 9, č. 2 (2017), s. 71-92 ISSN 1821-2506 R&D Projects: GA ČR(CZ) GA17-26934S Institutional support: RVO:68145535 Keywords : brownfields * regeneration * perception Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Environmental sciences (social aspects) http://www.deturope.eu/index.php?navi=101&vol=26

  7. Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions in the intervals 1840–1905 and 1980–2045

    Czech Academy of Sciences Publication Activity Database

    Charvátová, Ivanka

    2009-01-01

    Roč. 14, č. 1 (2009), s. 25-30 ISSN 1384-1076 R&D Projects: GA AV ČR(CZ) IAA300120608 Institutional research plan: CEZ:AV0Z30120515 Keywords : solar inertial motion * solar activity * geomagnetic activity * long-term predictive assessments Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.675, year: 2009

  8. Glacier-related landforms and glacial lakes in Huascarán National Park, Peru

    Czech Academy of Sciences Publication Activity Database

    Vilímek, V.; Klimeš, Jan; Červená, L.

    2016-01-01

    Roč. 12, č. 1 (2016), s. 193-202 ISSN 1744-5647 R&D Projects: GA ČR(CZ) GAP209/11/1000 Institutional support: RVO:67985891 Keywords : moraines * rock glaciers * glacial lakes * Cordillera Blanca * Huascarán National Park * Peru Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.174, year: 2016

  9. Targeted selection of brownfields from portfolios for sustainable regeneration: User experiences from five cases testing the Timbre\

    Czech Academy of Sciences Publication Activity Database

    Bartke, S.; Martinát, Stanislav; Klusáček, Petr; Pizzol, L.; Alexandrescu, F.; Frantál, Bohumil; Critto, A.; Zabeo, A.

    2016-01-01

    Roč. 184, č. 1 (2016), s. 94-107 ISSN 0301-4797 R&D Projects: GA MŠk(CZ) 7E11035 Institutional support: RVO:68145535 Keywords : brownfields * prioritisation * sustainability Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.010, year: 2016 http://dx.doi.org/10.1016/j.jenvman.2016.07.037

  10. Sustainable urban development in a city affected by heavy industry and mining? Case study of brownfields in Karvina, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Martinát, S.; Dvořák, Petr; Frantál, B.; Klusáček, P.; Kunc, J.; Navrátil, J.; Osman, R.; Turečková, K.; Reed, M.

    2016-01-01

    Roč. 118, April 2016 (2016), s. 78-87 ISSN 0959-6526 R&D Projects: GA TA ČR(CZ) TD020259 Institutional support: RVO:68145535 Keywords : brownfields * human geography * spatial analysis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 5.715, year: 2016 http://www.sciencedirect.com/science/article/pii/S095965261600055X

  11. Spatial structure of standing wave electromagnetic fields at the lower harmonics of the ionospheric Alfvén resonator

    Czech Academy of Sciences Publication Activity Database

    Prikner, Karel; Feygin, F. Z.; Raita, T.

    2014-01-01

    Roč. 58, č. 2 (2014), s. 326-337 ISSN 0039-3169 Grant - others:European Commission(XE) HPRI 200100132 Institutional research plan: CEZ:AV0Z30120515 Keywords : ionospheric Alfvén resonator * full-wave numerical simulation * EISCAT measurements * standing wave oscillations Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.806, year: 2014

  12. A comparative Pc1 case study applying two modes of ionospheric Alfvén resonator modeling

    Czech Academy of Sciences Publication Activity Database

    Prikner, Karel; Feygin, F. Z.; Raita, T.

    2010-01-01

    Roč. 54, č. 3 (2010), s. 495-511 ISSN 0039-3169 Grant - others:EU(XE) HPRI 200100132 Institutional research plan: CEZ:AV0Z30120515 Keywords : ionospheric Alfvén resonator * Pc1 pulsations * numerical simulation * EISCAT data * IRI models Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.123, year: 2010

  13. The effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2001-01-01

    Roč. 31, č. 1 (2001), s. 335-338 ISSN 1335-2806. [IAGA Workshop /9./. Hurbanovo, 12.06.2000-18.06.2000] R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : solar eclipse * geomagnetic pulsations * geomagnetic observatories Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  14. The effect of the August 11, 1999 total solar eclipse on the geomagnetic field

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2001-01-01

    Roč. 31, č. 1 (2001), s. 331-334 ISSN 1335-2806. [IAGA Workshop /9./. Hurbanovo, 12.06.2000-18.06.2000] R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : solar eclipse * diurnal variation * geomagnetic field Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  15. Using continental land loading for routine data analysis

    Science.gov (United States)

    Petrov, L.

