WorldWideScience

Sample records for geochemistry

  1. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20101501 Dou Chuanwei (State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China); Lian Bin Microbial Weathering of Calcite by Rock-Inhabiting Fungi, biogenic processes

  2. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102226 Liu Congqiang(State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China);Lang Yunchao Researches on Biogeochemical Processes and Nutrient Cycling in Karstic Ecological Systems,Southwest China:A review(Earth Science Frontiers,ISSN1005-2321,CN11-3370/P,16(6),2009,p.1-12,36 refs.)Key words:biogeochemistry,karst environmentBased on the previous studies,this paper introduces the researches on biogeochemical processes and nutrient cycling occurri

  3. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150115Guo Haifeng(State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China);Xia Xiaoping LA-MC-ICPMS In-Situ Boron Isotope Analyses of Tourmalines from the Shangbao Granites(Southern Hunan Province)and Its Geological Significance(Geochimica,ISSN0379-1726,CN44-1398/P,43(1),2014,p.11-19,3illus.,1table,66refs.)Key words:micro-zone analysis,boron isotopes,Hunan Province LA-MC-ICPMS tourmaline in-situ

  4. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>20041015 Chen Ming (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong); Xie Xiande Geochemical Behavior of Alkaline Elements in the Deep Earth: Evidence from High -Pressure Minerals in Shocked Meteorites (Geochimica, ISSN 0379 - 1726, CN 44 -1398/P, 32(2), 2003, p. 161-166, 3 il-lus. , 30 refs. , with English abstract)

  5. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140115 Bian Youyan(Key Laboratory of Marginal Sea Geology,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China);Chen Duofu Cold Seep Activities Recorded by Geochemical Characteristics of Authigenic Carbonates from Green Canyon 140,Gulf of Mexico(Geochimica,ISSN0379-1726,CN44-1398/P,42(3),2013,p.212-220,4illus.,2tables,49refs.)Key words:carbonate rocks,lithogeochemistry,Mexico

  6. USGS Energy Geochemistry Database

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Since January of 1989, the U.S Geological Survey (USGS) Energy Resources Program Geochemistry Laboratory Data Base has grown to contain the analytical data for over...

  7. Sulfide Mineralogy and Geochemistry

    Science.gov (United States)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  8. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  9. Medical geochemistry of tropical environments

    Science.gov (United States)

    Dissanayake, C. B.; Chandrajith, Rohana

    1999-10-01

    Geochemically, tropical environments are unique. This uniqueness stems from the fact that these terrains are continuously subjected to extreme rainfall and drought with resulting strong geochemical fractionation of elements. This characteristic geochemical partitioning results in either severe depletion of elements or accumulation to toxic levels. In both these situations, the effect on plant, animal and human health is marked. Medical geochemistry involves the study of the relationships between the geochemistry of the environment in which we live and the health of the population living in this particular domain. Interestingly, the relationships between geochemistry and health are most marked in the tropical countries, which coincidentally are among the poorest in the world. The very heavy dependence on the immediate environment for sustainable living in these lands enables the medical geochemist to observe correlations between particular geochemical provinces and the incidence of certain diseases unique to these terrains. The aetiology of diseases such as dental and skeletal fluorosis, iodine deficiency disorders, diseases of humans and animals caused by mineral imbalances among others, lie clearly in the geochemical environment. The study of the chemistry of the soils, water and stream sediments in relation to the incidence of geographically distributed diseases in the tropics has not only opened up new frontiers in multidisciplinary research, but has offered new challenges to the medical profession to seriously focus attention on the emerging field of medical geochemistry with the collaboration of geochemists and epidemiologists.

  10. Reservoir geochemistry; Geoquimica de reservatorios

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Joelma Pimentel; Rangel, Mario Duncan; Morais, Erica Tavares de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)], Emails: joelma.lopes@petrobras.com.br, mduncan@petrobras.com.br, ericat@petrobras.com.br; Aguiar, Helen G.M. de [Fundacao GORCEIX, Ouro Preto, MG (Brazil)], E-mail: helenaguiar.GORCEIX@petrobras.com.br

    2008-03-15

    Reservoir Geochemistry has many important practical applications during petroleum exploration, appraisal and development of oil fields. The most important uses are related to providing or disproving connectivity between reservoirs of a particular well or horizon. During exploration, reservoir geochemistry can indicate the direction of oil filling, suggesting the most appropriate places for drilling new wells. During production, studies of variations in composition with time and determination of proportions of commingled production from multiple zones, may also be carried out. The chemical constituents of petroleum in natural reservoirs frequently show measurable compositional variations, laterally and vertically. Due to the physical and chemical nature of petroleum changes with increasing maturity (or contribution of a second source during the filling process), lateral and vertical compositional variations exist in petroleum columns as reservoir filling is complete. Compositional variation can also be introduced by biodegradation or water washing. Once the reservoir is filled, density driven mixing and molecular diffusion tend to eliminate inherited compositional variations in an attempt to establish mechanical and chemical equilibrium in the petroleum column (England, 1990). Based on organic geochemical analysis it is possible to define these compositional variations among reservoirs, and use these data for developing of petroleum fields and for reservoir appraisal. Reservoir geochemistry offers rapid and low cost evaluation tools to aid in understanding development and production problems. Moreover, the applied methodology is relatively simple and gives reliable results, and can be performed routinely in any good geochemical laboratory at a relatively low cost. (author)

  11. Applied Geochemistry Special Issue on Environmental geochemistry of modern mining

    Science.gov (United States)

    Seal, Robert R.; Nordstrom, D. Kirk

    2015-01-01

    Environmental geochemistry is an integral part of the mine-life cycle, particularly for modern mining. The critical importance of environmental geochemistry begins with pre-mining baseline characterization and the assessment of environmental risks related to mining, continues through active mining especially in water and waste management practices, and culminates in mine closure. The enhanced significance of environmental geochemistry to modern mining has arisen from an increased knowledge of the impacts that historical and active mining can have on the environment, and from new regulations meant to guard against these impacts. New regulations are commonly motivated by advances in the scientific understanding of the environmental impacts of past mining. The impacts can be physical, chemical, and biological in nature. The physical challenges typically fall within the purview of engineers, whereas the chemical and biological challenges typically require a multidisciplinary array of expertise including geologists, geochemists, hydrologists, microbiologists, and biologists. The modern mine-permitting process throughout most of the world now requires that potential risks be assessed prior to the start of mining. The strategies for this risk assessment include a thorough characterization of pre-mining baseline conditions and the identification of risks specifically related to the manner in which the ore will be mined and processed, how water and waste products will be managed, and what the final configuration of the post-mining landscape will be.In the Fall 2010, the Society of Economic Geologists held a short course in conjunction with the annual meeting of the Geological Society of America in Denver, Colorado (USA) to examine the environmental geochemistry of modern mining. The intent was to focus on issues that are pertinent to current and future mines, as opposed to abandoned mines, which have been the focus of numerous previous short courses. The geochemical

  12. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110807 Li Chao(National Research Center for Geoanalysis,Beijing 100037,China);Qu Wenjun Advances in the Study of the Re-Os Isotopic System of Organic-Rich Samples(Acta Petrologica et Mineralogica,ISSN1000-6524,CN11-1966/P,29(4),2010,p.421-430,3 illus.,1 table,45 refs.)Key words:organic compounds,rhenium isotopes,osmium isotopes This paper deals with the principles of Re-Os isotopic system applied to various organic-rich geological samples such as black shale,oil shale,asphalt,schungite,oil and coal.Moreover,the potential disturbances of the weathering-leaching and the hydrocarbon maturation to the closure of Re-Os isotopic system are analyzed.In the aspect of practical application,several cases are cited to illustrate the significance of this isotopic system in the organic-rich

  13. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140692 Duo Tianhui(No.402 Geological Team,Exploration of Geology and Mineral Resources of Sichuan Authority,Chengdu611730,China);Wang Yongli Computer Simulation of Neptunium Existing Forms in the Groundwater(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,35(3),

  14. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141357 Guo Tao(School of Mathematics and Science,Shijiazhuang University of Economics,Shijiazhuang 050031,China);Hu Jiawen Assessment on the New Pressure-Volume-Temperature(PVT) Data of Supercritical Water(Geological Journal of China Universities,ISSN1006-7493,CN32-1440/P,19(3),2013,p.447-455,9 illus.,3 tables,32 refs.)Key words:supercritical fluids

  15. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110070 Chen Gen(College of Earth Science,Chengdu University of Technology,Chengdu 610059,China);Zhu Zhengjie Advances in Research into Carbon and Oxygen Isotopes of Lacustrine Carbonate(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,30(1),2010,p.75-78,1 illus.,5 refs.)Key words:carbonate sediments,carbon isotopes,oxygen isotopes This paper deals with control factors and environment significance of δ13C and δ18O values of lacustrine authigenic carbonate and makes an

  16. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20112218 Kang Zhiqiang (College of Earth Sciences,Guilin University of Technology, Guilin 541004,China);Feng Zuohai Reliability Comparison of Al-in-Hornblende and Biotite Barometer-A Case Study of Guposhan - Huashan Granite in North Guangxi(Journal of Guilin University of Technology,1674-9057, 45-1375/N,30(4),2010,p.474-479,3 illus.,3tables 14refs.)

  17. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131468 Zhang Yuanpei(Hubei Institute of Geophysical Exploration Technology,Wuhan430056,China);Huan Chunjuan Geochemical Characteristics of Trace Elements in the Diorite Weathered Crust of Zigui Area(Geophysical and Geochemical Exploration,ISSN1000-

  18. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>20082178 Cheng Liangjuan(College of Re- sources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095, China);Li Fuchun Adsorption of Silicate Bacteria on Surface of Orthoclase and Biotite and Its Selectivity(Geological Journal of Chi- na Universities,ISSN1006—7493,CN32—1440/P,13 (4),2007,p.669—674,4 illus.,21 refs.,with English abstract) Key words:silicates,bacteria

  19. GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    20160133Bao Liran(Southeast Sichuan Geological Group,Chongqing Bureau of Geology and Minerals Exploration,Chongqing400038,China);Gong Yuanyuan Element Geochemical Baseline and Distributions in Soil in Chongqing West Economic Zone,China(Earth

  20. Prospects for study of tectono-geochemistry

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Focusing on fault tectono-geochemistry, the authors will illustrate four aspects of the fault tectono-geochemistry and its research prospects: (1) the major elements, trace elements and rare earth elements and their differentiation and dissipation sequence; (2)mineral veins, secondary inclusions, sync-deformation fluids and their micro-kinetic analyses; (3) pressure intensity, temperature grads,solution concentration and their coupled correlation system; (4) tectonic stress fields, rheologic physical fields, geochemical fields and digital modeling of parameters. The four aspects are unique in their own systems and related to one another. A unified explanation of spatial and temporal evolution can be obtained in combination with the geodynamics and tectonic chronology.

  1. Organic geochemistry - A retrospective of its first 70 years

    Science.gov (United States)

    Kvenvolden, K.A.

    2006-01-01

    Organic geochemistry had its origin in the early part of the 20th century when organic chemists and geologists realized that detailed information on the organic materials in sediments and rocks was scientifically interesting and of practical importance. The generally acknowledged "father" of organic geochemistry is Alfred E. Treibs (1899-1983), who discovered and described, in 1936, porphyrin pigments in shale, coal, and crude oil, and traced the source of these molecules to their biological precursors. Thus, the year 1936 marks the beginning of organic geochemistry. However, formal organization of organic geochemistry dates from 1959 when the Organic Geochemistry Division (OGD) of The Geochemical Society was founded in the United States, followed 22 years later (1981) by the establishment of the European Association of Organic Geochemists (EAOG). Organic geochemistry (1) has its own journal, Organic Geochemistry (beginning in 1979) which, since 1988, is the official journal of the EAOG, (2) convenes two major conferences [International Meeting on Organic Geochemistry (IMOG), since 1962, and Gordon Research Conferences on Organic Geochemistry (GRC), since 1968] in alternate years, and (3) is the subject matter of several textbooks. Organic geochemistry is now a widely recognized geoscience in which organic chemistry has contributed significantly not only to geology (i.e., petroleum geochemistry, molecular stratigraphy) and biology (i.e., biogeochemistry), but also to other disciplines, such as chemical oceanography, environmental science, hydrology, biochemical ecology, archaeology, and cosmochemistry.

  2. Historical foundations of chemical geology and geochemistry

    NARCIS (Netherlands)

    Manten, A.A.

    1966-01-01

    Roughly, the name chemical geology has been used for as long as chemistry has been applied in geology; the name geochemistry was introduced by Schönbein, in 1838. Whereas initially the names were often regarded as synonymous, in our century there is a tendency to make a distinction between the two o

  3. Geochemistry of colloid systems. For earth scientists

    NARCIS (Netherlands)

    Nickel, E.

    1979-01-01

    The second part of the title of this book gives an indication for whom it has been written. It is a real 'synthesizer'. Throughout ten chapters the reader is introduced into the highly complex matter of colloid chemistry and its role in geochemistry, pedology, oceanography, and geology.

  4. Geochemistry of sulphur in petroleum systems

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Orr, W.L.

    1990-01-01

    A renaissance in the 1980s concerning geochemistry of sulfur in fossil fuels makes an update of the subject timely. Papers developed from the 1989 ACS Symposium in Dallas provide a cross-section of recent research and progress in our understanding of the abundance and nature of organically bound

  5. Geochemistry of sulphur in petroleum systems

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Orr, W.L.

    1990-01-01

    A renaissance in the 1980s concerning geochemistry of sulfur in fossil fuels makes an update of the subject timely. Papers developed from the 1989 ACS Symposium in Dallas provide a cross-section of recent research and progress in our understanding of the abundance and nature of organically bound sul

  6. Geochemistry of coalbed gas - a review

    Science.gov (United States)

    Clayton, J.L.

    1998-01-01

    Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greehouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greenhouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.

  7. Reservoir geochemistry. A reservoir engineering perspective

    Energy Technology Data Exchange (ETDEWEB)

    England, W.A. [BP Exploration, Chertsey Road, Sunbury-on-Thames, Middlesex, TW16 7LN (United Kingdom)

    2007-09-15

    This paper reviews the applications of reservoir geochemistry from a reservoir engineering point of view. Some of the main tasks of reservoir engineering are discussed with an emphasis on the importance of appraising reservoirs in the pre-development stage. A brief review of the principal methods and applications of reservoir geochemistry are given, in the context of applications to reservoir engineering problems. The importance of compositional differences in fluid samples from different depths or spatial locations is discussed in connection with the identification of internal flow barriers. The importance of understanding the magnitude and origin of vertical compositional gradients is emphasised because of possible confusion with purely lateral changes. The geochemical origin and rate of dissipation of compositional differences over geological time is discussed. Geochemical techniques suitable for bulk petroleum fluid samples include GC fingerprinting, GCMS, isotopic and PVT measurements. Core sample petroleum extracts may also be studied by standard geochemical methods but with the added complication of possible contamination by drilling mud. Aqueous phase residual salt extracts can be studied by strontium isotope analysis from core samples. Petroleum fluid inclusions allow the possibility of establishing the composition of paleo-accumulations. The problems in predicting flow barriers from geochemical measurements are discussed in terms of 'false positives' and 'false negatives'. Suggestions are made for areas that need further development in order to encourage the wider acceptance and application of reservoir geochemistry by the reservoir engineering community. The importance of integrating all available data is emphasised. Reservoir geochemistry may be applied to a range of practical engineering problems including production allocation, reservoir compartmentalisation, and the prediction of gravitational gradients. In this review

  8. Iron geochemistry of the mantle

    Science.gov (United States)

    Humayun, M.; Campbell, T. J.; Brandon, A. D.; Davis, F. A.; Hirschmann, M. M.

    2011-12-01

    The Fe/Mg ratio is an important constraint on the compositionally controlled density of the mantle. However, this ratio cannot be inferred from erupted lavas from OIB or MORB sources, but must be determined directly from mantle peridotites. Recently, the Fe/Mn ratio of erupted lavas has been used as an indicator of potential Fe variability in the mantle driven by core-mantle interaction, recycled oceanic crust, or even variations in the temperature of mantle melting. The classic compilation of McDonough & Sun (1995) provided the currently accepted Fe/Mn ratio of the upper mantle, 60±10. The uncertainty on this ratio allows for 15-30% variability in mantle iron abundances, which is equivalent to a density variation larger than observed by seismic tomography in the mantle. To better understand the relationship between mantle peridotites and erupted lavas, and to search for real variability in the Fe/Mn ratio of mantle peridotites, we report precise new ICP-MS measurements of the transition element geochemistry of suites of mantle xenoliths that have known Fe/Mg ratios. For 12 Kilbourne Hole xenoliths, we observe a clear correlation between Fe/Mn and MgO (or Fe/Mg) over an Fe/Mn range of 59-72. Extrapolation of this trend to a Primitive Mantle (PM) MgO content of 37.8 yields an Fe/Mn of 59±1 for the PM. Our new analyses of KLB-1 powder and fused glass beads yield an Fe/Mn of 61.4 for both samples, which plots on the Kilbourne Hole Fe/Mn vs. MgO trend. A set of ten xenoliths from San Carlos yield a wide range of Fe/Mn (56-65) not correlated with MgO content. The San Carlos xenoliths may have experienced a metasomatic effect that imprinted variable Fe/Mn. A clinopyroxene-rich lithology from San Carlos yields an Fe/Mn of 38, which plots on an extension of the Kilbourne Hole Fe/Mn vs. MgO trend. These new results, and those from other xenolith localities being measured in our lab, provide new constraints on the compositional variability of the Earth's upper mantle. Mc

  9. Isotope Geochemistry for Comparative Planetology of Exoplanets

    Science.gov (United States)

    Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-01-01

    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.

  10. The influence of geochemistry on health risks to animals and ...

    African Journals Online (AJOL)

    Unknown

    The influence of geochemistry on health risks to animals and humans in ... geochemistry related risk factors, and health implications, within communal livestock production .... to have adverse effects at relatively low levels, and that all trace minerals are toxic if ingested ... and environmental antagonists (altitude, temperature).

  11. Geochemistry of sediments of the eastern continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A; Paropkari, A; Murty, P.S

    The bulk and partition geochemistry of Al, Fe, Ti, Mn, Zn, and Cu have been investigated in sediments of the eastern continental shelf of India. The results show that (1) the bulk geochemistry varies from one shelf unit to the other, (2) all...

  12. Geochemistry@BGS : a guide to geochemical data at the British Geological Survey

    OpenAIRE

    Johnson, C C

    2011-01-01

    This report reviews the main activities in the British Geological Survey (and previously as the Institute of Geological Sciences) that have generated geochemical data. Included are; the mineral reconnaissance programme; regional geochemical mapping; groundwater geochemistry; marine and estuarine surveys; environmental geochemistry and health; radiometric surveys; isotopic geochemistry; lithogeochemical investigations; organic geochemistry laboratories; and many international activities involv...

  13. Contaminant geochemistry--a new perspective.

    Science.gov (United States)

    Yaron, Bruno; Dror, Ishai; Berkowitz, Brian

    2010-01-01

    To date, the field of contaminant geochemistry--which deals with the study of chemical interactions in soil and aquifer environments--has focused mainly on pollutant toxicity, retention, persistence, and transport and/or on remediation of contaminated sites. Alteration of subsurface physicochemical properties by anthropogenic chemicals, which reach the land surface as a result of human activity, has been essentially neglected. Contaminant-induced changes in subsurface properties are usually considered as deviations from a normal geological environment, which will disappear under natural attenuation or following remediation procedures. However, contaminants may in many cases cause irreversible changes in both structure and properties of the soil-subsurface geosystem between the land surface and groundwater. The time scales associated with these changes are on a "human time scale", far shorter than geological scales relevant for geochemical processes. In this review, we draw attention to a new perspective of contaminant geochemistry, namely, irreversible changes in the subsurface as a result of anthropogenic chemical pollution. We begin by briefly reviewing processes governing contaminant-subsurface interactions. We then survey how chemical contamination causes irreversible changes in subsurface structure and properties. The magnitude of the anthropogenic impact on the soil and subsurface is linked directly to the amounts of chemical contaminants applied and/or disposed of on the land surface. This particular aspect is of major importance when examining the effects of humans on global environmental changes. Consideration of these phenomena opens new perspectives for the field of contaminant geochemistry and for research of human impacts on the soil and subsurface regimes.

  14. Marine geochemistry ocean circulation, carbon cycle and climate change

    CERN Document Server

    Roy-Barman, Matthieu

    2016-01-01

    Marine geochemistry uses chemical elements and their isotopes to study how the ocean works. It brings quantitative answers to questions such as: What is the deep ocean mixing rate? How much atmospheric CO2 is pumped by the ocean? How fast are pollutants removed from the ocean? How do ecosystems react to the anthropogenic pressure? The book provides a simple introduction to the concepts (environmental chemistry, isotopes), the methods (field approach, remote sensing, modeling) and the applications (ocean circulation, carbon cycle, climate change) of marine geochemistry with a particular emphasis on isotopic tracers. Marine geochemistry is not an isolated discipline: numerous openings on physical oceanography, marine biology, climatology, geology, pollutions and ecology are proposed and provide a global vision of the ocean. It includes new topics based on ongoing research programs such as GEOTRACES, Global Carbon Project, Tara Ocean. It provides a complete outline for a course in marine geochemistry. To favor a...

  15. Computational Studies in Molecular Geochemistry and Biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Bylaska, Eric J.; Dixon, David A.; Dupuis, Michel; Halley, James W.; Kawai, R.; Rosso, Kevin M.; Rustad, James R.; Smith, Paul E.; Straatsma, TP; Voth, Gregory A.; Weare, John H.; Yuen, David A.

    2006-04-18

    The ability to predict the transport and transformations of contaminants within the subsurface is critical for decisions on virtually every waste disposal option facing the Department of Energy (DOE), from remediation technologies such as in situ bioremediation to evaluations of the safety of nuclear waste repositories. With this fact in mind, the DOE has recently sponsored a series of workshops on the development of a Strategic Simulation Plan on applications of high perform-ance computing to national problems of significance to the DOE. One of the areas selected for application was in the area of subsurface transport and environmental chemistry. Within the SSP on subsurface transport and environmental chemistry several areas were identified where applications of high performance computing could potentially significantly advance our knowledge of contaminant fate and transport. Within each of these areas molecular level simulations were specifically identified as a key capability necessary for the development of a fundamental mechanistic understanding of complex biogeochemical processes. This effort consists of a series of specific molecular level simulations and program development in four key areas of geochemistry/biogeochemistry (i.e., aqueous hydrolysis, redox chemistry, mineral surface interactions, and microbial surface properties). By addressing these four differ-ent, but computationally related, areas it becomes possible to assemble a team of investigators with the necessary expertise in high performance computing, molecular simulation, and geochemistry/biogeochemistry to make significant progress in each area. The specific targeted geochemical/biogeochemical issues include: Microbial surface mediated processes: the effects of lipopolysacchardies present on gram-negative bacteria. Environmental redox chemistry: Dechlorination pathways of carbon tetrachloride and other polychlorinated compounds in the subsurface. Mineral surface interactions: Describing

  16. HELGES: Helmholtz Laboratory for the Geochemistry of the Earth Surface

    OpenAIRE

    Friedhelm von Blanckenburg; Hella Wittmann; Schuessler, Jan A.

    2016-01-01

    New developments in Geochemistry during the last two decades have revolutionized our understanding of the processes that shape Earth's surface. Here, complex interactions occur between the tectonic forces acting from within the Earth and the exogenic forces like climate that are strongly modulated by biota and, increasingly today, by human activity. Within the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES) of the Helmholtz Centre Potsdam GFZ German Research Centre for...

  17. Geochemistry of Los Humeros Caldera, Puebla, Mexico

    Science.gov (United States)

    Verma, S. P.; Lopez, M.

    1982-03-01

    Geochemistry of Pliocene to recent volcanic rocks from Los Humeros caldera (19°30' N - 19°50' N and 97°15° W - 97°35' W) in East-Central mexico is described. The volcanic rocks from this area seem to represent both alkali and high-alumina basalt series, or both calcalkaline and high-K calc-alkaline sequences. The available bulk-chemical analyses (23 this study and 18 from unpublished literature) show that the entire sequence of rocks from basalts to rhyolites are present in this area. Different degrees of partial melting of the source region followed by extensive shallow-level crystal differentiation seem to have taken place before most volcanic eruptions. These processes are perhaps the most important mechanisms for magma genesis in Los Humeros caldera. Geophysical studies in this area are not sufficient and more detailed geophysical surveys and a better geological interpretation are needed in order to delimit the underlying magma chamber.

  18. Radioactive geochronometry from the treatise on geochemistry

    CERN Document Server

    Holland, H D

    2011-01-01

    The history of Earth in the Solar System has been unraveled using natural radioactivity. The sources of this radioactivity are the original creation of the elements and the subsequent bombardment of objects, including Earth, in the Solar System by cosmic rays. Both radioactive and radiogenic nuclides are harnessed to arrive at ages of various events and processes on Earth. This collection of chapters from the "Treatise on Geochemistry" displays the range of radioactive geochronometric studies that have been addressed by researchers in various fields of Earth science. These range from the age of Earth and the Solar System to the dating of the history of Earth that assists us in defining the major events in Earth history. In addition, the use of radioactive geochronometry in describing rates of Earth surface processes, including the climate history recorded in ocean sediments and the patterns of circulation of the fluid Earth, has extended the range of utility of radioactive isotopes as chronometric and tracer ...

  19. Microbial Sulfur Geochemistry in Mine Systems (Invited)

    Science.gov (United States)

    Warren, L. A.; Norlund, K. L.; Hitchcock, A.

    2010-12-01

    Acid mine drainage (AMD), metal laden, acidic water, is the most pressing mining environmental issue on a global scale. While it is well recognized that the activity of autotrophic Fe and S bacteria amplify the oxidation of the sulfidic wastes, thereby generating acidity and leaching metals; the underlying microbial geochemistry is not well described. This talk will highlight results revealing the importance of microbial cooperation associated with a novel sulfur-metabolizing consortium enriched from mine waters. Results generated by an integrated approach, combining field characterization, geochemical experimentation, scanning transmission X-ray microscopy (STXM), and fluorescence in situ hybridization (FISH) [1]describing the underlying ecological drivers, the functionally relevant biogeochemical architecture of the consortial macrostructure as well as the identities of this environmental sulphur redox cycling consortium will be presented. The two common mine bacterial strains involved in this consortium, Acidithiobacillus ferroxidans and Acidiphilium sp., are specifically spatially segregated within a macrostructure (pod) of extracellular polymeric substance (EPS) that enables coupled sulphur oxidation and reduction reactions despite bulk, oxygenated conditions. Identical pod formation by type culture strains was induced and linked to ecological conditions. The proposed sulphur geochemistry associated with this bacterial consortium produces 40-90% less acid than expected based on abiotic AMD models, with implications for both AMD mitigation and AMD carbon flux modeling. We are currently investigating the implications of these sulphur-processing pods for metal dynamics in mine systems. These results demonstrate how microbes can orchestrate their geochemical environment to facilitate metabolism, and underscore the need to consider microbial interactions and ecology in constraining their geochemical impacts. [1] Norlund, Southam, Tyliszcczak, Hu, Karunakaran, Obst

  20. Geochemistry of zinc in the sediments of the western continental shelf and slope of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, P.S.N.; Paropkari, A.L.; Rao, Ch.M.

    The bulk geochemistry of zinc in the sediments of the western continental shelf and slope of India and also the partition geochemistry of the sediments of the shelf and slope regions between Ratnagiri and Mangalore have been studied. The studies...

  1. RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.

    2013-05-16

    Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this

  2. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

  3. Geochemistry of vanadium (V) in Chinese coals.

    Science.gov (United States)

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2016-10-11

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  4. Geochemistry studies in Eastern Kentucky. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Negus-de Wys, J.

    1981-04-01

    Presented here are the results of inorganic geochemical studies on well cuttings from fourteen wells in the Big Sandy Gas Field. Both x-ray fluorescence and x-ray diffraction were used in analysis. Resultant mineralic data and elemental data were mapped by computer and by hand for five intervals of Ohio Shale and for the Berea/Bedford sequence. Comparisons of the geochemistry trend maps were made with lithology, structure, thermal maturation, gas open flow, and paleoenvironment. Techniques used included visual map comparison, computer map comparison programs utilizing correlation coefficients based on grid derived data sets, cluster analysis, x-y plots, and r/sup 2/ (coefficient of determination). A limited number of regional maps are included. It is concluded that inorganic geochemical analysis can be useful in: (1) suggesting paleoenvironmental trends; (2) establishing depositional trends; (3) enhancing exploration in terms of setting limits and pinpointing potential areas for hydrocarbon recovery; and (4) identification of likely locations for large gas fields when used with other geological studies. Elemental data analysis is the most accurate, and can be done quickly and inexpensively. It is concluded that the Big Sandy gas field area is a unique stratigraphic-structural gas trap, in which sedimentary factors, depositional basin features, plant evolution and occurrence, and structural elements all played important roles. Combinations of certain of these ingredients in different amounts may exist in other parts of the basin, and thus, suggest areas for hydrocarbon accumulation and potential recovery.

  5. The Marine Geochemistry of Rhenium, Iridium and Platinum

    Science.gov (United States)

    1991-09-01

    in the boundary clay, and proposed that this was the result of the impact of a 10 km meteorite with the Earth (Alvarez et al. 1980). Subsequently, Ir...Esser, B. K. (1991). Osmium Isotope Geochemistry of Terrigenous and Marine Sediments. PhD thesis, Yale University. Felitsyn, S. B. and P. A. Vaganov...C. E. (1990). Rhenium- Osmium Isotope Geochemistry of the Mantle, PhD Thesis, Yale University. McCallum, M. E., R. R. Loucks, R. R. Carlson, E. F

  6. Application of Hydrocarbons Biomarkers in Marine Organic Geochemistry

    Institute of Scientific and Technical Information of China (English)

    吴莹; 张经

    2001-01-01

    Biomarker is an important tool in the study of marine organic geochemistry. Its development and application makes it possible to elucidate the process and mechanism of the organic matter in the ocean. Hydrocarbons are the most useful molecular markers. They are used as tracers in many aspects, such as source indication; the degradation of organic matter; diagensis process; environmental pollution and paleooceanic study, etc. They are studied in the estuaries,coastal area and deep sea to give the knowledge of marine organic geochemistry. The paper deals with the characteristics, development and application ofbiomarkers as well as their advantages and disadvantages.

  7. Reservoir geochemistry: A link between reservoir geology and engineering?

    Energy Technology Data Exchange (ETDEWEB)

    Larter, S.R.; Aplin, A.C. [Univ. of Newcastle upon Tyne (United Kingdom); Corbett, P.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1994-12-31

    Geochemistry provides a natural but poorly exploited link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the PVT properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a sub-meter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  8. Reservoir geochemistry: A link between reservoir geology and engineering?

    Energy Technology Data Exchange (ETDEWEB)

    Larter, S.R.; Aplin, A.C.; Chen, M.; Taylor, P.N. [Univ. of Newcastle (Australia); Corbett, P.W.M.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1997-02-01

    Geochemistry provides a natural, but poorly exploited, link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that, because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the pressure/volume/temperature (PVT) properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a submeter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  9. Microbiology and Geochemistry of Antarctic Paleosols

    Science.gov (United States)

    Mahaney, W. C.; Malloch, D.; Hancock, R. G. V.; Campbell, I. B.; Sheppard, D.

    2000-08-01

    Samples of ancient soils from horizons in paleosols from the Quartermain Mountains (Aztec and New Mountain areas of the Antarctic Dry Valleys) were analyzed for their chemical composition and microbiology to determine the accumulation and movement of salts and other soluble constituents. The salt concentrations are of special interest because they are considered to be a function of age, derived in part from nearby oceanic and high altitude atmospheric sources. The geochemistry of ancient Miocene-age paleosols in these areas is the direct result of the deposition and weathering of till, derived principally from dolerite and sandstone source rock, in association with airborne-influxed salts. Paleosols nearer the coast have greater contents of chlorine, and farther inland near the Inland Ice Sheet, nitrogen tends to increase on a relative basis. The accumulation and vertical distribution of salts and other soluble chemical elements indicate relative amounts of movement in the profile over long periods of time, to the order of several million years. Iron, both in total concentration and in the form of various extracts, indicates it can be used as a geochronometer to assess the buildup of goethite plus hematite over time in the paleosols. Trends for ferrihydrite, a partially soluble Fe-hydroxide, shows limited profile translocation that might be related to the movement of salt. Six of the eight selected subsamples from paleosol horizons in three soil profiles contained nil concentrations of bacteria and fungi. However, two horizons at depths of between three to eight centimeters yielded several colonies of the fungi Beauveria bassiana and Penicillium spp., indicating some input of organic carbon. Beauveria bassiana is often reported in association with insects and is used commercially for the biological control of some insect pests. Penicillium species are commonly isolated from Arctic, temperate and tropical soils and are known to utilize a wide variety of organic

  10. Geochemistry of trace metals in the Scheldt estuary

    NARCIS (Netherlands)

    Zwolsman, J.J.G.

    1999-01-01

    The distribution of trace metals has been studied in abiotic compartments of the ScheIdt estuary (water column and sediments). Seasonal surveys, carried out in 1987-1988, indicate that the geochemistry of dissolved trace metals (Cd, Cu, Zn) is determined by the redox status of the upper estuary, and

  11. Petrology and geochemistry of igneous inclusions in recent Merapi deposits

    DEFF Research Database (Denmark)

    Chadwick, J.P.; Troll, V.R.; Waight, Tod Earle

    2013-01-01

    , geochemistry and geobarometric calculations. The inclusions may be classified into four main suites: (1) highly crystalline basaltic-andesite inclusions, (2) co-magmatic enclaves, (3) plutonic crystalline inclusions and (4) amphibole megacrysts. Highly crystalline basaltic-andesite inclusions and co...

  12. Climate and geochemistry as drivers of eucalypt diversification in Australia.

    Science.gov (United States)

    Bui, E N; Thornhill, A H; González-Orozco, C E; Knerr, N; Miller, J T

    2017-05-01

    Eucalypts cover most of Australia. Here, we investigate the relative contribution of climate and geochemistry to the distribution and diversity of eucalypts. Using geostatistics, we estimate major element concentrations, pH, and electrical conductivity at sites where eucalypts have been recorded. We compare the median predicted geochemistry and reported substrate for individual species that appear associated with extreme conditions; this provides a partial evaluation of the predictions. We generate a site-by-species matrix by aggregating observations to the centroids of 100-km-wide grid cells, calculate diversity indices, and use numerical ecology methods (ordination, variation partitioning) to investigate the ecology of eucalypts and their response to climatic and geochemical gradients. We find that β-diversity coincides with variations in climatic and geochemical patterns. Climate and geochemistry together account for less than half of the variation in eucalypt species assemblages across Australia but for greater than 80% in areas of high species richness. Climate is more important than geochemistry in explaining eucalypts species distribution and change in assemblages across Australia as a whole but there are correlations between the two sets of environmental variables. Many individual eucalypt species and entire taxonomic sections (Aromatica, Longistylus of subgenus Eucalyptus, Dumaria, and Liberivalvae of subgenus Symphyomyrtus) have distributions affected strongly by geochemistry. We conclude that eucalypt diversity is driven by steep geochemical gradients that have arisen as climate patterns have fluctuated over Australia over the Cenozoic, generally aridifying since the Miocene. The diversification of eucalypts across Australia is thus an excellent example of co-evolution of landscapes and biota in space and time and challenges accepted notions of macroecology. © 2017 John Wiley & Sons Ltd.

  13. Geochemistry and mineralogy of mafic Icelandic hyaloclastites

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; Eyer, C.; Bindeman, I. N.; Sigmarsson, O.

    2016-12-01

    Hyaloclastite in the crust may be a cryptic contaminant contributing to some volatile-rich Icelandic basalts and in some places reach 2.5 km1. Hyaloclastites are highly fragmented composites of lithics, glass, and crystals in a palagonite matrix that form as a result of magma-ice or magma-water interactions. These rocks have high water content and porosity and a high initial glass content, which makes them susceptible to rapid alteration by ambient or hydrothermal waters and potentially fast digestion by magmas. Due to low density and ductility, they have the potential to stall ascending mantle-derived magmas to form sills, and in the process may contribute exotic volatile or fluid-mobile components. We have characterized the geochemistry and mineralogy of 18 hyaloclastite samples from the Reykjanes Peninsula (RP), Vestmannajyar, and the southern coast of Iceland. Major and trace elements were obtained using ICP-AES and ICP-MS, respectively, and mineralogy was determined by XRD. Loss on ignition is highly variable (0.44 - 15.7 wt.%) and positively correlated with alkali loss reflected in the Chemical Index of Alteration [34.8 - 51.3; CIA = Al2O3/(Al2O3+CaO+Na2O+K2O)]. Primitive mantle normalized multi-element plots for RP hyaloclastites are broadly similar to those for unaltered RP Holocene basalts. Two samples have trace element profiles resembling those of picrites in the region. The samples from the south coast and Vestmannaeyjar have OIB-like enrichments similar to local Holocene basalts. Five well-sorted hyaloclastite samples have broad humps in their XRD patterns from 20-50° 2q. These samples contain only primary magmatic mineral phases (plagioclase, olivine, and pyroxene), if any, while other hyaloclastites contain both primary phases and secondary alteration phases including halite, calcite, clays, chlorite, and zeolites. Preliminary O and H isotope investigation demonstrates large ranges in both parameters. Future work will include oxygen isotope analyses

  14. Application of neogeographic tools for geochemistry

    Science.gov (United States)

    Zhilin, Denis

    2010-05-01

    edited manually. We would like to show some results of practical and scientific importance, obtained by non-experts. At 2006 our secondary school students investigated the distribution of snow salinity around Kosygina Street in Moscow. One can conclude that the distribution of salinity is reproducible and that the street influences the snow up to 150 meters. Another example obtained by our students is the distribution of electrical conductivity of swamp water showing extreme irregularity of this parameter within the small area (about 0.5x0.5 km) the electrical conductivity varied from 22 to 77 uS with no regularity. It points out the key role of local processes in swamp water chemistry. The third example (maps of electrical conductivity and pH of water on a large area) one can see at http://fenevo.narod.ru/maps/ec-maps.htm and http://fenevo.narod.ru/maps/ph-maps.htm. Basing on the map one can conclude mechanisms of formation of water mineralization in the area. Availability of GPS receivers and systems for easy measuring of chemical parameters can lead to neogeochemical revolution as GPS receivers have led to neogeographical. A great number of non-experts can share their geochemical results, forming huge amount of available geochemical data. It will help to falsify and visualize concepts of geochemistry and environmental chemistry and, maybe, develop new ones. Geophysical and biological data could be shared as well with the same advantages for corresponding sciences.

  15. Geochemistry of the Bela Ophiolite, Pakistan

    Science.gov (United States)

    Khan, M.; Nicholson, K. N.; Mahmood, K.

    2008-12-01

    The Bela ophiolite complex of Balochistan, Pakistan has been the subject of several geochemical and tectonic studies in the past. However until now there has never been a combined structural, geochemical and tectonic assimilation study which adequately explains the observed geochemistry and structural geology in a global tectonic framework. Here we present the geochemical findings of our work. The Bela ophiolite complex consists of two major units: the basal section or Lower Unit, and the Upper Unit, between the two is a mélange zone. The Lower Unit is relatively homogeneous and consists almost entirely of flow basalts and pillow basalts. The base of the Upper Unit is the metamorphic sole which is overlain by a sequence of massive basalts flows and intrusions of gabbro and granites. The entire Upper Unit is cut by doleritic dykes and sills. Geochemically the Lower Unit is comprised of basaltic lavas with E-MORB affinities. These lavas are tholeiitic, low-K series lavas with trace element signatures of E-type MORB. For example ratios such as V/Ti, Zr/Y, Nb/Th, Th/La and Nb/U all suggest these lavas are E-MORB. Previous workers have suggested these lavas are back-arc basin (BAB) however the samples lack the characteristic signatures of subduction modified MORB. This conclusion is supported by chondrite and N-MORB normalized spider diagrams where the Lower Unit lavas are enriched in the LILE with respect to the HFSE. The Upper Unit of the Bela Ophiolite sequence has a slightly more complex history. The older lavas sequences, the massive basalt flows, gabbros and granites, all formed in an oceanic arc environment. These lavas exhibit classic arc signatures such as a negative Nb and Ti anomalies, are enriched in LILE and LREE relative to HSFE, and plot in the volcanic arc and island arc fields in classic ternary plots such as 2Nb- Zr/4-Y and Y/15-La/10-Nb/8. The younger sequence of intrusions found in the Bela ophiolite appear to have BAB signatures. These lavas have

  16. The 8th ICGG International Conference on Gas Geochemistry Preface: Fluids and tectonics

    Directory of Open Access Journals (Sweden)

    F. Italiano

    2007-06-01

    Full Text Available The 8th International Conference on Gas Geochemistry provided the opportunity for scientists from different countries to meet each other, exchange ideas on the state of the art in gas geochemistry, and discuss advance in fluid geochemistry. The 8th ICGG meeting focused on three main geologic environments currently interacting with the human life: volcanoes, earthquakes and hydrocarbons. Ninety-four presentations gave participants chance to cover a variety of important research topics on gas geochemistry in geosciences including: gas migration in terrestrial and marine environments, Earth degassing and its relation to seismicity, volcanic eruptions, rare gases and application of isotope techniques, measurement and analytical techniques.

  17. Au-bearing magnetite mineralizaion in Kashmar (alteration, mineralization, geochemistry, geochemistry and fluid inclusions;

    Directory of Open Access Journals (Sweden)

    Alireza Almasi

    2017-02-01

    Full Text Available Introduction The study area is located in the central part of the Khaf- Kashmar- Bardaskan volcano-plotunic belt (briefly KKBB. Several IOCG deposits such as Tanourjeh Au-bearing magnetite deposit and Kuh-e-Zar Specularite-rich Au deposit have been explored in KKBB. Geology, alteration, mineralization, geochemistry and fluid inclusion results in Kashmar suggest the IOCG type Au-bearing magnetite mineralization. These IOCG deposits at KKBB form at an active continental arc related to SSZ-type Sabzevar oceanic subduction. Materials and methods Use of Landsat 7+, IRS and Aster satellites. Petrography and alteration Studies in 150 thin sections of volcanic and intrusive rocks. Sampling of ore-bearing quartz vein and mineralography. Preparation of 28 geochemistry samples by the chip composite method of ore-bearing quartz vein and analyzing them in the ACME laboratory by Aqua Regia 1DX1. Fluid inclusions studies of 14 samples of quartz and barite related to the ore minerals of ore-bearing quartz vein by THM600 stage of Linkam company. Results Magmatic events in Kashmar occur at Paleocene-Eocene and include: (1 old mafic - intermediate volcano-plutonic series; (2 felsic volcanic and granitoids; and (3 parallel swarm dykes which are youngest (Almasi et al., 2016. Geochemically, Kashmar rocks are metaluminous to highly peraluminous and Tholeitic to calc-alkaline and shoshonitic in composition (Almasi et al., 2016. The field characteristics, together with isotope and geochemical analyses show that all rock types are essentially co-magmatic and post-collisional I-type (Almasi et al., 2016. Alteration of Kashmar is described in two ways: (1 intense ellipsoidal-linear Argillic-Sillicification and low sericitic with Silica caps and with medium widespread and propylitic alterations in triple regions, next to Dorouneh fault; and (2 Medium Hematite-Carbonate-Chlorite-Silicification alterations in Kamarmard heights. In parts of near the Doruneh fault, sometimes

  18. Geochemistry between search for raw materials and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Hunziker, J.C. [Lausanne Institut de Mineralogie, Lausanne (Switzerland)

    2000-07-01

    Geochemistry is a speciality of earth sciences regarding distribution and movement of chemical elements throughout the planetary system. Known for about 170 years, the term geochemistry has been proposed as science per se by the Swedish chemist Joern Jakob Berzelius and in 1838 Christian Friederich Schoenbein, professor for chemistry in Basel, has introduced the term for this science between chemistry, physics and mineralogy. The advances, mainly in analytical means, with the different spectrographs and spectrometers, starting in the early twenties of this century, have triggered the geochemical knowledge of the planet. In this context it has to be mentioned the famous geochemist Victor Moritz Goldschmidt, who considerably contributed to the basic knowledge of this science.

  19. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  20. The geochemistry of stable chlorine and bromine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Eggenkamp, Hans [Onderzock and Beleving, Bussum (Netherlands)

    2014-11-01

    First book solely dedicated to the geochemistry of chlorine and bromine isotopes. Detailed description of analytical techniques, including their advantages and disadvantages. Indication of research fields where measurement of these isotopes is especially useful. This book provides detailed information on the history, analysis and applications of chlorine and bromine isotope geochemistry. Chlorine and bromine are geochemically unique as they prefer to exist as single charged negative ions. For this reason isotope fractionation reflects mostly processes that are not related to changes in the redox state and this fractionation is generally modest. The book will describe the processes that are most easily detected using these isotopes. Also isotope variations, and processes that cause them, measured in oxidised species such as perchlorates and in organic molecules will be described in this book.

  1. Sedimentary basin geochemistry and fluid/rock interactions workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and other Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.

  2. Petrography and Geochemistry of Lunar Meteorite Miller Range 13317

    Science.gov (United States)

    Zeigler, R. A.; Korotev, R. L.

    2016-01-01

    Miller Range (MIL) 13317 is a 32-g lunar meteorite collected during the 2013-2014 ANSMET (Antarctic Search for Meteorites) field season. It was initially described as having 25% black fusion crust covering a light- to dark-grey matrix, with numerous clasts ranging in size up to 1 cm; it was tenta-tively classified as a lunar anorthositic breccia. Here we present the petrography and geochemistry of MIL 13317, and examine possible pairing relationships with previously described lunar meteorites.