    2013-12-01

    The availability of the hydrological models that are updated regularly made it feasible to apply for analysis of space geodesy data a reduction for 3D displacements caused by the changes in the continental water storage on a routine basis, as it is done for a long time with ocean loading and atmospheric pressure loading. The service of the continental storage water loading was launched in 2013. The service utilizes the outputs of several hydrological models and provides the 3D time series in the form of global maps with 1-3 hour time resolution, time series for the set of ~1000 space geodesy sites, and an on-demand web-based application that allows a user to compute and download the time series of displacements for user-specified sites. The design of such a service and experience of its running are summarized. The loading series were validated by processing all available VLBI data. Results of validation are presented. Impact of using continental water storage for data reduction on estimates of other parameters, such as station velocities, is discussed.

  16. About the geometry of the Earth geodetic reference surfaces

    Science.gov (United States)

    Husár, Ladislav; Švaral, Peter; Janák, Juraj

    2017-10-01

    The paper focuses on the comparison of metrics of three most common reference surfaces of the Earth used in geodesy (excluding the plane which also belongs to reference surfaces used in geodesy when dealing with small areas): a sphere, an ellipsoid of revolution and a triaxial ellipsoid. The two latter surfaces are treated in a more detailed way. First, the mathematical form of the metric tensors using three types of coordinates is derived and the lengths of meridian and parallel arcs between the two types of ellipsoids are compared. Three kinds of parallels, according to the type of latitude, can be defined on a triaxial ellipsoid. We show that two types of parallels are spatial curves and one is represented by ellipses. The differences of curvature of both kinds of ellipsoid are analysed using the normal curvature radii. Priority of the chosen triaxial ellipsoid is documented by its better fit with respect to the high-degree geoid model EIGEN6c4 computed up to degree and order 2160.

  17. Ocean tide models for satellite geodesy and Earth rotation

    Science.gov (United States)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  18. Optimizing the African VLBI Network for Astronomy and Geodesy

    Science.gov (United States)

    de Witt, A.; Mayer, D.; MacLeod, G.; Combrinck, L.; Petrov, L.; Nickola, M.

    2016-12-01

    The African VLBI Network will be a pan-African network of radio telescopes comprised of converted redundant satellite Earth-station antennas and new purpose-built radio telescopes. The first of these antennas, in Ghana, is currently being converted to a radio telescope and current funding is estimated to permit the conversion of two more antennas in Africa. These antennas will initially be equipped with a 5-GHz and 6.7-GHz receiver and the next receiver likely to be fitted is a 1.4-1.7-GHz receiver. While it would be advantageous for the AVN antennas to be able to participate also in geodetic and astrometric VLBI observations, there is no funding currently for this. In this paper we re-visit the scientific justifications for the AVN in an attempt to optimize the AVN for each science case, both astronomical and geodetic.

  19. ostglacial rebound from VLBI Geodesy: On Establishing Vertical Reference

    Science.gov (United States)

    Argus, Donald .

    1996-01-01

    I propose that a useful reference frame for vertical motions is that found by minimizing differences between vertical motions observed with VLBI [Ma and Ryan, 1995] and predictions from postglacial rebound predictions [Peltier, 1995].

  20. Review and comparison of recent methods in space geodesy

    International Nuclear Information System (INIS)

    Varga, M.

    1983-01-01

    The study of geodynamic processes requires the application of new space-born geodesic measuring methods. A terrestrial reference system (TRS) is required for describing geodynamic processes. For this purpose satisfactory knowledge of polar motions, Earth rotation and tidal forces determined by laser, global positioning system (GPS) and VLBI measurements are needed. In addition, gravity and magnetic field of the Earth have to be known, modelled by using satellite to satellite traching (SST), altimetry, gradiometry and magnetometry results. Motions of the Earth-Moon system, as well as the relation between the terrestrial reference system and the inertial system can be determined by means of VLBI measurements. (author)