  3. Hydrology and isotope geochemistry; Hydrologie et geochimie isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Causse, Ch.; Gasse, F

    1998-12-31

    This book gathers recent works in hydrology and isotopic geochemistry. Part I exposes the general water cycle, from precipitations to deep aquifers, through the analysis of hydrogen, oxygen and carbon isotopic composition. Regional types are laid out from high latitudes (Spitzberg), through temperate regions (Parisian Basin), to the tropics (the Soudanian-Sahelian Niger Basin). The significance of isotopic techniques for Global Change analysis in shown in part II. Several case studies, mainly in Africa, reconstruct the hydro-climatic history through the pluri-proxy analysis of sediment profiles, where isotopic geochemistry is key. The last glacial maximum cooling is shown to have been homogeneous throughout middle and low latitudes, based upon noble gases isotopic analysis in groundwaters. The interpretation of some isotopic analysis could sometimes be questionable due to the organic origin of carbon in some sedimented carbonates. Part III refers to isotopes of cosmic origin and to in situ production of radionuclides. {sup 14}C dating is reminded to have contributed to our understanding of climate change mechanisms during the last glacial and post-glacial periods. Both the limitations and the recent improvements in this methodology are highlighted in a well documented synthesis. Isotopic data enable geochemistry to be the base for modelling stability conditions in the Oklo natural fossil nuclear fission reactor. (author)

  4. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater.

    Science.gov (United States)

    Cho, Kelly; Zholi, Alma; Frabutt, Dylan; Flood, Matthew; Floyd, Dalton; Tiquia, Sonia M

    2012-01-01

    To understand the link between bacterial diversity and geochemistry in uranium-contaminated groundwater, microbial communities were assessed based on clone libraries of 16S rDNA genes from the USDOE Oak Ridge Field Research Centre (FRC) site. Four groundwater wells (GW835, GW836, FW113-47 and FW215-49) with a wide range of pH (3 to 7), nitrate (44 to 23,400 mg L(-1)), uranium (0.73 to 60.36 mg L(-1)) and other metal contamination, were investigated. Results indicated that bacterial diversity correlated with the geochemistry of the groundwater. Microbial diversity decreased in relation to the contamination levels of the wells. The highly contaminated well (FW113-47) had lower gene diversity than less contaminated wells (FW215-49, GW835 and GW836). The high concentrations of contaminants present in well FW113-47 stimulated the growth of organisms capable of reducing uranium (Shewanella and Pseudomonas), nitrate (Pseudomonas, Rhodanobacter and Xanthomonas) and iron (Stenotrophomonas), and which were unique to this well. The clone libraries consisted primarily of sequences closely related to the phylum Proteobacteria, with FW-113-47 almost exclusively containing this phylum. Metal-reducing bacteria were present in all four wells, which may suggest that there is potential for successful bioremediation of the groundwater at the Oak Ridge FRC. The microbial community information gained from this study and previous studies at the site can be used to develop predictive multivariate and geographical information system (GIS) based models for microbial populations at the Oak Ridge FRC. This will allow for a better understanding of what organisms are likely to occur where and when, based on geochemistry, and how these organisms relate to bioremediation processes at the site.

  5. Geochemistry and chronology of the Bunburra Rockhole ungrouped achondrite

    Science.gov (United States)

    Spivak-Birndorf, Lev J.; Bouvier, Audrey; Benedix, Gretchen K.; Hammond, Samantha; Brennecka, Gregory A.; Howard, Kieren; Rogers, Nick; Wadhwa, Meenakshi; Bland, Philip A.; Spurný, Pavel; Towner, Martin C.

    2015-05-01

    Bunburra Rockhole is a unique basaltic achondrite that has many mineralogical and petrographic characteristics in common with the noncumulate eucrites, but differs in its oxygen isotope composition. Here, we report a study of the mineralogy, petrology, geochemistry, and chronology of Bunburra Rockhole to better understand the petrogenesis of this meteorite and compare it to the eucrites. The geochemistry of bulk samples and of pyroxene, plagioclase, and Ca-phosphate in Bunburra Rockhole is similar to that of typical noncumulate eucrites. Chronological data for Bunburra Rockhole indicate early formation, followed by slow cooling and perhaps multiple subsequent heating events, which is also similar to some noncumulate eucrites. The 26Al-26Mg extinct radionuclide chronometer was reset in Bunburra Rockhole after the complete decay of 26Al, but a slight excess in the radiogenic 26Mg in a bulk sample allows the determination of a model 26Al-26Mg age that suggests formation of the parent melt for this meteorite from its source magma within the first ~3 Ma of the beginning of the solar system. The 207Pb-206Pb absolute chronometer is also disturbed in Bunburra Rockhole minerals, but a whole-rock isochron provides a re-equilibration age of ~4.1 Ga, most likely caused by impact heating. The mineralogy, geochemistry, and chronology of Bunburra Rockhole demonstrate the similarities of this achondrite to the eucrites, and suggest that it formed from a parent melt with a composition similar to that for noncumulate eucrites and subsequently experienced a thermal history and evolution comparable to that of eucritic basalts. This implies the formation of multiple differentiated parent bodies in the early solar system that had nearly identical bulk elemental compositions and petrogenetic histories, but different oxygen isotope compositions inherited from the solar nebula.

  6. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  7. Origin of the Moon new concept geochemistry and dynamics

    CERN Document Server

    Galimov, Erik M

    2012-01-01

    The origin of the Moon remains an unsolved problem of the planetary science. Researchers engaged in celestial dynamics, geophysics, and geochemistry are still discussing various models of creation of our closest cosmic neighbour. The most popular scenario, the impact hypothesis involving a collision early in the Earth's history, has been substantially challenged by the new data. The birth and development of a planet-moon system always play a role in the formation of an entire planetary system around our Sun or around another star. This way, the story of our Moon acquires broader ramifications

  8. Private Collection of Geochemistry and Oceanography Articles Available

    Science.gov (United States)

    Manheim, Frank T.

    2014-05-01

    It's time! I'm disposing of a 37-year career's worth of books and other scientific materials in geochemistry and oceanography. Ordinarily, reprints of articles have little value. However, in the course of my research, I assembled what may be the world's most comprehensive private collection of articles on marine ferromanganese deposits up to the late 1980s. It includes foreign language materials, especially Russian language articles. Soviet researchers played an active role in this field (I cooperated with them and was a guest of the Soviet Academy).

  9. Carbon isotope geochemistry of the Santa Clara River

    OpenAIRE

    2001-01-01

    The Santa Clara River is a prototypical small mountainous river, with a headwater height greater than 1000 m and a basin area smaller than 10,000 m 2. Although individual small mountainous rivers export trivial amounts of sediment and carbon to the ocean, as a group these rivers may export a major fraction (as much as 50%) of the total global river sediment flux [Milliman and Syvitski, 1992], making their geochemistry relevant the study of the ocean's carbon cycle. In addition, many small riv...

  10. Simulation of Water Chemistry using and Geochemistry Code, PHREEQE

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.H. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    This report introduces principles and procedures of simulation for water chemistry using a geochemistry code, PHREEQE. As and example of the application of this code, we described the simulation procedure for titration of an aquatic sample with strong acid to investigate the state of Carbonates in aquatic solution. Major contents of this report are as follows; Concepts and principles of PHREEQE, Kinds of chemical reactions which may be properly simulated by PHREEQE, The definition and meaning of each input data, An example of simulation using PHREEQE. (author). 2 figs., 1 tab.

  11. Research progress in studies on the coalbed gas geochemistry

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The current situation of geochemical studies on coalbed gas is reviewed in this paper. Generally, coalbed gas is compositionally dominated by methane with δ13C1 values ranging approximately from - 80‰ to - 10‰. However, few isotopic studies have been carried out on other components of coalbed gas except for hydrogen and carbon dioxide, whose δDCH4 values available for utilization vary from - 333‰ to - 117‰, and δ13CCO2 values from -29.4‰ to + 18.6‰. Two major types of coalbed gas, thermogenic gas and secondary biogenic gas, have been identified, and there are also some other classification criteria. Compared with conventional natural gases,coalbed gas has a wide distribution range of δ13C1 andδ13CCO2 values, especially possessing some extremely heavy values. Current problems that remain unsolved in the coalbed gas geochemistry include the variation mechanism, controlling factors and application of carbon and hydrogen isotopes of methane, the relation between the values of δ13C1 and Ro, the systematic classification scheme and criterion of genetic types, and the application of the coalbed gas geochemistry in evaluating target districts of the coalbed gas exploration.

  12. Proceedings of the Rome seminar on environmental geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Marini, L.; Ottonello, G. [eds.

    1998-12-31

    The paper collected in this book represent most part of the lectures given by invited speakers at the Seminar on Environmental Geochemistry, held in Rome (May 22-26, 1996) under the sponsorship of the `Dipartimento della Protezione Civile` (Ministry of the Interiors), the `Consiglio Nazionale delle Ricerche` (Strategic Projects `Geologia delle grandi aree urbane` e `Carta Geochimica d`Italia`); the University of Genoa and the `Gruppo informale di geochimica`. In deciding to assemble the Proceedings, there was the difficulty of molding the various expertise necessary to deal with the geochemical aspects of environmental problems and of presenting them in a logical sequence. In fact, Geochemistry is a vast subject, strictly connected with Physical Chemistry and Mathematics in its theoretical aspects, but also with Hydrology, Urban Geology, Chemical Engineering, and even Administration in its applicative aspects. It was then decided to privilege at first the theoretical aspects of water-rock interactions processes relevant to environmental control. Indeed, most part of the book is covered by three articles dealing with the numerical aspects of reactive flow and transport in natural systems, the role of metal-organic complexing and of surface-controlled reaction kinetics.

  13. HELGES: Helmholtz Laboratory for the Geochemistry of the Earth Surface

    Directory of Open Access Journals (Sweden)

    Friedhelm von Blanckenburg

    2016-08-01

    Full Text Available New developments in Geochemistry during the last two decades have revolutionized our understanding of the processes that shape Earth's surface. Here, complex interactions occur between the tectonic forces acting from within the Earth and the exogenic forces like climate that are strongly modulated by biota and, increasingly today, by human activity. Within the Helmholtz Laboratory for the Geochemistry of the Earth Surface (HELGES of the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, it is our goal to quantify the rates and fluxes of these processes in detail and to develop new techniques to fingerprint them over various temporal and spatial scales. We use mass spectrometry facilities to analyze metal stable isotopes, element concentrations and cosmogenic nuclides to fingerprint and quantify geomorphological changes driven by erosion and weathering processes. We use these novel geochemical tools, to quantify, for example, the recycling of metals in plants after their release during weathering of rocks and soils, soil formation and its erosion rates, and mechanisms and speed of sediment transport through drainage basins. Our research is thus dedicated towards understanding material turnover rates at the Earth's surface by using geochemical fingerprints.

  14. Organic Geochemistry Data of Alaska DDS-59 Version 1.0

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U. S. Geological Survey Central Energy Resources Science Center's Organic Geochemistry Laboratory is a research laboratory devoted to the investigation of the...

  15. Geochronology, geochemistry and tectonic implications of Xiongshan diabasic dike swarm, northern Fujian

    Institute of Scientific and Technical Information of China (English)

    任胜利; 李继亮; 周新华; 孙敏

    1997-01-01

    Sm/Nd isotopic age determination showed that Xiongshan dike swarm was at 585.7 Ma±30 Ma. The trace element geochemistry and Sr/Nd/Pb isotope geochemistry studies indicate that the dike swarm was products of back-arc basin spreading ridge and the magma originated from the depleted mantle region which was metasomatized by LTLE-rich liquids/melts derived from subduction slab.

  16. Temporal Geochemistry Data from Five Springs in the Cement Creek Watershed, San Juan County, Colorado

    Science.gov (United States)

    Johnson, Raymond H.; Wirt, Laurie; Leib, Kenneth J.

    2008-01-01

    Temporal data from five springs in the Cement Creek watershed, San Juan County, Colorado provide seasonal geochemical data for further research in the formation of ferricretes. In addition, these data can be used to help understand the ground-water flow system. The resulting data demonstrate the difficulty in gathering reliable seasonal data from springs, show the unique geochemistry of each spring due to local geology, and provide seasonal trends in geochemistry for Tiger Iron Spring.

  17. Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA)

    OpenAIRE

    Miller Douglas; Haas Johnson R; Koretsky Carla M; Ndenga Noah T

    2006-01-01

    Abstract Background Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. Results Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox str...

  18. Gas Geochemistry of the Dogger Geothermal Aquifer (Paris Basin, France)

    Energy Technology Data Exchange (ETDEWEB)

    Criaud, A.; Fouillac, C.; Marty, B.; Brach, M.; Wei, H.F.

    1987-01-20

    The low enthalpy program developed in the Paris Basin provides the opportunity for studying the gas geochemistry of the calcareous aquifer of the Dogger. Hydrocarbons and CO{sub 2} are mainly biogenic, He displays high concentrations. He, Ar and N{sub 2} have multiple origins (radioactive decay, atmospheric migration, biochemical processes). The distribution of the gases in the zones of the basin varies in relation to the general chemistry, sedimentology and hydrodynamics. The gas geothermometers do not apply to this environment but useful estimations of the redox potential of the fluid can be derived from CO{sub 2}/CH{sub 4} and N{sub 2}/NH{sub 4}{sup +} ratios. H{sub 2} and H{sub 2}S are involved in corrosion processes and scaling in the pipes. 12 refs., 3 figs., 2 tabs.

  19. Summary report on the geochemistry of Yucca Mountain and environs

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

    1982-12-01

    This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling.

  20. The Medical Geochemistry of Dusts, Soils, and Other Earth Materials

    Science.gov (United States)

    Plumlee, G. S.; Ziegler, T. L.

    2003-12-01

    "Town clenched in suffocating grip of asbestos"USA Today, article on Libby,Montana, February, 2000"Researchers find volcanoes are bad for your health… long after they finish erupting"University of WarwickPress Release, 1999"Toxic soils plague city - arsenic, lead in 5 neighborhoods could imperil 17,000 residents"Denver Post, 2002"Ill winds - dust storms ferry toxic agents between countries and even continents"Science News, 2002A quick scan of newspapers, television, science magazines, or the internet on any given day has a fairly high likelihood of encountering a story (usually accompanied by a creative headline such as those above) regarding human health concerns linked to dusts, soils, or other earth materials. Many such concerns have been recognized and studied for decades, but new concerns arise regularly.Earth scientists have played significant roles in helping the medical community understand some important links between earth materials and human health, such as the role of asbestos mineralogy in disease (Skinner et al., 1988; Ross, 1999; Holland and Smith, 2001), and the role of dusts generated by the 1994 Northridge, California, earthquake in an outbreak of Valley Fever ( Jibson et al., 1998; Schneider et al., 1997).Earth science activities tied to health issues are growing (Skinner and Berger, 2003), and are commonly classified under the emerging discipline of medical geology (Finkelman et al., 2001; Selinus and Frank, 2000; Selinus, in press).Medical geochemistry (also referred to as environmental geochemistry and health: Smith and Huyck (1999), Appleton et al. (1996)) can be considered as a diverse subdiscipline of medical geology that deals with human and animal health in the context of the Earth's geochemical cycle ( Figure 1). Many medical geochemistry studies have focused on how chemical elements in rocks, soils, and sediments are transmitted via water or vegetation into the food chain, and how regional geochemical variations can result in disease

  1. Workshop on fundamental geochemistry needs for nuclear waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H. (ed.)

    1985-09-01

    In their deliberations, workshop participants did not attempt to incorporate the constraints that the 1982 National Nuclear Waste Management Policy Act placed upon the site-specific investigations. In particular, there was no attempt to (1) identify the research areas that apply most strongly to a particular potential repository site, (2) identify the chronological time when the necessary data or knowledge could be available, or (3) include a sensitivity analysis to prioritize and limit data needs. The workshop participants felt these are the purview of the site-specific investigations; the purpose of the workshop was to discuss the generic geochemistry research needs for a nuclear waste repository among as broad spectrum of individual scientists as possible and to develop a consensus of what geochemical information is important and why.

  2. Study on surface geochemistry and microbiology for hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. The device is capable of determining hydrocarbon gases in water to the concentration of less than 5 x 10{sup -4} ml/l of water. According to the results of microbiological studies, the plate count technique can be a useful supplementary method for hydrocarbon exploration. This is based on the facts that the average survival rate to hydrocarbons (pentane, hexane) for heterotrophs is higher in the area known as containing considerable hydrocarbon gases than other areas in the Pohang region. However, it is still necessary to develop techniques to treat the bacteria with gaseous hydrocarbons. (author). 2 figs., 41 tabs.

  3. In Situ Instrumentation for Sub-Surface Planetary Geochemistry

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    Novel instrumentation is under development at NASA's Goddard Space Flight Center, building upon earth-based techniques for hostile environments, to infer geochemical processes important to formation and evolution of solid bodies in our Solar System. A prototype instrument, the Pulsed Neutron Generator Gamma Ray and Neutron Detectors (PNG-GRAND), has a 14 MeV pulsed neutron generator coupled with gamma ray and neutron detectors to measure quantitative elemental concentrations and bulk densities of a number of major, minor and trace elements at or below the surfaces with approximately a meter-sized spatial resolution down to depths of about 50 cm without the need to drill. PNG-GRAND's in situ a meter-scale measurements and adaptability to a variety of extreme space environments will complement orbital kilometer-scale and in-situ millimeter scale elemental and mineralogical measurements to provide a more complete picture of the geochemistry of planets, moons, asteroids and comets.

  4. Late Eocene impact microspherules - Stratigraphy, age and geochemistry

    Science.gov (United States)

    Keller, G.; D'Hondt, S. L.; Orth, C. J.; Gilmore, J. S.; Oliver, P. Q.; Shoemaker, E. M.; Molina, E.

    1987-03-01

    The stratigraphy, faunal changes, and geochemistry of deep-sea sediments associated with late Eocene microtektite and microspherule layers are reported. Microprobe analyses of major element compositions of microspherules show that, although there is some compositional overlap in all three late Eocene layers as well as with the Pleistocene Australasian and Ivory Coast microtektites, each microspherule population has characteristic compositional features. All three microspherule layers are associated with decreased carbonate, possibly due to a sudden productivity change, increased dissolution as a result of sea-level and climate fluctuations, or impact events. A discovery of microtektites in the Gl. cerroazulensis Zone off the New Jersey coast extends the North American strewn field from the Caribbean to the northwest Atlantic.

  5. Age, geochemistry and melt flux variations for the Hawaiian Ridge

    Science.gov (United States)

    Garcia, M. O.; Weis, D. A.; Greene, A. R.; Wessel, P.; Harrison, L.; Tree, J.

    2012-12-01

    The Hawaiian Ridge portion of the Hawaiian-Emperor Chain, the classic example of a mantle plume produced linear island chain, is 6000 km in length, active for 80+ Myr, and tectonically simple. Despite its importance to our understanding of mantle plumes and Cenozoic plate motion, there are large data gaps for the age and geochemistry of lavas from volcanoes along the Hawaiian Ridge (HR) portion of the Chain. Ages: Only volcanoes near the Hawaiian-Emperor bend and in the Hawaiian Islands have modern Ar-Ar ages, leaving a gap of 2000 km where existing K-Ar ages suggest synchronous volcanism over a 1000 km section. Geochemistry: There is a 2900 km gap in high precision geochemical data for the HR. The Emperor Seamounts (>45 Ma) have better regional coverage of recent isotopic data and show a correlation of Sr isotope composition with age of the underlying oceanic lithosphere (Regelous et al. 2003). The HR has an unexplained, exponential increase in magma flux over the last 30 Myr (Vidal & Bonneville 2004). Potential explanations for the increase in magma flux include: changes in melting conditions (temperature and/or pressure), change in source fertility related to rock type (pyroxenite vs. peridotite) or previous melting history, and/or changes in plate stresses resulting from reconfigurations of plate motion. Our new multi-disciplinary project will: 1) Determine 40Ar/39Ar ages, and whole-rock major, trace element, and Pb, Sr, Nd and Hf isotopic geochemistry for lavas from 20 volcanoes spanning ~2150 km of the HR (NW of the Hawaiian Islands). 2) Use the geochemical data to determine the long-term evolution of the Hawaiian mantle plume source components and to evaluate whether there have been systematic variations in mantle potential temperature, melting pressure, and/or source lithology during the creation of the HR. If so, are they responsible for the 300% variation in melt production along the Ridge? Also, we will assess when the more fertile Loa source component

  6. Geochemistry of sulfur in the Florida Everglades; 1994 through 1999

    Science.gov (United States)

    Bates, Anne L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.

    2000-01-01

    In this report, we present data on the geochemistry of sulfur in sediments and in surface water, groundwater, and rainwater in the Everglades region in south Florida. The results presented here are part of a larger study intended to determine the roles played by the cycling of carbon, nitrogen, phosphorus, and sulfur in the ecology of the south Florida wetlands. The geochemistry of sulfur in the region is particularly important because of its link to the production of toxic methylmercury through processes mediated by sulfate reducing bacteria. Sediment cores were collected from the Everglades Agricultural Area (EAA), Water Conservation Areas (WCAs) 1A and 2A, from Lake Okeechobee, and from Taylor Slough in the southern Everglades. Water collection was more widespread and includes surface water from WCAs 1A, 2A, 3A, 2B, the EAA, Taylor Slough, Lake Okeechobee, and the Kissimmee River. Groundwater was collected from The Everglades Nutrient Removal Area (ENR) and from WCA 2A. Rainwater was collected at two month intervals over a period of one year from the ENR and from WCA 2A. Water was analyzed for sulfate concentration and sulfate sulfur stable isotopic ratio (34S/32S). Sediment cores were analyzed for total sulfur concentration and/or for concentrations of sulfur species (sulfate, organic sulfur, disulfides, and acid volatile sulfides (AVS)) and for their stable sulfur isotopic ratio. Results show a decrease in total sulfur content (1.57 to 0.61 percent dry weight) with depth in two sediment cores collected in WCA 2A, indicating that there has been an increase in total sulfur content in recent times. A sediment core from the center of Lake Okeechobee shows a decrease in total sulfur content with depth (0.28 to 0.08 percent dry weight). A core from the periphery of the lake (South Bay) likewise shows a decrease in total sulfur content with depth (1.00 to 0.69 percent dry weight), however, the overall sulfur content is greater than that near the center at all depths

  7. SPATIAL Short Courses Build Expertise and Community in Isotope Geochemistry

    Science.gov (United States)

    Riggs, E. M.; Bowen, G. J.

    2015-12-01

    The SPATIAL short course at the University of Utah is designed for graduate students and professionals in the earth and environmental sciences from around the globe. An integral part of the broader, NSF-funded Inter-university Training for Continental-scale Ecology (ITCE) project, the course is an intensive two-week field, classroom and laboratory experience with internationally-known researchers as instructors. The course focuses on stable isotope geochemistry coupled with spatial analysis techniques. Participants do not typically know each other or this research community well upon entering. One of the stated goals of the overall project is to build a community of practice around these techniques. This design is common in many professional fields, but is not often applied at the graduate level nor formally assessed in the earth sciences. Paired pre- and post-tests were administered before the start and after the close of the short courses over 3 years. The survey is a set of instruments adapted from social-cognitive psychology measuring changes in identity and community with other items to measure content knowledge outcomes. We see a subtle, consistent convergence of identities between large-scale isotope geochemistry and participants' research areas. Results also show that the course generates an increase in understanding about stable isotopes' use and application. The data show the SPATIAL course is very effective at bringing students together socially with each other and with faculty to create an environment that fosters community and scientific cooperation. Semi-structured pre-and post- interviews were conducted to understand the program elements that generated gains in learning and community. Participants were selected based on initial responses on the pre-survey to capture the range of initial conditions for the group. Qualitative analysis shows that the major factors for participants were 1) ready access to researchers in an informal setting during the

  8. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  9. Application of nonlinear analysis methods for identifying relationships between microbial community structure and groundwater geochemistry.

    Science.gov (United States)

    Schryver, Jack C; Brandt, Craig C; Pfiffner, Susan M; Palumbo, Anthony V; Peacock, Aaron D; White, David C; McKinley, James P; Long, Philip E

    2006-02-01

    The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.

  10. Application of Nonlinear Analysis Methods for Identifying Relationships Between Microbial Community Structure and Groundwater Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, Jack C.; Brandt, Craig C.; Pfiffner, Susan M.; Palumbo, A V.; Peacock, Aaron D.; White, David C.; McKinley, James P.; Long, Philip E.

    2006-02-01

    The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.

  11. Geochemistry and petrogenesis of Mesoproterozoic A-type granitoids from the Danish island of Bornholm, southern Fennoscandia

    DEFF Research Database (Denmark)

    Johansson, Åke; Waight, Tod Earle; Andersen, Tom

    2016-01-01

    Granitoids and gneisses from the Danish island of Bornholm have been investigated using whole rock geochemistry, Sr and Nd isotope geochemistry and Hf isotopes in zircon. Recent U–Pb dating shows that the rocks were formed during a short time interval at 1.45 to 1.46 Ga, penecontemporaneous...

  12. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    Science.gov (United States)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    The nature of detrital sedimentary (siliciclastic) rocks is determined by geological processes that occur in the four main Earth surface environments encountered over the sediment's history from source to final sink: (i) the site of sediment production (provenance), where interactions among bedrock geology, tectonic uplift, and climate control weathering and erosion processes; (ii) the transport path, where the medium of transport, gradient, and distance to the depositional basin may modify the texture and composition of weathered material; (iii) the site of deposition, where a suite of physical, chemical, and biological processes control the nature of sediment accumulation and early burial modification; and (iv) the conditions of later burial, where diagenetic processes may further alter the texture and composition of buried sediments. Many of these geological processes leave characteristic geochemical signatures, making detrital sedimentary rocks one of the most important archives of geochemical data available for reconstructions of ancient Earth surface environments. Although documentation of geochemical data has long been a part of the study of sedimentation (e.g., Twenhofel, 1926, 1950; Pettijohn, 1949; Trask, 1955), the development and application of geochemical methods specific to sedimentary geological problems blossomed in the period following the Second World War ( Degens, 1965; Garrels and Mackenzie, 1971) and culminated in recent years, as reflected by the publication of various texts on marine geochemistry (e.g., Chester, 1990, 2000), biogeochemistry (e.g., Schlesinger, 1991; Libes, 1992), and organic geochemistry (e.g., Tissot and Welte, 1984; Engel and Macko, 1993).Coincident with the growth of these subdisciplines a new focus has emerged in the geological sciences broadly represented under the title of "Earth System Science" (e.g., Kump et al., 1999). Geochemistry has played the central role in this revolution (e.g., Berner, 1980; Garrels and Lerman

  13. Effectively Using Groundwater Geochemistry Data: A GIS Approach

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, J.S. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1998-07-01

    The Savannah River Site (SRS) has accumulated a wealth of groundwater geochemistry data during the past two decades from a large network of monitoring wells. These data, archived in an Oracle database, have been accessible only in quarterly reports or a spreadsheet format. An ArcView extension has been developed to extract the data using a simple interface. The data are filtered, processed, and returned as an ArcView theme, permitting rapid analysis and evaluation of contaminated areas.Typically, these data must be analyzed by hydrostratigraphic unit to be useful. Unfortunately, a compendium of well screen-versus-aquifer relationships for groundwater monitoring wells at SRS has not been available, making the geochemical data difficult to use and analyze. Therefore, a 3-D hydrostratigraphic model has been developed in geographic information systems (GIS) and used in conjunction with well construction data to determine the location of well screen zones within the SRS vertical hydrostratigraphy. This information has been incorporated into the ArcView extension so that geochemical data can be analyzed and displayed in ArcView by hydrostratigraphic unit.

  14. Metal stable isotope signatures as tracers in environmental geochemistry.

    Science.gov (United States)

    Wiederhold, Jan G

    2015-03-03

    The biogeochemical cycling of metals in natural systems is often accompanied by stable isotope fractionation which can now be measured due to recent analytical advances. In consequence, a new research field has emerged over the last two decades, complementing the traditional stable isotope systems (H, C, O, N, S) with many more elements across the periodic table (Li, B, Mg, Si, Cl, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, W, Pt, Hg, Tl, U) which are being explored and potentially applicable as novel geochemical tracers. This review presents the application of metal stable isotopes as source and process tracers in environmental studies, in particular by using mixing and Rayleigh model approaches. The most important concepts of mass-dependent and mass-independent metal stable isotope fractionation are introduced, and the extent of natural isotopic variations for different elements is compared. A particular focus lies on a discussion of processes (redox transformations, complexation, sorption, precipitation, dissolution, evaporation, diffusion, biological cycling) which are able to induce metal stable isotope fractionation in environmental systems. Additionally, the usefulness and limitations of metal stable isotope signatures as tracers in environmental geochemistry are discussed and future perspectives presented.

  15. Vanadium Geochemistry of Oil Sands Fluid Petroleum Coke.

    Science.gov (United States)

    Nesbitt, Jake A; Lindsay, Matthew B J

    2017-03-07

    Vanadium has previously been linked to elevated toxicity of leachates derived from oil sands petroleum coke. However, geochemical controls on V mobility within coke deposits remain poorly constrained. Detailed examinations of porewater and solid-phase V geochemistry were therefore performed on oil sands fluid petroleum coke deposits in Alberta, Canada. Sample collection focused on both active and reclaimed deposits, which contained more than 3 × 10(7) m(3) of fluid petroleum coke. Dissolved V concentrations were highest (up to 3.0 mg L(-1)) immediately below the water table but decreased rapidly with increasing depth. This trend corresponded to a transition from mildly acidic (pH 6-7) and oxic conditions to mildly alkaline (pH 7-8.5) and anoxic conditions. Scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and micro-X-ray fluorescence (μXRF) mapping revealed coke particles exhibited an internal structure characterized by successive concentric layers. The outer margins of these layers were characterized by elevated V, Fe, Si, and Al concentrations, indicating the presence of inorganic phases. Micro-X-ray absorption near-edge structure (μXANES) spectroscopy revealed that V speciation was dominated by V(IV) porphyrins except at outer margins of layers, where octahedrally coordinated V(III) was a major component. Minor to trace V(V) was also detected within fluid petroleum coke particles.

  16. Current state of the hydrothermal geochemistry studies at Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Fausto L, J.J.; Jimenez S, M.E.; Esquer P, I.

    1981-01-01

    The current state of hydrothermal geochemistry studies being carried out at the field are reported. These studies are based on the results of chemical analysis of water samples collected during 1979 and 1980 at the geothermal wells of the area known as Cerro Prieto I, as well as from those located in the Cerro Prieto II and Cerro Prieto III areas, some of which have only recently started flowing. Data are presented on the chemical variations of the main chemical constituents dissolved in the waters, as well as on the Na/K and Na-K-Ca chemical relations and the temperatures calculated from them and from SiO/sub 2/. Fluid recharge into the reservoir and its direction of flow are interpreted from isotherm contour maps of the field prepared from Na/K and Na-K-Ca geothermometry and from concentration contour maps of some of the main chemical constituents. Well M-43 is discussed as an example of a well affected by well completion problems in its production casing. Its behavior is explained on the basis of the chemical characteristics of the produced water. The chemical changes that have taken place in some of the wells during production are explained by correlating the chemistry with the production mechanisms of the well (steam-water production rates).

  17. Geology,Geochemistry and Genesis of Yinyan Porphyry Tin Deposit

    Institute of Scientific and Technical Information of China (English)

    朱正书; 朱金初; 等

    1989-01-01

    The Yinyan porphyry tin deposit is a blind deposit associated with a small granite porphyry stock.The petrology and geochemistry of the Yinyan granite porphyry suggest that it is genetically of the transfor-mation type,emplaced at the late stage of fractional crystallization within a high-level magma chamber.Ore-forming fluids are derived predominantly from the granitic magma and they interact with the wall rocks intensely when finding their way upwards through the granite porphyry.From the lower part of the porphyry upwards the following alteration zones can be distinguished(a)slightly altered granite porphyry (with weak potash feldspathization),(b)protolithionite-quartz greisenization zone,(c)to-paz-quartz greisenization zone,(d)senicite-quartz sericitization zone,and (e)silicification zone (quartz core at the surface).Tin mineralization is related to greisenization,especially to topaz-quartz greisenization.Rock and ore-forming temperatures and oxygen fugacities are estimated,respectively.There are significant differences in many aspects between the Yinyan porphyry tin deposit and volcan-ic-subvolcanic porphyry tin deposits.

  18. Ca isotopic geochemistry of an Antarctic aquatic system

    Science.gov (United States)

    Lyons, W. Berry; Bullen, Thomas D.; Welch, Kathleen A.

    2017-01-01

    The McMurdo Dry Valleys, Antarctica, are a polar desert ecosystem. The hydrologic system of the dry valleys is linked to climate with ephemeral streams that flow from glacial melt during the austral summer. Past climate variations have strongly influenced the closed-basin, chemically stratified lakes on the valley floor. Results of previous work point to important roles for both in-stream processes (e.g., mineral weathering, precipitation and dissolution of salts) and in-lake processes (e.g., mixing with paleo-seawater and calcite precipitation) in determining the geochemistry of these lakes. These processes have a significant influence on calcium (Ca) biogeochemistry in this aquatic ecosystem, and thus variations in Ca stable isotope compositions of the waters can aid in validating the importance of these processes. We have analyzed the Ca stable isotope compositions of streams and lakes in the McMurdo Dry Valleys. The results validate the important roles of weathering of aluminosilicate minerals and/or CaCO3 in the hyporheic zone of the streams, and mixing of lake surface water with paleo-seawater and precipitation of Ca-salts during cryo-concentration events to form the deep lake waters. The lakes in the McMurdo Dry Valleys evolved following different geochemical pathways, evidenced by their unique, nonsystematic Ca isotope signatures.

  19. Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite

    Energy Technology Data Exchange (ETDEWEB)

    Gieskes, Joris, E-mail: jgieskes@ucsd.edu [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States); Rathburn, Anthony E. [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States)] [Indiana State University, Department of Earth and Environmental Systems, Terre Haute, IN 47809 (United States); Martin, Jonathan B. [University of Florida, Department of Geological Sciences, Gainesville, FL 32611-2120 (United States); Perez, M. Elena [Indiana State University, Department of Earth and Environmental Systems, Terre Haute, IN 47809 (United States)] [The Natural History Museum, Department of Palaeontology, Cromwell Road, London SW7 5BD (United Kingdom); Mahn, Chris [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States); Bernhard, Joan M. [Woods Hole Oceanographic Institution, Geology and Geophysics Department, MS52, Woods Hole, MA 02543 (United States); Day, Shelley [University of Florida, Department of Geological Sciences, Gainesville, FL 32611-2120 (United States)

    2011-05-15

    Highlights: > We describe the geochemistry of pore waters in the Clam Flats area of Monterey Bay. > The geochemical data are compared with the {delta}{sup 13}C chemistry of benthic foraminifera. > Living foraminifera indicate little effects of pore water low {delta}{sup 13}C (DIC) in the clam bed. > This phenomenon and its implications are discussed in detail. > Implications with regards to paleo-methane seepage are discussed. - Abstract: An extensive geochemical and biogeochemical examination of CH{sub 4} seeps in the Clam Flats area of Monterey Bay provides insight into the character of relationships between seep geochemistry and benthic foraminiferal geochemistry. The area is characterized by sulfide-rich fluids. Sulfide increases are associated with large increases in alkalinity, as well as small decreases in dissolved Ca and Mg. In addition, only small increases in NH{sub 4} are observed, but values of {delta}{sup 13}C of dissolved inorganic C are as low as -60 per mille at shallow depths (<3 cm). These observations indicate that all these processes are related to the bacterial oxidation of CH{sub 4}, which is transported upward by slow seepage of pore fluids. The geochemistry of the pore fluids should be relevant to the geochemistry of the carbonate tests of living and dead foraminifera. However, a profound disequilibrium of approximately an order of magnitude occurs between the {delta}{sup 13}C values of stained (cytoplasm-containing) foraminiferal carbonate and the C isotope values of ambient pore water dissolved inorganic C. Reasons are unclear for this isotopic disequilibrium, but have important implications for interpretations of foraminiferal carbonate as a paleoenvironmental proxy. Much fine scale work is needed to fully understand the relationships between the biogeochemistry of benthic foraminifera and the geochemistry of the pore waters where they live.

  20. Lunar carbon chemistry - Relations to and implications for terrestrial organic geochemistry.

    Science.gov (United States)

    Eglinton, G.; Maxwell, J. R.; Pillinger, C. T.

    1972-01-01

    Survey of the various ways in which studies of lunar carbon chemistry have beneficially affected terrestrial organic geochemistry. A lunar organic gas-analysis operating system is cited as the most important instrumental development in relation to terrestrial organic geochemistry. Improved methods of analysis and handling of organic samples are cited as another benefit derived from studies of lunar carbon chemistry. The problem of controlling contamination and minimizing organic vapors is considered, as well as the possibility of analyzing terrestrial samples by the techniques developed for lunar samples. A need for new methods of analyzing carbonaceous material which is insoluble in organic solvents is indicated.

  1. Review of progress in understanding the fluid geochemistry of the Cerro Prieto Geothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.; Janik, C.J.; Coplen, T.B.

    1982-08-10

    Fluid geochemistry has played a major role in the authors present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts, and gases, original subsurface temperature and fluid flow, fluid-production mechanims, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretation for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field.

  2. A review of progress in understanding the fluid geochemistry of the Cerro Prieto geothermal system

    Science.gov (United States)

    Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.; Janik, C.J.; Coplen, T.B.

    1984-01-01

    Fluid geochemistry has played a major role in our present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts and gases, original subsurface temperature and fluid flow, fluid-production mechanisms, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretations for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field. ?? 1984.

  3. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  4. Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi

    Science.gov (United States)

    Broom-Fendley, Sam; Brady, Aoife E.; Horstwood, Matthew S. A.; Woolley, Alan R.; Mtegha, James; Wall, Frances; Dawes, Will; Gunn, Gus

    2017-10-01

    Songwe Hill, Malawi, is one of the least studied carbonatites but has now become particularly important as it hosts a relatively large rare earth deposit. The results of new mapping, petrography, geochemistry and geochronology indicate that the 0.8 km diameter Songwe Hill is distinct from the other Chilwa Alkaline Province carbonatites in that it intruded the side of the much larger (4 × 6 km) and slightly older (134.6 ± 4.4 Ma) Mauze nepheline syenite and then evolved through three different carbonatite compositions (C1-C3). Early C1 carbonatite is scarce and is composed of medium-coarse-grained calcite carbonatite containing zircons with a U-Pb age of 132.9 ± 6.7 Ma. It is similar to magmatic carbonatite in other carbonatite complexes at Chilwa Island and Tundulu in the Chilwa Alkaline Province and others worldwide. The fine-grained calcite carbonatite (C2) is the most abundant stage at Songwe Hill, followed by a more REE- and Sr-rich ferroan calcite carbonatite (C3). Both stages C2 and C3 display evidence of extensive (carbo)-hydrothermal overprinting that has produced apatite enriched in HREE (<2000 ppm Y) and, in C3, synchysite-(Ce). The final stages comprise HREE-rich apatite fluorite veins and Mn-Fe-rich veins. Widespread brecciation and incorporation of fenite into carbonatite, brittle fracturing, rounded clasts and a fenite carapace at the top of the hill indicate a shallow level of emplacement into the crust. This shallow intrusion level acted as a reservoir for multiple stages of carbonatite-derived fluid and HREE-enriched apatite mineralisation as well as LREE-enriched synchysite-(Ce). The close proximity and similar age of the large Mauze nepheline syenite suggests it may have acted as a heat source driving a hydrothermal system that has differentiated Songwe Hill from other Chilwa carbonatites.

  5. Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry

    Directory of Open Access Journals (Sweden)

    M. Roland

    2013-01-01

    Full Text Available CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during daytime or nighttime CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange patterns. We found that by rapidly depleting soil CO2 during daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.

  6. Carbon isotope geochemistry of the Santa Clara River

    Science.gov (United States)

    Masiello, Caroline A.; Druffel, Ellen R. M.

    2001-06-01

    The Santa Clara River is a prototypical small mountainous river, with a headwater height greater than 1000 m and a basin area smaller than 10,000 m 2. Although individual small mountainous rivers export trivial amounts of sediment and carbon to the ocean, as a group these rivers may export a major fraction (as much as 50%) of the total global river sediment flux [Milliman and Syvitski, 1992], making their geochemistry relevant the study of the ocean's carbon cycle. In addition, many small rivers export sediment in a few high flux events, causing massive, sporadic discharge of carbon onto coastal shelves, discharge conditions very different from those of large rivers. This class of rivers is an end-member of the river-ocean carbon exchange system,. opposite the Earth's largest river, the Amazon. The carbon mass and isotopic properties of the Santa Clara River are significantly different from previously studied large rivers. During the 1997-1998 winter, all Santa Clara carbon pools were old, with flux-weighted average Δl4C values of-428±76‰ for particulate organic carbon, -73±31‰ for dissolved organic carbon, and-644±58‰ for black carbon. The age of exported carbon is primarily due to the deep erosion of old soils and not to inclusion of fossil fuel carbon. Additionally, the δ13C signatures of exported carbon pools were high relative to terrestrial carbon, bearing a signature quite similar to marine carbon (average particulate organic carbon (POC) δ13C = -22.2±0.8‰). The Santa Clara's estuary is small and drains onto the narrow eastern Pacific coastal margin, exporting this old soil organic matter directly into the ocean. If the Santa Clara export patterns are representative of this class of rivers, they may be a significant source of refractory terrestrial carbon to the ocean.

  7. Aqueous Geochemistry at High Pressures and High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Jay D. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  8. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  9. Gas isotopes and geochemistry of hot springs in Hengjing,Jiangxi Province

    Institute of Scientific and Technical Information of China (English)

    周文斌; 张卫民

    2001-01-01

    With emphasis on gas isotopes and geochemistry as well as hydrogeochemistry, a field investigation has been carried out in Hengjing geothermal area, south Jiangxi Province of south-eastern China. The water chemistry of the geothermal waters indicates their local meteoric water origin, whereas their gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin.

  10. Sulphur geochemistry and sapropel formation : syngenetic and diagenetic signals in eastern Mediterranean sediments

    NARCIS (Netherlands)

    Passier, Hilde Françoise

    1998-01-01

    In this thesis the sulphur geochemistry of eastern Mediterranean sediments is studied. The sediments discussed were recovered during the 1987 ABC cruise with R/V Tyro (core ABC27), the 1988 BAMO-3 expedition of R/V Bannock (cores GC17 and GC21), the 1991 Marflux cruise with R/V Marion Dufresne

  11. Geochemistry and geophysics field maps used during the USGS 2011 field season in southwest Alaska

    Science.gov (United States)

    Giles, Stuart A.

    2013-01-01

    The US Geological Survey (USGS) has been studying a variety of geochemical and geophyscial assessment techniques for concealed mineral deposits. The 2011 field season for this project took place in southwest Alaska, northeast of Bristol Bay between Dillingham and Iliamna Lake. Four maps were created for the geochemistry and geophysics teams to use during field activities.

  12. The Grand Geochemistry of 4 Vesta: First Results

    Science.gov (United States)

    Prettyman, T. H.; Beck, A.; Feldman, W. C.; Forni, O.; Joy, S. P.; Lawrence, D. J.; McCoy T. J.; McFadden, L. A.; McSween, H. Y.; Mittlefehldt, D. W.; Polanskey, C. A.; Rayman, M. D.; Raymond, C. A.; Reedy, R. C.; Russell, C. T.; Titus, T. N.; Toplis, M. J.; Yamashita, N.

    2012-01-01

    On 12-Dec-2011, the Dawn spacecraft commenced low altitude mapping of the giant asteroid, 4 Vesta (264-km mean radius). Dawn's roughly circular, polar, low altitude mapping orbit (LAMO) has a mean radius of 470 km, placing the spacecraft within about 210 km of Vesta's surface. At these altitudes, Dawn s Gamma Ray and Neutron Detector (GRaND) is sensitive to Vesta's elemental com-position (Fig. 1). GRaND will acquire data in LAMO for up to 16 weeks, which is sufficient to map the elemental composition of the entire surface of Vesta. The timing of LAMO enables us to report the first results of our geochemistry investigation at this conference. In this abstract, we present an overview of our initial observations, based on data acquired at high altitude and during the first weeks of LAMO. GRaND overview. A detailed description of the GRaND instrument, science objectives and prospective results is given in [1]. At low altitudes, GRaND is sensitive to gamma rays and neutrons produced by cosmogenic nuclear reactions and radioactive decay occurring within the top few decimeters of the surface and on a spatial scale of a few hundred kilometers. From these nuclear emissions, the abundance of several major- and minor-elements, such as Fe, Mg, Si, K, and Th can be determined. Assuming the howardite, eucrite, and diogenite (HED) meteorites are representative of Vesta s crustal composition [2], then GRaND will be able to map the mixing ratios of whole-rock HED end-members, enabling the determination of the relative proportions of basaltic eucrite, cumulate eucrite, and diogenite as well as the proportions of mafic and plagioclase minerals [1,3]. GRaND will also search for compositions not well-represented in the meteorite collection, such as evolved, K-rich lithologies [4], and outcrops of olivine from Vesta s mantle or igneous intrusions in major impact basins [5]. The search for a possible mesosiderite source region is described in [6]. GRaND will globally map the abundance of

  13. Fluid geochemistry monitoring at three California volcanoes (Invited)

    Science.gov (United States)

    Evans, W.; Hunt, A. G.; Kennedy, B. M.; Ingebritsen, S.; McGeehin, J. P.

    2013-12-01

    Mammoth Mountain, Lassen, and Shasta are high-threat volcanoes where aqueous and gas geochemistry is studied as part of ongoing monitoring efforts. All three volcanoes host high-elevation gas vents at near-boiling temperatures, and time series of samples from these features can reveal changes in the underlying magma-hydrothermal system. Most notably, a steam vent on Mammoth Mountain has shown significant increases in 3He/4He ratios that correlate with seismic swarms, initially in 1989-1990 and again in 2010-2012. The correlations provide strong evidence that those seismic swarms reflect enhanced upflow of magmatic fluids. Difficult access limits the frequency of sampling at the vents on Lassen and Shasta, but background data do exist, and sampling frequency could be increased in the event of unrest. Geochemical monitoring at the three volcanoes also includes sampling spring waters of diverse types that discharge on the flanks. Lassen supports a large hydrothermal system on its SE flanks consisting of numerous acid-sulfate springs and mudpots and at lower elevations, high-Cl hot springs. Dilute springs on the NE flank contain a few mg/L Cl and are a few °C above normal but are distinctly enriched in magmatic CO2 and represent potentially useful monitoring targets. Similar dilute, slightly thermal springs constitute the only anomalous spring discharges at Shasta (which lacks hot springs), and carbon and helium isotopes demonstrate a magmatic gas component in these features. Mammoth Mountain has one ~50°C hot spring (Reds Meadow tub) at its western base but also hosts a large number of dilute cold springs that are highly enriched in magmatic CO2. These cold springs show no detectable anomalies in Cl or temperature and the CO2 enrichment is best explained as a consequence of direct dissolution of magmatic gas into cold groundwater. Direct gas dissolution into cold groundwater likely occurs at Lassen and Shasta as well, in addition to the small input of geothermal

  14. Geochemistry of Monazite within Carbonatite Related REE Deposits

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-09-01

    Full Text Available Approximately >50% of global rare earth element (REE resources are hosted by carbonatite related deposits, of which monazite is one of the most important REE minerals. Monazite dominates more than 30 carbonatite-related REE deposits around the world, including currently exploited mineralization at Bayan Obo and Mount Weld. These deposits are widely distributed across all continents, except Antarctica. Though rare, monazite occurs as the primary mineral in carbonatite, and mostly presents as a secondary mineral that has a strong association with apatite. It can partially or completely replace thin or thick overgrowth apatite, depending on the availability of REE. Other mineral phases that usually crystallize together with monazite include barite, fluorite, xenotime, sulfide, and quartz in a carbonate matrix (e.g., dolomite, calcite. This review of monazite geochemistry within carbonatite-related REE deposits aims to provide information regarding the use of monazite as a geochemical indicator to track the formation history of the REE deposits and also supply additional information for the beneficiation of monazite. The chemical compositions of monazite are highly variable, and Ce-monazite is the dominant solid solution in carbonatite related deposits. Most monazite displays steep fractionation from La to Lu, absent of either Eu or Ce anomalies in the chondrite normalized REE plot. The other significant components are huttonite and cheratite. Some rare sulfur-bearing monazite is also identified with an SO3 content up to 4 wt %. A 147Sm/144Nd ratio with an average ~0.071 for monazite within carbonatite-related ores is similar to that of their host rocks (~0.065, and is the lowest among all types of REE deposits. Sm/Nd variation of monazite from a single complex reflects the differentiation stage of magma, which decreases from early to late. Based on the differences of Nd and Sr abundances, Nd isotopic composition for monazite can be used to track

  15. Cretaceous to Quaternary Siliciclastic Sediments of the Tarfaya Basin, Marginal Atlantic, SW Morocco Petrography, Geochemistry, Provenance, Climate and Weathering

    OpenAIRE

    Ali, Sajid

    2012-01-01

    This dissertation is prepared to attain the doctorate under the title "Cretaceous to Quaternary Siliciclastic Sediments of the Tarfaya Basin, Marginal Atlantic, SW Morocco Petrography, Geochemistry, Provenance, Climate and Weathering".

  16. Volcanology and Geochemistry of the Taney Seamounts northeast Pacific Ocean

    Science.gov (United States)

    Coumans, J. P.; Clague, D. A.; Stix, J.

    2011-12-01

    The Taney seamounts are a NW-SE trending, linear, near-ridge chain consisting of five submarine volcanoes located on the Pacific plate 300 km west of San Francisco, California. Morphologically, the seamounts are characterized as truncated cones with nested calderas decreasing in age towards the ridge axis. This study examines the volcanology and geochemistry of the largest and oldest seamount, (Taney A, ~26 Ma), which is comprised of four well-exposed nested calderas. Each successive collapse event exposes previously infilled lavas, defining a relative chronology. The caldera walls and intracaldera pillow mounds were carefully sampled by the remotely operated vehicle (ROV) Doc Ricketts to obtain stratigraphically-controlled samples. Whole rock samples were analyzed for major and trace elements, volcanic glasses were analyzed for major and volatile elements(S, Cl), and plagioclase phenocrysts were separated for mineral and glass inclusion microprobe analysis. Overall, the erupted lavas are mostly subalkalic mid-ocean ridge basalts (MORB) varying from differentiated to more primitive (6.0 - 8.2 wt. % MgO) with decreasing age. Incompatible elements and REE profiles normalized to primitive mantle suggest that the lavas are transitional to slightly enriched (0.1 - 0.3 wt. % K2O; 1.1 - 2.2 wt. % TiO2), which is unusual for near-ridge seamounts. Sc, which is compatible in clinopyroxene, increases linearly with TiO2 at primitive compositions (>7.0 wt. % MgO). In more evolved seamount basalts (<7.0 wt. % MgO), the low CaO and Sc contents and decreasing CaO/Al2O3 suggest that there is either extensive clinopyroxene fractionation, or mixing with magmas that have undergone extensive clinopyroxene fractionation. MELTS modeling suggests that clinopyroxene fractionation occurs at <6.0 wt. % MgO, inconsistent with the observed clinopyroxene imprint at <7.0 wt. % MgO. The discrepancy could indicate magma mixing. Although whole rock ICP-MS data have some scatter, especially for

  17. Regional surficial geochemistry of the northern Great Basin

    Science.gov (United States)

    Ludington, S.; Folger, H.; Kotlyar, B.; Mossotti, V.G.; Coombs, M.J.; Hildenbrand, T.G.

    2006-01-01

    so for low-sulfidation epithermal deposits. In addition to individual elements, the distribution of factor scores that resulted from principal component studies of the data was used. The strongest factor is characterized by Fe, Ti, V, Cu, Ni, and Zn and is used to map the distribution of distinctive basalts that are high in Cu, Ni, and Zn and that appear to be related to the Steens Basalt. The other important factor is related to hydrothermal precious metal mineralization and is characterized by Sb, Ag, As, Pb, Au, and Zn. The map of the distribution of this factor is similar in appearance to the one for arsenic, and we used wavelength filters to remove regional variations in the background for this factor score. The resulting residual map shows a very strong association with the most significant precious metal deposits and districts in the region. This residual map also shows a number of areas that are not associated with known mineral deposits, illustrating the utility of the method as a regional exploration tool. A number of these prospective areas are distant from known significant mineral deposits. The deconvolution of the spatial wavelength structure of geochemical maps, combined with the use of large regional geochemical data sets and GIS, permits new possibilities for the use of stream-sediment geochemistry in the study of large-scale crustal features as well as the isolation of mineral-district scale anomalies. ?? 2006 Society of Economic Geologists, Inc.

  18. Data-driven Science in Geochemistry & Petrology: Vision & Reality

    Science.gov (United States)

    Lehnert, K. A.; Ghiorso, M. S.; Spear, F. S.

    2013-12-01

    measurements, experiments, and models, both from past and from present studies, and their poor discoverability, interoperability, and standardization. Other deficiencies include the lack of widespread sample curation and online sample catalogs, and broad community support and enforcement of open data sharing policies and a strategy for sustained funding and operation of the cyberinfrastructure. In order to achieve true data-driven science in geochemistry and petrology, one of the primary requirements is to change the way data and models are managed and shared to dramatically improve their access and re-usability. Adoption of new data publication practices, new ways of citing data that ensure attribution and credit to authors, tools that help investigators to seamlessly manage their data throughout the data life cycle, from the point of acquisition to upload to repositories, and population of databases with historical data are among the most urgent needs. The community, especially early career scientists, must work together to produce the cultural shift within the discipline toward sharing of data and knowledge, virtual collaboration, and social networking. Dziewonski, A M, & Anderson, D L: Physics of the Earth and Planet Interiors 25 (4), 297 (1981) Hey, T, Tansley, S, Tolle, K (Eds.): Redmond, VA: Microsoft Research (2009) Zindler, A, & Hart, S R: Ann. Rev. Earth Plan. Sci. 14, 493 (1986)

  19. Geochemistry of the Birch Creek Drainage Basin, Idaho

    Science.gov (United States)

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  20. Water geochemistry to estimate reservoir temperature of Stabio springs, Switzerland

    Science.gov (United States)

    Pera, Sebastian; Soma, Linda

    2017-04-01

    Elettrica Ticinese References Balderer, W., Leuenberger, F., Frei, C., Surbeck, H., & Synal, H. A. (2007). Origin of the Thermal Waters of Stabio (Switzerland) and Sirmione (Italy) based on Isotope and Chemical Investigations. In Symposium on advances in isotope hydrology and its role in sustainable water resources management; Vienna (Austria); 21-25 May 2007 (Vol. 39, pp. 631-641). IAEA. Bernoulli, D. (1964). Zur Geologie des Monte Generoso. Ein Beitrag zur Kenntnis der südalpinen Sedimente. Beiträge zur Geologischen Karte der Schweiz Karte Schweiz. N.F. 118. Greber, E., Leu, W., Schumacher, M. E., & Wyss, R. (1997). Hydrocarbon provinces in the Swiss Southern Alps-a gas geochemistry and basin modelling study Fsl. Marine and Petroleum Geology, 14(1), 3-25 IAEA. (1984). Isotopes Hydrology 1983. In Proc. Vienna Symposium 1984. Vienna: IAEA

  1. Advances in the Study of Geochemistry and Paleo-oceanography of the Co-rich Crust

    Institute of Scientific and Technical Information of China (English)

    Cai Yihua; Huang Yipu

    2002-01-01

    The current advances in the study of geochemistry and paleo-oceanography of the Co-rich crust are reviewed in this paper. We summarize the study of geochemistry of the Co-rich crust, discuss the diffusion of elements in the Co-rich crust and the exchange with ambient seawater. Besides, we discuss the effect of phosphatization and substrate rocks on the composition of the Co-rich crust. We also introduce the application of stable isotopes (including the stable isotopes of Pb, Nd, and Hf), radioactive isotopes (including the radioactive isotopes of Be, U and Th), and elements (including the major elements, minor elements and rare earth elements) to the study of paleo-oceanography of the Co-rich crust.

  2. The compact AMS facility at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Sanyuan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ding, Ping; Wang, Ning; Shen, Chengde [State Key Laboratory of Isotopic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jia, Guodong [Key laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhang, Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2015-10-15

    A compact {sup 14}C AMS facility manufactured by the National Electrostatics Corporation (NEC) has been installed at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS). The system is based on a Model 1.5SDH-1 Pelletron accelerator with a maximum terminal volt 0.6 MV. This paper reports the performance and the operation of this machine in the first several months after installation.

  3. Development of the near field geochemistry model; Desarrollo de un modelo geoquimico de campo proximo

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D.; Bruno, J.; Duro, L.; Grive, M.

    2000-07-01

    This report discusses in a quantitative manner the evolution of the near field geochemistry as a result of the interactions between two different introducing granitic groundwaters and the FEBEX bentonite as a buffer material. The two granitic groundwaters considered are: SR-5 water, sampled in a borehole at 500 m depth in Mina Ratones, and a mean composition of different granitic groundwaters from the iberian Massif. The steel canister has also been introduced by considering the iron corrosion in anoxic conditions. (Author)

  4. The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil

    OpenAIRE

    Miguel García, Eduardo de; Mingot Marcilla, Juan; Chacón Oreja, Enrique; Charlesworth, Susanne

    2012-01-01

    A total of 32 samples of surficial soil were collected from 16 playground areas in Madrid (Spain), in order to investigate the importance of the geochemistry of the soil on subsequent bioaccessibility of trace elements. The in vitro bioaccessibility of As, Co, Cr, Cu, Ni, Pb and Zn was evaluated by means of two extraction processes that simulate the gastric environment and one that reproduces a gastric + intestinal digestion sequence. The results of the in vitro bioaccessibility were compared...

  5. Geochemistry at the sulfate reduction-methanogenesis transition zone in an anoxic aquifer

    DEFF Research Database (Denmark)

    Jakobsen, Rasmus; Cold, L.

    2007-01-01

    The study addresses a 10 m deep phreatic postglacial sandy aquifer of vertically varying lithology and horizontally varying infiltration water chemistry, displaying calcite dissolution, ion-exchange, and anaerobic redox processes. The simple variations in lithology and infiltration combine into a...... by implementing specific energy yields for the microbial redox processes, could explain most of the observed groundwater geochemistry as an expression of a closely coupled system of mineral equilibria and redox processes occurring at partial equilibrium....

  6. Preliminary report on the regional geochemistry of Strathmore (including comparisons with Ayrshire)

    OpenAIRE

    Breward, Neil

    2004-01-01

    The G-BASE stream sediment geochemistry data and the derived maps are being used as a valuable tool for the examination of the ‘cryptogeology’ of the Strathmore area, as an aid to the new re-mapping project. Various broad patterns, significant trends and local anomalies have been observed, discussed, and fed into the knowledge-base of the project making an important contribution to understanding the geology of the area.

  7. Foraminiferal Stable Isotope Geochemistry At The Micrometer Scale: Is It A Dream Or Reality?

    Science.gov (United States)

    Misra, S.; Shuttleworth, S.; Lloyd, N. S.; Sadekov, A.; Elderfield, H.

    2012-12-01

    Over last few decades trace metals and stable isotope compositions of foraminiferal shells became one of the major tools to study past oceans and associated climate change. Empirical calibrations of δ11B, δ18O, Mg/Ca, Cd/Ca, Ba/Ca shells compositions have linked them to various environmental parameters such as seawater pH, temperature, salinity and productivity. Despite their common use as proxies, little is known about mechanisms of trace metals incorporation into foraminiferal calcite. Trace metals partition coefficients for foraminiferal calcite is significantly different from inorganic calcite precipitates underlining strong biological control on metal transport to the calcification sites and their incorporation into the calcite. Microscale distribution of light elements isotopes (e.g. Li, B, Mg) could potentially provide unique inside into these biomineralization processes improving our understanding of foraminiferal geochemistry. In this work we explore potentials of using recent advances in analytical geochemistry by employing laser ablation and multi-collector ICP-MS to study microscale distribution of Mg isotopes across individual foraminiferal shells and δ11B, and δ7Li analyses of individual shell chambers. The analytical setup includes an Analyte.G2 193nm excimer laser ablation system with two volume ablation cell connected to a Thermo Scientific NEPTUNE Plus MC-ICP-MS with Jet Interface option. We will discuss method limitations and advantages for foraminiferal geochemistry as well as our data on Mg isotopes distribution within shells of planktonic foraminifera.

  8. Roman road pollution assessed by elemental and lead isotope geochemistry in East Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Renson, Virginie [U.R. Argiles et Paleoclimats, University of Liege, Allee du 6 Aout, B18, Sart Tilman, 4000 Liege (Belgium)], E-mail: vrenson@vub.ac.be; Fagel, Nathalie [U.R. Argiles et Paleoclimats, University of Liege, Allee du 6 Aout, B18, Sart Tilman, 4000 Liege (Belgium); Mattielli, Nadine [Departement des Sciences de la Terre et de l' Environnement, Universite Libre de Bruxelles, CP160/02, Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Nekrassoff, Serge [Station Scientifique des Hautes Fagnes 137, Rue de Botrange, 4950 Robertville (Belgium); Streel, Maurice [U.R.P.P.M., University of Liege, Allee du 6 Aout, B18, Sart Tilman, 4000 Liege (Belgium); De Vleeschouwer, Francois [U.R. Argiles et Paleoclimats, University of Liege, Allee du 6 Aout, B18, Sart Tilman, 4000 Liege (Belgium)

    2008-12-15

    The ability of inorganic geochemistry to record environmental change and especially human impact has been evidenced by several studies across Europe, especially in peat, where it is possible to record the impact of agriculture, mining and other industries. However, despite the numerous investigations on the impact of ancient human activities such as ore mining and smelting, little attention has been paid to geochemistry as a tool to solve problems of palaeopollution in the surroundings of archaeological sites. This paper presents geochemical evidence of the impact of a possible early Roman road built in SE Belgian peatland. Increased Zn and Pb concentrations suggest that Pb-Zn ores were transported on the road. Lead isotope analyses suggest that these ores are locally derived, being compatible with those found in the nearby Pb-Zn ore deposits from East Belgium. Present results provide direct evidence that East Belgian Pb-Zn ores were already being mined during Roman times, i.e. earlier than previously suspected (i.e. 14th century) and that Zn appears to be relatively immobile here. On a broader scale, it also demonstrates that such an early road already had an impact on the environment in terms of metal pollution. This paper enlarges on the range of possibilities offered by geochemistry in the field of geoarchaeology.

  9. Merging metagenomics and geochemistry reveals environmental controls on biological diversity and evolution.

    Science.gov (United States)

    Alsop, Eric B; Boyd, Eric S; Raymond, Jason

    2014-05-28

    The metabolic strategies employed by microbes inhabiting natural systems are, in large part, dictated by the physical and geochemical properties of the environment. This study sheds light onto the complex relationship between biology and environmental geochemistry using forty-three metagenomes collected from geochemically diverse and globally distributed natural systems. It is widely hypothesized that many uncommonly measured geochemical parameters affect community dynamics and this study leverages the development and application of multidimensional biogeochemical metrics to study correlations between geochemistry and microbial ecology. Analysis techniques such as a Markov cluster-based measure of the evolutionary distance between whole communities and a principal component analysis (PCA) of the geochemical gradients between environments allows for the determination of correlations between microbial community dynamics and environmental geochemistry and provides insight into which geochemical parameters most strongly influence microbial biodiversity. By progressively building from samples taken along well defined geochemical gradients to samples widely dispersed in geochemical space this study reveals strong links between the extent of taxonomic and functional diversification of resident communities and environmental geochemistry and reveals temperature and pH as the primary factors that have shaped the evolution of these communities. Moreover, the inclusion of extensive geochemical data into analyses reveals new links between geochemical parameters (e.g. oxygen and trace element availability) and the distribution and taxonomic diversification of communities at the functional level. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial taxonomic and functional composition. Clustering based on the frequency in which orthologous proteins occur among metagenomes

  10. Geochemistry and the understanding of ground-water systems

    Science.gov (United States)

    Glynn, Pierre D.; Plummer, L. Niel

    2005-03-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems. La géochimie a contribué de façon importante à la compréhension des systèmes d'eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l'application de la théorie des équilibres, l'étude des processus d'oxydoréduction, et sur la datation au radiocarbone. D'autres concepts, outils et

  11. REE geochemistry of lamprophyres in Baimazhai nickel deposit, Yunnan Province, China: implication for the mantle source region

    Institute of Scientific and Technical Information of China (English)

    GUAN Tao; HUANG Zhilong; XU Cheng; ZHANG Zhenliang; YAN Zaifei; SHEN Baojian

    2005-01-01

    Based on the REE geochemistry data from the Baimazhai nickel deposit, Yunnan Province, the authors modeled the composition of the mantle source region by way of petrological mixing calculation, and further discussed the genesis of this type of rocks. Both element geochemistry data and mixing calculation showed that lamprophyres in the Baimazhai nickel deposit were derived from a metasomatism-enrichment mantle and the fluids resulted from dehydration of a subducted slab which is comprised of ALK-, LREE- and incompatible element-rich sediments.

  12. Geochemistry and petrogenesis of carbonatites from South Nam Xe, Lai Chau area, northwest Vietnam

    Science.gov (United States)

    Nguyen Thi, Thuy; Wada, Hideki; Ishikawa, Tsuyoshi; Shimano, Taketo

    2014-06-01

    This paper presents a study of the petrography, mineral chemistry, geochemistry, and Sr-Nd-Pb-C-O isotope systematics of carbonatite dykes and associated rocks from the northeastern part of the Song Da intracontinental rift in South Nam Xe (northwest Vietnam) aimed at constraining the origin of the carbonatite magmas. The carbonatites are characterized by SiO2 material. Because of the lack of tectonic data and the limited number of samples studied, this conclusion is still ambiguous and requires further study.

  13. Application of fuzzy set and Dempster-Shafer theory to organic geochemistry interpretation

    Science.gov (United States)

    Kim, C. S.; Isaksen, G. H.

    1993-01-01

    An application of fuzzy sets and Dempster Shafter Theory (DST) in modeling the interpretational process of organic geochemistry data for predicting the level of maturities of oil and source rock samples is presented. This was accomplished by (1) representing linguistic imprecision and imprecision associated with experience by a fuzzy set theory, (2) capturing the probabilistic nature of imperfect evidences by a DST, and (3) combining multiple evidences by utilizing John Yen's generalized Dempster-Shafter Theory (GDST), which allows DST to deal with fuzzy information. The current prototype provides collective beliefs on the predicted levels of maturity by combining multiple evidences through GDST's rule of combination.

  14. Cold aqueous planetary geochemistry with FREZCHEM from modeling to the search for life at the limits

    CERN Document Server

    Marion, Giles M

    2007-01-01

    This book explicitly investigates issues of astrobiological relevance in the context of cold aqueous planetary geochemistry. At the core of the technical chapters is the FREZCHEM model, initially developed over many years by one of the authors to quantify aqueous electrolyte properties and chemical thermodynamics at subzero temperatures. FREZCHEM, of general relevance to biogeochemists and geochemical modelers, cold planetary scientists, physicochemists and chemical engineers, is subsequently applied to the exploration of biogeochemical applications to solar systems bodies in general, and to speculations about the limits for life in cold environments in particular.

  15. Geochemistry of surficial sediments along the central southwest coast of India - Seasonal changes in regional distribution

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Joseph, T.; Nair, M.; Sankaranarayanan, V.N.; Das, V.K.; Sheeba, P.

    carbon of the composite samples using wet digestion (chromic acid) followed by back titration with ferrous ammonium sulphate (EL WAKEEL and RILEY, 1957, precision::':: 0.25%). Finely powdered and dried (at 105 0 ::':: 5°C) sediments were digested in a...-earth element;; in the fluvial fraction « 4 IJ-m) that also date back to one~ct of sampling during 1981. Inadequacies in all the above stud ies have been their proper addressing of the influence 'If Seasonal Analysis of Sediment Geochemistry 665 Legend: PALL...

  16. Major Ion Geochemistry of Groundwaters from Southern Nevada and Eastern California,USA

    Institute of Scientific and Technical Information of China (English)

    周小平; KEVINH.JOHANNESSON; 等

    2000-01-01

    The dissolved ionic constitutents of groundwaters are,in part,a recored of the minerals and rocks in aquifers through which the water has flowed.The chemical composition and association of these major ions in groundwaters have been used to trace groundwater flow paths and sources,In general,the chemical compostion of water in carbonate-rock aquifers in dominated by calcium,magnesium,and bicarbonate,whereas sodium,chloride,and sulfate can be dominant ions in the water that comes from volcanic aquifers or clay minerals.Since the 1990's,we have dealt with the geochemistry of groundwaters from more than 100 springs and wells in southern Nevada and eastrn california ,USA for major solutes and trace elements.This paper compiles the hydrochemical data of major ions of these groundwaters.Based on major ion geochemistry,groundwaters from southern Nevada and eastern California can be classified as carbonate aquifer water,volcanic aquifer water,and mixing water (either mixing of cabonate and volcanic aquifer waters or mixing with local recharges),Piper and stiff diagrams of major ions have graphically shown the general chemical characteristics,classification,and mixing relationships of groundwaters from southern Nevada and eastern California.

  17. Groundwater geochemistry in shallow aquifers above longwall mines in Illinois, USA

    Science.gov (United States)

    Booth, C. J.; Bertsch, L. P.

    1999-12-01

    Aquifers above high-extraction underground coal mines are not affected by mine drainage, but they may still exhibit changes in groundwater chemistry due to alterations in groundwater flow induced by mine subsidence. At two active longwall mine sites in Illinois, USA, glacial-drift aquifers were largely unaffected by mining, but the geochemistry of the bedrock aquifers changed during the post-mining water-level recovery. At the Jefferson site, brackish, high-sulfate water present in the upper bedrock shale briefly had lower values of total dissolved solids (TDS) after mining due to increased recharge from the overlying drift, whereas TDS and sulfate increased in the sodium-bicarbonate water present in the underlying sandstone due to downward leakage from the shale and lateral inflow of water through the sandstone. At the Saline site, sandstones contained water ranging from brackish sodium-chloride to fresh sodium-bicarbonate type. Post-mining recovery of the potentiometric levels was minimal, and the water had minor quality changes. Longwall mining affects geochemistry due to subsidence-related fracturing, which increases downward leakage from overlying units, and due to the temporary potentiometric depression and subsequent recovery, whereby water from surrounding areas of the aquifer recharges the affected zone above and adjacent to the mine.

  18. Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, central India and their implications

    Indian Academy of Sciences (India)

    J K Pati; S C Patel; K L Pruseth; V P Malviya; M Arima; S Raju; P Pati; K Prakash

    2007-12-01

    Giant quartz veins (GQVs; earlier referred to as `quartz reefs’) occurring in the Archean Bundelkhand Craton (29, 000 km2) represent a gigantic Precambrian (∼2.15 Ga) silica-rich fluid activity in the central Indian shield. These veins form a striking curvilinear feature with positive relief having a preferred orientation NE–SW to NNE–SSW in the Bundelkhand Craton. Their outcrop widths vary from ≤ 1 to 70m and pervasively extend over tens of kilometers along the strike over the entire craton. Numerous younger thin quartz veins with somewhat similar orientation cut across the giant quartz veins. They show imprints of strong brittle to ductile–brittle deformation, and in places are associated with base metal and gold incidences, and pyrophyllite-diaspore mineralization. The geochemistry of giant quartz veins were studied. Apart from presenting new data on the geology and geochemistry of these veins, an attempt has been made to resolve the long standing debate on their origin, in favour of an emplacement due to tectonically controlled polyphase hydrothermal fluid activity.

  19. A Thermodynamically-Based Model For Predicting Microbial Growth And Community Composition Coupled To System Geochemistry

    Science.gov (United States)

    Istok, J. D.

    2007-12-01

    We present an approach that couples thermodynamic descriptions for microbial growth and geochemical reactions to provide quantitative predictions for the effects of substrate addition or other enviornmental perturbations on microbial community composition. A synthetic microbial community is defined as a collection of defined microbial groups; each with a growth equation derived from bioenergetic principles. The growth equations and standard-state free energy yields are appended to a thermodynamic database for geochemical reactions and the combined equations are solved simultaneously to predict coupled changes in microbial biomass, community composition, and system geochemistry. This approach, with a single set of thermodynamic parameters (one for each growth equation), was used to predict the results of laboratory and field experiments at three geochemically diverse research sites. Predicted effects of ethanol or acetate addition on radionuclide and heavy metal solubility, major ion geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. Model simulations provide insight into the long-standing difficulty in transferring experimental results from the laboratory to the field and from one site to the next, especially if the form, concentration, or delivery of growth substrate is varied from one experiment to the next. Although originally developed for use in better understanding bioimmobilization of radionuclides and heavy metals via reductive precipitation, the modeling approach is potentially useful for exploring the coupling of microbial growth and geochemical reactions in a variety of basic and applied biotechnology research settings.

  20. Geochemistry of Mesoproterozoic Volcanic Rocks in the Western Kunlun Mountains:Evidence for Plate Tectonic Evolution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chuanlin; DONG Yongguan; ZHAO Yu; WANG Aiguo; GUO Kunyi

    2003-01-01

    Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the alkalinity of the rocks decreases from early to late: alkaline→calc-alkaline→tholeiite, and geochemistry proves that the volcanic rocks were formed in rifting tectonic systems. The sedimentary facies shows characteristics of back-arc basins. The second (south belt) group, which occurs to the south of Yutian-Minfeng-Cele, is composed of calc-alkaline island arc (basaltic) andesite and minor rhyolite. The space distribution, age and geochemistry of the two volcanite groups indicate that they were formed in a back-arc basin (the first group) and an island arc (the second group) respectively and indicate the plate evolution during the Mesoproterozoic. The orogeny took place at ~1.05 Ga, which was coeval with the Grenville orogeny. This study has provided important geological data for exploring the position of the Paleo-Tarim plate in the Rodinia super-continent.

  1. Development and deployment of a deep-sea Raman probe for measurement of pore water geochemistry

    Science.gov (United States)

    Zhang, Xin; Walz, Peter M.; Kirkwood, William J.; Hester, Keith C.; Ussler, William; Peltzer, Edward T.; Brewer, Peter G.

    2010-02-01

    We have developed, deployed, and tested a novel probe for study of the geochemistry of sediment pore waters based upon Raman spectroscopy. The Raman technique has already been used successfully for in situ measurements of targets of scientific interest including gas and hydrothermal vents and complex gas hydrates, but sediment geochemistry has so far been an intractable problem since the sediments themselves are strongly fluorescent and typically only very small sample volumes are obtainable. The 35 cm long probe extracts pore fluids through a 10 μm sintered metallic frit and draws the sample through a 2 mm diameter channel into a sapphire windowed optical cell within which the laser beam is focused and the spectrum recorded. The dead volume of the system is ˜1 ml and the instrument is ROV deployable with activation of probe insertion and sample withdrawal under direct operator control. The unique features of this mode of detection include observation of the sulfate gradient in marine pore waters as an indicator of diagenesis, direct measurement of the dissolved sulfide species H 2S and HS -, and measurement of dissolved methane; all of which are of primary geochemical interest. Quantitative analysis is achieved by area ratio to known water peaks and from standard calibration curves with a precision of ±5%. We find only very small fluorescence from pore waters measured in situ, but observe rapid increases in fluorescence from cores returned to the surface and exposed to oxygen.

  2. EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gordon E.; Chaka, Anne; Shuh, David K.; Roden, Eric E.; Werth, Charles J.; Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Baer, Donald R.; Bailey, Vanessa L.; Bowden, Mark E.; Grate, Jay W.; Hoyt, David W.; Kuprat, Laura R.; Lea, Alan S.; Mueller, Karl T.; Oostrom, Martinus; Orr, Galya; Pasa-Tolic, Ljiljana; Plata, Charity; Robinson, E. W.; Teller, Raymond G.; Thevuthasan, Suntharampillai; Wang, Hongfei; Wiley, H. S.; Wilkins, Michael J.

    2011-08-01

    This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussions successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells.

  3. Environmental changes in the western Amazonia: morphological framework, geochemistry, palynology and radiocarbon dating data

    Energy Technology Data Exchange (ETDEWEB)

    Horbe, Adriana M.C., E-mail: ahorbe@ufam.edu.b [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Dept. de Geociencias; Behling, Hermann [Georg August Universitaet Goettingen (Germany). Albrecht von Haller Institut fuer Pflanzenwissenschaften. Abteilung fuer Palynologie und Klimadynamik; Nogueira, Afonso C.R. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Geociencias; Mapes, Russell [University of North Carolina, Chapel Hill, NC (United States). Dept. of Geological Science

    2011-09-15

    The sediments from the Coari lake, a 'terra firme' lake sculpted into Plio-Pleistocene deposits, and the Acara lake, a flooding-type lake developed on Quaternary sediments in the flood plain of the mid-Solimoes river, in the western Amazonia, Brazil, were studied to investigate the environmental condition of their developing. This study includes mineral composition, geochemistry, Pb isotope, palynology, radiocarbon-age and morphological framework of the lakes obtained from SRTM satellite images. The geological and the environmental conditions in the two lakes are highly variable and suggest that their evolution reflect autogenic processes under humid rain forest condition. Although kaolinite, quartz, muscovite, illite, and smectite are the main minerals in both lakes, the geochemistry indicates distinct source, the Acara lake sediments have higher concentrations of Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, FeO, CaO, K{sub 2}O, MgO, Na{sub 2}O, P{sub 2}O{sub 5}, Ba, V, Cu, Ni, Zn, Pb, Sr, Li, Y and La and have more radiogenic Pb than the Coari lake sediments. The radiocarbon ages suggest that at 10160 yr BP the Coari lake started to be developed due to avulsion of the Solimoes river, and the Acara lake was formed by the meander abandonment of Solimoes river retaining its grass dominated shore at ca. 3710 yr BP. (author)

  4. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    NARCIS (Netherlands)

    Aral, H.

    1986-01-01

    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis Massif

  5. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    NARCIS (Netherlands)

    Aral, H.

    1986-01-01

    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis

  6. Nano-mineralogy and -geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece

    DEFF Research Database (Denmark)

    Gkamaletsos, Platon; Godelitsas, Athanasios; Kasama, Takeshi

    2017-01-01

    In the present work, a combination of various techniques is utilized for the study of nano-mineralogy and -geochemistry of high-grade karst-type bauxite (Al-rich and Fe-depleted samples; Al2O3 ca. 80 wt.%) from the Parnassos-Ghiona mines located in Greece. Initial characterization using PXRD and ...

  7. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    NARCIS (Netherlands)

    Aral, H.

    1986-01-01

    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis Massif w

  8. Major and trace element geochemistry of Bay of Bengal sediments: Implications to provenances and their controlling factors

    Digital Repository Service at National Institute of Oceanography (India)

    Tripathy, G.R.; Singh, S.K.; Ramaswamy, V.

    –interglacial period. Factor analysis of these geochemical dataset ascertains dominant role of riverine supply of sediments in regulating the geochemistry of SK187/PC33 sediments. The Al-normalized major (K and Ti) and trace elemental (Cu and Cr) ratios of these marine...

  9. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    NARCIS (Netherlands)

    Aral, H.

    1986-01-01

    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis Massif w

  10. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    NARCIS (Netherlands)

    Woulds, C.; Middelburg, J.J.; Cowie, G.L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing

  11. The combined application of organic sulphur and isotope geochemistry to assess multiple sources of palaeobiochemicals with identical carbon skeletons

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kohnen, M.E.L.; Schouten, S.; Leeuw, J.W. de; Merrit, D.; Hayes, J.M.

    1992-01-01

    Five immature sediments from a Messinian evaporitic basin, representing one evaporitic cycle, were studied using molecular organic sulphur and isotope geochemistry. It is shown that a specific carbon skeleton which is present in different 'modes of occurrence' ('free' hydrocarbon, alkylthiophene, al

  12. Efficacy of Biostimulation for Uranium Sequestration: Coupled Effects Sediment/Groundwater Geochemistry and Microbiology

    Science.gov (United States)

    Xu, J.; Veeramani, H.; Qafoku, N. P.; Singh, G.; Pruden, A.; Kukkadapu, R. K.; Hochella, M. F., Jr.

    2015-12-01

    A systematic flow-through column study was conducted using sediments and groundwater from the subsurface at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, to better understand the efficacy of uranium removal from the groundwater with and without biostimulation in the form of acetate amendments. The interactive effects of acetate amendment, groundwater/sediment geochemistry, and intrinsic bacterial community composition were evaluated using four types of sediments, collected from different uranium-contaminated (D08, LQ107, CD) or non-contaminated (RABS) aquifers. Subtle variations in the sediments' geochemistry in terms of mineral compositions, particle sizes, redox conditions, and metal(loid) co-contaminants had a marked effect on the uranium removal efficiency, following a descending trend of D08 (~ 90 to 95%) >> RABS (~ 20 to 25) ≥ LQ107 (~ 15 to 20%) > CD (~ -10 to 0%). Overall, biostimulation of the sediments with acetate drove deeper anoxic conditions and observable shifts in bacterial population structures. The abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, were highest in the sediments that performed best in terms of uranium removal. By comparison, no obvious associations were found between the uranium removal efficiency and the abundance of typical iron-reducing microorganisms, e.g., Geobacter spp. In the sediments where bacterial biomass was relatively low and sulfate-reduction was not detected (i.e., CD), abiotic adsorption onto fine mineral surfaces such as phyllosilates likely played a dominant role in the attenuation of aqueous uranium. In these scenarios, however, acetate amendment induced significant remobilization of the sequestered uranium and other heavy metals (e.g., strontium), leading to zero or negative uranium removal efficiencies (i.e., CD). The results of this study suggest that reductive immobilization of uranium can be

  13. The geochemistry of volcanic, plutonic and turbiditic rocks from Sumba, Indonesia

    Science.gov (United States)

    Lytwyn, J.; Rutherford, E.; Burke, K.; Xia, C.

    2001-06-01

    Rocks that reveal the geology of Sumba for times before the Later Miocene (˜16 Ma) are relatively few and are not particularly well exposed. This has led to uncertainty about the nature of the basement rocks of the island and especially about whether Sumba originated as a fragment of Australia, or of that part of southeastern Eurasia which many authors have called Sundaland. A third possibility is that Sumba is underlain by arc material generated on the ocean floor and is not a fragment of either continent. We have studied the geochemistry of volcanic, plutonic and turbiditic rocks collected from Sumba in an attempt to provide additional insight into the island's origin and history between Late Cretaceous (˜86 Ma) and Early Miocene (˜16 Ma) times. Late Cretaceous to Early Oligocene (˜31 Ma) volcanic rocks on Sumba range compositionally from basalts to andesites, and are of typical oceanic island-arc affinity, exhibiting geochemical characteristics similar to those of high-Al basalts and their derivatives. Compositions indicate evolution along both calc-alkaline and tholeiitic trends. Some samples show indications of possible modifications by slab-derived melts and/or related fluids and also of contamination by turbiditic sediments. Gabbros and diorites collected from the Paleocene Tanadaro intrusion are compositionally similar to the associated volcanic rocks and, we consider, represent the plutonic equivalents of high-Al basalt. The geochemistry of Cretaceous turbiditic sedimentary rocks on Sumba indicates close proximity to an intra-oceanic island-arc environment. These results are consistent with the geochemical, sedimentological, stratigraphic, paleontological and paleomagnetic results of other investigators which together indicate that: (1) Late Cretaceous to Early Oligocene volcanic, plutonic and volcaniclastic rocks of Sumba are island-arc- and forearc-related; (2) the arc involved appears to have been what we refer to as the Great Indonesian Volcanic

  14. Geology and geochemistry of the Neoproterozoic Tuludimtu Ophiolite suite, western Ethiopia

    Science.gov (United States)

    Tadesse, Gebremedhin; Allen, Alistair

    2005-02-01

    The Kemashi Domain, a lithotectonic subdivision of the Neoproterozoic Tuludimtu Orogenic Belt of western Ethiopia, consists of a suite of mafic-ultramafic volcanic and plutonic rocks, and interbedded deep marine sediments, mainly graphite-bearing pelitic schists and phyllites, and graphitic quartzites and cherts. Pillow structures indicate submarine extrusion of the volcanics, whilst partings within some of the basalts may represent sheeted dykes. An associated mélange unit, composed of blocks of the same rock types as above, set in a fine schistose matrix, also occurs. This assemblage is interpreted as a dismembered ophiolite—the Tuludimtu Ophiolite—formed in a deep oceanic environment. A turbiditic sequence is also present in the domain. The Tuludimtu Ophiolite underwent intense compression during the Neoproterozoic Pan African Orogeny, resulting in early recumbent folding and westwards-directed thrusting, followed by reactivation of steeper zones of the thrusts as N-S orogen-parallel strike-slip shear zones, accompanied by refolding of early folds into upright horizontal folds. This was followed by development of deep crustal NNW-SSE orogen-transecting shear zones, which were reactivated as brittle faults during orogenic collapse of the Tuludimtu Belt. Metamorphism to lower greenschist facies grade accompanied orogenesis. Major, trace and REE geochemistry of volcanic and some plutonic igneous rocks, has been employed to define the tectonic setting of the terrane. Tectonic discrimination diagrams, utilising REE and HFSE, indicate a wide distribution spectrum but with the majority of samples plotting in arc basalt and MORB fields, suggesting derivation from sources similar to N-MORB and depleted MORB (typical of many arc basalts). Most of the samples exhibit a slight depletion of immobile elements, relative to N-MORB values and also show depletion of Zr, Ti, Nb and Y, implying that their source had been depleted by an earlier melting episode. Overall, the

  15. Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations: paleotemperature from mollusk and coral geochemistry

    Directory of Open Access Journals (Sweden)

    M. Carré

    2011-08-01

    Full Text Available Reconstructions of the past climate from proxy records involve a wide range of uncertainties at every step of the process. These uncertainties and the subsequent error bar in the reconstruction of a paleoclimatic variable need to be understood and quantified in order to properly interpret the reconstructed variability and to perform meaningful comparisons with climate model outputs. Classic proxy calibration-validation techniques are not well-suited for identifying the causes of reconstruction errors, estimating their relative contribution, or understanding how errors accumulate from a multitude of sources. In this study, we focus on high resolution proxy records based on calcium carbonate geochemistry of sessile organisms such as mollusks, corals, or sclerosponges, and propose an approach based on Monte Carlo simulations with simple numerical surrogate proxies. A freely available algorithm (MoCo, http://www.isem.cnrs.fr/spip.php?rubrique472 is provided for estimating systematic and standard errors of mean temperature, seasonality and variance reconstructed from marine accretionary archive geochemistry. This algorithm is then used for sensitivity experiments in a case study to characterize and quantitatively evaluate the sensitivity of systematic and standard errors to sampling randomness, stochastic uncertainty sources and systematic proxy limitations. The results of the experiments yield an illustrative example of the range of variations that climate reconstruction errors may undergo, and bring to light their complexity. One of the main improvements of this method is the identification and estimation of systematic bias that would not otherwise be detected. It thus offers the possibility of correcting the proxy-based climate from these biases for a more accurate reconstruction. Beyond the findings of error sources for coral and mollusk-based reconstructions, our study

  16. Clumped isotope geochemistry of mid-Cretaceous (Barremian-Aptian) rudist shells: paleoclimatic and paleoenvironmental implications

    Science.gov (United States)

    Huck, S.; Steuber, T.; Bernasconi, S.; Weissert, H.

    2012-04-01

    The Cretaceous period is generally considered to have been a time of climate warmth, but there is an ongoing dispute about the existence of Cretaceous cool episodes - including the short-termed installation of polar ice caps. The Late Barremian-Early Aptian represents a Cretaceous key interval in terms of paleoclimate and paleoceanography, as it provides evidence for (i) a cooler climate (Pucéat et al., 2003) and (ii) a considerable seasonality of sea surface temperatures (SSTs) at low latitudes (Steuber et al., 2005). The timing and significance of these cool episodes, however, are not well constrained. Recently published TEX86 data, in contrast to oxygen isotope paleotemperature estimates, now are in support of a climate scenario with equable hot (~30° C) tropical SSTs from the Early Cretaceous onwards. The aim of this project is to reconstruct the evolution of Barremian-Aptian sea-surface temperatures (SSTs) in the tropical Tethyan realm by use of a combined geochemical approach including oxygen isotope analysis and carbonate clumped-isotope thermometry. Paleotemperature proxies are based on the isotope geochemistry of low-Mg calcite of pristine rudist bivalve shells (Toucasia, Requienia) collected from different carbonate platform settings, including the Provence platform in SE France and the Adriatic Carbonate platform in Croatia. Carbonate clumped-isotope geochemistry deals with the state of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes (13C-18O) rather than with the most abundant ones. Carbonate clumped-isotope thermometry has been shown to allow for reconstructing (i) the temperature of carbonate mineral formation and calculating (ii) the isotopic composition of the water from which carbonate minerals were formed (by using the δ18O of the analysed carbonate sample). Our approach seeks to provide insights into possible biases in temperature estimates of different paleothermometers

  17. Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA

    Directory of Open Access Journals (Sweden)

    Miller Douglas

    2006-12-01

    Full Text Available Abstract Background Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. Results Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox stratification observed during fall and the most compressed redox stratification observed during summer. A 2-step sequential sediment extraction yields much more Fe in the first step, targeted at amorphous Fe(III (hydroxides (AEF, then in the second step, which targets Fe(II monosulfides. Fe extracted in the second step is relatively invariant with depth or season. In contrast, AEF decreases with sediment depth, and is seasonally variable, in agreement with changes in redox stratification inferred from pore water profiles. A 5-step Tessier extraction scheme was used to assess metal association with operationally-defined exchangeable, carbonate, iron and manganese oxide (FMO, organic/sulfide and microwave-digestible residual fractions in cores collected during winter and spring. Distribution of metals in these two seasons is similar. Co, As, Cd, and U concentrations approach detection limits. Fe, Cu and Pb are mostly associated with the organics/sulfides fraction. Cr and Zn are mostly associated with FMO. Mn is primarily associated with carbonates, and Co is nearly equally distributed between the FMO and organics/sulfide fractions. Conclusion This study clearly demonstrates that near-surface lake sediment pore water redox stratification and associated solid phase geochemistry vary significantly with season. This has important ramifications for seasonal changes in the bioavailability and mobility of trace elements. Without rate measurements, it is not possible to

  18. Composition and formation of Palaeozoic Erlangping ophiolitic slab, North Qinling: Evidence from geology and geochemistry

    Institute of Scientific and Technical Information of China (English)

    孙勇; 卢欣祥; 韩松; 张国伟

    1996-01-01

    The analyses based on the protolith formation, metamorphic and deformation reveal that the Erlangping Group is composed of different lithological slices, without any significance in stratigraphy. It is therefore to discard the Erlangping Group into the Damiao slab, the Erlangping ophiolitic slab and the Xiaozhai slab. The Erlangping ophiolitic slab only includes the former Huoshenmiao Formation and it is mainly composed of massive basalts, pillow basalts, sheet dikes, gabbro and a few of ultramafic intrusions with patches of plagiogranite, overlain by radiolarian silicolites. A lot of microfossils were discovered in the silicolites that mark the Erlangping ophiolitic slab mainly formed in the Early to Middle Ordovician. In geochemistry, most of the basalts and diabase dikes are consistent with N-MORB except a few of samples effected by alteration. The Erlangping ophiolitic slab represents a remnant piece of ancient ocean crust which is most suitable to a back-arc basin setting. A mean 207Pb/206Pb age of

  19. Sr, Nd, Pb Isotope geochemistry and magma evolution of the potassic volcanic rocks, Wudalianchi, Northeast China

    Science.gov (United States)

    Junwen, W.; Guanghong, X.; Tatsumoto, M.; Basu, A.R.

    1989-01-01

    Wudalianchi volcanic rocks are the most typical Cenozoic potassic volcanic rocks in eastern China. Compositional comparisons between whole rocks and glasses of various occurrences indicate that the magma tends to become rich in silica and alkalis as a result of crystal differentiation in the course of evolution. They are unique in isotopic composition with more radiogenic Sr but less radiogenic Pb.87Sr /86 Sr is higher and143Nd/144Nd is lower than the undifferentiated global values. In comparison to continental potash volcanic rocks, Pb isotopes are apparently lower. These various threads of evidence indicate that the rocks were derived from a primary enriched mantle which had not been subjected to reworking and shows no sign of incorporation of crustal material. The correlation between Pb and Sr suggests the regional heterogeneity in the upper mantle in terms of chemical composition. ?? 1989 Institute of Geochemistry, Chinese Academy of Sciences.

  20. Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry.

    Science.gov (United States)

    Chivers, Tristram; Elder, Philip J W

    2013-07-21

    The trisulfur radical anion [S3]˙(-) is well-known from inorganic chemistry textbooks as the blue chromophore in ultramarine blues in which this highly reactive species is trapped in a zeolitic framework. Recent findings have revealed that [S3]˙(-) has a multi-faceted role in a variety of media, including alkali metal-sulfur batteries, aqueous solutions at high temperatures and pressures, and ionic liquids; it has also been used to detect trace amounts of water in organic solvents. This tutorial review illustrates how various physical techniques are used to identify a reactive species in solution and shows how elucidation of electronic structures can be used to explain spectroscopic and structural properties. Examples of the function of [S3]˙(-) in materials science, electrochemistry, analytical chemistry and geochemistry are used to illustrate the widespread influence of this fundamentally important triatomic sulfur species.

  1. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.

    Science.gov (United States)

    McLennan, S M; Anderson, R B; Bell, J F; Bridges, J C; Calef, F; Campbell, J L; Clark, B C; Clegg, S; Conrad, P; Cousin, A; Des Marais, D J; Dromart, G; Dyar, M D; Edgar, L A; Ehlmann, B L; Fabre, C; Forni, O; Gasnault, O; Gellert, R; Gordon, S; Grant, J A; Grotzinger, J P; Gupta, S; Herkenhoff, K E; Hurowitz, J A; King, P L; Le Mouélic, S; Leshin, L A; Léveillé, R; Lewis, K W; Mangold, N; Maurice, S; Ming, D W; Morris, R V; Nachon, M; Newsom, H E; Ollila, A M; Perrett, G M; Rice, M S; Schmidt, M E; Schwenzer, S P; Stack, K; Stolper, E M; Sumner, D Y; Treiman, A H; VanBommel, S; Vaniman, D T; Vasavada, A; Wiens, R C; Yingst, R A

    2014-01-24

    Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

  2. Genesis of hydrothermal alterations using stable isotope geochemistry in Takestan area (Tarom zone

    Directory of Open Access Journals (Sweden)

    Batool Taghipou

    2015-12-01

    Full Text Available Hydrothermal alteration processes are extensively took place on volcanic and pyroclstics of Takestan area. Existence of abundant, deep fracturing and subvolcanic intrusions are enhanced extend hydrothermal alteration zones. The following alteration zones are determined: propylitic, argillic, advanced argillic and sillicic. There are outcropped and widespread in different size and limit. Formation of siliceous sinter, silicified tuffs with preserved primary sedimentary layering including pure mineralized alunite patches are most outstanding. Quartz, sussoritic plagioclase, chlorite, sericite and alunite are main mineral constituents in the volcanics. On the basis of geochemical data volcanic rocks are rhyolite, dacite, andesite, andesitic-basalt and basalt in composition. Acid-sulfate zone is the type of alteration in Tarom area and alunite is an index mineral of this zone. Results of 18O, D and 34S stable isotope geochemistry on altered minerals (muscovite, kaolinite and alunite, revealed that alteration fluids are magmatic in origin.

  3. Invited review article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry.

    Science.gov (United States)

    Ireland, Trevor R

    2013-01-01

    Mass spectrometry is fundamental to measurements of isotope ratios for applications in isotope geochemistry, geochronology, and cosmochemistry. Magnetic-sector mass spectrometers are most common because these provide the best precision in isotope ratio measurements. Where the highest precision is desired, chemical separation followed by mass spectrometric analysis is carried out with gas (noble gas and stable isotope mass spectrometry), liquid (inductively coupled plasma mass spectrometry), or solid (thermal ionization mass spectrometry) samples. Developments in in situ analysis, including ion microprobes and laser ablation inductively coupled plasma mass spectrometry, have opened up issues concerning homogeneity according to domain size, and allow ever smaller amounts of material to be analyzed. While mass spectrometry is built solidly on developments in the 20th century, there are new technologies that will push the limits in terms of precision, accuracy, and sample efficiency. Developments of new instruments based on time-of-flight mass spectrometers could open up the ultimate levels of sensitivity per sample atom.

  4. Environmental geochemistry of calcium isotopes: Applications of a new stable isotope approach

    Institute of Scientific and Technical Information of China (English)

    LIU Zhanmin; LIU Congqiang; HAN Guilin; WANG Zhongliang; XUE Zichen; SONG Zhaoliang; YANG Cheng

    2006-01-01

    This paper summarizes isotope fractionation mechanism, analytical method and applications in environmental geochemistry of calcium isotopes. Calcium isotopic composition can be used to constrain material sources and study geological and environmental processes as the isotopic composition of calcium (δ 44Ca) and fractionation processes depend on geochemical circumstances in nature. Recently, thanks to current advances in analytical technology of calcium isotopes, calcium isotopes are broadly used in biological and geochemical studies, such as the mechanism of plants imbibing nutrients through their roots, calcium transport in the environmental ecosystem, calcium cycle in oceans and paleo-oceans and paleo-climate. The elementary data show that δ44Ca values vary from -2.88‰ to 0.92‰ in natural samples.

  5. Paleosol geochemistry of the late Paleocene Goler Formation of Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Mark, E-mail: marktorr@usc.edu [Pomona College, Department of Geology, 185 E. 6th St. Claremont, CA 91711 (United States); Gaines, Robert [Pomona College, Department of Geology, 185 E. 6th St. Claremont, CA 91711 (United States)

    2011-06-15

    Highlights: > Newly discovered paleosols. > Indicate a seasonal paleoclimate. > Suggests role of paleotopography. - Abstract: Paleosol (fossilized soil) geochemistry can provide a record of paleoclimatic conditions due to the relationships between pedogenic processes and climate. In this study, paleosols from the late Paleocene Goler Formation of Southern California were used to determine the paleoclimatic conditions active during pedogenesis. The enrichment and retention of soluble elements (Ca, Mg and Na) and the mobilization of Fe and Mn within the paleosol profiles suggest a climate with strongly seasonal precipitation. Similarly, variations in the Mn content and {delta}{sup 13}C ratio of pedogenic carbonate nodules also reflect seasonal precipitation. Regional paleotopography was likely an important control on the paleoclimate of the Goler Formation due to rain shadow effects. Although the size and location of these ancient mountains are poorly constrained, the identification of climatic effects specifically associated with these variables provides new constraints.

  6. ANALYSIS OF BIOLOGICAL GEOCHEMISTRY OF CHEMICAL ELEMENTS IN Betula ermanii FOREST IN CHANGBAI MOUNTAINS, CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on catalogue of biology and geochemistry of chemical elements, content characteristics and variation law of the large nutrient elements, the needful trace elements, the uncertain needful elements, the non-needful elements and the toxic elements in Betula ermanii trees are analyzed. The result shows that the content of the large nutrient elements in Betula ermanii trees is higher than that of other kinds of element; the contents of all kinds of elements in foliage with vigorous metabolism are higher than those in other parts; the content variations of the large nutrient elements and the needful trace elements with similar chemical property, geochemical property and biological function in different parts of Betula ermanii trees show the similar laws; but the other three kinds of elements variations are without laws. It is indicated that the variation of the needful elements in the plant follows a certain law, they are in relative equilibrium under undisturbed condition.

  7. Geochemistry of Rare Earth Elements in Lamprophyres in Laowangzhai Gold Orefield, Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Lamprophyres, widely distributed in the Laowangzhai gold orefield, Yunnan Province, China, and closely related to gold mineralization in time and space, can be distinguished into three kinds: the fresh(weakly altered), the altered, and the mineralized lamprophyres. These lamprophyres in the orefield are similar in the range of REE contents and REE patterns, but definitely different in parameters of LRE/HRE, NLa/Yb etc. The geochemistry of REE in fresh lamprophyre shows that the rock is a product of different partial melting of the enriched mantle. Calculation results of mass balance of REE activity regularity in the process of alteration and mineralization of the lamprophyres in the orefield shows that the altering fluids and mineralizing fluids contain REE, and these fluids are mainly the products of mantle degassing and magma degassing during the lamprophyric magmatism.

  8. Geological controls on soil parent material geochemistry along a northern Manitoba-North Dakota transect

    Science.gov (United States)

    Klassen, R.A.

    2009-01-01

    As a pilot study for mapping the geochemistry of North American soils, samples were collected along two continental transects extending east–west from Virginia to California, and north–south from northern Manitoba to the US–Mexican border and subjected to geochemical and mineralogical analyses. For the northern Manitoba–North Dakota segment of the north–south transect, X-ray diffraction analysis and bivariate relations indicate that geochemical properties of soil parent materials may be interpreted in terms of minerals derived from Shield and clastic sedimentary bedrock, and carbonate sedimentary bedrock terranes. The elements Cu, Zn, Ni, Cr and Ti occur primarily in silicate minerals decomposed by aqua regia, likely phyllosilicates, that preferentially concentrate in clay-sized fractions; Cr and Ti also occur in minerals decomposed only by stronger acid. Physical glacial processes affecting the distribution and concentration of carbonate minerals are significant controls on the variation of trace metal background concentrations.

  9. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska

    Science.gov (United States)

    Iwahana, Go; Harada, Koichiro; Uchida, Masao; Tsuyuzaki, Shiro; Saito, Kazuyuki; Narita, Kenji; Kushida, Keiji; Hinzman, Larry D.

    2016-09-01

    Geomorphological and thermohydrological changes to tundra, caused by a wildfire in 2002 on the central Seward Peninsula of Alaska, were investigated as a case study for understanding the response from ice-rich permafrost terrain to surface disturbance. Frozen and unfrozen soil samples were collected at burned and unburned areas, and then water isotope geochemistry and cryostratigraphy of the active layer and near-surface permafrost were analyzed to investigate past hydrological and freeze/thaw conditions and how this information could be recorded within the permafrost. The development of thermokarst subsidence due to ice wedge melting after the fire was clear from analyses of historical submeter-resolution remote sensing imagery, long-term monitoring of thermohydrological conditions within the active layer, in situ surveys of microrelief, and geochemical signals recorded in the near-surface permafrost. The resulting polygonal relief coincided with depression lines along an underground ice wedge network, and cumulative subsidence to 2013 was estimated as at least 10.1 to 12.1 cm (0.9-1.1 cm/year 11 year average). Profiles of water geochemistry in the ground indicated mixing or replenishment of older permafrost water with newer meteoric water, as a consequence of the increase in active layer thickness due to wildfire or past thaw event. Our geocryological analysis of cores suggests that permafrost could be used to reconstruct the permafrost degradation history for the study site. Distinct hydrogen and oxygen isotopic compositions above the Global Meteoric Water Line were found for water from these sites where permafrost degradation with geomorphological change and prolonged surface inundation were suggested.

  10. Influence of soil on groundwater geochemistry in a carbonate aquifer, southern Italy

    Directory of Open Access Journals (Sweden)

    Tiziano Boschetti

    2014-01-01

    Full Text Available The role of soil compositions in influencing groundwater geochemistry in carbonate aquifers is still little known. Nothing is known regarding the influence of pyroclastic soils (andisol within the carbonate Apennines in central-southern Italy, despite their wide distribution. In this study we analyze some physical and chemical properties of pyroclastic soil at the Acqua dei Faggi experimental site (southern Italy, to assess its influence on groundwater geochemistry. Chemical analyses were carried out on saturated paste extracts and a physical analogue model was developed through two column experiments. Physico-chemical properties of rainwater and spring water, and some microbiological features of the soil medium were also taken into consideration. The studied soil has a great influence in modifying rainwater chemistry during percolation. About the 50% of HCO3- and Ca2+ in spring water is due to interaction between percolation water and soil medium, and equilibrium with calcite is reached at this stage. The Na+/K+ ratio is buffered by clay minerals in the soil by primary silicates in the pyroclastic cover and then buffered. Cl- and SO42- concentrations in spring water are very close to that of soil infiltration water during short-term interaction with soil, but a decline is showed during long-term cause to the anions adsorption effect in the andisol. Chemical and microbiological investigations show the existence of a soil microbial community that allows denitrification and nitrate reduction. Infiltration processes cause anoxic conditions within the soil medium, therefore the absence of NH4+ in spring water throughout the observation period should be due to anammox processes. These findings suggest that hydrochemistry and spring chemographs may be significantly influenced by several factors, such as relationships between soil and rainwater, vegetation, and microbial communities, which are not necessarily correlated with lithological and structural

  11. Geochemistry and origin of gas pools in the Gaoqing-Pingnan fault zone,Jiyang Depression

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the surroundings of the Gaoqing-Pingnan fault zone are developed quite a number of gas reservoirs. Based on gas compositions, they can be divided into two groups, i.e., CO2 and CH4. Their composition and isotope geochemistry were dealt with in this study. The CO2 contents range from 60.72%-99.99%, the (13CCO2 values from -3.41‰- -9.8‰, and the 3He/4He ratios from 4.35×10-6-6.35×10-6 (i.e. R/Ra=4.45-4.35). Based on the data on composition and isotope geochemistry, deep geological background, deep faults and volcanic rocks, it is shown that CO2 ,distributed in the Gaoqing area, mostly originated from mantle-source inorganic matter which is associated with magmatic rocks. The favorable tectonic environment for the formation of CO2 reservoirs is the rift, which is related to great fault-magmatic activity, the formation of CO2 gas pools and their space-time correlation to the most recent magmatic activities. Hydrocarbon gas pools occur in the Huagou area. The CH4 contents are within the range of 88.83%-99.12%, and the (13CCH4 values, -44.7‰- -54.39‰. This indicates that the hydrocarbon gas resulted from the decomposition of oil-type gas at high temperatures. Volcanic rocks in the CO2 gas pool- and CH4 gas pool-distributed areas show significant differences in Fe2O3 and FeO contents. This has proven that the hydrocarbon gas may have resulted from various chemical reactions. Magmatic activities are the primary reason for the distribution of CO2 and CH4 gas pools in the Gaoqing-Pingnan fault zone.

  12. Baseline geochemistry of soil and bedrock Tshirege Member of the Bandelier Tuff at MDA-P

    Energy Technology Data Exchange (ETDEWEB)

    Warren, R.G.; McDonald, E.V.; Ryti, R.T.

    1997-08-01

    This report provides baseline geochemistry for soils (including fill), and for bedrock within three specific areas that are planned for use in the remediation of Material Disposal Area P (MDA-P) at Technical Area 16 (TA-16). The baseline chemistry includes leachable element concentrations for both soils and bedrock and total element concentrations for all soil samples and for two selected bedrock samples. MDA-P operated from the early 1950s to 1984 as a landfill for rubble and debris generated by the burning of high explosives (HE) at the TA-16 Burning Ground, HE-contaminated equipment and material, barium nitrate sand, building materials, and trash. The aim of this report is to establish causes for recognizable chemical differences between the background and baseline data sets. In many cases, the authors conclude that recognizable differences represent natural enrichments. In other cases, differences are best attributed to analytical problems. But most importantly, the comparison of background and baseline geochemistry demonstrates significant contamination for several elements not only at the two remedial sites near the TA-16 Burning Ground, but also within the entire region of the background study. This contamination is highly localized very near to the surface in soil and fill, and probably also in bedrock; consequently, upper tolerance limits (UTLs) calculated as upper 95% confidence limits of the 95th percentile are of little value and thus are not provided. This report instead provides basic statistical summaries and graphical comparisons for background and baseline samples to guide strategies for remediation of the three sites to be used in the restoration of MDA-P.

  13. Major, trace and REE geochemistry of recent sediments from lower Catumbela River (Angola)

    Science.gov (United States)

    Vinha, Manuela; Silva, M. G.; Cabral Pinto, Marina M. S.; Carvalho, Paula Cristina S.

    2016-03-01

    The mineralogy, texture, major, trace and rare earth elements, from recent sediment samples collected in the lower Catumbela River, were analysed in this study to characterize and discuss the factors controlling its geochemistry and provide data that can be used as tracers of Catumbela River inputs to the Angolan continental shelf. The sediments are mainly sands and silty-sands, but sandy-silt also occurs and the mineralogy is composed of quartz, feldspar, phyllosilicates, magnetite, ilmenite and also carbonates when the river crosses limestones and marls in the downstream sector. The hydraulic sorting originates magnetite-ilmenite and REE-enriched minerals placers. The mineralogy of the sediments is controlled by the source rocks and the degree of chemical weathering is lower than erosion. The texture is mainly controlled by location. There is enrichment in all the analysed trace elements in the fine grained, clay minerals and Fe-oxy-hydroxides rich sediments, compared to the coarse grained and quartz plus feldspar rich ones. The coarse grained sediments (without the placers) are impoverished in ΣREE when compared with UCC and NASC compositions, while the fine grained sediments have ΣREE contents similar to UCC and NASC. The placers have ΣREE contents up to 959.59 mg/kg. The source composition is the dominant factor controlling the REE geochemistry of the analysed sediments as there is no difference in the (La/Yb)N, (La/Sm)N and (Gd/Yb)N ratios in coarse and fine grained sediments. The sorting of magnetite, ilmenite, zircon, throrite, thorianite, rutile and titanite explain the HREE/LREE enriched patterns of the coarse grained sediments.

  14. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.

    Science.gov (United States)

    Keller, C Brenhin; Schoene, Blair

    2012-05-23

    The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.

  15. Geology, mineralogy and geochemistry of Ferezneh ferromanganese anomaly, east of Sangan mines complex, NE Iran

    Directory of Open Access Journals (Sweden)

    Nazi Mazhari

    2015-04-01

    Full Text Available Introduction The Ferezneh prospect area is one of the eastern anomalies of Khaf’s Sangan iron mine. The Sangan mines complex is located within the Khaf-Kashmar-Bardeskan volcano-plutonic and metallogenic belt in northeastern Iran. The Sangan mine is the largest Fe skarn in western Asia, having a proven reserve of over 1000 Mt iron ore @ 53% Fe (Golmohammadi et al., 2015 and consisting of three parts; western, central and eastern Sangan, each part including several anomalies. In this study, Ferezneh (North and West prospect area which is an eastern anomaly of the Sangan iron ore is discussed. Ferezneh anomaly is located in 60°36'7" - 60°34'27"E and 34°30'47" - 34°29'46"N, 35 km south of the city of Taybad, 10 km southeast of Karat and 1.5 km southwest of Ferezneh village. The purpose of this study was to prepare a geologic map for separation and identification of the intrusions, determining their relationships with mineralization, distinguishing the type of mineralization, mineralogy, petrology and geochemistry of the mineral deposits, and finally their relationship with other major Sangan’s deposits. Materials and methods In order to achieve the objectives of the study: 1- 140 thin sections of the intrusive rocks, marble limestone and dolomite, as well as 40 polished sections of ore were taken in an area of 9.5 km2. Mineralogy and mineralization studies were performed in the Economic Geology Laboratory of Ferdowsi University of Mashhad. 2- A few samples were selected for X-ray diffraction analysis in order to ensure accuracy of mineralogical studies and were sent to Binalood Laboratory in Tehran. 3- In addition to major and minor elements geochemistry study of the ores, 10 samples were sent to East Amitis Laboratory in Mashhad for XRF analysis and also to Canada S.G.S Laboratory for ICP-MS analysis. Discussion and results Mineralization in the Ferezneh prospect area was limited to iron and manganese oxides in the form of massive and

  16. EXPLORATION GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070497 Wang Shuangqing (National Research Center of Geoanalysis, Beijing 100037, China); Sun Weilin Review on Methodology in Oil and Gas Geochemical Exploration (Rock and Mineral Analysis, ISSN0254-5357, CN11-2131/TD, 24(4), 2005, p.271-276, 40 refs.) Key words: geochemical prospecting of oil and gas

  17. EXPLORATION GEOCHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20072782 Dong Sheng(East China Academy of Metallurgical Geological Exploration,Hefei 230022,China)Regional Geochemical Characteristics of Guichi Area in Anhui Province and Their Ore-Prospecting Significance(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,30(3),2006,p.215-219,223,3 illus.,7 refs.)Key words:polymetallic deposits,regional geological exploration,Anhui Province Controlled by unique geological conditions,

  18. USGS exploration geochemistry studies at the Pebble porphyry Cu-Au-Mo deposit, Alaska-pdf of presentation

    Science.gov (United States)

    Eppinger, Robert G.; Kelley, Karen D.; Fey, David L.; Giles, Stuart A.; Minsley, Burke J.; Smith, Steven M.

    2010-01-01

    From 2007 through 2010, scientists in the U.S. Geological Survey (USGS) have been conducting exploration-oriented geochemical and geophysical studies in the region surrounding the giant Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The Cretaceous Pebble deposit is concealed under tundra, glacial till, and Tertiary cover rocks, and is undisturbed except for numerous exploration drill holes. These USGS studies are part of a nation-wide research project on evaluating and detecting concealed mineral resources. This report focuses on exploration geochemistry and comprises illustrations and associated notes that were presented as a case study in a workshop on this topic. The workshop, organized by L.G. Closs and R. Glanzman, is called 'Geochemistry in Mineral Exploration and Development,' presented by the Society of Economic Geologists at a technical conference entitled 'The Challenge of Finding New Mineral Resources: Global Metallogeny, Integrative Exploration and New Discoveries,' held at Keystone, Colorado, October 2-5, 2010.

  19. Stream sediment geochemistry as a tool for enhancing geological understanding: an overview of new data from south west England

    OpenAIRE

    Kirkwood, Charlie; Everett, Paul; Ferreira, Antonio; Lister, Bob

    2016-01-01

    The requirements for quantitative data in geological surveillance are ever increasing; traditional geological maps and 3D models are evolving into quantitative conceptual models based on a broad range of analytical measurements of surface and subsurface properties. The British Geological Survey's Geochemical Baseline Survey of the Environment (G-BASE) project provides one such source of data: national coverage of stream sediment, stream water and soil geochemistry. While this geochemical data...

  20. Influences of sediment geochemistry on metal accumulation rates and toxicity in the aquatic oligochaete Tubifex tubifex

    OpenAIRE

    Mendez-Fernandez, L; M. de Jonge; Bervoets, L.

    2014-01-01

    Metal bioaccumulation and toxicity in the aquatic oligochaete Tubifex tubifex exposed to three metal-contaminated field-sediments was studied in order to assess whether sediment-geochemistry (AVS, TOC) plays a major role in influencing these parameters, and to assess if the biodynamic concept can be used to explain observed effects in T. tubifex tissue residues and/or toxicity. An active autotomy promotion was observed in three studied sediments at different time points and reproduction impai...

  1. Sulfur Geochemistry of a Lacustrine Record from Taiwan Reveals Enhanced Marine Aerosol Input during the Early Holocene.

    Science.gov (United States)

    Ding, Xiaodong; Li, Dawei; Zheng, Liwei; Bao, Hongyan; Chen, Huei-Fen; Kao, Shuh-Ji

    2016-12-12

    Lacustrine record of marine aerosol input has rarely been documented. Here, we present the sulfur geochemistry during the last deglaciation and early Holocene of a sediment core retrieved from the Dongyuan Lake in southern Taiwan. An unusually high sulfur peak accompanying pyrite presence is observed at 10.5 ka BP. Such high sulfur content in lacustrine record is unusual. The δ(34)S of sulfur varied from +9.5 to + 17.1‰ with two significant positive shifts at 10.5 and 9.4 ka BP. The sources of sulfur and potential processes involving the sulfur isotope variation including bacterial sulfate reduction, volcanic emissions, in-catchment sulfide oxidation and marine aerosol input are discussed. Enhanced marine aerosol input is the most likely explanation for such sulfur peaks and δ(34)S shifts. The positive δ(34)S shifts appeared concurrently with the maximum landslide events over Taiwan resulted from enhanced typhoon activities. The synchronicity among records suggests that increased typhoon activities promoted sea spray, and consequently enhanced the marine aerosol input with (34)S-enriched sulfate. Our sulfur geochemistry data revealed sea spray history and marine influence onto terrestrial environment at coastal regions. Wider coverage of spatial-temporal lacustrine sulfur geochemistry record is needed to validate the applicability of sulfur proxy in paleoenvironmental research.

  2. Sulfur Geochemistry of a Lacustrine Record from Taiwan Reveals Enhanced Marine Aerosol Input during the Early Holocene

    Science.gov (United States)

    Ding, Xiaodong; Li, Dawei; Zheng, Liwei; Bao, Hongyan; Chen, Huei-Fen; Kao, Shuh-Ji

    2016-12-01

    Lacustrine record of marine aerosol input has rarely been documented. Here, we present the sulfur geochemistry during the last deglaciation and early Holocene of a sediment core retrieved from the Dongyuan Lake in southern Taiwan. An unusually high sulfur peak accompanying pyrite presence is observed at 10.5 ka BP. Such high sulfur content in lacustrine record is unusual. The δ34S of sulfur varied from +9.5 to + 17.1‰ with two significant positive shifts at 10.5 and 9.4 ka BP. The sources of sulfur and potential processes involving the sulfur isotope variation including bacterial sulfate reduction, volcanic emissions, in-catchment sulfide oxidation and marine aerosol input are discussed. Enhanced marine aerosol input is the most likely explanation for such sulfur peaks and δ34S shifts. The positive δ34S shifts appeared concurrently with the maximum landslide events over Taiwan resulted from enhanced typhoon activities. The synchronicity among records suggests that increased typhoon activities promoted sea spray, and consequently enhanced the marine aerosol input with 34S-enriched sulfate. Our sulfur geochemistry data revealed sea spray history and marine influence onto terrestrial environment at coastal regions. Wider coverage of spatial-temporal lacustrine sulfur geochemistry record is needed to validate the applicability of sulfur proxy in paleoenvironmental research.

  3. Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR)

    Science.gov (United States)

    Delacour, Adélie; Früh-Green, Gretchen L.; Bernasconi, Stefano M.; Schaeffer, Philippe; Kelley, Deborah S.

    2008-08-01

    The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and δ 13C TC values ranging from -28.7‰ to +2.3‰. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (δ 13C TOC: -28.9‰ to -21.5‰) and variations in δ 13C TC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C 15 to C 30. Longer-chain hydrocarbons (up to C 40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C 16 to n-C 20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central

  4. Regional aquifer geochemistry below the Boom Clay (NE-Belgium): data analysis and modelling

    Science.gov (United States)

    Vandersteen, Katrijn; Leterme, Bertrand

    2014-05-01

    For more than 35 years, SCK•CEN has been investigating the possibility of high-level and/or long-lived radioactive waste disposal in the Boom Clay in NE-Belgium, including the study of the regional hydrogeology and geochemistry of the aquifer systems surrounding the Boom Clay. This study presents the analysis and modelling of groundwater geochemistry in the confined aquifers below the Boom Clay in NE-Belgium. This so-called deep aquifer system includes, with increasing depth, parts of the Oligocene Aquifer System, The Bartoon Aquitard System and the Ledo-Paniselian-Brusselian Aquifer System. At the end of the Neogene period, during which several marine transgressions and regressions took place, the sea definitely drew back after having deposited shallow marine and estuarine sands and some clay. The original seawater in the pores of the sediments was in first instance gradually diluted as the aquifer was flushed by recharge (fresh) water. Afterwards, water-rock interactions, including cation exchange, began to play a role in the deep aquifer system. This led to changes in groundwater composition over time. Geochemical data (major ions, stable isotopes, radioactive isotopes, dissolved gases) have been collected at a regional scale from the piezometric network in the deep aquifer system. Several measurement campaigns have been performed between 1980 and 2010. Groundwater is currently mainly of Na-HCO3 to Na-Cl type water, and because of the low groundwater velocity, re-equilibration with the host formations generally occurs. The main geochemical indicators (salinity, stable isotopes) point to a mixture between saline water (to the NW) and fresh recharge water (from SE). SE-NW gradients of ion concentrations are observed and can be explained in agreement with the pattern of natural groundwater flow. Building on the concepts emerging from the geochemical data analysis and recent groundwater modelling, a geochemical model was developed in PhreeqC, using geochemical and

  5. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration

    Science.gov (United States)

    Bell, Elizabeth A.; Boehnke, Patrick; Harrison, T. Mark

    2016-10-01

    Despite the robust nature of zircon in most crustal and surface environments, chemical alteration, especially associated with radiation damaged regions, can affect its geochemistry. This consideration is especially important when drawing inferences from the detrital record where the original rock context is missing. Typically, alteration is qualitatively diagnosed through inspection of zircon REE patterns and the style of zoning shown by cathodoluminescence imaging, since fluid-mediated alteration often causes a flat, high LREE pattern. Due to the much lower abundance of LREE in zircon relative both to other crustal materials and to the other REE, disturbance to the LREE pattern is the most likely first sign of disruption to zircon trace element contents. Using a database of 378 (148 new) trace element and 801 (201 new) oxygen isotope measurements on zircons from Jack Hills, Western Australia, we propose a quantitative framework for assessing chemical contamination and exchange with fluids in this population. The Light Rare Earth Element Index is scaled on the relative abundance of light to middle REE, or LREE-I = (Dy/Nd) + (Dy/Sm). LREE-I values vary systematically with other known contaminants (e.g., Fe, P) more faithfully than other suggested proxies for zircon alteration (Sm/La, various absolute concentrations of LREEs) and can be used to distinguish primary compositions when textural evidence for alteration is ambiguous. We find that zircon oxygen isotopes do not vary systematically with placement on or off cracks or with degree of LREE-related chemical alteration, suggesting an essentially primary signature. By omitting zircons affected by LREE-related alteration or contamination by mineral inclusions, we present the best estimate for the primary igneous geochemistry of the Jack Hills zircons. This approach increases the available dataset by allowing for discrimination of on-crack analyses (and analyses with ambiguous or no information on spot placement or

  6. Development of an In Situ Raman Probe for Pore Water Geochemistry

    Science.gov (United States)

    Walz, P. M.; Zhang, X.; Hester, K.; Kirkwood, W. J.; Ussler, W.; Peltzer, E. T.; Brewer, P. G.

    2009-12-01

    Scientists and engineers at the Monterey Bay Aquarium Research Institute have developed a ROV-deployable sampling probe utilizing laser Raman spectroscopy for study of sediment pore water geochemistry. The Raman technique has already been used with deep sea ROV platforms successfully performing in situ measurement on targets of scientific interest including gas and hydrothermal vent fluids, and complex gas hydrates. However, in situ measurement of sediment pore water geochemistry by laser Raman methods has so far been an intractable problem because sediment particles strongly fluorescence and insufficient amounts of pore water can be extracted before filters become occluded by sediment particles. Our design incorporates a series of novel elements into a slender 35-cm-long probe that can be inserted into sediment using an ROV manipulator to obtain concentration profiles. Pore water is drawn through a 10-μm stainless steel filter that forms the probe tip into a low volume sample chamber (0.1 mL) using a small hydraulic pump controlled by the ROV. The pump is also used for flushing and clearing filter surfaces. The sampling process is repeated as we proceed incrementally deeper into the sediment. Light (532 nm) from a Raman laser system mounted on the ROV is conveyed by a fiber optic cable to the probe head and focused within the center of the sample chamber through a sapphire-windowed optical cell. Control of the Raman system and spectra acquisition are performed onboard the ship via a laptop computer in the ROV control room. Advantages of this rapid mode of detection include measurement of sulfate gradients in near-seafloor sediments at a vertical scale not easily obtainable using traditional coring and extraction techniques, direct measurement of the dissolved sulfide species H2S and HS-, and measurement of dissolved methane without incurring substantial degassing during core recovery. The chemical measurements are made quantitative by calculating an intensity

  7. Catalog of Mount St. Helens 2004 - 2005 Tephra Samples with Major- and Trace-Element Geochemistry

    Science.gov (United States)

    Rowe, Michael C.; Thornber, Carl R.; Gooding, Daniel J.; Pallister, John S.

    2008-01-01

    This open-file report presents a catalog of information about 135 ash samples along with geochemical analyses of bulk ash, glass and individual mineral grains from tephra deposited as a result of volcanic activity at Mount St. Helens, Washington, from October 1, 2004 until August 15, 2005. This data, in conjunction with that in a companion report on 2004?2007 Mount St. Helens dome samples by Thornber and others (2008a) are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, ed., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data presented here. All ash samples reported herein are currently archived at the David A. Johnston Cascades Volcano Observatory in Vancouver, Washington. The Mount St. Helens 2004?2005 Tephra Sample Catalogue along with bulk, glass and mineral geochemistry are tabulated in 6 worksheets of the accompanying Microsoft Excel file, of2008-1131.xls. Samples in all tables are organized by collection date. Table 1 is a detailed catalog of sample information for tephra deposited downwind of Mount St. Helens between October 1, 2004 and August 18, 2005. Table 2 provides major- and trace-element analyses of 8 bulk tephra samples collected throughout that interval. Major-element compositions of 82 groundmass glass fragments, 420 feldspar grains, and 213 mafic (clinopyroxene, amphibole, hypersthene, and olivine) mineral grains from 12 ash samples collected between October 1, 2004 and March 8, 2005 are presented in tables 3 through 5. In addition, trace-element abundances of 198 feldspars from 11 ash samples (same samples as major-element analyses) are provided in table 6. Additional mineral and bulk ash analyses from 2004 and 2005 ash samples are published in chapters 30 (oxide thermometry; Pallister and others, 2008), 32

  8. Building the EarthChem System for Advanced Data Management in Igneous Geochemistry

    Science.gov (United States)

    Lehnert, K.; Walker, J. D.; Carlson, R. W.; Hofmann, A. W.; Sarbas, B.

    2004-12-01

    Several mature databases of geochemical analyses for igneous rocks are now available over the Internet. The existence of these databases has revolutionized access to data for researchers and students allowing them to extract data sets customized to their specific problem from global data compilations with their desktop computer within a few minutes. Three of the database efforts - PetDB, GEOROC, and NAVDAT - have initiated a collaborative effort called EarthChem to create better and more advanced and integrated data management for igneous geochemistry. The EarthChem web site (http://www.earthchem.org/) serves as a portal to the three databases and information related to EarthChem activities. EarthChem participants agreed to establish a dialog to minimize duplication of effort and share useful tools and approaches. To initiate this dialog, a workshop was run by EarthChem in October, 2003 to discuss cyberinfrastructure needs in igneous geochemistry (workshop report available at the EarthChem site). EarthChem ran an information booth with database and visualization demonstrations at the Fall 2003 AGU meeting (and will have one in 2004) and participated in the May 2003 GERM meeting in Lyon, France where we provided the newly established Publishers' Round Table a list of minimum standards of data reporting to ease the assimilation of data into the databases. Aspects of these suggestions already have been incorporated into new data policies at Geochimica et Cosmochimica Acta and Chemical Geology (Goldstein et al. 2004), and are under study by the Geological Society of America. EarthChem presented its objectives and activities to the Solid Earth Sciences community at the Annual GSA Meeting 2003 (Lehnert et al, 2003). Future plans for EarthChem include expanding the types and amounts of data available from a single portal, giving researchers, faculty, students, and the general public the ability to search, visualize, and download geochemical and geochronological data for a

  9. Provenance of things - describing geochemistry observation workflows using PROV-O

    Science.gov (United States)

    Cox, S. J. D.; Car, N. J.

    2015-12-01

    Geochemistry observations typically follow a complex preparation process after sample retrieval from the field. Description of these are required to allow readers and other data users to assess the reliability of the data produced, and to ensure reproducibility. While laboratory notebooks are used for private record-keeping, and laboratory information systems (LIMS) on a facility basis, this data is not generally published, and there are no standard formats for transfer. And while there is some standardization of workflows, this is often scoped to a lab, or an instrument. New procedures and workflows are being developed continually - in fact this is a key expectation in the development of the science. Thus formalization of the description of sample preparation and observations must be both rigorous and flexible. We have been exploring the use of the W3C Provenance model (PROV) to capture complete traces, including both the real world things and the data generated. PROV has a core data model that distinguishes between entities, agents and activities involved in producing a piece of data or thing in the world. While the design of PROV was primarily conditioned by stories concerning information resources, application is not restricted to the production of digital or information assets. PROV allowing a comprehensive trace of predecessor entities and transformations at any level of detail. In this paper we demonstrate the use of PROV for describing specimens managed for scientific observations. Two examples are considered: a geological sample which undergoes a typical preparation process for measurements of the concentration of a particular chemical substance, and the collection, taxonomic classification and eventual publication of an insect specimen. PROV enables the material that goes into the instrument to be linked back to the sample retrieved in the field. This complements the IGSN system, which focuses on registration of field sample identity to support the

  10. Geochemistry of the Koshelev Volcano-Hydrothermal System, Southern Kamchatka, Russia

    Science.gov (United States)

    Taran, Y.; Kalacheva, E.

    2015-12-01

    Koshelev is the southernmost volcano of the Kamchatkan volcanic front where magmatic plumbing systems of the Kamchatkan subduction zone cross a thick layer of the oil-gas-bearing Neogene sedimentary strata of Western Kamchatka. The volcanic massive hosts a powerful hydrothermal system, which has been drilled in early 1980s. Deep wells tapped a hot (ca. 300ºC) saline solution (up to 40 g/L of Cl), whereas the upper part of the system is a typical steam cap with temperature close to 240ºC. Two hydrothermal fields of the volcano (Upper and Lower) discharge saturated or super-heated (up to 150ºC) steam and are characterized by numerous hot pools and low flow-rate springs of steam-heated waters enriched in boron and ammonia. There is also a small lateral group of warm Na-Ca-Cl-SO4 springs (40ºC). We report here our data and review the literature geochemical data on the chemical and isotopic composition of waters and hydrothermal vapours of the Koshelev system. Data on the gas composition include He and C isotopes, as well as the chemical and isotopic composition of light hydrocarbons. Water geochemistry includes literature data on water isotopes of the deep brine and trace elements and REE of steam-heated waters. A conceptual model of the system is presented and discussed.

  11. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale

    Science.gov (United States)

    Ragazzola, F.; Foster, L. C.; Jones, C. J.; Scott, T. B.; Fietzke, J.; Kilburn, M. R.; Schmidt, D. N.

    2016-02-01

    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.

  12. Geochemistry of the alkaline volcanicsubvolcanic rocks of the Fernando de Noronha Archipelago, southern Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Rosana Peporine Lopes

    Full Text Available The Fernando de Noronha Archipelago presents, on its main island, a centrally-located stratigraphic unit, the Remédios Formation (age around 8 - 12 Ma constituted by basal pyroclastic rocks intruded by dikes, plugs and domes of varied igneous rocks, capped by flows and pyroclastics of mafic to ultramafic rocks of the Quixaba Formation (age around 1 - 3 Ma, which is limited from the underlying unit by an extensive irregular erosion surface. A predominant sodic Remédios series (basanites, tephrites, tephriphonolites, essexite, phonolites can be separated from a moderately potassic Remédios sequence (alkali basalts, trachyandesites, trachytes, both alkaline series showing mostly continuous geochemical trends in variation diagrams for major as well as trace elements, indicating evolution by crystal fractionation (mainly, separation of mafic minerals, including apatites and titanites. There are textural and mineralogical evidences pointing to hybrid origin of some intermediate rocks (e.g., resorbed pyroxene phenocrysts in basaltic trachyandesites, and in some lamprophyres. The primitive Quixaba rocks are mostly melanephelinites and basanites, primitive undersaturated sodic types. Geology (erosion surface, stratigraphy (two distinct units separated by a large time interval, petrography (varied Remédios Formation, more uniform Quixaba unit and geochemistry indicate that the islands represent the activity of a protracted volcanic episode, fueled by intermittent melting of an enriched mantle, not related to asthenospheric plume activity.

  13. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  14. An automatic continuous monitoring station for groundwater geochemistry at an active fault zone in SW Taiwan

    Science.gov (United States)

    Lai, Chun-Wei; Yang, Tsanyao F.; Fu, Ching-Chou; Hilton, David R.; Liu, Tsung-Kwei; Walia, Vivek; Lai, Tzu-Hua

    2015-04-01

    Previous studies have revealed that gas compositions of fluid samples collected from southwestern Taiwan where many hot springs and mud volcanoes are distributed along tectonic sutures show significant variation prior to and after some disaster seismic events. Such variations, including radon activity, CH4/CO2, CO2/3He and 3He/4He ratios of gas compositions, are considered to be precursors of earthquakes in this area. To validate the relationship between fluid compositions and local earthquakes, a continuous monitoring station has been established at Yun-Shui, which is an artesian well located at an active fault zone in SW Taiwan. It is equipped with a radon detector and a quadrupole mass spectrometer (QMS) for in-situ measurement of the dissolved gas composition. Data is telemetered to Taipei so we are able to monitor variations of gas composition in real time. Furthermore, we also installed a syringe pump apparatus for the retrieval and temporal analysis of helium (SPARTAH) at this station. From the SPARTAH samples, we can obtain detailed time series records of H-O isotopic compositions, DIC concentration and δ13C isotopic ratios, and anion concentration of the water samples at this station. After continuous monitoring for about one year, some anomalies occurred prior to some local earthquakes. It demonstrates that this automated system is feasible for long-term continuous seismo-geochemical research in this area. Keywords: monitoring; geochemistry; isotope; dissolved gases; pre-seismic signal.

  15. Environmental geochemistry for surface and subsurface waters in the Pajarito Plateau and outlying areas, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Blake, W.D.; Goff, F.; Adams, A.I.; Counce, D.

    1995-05-01

    This report provides background information on waters in the Los Alamos and Santa Fe regions of northern New Mexico. Specifically, the presented data include major element, trace element, and isotope analyses of 130 water samples from 94 different springs, wells, and water bodies in the area. The region considered in this study extends from the western edge of the Valles Caldera to as far east as Santa Fe Lake. For each sample, the presented analysis includes fourteen different major elements, twenty-six trace elements, up to five stable isotopes, and tritium. In addition, this data base contains certain characteristics of the water that are calculated from the aforementioned raw data, including the water`s maximum and minimum residence times, as found from tritium levels assuming no contamination, the water`s recharge elevation, as found from stable isotopes, and the charge balance of the water. The data in this report are meant to provide background information for investigations in groundwater hydrology and geochemistry, and for environmental projects. For the latter projects, the presented information would be useful for determining the presence of contamination it any one location by enabling one to compare potential contaminant levels to the background levels presented here. Likely locations of interest are those possibly effected by anthropogenic activities, including locations in and around Los Alamos National Laboratory, White Rock Canyon, and developed areas in the Rio Grande Valley.

  16. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Science.gov (United States)

    Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J. M. K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.

  17. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    Science.gov (United States)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  18. Petrology and geochemistry of Late Proterozoic hornblende gabbros from southeast of Fariman, Khorasan Razavi province, Iran

    Directory of Open Access Journals (Sweden)

    Seyed Masoud Homam

    2015-04-01

    Full Text Available Introduction Hornblende-bearing gabbroic rocks are quite common in subduction-related magmatic suites and considered to represent magmatic differentiation process in arc magmas (Heliker, 1995; Hickey-Vargas et al., 1995; Mandal and Ray, 2012. The presence of hornblende as an important mineral phase in gabbroic rocks of subduction zone has been considered either as an early crystallizing mineral from water-bearing mafic magmas (Beard and Borgia 1989; Mandal and Ray, 2012 or as a product of reaction of early crystallized minerals (olivine, pyroxene and plagioclase and water-rich evolved melt/aqueous fluid (Costa et al., 2002; Mandal and Ray, 2012. The careful study of petrology and geochemistry of hornblende-bearing gabbroic rocks from Chahak area, of Neoproterozoic age, can provide important information about their petrogenesis. Because of the special characteristics of Chahak hornblende gabbros according to their age and their situation in the main structural units of Iran, their study can present critical keys for the knowledge of geological history of Iran specially central Iran zone. Material and Methods This study carried out in two parts including field and laboratory works. Sampling and structural studies were carried out during field work. Geological map for the study area was also prepared. 65 thin and polished thin sections for petrographical purpose were studied. Major oxides, rare earth elements and trace elements were analyzed for 4 samples (92P-1, 92P-3, B1and B6 from hornblende gabbros on the basis of 4AB1 method using ICP-MS of ACME Laboratory from Canada. In addition, major oxides of three hornblende gabbro samples (89P-62, 89P-59 and 89P-46 were used from Partovifar (Partovifar, 2012. Results and discussion Fariman metamorphic terrains, of Proterozoic age, consist of metamorphosed sedimentary and igneous (plutonic and volcanic rocks. Hornblende gabbros of the study area include plagioclase, hornblende, biotite pyroxene and

  19. Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan, China

    Institute of Scientific and Technical Information of China (English)

    TENG Yanguo; NI Shijun; ZHANG Chengjiang; WANG Jinsheng; LIN Xueyu; HUANG Yi

    2006-01-01

    Vanadium is a trace element widely distributed in the Earth's crust. Naturally high levels of vanadium are recognized mainly in basic rocks and minerals, particularly in titaniferous magnetite. And the anthropogenic sources of vanadium include fossil fuel combustion and wastes including steel-industry slags. In the last few years, the authors have made investigations and assessments on the environmental geochemistry and ecological risk of vanadium in the Panzhihua mining and smelting area. In the study area, anthropogenic vanadium resulted from mining, extracting and smelting of V-Ti magnetite; vanadium pollution of topsoil and sediments occurs mainly in the mining and extracting area, smelting area, slag dumping area, tailing dam and coal mining area. In the soil, the chemical speciation of vanadium shows: insoluble residue>organically bound>Fe (amorphous) oxide-bound>Mn oxide-bound>soluble component. Vanadium pollution can cause potential harmful effects on ecological systems, and lead to animal poisoning and human disease. So vanadiam pollution should be monitored on a regular basis in the Panzhihua area.

  20. Regional geochemistry Bandung Quadrangle West Java: for environmental and resources studies

    Science.gov (United States)

    Sendjaja, Purnama; Baharuddin

    2017-06-01

    Geochemical mapping based on the stream sediment method has been carried out in the whole of Java Region by the Centre for Geological Survey. The Regional Geochemistry Bandung Quadrangle as part of West Java Region has been mapped in 1:100.000 scale map, base on the Geological Map of Bandung Quadrangle. About 82 stream sediment samples collected and sieved in the 80 mesh sieve fraction during the field work session at 2011. This fraction was prepared and analysed for 30 elements by X-ray fluorescence spectrometry at the Centre for Geological Survey Laboratory. There are some elements indicating significant anomaly in this region, and it is important to determine the present abundance and spatial distribution of the elements for presuming result from natural product or derived from human activities. The volcanic products (Tangkuban Perahu Volcano, Volcanic Rock Complex and Quarternary Volcanic-Alluvial Deposit) are clearly identified on the distribution of As, Ba, Cl, Cu, Zr and La elements. However Mn, Zn, V and Sr are related to precipitation in the Tertiary Sediments, while the influence of human activities are showing from a geochemical map of Cl, Cr, Cu, Pb and Zn that show scattered anomalies localized close to the cities, farming and industries.

  1. Geochemistry and paleotectonic setting of Ediacaran metabasites from the Ossa-Morena Zone (SW Iberia)

    Science.gov (United States)

    Sánchez Lorda, M. E.; Sarrionandia, F.; Ábalos, B.; Carrracedo, M.; Eguíluz, L.; Gil Ibarguchi, J. I.

    2014-07-01

    New results on the geochemistry of Neoproterozoic (late Ediacaran) metabasites of the Ossa-Morena Zone (OMZ, Iberian Massif) are presented. The metabasite suite exhibits N- and E-MORB signatures, as well as volcanic arc signatures. The three amphibolite groups are discerned on the basis of major and trace element contents, and the Nd isotope relations help unravel the existence of a diverse magmatism during late Ediacaran times across the OMZ. N-MORB "Serie Negra" metabasites are distributed in the southern and, mostly, the central OMZ (Monesterio antiform). Calc-alkaline metabasites are exclusively constrained to the Coimbra-Córdoba sector of the northern OMZ. Finally, E-MORB-type metabasites are widespread across the entire OMZ. In present-day active geodynamic settings, such magma types are typical of younger island arcs, notably of forearc zones that are affected by extension soon after the initiation of subduction. The new geochemical data permit us to postulate a petrological zonation congruent with a N-dipping subduction zone located to the S of the current OMZ during the late Ediacaran. We argue that the metabasite host units represent (continental) shallow-crustal forearc segments of a convergent margin. The volcanic arc edifice would have developed during the latest Ediacaran to early Cambrian times and has been preserved, often without major orogenic reworking, in the central and northern OMZ.

  2. Models, validation, and applied geochemistry: Issues in science, communication, and philosophy

    Science.gov (United States)

    Nordstrom, D. Kirk

    2012-01-01

    Models have become so fashionable that many scientists and engineers cannot imagine working without them. The predominant use of computer codes to execute model calculations has blurred the distinction between code and model. The recent controversy regarding model validation has brought into question what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of validation may be common in engineering practice and seems useful in legal practice but it is contrary to scientific practice and brings into question our understanding of science and how it can best be applied to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in general. This review summarizes arguments against using the phrase model validation and examines efforts to validate models for high-level radioactive waste management and for permitting and monitoring open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to distinguish logical from temporal prediction. Another problem stems from the difference in the engineering approach contrasted with the scientific approach. The reductionist influence on the way we approach environmental investigations also limits our ability to model the interconnected nature of reality. Guidelines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘validation’ is strongly discouraged when discussing model reliability.

  3. One-carbon (bio ?) Geochemistry in Subsurface Waters of the Serpentinizing Coast Range Ophiolite

    Science.gov (United States)

    Hoehler, Tori M.; Mccollom, Tom; Schrenk, Matt; Cardace, Dawn

    2011-01-01

    Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.

  4. Alchemy in the underworld - recent progress and future potential of organic geochemistry applied to speleothems.

    Science.gov (United States)

    Blyth, Alison

    2016-04-01

    Speleothems are well used archives for chemical records of terrestrial environmental change, and the integration of records from a range of isotopic, inorganic, and organic geochemical techniques offers significant power in reconstructing both changes in past climates and identifying the resultant response in the overlying terrestrial ecosystems. The use of organic geochemistry in this field offers the opportunity to recover new records of vegetation change (via biomarkers and compound specific isotopes), temperature change (via analysis of glycerol dialkyl glycerol tetraethers, a compound group derived from microbes and varying in structure in response to temperature and pH), and changes in soil microbial behaviour (via combined carbon isotope analysis). However, to date the use of organic geochemical techniques has been relatively limited, due to issues relating to sample size, concerns about contamination, and unanswered questions about the origins of the preserved organic matter and rates of transport. Here I will briefly review recent progress in the field, and present a framework for the future research needed to establish organic geochemical analysis in speleothems as a robust palaeo-proxy approach.

  5. The growth of the continental crust: Constraints from radiogenic isotope geochemistry

    Science.gov (United States)

    Taylor, Paul N.

    1988-01-01

    Most models for evolution of continental crust are expressed in the form of a diagram illustrating the cumulative crustal mass (normalized relative to the present crustal mass) as a function of time. Thus, geochronological data inevitably play a major role in either constructing or testing crustal growth models. For all models, determining the start-time for effective crustal accretion is of vital importance. To this end, the continuing search for, and reliable characterization of, the most ancient crustal rock-units remains a worthy enterprise. Another important role for geochronology and radiogenic isotope geochemistry is to assess the status of major geological events as period either of new crust generation or of reworking of earlier formed continental crust. For age characterization of major geological provinces, using the critieria outined, the mass (or volume) of crust surviving to the present day should be determinable as a function of crust formation age. More recent developments, however, appear to set severe limitations on recycling of crust, at least by the process of sediment subduction. In modeling crustal growth without recycling, valuable constaints on growth rate variations through time can be provided if variations in the average age of the continental crust can be monitored through geological history. The question of the average age of the exposed continental crust was addressed by determining Sm-Nd crustal residence model ages (T-CR) for fine-grained sediment loads of many of the world's major rivers.

  6. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    Science.gov (United States)

    van Breukelen, Boris M; Griffioen, Jasper; Röling, Wilfred F M; van Verseveld, Henk W

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH4, Fe(II), SO4, Cl, CH4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.

  7. Mineralogy, geochemistry and pyrite content of Bulgarian subbituminous coals, Pernik Basin

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.; Petrov, O.; Kortenski, J. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Applied Mineralogy

    1996-08-01

    The mineralogy and geochemistry of Pernik subbituminous coals (coal bed A) and some genetic peculiarities related to the mineral formation were studied. The mineral matter of the coal consists chiefly of pyrite, kaolinite, siderite, quartz and calcite. Other minerals (dolomite, ankerite, plagioclase and some sulphates) are present in minor amounts, some occurring as accessory single crystals. Pyrite is them main mineral in these coals and exhibits a large array of textures and morphology. Isolated and clustered euhedral, bacterial and inorganic framboidal, cluster-like, homogeneous and microconcretional massive, infilling and replacing anhedral, and cleat-filling and fracture-filling infiltrational pyrite types were observed. Four stages of mineralization were distinguished: pyrite-kaolinite, pyrite, pyrte-siderite and sulphate stages. The amount of pyrite present in two sections of coal bed A was determined by quantitative powder X-ray diffraction analysis. The concentrations of 37 trace elements were determined. As, Cu, Co, Ni, Zn, Pb, V, Ti, Mo Rb, Cr and Mn are typomorphic for this coal. On the basis of their relation to organic or inorganic matter, four groups of trace elements were subdivided; and on the basis of cluster analysis four associations were differentiated. 19 refs., 31 figs., 2 tabs.

  8. Geochronology and Geochemistry of the Middle Proterozoic Aoyougou Ophiolite in the North Qilian Mountains, Northwestern China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence of gabbro and diorite, pillow and massive lavas, diabase and chert. Ages of 1840±2 Ma, 1783±2 Ma and 1784±2 Ma on three zircons from diabase, indicate an early Middle Proterozoic age. The diabases and basalts show light rare-earth element enrichment and have relatively high TiO2 contents, characteristic of ocean island basalts. All of the lavas have low MgO, Cr, Ni contents and Mg numbers indicating a more evolved character. They are believed to have been derived from a more mafic parental magma by fractionation of olivine, Cr-spinel and minor plagioclase. Based on the lava geochemistry and regional geology, the Aoyougou ophiolite was probably believed to have formed at a spreading centre in a small marginal basin. Subduction of the newly formed oceanic lithosphere in the Middle Proterozoic produced a trench-arc-basin system, which is preserved in the North Qilian Mountains.

  9. Time-Resolved Data Acquisition for In Situ Subsurface Planetary Geochemistry

    Science.gov (United States)

    Bodnarik, Julia Gates; Burger, Dan M.; Burger, Arnold; Evans, Larry G.; Parsons, Ann M.; Starr, Richard D.; Stassun, Keivan G.

    2012-01-01

    The current gamma-ray/neutron instrumentation development effort at NASA Goddard Space Flight Center aims to extend the use of active pulsed neutron interrogation techniques to probe the subsurface geochemistry of planetary bodies in situ. All previous NASA planetary science missions, that used neutron and/or gamma-ray spectroscopy instruments, have relied on a constant neutron source produced from galactic cosmic rays. One of the distinguishing features of this effort is the inclusion of a high intensity 14.1 MeV pulsed neutron generator synchronized with a custom data acquisition system to time each event relative to the pulse. With usually only one opportunity to collect data, it is difficult to set a priori time-gating windows to obtain the best possible results. Acquiring time-tagged, event-by-event data from nuclear induced reactions provides raw data sets containing channel/energy, and event time for each gamma ray or neutron detected. The resulting data set can be plotted as a function of time or energy using optimized analysis windows after the data are acquired. Time windows can now be chosen to produce energy spectra that yield the most statistically significant and accurate elemental composition results that can be derived from the complete data set. The advantages of post-processing gamma-ray time-tagged event-by-event data in experimental tests using our prototype instrument will be demonstrated.

  10. Petrography and Geochemistry of Peridotite Xenoliths from Hannuoba and Significance for Lithospheric Mantle Evolution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt,are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%.Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic.This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion,intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/fluid metasomatism as magnified by the trace elements of the clinopyroxenes from the Hannuoba lithospheric mantle.

  11. Application of organic geochemistry to detect signatures of organic matter in the Haughton impact structure

    Science.gov (United States)

    Parnell, John; Lee, Pascal; Osinski, Gordon R.; Cockell, Charles S.

    2005-12-01

    Organic geochemistry applied to samples of bedrock and surface sediment from the Haughton impact structure detects a range of signatures representing the impact event and the transfer of organic matter from the crater bedrock to its erosion products. The bedrock dolomite contains hydrocarbon-bearing fluid inclusions which were incorporated before the impact event. Comparison of biomarker data from the hydrocarbons in samples inside and outside of the crater show the thermal signature of an impact. The occurrence of hydrocarbon inclusions in hydrothermal mineral samples shows that organic matter was mobilized and migrated in the immediate aftermath of the impact. The hydrocarbon signature was then transferred from bedrock to the crater-fill lacustrine deposits and present-day sediments in the crater, including wind-blown detritus in snow/ice. Separate signatures are detected from modern microbial life in crater rock and sediment samples. Signatures in Haughton crater samples are readily detectable because they include hydrocarbons generated by the burial of organic matter. This type of organic matter is not expected in crater samples on other planets, but the Haughton data show that, using very high resolution detection of organic compounds, any signature of primitive life in the crater rocks could be transferred to surface detritus and so extend the sampling medium.

  12. Geochemistry research planning for the underground storage of high-level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  13. Microbial engineering of floc Fe and trace element geochemistry in a circumneutral, remote lake.

    Science.gov (United States)

    Elliott, Amy V C; Warren, Lesley A

    2014-06-17

    Evaluation of lacustrine floc Fe, Pb, and Cd biogeochemistry over seasonal (summer, winter) and water column depth (metalimnetic, hypolimnetic) scales reveals depth-independent seasonally significant differences in floc Fe biominerals and trace element (TE: Pb, Cd) sequestration, driven by floc microbial community shifts. Winter floc [TE] were significantly lower than summer [TE], driven by declining abundance and reactivity of floc amorphous Fe((III))-(oxy)hydroxide (FeOOH) phases under ice ([FeOOH](summer) = 37-77 mgg(-1) vs [FeOOH](winter) = 0.3-7 mgg(-1)). Further, while high summer floc [FeOOH] was observed at both water column depths, winter floc was dominated by Fe((II)) phases. However, the observed seasonal change in the nature and concentrations of floc Fe-phases was independent of water column [Fe], O2, and pH and, instead, significantly correlated to floc bacterial community membership. Bioinformatic modeling (Unifrac, PCA analyses) of in situ and experimental microcosm results identified a temperature-driven seasonal turnover of floc microbial communities, shifting from dominantly putative Fe metabolisms within summer floc to wintertime ancillary Fe reducing and S metabolizing bacteria. This seasonal shift of floc microbial community functioning, significantly the wintertime loss of microbial Fe((II))-oxidizing capability and concomitant increases of sulfur-reducing bacteria, alters dominant floc Fe minerals from Fe((III)) to Fe((II)) phases. This resulted in decreased winter floc [TE], not predicted by water column geochemistry.

  14. A Site Wide Perspective on Uranium Geochemistry at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brown, Christopher F.; Christensen, J. N.; Davis, Jim A.; Dresel, P. Evan; Liu, Chongxuan; Kelly, S. D.; McKinley, James P.; Serne, R. Jeffrey; Um, Wooyong

    2007-10-26

    Uranium (U) is an important risk-driving contaminant at the Hanford Site. Over 200,000 kg have been released to the vadose zone over the course of site operations, and a number of vadose zone and groundwater plumes containing the uranyl cation [UO22+, U(VI)] have been identified. U is recognized to be of moderate-to-high mobility, conditions dependent. The site is currently making decisions on several of these plumes with long-lasting implications, and others are soon to come. Uranium is one of nature’s most intriguing and chemically complex elements. The fate and transport of U(VI) has been studied over the long lifetime of the Hanford Site by various contractors, along with the Pacific Northwest National Laboratory (PNNL) and its collaborators. Significant research has more recently been contributed by the national scientific community with support from the U.S. Department of Energy’s (DOE) Office of Science through its Environmental Remediation Sciences Division (ERSD). This report represents a first attempt to integrate these findings into a cohesive view of the subsurface geochemistry of U at the Hanford Site. The objective is to inform all interested Hanford parties about the in-ground inventory of U and its geochemical behavior. This report also comments on the prospects for the development of a robust generic model to more accurately forecast future U(VI) migration at different Hanford waste sites, along with further research necessary to reach this goal.

  15. Extracting a climate signal from the skeletal geochemistry of the Caribbean coral Siderastrea siderea

    Science.gov (United States)

    Maupin, Christopher R.; Quinn, Terrence M.; Halley, Robert B.

    2008-12-01

    The first bimonthly time series of paired δ18O and Sr/Ca from the slow-growing coral Siderastrea siderea, from the Dry Tortugas, Florida, has been generated that documents that robust proxy climate records of the tropical Atlantic and IntraAmerican Seas can be produced from this massive coral. The time series contain a 20-year-long calibration window (1973-1992) for both δ18O and Sr/Ca and a 73-year-long verification window (1900-1972) for Sr/Ca. These time series permit the quantification of the relationship between coral δ18O-SST and Sr/Ca-SST and the assessment of the stability of the proxy relationships over time. Both coral geochemical records are highly correlated with the augmented instrumental SST record through the calibration period, and Sr/Ca remains highly correlated through the verification period both at the bimonthly (r = -0.97) and annual average resolution (r = -0.72). Coral δ18O and Sr/Ca are highly reproducible within the same core, and Sr/Ca exhibits no extension-related vital effects. This study sets the stage for generating multicentury scale climate records from the tropical Atlantic Ocean using the skeletal geochemistry of this massive, but slow growing coral.

  16. One-carbon (bio?)geochemistry in subsurface waters of the serpentinizing Coast Range Ophiolite

    Science.gov (United States)

    Hoehler, T. M.; McCollom, T.; Schrenk, M. O.; Kubo, M.; Cardace, D.

    2011-12-01

    Serpentinization - the aqueous alteration of ultramafic rocks - typically imparts a highly reducing and alkaline character to the reacting fluids. In turn, these can influence the speciation and potential for metabolism of one-carbon compounds in the system. We examined the aqueous geochemistry and assessed the biological potential of one-carbon compounds in the subsurface of the McLaughlin Natural Reserve (Coast Range Ophiolite, California, USA). Fluids from wells sunk at depths of 25-90 meters have pH values ranging from 9.7 to 11.5 and dissolved inorganic carbon (DIC concentrations) generally below 60 micromolar. Methane is present at concentrations up to 1.3 millimolar (approximately one-atmosphere saturation), and hydrogen concentrations are below 15 nanomolar, suggesting active consumption of H2 and production of CH4. However, methane production from CO2 is thermodynamically unfavorable under these conditions. Additionally, the speciation of DIC predominantly into carbonate at these high pH values creates a problem of carbon availability for any organisms that require CO2 (or bicarbonate) for catabolism or anabolism. A potential alternative is carbon monoxide, which is present in these waters at concentrations 2000-fold higher than equilibrium with atmospheric CO. CO is utilized in a variety of metabolisms, including methanogenesis, and bioavailability is not adversely affected by pH-dependent speciation (as for DIC). Methanogenesis from CO under in situ conditions is thermodynamically favorable and would satisfy biological energy requirements with respect to both Gibbs Energy yield and power.

  17. Geochemistry and Depositional Setting of Fort Munro Formation, Middle and Lower Indus Basins, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Shahid Naseem; Shamim Ahmed Sheikh; Erum Bashir; Khaula Shirin

    2005-01-01

    Fort Munro Formation represents the products of the Upper Cretaceous (Maastrichtian) in the middle and lower Indus basins. The formation is exposed in the Rakhi Nala (Sulaiman Range), Bara Nala (Lakhi Range) and Naka Pabni (Southern Pab Range) areas. Major and trace elemental geochemistry and petrographic studies of the formation have been carried out to understand the facies trends in the middle and lower Indus basins. A high amount of acid-insoluble fraction, Ca/Mg and Mg vs. Ca/Sr ratio reveal that the formation was deposited in a shallow marine regressive environment. High amounts of clastic reflect abundant influx of terrigenous materials from the east (Indian craton) and west (Bibai volcanic). High Sr content indicates that aragonite was the precursor mineral, which was transformed into stable low-Mg calcite during diagenesis. Enrichment of Cu and Zn contents in the samples of the formation implies the influence of volcanic activity and that they were incorporated into the calcite lattice in the late phase.

  18. (De)Constructing the Undergraduate Research Experience in an Environmental Geochemistry Lab (Invited)

    Science.gov (United States)

    Kim, C. S.

    2013-12-01

    Maintaining a productive research lab at the undergraduate level requires a savvy combination of internal organization, high (but realistic) expectations, and adaptation of one's research interests into semester- and summer-length projects. Several key strategies can help achieve the goal of building a lab culture that both enriches students' academic experiences and advances one's own scholarly research and visibility. Foremost among these is the need to maintain momentum and preserve institutional knowledge in an environment where undergraduate students' lifetime in an individual lab may only last a year or two. Examples from the Environmental Geochemistry Lab at Chapman University (www.chapman.edu/envgeo) developed over several years and with 40+ undergraduate students will be presented which can be transferable to other faculty research labs in the earth sciences. Approaches to writing successful external research grant proposals at a primarily undergraduate institution (PUI) and strategies for both personal and institutional time management/savings will also be discussed, with a focus on new models at Chapman offered to further incentivize faculty involvement in undergraduate research.

  19. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China

    Science.gov (United States)

    Mattinson, C.G.; Wooden, J.L.; Zhang, J.X.; Bird, D.K.

    2009-01-01

    In the southeastern part of the North Qaidam terrane, near Dulan, paragneiss hosts minor peridotite and UHP eclogite. Zircon geochronology and trace element geochemistry of three paragneiss samples (located within a ???3 km transect) indicates that eclogite-facies metamorphism resulted in variable degrees of zircon growth and recrystallization in the three samples. Inherited zircon core age groups at 1.8 and 2.5 Ga suggest that the protoliths of these rocks may have received sediments from the Yangtze or North China cratons. Mineral inclusions, depletion in HREE, and absence of negative Eu anomalies indicate that zircon U-Pb ages of 431 ?? 5 Ma and 426 ?? 4 Ma reflect eclogite-facies zircon growth in two of the samples. Ti-in-zircon thermometry results are tightly grouped at ???660 and ???600 ??C, respectively. Inclusions of metamorphic minerals, scarcity of inherited cores, and lack of isotopic or trace element inheritance demonstrate that significant new metamorphic zircon growth must have occurred. In contrast, zircon in the third sample is dominated by inherited grains, and rims show isotopic and trace element inheritance, suggesting solid-state recrystallization of detrital zircon with only minor new growth. ?? 2009 Elsevier Ltd.

  20. Impact of pine needle leachates from a mountain pine beetle infested watershed on groundwater geochemistry

    Science.gov (United States)

    Pryhoda, M.; Sitchler, A.; Dickenson, E.

    2013-12-01

    The mountain pine beetle (MPB) epidemic in the northwestern United States is a recent indicator of climate change; having an impact on the lodgepole pine forest ecosystem productivity. Pine needle color can be used to predict the stage of a MPB infestation, as they change color from a healthy green, to red, to gray as the tree dies. Physical processes including precipitation and snowfall can cause leaching of pine needles in all infestation stages. Understanding the evolution of leachate chemistry through the stages of MPB infestation will allow for better prediction of the impact of MPBs on groundwater geochemistry, including a potential increase in soil metal mobilization and potential increases in disinfection byproduct precursor compounds. This study uses batch experiments to determine the leachate chemistry of pine needles from trees in four stages of MPB infestation from Summit County, CO, a watershed currently experiencing the MPB epidemic. Each stage of pine needles undergoes four subsequent leach periods in temperature-controlled DI water. The subsequent leaching method adds to the experiment by determining how leachate chemistry of each stage changes in relation to contact time with water. The leachate is analyzed for total organic carbon. Individual organic compounds present in the leachate are analyzed by UV absorption spectra, fluorescence spectrometry, high-pressure liquid chromatography for organic acid analysis, and size exclusion chromatography. Leachate chemistry results will be used to create a numerical model simulating reactions of the leachate with soil as it flows through to groundwater during precipitation and snowfall events.

  1. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale.

    Science.gov (United States)

    Noack, Clinton W; Jain, Jinesh C; Stegmeier, John; Hakala, J Alexandra; Karamalidis, Athanasios K

    2015-01-01

    In this work, the geochemistry of the rare earth elements (REE) was studied in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  2. Contaminant geochemistry. Interactions and transport in the subsurface environment. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Earth and Planetary Sciences

    2014-07-01

    In this updated and expanded second edition, new literature has been added on contaminant fate in the soil-subsurface environment. In particular, more data on the behavior of inorganic contaminants and on engineered nanomaterials were included, the latter comprising a group of ''emerging contaminants'' that may reach the soil and subsurface zones. New chapters are devoted to a new perspective of contaminant geochemistry, namely irreversible changes in pristine land and subsurface systems following chemical contamination. Two chapters were added on this topic, focusing attention on the impact of chemical contaminants on the matrix and properties of both liquid and solid phases of soil and subsurface domains. Contaminant impacts on irreversible changes occurring in groundwater are discussed and their irreversible changes on the porous medium solid phase are surveyed. In contrast to the geological time scale controlling natural changes of porous media liquid and solid phases, the time scale associated with chemical pollutant induced changes is far shorter and extends over a ''human lifetime scale''.

  3. Geochemistry of the barkinite liptobiolith (Late Permian) from the Jinshan Mine, Anhui Province, China.

    Science.gov (United States)

    Sun, Yuzhuang; Lin, Mingyue; Qin, Peng; Zhao, Cunliang; Jin, Kankun

    2007-02-01

    This paper discusses the geochemistry and mineralogy of the barkinite liptobiolith of the Late Permian age from the Jinshan Mine, Guangde County, Anhui Province, China. Samples were examined using inductively coupled plasma-mass spectroscopy, X-ray fluorescence, cold-vapor atomic absorption spectrometry, ion-selective electrode, sequential chemical extraction, scanning electron microscopy equipped with energy-dispersive X-ray, and optical microscopy. The coal is a medium-ash and high-sulfur resource. Minerals in the coal are composed of kaolinite, pyrite, calcite, and quartz. Pyrite and calcite are derived from seawater during peat accumulation. Quartz in the coal is of authigenic origin. Part of the kaolinite is from a land-source region, and part occurs as cell-fillings and is of authigenic origin. The results also indicate that the barkinite liptobiolith contains some toxic elements in high concentrations. Elements including Li, Be, Si, Sc, Ti, V, Cr, Fe, Ga, Se, Y, Zr, Mo, the rare earth elements (REEs), W, Hg, Tl, Pb, Th, and U in the coals are enriched in the barkinite liptobiolith. Results of sequential chemical extraction showed that Li, Sc, Ti, Cr, Y, Zr, REEs, and Th in the coal mainly occur as silicates, while Be and W are related to organic matter. Pyrite is the dominant source of S, Mo, Hg, Tl, and Pb. Gallium only occurs in silicate, and U and V occur both in organic and silicate associations.

  4. Chromium geochemistry of serpentinous sediment in the Willow core, Santa Clara County, California

    Science.gov (United States)

    Oze, Christopher J.; LaForce, Matthew J.; Wentworth, Carl M.; Hanson, Randall T.; Bird, Dennis K.; Coleman, Robert G.

    2003-01-01

    A preliminary investigation of Cr geochemistry in serpentinous sediment completed for a multiple-aquifer ground-water monitoring well (Willow core of Santa Clara County, CA) determined sediment at depths >225 meters contains Cr concentrations ranging from 195 to 1155 mg/kg. Serpentinous sediment from this site is a potential source of non-anthropogenic Cr contamination. Chromium-bearing minerals such as Cr-spinel appear to be the main source of Cr in the sediment; however, Cr-bearing silicates and clay minerals are additional Cr sources. Aqueous Cr concentrations in the sediment are <4.6 mg/L; however, the valence of Cr was not identified in the solutions or in the sediment. Although there is no indication of Cr(VI) contamination derived from the serpentinous sediment, elevated Cr concentrations in the sediment, the observed ‘dissolution’ textures of the Cr-bearing minerals, the estimated redox environment, and water chemistry indicate the formation of Cr(VI) is potentially favorable.

  5. Geochemistry and Mineralogy of Tuff in Zhongliangshan Mine, Chongqing, Southwestern China

    Directory of Open Access Journals (Sweden)

    Jianhua Zou

    2016-05-01

    Full Text Available Coal-bearing strata that host rare metal deposits are currently a hot issue in the field of coal geology. The purpose of this paper is to illustrate the mineralogy, geochemistry, and potential economic significance of rare metals in the late Permian tuff in Zhongliangshan mine, Chongqing, southwestern China. The methods applied in this study are X-ray fluorescence spectrometry (XRF, inductively coupled mass spectrometry (ICP-MS, X-ray diffraction analysis (XRD plus Siroquant, and scanning electron microscopy in conjunction with an energy-dispersive X-ray spectrometry (SEM-EDX. The results indicate that some trace elements including Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Zr, Nb, Cd, Sb, REE, Hf, Ta, Re, Th, and U are enriched in the tuff from Zhongliangshan mine. The minerals in the tuff mainly include kaolinite, illite, pyrite, anatase, calcite, gypsum, quartz, and traces of minerals such as zircon, florencite, jarosite, and barite. The tuff is of mafic volcanic origin with features of alkali basalt. Some minerals including florencite, gypsum, barite and a portion of anatase and zircon have been derived from hydrothermal solutions. It is suggested that Zhongliangshan tuff is a potential polymetallic ore and the recovery of these valuable elements needs to be further investigated.

  6. Geochemistry of iron,sulfur and related heavy metals in metal-polluted Taihu Lake sediments

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-Bin; FAN Cheng-Xin; DING Shi-Ming; ZHANG Lu; ZHONG Ji-Cheng

    2008-01-01

    To understand the geochemical characteristics of iron and sulfur and the extent of iron-sulfide minerals influencing heavy metal behaviour in metal-polluted sediments of Talhu Lake,two sites,in Meiliang Bay (ML) and Wuli Lake (WL),were selected to study the fractionation of iron,sulfur and related heavy metals.There were relatively high concentrations of Fe2+ and low concentrations of total S2- in porewaters,indicating that conditions in these sediments favored iron reduction.The concentrations of acid volatile sulfides in sediments were 1.9-9.6μmol g-1 at ML and 1.0-11.7 μmol g-1 at WL,both in the range of values detected in unpolluted lakes.Pyrite-S was 10.2-49.4 μmol g-1 at ML and 10.333.0 μmol g-1 at WL,accounting for more than 69% of the reduced inorganic sulfur at both sites.The low degree of sulphidization (<14%) and pyritization (<10%) indicate that sulfate may be the limiting factor for pyrite formation.The extractability of Mn,Cu,Pb,Zn,Ni,and Cr in sediments all suggest that sulfides are not the major binding phase for these metals during early diagenesis.Sulfur may play a modest role in the geochemistry of iron and traced metals in the sediments.

  7. Environmental problem and geochemistry of rabon. Radon to kankyo mondai (chikyu kagaku ni tsuite)

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Y. (Geological Survey of Japan, Tokyo (Japan))

    1991-10-01

    With Effects of radon (Rn) on human body'' installed as a central theme, a summary is explained on the dealings of Rn with human being, method for measuring Rn, origin of Rn, method for treationg Rn in residential housings, Rn and hot spring, and geochemistry of Rn. The U.S. Environmont Protection Agency announced that Rn has a high possibility of causing lung cancers in the living environment, and that among about 130,000 fatalities annually due to lung cancer, about 5,000 to 20,000 are for Rn. If an effective dose equivalent by Rn is assumed 1, that by the Rn daughter nucleus amount to 50, showing how large the latter {prime}s effect is. The life-time risk increment Rn of a lung cancer due to chronic indoor exposure to {sup 222} Rn daughter nuclei at a constant level of 10{sup 5}Bg.h.m{sup {minus}3} annually is 0.26%, the frequency increment is 36 cases, the life expectancy loss {Delta}L, due to this is 14 days. Rn is, however, not simply hazardous, it can present a benefit as in a radioactive hot spring containing Rn at 51-4909 nC,l. 31 refs., 15 figs., 5 tabs.

  8. Environmental geochemistry of high arsenic groundwater at western Hetao plain, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    Jun HE; Teng MA; Yamin DENG; Hui YANG; Yanxin WANG

    2009-01-01

    Environmental geochemistry of high arsenic groundwater at Hetao plain was studied on the basis of geochemical survey of the groundwater and a core sediment. Arsenic concentration in groundwater samples varies from 76 to 1093 μg/L. The high arsenic groundwater mostly appears to be weakly alkaline. The concentrations of NO3 and SO42- are relatively low, while the concentrations ofDOC, NH4+, dissolved Fe and sulfide are relatively great. Analysis of arsenic speciation in 21 samples shows that arsenic is present in the solution predominantly as As(Ⅲ), while particulate arsenic constitutes about 10% of the total arsenic. Methane is detected in five samples with the greatest content being 5107 μg/L.The shallow aquifer in Hangjinhouqi of western Hetao plain is of strongly reducing condition. The arsenic content in 23 core sediment samples varies from 7.7 to 34.6 mg/kg, with great value in clay and mild clay layer. The obvious positive relationship in content between Fe203, Mn, Sb, B, V and As indicates that the distribution of arsenic in the sediments may be related to Fe and Mn oxides, and the mobilization of Sb, B and V may be affected by similar geochemical processes as that of As.

  9. The geology, mineralogy and rare element geochemistry of the gem deposits of Sri Lanka

    Directory of Open Access Journals (Sweden)

    C. B. Dissanayake

    2000-01-01

    Full Text Available The gem deposits of Sri Lanka are studied from the point of view of their geology, mineralogy and geochemistry. Nearly all the gem formations are located in the central high-grade metamorphic terrain of the Highland Complex. The gem deposits are classified as sedimentary, metamorphic and magmatic; the sedimentary types being the most abundant. The mineralogy of the gem deposits varies widely with, among others, corundum, chrysoberyl, beryl, spinel, topaz,zircon, tourmaline, garnet and sphene being common.Rare element concentrations in sediments from the three main gem fields of Sri Lanka, namely Ratnapura, Elahera and Walawe, were studied. It was found that some sediments are considerably enriched in certain elements compared to their average continental crustal abundances. The Walawe Ganga sediments show anomalous enrichments of the high field strength and associated elements, particularly Zr, Hf, W and Ti. This is attributed to the presence of accessory mineralssuch as zircon, monazite and rutile. Some of these heavy minerals comprise as much as 50 wt% of sediment. The geochemical enrichment of some trace elements compared to their average crustal abundances indicates that highly differentiated granites and associated pegmatites have provided the source materials for enrichment.

  10. Stratigraphic Geochemistry of Upper—Middle Proterozoic Suberathem in Northern Guangxi,China

    Institute of Scientific and Technical Information of China (English)

    阎明; 刘英俊; 等

    1995-01-01

    The Upper-Middle Proterozoic epimetamorphic rock series in northern Guangxi is a suite of volcanic-terrigenous clastic formations transforming in facies from mobile to stable, which is similar to Eparchean normal argillo-arenaceous sediments both in petrochemistry and in REE geochemistry.The Upper-Middle Proterozoic Suberathem in northern Guangxi is characterized by primordial enrichment of As and Sb, significant depletion in Sr and Hg, bimodal or polymodal distribution of Au and other ore-forming elements, and high variation coefficients and strong mobilities of Sn,Cu,Ni,Au,Ag,As and Sb.The trace element association is characterized by the predominance of siderophile and chalcophile elements occurring in the Middle Proterozoic and that of lithophile ele-ments occurring in the Upper Proterozoic .It is suggested that in northern Guangxi is developed a series of ore-bearing formations with the Sibao Group as the protogenous basement and the Danzhou Group and Lower Sinian series as the derivative cap strata.

  11. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi

    2016-11-01

    Full Text Available The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source, whereas the high ratios of (La/YbN and (Dy/YbN are related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to 0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase, upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.

  12. Geochemistry of uranium and thorium and natural radioactivity levels of the western Anatolian plutons, Turkey

    Science.gov (United States)

    Papadopoulos, Argyrios; Altunkaynak, Şafak; Koroneos, Antonios; Ünal, Alp; Kamaci, Ömer

    2017-01-01

    Seventy samples from major plutons (mainly granitic) of Western Anatolia (Turkey) have been analyzed by γ-ray spectrometry to determine the specific activities of 238U, 226Ra, 232Th and 40K (Bq/kg). Τhe natural radioactivity ranged up to 264 Bq/kg for 238U, 229.62 Bq/kg for 226Ra, up to 207.32 Bq/kg for 232Th and up to 2541.95 Bq/kg for 40K. Any possible relationship between the specific activities of 226Ra, 238U, 232Th and 40K and some characteristics of the studied samples (age, rock-type, colour, grain size, occurrence, chemical and mineralogical composition) was investigated. Age, major and trace element geochemistry, color, pluton location and mineralogical composition are likely to affect the concentrations of the measured radionuclides. The range of the Th/U ratio was large (0.003-11.374). The latter, along with 226Ra/238U radioactive secular disequilibrium, is also discussed and explained by magmatic processes during differentiation.

  13. Iron and titanium geochemistry for paleoclimate reconstruction from Talos Dome ice core (East Antarctica)

    Science.gov (United States)

    Maggi, Valter; Marcelli, Augusto; Hampai, Dariush; Cibin, Giannantonio; Delmonte, Barbara; Baccolo, Giovanni

    2015-04-01

    Mineral dust affects the Earth's radiation budget. It can both scatter sunlight back to space (negative radiative forcing) and absorb solar and infrared radiation (positive forcing). Thus, in opposition to the greenhouse gases, the combination of absorption and reflection of solar radiation caused by dust microparticles can lead to a net (longwave and shortwave) negative radiative forcing at the surface and at the top of atmosphere. Transported from the Southern Hemisphere continental landmasses to the remote East Antarctic plateau (long-term transport), mineral dust travels in the high troposphere and interacts with climate. However, processes occurring during atmospheric transport from source areas to polar ice sheets are responsible for the strong reduction of dust concentration and size in the polar atmosphere. Moreover, concentration and grain size, such as mineralogy and shape of dust and aerosols, influencing the dust radiative effect are still poorly known. We present here new Synchrotron radiation spectroscopy data, i.e., X-ray Absorption Near Edge Structure (XANES) at the Fe and Ti K edge from Talos Dome dust samples (72°49'S, 159°110'E; 2315 m a.s.l.) spanning the last two climate cycles (ca. 250 kyrs). The analysis allows the reconstruction of dust geochemistry and Fe and Ti coordination state in selected climatic periods. Dust composition changes in time provide an important contribution to the scientific knowledge on palaeoclimate changes in near coastal regions of the Antarctic ice sheet and novel information on possible changes occurred at the source areas.

  14. Geochemistry of the barkinite liptobiolith (Late Permian) from the Jinshan Mine, Anhui Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.Z.; Lin, M.Y.; Qin, P.; Zhao, C.L.; Jin, K.K. [Hebei University of Engineering, Handan (China)

    2007-02-15

    This paper discusses the geochemistry and mineralogy of the barkinite liptobiolith of the Late Permian age from the Jinshan Mine, Guangde County, Anhui Province, China. Samples were examined using inductively coupled plasma-mass spectroscopy, X-ray fluorescence, cold-vapor atomic absorption spectrometry, ion-selective electrode, sequential chemical extraction, scanning electron microscopy equipped with energy-dispersive X-ray, and optical microscopy. The coal is a medium-ash and high-sulfur resource. Minerals in the coal are composed of kaolinite, pyrite, calcite, and quartz. Pyrite and calcite are derived from seawater during peat accumulation. Quartz in the coal is of authigenic origin. Part of the kaolinite is from a land-source region, and part occurs as cell-fillings and is of authigenic origin. The results also indicate that the barkinite liptobiolith contains some toxic elements in high concentrations. Elements including Li, Be, Si, Sc, Ti, V, Cr, Fe, Ga, Se, Y, Zr, Mo, the rare earth elements (REEs), W, Hg, Tl, Pb, Th, and U in the coals are enriched in the barkinite liptobiolith. Results of sequential chemical extraction showed that Li, Sc, Ti, Cr, Y, Zr, REEs, and Th in the coal mainly occur as silicates, while Be and W are related to organic matter. Pyrite is the dominant source of S, Mo, Hg, Tl, and Pb. Gallium only occurs in silicate, and U and V occur both in organic and silicate associations.

  15. Performance Audit of the U.S. Geological Survey, Energy Resource Program Inorganic Geochemistry Laboratory

    Science.gov (United States)

    Luppens, James A.; Janke, Louis G.; McCord, Jamey D.; Bullock, John H.; Brazeau, Lisa; Affronter, Ronald H.

    2007-01-01

    A performance audit of the U.S. Geological Survey (USGS), Energy Resource Program (ERP) Inorganic Geochemistry Laboratory (IGL) was conducted between August, 2003 and October, 2005. The goals were to ensure that a high level of analytical performance was maintained and identify any areas that could be enhanced. The audit was subdivided into three phases. Phase 1 was a preliminary assessment of current performance based on recent performance on CANSPEX samples. IGL performance was also compared to laboratories world-wide with similar scope. Phase 2 consisted of the implementation of the recommended changes made in Phase 1. Phase 3 of the audit consisted of a reassessment effort to evaluate the effectiveness of the recommendations made in the Phase 1 and an on-site audit of the laboratory facilities. Phases 1 and 3 required summary reports that are included in Appendices A and B of this report. The audit found that the IGL was one of the top two laboratories compared for trace element analyses. Several recommendations to enhance performance on major and minor elemental parameters were made and implemented. Demonstrated performance improvements as a result of the recommended changes were documented. Several initiatives to sustain the performance improvements gained from the audit have been implemented.

  16. Trace-element geochemistry of coal resource development related to environmental quality and health

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

  17. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale.

    Science.gov (United States)

    Ragazzola, F; Foster, L C; Jones, C J; Scott, T B; Fietzke, J; Kilburn, M R; Schmidt, D N

    2016-01-01

    Coralline algae are a significant component of the benthic ecosystem. Their ability to withstand physical stresses in high energy environments relies on their skeletal structure which is composed of high Mg-calcite. High Mg-calcite is, however, the most soluble form of calcium carbonate and therefore potentially vulnerable to the change in carbonate chemistry resulting from the absorption of anthropogenic CO2 by the ocean. We examine the geochemistry of the cold water coralline alga Lithothamnion glaciale grown under predicted future (year 2050) high pCO2 (589 μatm) using Electron microprobe and NanoSIMS analysis. In the natural and control material, higher Mg calcite forms clear concentric bands around the algal cells. As expected, summer growth has a higher Mg content compared to the winter growth. In contrast, under elevated CO2 no banding of Mg is recognisable and overall Mg concentrations are lower. This reduction in Mg in the carbonate undermines the accuracy of the Mg/Ca ratio as proxy for past temperatures in time intervals with significantly different carbonate chemistry. Fundamentally, the loss of Mg in the calcite may reduce elasticity thereby changing the structural properties, which may affect the ability of L. glaciale to efficiently function as a habitat former in the future ocean.

  18. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  19. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  20. Gas geochemistry: a new technology to evaluate petroleum systems; Geoquimica de gases: uma nova tecnologia em avaliacao de sistemas petroliferos

    Energy Technology Data Exchange (ETDEWEB)

    Santos Neto, Eugenio Vaz dos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Gerencia de Geoquimica]. E-mail: eugenioneto@petrobras.com.br

    2004-11-01

    In the last decade hydrocarbon gas geochemistry has significantly evolved especially regarding to the widespread use of GC-C-IRMS (Gas chromatography-combustion-ion ratio monitoring system) techniques that allowed accurate measurements of {delta}{sup 13} C in the C{sub 1}-C{sub 4} fraction. Also, due to the improvement of the sampling procedures, sample collection - relatively small amounts of gas samples at low pressure - has become easier, sample transportation has become safer - the risk of accidents has been reduced - and analysis has become faster. The 'state-of-the-art' of the use of gas geochemistry to study processes within petroleum systems is discussed in this paper. The discussion is mainly focused on the identification of the hydrocarbon gas origin (biogenesis versus thermo genesis, mixing) and hydrocarbon gas generation (primary versus secondary cracking), including the inference of the relative thermal evolution and possible secondary alterations caused by biodegradation, secondary migration and eventually leakage from petroleum accumulations. Brief comments were also made about the new technologies involving noble gases and their potential use as tracers of processes in petroleum systems. Additionally, the origin of non-hydrocarbon gases in petroleum accumulations is succinctly discussed, as well as their possible economic impacts. The use of gas geochemistry techniques has brought a significant improvement in the understanding of petroleum systems under exploration in Brazil and in other parts of the world. Besides, on-going research projects suggest that there is a great potential for technological advances, e.g., adding the hydrogen isotopic composition of hydrocarbons to the interpretations, and also integrating the available results to the isotopic variations of noble gases. (author)

  1. Mineralogy and geochemistry of rocks and fracture fillings from Forsmark and Oskarshamn: Compilation of data for SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Henrik; Sandstroem, Bjoern [Isochron GeoConsulting HB, Goeteborg (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2006-11-15

    This report is a compilation of the so far available data for the safety assessment SR-Can carried out by SKB. The data consists of mineralogy, geochemistry, porosity, density and redox properties for both dominating rock types and fracture fillings at the Forsmark and Oskarshamn candidate areas. In addition to the compilation of existing information, the aim has been to identify missing data and to clarify some conception of e.g. deformation zones. The objective of the report is to present the available data requested for the modelling of the chemical stability of the two sites. The report includes no interpretation of the data.

  2. Contrasting geochemistry and metamorphism of pillow basalts in metamorphic complexes from Aysén, S. Chile

    Science.gov (United States)

    Hervé, F.; Aguirre, L.; Sepúlveda, V.; Morata, D.

    1999-07-01

    The geochemistry of pillow basalts from the Chonos Metamorphic Complex (CMC) and the Eastern Andes Metamorphic Complex of Aysén (EAMC) indicates contrasting tectonic environments for these basic lavas. They have E-MORB and continental alkaline affinities, respectively. The MORB-like basalts are metamorphosed in the pumpellyite-actinolite metamorphic facies, with mineral associations indicative of relatively high P/T metamorphism. The continental alkali basalts exhibit pumpellyite-chlorite assemblages developed in a low to intermediate P/T regime. These contrasting eruptive and metamorphic settings agree with recently established age differences between the complexes, and invalidate direct correlation between them.

  3. Geochemistry of vent fluid particles formed during initial hydrothermal fluid–seawater mixing along the Mid-Atlantic Ridge

    OpenAIRE

    Klevenz, Verena; Bach, Wolfgang; Schmidt, Katja; Hentscher, Michael; Koschinsky, Andrea; Petersen, Sven

    2011-01-01

    We present geochemical data of black smoker particulates filtered from hydrothermal fluids with seawater-dilutions ranging from 0–99%. Results indicate the dominance of sulphide minerals (Fe, Cu, and Zn sulphides) in all samples taken at different hydrothermal sites on the Mid-Atlantic Ridge. Pronounced differences in the geochemistry of the particles between Logatchev I and 5°S hydrothermal fields could be attributed to differences in fluid chemistry. Lower metal/sulphur ratios (Me/H2S < 1) ...

  4. The combined application of organic sulphur and isotope geochemistry to assess multiple sources of palaeobiochemicals with identical carbon skeletons

    Science.gov (United States)

    Kohnen, M. E.; Schouten, S.; Sinninghe Damste, J. S.; de Leeuw, J. W.; Merrit, D.; Hayes, J. M.

    1992-01-01

    Five immature sediments from a Messinian evaporitic basin, representing one evaporitic cycle, were studied using molecular organic sulphur and isotope geochemistry. It is shown that a specific carbon skeleton which is present in different "modes of occurrence" ("free" hydrocarbon, alkylthiophene, alkylthiolane, alkyldithiane, alkylthiane, and sulphur-bound in macromolecules) may have different biosynthetic precursors which are possibly derived from different biota. It is demonstrated that the mode of occurrence and the carbon isotopic composition of a sedimentary lipid can be used to "reconstruct" its biochemical precursor. This novel approach of recognition of the suite of palaeobiochemicals present during the time of deposition allows for identification of the biological sources with an unprecedented specificity.

  5. Geochemistry and migration of contaminants at the Weldon Spring chemical plant site, St. Charles County, Missouri, 1989--91

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, J.G.

    1993-12-31

    Investigations were conducted by the US Geological Survey in cooperation with the US Department of Energy at the Weldon Spring chemical plant site to determine the geochemistry of the shallow aquifer and geochemical controls on the migration of uranium and other constituents from the raffinate (waste) pits. Water-quality analyses from monitoring wells at the site and vicinity property indicate that water in the shallow aquifer is a calcium magnesium bicarbonate type that is at equilibrium with respect to calcite and slightly supersaturated with respect to dolomite.

  6. Geochemistry of modern sediments from San Quintín coastal lagoon, Baja California: Implication for provenance

    OpenAIRE

    Luis Walter Daesslé; Gabriel Rendón-Márquez; Víctor F. Camacho-Ibar; Efraín A. Gutiérrez-Galindo; Evgueny Shumilin; Eduardo Ortiz-Campos

    2009-01-01

    A detailed regional grid of 97 surficial sediment samples is studied for the San Quintín coastal lagoon, which is a shallow embayment located adjacent to a “regionally-rare” intraplate-type basaltic terrain known as San Quintín volcanic fi eld. The infl uence that this unique lithology and other potencial sources have on the recent sediment geochemistry is discussed on the basis of geochemical, petrographic and sedimentological results. The sandy silts and silts in the lagoon are enriched in ...

  7. Geochemistry of fossiliferous carbonate concretions from the Cretaceous Santana Formation - assessing the role of microbial processes

    Science.gov (United States)

    Heimhofer, Ulrich; Schwark, Lorenz; Ariztegui, Daniel; Martill, David M.; Immenhauser, Adrian

    2010-05-01

    Exceptional fossil preservation (incl. soft-tissue phosphatization) within organic-rich black shales is often associated with the formation of a protective carbonate shell surrounding the fossil specimen. Whereas the mechanisms controlling soft-tissue mineralization during the earliest stage of fossilization are considerably well understood (e.g. Briggs and Kear, 1993), only limited information is currently available on the complex biogeochemical processes which lead to the precipitation of the concretionary carbonate mantle around the fossils. This study focuses on the organic and inorganic geochemistry of carbonate concretions derived from black shale deposits of the Early Cretaceous Santana Formation, Araripe Basin, NE Brazil (Martill, 1993; Heimhofer et al. 2008). This konservat-type fossil lagerstätte is world famous for its fossiliferous concretions hosting an exceptionally preserved fish and reptile fauna. The principle aim is twofold including (1) identification of the type and source of organic matter trapped within the Santana concretions and (2) assessment of the different microbial or microbially-mediated processes associated with successive concretion growth during early burial. Based on sedimentological evidence and palaeoenvironmental considerations, the involvement of a prokaryotic mat in early fossilization of the Santana biota has been proposed (Martill, 1988). At this stage, 3 different carbonate concretions hosting fossil fish remains (incl. Notelops brama, Calamopleurus sp. und an unknown specimen) have been analysed with a combined approach including organic molecular geochemistry, high-resolution stable isotope analysis, micro-XRF scanning and sedimentary petrography. Petrographic inspection shows a distinct zonal pattern of the carbonate shell surrounding the fossils. The innermost zone I shows an undulating and discontinuous lamination superimposed on a clotted fabric. Zone II is characterized by the frequent abundance of finely dispersed

  8. Reef and nonreef aquifers - A comparison of hydrogeology and geochemistry, northwestern Indiana

    Science.gov (United States)

    Schnoebelen, D.J.; Krothe, N.C.

    1999-01-01

    The principal bedrock aquifer system across much of Indiana consists of carbonate rocks of Silurian and Devonian age. The Silurian-Devonian aquifer system is used extensively for irrigation in northwestern Indiana and is approximately 170 m thick. Reef and nonreef carbonate aquifers in northwestern Indiana were assessed using hydrogeology (lithology, geophysical logs, aquifer tests) and geochemistry (major ions and stable isotopes). The study showed differences in water quantity and quality between the reef and nonreef aquifers. The reef aquifer had few shales, abundant fossiliferous material (up to 100 m thick), and high porosities (10 to 15%). The nonreef aquifer had abundant shales, less fossiliferous material (a few meters thick), and low porosities. Total transmissivities at the reef sites were 697 m2/d, (meters squared per day) and 4831 m2/d, compared to 46 m2/d at the nonreef site. Flowpaths in the nonreef aquifer were associated with fractures and poorly connected moldic porosity with larger fractures and better connected vuggy porosity in the reef aquifer. Water chemistry data for the nonreef aquifer showed mean concentrations of sodium (235 mg/L [milligrams per liter]), sulfate (160 mg/L), sulfide (13 mg/L), fluoride (2.7 mg/L), and dissolved solids (635 mg/L) approximately two to five times larger when compared to mean concentrations in the reef aquifer. Ground water at the nonreef site was classified as a sodium-bicarbonate type while that at the reef sites was calcium-magnesium bicarbonate. The oxygen/deuterium isotope data indicates recharge from modern precipitation and not Pleistocene-age recharge.The principal bedrock aquifer system across much of Indiana consists of carbonate rocks of Silurian and Devonian age. The Silurian-Devonian aquifer system is used extensively for irrigation in northwestern Indiana and is approximately 170 m thick. Reef and nonreef carbonate aquifers in northwestern Indiana were assessed using hydrogeology (lithology

  9. Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia

    Science.gov (United States)

    Baioumy, Hassan; Nawawi, Mohd; Wagner, Karl; Arifin, Mohd Hariri

    2015-01-01

    Although more than sixty hot springs have been reported in West Malaysia, their geochemistry, geothermometry and utilization as a potential energy source have not been considered yet. This study reports the geochemistry, geothermometry and mineral saturation indices of a number of hot springs in West Malaysia. The potential of these hot springs as a source of geothermal energy as well as their origin and possible mixing with surface cold waters have been discussed. Surface temperatures of the studied hot springs range from 41 to 99 °C and pH values vary between 5.5 and 9. Geochemical data showed that among cations, Si, Na, Ca and K occur in relatively high contents, while Mg and Fe show very low concentrations. On the other hand, HCO3 is present in relatively high concentration compared to other anions (SO4, Cl and F). Data also illustrated that most of the studied hot springs are K-Na-bicarbonate rich waters although they represent different geological provenances in West Malaysia reflecting homogeneity in the geological formations and/or hydrochemical processes governing the characteristics of these waters. This homogeneity also indicates the insignificant effect of local geology on the chemistry of the studied hot springs. Saturation indices calculations of the studied thermal waters indicate that most of the secondary mineral phases such as goethite and hematite are apparently supersaturated while quartz and chalcedony are saturated. Conversely, amorphous silica is slightly under-saturated. These results suggest similar rock-water interactions for both geothermal and non-geothermal waters. The geological settings of the studied hot springs either in or close to granitic masses or along the major fault or shear zones as well as the Na-bicarbonate nature of the waters and low sulfate concentrations suggest their non-volcanic origin. They are also similar in their geological setting and water chemistry to other non-volcanic hot springs in other parts of the world

  10. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth's mantle.

    Science.gov (United States)

    Gasperini, D; Blichert-Toft, J; Bosch, D; Del Moro, A; Macera, P; Télouk, P; Albarède, F

    2000-12-07

    Up to 10 per cent of the ocean floor consists of plateaux--regions of unusually thick oceanic crust thought to be formed by the heads of mantle plumes. Given the ubiquitous presence of recycled oceanic crust in the mantle source of hotspot basalts, it follows that plateau material should also be an important mantle constituent. Here we show that the geochemistry of the Pleistocene basalts from Logudoro, Sardinia, is compatible with the remelting of ancient ocean plateau material that has been recycled into the mantle. The Sr, Nd and Hf isotope compositions of these basalts do not show the signature of pelagic sediments. The basalts' low CaO/Al2O3 and Ce/Pb ratios, their unradiogenic 206Pb and 208Pb, and their Sr, Ba, Eu and Pb excesses indicate that their mantle source contains ancient gabbros formed initially by plagioclase accumulation, typical of plateau material. Also, the high Th/U ratios of the mantle source resemble those of plume magmas. Geochemically, the Logudoro basalts resemble those from Pitcairn Island, which contain the controversial EM-1 component that has been interpreted as arising from a mantle source sprinkled with remains of pelagic sediments. We argue, instead, that the EM-1 source from these two localities is essentially free of sedimentary material, the geochemical characteristics of these lavas being better explained by the presence of recycled oceanic plateaux. The storage of plume heads in the deep mantle through time offers a convenient explanation for the persistence of chemical and mineralogical layering in the mantle.

  11. Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea.

    Science.gov (United States)

    Meyer-Dombard, D'Arcy R; Amend, Jan P

    2014-07-01

    The availability of microbiological and geochemical data from island-based and high-arsenic hydrothermal systems is limited. Here, the microbial diversity in island-based hot springs on Ambitle Island (Papua New Guinea) was investigated using culture-dependent and -independent methods. Waramung and Kapkai are alkaline springs high in sulfide and arsenic, related hydrologically to previously described hydrothermal vents in nearby Tutum Bay. Enrichments were carried out at 24 conditions with varying temperature (45, 80 °C), pH (6.5, 8.5), terminal electron acceptors (O2, SO4 (2-), S(0), NO3 (-)), and electron donors (organic carbon, H2, As(III)). Growth was observed in 20 of 72 tubes, with media targeting heterotrophic metabolisms the most successful. 16S ribosomal RNA gene surveys of environmental samples revealed representatives in 15 bacterial phyla and 8 archaeal orders. While the Kapkai 4 bacterial clone library is primarily made up of Thermodesulfobacteria (74%), no bacterial taxon represents a majority in the Kapkai 3 and Waramung samples (40% Proteobacteria and 39% Aquificae, respectively). Deinococcus/Thermus and Thermotogae are observed in all samples. The Thermococcales dominate the archaeal clone libraries (65-85%). Thermoproteales, Desulfurococcales, and uncultured Eury- and Crenarchaeota make up the remaining archaeal taxonomic diversity. The culturing and phylogenetic results are consistent with the geochemistry of the alkaline, saline, and sulfide-rich fluids. When compared to other alkaline, island-based, high-arsenic, or shallow-sea hydrothermal communities, the Ambitle Island archaeal communities are unique in geochemical conditions, and in taxonomic diversity, richness, and evenness.

  12. Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?

    Science.gov (United States)

    Blumenberg, Martin; Pape, Thomas; Seifert, Richard; Bohrmann, Gerhard; Schlömer, Stefan

    2017-08-01

    The geochemistry of seep gases is useful for an understanding of the local petroleum system. Here it was tested whether individual light hydrocarbons in seep gases are representatively entrapped in authigenic carbonates that formed near active seep sites. If applicable, it would be possible to extract geochemical information not only on the origin but also on the thermal maturity of the hydrocarbon source rocks from the gases entrapped in carbonates in the past. Respective data could be used for a better understanding of paleoenvironments and might directly serve as calibration point for, amongst others, petroleum system modeling. For this approach, (sub)-recent seep carbonates from the Black Sea (Paleodnjepr region and Batumi seep area), two sites of the Campeche Knoll region in the Gulf of Mexico, and the Venere mud volcano (Mediterranean Sea) were selected. These seep carbonates derive from sites for which geochemical data on the currently seeping gases exist. During treatment with phosphoric acid, methane and higher hydrocarbons were released from all carbonates, but in low concentrations. Compositional studies demonstrate that the ratio of methane to the sum of higher hydrocarbons (C1/(C2+C3)) is (partly strongly) positively biased in the entrapped gas fraction. δ13C values of C1 were determined for all samples and, for the samples from the Gulf of Mexico and the Mediterranean Sea, also of C2 and C3. The present dataset from six seep sites indicates that information on the seeped methane can be—although with a scatter of several permil—recorded in seep carbonate matrices, but other valuable information like the composition and δ13C of ethane and propane appears to be modified or lost during, for example, enclosure or at an early stage of diagenesis.

  13. Organic geochemistry and pore water chemistry of sediments from Mangrove Lake, Bermuda

    Science.gov (United States)

    Hatcher, P.G.; Simoneit, B.R.T.; MacKenzie, F.T.; Neumann, A.C.; Thorstenson, D.C.; Gerchakov, S.M.

    1982-01-01

    Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry. ?? 1982.

  14. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China

    Science.gov (United States)

    Dai, S.; Ren, D.; Chou, C.-L.; Li, S.; Jiang, Y.

    2006-01-01

    This paper discusses the mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. The results show that the vitrinite reflectance (0.58%) is lowest and the proportions of inertinite and liptinite (37.4% and 7.1%, respectively) in the No. 6 Coal of the Junger Coalfield are highest among all of the Late Paleozoic coals in the Ordos Basin. The No. 6 Coal may be divided vertically into four sections based on their mineral compositions and elemental concentrations. A high boehmite content (mean 6.1%) was identified in the No. 6 Coal. The minerals associated with the boehmite in the coal include goyazite, rutile, zircon, and Pb-bearing minerals (galena, clausthalite, and selenio-galena). The boehmite is derived from weathered and oxidized bauxite in the weathered crust of the underlying Benxi Formation (Pennsylvanian). A high Pb-bearing mineral content of samples ZG6-2 and ZG6-3 is likely of hydrothermal origin. The No. 6 coal is enriched in Ga (44.8 ??g/g), Se (8.2 ??g/g), Sr (423 ??g/g), Zr (234 ??g/g), REEs (193.3 ??g/g), Hg (0.35 ??g/g), Pb (35.7 ??g/ g), and Th (17.8 ??g/g). Gallium and Th in the No. 6 Coal mainly occur in boehmite, and the Pb-bearing selenide and sulfide minerals contribute not only to Se and Pb contents in the coal, but also probably to Hg content. A high Zr content is attributed to the presence of zircon, and Sr is related to goyazite. The REEs in the coal are supplied from the sediment-source region, and the REEs leached from the adjacent partings by groundwater. ?? 2005 Elsevier B.V. All rights reserved.

  15. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shifeng [Key Laboratory of Resource Exploration Research of Hebei Province, Handan 056038 (China); Ren, Deyi; Li, Shengsheng; Jiang, Yaofa [China University of Mining and Technology, D11, Xueyuan Road, Haidian District, Beijing 100083 (China); Chou, Chen-Lin [Illinois State Geological Survey (Emeritus), 615 East Peabody Drive, Champaign, IL 61820 (United States)

    2006-04-03

    This paper discusses the mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. The results show that the vitrinite reflectance (0.58%) is lowest and the proportions of inertinite and liptinite (37.4% and 7.1%, respectively) in the No. 6 Coal of the Junger Coalfield are highest among all of the Late Paleozoic coals in the Ordos Basin. The No. 6 Coal may be divided vertically into four sections based on their mineral compositions and elemental concentrations. A high boehmite content (mean 6.1%) was identified in the No. 6 Coal. The minerals associated with the boehmite in the coal include goyazite, rutile, zircon, and Pb-bearing minerals (galena, clausthalite, and selenio-galena). The boehmite is derived from weathered and oxidized bauxite in the weathered crust of the underlying Benxi Formation (Pennsylvanian). A high Pb-bearing mineral content of samples ZG6-2 and ZG6-3 is likely of hydrothermal origin. The No. 6 coal is enriched in Ga (44.8 {mu}g/g), Se (8.2 {mu}g/g), Sr (423 {mu}g/g), Zr (234 {mu}g/g), REEs (193.3 {mu}g/g), Hg (0.35 {mu}g/g), Pb (35.7 {mu}g/g), and Th (17.8 {mu}g/g). Gallium and Th in the No. 6 Coal mainly occur in boehmite, and the Pb-bearing selenide and sulfide minerals contribute not only to Se and Pb contents in the coal, but also probably to Hg content. A high Zr content is attributed to the presence of zircon, and Sr is related to goyazite. The REEs in the coal are supplied from the sediment-source region, and the REEs leached from the adjacent partings by groundwater. (author)

  16. Depositional environment and organic geochemistry of the Upper Permian Ravenfjeld Formation source rock in East Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, F.G.; Piasecki, S.; Stemmerik, L. (Geologoical Survey of Greenland, Copenhagen (Denmark)); Telnaes, N. (Norsk Hydro Research Center, Bergen (Norway))

    1993-09-01

    The Upper Permian Ravnefjeld Formation in East Greenland is composed of shales that laterally pass into carbonate buildups and platforms of the Wegener Halvo Formation. The Ravnefjeld Formation is subdivided into five units that can be traced throughout the Upper Permian depositional basin. Two of the units are laminated and organic rich and were deposited under anoxic conditions. They are considered good to excellent source rocks for liquid hydrocarbons with initial average TOC (total organic carbon) values between 4 and 5% and HI (hydrogen index) between 300 and 400. The cumulative source rocks are separated and enclosed by three units of bioturbated siltstone with a TOC of less than 0.5% and an HI of less than 100. These siltstones were deposited under relatively oxic conditions. The organic geochemistry of the source rocks is typical for marine source rocks with some features normally associated with carbonate/evaporite environments [low Pr/Ph (pristane/phytane), low CPI (carbon preference index), distribution of tricyclic and pentacyclic terpanes]. The establishment of anoxic conditions and subsequent source rock deposition was controlled by eustatic sea level changes. The subenvironment (paleogeographic setting, influx of carbonate material, water depth, salinity) has some influence on a number of bulk parameters [TOC-HI relations, TOC-TS (total sulfur) relations] and, in particular, biomarker parameters such as Pr/Ph and terpane ratios. All the basal shales or shales in the vicinity of carbonate buildups of platforms are characterized by low Pr/Ph, high C[sub 23] tricyclic terpanes, and high C[sub 35] and C[sub 33] hopanes. 52 refs., 20 figs., 3 tabs.

  17. Links between environmental geochemistry and rate of birth defects: Shanxi Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haiying [State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Geography, Beijing Normal University, Beijing 100875 (China); College of Resources and Environmental Sciences, Sichuan Agricultural University, Ya' an, Sichuan 625014 (China); Zhang Keli, E-mail: keli@bnu.edu.cn [State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Geography, Beijing Normal University, Beijing 100875 (China)

    2011-01-01

    The rate of birth defects in Shanxi Province is among the highest worldwide. In order to identify the impacts of geochemical and environmental factors on birth defect risk, samples of soil, water and food were collected from an area with an unusually high rate of birth defects (study area) and an area with a low rate of birth defects (control area) in Shanxi Province, China. Element contents were determined by ICP-OES, and the results were analyzed using a non-parametric test and stepwise regression. Differences in the level and distribution of 14 geochemical elements, namely arsenic (As), selenium (Se), molybdenum (Mo), zinc (Zn), strontium (Sr), iron (Fe), tin (Sn), magnesium (Mg), vanadium (V), calcium (Ca), copper (Cu), aluminum (Al), potassium (K) and sulfur (S) were thus compared between the study and control areas. The results reveal that the geochemical element contents in soil, water and food show a significant difference between the study area and control area, and suggest that the study area was characterized by higher S and lower Sr and Al contents. These findings, based on statistical analysis, may be useful in directing further epidemiological investigations identifying the leading causes of birth defects. - Research Highlights: {yields} Environmental geochemistry has an significant impact on birth defects in the regions with an unusually high rate of birth defects. {yields} An excess of S and deficiency of Sr and Al are the distinctive environmental features associated with the high rate of birth defects in the Shanxi Province of China. {yields} Geochemical anomalies is a non-medical basis for effective prevention and cure of birth defects.

  18. Investigation of uranium geochemistry along groundwater flow path in the Continental Intercalaire aquifer (Southern Tunisia).

    Science.gov (United States)

    Dhaoui, Z; Chkir, N; Zouari, K; Ammar, F Hadj; Agoune, A

    2016-06-01

    Environmental tracers ((2)H, (18)O, isotopes of Uranium) and geochemical processes occurring within groundwaters from the Continental Intercalaire (CI) in Southern Tunisia were used to understand the hydrodynamics and the recharge conditions of this aquifer. This study investigates the chemical and isotopic compositions of the CI groundwater. The water types are dominated by Na(+), SO4(2-), Cl(-) throughout most of the basin with a general increase in total dissolved solids from the Saharan Platform margins towards the Chotts region. Large scale groundwater flow paths are toward the Chotts region. The stable isotopes composition of the analyzed groundwater ranges from -8.8 to -6‰ vs V-SMOW for δ(18)O and from -67 to -40‰ vs V-SMOW for δ(2)H. The relatively enriched stable isotopes contents suggest the contribution of the Dahar sandstones outcrops in the current recharge of the CI aquifer in an arid context. However, the most depleted values in heavy isotopes indicate a paleorecharge of the aquifer under wetter conditions revealing a long residence time of groundwaters. The results from water samples using alpha spectrometry method indicate a range in (238)U concentrations and (234)U/(238)U activity ratios (AR) of 0.044-1.285 μg kg(-1) and 1.2 to 8.84 respectively. The geochemistry of uranium isotopes in groundwater is controlled by many factors, essentially, the influence of water rock interactions, the preferential dissolution of (234)U relative to (238)U due to alpha recoil and the mixing processes between different waters with distinct AR as well as (238)U concentrations.

  19. Geochemistry of Multicomponent Fluid Phases in the Krafla High-Enthalpy Geothermal System, NE Iceland

    Science.gov (United States)

    Hermanska, M.; Stefansson, A.

    2014-12-01

    Many active volcanic systems are associated with high-enthalpy geothermal systems. For systems characterized by shallow magmatic intrusions, liquid water often predominates at depth with two-phase fluids, vapor and liquid water, occurring at shallower depth due to depressurization boiling. Close to the intrusion, superheated or supercritical vapor may also occur. The Krafla high-enthalpy geothermal system provides an ideal opportunity to study such volcanic geothermal systems. Over forty wells have been drilled into the system with fluid discharge temperatures of 3200 kJ/kg. In this study, geochemical modelling of multicomponent fluid phases associated with shallow magmatic intrusions were conducted across variable temperature, pressure and enthalpy conditions and the results compared with the fluid geochemistry of the Krafla system. Within the reservoir at geothermal temperatures (250-300°C) liquid water predominates. Under these conditions, the concentrations of most major elements are controlled by equilibrium with secondary minerals. Geochemical modelling and observations at Krafla support these findings. Around the magma intrusions believed to be at shallow depth at Krafla, superheated vapor is formed. Such fluid was discharged by the IDDP-1 well at 450°C and 140 bar. According to the geochemical modelling, superheated vapor is produced upon heat addition by the intrusion to the surrounding geothermal water resulting in boiling to dryness, precipitation of non-volatiles (Si, Fe, Mg, Al, SO4, Na, K, Ca) whereas volatiles (CO2, H2S, Cl, F, B) are unaffected. By mass, quartz is the predominant secondary mineral around the intrusions. The chemical composition of the modelled and observed superheated vapor compared well. Upon ascent and depressurization of the liquid geothermal water and the superheated vapor various processes may occur, including superheated vapor condensation, mixing and depressurization boiling. This leads to formation of two-phase liquid and

  20. Geochemistry of PGE in mafic rocks of east Khasi Hills, Shillong Plateau, NE India

    Indian Academy of Sciences (India)

    Sampa Hazra; Jyotisankar Ray; C Manikyamba; Abhishek Saha; S S Sawant

    2015-03-01

    The mafic rocks of east Khasi Hills of the Meghalaya Plateau, northeastern India, occur as an intrusive body which cut across the weakly metamorphosed Shillong Group of rocks. Other than Shillong Group of rocks, high grade Archaean gneissic rocks and younger porphyritic granites are also observed in the study area. The studied mafic rocks of east Khasi Hills cover an area of about 4 km2 and represent structurally controlled intrusion and varying grades of deformation. Structurally, these mafic rocks can be divided into massive type of mafic rocks, which are more or less deformation free and foliated type of mafic rocks that experienced deformation. Petrographically, this massive type can be classified as leuco-hornblende-gabbro whereas foliated type can be designated as amphibolite. On the basis of major oxide geochemistry, the investigated mafic rocks can be discriminated into high titanium (HT) (TiO2 > 2 wt%) and low titanium (LT) types (TiO2 < 2 wt%). Use of several geochemical variation diagrams, consideration of chondrite-normalized and mantle-normalized REE and PGE plots suggest role of magmatic differentiation (with almost no role of plagioclase fractionation) in a subduction controlled tectonic environment. The PGE trends of the studied rocks suggest relative enrichment of palladium group of PGE (PPGE) compared to iridium group PGE (IPGE). Critical consideration of Sm vs. La, Cu vs. La, Pd vs. La and Cu/Pd vs. La/Sm plots strongly favours generation of the parent magma at a columnar melting regime with batch melting of cylindrical column of the parent mantle to the tune of ∼25%. The characteristic PGE behaviours of the presently investigated mafic rocks of east Khasi Hills can be typically corroborated as `orogenic' (discordant) type. These rocks have an enriched mantle affinity with a co-magmatic lineage and they have been generated by slab-dehydration, wedge-melting and assimilation fractional crystallization process at a continental margin arc setting.

  1. Variations in the geochemistry of closely interbedded oil-prone coals and shales

    Energy Technology Data Exchange (ETDEWEB)

    Curry, D.J. (Exxon Production Research, Houston, TX (United States))

    1994-07-01

    Paralic and deltaic environments frequently contain closely interbedded oil-prone coals and carbonaceous shales of similar organic facies. However, differences in depositional and diagenetic conditions can result in significant variations in geochemistry between these coals and shales. These variations are observed in sediments from a range of ages and areas, including Australia, New Zealand, and Indonesia. For example, pristane/phytane and pristane/n-C[sub 17] ratios are frequently higher in coals than in associated shales, although n-alkane distributions are similar. The C[sub 27] Ts/Tm ratios are frequently much lower in coals, although most other biomarker ratios are generally the same for coals and shales. However, absolute biomarker concentrations, particularly of C[sub 27] Tm hopane, can be two to four times higher in coals. Significantly, many coals contain high concentrations of diasteranes (equivalent to those observed in shales). Differences in other parameters such as the C[sub 30] diahopane/C[sub 30] hopane ratios and pyrolysate compositions are also evident. Data indicate that rocks begin to become more coal-like at TOCs of approximately 25%. The variations in these parameters are probably the result of variability in early depositional and diagenetic conditions, such as eH, pH, and microbial action. In addition, these parameters are probably influenced by the effects of an organic vs. an inorganic matrix. The impact of this variability must be considered when conducting oil-source correlation studies and when assessing the relative contributions of coals and shales to the generation of oil in a basin.

  2. Arsenic geochemistry and hydrostratigraphy in midwestern U.S. glacial deposits.

    Science.gov (United States)

    Root, Tara L; Gotkowitz, Madeline B; Bahr, Jean M; Attig, John W

    2010-01-01

    Arsenic concentrations exceeding the U.S. EPA's 10 μg/L standard are common in glacial aquifers in the midwestern United States. Previous studies have indicated that arsenic occurs naturally in these aquifers in association with metal-(hydr)oxides and is released to groundwater under reducing conditions generated by microbial oxidation of organic matter. Despite this delineation of the arsenic source and mechanism of arsenic mobilization, identification of arsenic-impacted aquifers is hindered by the heterogeneous and discontinuous nature of glacial sediments. In much of the Midwest, the hydrostratigraphy of glacial deposits is not sufficiently characterized to predict where elevated arsenic concentrations are likely to occur. This case study from southeast Wisconsin presents a detailed characterization of local stratigraphy, hydrostratigraphy, and geochemistry of the Pleistocene glacial deposits and underlying Silurian dolomite. Analyses of a single core, water chemistry data, and well construction reports enabled identification of two aquifers separated by an organic-rich aquitard. The upper, unconfined aquifer provides potable water, whereas arsenic generally exceeds 10 μg/L in the deeper aquifer. Although coring and detailed hydrostratigraphic characterization are often considered impractical, our results demonstrate that a single core improved interpretation of the complex lithology and hydrostratigraphy. This detailed characterization of hydrostratigraphy facilitated development of well construction guidelines and lays the ground work for further studies of the complex interactions among aquifer sediments, hydrogeology, water chemistry, and microbiology that lead to elevated arsenic in groundwater. Copyright © 2009 The Author(s). Journal compilation © 2009 National Ground Water Association.

  3. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.

    Science.gov (United States)

    Kirschling, Teresa L; Gregory, Kelvin B; Minkley, Edwin G; Lowry, Gregory V; Tilton, Robert D

    2010-05-01

    Nanoscale zerovalent iron (NZVI) particles are a promising technology for reducing trichloroethylene (TCE) contamination in the subsurface. Prior to injecting large quantities of nanoparticles into the groundwater it is important to understand what impact the particles will have on the geochemistry and indigenous microbial communities. Microbial populations are important not only for nutrient cycling, but also for contaminant remediation and heavy metal immobilization. Microcosms were used to determine the effects of NZVI addition on three different aquifer materials from TCE contaminated sites in Alameda Point, CA, Mancelona, MI, and Parris Island, SC. The oxidation and reduction potential of the microcosms consistently decreased by more than 400 mV when NZVI was added at 1.5 g/L concentrations. Sulfate concentrations decreased in the two coastal aquifer materials, and methane was observed in the presence of NZVI in Alameda Point microcosms, but not in the other two materials. Denaturing gradient gel electrophoresis (DGGE) showed significant shifts in Eubacterial diversity just after the Fe(0) was exhausted, and quantitative polymerase chain reaction (qPCR) analyses showed increases of the dissimilatory sulfite reductase gene (dsrA) and Archaeal 16s rRNA genes, indicating that reducing conditions and hydrogen created by NZVI stimulate both sulfate reducer and methanogen populations. Adding NZVI had no deleterious effect on total bacterial abundance in the microcosms. NZVI with a biodegradable polyaspartate coating increased bacterial populations by an order of magnitude relative to controls. The lack of broad bactericidal effect, combined with the stimulatory effect of polyaspartate coatings, has positive implications for NZVI field applications.

  4. Application of factorial kriging analysis to the FOREGS European topsoil geochemistry database.

    Science.gov (United States)

    Imrie, Claire E; Korre, Anna; Munoz-Melendez, Gabriela; Thornton, Iain; Durucan, Sevket

    2008-04-01

    Concern about increasing levels of trace elements in the environment has led to the development and implementation of a global programme to determine the current baseline levels of these chemicals in the Earth's surface. The FORum of European Geological Surveys (FOREGS) has recently published a geochemical database for Europe, while progress on similar databases is continuing in other major regions of the world. The FOREGS database comprises multimedia samples collected at a resolution of approximately 72x72 km from 26 European countries. This enables the investigation of the factors governing geochemical variation on a continental scale, potentially allowing contributions of natural processes to be appreciated prior to setting environmental quality standards. This paper investigates the variation in European topsoil geochemistry using factorial kriging analysis, which performs principal components analysis at different spatial scales. The results are interpreted with the aid of a GIS database. Four spatial scales were identified: a nugget component representing variation over a range less than the sampling density; a 'short' scale component with a range of 296 km; an 'intermediate' scale component (875 km); and a 'long' scale component (1750 km). The first three principal components (PCs) of the nugget covariance matrix explained 22.2% of the overall variance, representing local variation in geology, land use, weathering and organic matter content. The first two PCs of the short range structure explained 12.6% of the variance, representing variation according to the major structural divisions of Europe, and to carbonate content. The first PC of the intermediate structure explained 7.2% of the variance and was found to relate to glacial history and Quaternary deposition. Finally, the first three PCs of the long range structure explained 29.6% of the variance and represented variation due to mineralisation, soil texture, climate and possibly anthropogenic

  5. Evidence from isotopic geochemistry as an indicator of eutrophication of Meiliang Bay in Lake Taihu, China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, Lake Taihu, a large shallow freshwater lake in China, is chosen as an example of reconstruction of eutrophication through the comparison between stable isotopes from dissolved nutrients and plants and water column nutrient parameters and integration of multiple proxies in a sediment core from Meiliang Bay including TN, TP, TOC, C/N, δ15N, δ13C, etc. Differences in aquatic plant species and trophic status between East Taihu Bay and Meiliang Bay are indicated by their variations in δ13C and δ15N of aquatic plants and δ15N of NH4+. A significant influence ofexternal nutrient inputs on Meiliang Bay is reflected in temporal changes in δ 15N of NH4+ and hydro-environmental parameters. The synchronous change between δ13C and δ15N values of sedimented organic matter (OM) has been attributed to elevated primary production at the beginning of eutrophication between 1950 and 1990, then recent inverse correlation between them has been caused by the uptake of 15N-enriched inorganic nitrogen by phytoplankton grown under eutrophication and subsequent OM decomposition and denitrification in surface sediments, indicating that the lake has suffered from progressive eutrophication since 1990. Based on the use of a combination of stable isotopes and elemental geochemistry, the eutrophication of Meiliang Bay in Lake Taihu could be better traced. These transitions of the lake eutrophication respectively occurring in the 1950s and 1990s have been suggested as a reflection of growing impacts of human activities, which is coincident with the instrumental data.

  6. Fish otolith geochemistry, environmental conditions and human occupation at Lake Mungo, Australia

    Science.gov (United States)

    Long, Kelsie; Stern, Nicola; Williams, Ian S.; Kinsley, Les; Wood, Rachel; Sporcic, Katarina; Smith, Tegan; Fallon, Stewart; Kokkonen, Harri; Moffat, Ian; Grün, Rainer

    2014-03-01

    Fish otoliths from the Willandra Lakes Region World Heritage Area (south-western New South Wales, Australia) have been analysed for oxygen isotopes and trace elements using in situ techniques, and dated by radiocarbon. The study focused on the lunettes of Lake Mungo, an overflow lake that only filled during flooding events and emptied by evaporation, and Lake Mulurulu, which was part of the running Willandra Creek system. Samples were collected from two different contexts: from hearths directly associated with human activity, and isolated surface finds. AMS radiocarbon dating constrains the human activity documented by five different hearths to a time span of less than 240 years around 19,350 cal. BP. These hearths were constructed in aeolian sediments with alternating clay and sand layers, indicative of fluctuating lake levels and occasional drying out. The geochemistry of the otoliths confirms this scenario, with shifts in Sr/Ca and Ba/Ca marking the entry of the fish into Lake Mungo several years before their death, and a subsequent increase in the δ18O by ˜4‰ indicating increasing evaporation of the lake. During sustained lake-full conditions there are considerably fewer traces of human presence. It seems that the evaporating Lake Mungo attracted people to harvest fish that might have become sluggish through oxygen starvation in an increasingly saline water body (easy prey hypothesis). In contrast, surface finds have a much wider range in radiocarbon age as a result of reworking, and do not necessarily indicate evaporative conditions, as shown by comparison with otoliths from upstream Lake Mulurulu.

  7. Geochemistry and Microbial Communities in Iron- and Manganese-Enriched Cold Groundwater Biofiltration Units

    Science.gov (United States)

    Chang, W.; Dangeti, S.; Roshani, B.; McBeth, J. M.

    2015-12-01

    Exploring how to enhance the microbially mediated oxidization of iron (Fe) and manganese (Mn) in natural and engineered environments in cold climates requires an understanding of the interactive relationships between the geochemistry of cold groundwater and Fe- and Mn-oxidizing bacteria. This study precisely measured geochemical and microbial communities in a scaled-up biofiltration system using synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) analyses coupled with next-generation sequencing (Illumina Miseq). Two pilot-scale biofiltration columns for Fe (Filter 1) and Mn (Filter 2) were connected in series and installed at the Langham Water Treatment Plant in Saskatoon, Canada. The groundwater temperature ranged from 4 to 8 °C. The pilot-scale study showed that successful treatment (99% removal) of both Fe and Mn was achieved in the biofilters. However, the Mn removal was significantly retarded for four months, likely due to the slow growth of Mn-oxidizing bacteria (MnOB) in Filter 2. The removal of Mn was accelerated once the redox potential in Filter 2 exceeded +300 mV. At that point, the XANES analyses showed that the oxidization states of Mn in Filter 2 were mainly +3 and +4, confirming that Mn oxidization had occurred. Geochemical analyses (PHREEQCi) also indicated changed geochemical conditions that favoured the formation of Mn-oxides during biofiltration. Next-generation sequencing analyses indicated the enrichment of iron-oxidizing bacteria (FeOB), including Gallionella sp. and Sideroxydans sp., in Filter 1. There were high read numbers for MnOB relatives, including Pseudomonas sp., Hydrogenophaga sp., Bdellovibrio sp., and Leptothrix sp., in Filter 2. Furthermore, the addition of anthracite (coal-based filter media) positively affected the growth MnOB and enhanced Mn oxidization. The evidence obtained in this study provides insight into how Mn oxidization can be accelerated in cold groundwater treatment systems.

  8. Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India.

    Science.gov (United States)

    Singh, Chander Kumar; Mukherjee, Saumitra

    2015-02-01

    Fluoride-enriched water has become a major public health issue in India. The present study tries to evaluate the geochemical mechanism of fluoride enrichment in groundwater of western India. Total 100 groundwater samples were collected for the study spreading across the entire study area. The results of the analyzed parameters formed the attribute database for geographical information system (GIS) analysis and final output maps. A preliminary field survey was conducted and fluoride testing was done using Hach make field kits. The fluoride concentration ranges from 0.08 to 6.6 mg/L (mean 2.4 mg/L), with 63 % of the samples containing fluoride concentrations that exceed the World Health Organization (WHO) drinking water guideline value of 1.5 mg/L and 85 % samples exceeding the Bureau of Indian Standards (BIS) guidelines of 1 mg/L. The study also reveals high concentration of nitrate that is found to be above WHO standrads. The dominant geochemical facies present in water are Na-Cl-HCO3 (26 samples), Na-Ca-Cl-HCO3 (20 samples), Na-Cl (14 samples), and Na-Ca-Mg-Cl-HCO3 (11 samples); however, sodium and bicarbonate being the major component in all the water types of 100 samples, which in fact has a tendency to increase fluoride concentration in water by dissolving fluoride from fluorite. The thermodynamic considerations between the activities of calcium, fluoride, and bicarbonate suggest that fluoride concentration is being governed by activity of calcium ion. X-ray diffraction analysis of sediments reveals calcite and fluorite are the main solubility-control minerals controlling the aqueous geochemistry of high fluoride groundwater. The results indicate that the fluoride concentration in groundwater is mainly governed by geochemical composition of rocks, such as metamorphic granites and sedimentary rocks, alkaline hydrogeological environment, climatic conditions, high temperature and lesser rainfall, and geochemical processes such as weathering, evaporation

  9. Modeling the Geochemistry of Red Mountain Creek, Colorado, With Implications for Premining conditions

    Science.gov (United States)

    Runkel, R. L.; Kimball, B. A.; Walton-Day, K.; Verplanck, P. L.

    2004-12-01

    In August of 2002, a synoptic water-quality study was conducted on Red Mountain Creek, an acid mine drainage stream in southwestern Colorado. Data from the study were used to calibrate OTEQ, a reactive solute transport model for streams and small rivers. OTEQ is formed by coupling the OTIS solute transport model with a chemical equilibrium submodel. The submodel is based on MINTEQ, a model that calculates the distribution of aqueous species under chemical equilibrium. The coupled model considers a variety of processes including advection, dispersion, transient storage, transport and deposition of water-borne solid phases, acid/base reactions, complexation, precipitation/dissolution, and sorption. Application of OTEQ to the low-flow dataset from Red Mountain Creek suggests that surface-water sources account for observed changes in stream geochemistry and that most solutes are transported conservatively throughout the study reach. Mass balance calculations and simulation results indicate that four mining-related sources account for 83, 70, and 69 percent of the observed metal loading for aluminum, arsenic, and zinc, respectively. A hypothetical estimate of premining water quality is obtained by performing an additional simulation in which the the four mining-related sources are replaced with a source that represents natural background. Simulation results suggest improved water quality under premining conditions, with increased pH, lower metal concentrations, and non-conservative transport. Despite this hypothetical improvement, dissolved metal concentrations remain elevated and pH remains below 5.0. This finding supports the idea that Red Mountain Creek was acidic and metal-rich prior to mining.

  10. Lateral variation in geochemistry, petrology, and palynology in the Elswick coal bed, Pike County, Kentucky

    Science.gov (United States)

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.

    2007-01-01

    The Middle Pennsylvanian/Langsettian (Westphalian A) Elswick coal bed, correlative to the Upper Banner of Virginia, is a rare example of a mined high-sulfur (> 2%) coal in Eastern Kentucky, a region known for low-sulfur coals. To characterize lateral variation in the geochemistry, petrography, and palynology of the Elswick coal bed, three sites were sampled along a southeast-northwest transect within a single mine. At the southeastern site, the lower 101??cm of the 116-cm thick coal is dull, generally dominated by durain and dull clarain. While all benches at this site fit within the previously-defined "mixed palynoflora - moderate/low vitrinite group," suggesting a stressed environment of deposition, the palynology of the benches of the dull interval show greater diversity than might be expected just from the petrology. Lithology is generally similar between the sites, but each site has some differences in the petrology. Overall, the coal bed shows significant lateral variation in properties at the mine scale, some of which can be attributed to the gain or loss of upper and lower lithologies, either through an actual physical merging or through the change in character of lithotypes. Sulfur content varies between the three sites examined for this study. Site 3, located in the northwestern portion of the study area is characterized by a strikingly high sulfur zone (7.45%) in the middle of the coal bed, a feature missing at the other sites. Pyrite and marcasite, in a mid-seam lithotype at the northwestern site (site 3), show signs of overgrowths, indicating multiple generations of sulfide emplacement. The high-sulfur site 3 lithologies all have massive overgrowths of euhedral and framboidal pyrite, fracture- and cleat-fill pyrite, and sulfide emplacement in fusinite lumens. Sulfur is high throughout the mine area, but variations are evident in the extent of secondary growth of sulfides. ?? 2006 Elsevier B.V. All rights reserved.

  11. Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal Province, Cambodia

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Helen A.L.; Gault, Andrew G.; Lythgoe, Paul [School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL (United Kingdom); Polya, David A. [School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester M13 9PL (United Kingdom)], E-mail: david.polya@manchester.ac.uk

    2008-11-15

    Elevated As is well known to be present in aquifers utilised for drinking water and irrigation in West Bengal and Bangladesh. This problem has also more recently been discovered in other parts of Asia, including Vietnam, Cambodia, Inner Mongolia and the Middle Ganges Plain. Analysis of groundwaters in Kandal Province of Cambodia found waters with comparable geochemistry to the As-rich groundwaters of the West Bengali Delta. Similarities included high but heterogeneous As distributions, predominantly in the form As(III), high Fe, moderate to high HCO{sub 3}{sup -}, circumneutral pH, low SO{sub 4}{sup 2-} and geochemical components indicative of reducing conditions. Good positive correlations between As, Fe, HCO{sub 3}{sup -} and NH{sub 4}{sup +}, and dissolved organic C is consistent with As release predominantly via microbially mediated reductive dissolution of As bearing Fe(III) oxides. Further evidence for such a process is found from correlations between As, Fe and organic matter from analysis of aquifer sediments, by the presence of goethite in the finer fractions and from the association of As with amorphous, poorly crystalline and well crystallised hydrous Fe oxides. The presence of several high As, but low Fe, wells implies that microbes could have a more direct role in mediating As release via the direct utilisation of Fe(III) or As(V) as electron acceptors. The presence of elevated As in waters with short aquifer residence times (as indicated by their geochemical signature) highlights the possible vulnerability of these aquifers to the influx of surface derived waters, providing an additional source of labile organic C that could exacerbate As release by stimulating microbial activity.

  12. Data-driven Approaches to Teaching Stable Isotopes in Hydrology and Environmental Geochemistry

    Science.gov (United States)

    Jefferson, A.; Merchant, W. R.; Dees, D.; Griffith, E. M.; Ortiz, J. D.

    2016-12-01

    Stable isotopes have revolutionized our understanding of watershed hydrology and other earth science processes. However, students may struggle to correctly interpret isotope ratios and few students understand how isotope measurements are made. New laser-based technologies lower the barrier to entry for giving students hands on experience with isotope measurements and data analysis. We hypothesizedthat integrating such activities into the curriculum would increase student content knowledge, perceptions, and motivation to learn. This project assessed the impact that different pedagogical approaches have on student learning of stable isotope concepts in upper-division geoscience courses. An isotope hydrograph separation module was developed and taught for a Watershed Hydrology course, and a Rayleigh distillation activity was developed and deployed for Environmental Geochemistry and Sedimentology/Stratigraphy classes. Groups of students were exposed to this content via (1) a lecture-only format; (2) a paper-based data analysis activity; and (3) hands-on data collection, sometimes including spectrometer analysis. Pre- and post-tests measured gains in content knowledge while approaches to learning and motivational questionnaires instruments were used to identify the effects of the classroom environment on learning approaches and motivation. Focus group interviews were also conducted to verify the quantitative data. All instructional styles appear to be equally effective at increasing student content knowledge of stable isotopes in the geosciences, but future studies need to move beyond "exam question" style assessment of learning. Our results may reflect that hands-on experiences are not new to upper-level geosciences students, because this is the way that many classes are taught in the geosciences (labs, field trips). Thus, active learning approaches may not have had the impact they would with other groups. The "messiness" of hands-on activities and authentic research

  13. A Visual Approach Towards Introduction of Bio-Geochemistry at Non-Ambient Conditions

    Science.gov (United States)

    Sharma, A.

    2005-12-01

    Visualization of processes is considered an important aspect of education at an introductory as well as advanced levels. To facilitate a deeper understanding of the mechanisms in which chemistry takes place in geological processes, molecular interaction mechanisms have been introduced in novel ways by computer animated models. As successful such approach may be, it does little to provide a 'real' visualization of the various controls and mechanisms. Any attempts on observing real geochemical systems is further complicated by the fact that most of the ongoing geochemical activity is at non-ambient conditions. In this presentation, the author will introduce techniques and examples of direct visualization of 'chemistry at extremes' that are currently under use in classroom and are aimed towards future development of web-based interactive lectures. In this approach the author is using various optical cells to demonstrate 'model' system behavior under non-ambient conditions to infer further details regarding possible on-going geochemistry in the deep subsurface. As an example, observations and in-situ spectroscopic measurements are used to demonstrate changes in the chemical properties of fluids from sub-critical to super-critical conditions. Such direct observation approach has been helpful in not only providing a visual perspective of 'extreme' processes, but also helpful in introducing some rather advanced topics to a more receptive introductory student population ranging from elementary school to college. This presentation will provide some example successfully used in the classroom and provide an introduction to a web-based interactive learning tool accessible to a wider student population.

  14. Talos Dome ice Core (East Antarctica) Mieral Dust Iron Geochemistry of the Last 160 ky.

    Science.gov (United States)

    Maggi, V.; Augusto, M.; Dariush, H.; Giannantonio, C.; Delmonte, B.; Baccolo, G.

    2015-12-01

    Earth's radiation budget is affected by the mineral dust blowing up from arid and semi-arid sources areas. It can act as negative radiative forcing (mainly by sunlight backscattering out to the space) and positive forcing (as absorbing solar and infrared radiation). The combination of absorption and reflection of solar radiation caused by dust microparticles can lead to a net (longwave and shortwave) negative radiative forcing at the surface and at the top of atmosphere, in opposition to the greenhouse gases.Transported from the Southern Hemisphere continental landmasses to the remote East Antarctic plateau (long-term transport), mineral dust travels in the high troposphere and interacts with climate. However, processes occurring during atmospheric transport from source areas to polar ice sheets are responsible for the strong reduction of dust concentration and size in the polar atmosphere. Moreover, concentration and grain size, such as mineralogy and shape of dust and aerosols, influencing the dust radiative effect are still poorly known.We present here new Synchrotron radiation spectroscopy data, i.e., X-ray Absorption Near Edge Structure (XANES) at the Fe and Ti K edge from Talos Dome dust samples (72°49'S, 159°110'E; 2315 m a.s.l.) spanning the last two climate cycles (ca. 250 kyrs). The analysis allows the reconstruction of dust geochemistry and Fe and Ti coordination state in selected climatic periods. Dust composition changes in time provide an important contribution to the scientific knowledge on palaeoclimate changes in near coastal regions of the Antarctic ice sheet and novel information on possible changes occurred at the source areas.

  15. Cold seep carbonates along the Norwegian margin, insights into U-Th geochronology and S geochemistry

    Science.gov (United States)

    Cremiere, A.; Lepland, A.; Wing, B. A.; Sahy, D.; Condon, D. J.; Chand, S.; Noble, S. R.; Bui, T. H.; Thorsnes, T.; Brunstad, H.

    2015-12-01

    Cold seep carbonates along the Norwegian margin, insights into U-Th geochronology and S geochemistryAuthigenic carbonate crusts form in shallow subsurface of marine sediments due to the microbial anaerobic oxidation of methane (AOM). As a result they are unique archives of the locus and intensity of past methane seepage that can be dated by using U-daughter decay affording the unique opportunity to constrain the absolute timing of methane release events. Because AOM is mainly driven by the microbial reduction of seawater sulfate, multiple sulfur isotope compositions of paired carbonate-associated sulfate (CAS) and pyrite in seep carbonates taken as proxies for porewater sulfate and sulfide, respectively, have the potential to reconstruct the biogeochemical conditions under which seep carbonates precipitate. Methane-derived carbonate crusts were collected from several seepage sites on the Norwegian continental shelf, including sites in the North Sea, the Norwegian Sea and the Barents Sea. The U-Th dating results constrain the main episode of carbonate crust formation in the Barents and Norwegian seas during the time interval between 14 and 7 ka. Such ages suggest that the methane seepage along the northern Norwegian margin was most active after the collapse of the Scandinavian ice sheet and deglaciation of the area that took place at about 15 ka. The methane flux for the carbonate crust formation was likely provided by the dissociation of methane hydrates that extensively formed in underlying sediments during the last glacial period, but became unstable due to depressuring effects of retreating ice sheet. The precipitation of studied North Sea carbonate crusts occurred more recently, from 6 to 1 ka, suggesting that their formation is unrelated to the glacial history of the area. The paired sulfur stable isotope compositions of pyrite-CAS record a large range of fractionation factors (from 30 to 70 ‰) reflecting change of sulfate-reduction rates possibly controlled

  16. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses. Progress report, June 1, 1996--May 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S.; Stolper, E.

    1998-06-01

    This DOE-funded project (DE-FG03-ER13445, 6/1/96-5/31/99) emphasizes study of the behavior of volatiles in magmatic systems. The project is explicitly focused on the combined application of IR spectroscopy, experimental petrology, and stable isotope geochemistry to understanding the behavior and properties of the volatile components dissolved in silicate melts and glasses, although in recent years, our emphasis has broadened to include non-volatile aspects of stable isotope geochemistry. Results obtained during the current grant and previous grant periods confirm that when applied to study of well-chosen synthetic and natural systems, the combination of these approaches and techniques can yield insights of general petrological and volcanological value and of practical value to DOE. In particular, the results of our DOE-funded work has led to a deeper understanding of the physical chemistry of silicate melts as well as specific constraints on the thermal and chemical evolution of high-level magmatic systems of the sort being evaluated as potential geothermal and magmathermal energy sources. Moreover, our work has also contributed to understanding the behavior of H-, C-, and O-bearing species in amorphous and crystalline silicates, including the kinetics of their interactions; we believe these results will contribute to efforts to use silicates in the development of nuclear waste disposal strategies.

  17. Environmental changes in the western Amazônia: morphological framework, geochemistry, palynology and radiocarbon dating data.

    Science.gov (United States)

    Horbe, Adriana M C; Behling, Hermann; Nogueira, Afonso C R; Mapes, Russell

    2011-09-01

    The sediments from the Coari lake, a "terra firme" lake sculpted into Plio-Pleistocene deposits, and the Acará lake, a flooding-type lake developed on Quaternary sediments in the floodplain of the mid-Solimões river, in the western Amazônia, Brazil, were studied to investigate the environmental condition of their developing. This study includes mineral composition, geochemistry, Pb isotope, palinology, radiocarbon-age and morphological framework of the lakes obtained from SRTM satellite images. The geological and the environmental conditions in the two lakes are highly variable and suggest that their evolution reflect autogenic processes under humid rainforest condition. Although kaolinite, quartz, muscovite, illite, and smectite are the main minerals in both lakes, the geochemistry indicates distinct source, the Acará lake sediments have higher concentrations of Al(2)O(3), Fe(2)O(3), FeO, CaO, K(2)O, MgO, Na(2)O, P(2)O(5), Ba, V, Cu, Ni, Zn, Pb, Sr, Li, Y and La and have more radiogenic Pb than the Coari lake sediments. The radiocarbon ages suggest that at 10160 yr BP the Coari lake started to be developed due to avulsion of the Solimões river, and the Acará lake was formed by the meander abandonment of Solimões river retaining its grass dominated shore at ca. 3710 yr BP.

  18. Formation of Methyl Mercury During Restoration of Forested Wetlands in Relation to Hg, S and Fe Geochemistry

    Science.gov (United States)

    Fredriksson, I.; Skyllberg, U.

    2007-12-01

    In 1999 the Swedish Parliament adopted fifteen National Environmental Quality Objectives (NEQO), one of these is the objective of "Thriving wetlands" with thee goal to restore 12 000 ha of wetlands until 2010. Given the current knowledge about methyl mercury (MeHg) production in wetlands, and subsequent bioaccumulation, the objective of thriving wetlands may be in conflict with other NEQO. In this project wetland restoration objects in different environmental settings (differing in primary productivity, climate and sulfur and iron geochemistry) are selected. After a pre-treatment period of 1-2 years, wetlands will be restored by increasing the ground water table. Methylation and demethylation rates, determined in incubation experiments using stable isotopes, will be linked to the chemical speciation of Hg, S and Fe in soil and soil solution using techniques like sulfur and iron X-ray absorption near edge spectroscopy (XANES) and Hg extended x-ray absorption fine structure (EXAFS) spectroscopy. This is done both prior to and during the restoration. Because of the strong link between Fe(II) and S(-II) geochemistry we hypothesize that net MeHg production is limited by the availability of dissolved, neutral Hg-sulfides in iron-rich environments. Preliminary data prior to restoration indeed indicate that besides primary productivity, the availability of neutral Hg-sulfides in the pore water of soils is important for the net production of MeHg.

  19. Mobile Geochemistry Instrument Package Facility (MGIPF) for In Situ Mineralogical and Chemical Analysis of Planetary Surface Material

    Science.gov (United States)

    Klingelhöfer, G.; Romstedt, J.; Henkel, H.; Michaelis, H.; Brückner, J.; D'Uston, C.

    A first order requirement for any spacecraft mission to land on a solid planetary or moon surface is instrumentation for in-situ mineralogical and chemical analysis 2 Such analysis provide data needed for primary classification and characterization of surface materials present We will discuss a mobile instrument package we have developed for in-situ investigations under harsh environmental conditions like on Mercury or Mars This Geochemistry Instrument Package Facility is a compact box also called payload cab containing three small advanced geochemistry mineralogy instruments the chemical spectrometer APXS the mineralogical M o ssbauer spectrometer MIMOS II 3 and a textural imager close-up camera The payload cab is equipped with two actuating arms with two degrees of freedom permitting precision placement of all instruments at a chosen sample This payload cab is the central part of the small rover Nanokhod which has the size of a shoebox 1 The Nanokhod rover is a tethered system with a typical operational range of sim 100 m Of course the payload cab itself can be attached by means of its arms to any deployment device of any other rover or deployment device 1 Andre Schiele Jens Romstedt Chris Lee Sabine Klinkner Rudi Rieder Ralf Gellert G o star Klingelh o fer Bodo Bernhardt Harald Michaelis The new NANOKHOD Engineeering model for extreme cold environments 8th International symposium on Artificial Intelligence Robotics and Automation in Space 5 - 9 September 2005

  20. Geochemistry and Fuid-Inclusion Microthermometry of the Farsesh Barite Deposit, Iran

    Directory of Open Access Journals (Sweden)

    Zarasvandi Alireza

    2014-10-01

    Full Text Available The Permian carbonate-hosted Farsesh barite deposit is located southeast of the City of Aligudarz in the province of Lorestan, Iran. Structurally, this deposit lies in the Zagros metallogenic belt and the Sanandaj-Sirjan Zone. Barite mineralisations occur as open-space flling veins, and as massive and replacement ores along fractures, faults and shear zones of the Permian carbonate host rocks. In order to determine the structure, in addition to pe-trographic and fuid-inclusions studies, an ICP-MS analysis was carried out in order to measure the major as well as the trace and rare earth elements. The Farsesh barite deposit has a simple mineralogy, of which barite is the main mineral, followed by calcite, dolomite, quartz, and opaque minerals such as Fe-oxides. Replacement of bar-ite by calcite is common and is more frequent than space-flling mineralisation. Sulphide minerals are minor and mainly consist of chalcopyrite and pyrite, which are altered by weathering to covellite, malachite and azurite. Petrographic analysis and micro-thermometry were carried out on the two-phase liquid/vapour inclusions in ellipsoidal or irregularly shaped minerals ranging in size from 5–10 µm. The measurements were conducted on fuid inclusions during the heating and subsequent homogenisation in the liquid phase. The low homogenisation temperatures (200–125°C and low to moderate salinity (4.2–20 eq wt% NaCl indicate that the barite had precipitated from hydrothermal basinal water with low to moderate salinity. It appears from the major and trace elements that geochemical features such as Ba and Sr enrichment in the barite samples was accompanied by depletion of Pb, Zn, Hg, Cu and Sb. The geochemistry of the rare earth elements, such as low σREE concentrations, LREE-enrichment chondrite-normalised REE patterns, the negative Ce and positive Eu anomalies, the low Ce/La ratio and the positive La and Gd anomalies, suggest that the Farsesh barite was deposited

  1. Evaluating controls on planktonic foraminiferal geochemistry in the Eastern Tropical North Pacific

    Science.gov (United States)

    Gibson, Kelly Ann; Thunell, Robert C.; Machain-Castillo, Maria Luisa; Fehrenbacher, Jennifer; Spero, Howard J.; Wejnert, Kate; Nava-Fernández, Xinantecatl; Tappa, Eric J.

    2016-10-01

    To explore relationships between water column hydrography and foraminiferal geochemistry in the Eastern Tropical North Pacific, we present δ18O and Mg/Ca records from three species of planktonic foraminifera, Globigerinoides ruber, Globigerina bulloides, and Globorotalia menardii, collected from a sediment trap mooring maintained in the Gulf of Tehuantepec from 2006-2012. Differences in δ18O between mixed-layer species G. ruber and G. bulloides and thermocline-dweller G. menardii track seasonal changes in upwelling. The records suggest an increase in upwelling during the peak positive phase of El Niño, and an overall reduction in stratification over the six-year period. For all three species, Mg/Ca ratios are higher than what has been reported in previous studies, and show poor correlations to calcification temperature. We suggest that low pH (7.6-8.0) and [3 2-CO] values (∼70-120 μmol/kg) in the mixed layer contribute to an overall trend of higher Mg/Ca ratios in this region. Laser Ablation Inductively Coupled Mass Spectrometry analyses of G. bulloides with high Mg/Ca ratios (>9 mmol/mol) reveal the presence of a secondary coating of inorganic calcite that has Mg/Ca and Mn/Ca ratios up to an order of magnitude higher than these elemental ratios in the primary calcite, along with elevated Sr/Ca and Ba/Ca ratios. Some of the samples with abnormally high Mg/Ca are found during periods of high primary productivity, suggesting the alteration may be related to changes in carbonate saturation resulting from remineralization of organic matter in oxygen-poor waters in the water column. Although similar shell layering has been observed on fossil foraminifera, this is the first time such alteration has been studied in shells collected from the water column. Our results suggest a role for seawater carbonate chemistry in influencing foraminiferal calcite trace element:calcium ratios prior to deposition on the seafloor, particularly in high-productivity, low

  2. Lithology, Geochemistry and Paleomagnetism of the Table Mountain Formation at the Little Walker Caldera

    Science.gov (United States)

    Schubert, R.; Pluhar, C. J.; Carlson, C. W.; Jones, S. A.

    2015-12-01

    West of Bridgeport Valley near the Central Sierra Nevada crest, the Little Walker Caldera (LWC) erupted Stanislaus Group lavas and tuffs during the Late Miocene. Remnants of these rocks are now distributed from the western Sierra Nevada foothills across the range and into the Walker Lane. This wide distribution is attributed to the lavas flowing down paleochannels, which provide an excellent marker for deformation over the last 10 Ma. Priest (1978) identified a thick section of these lavas along Flatiron Ridge, the southeast margin of the LWC, which our preliminary data suggests may correlate with lavas in the Sweetwater Mountains to the northeast and at Rancheria Mtn near Hetch Hetchy to the southwest. The oldest unit in the Stanislaus group is the Table Mountain Formation, a trachyandesite. At Priest's measured section it is divided into three members. By our measurements, the Lower Member (Tmtl) is 256 meters thick, has a fine-grained groundmass with plagioclase and augite phenocrysts (<0.5 cm), and the presence of augite phenocrysts distinguishes it from the other members. Some Tmtl flows have chalcedony amigdules. Overlying this, the Large Plagioclase member (Tmtp) is 43.5 meters thick. Distinguished by (~1 cm) plagioclase and occasional small olivine phenocrysts. The Upper Member (Tmtu) is 116 meters thick, very fine-grained and often platy. Tmtl has a distinctive northwest-oriented normal polarity and geochemistry, similar to several localities at Rancheria Mtn. Tmtu has a reversed polarity similar to the polarity of Table Mountain Formation in the Sweetwater Mountains and lavas that directly underlie the ~9.5 Ma Tollhouse Flat member of the Eureka Valley Tuff at Rancheria Mtn. Thus, our preliminary data suggest that the lower member at Priest's Measured Section could correlate to the normal polarity samples at Rancheria Mtn. Also, that the upper Member reversed-polarity samples may correlate with lavas both at the Sweetwater Mountains and Rancheria Mtn

  3. VentDB: A Global Online Synthesis Database of Seafloor Hydrothermal Spring Geochemistry

    Science.gov (United States)

    Mottl, M. J.; Lehnert, K. A.; Johansson, A. K.; Hsu, L.

    2011-12-01

    Chemical data for seafloor hydrothermal springs are fundamental to the study of mid-ocean ridge and seafloor processes, ocean water chemistry, and global geochemical cycles, as well as vent ecosystems and the sub-seafloor biosphere. So far, these data have been accessible only in the scientific literature or in online data catalogs where they are widely dispersed in individual data tables, and are often insufficiently documented for re-use. We have developed VentDB as an online data system for geochemical data for hydrothermal springs that will facilitate access and analysis of these data. VentDB uses the concept and architecture of the popular PetDB database for seafloor igneous and metamorphic rock geochemistry (www.petdb.org) to provide easy and fast access to a global synthesis of seafloor hydrothermal spring geochemical data. The VentDB database contains concentrations of major and trace species, dissolved gases, and radiogenic and isotopic ratios for hydrothermal vents on the seafloor. Further chemical or physical properties of hydrothermal springs can be included in the future if desired. The database comprises both the calculated hydrothermal end-member solution compositions as estimated by extrapolation of the concentrations of individual chemical species to a Mg concentration of zero, and the raw data for hydrothermal solution samples as collected, where available. Data quality is documented by including information for the raw analytical data about the analytical method, precision, and reference material measurements, and quality control parameters for end-member compositions including the lowest Mg measured in any sample, the number of samples and correlation coefficient of the linear regression, and the charge balance for the extrapolated zero-Mg composition. The database also includes information about the sampled locations (geospatial coordinates, vent or vent field names, names of other physiographic features), temperature, flow and vent type

  4. Exploring errors in paleoclimate proxy reconstructions using Monte Carlo simulations: paleotemperature from mollusk and coral geochemistry

    Directory of Open Access Journals (Sweden)

    M. Carré

    2012-03-01

    Full Text Available Quantitative reconstructions of the past climate statistics from geochemical coral or mollusk records require quantified error bars in order to properly interpret the amplitude of the climate change and to perform meaningful comparisons with climate model outputs. We introduce here a more precise categorization of reconstruction errors, differentiating the error bar due to the proxy calibration uncertainty from the standard error due to sampling and variability in the proxy formation process. Then, we propose a numerical approach based on Monte Carlo simulations with surrogate proxy-derived climate records. These are produced by perturbing a known time series in a way that mimics the uncertainty sources in the proxy climate reconstruction. A freely available algorithm, MoCo, was designed to be parameterized by the user and to calculate realistic systematic and standard errors of the mean and the variance of the annual temperature, and of the mean and the variance of the temperature seasonality reconstructed from marine accretionary archive geochemistry. In this study, the algorithm is used for sensitivity experiments in a case study to characterize and quantitatively evaluate the sensitivity of systematic and standard errors to sampling size, stochastic uncertainty sources, archive-specific biological limitations, and climate non-stationarity. The results of the experiments yield an illustrative example of the range of variations of the standard error and the systematic error in the reconstruction of climate statistics in the Eastern Tropical Pacific. Thus, we show that the sample size and the climate variability are the main sources of the standard error. The experiments allowed the identification and estimation of systematic bias that would not otherwise be detected because of limited modern datasets. Our study demonstrates that numerical simulations based on Monte Carlo analyses are a simple and powerful approach to improve the understanding

  5. The petrology and geochemistry of Gharyan volcanic province of NW Libya

    Science.gov (United States)

    Al-Hafdh, N. M.; Gafeer, A. S.

    2015-04-01

    Gharyan Volcanic Province (GVP) is one of the four major outpouring volcanic provinces (Jabal as Sawda, Jabal Al Haruj, and Jabal Nuqay) in Libya. It culminates the extreme NNW-SSE linear trend with the other province which defines a systematic decrease in age from NWW to SSE. The voluminous petrologic and chronologic episode in GVP is the Old Lava Series (OLS). This OLS (55-50 Ma) is flown over 1000 km of Mesozoic rocks that are sliced by Wadi Ghan fault zone. The second cycle is represented by the phonolite-trachyte intrusions (40 Ma). Those intrusions occur in the form of laccoliths and plugs where Wadi Ghan fault zone has a conspicuous effect in their emplacement behavior. The Late Volcanic Center (LVC) is the main young volcanic activity in the province (<12 Ma). They show different mode of eruptions on the continuous plateau of OLS. Young Lava Series (YLS) are minor eruptions that have a distinctive appearance on the field and landsat image by occupying an ancient buried wadies. The compound phonolite laccoliths in Garyat Gamatat al-Gharyiha area increase in relief northwardly due to the imparity of denudation with the OLS flows at the southern portions of the area. One of those phonolite samples shows a crustal contamination due to its anomalous in Sr content. The radial pattern of OLS flows in urban area has some differentiation degree by their relative evolution from basalts to basaltic andesites. The chemistry of LVC in the same area does not show close concordance with the LVC basanitic suite of Busrewil and Wadsworth (1980). On other hand, the basaltic sill in Garyat Gamatat al-Gharyiha area is belonging to the LVC activity in GVP by their concordant with the geochemistry of LVC basanitic phase. The ultrabasic rocks in the investigated areas are four-phase lherzolite (olivine + orthopyroxene + clinopyroxene + spinel) restrict only in LVC phase as sub-rounded nodules. These xenoliths penetrate the whole crust with relatively large velocity by melts with

  6. Geochemistry and genesis of apatite bearing Fe oxide Dizdaj deposit, SE Zanjan

    Directory of Open Access Journals (Sweden)

    Ghasem Nabatian

    2009-09-01

    magnetites. Fluid inclusion studies were conducted on two generations of apatite in the deposit. Based on the studies, the temperature and salinity of the first generation apatites are higher than those for the second generation apatites. The most important characteristics of the Sorkheh-Dizaj iron-oxide apatite deposit indicated magmatic Fe-P-REE-rich fluids source for the mineralization. Comparison of the most important characteristics of the Sorkheh-Dizaj iron-oxide apatite deposit (including tectonic setting, host rock, mineralogy, alteration, structure and texture and geochemistry with those of various types of iron mineralization in the world suggest that Sorkheh-Dizaj iron-oxide apatite deposit shows the most similarity with the Kiruna type iron-oxide apatite deposits classified as a subgroup of hydrothermal Iron Oxide Copper Gold (IOCG deposits.

  7. Mineralogy and geochemistry of the older (> 40 ka) ignimbrites on the Campanian Plain, southern Italy

    Science.gov (United States)

    Belkin, H. E.; Rolandi, G.; Jackson, J. C.; Cannatelli, C.; Doherty, A. L.; Petrosino, P.; De Vivo, B.

    2016-09-01

    The Campanian Plain in southern Italy has been volcanically active for at least the last 300 ka. The Campanian Ignimbrite (CI) erupted at 39.3 ka, has a volume of ≥ 310 km3 and a great areal extent. However, significant, but scattered deposits of older ignimbrites underlie the CI and document a long history of volcanism. We examined the mineralogy and geochemistry of 11 older ignimbrite strata by optical petrography, electron microprobe, scanning electron microscope, X-ray diffraction, and various whole-rock geochemical techniques. We have analyzed strata at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley (245.9 and 289.6 ka), and Taurano - Acqua Feconia (157.4, 183.8, 205.6, and 210.4 ka) that have been previously dated on unaltered sanidine. The older ignimbrites are highly altered with loss on ignition (LOI) that ranges from 17 to 8 wt%. Whole-rock compositions reflect variable element mobility during weathering; e.g., CaO is enriched and Na2O depleted relative to hydration. X-ray diffraction identified major chabazite, kaolinite, and illite alteration products in some samples. Rhabdophane-(Nd), usually intergrown with chabazite and Mn-carbonate, indicates that some LREE were also mobilized during weathering. The phenocryst mineralogy is typical for Campanian Plain (CP) magmas and consists of plagioclase (An88 Ab11 Or1 to An32 Ab63 Or5), potassium feldspar (Or40 Ab57 An3 to Or79 Ab18 An3), biotite (TiO2 = ~ 4-7 wt%, BaO = up to 2 wt%, F = up to 2 wt%), diopside (Ca47Mg47Fe6 to Ca48Mg29Fe23), and titaniferous magnetite. Relatively immobile trace elements Zr, Hf, Th, Ta, V, and Nb were used to investigate element abundance and ratio compared to the Campanian Ignimbrite and other CP magmas. Zr/Hf of the older ignimbrites is similar to that of the CI, but Ta is depleted relative to Th and V is enriched compared to CI. Th/Ta and Nb/V distributions for most of the older ignimbrites are similar to those in the Neapolitan Yellow Tuff with the exception of

  8. Interpreting the Geochemistry of the Northern Peninsula Ranges Batholith Using Principle Component Analysis and Spatial Interpolation

    Science.gov (United States)

    Pompe, L.; Clausen, B. L.; Morton, D. M.

    2014-12-01

    The Cretaceous northern Peninsular Ranges batholith (PRB) exemplifies emplacement in a combination oceanic arc / continental margin arc setting. Two approaches that can aid in understanding its statistical and spatial geochemistry variation are principle component analysis (PCA) and GIS interpolation mapping. The data analysis primarily used 287 samples from the large granitoid geochemical data set systematically collected by Baird and Welday. Of these, 80 points fell in the western Santa Ana block, 108 in the transitional Perris block, and 99 in the eastern San Jacinto block. In the statistical analysis, multivariate outliers were identified using Mahalanobis distance and excluded. A centered log ratio transformation was used to facilitate working with geochemical concentration values that range over many orders of magnitude. The data was then analyzed using PCA with IBM SPSS 21 reducing 40 geochemical variables to 4 components which are approximately related to the compatible, HFS, HRE, and LIL elements. The 4 components were interpreted as follows: (1) compatible [and negatively correlated incompatible] elements indicate extent of differentiation as typified by SiO2, (2) HFS elements indicate crustal contamination as typified by Sri and Nb/Yb ratios, (3) HRE elements indicate source depth as typified by Sr/Y and Gd/Yb ratios, and (4) LIL elements indicate alkalinity as typified by the K2O/SiO2ratio. Spatial interpolation maps of the 4 components were created with Esri ArcGIS for Desktop 10.2 by interpolating between the sample points using kriging and inverse distance weighting. Across-arc trends on the interpolation maps indicate a general increase from west to east for each of the 4 components, but with local exceptions as follows. The 15km offset on the San Jacinto Fault may be affecting the contours. South of San Jacinto is a west-east band of low Nb/Yb, Gd/Yb, and Sr/Y ratios. The highest Sr/Y ratios in the north central area that decrease further east may

  9. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    Science.gov (United States)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  10. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol.

    Science.gov (United States)

    Babechuk, M G; Kleinhanns, I C; Schoenberg, R

    2017-01-01

    Fractionation of stable Cr isotopes has been measured in Archaean paleosols and marine sedimentary rocks and interpreted to record the terrestrial oxidation of Cr(III) to Cr(VI), providing possible indirect evidence for the emergence of oxygenic photosynthesis. However, these fractionations occur amidst evidence from other geochemical proxies for a pervasively anoxic atmosphere. This study examined the Cr geochemistry of the ca. 1.85 Ga Flin Flon paleosol, which developed under an atmosphere unambiguously oxidising enough to quantitatively convert Fe(II) to Fe(III) during pedogenesis. The paleosol shows an extreme range in Cr isotope composition of 2.76 ‰ δ(53/52) Cr. The protolith greenstone (δ(53/52) Cr: -0.23 ‰), the deepest weathering horizon (δ(53/52) Cr: -0.15 to -0.23 ‰) and a residual corestone in the upper paleosol (δ(53/52) Cr: -0.01 ‰) all exhibit Cr isotopic compositions comparable to unaltered igneous rocks. The most significant isotopic fractionation is preserved in the areas influenced by oxidative subaerial weathering (i.e. increase in Fe(III)/Fe(II)) and the greatest loss of mobile elements. The uppermost paleosol horizon is both Cr and Mn depleted and offset to significantly (53) Cr-enriched compositions (δ(53/52) Cr values between +1.50 and +2.38 ‰), which is not easily modelled with the oxidation of Cr(III) and loss of isotopically heavy Cr(VI). Instead, the currently preferred model for these data invokes the open-system removal of isotopically light aqueous Cr(III) during either pedogenesis or subsequent hydrothermal/metamorphic alteration. The (53) Cr enrichment would then represent the preferential dissolution or complexation of isotopically light aqueous Cr(III) species (enhanced by lower pH conditions and possibly the presence of complexing ligands) and/or the residual signature from preferential adsorption of isotopically heavy Cr(III). Both scenarios would contradict the widely held assumption that only redox reactions of

  11. Fluid geochemistry of the Mondragone hydrothermal systems (southern Italy): water and gas compositions vs. geostructural setting

    Science.gov (United States)

    Cuoco, Emilio; Minissale, Angelo; Di Leo, Antonella "Magda"; Tamburrino, Stella; Iorio, Marina; Tedesco, Dario

    2017-02-01

    The geochemistry of natural thermal fluids discharging in the Mondragone Plain has been investigated. Thermal spring emergences are located along the Tyrrhenian coast in two different areas: near Padule-S. Rocco (41°7.5'N 13°53.4'E) at the foot of Mt. Petrino, and near Levagnole (41°8.5'N 13°51.3'E) at the foot of Mt. Pizzuto. The water isotopic composition of both thermal discharges is lighter than the one of local shallow groundwater (δ18O ≅ -6.3‰ SMOW vs. ≅ -5.9‰; δD ≅ -40‰ SMOW vs. ≅ -36‰, respectively) as a consequence of inland higher altitude of recharge by rainfall, suggesting that thermal water undergoes a deep and long flow-path before emerging along the coast. The chemical composition of the highest temperature samples of two areas points that fluids in the hydrothermal reservoir(s) interact with similar lithologies, since they are both hosted in the lower sedimentary carbonate formations of the Campanian-Latial Apennine succession. However, the two spring systems are different in terms of temperature and salinity (Levagnole: ≅50 °C and 8.9 g/L vs. Padule: ≅32 °C and 7.4 g/L, respectively). The higher salinity of Levagnole springs is due to a longer interaction with evaporite material embedded in Miocene sedimentary formations and to the eventual mixing, during rising, with fresh seawater close to the seashore. The chemical and isotopic composition of the free gases associated with the springs, again suggests a different source of the two hydrothermal systems. Comparing the 3He/4He measured ratios with other gas emissions located NE and SE of Mt. Massico-Roccamonfina alignment, it is evident that the Levagnole thermal springs are related to the northern Latial mantle wedge where the 3He/4He is about 0.5 R/Ra, whereas the Padule-S. Rocco springs, although being only 3.5 km south of Levagnole, are related to the Campanian mantle wedge where R/Ra is always ≥2.0. Such a difference in 3He/4He ratio in a very short distance

  12. Hill slope and erosional controls on soil organic geochemistry in intensely managed landscapes

    Science.gov (United States)

    Filley, T. R.; Hou, T.; Hughes, M.; Tong, Y.; Papanicolaou, T.; Wacha, K.; Abban, B. K.; Boys, J.; Wilson, C. G.

    2015-12-01

    Like many regions of North America, the last 100 years of agriculture in the glaciated upper Midwest has lead to a major redistribution of soil carbon and nitrogen on the landscape. Through the natural coevolution of geomorphic, pedogenic, and ecological processes in the critical zone or by punctual changes in these processes as a result of intensive management, landscapes established characteristic hierarchies of physicochemical controls on organic matter stability. In the Intensively-Managed Landscapes - Critical Zone Observatory (IML-CZO) in Iowa and Illinois these processes are being studied with a combination of surface soil geochemical surveys and simulated rainfall/erosion experiments to document how the organic geochemistry of hill slopes, under land management ranging from row crop to restored prairie, are currently evolving, and how they evolved during early management and pre settlement. Using a combination of soil analyses including elemental, stable isotope, textural, and soil biopolymers (lignin and cutin/suberin fatty acids (SFA)) we investigated the spatial patterns of static surface soil properties and time course rainfall-erosional experiments along the same slopes to gain insight into soil carbon and biopolymer enrichment patterns in east-central Iowa within the Clear Creek Watershed. Both lignin and substituted fatty acid concentration and their molecular ratios highlighted differences in C3/C4 (soy/corn) management activities in surface soils while over 40 years of prairie restoration dramatically altered surface soil profiles. For example, a general pattern in static baseline samples was an enrichment of 15N in soils down slope and an opposite pattern of accumulation/loss of lignin and SFA in topographic highs and lows. Transport of soil particles, associated biopolymers, and elemental and isotope signatures, exhibited distinct patterns based upon both position of the hill slope and directionality of flow with respect to rill/gully direction

  13. Petrology, Palynology, and Geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian in Eastern Kentucky, USA

    Directory of Open Access Journals (Sweden)

    James C. Hower

    2015-09-01

    Full Text Available This study presents recently collected data examining the organic petrology, palynology, mineralogy and geochemistry of the Gray Hawk coal bed. From the Early Pennsylvanian, Langsettian substage, Gray Hawk coal has been mined near the western edge of the eastern Kentucky portion of the Central Appalachian coalfield. While the coal is thin, rarely more than 0.5-m thick, it has a low-ash yield and a low-S content, making it an important local resource. The Gray Hawk coal palynology is dominated by Lycospora spp., and contains a diverse spectrum of small lycopods, tree ferns, small ferns, calamites, and gymnosperms. The maceral assemblages show an abundance of collotelinite, telinite, vitrodetrinite, fusinite, and semifusinite. Fecal pellet-derived macrinite, albeit with more compaction than is typically seen in younger coals, was observed in the Gray Hawk coal. The minerals in the coal are dominated by clay minerals (e.g., kaolinite, mixed-layer illite/smectite, illite, and to a lesser extent, pyrite, quartz, and iron III hydroxyl-sulfate, along with traces of chlorite, and in some cases, jarosite, szomolnokite, anatase, and calcite. The clay minerals are of authigenic and detrital origins. The occurrence of anatase as cell-fillings also indicates an authigenic origin. With the exception of Ge and As, which are slightly enriched in the coals, the concentrations of other trace elements are either close to or much lower than the averages for world hard coals. Arsenic and Hg are also enriched in the top bench of the coal and probably occur in pyrite. The elemental associations (e.g., Al2O3/TiO2, Cr/Th-Sc/Th indicate a sediment-source region with intermediate and felsic compositions. Rare metals, including Ga, rare earth elements and Ge, are highly enriched in the coal ashes, and the Gray Hawk coals have a great potential for industrial use of these metals. The rare earth elements in the samples are weakly fractionated or are characterized by heavy

  14. Exploration of SGD structures by remote sensing technologies and aquatic geochemistry

    Science.gov (United States)

    Siebert, Christian; Merkel, Broder; Pohl, Thomas; Ionescu, Danny; Mallast, Ulf

    2015-04-01

    As in many other regions of the world, where groundwater migrates through soluble rocks and sediments, the shoreline of the Dead Sea is extremely endangered to the formation of sinkholes. Additionally, in those areas, where enhanced subrosion dynamics are recognisable, groundwaters emerge submarine either diffuse or from open holes, suggesting a strong connection between both phenomenon: SGD and sinkholes. Independently from the source shapes, submarine groundwaters emerge with a wide range of salinity, from brackish (12 mS/cm) to briny (229 mS/cm). Along their way from the hard-rock mountains to the Dead Sea, groundwaters must pass in places several 1,000 meters of unconsolidated highly saline sediments, a fact which should impede the observed freshness of the discharging waters. However, geochemical and isotopic investigations in the groundwaters prove the origin in remote recharge areas in the mountain ranges to both sides of the sea. By observing the SGD-locations by applying echo sounding, side scan sonar and thermal imaging, it could be found SGD occurs through open holes and seems to be organised along lineaments, which follow +/-the regional neo-tectonic patterns. At the same time, deep shafts and craters were discovered, some of them reaching depths of 20 m and more. Particularly the high discharging brackish springs are mostly on the base of such a caldera, which might be a submarine sinkhole with slipped walls. Scuba diving discovered, these springs often discharge from the sediment through open holes, some of them up to 0.8 m wide. They are considered to be microbial forced karst structures. Investigations are continuing. Although exercised in the hyper saline Dead Sea, the application of aquatic geochemistry and isotope methods in combination with microbial investigations and remote sensing techniques allows integration of SGD into a broader (hydro)geological and structural framework, which is often much better understood on land. This methodology is

  15. Geochemistry Model Abstraction and Sensitivity Studies for the 21 PWR CSNF Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot; S. LeStrange; E. Thomas; K. Zarrabi; S. Arthur

    2002-10-29

    The CSNF geochemistry model abstraction, as directed by the TWP (BSC 2002b), was developed to provide regression analysis of EQ6 cases to obtain abstracted values of pH (and in some cases HCO{sub 3}{sup -} concentration) for use in the Configuration Generator Model. The pH of the system is the controlling factor over U mineralization, CSNF degradation rate, and HCO{sub 3}{sup -} concentration in solution. The abstraction encompasses a large variety of combinations for the degradation rates of materials. The ''base case'' used EQ6 simulations looking at differing steel/alloy corrosion rates, drip rates, and percent fuel exposure. Other values such as the pH/HCO{sub 3}{sup -} dependent fuel corrosion rate and the corrosion rate of A516 were kept constant. Relationships were developed for pH as a function of these differing rates to be used in the calculation of total C and subsequently, the fuel rate. An additional refinement to the abstraction was the addition of abstracted pH values for cases where there was limited O{sub 2} for waste package corrosion and a flushing fluid other than J-13, which has been used in all EQ6 calculation up to this point. These abstractions also used EQ6 simulations with varying combinations of corrosion rates of materials to abstract the pH (and HCO{sub 3}{sup -} in the case of the limiting O{sub 2} cases) as a function of WP materials corrosion rates. The goodness of fit for most of the abstracted values was above an R{sup 2} of 0.9. Those below this value occurred during the time at the very beginning of WP corrosion when large variations in the system pH are observed. However, the significance of F-statistic for all the abstractions showed that the variable relationships are significant. For the abstraction, an analysis of the minerals that may form the ''sludge'' in the waste package was also presented. This analysis indicates that a number a different iron and aluminum minerals may form in

  16. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge

    Science.gov (United States)

    Hrischeva, Elitsa; Scott, Steven D.

    2007-07-01

    We present first data on the geochemistry, mineralogy and morphology of near-vent sediments (35 and 200 m from active vent) and ridge flank sediments (approximately 3 km from the vent field) as well as oxyhydroxide deposits from the Endeavour segment, Juan de Fuca Ridge. The purpose of the study was to understand better the origin and characteristic features of metalliferous sediments associated with base and precious metal massive sulfides in volcanic terrains. Hydrothermal components in sediments are Fe-Si ± S-rich and Mn-Fe-Si-rich phases, sulfides and barite, which were exclusively derived from plume fallout. Sulfides are only a minor constituent of near-vent sediments (2-4 wt%) and were not detected in ridge flank sediments. The study suggests that the distribution of hydrothermal phases and associated elements in near-vent and ridge flank sediments is affected mainly by processes of agglomeration, dissolution, absorption and settling that take place within a plume and to a lesser extent post-depositional processes. Rapid deposition of sulfides in the vicinity of the vents is reflected in a sharp drop of the Cu concentrations in sediments with increasing distance from the vents. Besides sulfides, important carriers of Pb, Cu, Zn and Co in near-vent sediments are Fe-Mn oxyhydroxides that occur together with silica as aggregates of gel-like material and flaky particles and as coatings on filaments. Away from the vents, trace metals are mostly in Fe-Mn oxyhydroxides and authigenic Fe-rich montmorillonite. Oxyhydroxides at the Main Endeavour field are interpreted to have originated from oxidation of mound sulfides accompanied by precipitation of primary Fe-oxyhydroxide + silica from low-temperature fluids. At the Mothra field, seafloor deposits and chimney crusts composed of Fe-oxyhydroxide ± Mn + silica are considered to be direct precipitates from hydrothermal fluids that have been less diluted with seawater. Oxyhydroxide deposits exhibit unique microtextures

  17. From ecology to geochemistry to DNA: New information about Cibicidoides wuellerstorfi

    Science.gov (United States)

    Burkett, A. M.; Rathburn, A. E.; Venturelli, R. A.; Perez, M. E.; Levin, L. A.; Spendal, N.

    2014-12-01

    provides strong evidence that this taxon is not a reliable indicator of oxygen rich environments. Geochemical results suggest that there is a relationship between seeping fluids and foraminiferal calcite geochemistry and implying that novel geochemical relationships should be further explored at cold and hydrothermal seeps.

  18. Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing,southwestern China

    Institute of Scientific and Technical Information of China (English)

    DAI ShiFeng; ZHOU YiPing; REN DeYi; WANG XiBo; LI Dan; ZHAO Lei

    2007-01-01

    Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF),cold-vapor absorption spectrometry (CV-AAS), ion-selective electrode (ISE), scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and X-ray diffraction analysis (XRD). The results showed that the main workable No.8 Coal that accounts for about 60% of the total coal reserves in the Songzao Coalfield was not enriched in hazardous trace elements. The No.11 Coal has high concentrations of alkaline elements, Be (9.14 μg/g), SC (12.9 μg/g), Ti (9508 μg/g),Mn (397 μg/g), Co (23.7 μg/g), Cu (108 μg/g), Zn (123 μg/g), Ga (32 μg/g), Zr (1304 μg/g), Nb (169 μg/g), Hf (32.7 μg/g), Ta (11.4 μg/g), W (24.8 μg/g), Hg (0.28 μg/g), Pb (28.1 μg/g), Th (24.1 μg/g), and rare earth elements (509.62 μg/g). The concentration of Nb and Ta in the No. 11 Coal is higher than the industrial grade, and their potential utilization should be further studied. Besides pyrite, quartz, calcite, and clay minerals, trace minerals including chalcopyrite, marcasite, siderite, albite, mixed-layer clay minerals of illite and smectite, monazite, apatite, anatase, chlorite, and gypsum were found in the No.11 Coal. It should be noted that alabandite of hydrothermal origin and anatase occurring as cement were identified in coal. In addition, the clayey microbands derived from alkaline volcanic ashes were identified in the coal. The dominant compositions of these clayey microbands were mixed-layer clay minerals of illite and smectite, which were interlayered with organic bands. The modes of occurrence of alkaline volcanic ash bands indicate that the volcanic activities were characterized by the multiple eruptions,short time interval and small scale for each eruption during

  19. Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing,southwestern China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using in- ductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), cold-vapor absorption spectrometry (CV-AAS), ion-selective electrode (ISE), scanning electron mi- croscopy equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and X-ray diffraction analysis (XRD). The results showed that the main workable No.8 Coal that accounts for about 60% of the total coal reserves in the Songzao Coalfield was not enriched in hazardous trace elements. The No.11 Coal has high concentrations of alkaline elements, Be (9.14 μg/g), Sc (12.9 μg/g), Ti (9508 μg/g), Mn (397 μg/g), Co (23.7 μg/g), Cu (108 μg/g), Zn (123 μg/g), Ga (32 μg/g), Zr (1304 μg/g), Nb (169 μg/g), Hf (32.7 μg/g), Ta (11.4 μg/g), W (24.8 μg/g), Hg (0.28 μg/g), Pb (28.1 μg/g), Th (24.1 μg/g), and rare earth elements (509.62 μg/g). The concentration of Nb and Ta in the No. 11 Coal is higher than the industrial grade, and their potential utilization should be further studied. Besides pyrite, quartz, calcite, and clay minerals, trace minerals including chalcopyrite, marcasite, siderite, albite, mixed-layer clay minerals of illite and smectite, monazite, apatite, anatase, chlorite, and gypsum were found in the No.11 Coal. It should be noted that alabandite of hydrothermal origin and anatase occurring as cement were identi- fied in coal. In addition, the clayey microbands derived from alkaline volcanic ashes were identified in the coal. The dominant compositions of these clayey microbands were mixed-layer clay minerals of illite and smectite, which were interlayered with organic bands. The modes of occurrence of alkaline volcanic ash bands indicate that the volcanic activities were characterized by the multiple eruptions, short time interval and small scale for each eruption

  20. Geology, Geochemistry and Genesis of the Mazhuangshan Gold Deposit in Hami,East Tianshan, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    陈世忠; 周济元; 顾连兴; 崔炳芳; 肖惠良

    2001-01-01

    The Mazhuangshan area is located in the east of the Aqikekuduke Island Arc, where there are distributed intermediate-acid magmatic rocks emplaced during the Middle-Late Carboniferous. There are more than 20 orebodies in the area with an average gold grade 6.4 ×10- 6 at present. The dominant metallic minerals are natural gold, auriferous silver, natural silver, pyrite and galena. Pyrite is the key gold carrier, high in Fe and low in S. Wall-rock alterations mainly include pyritization, silicification, and sericitization. Carbonation alteration was extensive at the late stage, often resulting in a high-grade orebody. Three mineralization stages may be distinguished.The peak homogenization temperatures of primary fluid inclusions range from 240 to 260℃. Mineralization pressures and depths are 47.2 - 68.8 MPa and 1 . 6 - 2.3 km respectively, showing the ore-forming features of hypergene gold deposit. The average salinity is 15wt% NaCl equivalent. Fluid inclusion geochemistry data show that Ca2 + is far higher than Mg2+, and mK+/mNa+, m2Na+/mca2+ (0.001 ~ 0.338), m∑cl/m∑s and m∑c/m∑s ratios change with the reduction parameter [ R = (CO + CH4)/CO2] and temperature. And the gold contents of ores and gangues are positively correlated with R.The pH values of inclusion water in quartz range from 5.8 to 7.4. Oxygen fugacity (fo2 )ranges from 10- 55 Pa to i0- 47 Pa, sulfur fugacity (fs2) is about 10- 13, and Eh values are estimated to be about - 0.6 eV. The δ 34S values of the fluid were determined to be + 3.94‰ to + 4.98‰. 206pb/204pb and 207pb/208pb ratios in pyrite are 18. 269 - 18. 352,15. 550 - 15. 633 and 38. 077 - 38. 355, respectively. The ∑REE values (4.7 × 10-6 ~ 43.1× 10-6) of ores and gangues are obviously lower than those of the host magmatic rocks, but their REE and trace element spider diagrams are similar to those of the host magmatic rocks,suggesting that the water consists dominantly of meteoric water, mixed with a part of magmatic

  1. Significance of zircon trace element geochemistry, the Shihu gold deposit,western Hebei Province, North China

    Institute of Scientific and Technical Information of China (English)

    CAO Ye; LI Shengrong; ZHANG Huafeng; LIU Xiaobin; LI Zhenzhen; AO Chong; YAO Meijuan

    2011-01-01

    The Shihu gold deposit is characterized by gold-bearing quartz-polymetallic sulfides and quartz veins. Both Mapeng granitoids batholith and intermediate-basic dikes intruded the metamorphic basement rocks, and are spatially associated with gold mineralization. Trace element abundances in zircons from the Shihu gold deposit, determined by laser-ablation microprobe ICPMS analysis, are sensitive to source rock type and crystallization environment. Concentrations of 21 trace elements were determined for zircons from granitoid rocks, diorites,quartz diorite porphyrites and gold-bearing quartz veins revealed some elemental characteristics and chondrite-normalized trace element patterns from different samples. There were no distinctive differences in REE concentrations of zircons from plutonic rocks and quartz veins, indicating that they probably had the same origin. Relatively flat chondrite-normalized REE patterns with (Yb/Sm)N ratios less than 60 characterized zircons from quartz diorite porphyrites and quartz veins. The highest Nb/Ta ratios were found in zircons from quartz diorite porphyrites, whereas the lowest ratios were found in quartz vein zircons. The Nb/Ta ratios were broadly correlated with HREE+Y contents, and had weak positive correlations with the depth of the Eu negative anomalies. High values U up to 0.4% and Th up to 0.1%, as well as positive correlations with REE+Y characterized zircons from quartz vein. The lowest Th/U ratios of zircons present in quartz veins reflected the relatively high concentration of U in hydrothermal fluid, and high Pb concentrations only typified quartz vein grains relatively enriched in U and Th.Zircons from quartz diorite porphyrites showed the most pronounced Ce anomalies, whereas weak Ce anomalies were typical of zircons from quartz veins, in which Eu/Eu* of zircons had a broadly negative correlation with Ce/Ce*. Trace element geochemistry of zircons from mineralized quartz veins and plutonic rocks confirmed that the

  2. Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yongjun, E-mail: jiangjyj@swu.edu.cn [School of Geographical Sciences, Southwest University, Chongqing 400715 (China)] [Institute of Karst Environment and Rock Desertification Rehabilitation, Chongqing 400715 (China)

    2011-03-15

    Research highlights: {yields} Spatio-temporal variations of Sr concentrations and Sr isotopic composition of groundwater were investigated in a karst underground river system. {yields} Agricultural fertilizers and sewage effluents significantly modified the natural Sr isotopic signature of karst groundwater. {yields} Sr in the carbonate aquifers was relatively non-radiogenic, with low Sr concentrations, while anthropogenic Sr correlated with agricultural fertilizers and sewage effluents was relatively radiogenic, with higher Sr concentrations. {yields} {sup 87}Sr/{sup 86}Sr ratios can provide key information for natural and anthropogenic sources in karst groundwater. - Abstract: The Nandong Underground River System (NURS) is located in a typical karst area dominated by agriculture in SE Yunnan Province, China. Groundwater plays an important role in the social and economical development in the area. The effects of human activities (agriculture and sewage effluents) on the Sr isotope geochemistry were investigated in the NURS. Seventy-two representative groundwater samples, which were collected from different aquifers (calcite and dolomite), under varying land-use types, both in summer and winter, showed significant spatial differences and slight seasonal variations in Sr concentrations and {sup 87}Sr/{sup 86}Sr ratios. Agricultural fertilizers and sewage effluents significantly modified the natural {sup 87}Sr/{sup 86}Sr ratios signature of groundwater that was otherwise dominated by water-rock interaction. Three major sources of Sr could be distinguished by {sup 87}Sr/{sup 86}Sr ratios and Sr concentrations in karst groundwater. Two sources of Sr are the Triassic calcite and dolomite aquifers, where waters have low Sr concentrations (0.1-0.2 mg/L) and low {sup 87}Sr/{sup 86}Sr ratios (0.7075-0.7080 and 0.7080-0.7100, respectively); the third source is anthropogenic Sr from agricultural fertilizers and sewage effluents with waters affected having radiogenic {sup 87

  3. Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Srisuksawad, K.; Porntepkasemsan, B.; Nouchpramool, S.; Yamkate, P. [Office of Atomic Energy for Peace, Bangkok (Thailand); Carpenter, R.; Peterson, M.L. [University of Washington, Seattle (United States). School of Oceanography; Hamilton, T. [International Atomic Energy Agency (Monaco). Marine Environment Laboratory

    1997-12-01

    Downcore concentration profiles of {sup 210}Pb , U, and Th isotopes, Al, Fe, Ti, Mn and Sc were measured in sediment box cores collected at 22 stations (16-70 m water depth) covering most of the Thai zone of the Gulf of Thailand. Distributions of excess {sup 210}Pb and the detrital elements were used to study spatial variations in sedimentary processes, mineralogy, and geochemistry between different regions of the gulf. Steady-state depositional concentrations and fluxes of excess {sup 210}Pb are 3-10 times lower in Gulf of Thailand sediments than in sediments from mid-latitudes in the northern hemisphere, reflecting lower {sup 210}Pb inputs from atmospheric fallout at 6-13{sup o}N latitude and from lower production of {sup 210}Pb from {sup 226}Ra in the shallower waters of the Gulf. U and Th concentrations are approximately 2-3 times higher than those in shelf sediments from mid-latitudes of North America, consistent with a higher proportion of granitic source rocks in the Thai environment. Downcore variations in {sup 228}Th/{sup 232}Th activity ratios and in U activities reveal that exchange of interstitial and overlying waters and their dissolved chemicals occurs down to 20 cm in 8 of 10 cores. This benthic exchange may be important in budgets of fluxes of other soluble chemicals in this shallow shelf sea. A net flux of U isotopes from overlying water into Gulf of Thailand sediments occurs in contrast to their release from sediments of the tropical Amazon shelf. Detectable levels of {sup 137}Cs were found only in sediments near the mouth of the largest river, the Chao Phraya. The detrital elements {sup 232}Th, {sup 230}Th, Al, Ti, and Sc all show relatively uniform downcore concentration profiles. This supports a key assumption in calculations of sediment accumulation rates from downcore profiles of {sup 210}Pb activity, that steady-state depositional conditions exist and that basic sediment mineralogy and grain size does not change. (Abstract Truncated)

  4. The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil.

    Science.gov (United States)

    De Miguel, Eduardo; Mingot, Juan; Chacón, Enrique; Charlesworth, Susanne

    2012-12-01

    A total of 32 samples of surficial soil were collected from 16 playground areas in Madrid (Spain), in order to investigate the importance of the geochemistry of the soil on subsequent bioaccessibility of trace elements. The in vitro bioaccessibility of As, Co, Cr, Cu, Ni, Pb and Zn was evaluated by means of two extraction processes that simulate the gastric environment and one that reproduces a gastric + intestinal digestion sequence. The results of the in vitro bioaccessibility were compared against aqua regia extractions ("total" concentration), and it was found that total concentrations of As, Cu, Pb and Zn were double those of bioaccessible values, whilst that of Cr was ten times higher. Whereas the results of the gastric + intestinal extraction were affected by a high uncertainty, both gastric methods offered very similar and consistent results, with bioaccessibilities following the order: As = Cu = Pb = Zn > Co > Ni > Cr, and ranging from 63 to 7 %. Selected soil properties including pH, organic matter, Fe and CaCO(3) content were determined to assess their influence on trace element bioaccessibility, and it was found that Cu, Pb and Zn were predominantly bound to organic matter and, to a lesser extent, Fe oxides. The former fraction was readily accessible in the gastric solution, whereas Fe oxides seemed to recapture negatively charged chloride complexes of these elements in the gastric solution, lowering their bioaccessibility. The homogeneous pH of the playground soils included in the study does not influence trace element bioaccessibility to any significant extent except for Cr, where the very low gastric accessibility seems to be related to the strongly pH-dependent formation of complexes with organic matter. The results for As, which have been previously described and discussed in detail in Mingot et al. (Chemosphere 84: 1386-1391, 2011), indicate a high gastric bioaccessibility for this element as a consequence of its strong association with calcium

  5. Minor-element and Sr-isotope geochemistry of tertiary stocks, Colorado mineral belt

    Science.gov (United States)

    Simmons, E.C.; Hedge, C.E.

    1978-01-01

    Rocks of the northeast portion of the Colorado mineral belt form two petrographically, chemically and geographically distinct rock suites: (1) a silica oversaturated granodiorite suite; and (2) a silica saturated, high alkali monzonite suite. Rocks of the granodiorite suite generally have Sr contents less than 1000 ppm, subparallel REE patterns and initial 87Sr/ 86Sr ratios greater than 0.707. Rocks of the monzonite suite are restricted to the northeast part of the mineral belt, where few rocks of the granodiorite suite occur, and generally have Sr contents greater than 1000 ppm, highly variable REE patterns and 87Sr/86Sr initial ratios less than 0.706. Despite forming simple, smooth trends on major element variation diagrams, trace element data for rocks of the granodiorite suite indicate that they were not derived from a single magma. These rocks were derived from magmas having similar REE patterns, but variable Rb and Sr contents, and Rb/Sr ratios. The preferred explanation for these rocks is that they were derived by partial melting of a mixed source, which yielded pyroxene granulite or pyroxenite residues. The monzonite suite is chemically and petrographically more complex than the granodiorite suite. It is subdivided here into alkalic and mafic monzonites, and quartz syenites, based on the textural relations of their ferromagnesian phases and quartz. The geochemistry of these three rock types require derivation from separate and chemically distinct magma types. The preferred explanation for the alkalic monzonites is derivation from a heterogeneous mafic source, leaving a residue dominated by garnet and clinopyroxene. Early crystallization of sphene from these magmas was responsible for the severe depletion of the REE observed in the residual magmas. The lower Sr content and higher Rb/Sr ratios of the mafic monzonites requires a plagioclase-bearing source. The Sr-isotope systematics of the majority of these rocks are interpreted to be largely primary, and not

  6. Diagenetic regimes in Arctic Ocean sediments: Implications for sediment geochemistry and core correlation

    Science.gov (United States)

    Meinhardt, A.-K.; März, C.; Schuth, S.; Lettmann, K. A.; Schnetger, B.; Wolff, J.-O.; Brumsack, H.-J.

    2016-09-01

    Dark brown sediment layers are a potential stratigraphic tool in Quaternary Arctic Ocean sediments. They are rich in Mn, Fe, and trace metals scavenged from the water column and were most likely deposited during interglacial intervals. In this study, we combine sediment and pore water data from sediment cores taken in different parts of the Arctic Ocean to investigate the influence of early diagenetic processes on sediment geochemistry. In most studied cores, Mn, Co, and Mo are released into the pore waters from Mn oxide dissolution in deeper (>1.5 m) sediment layers. The relationship between sedimentary Mn, Co, and Mo contents in excess of the lithogenic background (elementxs) shows that Coxs/Moxs values are a diagnostic tool to distinguish between layers with diagenetic metal addition from the pore waters (Coxs/Moxs 10), and unaffected layers (Coxs/Moxs from 1 to 10). Steady-state calculations based on current pore water profiles reveal that in the studied cores, the diagenetic addition of these metals from the pore water pool alone is not sufficient to produce the sedimentary metal enrichments. However, it seems evident that dissolution of Mn oxides in the Mn reduction zone can permanently alter the primary geochemical signature of the dark brown layers. Therefore, pore water data and Coxs/Moxs values should be considered before core correlation when this correlation is solely based on Mn contents and dark sediment color. In contrast to the mostly non-lithogenic origin of Mn in the dark brown layers, sedimentary Fe consists of a large lithogenic (80%) and a small non-lithogenic fraction (20%). Our pore water data show that diagenetic Fe remobilization is not currently occurring in the sediment. The dominant Fe sources are coastal erosion and river input. Budget calculations show that Fe seems to be trapped in the modern Arctic Ocean and accumulates in shelf and basin sediments. The Fe isotopic signal δ56Fe of the solid phase is positive (∼0.2-0.3‰) in

  7. Geochemistry of a Tertiary sedimentary phosphate deposit: Baja California Sur, Mexico

    Science.gov (United States)

    Piper, D.Z.

    1991-01-01

    The San Gregorio Formation in Baja California Sur, a phosphate-enriched sedimentary unit of late Oligocene to early Miocene age, has been analyzed in two areas (La Purisima and San Hilario) for its chemical composition (major oxides, Cu, Cd, Cr, Co, V, and rare-earth elements - REE) and isotopic composition (??18O and ??13C). A detrital and a marine component were determined from major oxides. The detrital component consists of an unaltered volcanic-ash fraction and a terrigenous clay-silt fraction. The marine component, which accumulated initially as biogenic and hydrogenous material, is now present as opal-A, opal-CT, CaCO3, organic matter, and an authigenic phosphate fraction, mostly pelletal and composed of the carbonate-fluorapatite mineral francolite. The minor elements have been partitioned into these components by assuming a constant composition for the two detrital fractions. The composition of the marine component of minor elements can then be interpreted by assuming that the stoichiometry of the original accumulating organic matter was equal to that of modern plankton. The Cu and Cd contents in the marine component of all rocks require that the seawater-derived fractions of these two metals were supplied to the seafloor solely by organic matter. Enrichments of Cr and V at both sites required an additional marine input. On the basis of their geochemistry in the modern ocean, Cr and V could have precipitated, or been adsorbed, onto settling particles from an O2 minimum zone in which the O2 content was low enough to promote denitrification rather than oxygen respiration. An enrichment of the REE, now within the apatite fraction, resulted from their adsorption onto particulates also in the O2 minimum zone and to the dissolution and alteration of biogenic phases (predominantly silica) within the sediment. Co and Fe2O3 show no enrichment above a detrital contribution. The ??18O-values of apatites from the La Purisima site are heavier than those of apatites

  8. Geochemistry, environmental and provenance study of the Middle Miocene Leitha limestones (Central Paratethys

    Directory of Open Access Journals (Sweden)

    Ali Ahmed

    2017-06-01

    Full Text Available Mineralogical, major, minor, REE and trace element analyses of rock samples were performed on Middle Miocene limestones (Leitha limestones, Badenian collected from four localities from Austria (Mannersdorf, Wöllersdorf, Kummer and Rosenberg quarries and the Fertőrákos quarry in Hungary. Impure to pure limestones (i.e. limited by Al2O3 contents above or below 0.43 wt. % were tested to evaluate the applicability of various geochemical proxies and indices in regard to provenance and palaeoenvironmental interpretations. Pure and impure limestones from Mannersdorf and Wöllersdorf (southern Vienna Basin show signs of detrital input (REEs = 27.6 ± 9.8 ppm, Ce anomaly = 0.95 ± 0.1 and the presence of quartz, muscovite and clay minerals in impure limestones and diagenetic influence (low contents of, e.g., Sr = 221 ± 49 ppm, Na is not detected, Ba = 15.6 ± 8.8 ppm in pure limestones. Thus, in both limestones the reconstruction of original sedimentary palaeoenvironments by geochemistry is hampered. The Kummer and Fertőrákos (Eisenstadt–Sopron Basin comprise pure limestones (e.g., averages Sr = 571 ± 139 ppm, Na = 213 ± 56 ppm, Ba = 21 ± 4 ppm, REEs = 16 ± 3 ppm and Ce anomaly = 0.62 ± 0.05 and composed predominantly of calcite exhibiting negligible diagenesis. Deposition under a shallow-water, well oxygenated to intermittent dysoxic marine environment can be reconstructed. Pure to impure limestones at Rosenberg–Retznei (Styrian Basin are affected to some extent by detrital input and volcano-siliciclastic admixture. The Leitha limestones at Rosenberg have the least diagenetic influence among the studied localities (i.e. averages Sr = 1271 ± 261 ppm, Na = 315 ± 195 ppm, Ba = 32 ± 15 ppm, REEs = 9.8 ± 4.2 ppm and Ce anomaly = 0.77 ± 0.1 and consist of calcite, minor dolomite and quartz. The siliciclastic sources are characterized by immobile elemental ratios (i.e. La/Sc and Th/Co which apply not only for the siliciclastics, but also

  9. Geochemistry of K/T-boundary Chicxulub ejecta of NE-Mexico

    Science.gov (United States)

    Harting, M.; Deutsch, A.; Rickers, K.

    2003-12-01

    Many K/T sections all over the world contain impact spherules supposed related to the Chicxulub event. This study focus on ejecta layers in NE-Mexican profiles. We carried out systematic XRF and synchrotron radiation measurements on such spherules at the HASYLAB and ANKA facilities as well as microprobe analyses (CAMECA SX50). Area scans on tektite-like material of the Bochil section reveal a pronounced zonation in the inner part, dominated by Ba and Sr whereas secondary CaCO3 dominates in the altered margin. The composition of the spherules from the Mesa-Juan Perez section differ significantly from the Beloc (Haiti) and Bochil tektite glasses. At Mesa-Juan Perez, spherules are either extremely rich in Fe and Ca or consist of smectite, some of those carry carbonate inclusions. Yttrium, La and Ce are zoned within the smectite with concentrations below the detection limit and up to 20 æg/g The Ca-rich inclusions are enriched in Y (up to 35 æg/g) and La (18 æg/g) and, compared to the surrounding smectite, also in Ce (up to 34 æg/g). The Ce enrichment in spherules from the Mesa-Juan Perez section indicates impact-melted carbonates of the Yucatan carbonate platform as possible precursor rocks. Recent investigations focus on the chemistry of melt rock samples from the PEMEX wells Yucatan-6 and Chicxulub-1: Their average composition (mean of 250 data points in wt-percent ) is 61.6 for SiO2, 0.16 for TiO2, 18.07 for Al2O3, 0.01 for Cr2O3, 1.98 for Na2O, 1.5 for FeO, 0.05 for MnO, 0.01 for NiO, 0.31 for MgO, 9.14 for K2O, 3.44 for CaO, and 0.01 for SO2. These results are in some cases comparable to the geochemistry of ejecta glasses, e.g. from Beloc (Haiti).

  10. The distribution of methane in groundwater in Alberta (Canada) and associated aqueous geochemistry conditions

    Science.gov (United States)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Millot, Romain; Kloppmann, Wolfram

    2016-04-01

    combined interpretation of aqueous geochemistry data in concert with the chemical and isotopic composition of dissolved and/or free gas can yield unprecedented insights into formation or migration of methane in shallow groundwater. This enables the assessment of cross-formational methane migration and provides an understanding of alkane gas sources and pathways necessary for a stringent baseline definition in the context of current and future unconventional hydrocarbon exploration and exploitation.

  11. Petrology and geochemistry of three early Holocene eruptions from Makushin volcano, Alaska

    Science.gov (United States)

    Larsen, J. F.; Schaefer, J. R.

    2016-12-01

    Makushin volcano is an 1800-meter-high stratovolcano with an ice-filled, 2x3 km summit crater, 25 km west of Dutch Harbor and Unalaska, Alaska on Unalaska Island. This study examines the petrology and geochemistry of the three largest, early Holocene eruptions from Makushin: "CFE", (ca. 9000 BP), "Nateekin" (ca. 8700 BP), and "Driftwood" (ca. 8200 BP). The CFE eruption produced thick scoria fall deposits to the northeast and pyroclastic-flow deposits in upper Makushin and "Waterfall" valleys extending >12 km to the east and north. The Nateekin eruption produced fine ash to fine lapilli deposits that are up to 20 cm thick in the Unalaska town area. The Driftwood eruption produced tan pumice and dense, black scoriaceous fall deposits, up to 2 m thick, primarily in the Driftwood valley area to the northeast. Whole rock major (XRF) and trace element (LA-ICPMS) compositions were collected from the CFE and Driftwood samples. Samples from the Nateekin unit were too fine-grained for whole-rock analyses. Analyses of glass, phenocryst, and microlite phases from all three units were collected at UAF using the JEOL JXA-8530F electron microcprobe. The CFE and Driftwood eruptions produced medium K2O, tholeiitic andesites: CFE = 56 to 60 wt. % SiO2; Driftwood = 60 to 63 wt. % SiO2. The three units have andesite to rhyodacite glass compositions: CFE= 57 to 64 wt. % SiO2; Nateekin = 59 to 61 wt. % SiO2; Driftwood = 67 to 70 wt. % SiO2. The CFE and Driftwood samples have plagioclase, clinopyroxene and orthopyroxene phenocrysts, with minor olivine in the CFE fall deposit scoria. The pyroxenes are uniform in composition: Opx = Wo4.6En58.7Fs36.7 (n=58) and Cpx = Wo39.7En41.9Fs18.4 (n=132). Plagioclase phenocrysts from Driftwood pumice have An52-54 cores and An48-49 rims. CFE plagioclase phenocrysts are bimodal, with a lower An50-54 group and a higher An70-89 group. Nateekin glass compositions are similar to CFE scoria analyses from the middle to top of the unit, indicating little

  12. Geochemistry and Petrogenesis of Volcanic Rocks in the Yeba Formation on the Gangdise Magmatic Arc, Tibet

    Institute of Scientific and Technical Information of China (English)

    Geng Quanru; Pan Guitang; Jin Zhenmin; Wang Liquan; Liao Zhongli

    2005-01-01

    The Early Jurassic bimodal volcanic rocks in the Yeba Formation, situated between Lhasa, Dagzê and Maizhokunggar, composed of metabasalt, basaltic ignimbrite, dacite, silicic tuff and volcanic breccia, are an important volcanic suite for the study of the tectonic evolution of the Gangdise magmatic arc and the Mesozoic Tethys. Based on systematic field investigations, we carried out geochemical studies on representative rock samples. Major and trace element compositions were analyzed for these rock samples by XRF and ICP-MS respectively, and an isotope analysis of Rb-Sr and Sm-Nd was carried out by a MAT 262 mass spectrograph. The results show that the SiO2 contents in lava rocks are 41 %-50.4 % and 64 %-69 %, belonging to calc-alkaline basalt and dacite. One notable feature of the basalt is its low TiO2 content, 0.66 %-1.01 %, much lower than those of continental tholeiite. The ΣREE contents of basalt and dacite are 60.3-135 μg/g and 126.4-167.9 μg/g respectively. Both rocks have similar REE and other trace element characteristics, with enriched LREE and LILE relative to HREE and HFS, similar REE patterns without Eu anomaly. The basalts have depleted Ti, Ta and Nb and slightly negative Nb and Ta anomalies, with Nb*=0.54-1.17 averaging 0.84. The dacites have depleted P and Ti and also slightly negative Nb and Ta anomalies, with Nb*=0.74-1.06 averaging 0.86. Major and trace elemental and isotopic studies suggest that both basalt and dacite originated from the partial melting of the mantle wedge at different degrees above the subduction zone. The spinal lherzolite in the upper mantle is likely to be their source rocks, which might have been affected by the selective metasomatism of fluids with crustal geochemistry. The LILE contents of both rocks were affected by metamorphism at later stages. The Yeba bimodal volcanic rocks formed in a temporal extensional situation in a mature island arc resulting from the Indosinian Gangdise magmatic arc.

  13. Mineralogy and geochemistry of the Jurassic coals from the Gheshlagh mine, Eastern Alborz

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Shamanian

    2015-10-01

    Full Text Available Introduction The Alborz structural zone in northern Iran is the host of a number of important coal deposits. The Gheshlagh coal mine is one of them, which is located 35 km southeast of Azadshahr. Coal bearing strata in the Gheshlagh mining district occur in the middle part of the Lower Jurassic Shemshak Formation which consists mainly of shales, siltstones and sandstones. The Geshlagh coals have a low sulfur content and a low ash yield. The ash content of coal and its geochemical character depends on the environment of deposition and subsequent geological history (Yazdi and Esmaeilnia, 2004. The purpose of this study was to investigate the texural and mineralogical characteristcs of the Ghashlagh coals and to identify the geochemistry of the major and trace elements and their relationship to specific mineralogical components. These results are necessary to improve the understanding of coal characterization and to relate the mineralogy of different materials to their potential for producing acidic or alkaline mine waters associated with mining and preparation processes. Materials and methods About 20 samples were collected from the main coal seams. These samples were taken from fresh faces of the mine to avoid weathered surfaces and get fresh samples. The petrography of the samples was carried out by the conventional microscopic methods at the Golestan University. Mineralogical analyses were done by a X-ray diffractometer equipped with a CuKα tube and monochrometer (XRD Philips PW 1800 at the Kansaran Binaloud Company. The coal samples were initially crushed to less than 200 μm and homogenized. Then, 50 g from each sample was heated to 525 oC according to the United States Geological Survey procedure(Bullock et al., 2002. The concentration of the major and trace elements in the resulting ash samples was determined using a wavelength Xray fluorescence spectrometer (XRF Philips PW1480 at the Kansaran Binaloud Company. Results The Coal

  14. 2.6 Ga Gabbro-tonalite-trondhjemite Complex and 2.5 Ga Potassic Granite in Quruqtagh. Geochronology, Geochemistry and Their Implications on the Early Precambrian Tectonic Evolution of the Tarim Block, NW China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chuan-lin; LI Xian-hua; LI Zheng-xiang; YE Hai-min

    2008-01-01

    @@ Field observation, ages and geochemistry of the Neoarchaean intrusive complex in Quruqtagh in northern mar-gin of the Tarim Block, NW China, are reported to decipher the Neoarchaean tectonic evolution of the Tarim Block.

  15. Continental-scale patterns in soil geochemistry and mineralogy: results from two transects across the United States and Canada

    Science.gov (United States)

    Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on

  16. Determination of Uncertainties for +III and +IV Actinide Solubilities in the WIPP Geochemistry Model for the 2009 Compliance Recertification Application

    Science.gov (United States)

    Ismail, A. E.; Xiong, Y.; Nowak, E. J.; Brush, L. H.

    2009-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy (DOE) repository in southeast New Mexico for defense-related transuranic (TRU) waste. Every five years, the DOE is required to submit an application to the Environmental Protection Agency (EPA) demonstrating the WIPP’s continuing compliance with the applicable EPA regulations governing the repository. Part of this recertification effort involves a performance assessment—a probabilistic evaluation of the repository performance with respect to regulatory limits on the amount of releases from the repository to the accessible environment. One of the models used as part of the performance assessment process is a geochemistry model, which predicts solubilities of the radionuclides in the brines that may enter the repository in the different scenarios considered by the performance assessment. The dissolved actinide source term comprises actinide solubilities, which are input parameters for modeling the transport of radionuclides as a result of brine flow through and from the repository. During a performance assessment, the solubilities are modeled as the product of a “base” solubility determined from calculations based on the chemical conditions expected in the repository, and an uncertainty factor that describes the potential deviations of the model from expected behavior. We will focus here on a discussion of the uncertainties. To compute a cumulative distribution function (CDF) for the uncertainties, we compare published, experimentally measured solubility data to predictions made using the established WIPP geochemistry model. The differences between the solubilities observed for a given experiment and the calculated solubilities from the model are used to form the overall CDF, which is then sampled as part of the performance assessment. We will discuss the methodology used to update the CDF’s for the +III actinides, obtained from data for Nd, Am, and Cm, and the +IV actinides, obtained

  17. Analysis of Molecular Geochemistry of Soil Organic Matter from 17-year Reciprocal Transplant Experiment in Arid Ecosystem: Simulated Climate Pertubation

    Science.gov (United States)

    Hess, N. J.; Tfaily, M.; Bailey, V. L.; McCue, L. A.

    2014-12-01

    Successful development of chemical profiles that link soil carbon vulnerability and resilience to climate change would greatly facilitate assessment of soil ecosystems response to global climate change. Additionally these signatures could be used to support the design of sustainable agricultural and food/energy crop security practices. We test this possibility using soils obtained from a 17-year reciprocal soil transplant experiment between two elevations in the arid environment of eastern Washington [1]. 30-cm diameter soil cores were reciprocally transplanted between the upper and lower sites. Cores were also transplanted in place to control for disturbance. Extracted subcores were incubated in environmental chambers and measured microbial respiration revealed statically a significant decrease in respiratory response as a function of temperature in cores transferred from low elevation to high elevation. We use ultra high resolution mass spectrometry to identify thousands of organic molecules and changes in geochemistry that would indicate the vulnerability of the soil ecosystem to climate perturbation. In our experiments we used methanol extraction followed by direct injection to 12 T ESI FT-ICR MS to identify about 4000 of individual compounds in about 200 mg soils at sub ppm mass accuracy. Chemical formulae were assigned to approximately 65% of the measured peaks using a modified Kujawinski pipeline and second order Kendrick transformations [2] resulted in approximately 75% assigned peaks. Our preliminary analysis finds that while the bulk C content of soils from the cooler, wetter conditions at the upper elevation is approximately twice that of the warmer, drier conditions at lower elevation, the molecular soil geochemistry is remarkably similar. Detailed analysis reveals subtle differences in the lipid, carbohydrate, and condensed hydrocarbon compositional makeup of the soil. Additionally, of the more than 17,000 individual compounds identified approximately

  18. Petrology,Chronology and Isotope Geochemistry of the Proterozoic Amphibolites from Xiangshan,Central Jiangxi Province,China

    Institute of Scientific and Technical Information of China (English)

    胡恭任; 章邦桐; 等

    1999-01-01

    On the basis of a comprehensive study on the petrology,trace elements and isotopic geochemistry of the Xiangshan amphibolites,we suggest that the protoliths of the amphibolites were basalts formed in an island-arc tectonic setting.The basaltic magma was derived from a slightly depleted mantle source with a small amount of crustal contamination.Assemblage of the rock-froming minerals indicates that these amphibolites underwent a low-grade metamorphism of amphibolite facies.According to the formation age(1113Ma) and subsequent metamophic age(726.6Ma) of the basalts aw well as the geological and gochemical features of these amphibolites,a tectonic model of Proterozoic oceanic island-arc setting is proposed for central Jiangxi.

  19. Elucidating the magmatic history of the Austurhorn silicic intrusive complex (southeast Iceland) using zircon elemental and isotopic geochemistry and geochronology

    Science.gov (United States)

    Padilla, A. J.; Miller, C. F.; Carley, T. L.; Economos, R. C.; Schmitt, A. K.; Coble, M. A.; Wooden, J. L.; Fisher, C. M.; Vervoort, J. D.; Hanchar, J. M.

    2016-09-01

    The Austurhorn intrusive complex (AIC) in southeast Iceland comprises large bodies of granophyre and gabbro, and a mafic-silicic composite zone (MSCZ) that exemplifies magmatic interactions common in Icelandic silicic systems. Despite being one of Iceland's best-studied intrusions, few studies have included detailed analyses of zircon, a mineral widely recognized as a valuable tracer of the history and evolution of its parental magma(s). In this study, we employ high spatial resolution zircon elemental and isotopic geochemistry and U-Pb geochronology as tools for elucidating the complex construction and magmatic evolution of Austurhorn's MSCZ. The trace element compositions of AIC zircon crystals form a broad but coherent array that partly overlaps with the geochemical signature for zircons from Icelandic silicic volcanic rocks. Typical of Icelandic zircons, Hf concentrations are relatively low (mush-like material and a prolonged lifetime for the complex.

  20. Geochemistry characteristics and evaluation of the pollution extent of arsenic in wastewater irrigated soil in the North of Tianjin City

    Institute of Scientific and Technical Information of China (English)

    Junyu WU; Rongshu ZENG; Tianxiang REN

    2008-01-01

    Based on sampling depths,the research environment of the soil in a study area is divided into two parts:the Ⅰ environment (Ⅰ-E) and the Ⅱ environment (Ⅱ-E).The results of the statistical analysis of arsenic (As) in the soil of the Ⅰ-E indicates that the statistical characteristic value obey a normal distribution.The mean value of As is close to the world mean value,China and Tianjin City.Also,the contrast between the spatial change characteristics of As of the Ⅰ-E and the Ⅱ-E soils showed that the Ⅰ-E resem bles the C Ⅱ-E in the content variety of As.On the other hand,geochemistry methods were applied in the estimation of contaminated extent.The results indicated that the contamination extent of the north of Tianjin City has not been serious.

  1. Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis

    Science.gov (United States)

    Arafa, Wafaa M.; Badawy, Wael M.; Fahmi, Naglaa M.; Ali, Khaled; Gad, Mohamed S.; Duliu, Octavian G.; Frontasyeva, Marina V.; Steinnes, Eiliv

    2015-07-01

    The distributions of 36 major and trace elements in 40 surface soil and sediment samples collected from the Egyptian section of the river Nile were determined by epithermal neutron activation analysis and compared with corresponding data for the Upper Continental Crust and North American Shale Composite. Their relative distributions indicate the presence of detrital material of igneous origin, most probably resulting from weathering on Ethiopian highlands and transported by the Blue Nile, the Nile main tributary. The distributions of the nickel, zinc, and arsenic contents suggest that the lower part of the Nile and its surroundings including the Nile Delta is not seriously polluted with metals from local human activity. The geographical distributions of Na, Cl, and I as well as results of principal component analysis suggest atmospheric supply of these elements from the ocean. In general the present data may contribute to a better understanding of the geochemistry of the Nile sediments.

  2. Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico

    Science.gov (United States)

    Tapia-Fernandez, Hector J.; Armstrong-Altrin, John S.; Selvaraj, Kandasamy

    2017-07-01

    This study investigated the bulk sediment geochemistry, U-Pb ages and rare earth element (REE) geochemistry of one hundred detrital zircons recovered from the Brujas beach sands in southwestern Gulf of Mexico to understand the provenance and age spectra. The bulk sediments are high in Zr and Hf contents (∼1400-3773 ppm and ∼33-90 ppm, respectively) suggested the abundance of resistant mineral zircon. The chondrite normalized REE patterns of the bulk sediments are less fractionated with enriched low REE (LREE; LaCN/SmCN = ∼491-693), depleted heavy REE (HREE; GdCN/YbCN = ∼44-69) and a negative Eu anomaly (Eu/Eu∗ = ∼0.44-0.67) suggested that the source rock is felsic type. The results of this study revealed highly varied contents of Th (∼4.2-321 ppm), U (∼20.7-1680 ppm), and Hf (∼6970-14,200 ppm) in detrital zircons compared to bulk sands. The total REE content (∼75 and 1600 ppm) and its chondrite-normalized pattern with positive Ce and negative Eu anomalies as well as low Th/U ratio of zircon grains indicated that they were dominantly of magmatic origin. U-Pb data of zircons indicated two age populations, with predominance of Permian-Triassic (∼216-286 Ma) and Neoproterozoic (∼551-996 Ma). The Permian-Triassic zircons were contributed by the granitoids and recycled metasedimentary rocks of the Chiapas Massif Complex. The major contribution of Neoproterozoic zircons was from the Chaucus, Oaxacan, and Chiapas Massif Complexes in Grenville Province, southern Mexico. U-Pb ages of zircons from the Brujas beach are consistent to the reported zircon ages from the drainage basins of Usumacinta, Coatzacoalcos, and Grijalva Rivers in southern Mexico, suggesting that the sediments delivered by the rivers to the beach area are vital in defining the provenance of placers.

  3. Calculating Pollution Indices by Heavy Metals in Ecological Geochemistry Assessment and a Case Study in Parks of Beijing

    Institute of Scientific and Technical Information of China (English)

    Gong Qingjie; Deng Jun; Xiang Yunchuan; Wang Qingfei; Yang Liqiang

    2008-01-01

    Pollution index is a powerful tool for ecological geochemistry assessment. The commonly used pollution indices by heavy metals in soils and sediments were classified as two types of single index and integrated index in an algorithm point of view. Four single indices of contamination factor (or concentration factor), ecological risk factor, enrichment factor, and index of geo-accumulation were illustrated, and the reference values for calculating single indices were distinguished into background levels and threshold pollution values. Eight integrated indices were divided into two groups. One group is suitable for the normal distribution single indices including the sum, average, weighted average,vector modulus, and Nemerow pollution indices, and the other for log-normal distribution including the product, root of product, and weighted power product pollution indices. Using background levels as reference values, five contamination classes were divided, and the terminologies are suggested for the single and integrated indices to unify the assessment results. Software of EGAPI was developed in a single document interface to calculate the four single and eight integrated indices by heavy metals to assess the quality of soil and sediment ecological geochemistry. Pollution indices by heavy metals of Cu,Pb, and Zn in soils in parks of Beijing were calculated using EGAPI software, and these five contamination classes and terminologies suggested in this study were evaluated and used. Results ofintegrated indices of Cu, Pb, and Zn in soils indicated that the soil qualities are unpolluted as a whole and varied from low polluted to unpolluted status from the center to the outskirts of Beijing City.

  4. Geochemistry of Archean metasedimentary rocks of the Aravalli craton, NW India: Implications for provenance, paleoweathering and supercontinent reconstruction

    Science.gov (United States)

    Ahmad, Iftikhar; Mondal, M. E. A.; Satyanarayanan, M.

    2016-08-01

    Basement complex of the Aravalli craton (NW India) known as the Banded Gneissic Complex (BGC) is classified into two domains viz. Archean BGC-I and Proterozoic BGC-II. We present first comprehensive geochemical study of the Archean metasedimentary rocks occurring within the BGC-I. These rocks occur associated with intrusive amphibolites in a linear belt within the basement gneisses. The association is only concentrated on the western margin of the BGC-I. The samples are highly mature (MSm) to very immature (MSi), along with highly variable geochemistry. Their major (SiO2/Al2O3, Na2O/K2O and Al2O3/TiO2) and trace (Th/Sc, Cr/Th, Th/Co, La/Sc, Zr/Sc) element ratios, and rare earth element (REE) patterns are consistent with derivation of detritus from the basement gneisses and its mafic enclaves, with major contribution from the former. Variable mixing between the two end members and closed system recycling (cannibalism) resulted in the compositional heterogeneity. Chemical index of alteration (CIA) of the samples indicate low to moderate weathering of the source terrain in a sub-tropical environment. In A-CN-K ternary diagram, some samples deceptively appear to have undergone post-depositional K-metasomatism. Nevertheless, their petrography and geochemistry (low K2O and Rb) preclude the post-depositional alteration. We propose non-preferential leaching of elements during cannibalism as the cause of the deceptive K-metasomatism as well as enigmatic low CIA values of some highly mature samples. The Archean metasedimentary rocks were deposited on stable basement gneisses, making the BGC-I a plausible participant in the Archean Ur supercontinent.

  5. The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography

    Science.gov (United States)

    Robinson, Laura F.; Adkins, Jess F.; Frank, Norbert; Gagon, Alexander C.; Prouty, Nancy G.; Roark, E. Brendan; van de Flierdt, Tina

    2014-01-01

    Deep-sea corals were discovered over a century ago, but it is only over recent years that focused efforts have been made to explore the history of the oceans using the geochemistry of their skeletal remains. They offer a promising archive of past oceanic environments given their global distribution, layered growth patterns, longevity and preservation as well as our ability to date them using radiometric techniques. This paper provides an overview of the current state-of-the-art in terms of geochemical approaches to using deep-sea coral skeletons to explore the history of the ocean. Deep-sea coral skeletons have a wide array of morphologies (e.g. solitary cup corals, branching colonial corals) and materials (calcite, aragonite and proteins). As such their biomineralization strategies are diverse, leading to complex geochemistry within coral skeletons. Notwithstanding these complications, progress has been made on developing methods for reconstructing the oceanographic environment in the past using trace elements and isotopic methods. Promising approaches within certain coral groups include clumped isotopes and Mg/Li for temperature reconstructions, boron isotopes and radiocarbon for carbon cycling, εNd, and radiocarbon for circulation studies and δ15N, P/Ca and Ba/Ca for nutrient tracer studies. Likewise there is now a range of techniques for dating deep-sea corals skeletons (e.g. U-series, radiocarbon), and determining their growth rates (e.g. radiocarbon and 210Pb). Dating studies on historic coral populations in the Atlantic, Southern Ocean and Pacific point to climate and environmental changes being dominant controls on coral populations over millennial and orbital timescales. This paper provides a review of a range of successes and promising approaches. It also highlights areas in which further research would likely provide new insights into biomineralization, palaeoceanography and distribution of past coral populations.

  6. Elemental and Sm-Nd isotopic geochemistry on detrital sedimentary rocks in the Ganzi-Songpan block and Longmen Mountains

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuelong; LIU Fei; ZHANG Hongfei; NIE Lanshi; JIANG Liting

    2007-01-01

    Systematic results of major and trace element geochemistry and Sm-Nd isotopic geochemistry on detrital sedimentary rocks of Precambrian to Triassic in the Ganzi-Songpan block and Longmen Mountains are presented. The rocks are classified into greywaekes or feldspar sandstones,grains of which are the mixtures of mafic rocks, felsic rocks,and quartz + calcite. Total rare earth elements (REE) contents of the rocks increase gradually and negative Eu anomalies become more obvious from Precambrian to Triassic, which may indicate intensifying crustal anatexis. Tectonic setting was stable during the Late Paleozoic, the refore there are obvious negative Ce anomalies. Nd model ages are between 1.6 Ga and 2.4 Ga, which are very similar to those of the Yangtze croton, South Qinling and North Qinling belts and quite different from those of the North China craton. There-fore, provenance of the sedimentary rocks in the Ganzi-Songpan block and Longmen Mountains was the Yangtze craton and/or the Qinling orogen, which evolved on the basis of the Yangtze craton. The correlation between provenances and tectonostratigraphic strata of the western Yangtze craton shows that the source materials should be primarily from Neoproterozoic. Secondary sources were Archean and Paleoproterozoic strata. Triassic clastic sedimentary rocks contain Late Paleozoic mantle-derived materials, represented by the Emeishan Permian flood basalts. Spatial distribution of initial Nd isotopic compositions indicates that denudating areas were in the east and the north and depositing areas of deep water were in the west and the south for the Ganzi-Songpan basin during Triassic.

  7. Geochemistry, Nd Isotopic Characteristics of Metamorphic Complexes in Northern Hebei: Implications for Crustal Accretion

    Institute of Scientific and Technical Information of China (English)

    LIU Shuwen; TIAN Wei; L(U) Yongjun; LI Qiugen; FENG Yonggang; K. H. PARK; Y. S. SONG

    2006-01-01

    Ma Late Paleozoic metamorphic mafic rocks and related granitic rocks show a medium-potassium calc-alkaline magmatic evolution series, characterized by high Mg#,obviously negative Th, Nb, Ta anomalies and positive Sr anomalies, from no to strongly negative Ti anomalies and fiat REE patterns with εNd(t) = +8.42, implying that the mafic magma was derived from the depleted mantle. However the other granitic rocks are characterized by right-declined REE patterns with no to evidently positive Eu anomalies, significantly low εNd(t) = -13.37 to -14.04, and TDM=1.97-1.96 Ga, revealing that the granitoid magma was derived from hybrid between mafic magma that came from ~311 Ma depleted mantle and granitoid magma from Archean to Early Paleoproterozoic ancient crustal recycling. The geochemistry and Nd isotopic characteristics as well as the above geological and geochronological results indicate that the middle segment of the northern margin of the NCC mainly experienced four crustal growth episodes from Archean to Late Paleozoic,which were dominated by three continental marginal arc accretions (~2.49, ~2.44 and 311 Ma), except the 1.76-1.68 Ga episode related to post-collisional extension, revealing that the crustal accretion of this segment was chiefly generated from arc accretion and amalgamation to the NCC continental block.

  8. Geochemistry of a buried paleosol of Eemian age at Asklev, Denmark

    Science.gov (United States)

    Kristiansen, S. M.; Dalsgaard, K.; Kronborg, C.

    2009-04-01

    /kg soil, 16.4 mg Cr/kg soil, <0.05 mg Cd/kg soil, 6.7 mg Pb/kg soil and 33 mg Cu/kg soil. Arsenic concentrations vary from <0.1 mg/kg soil in the E-horizon to 4.7 mg/kg soil in the Bt-horizon. Comparing the geochemistry of the Asklev paleosol with a modern analogue Podzol in a nearby natural, ancient woodland reveal a general higher content of heavy metals in the paleosol. These differences reflect a combination of different parent materials, modern-day pollution rates, losses/additions during the c. 90 ka where the soil has experienced permafrost, and the c. 10 ka with moist conditions during the present interglacial. The combined methods together reflect a soil surface from the previous interglacial which may act as an important reference for modern-day soil chemical status and e.g. pollution rates, especially if enough sites with the Asklev paleosol is analysed. Keywords Soil, Paleosol, heavy metal, Geochemical background concentration, Glacial stratigraphy

  9. Trace element geochemistry of groundwater in a karst subterranean estuary (Yucatan Peninsula, Mexico)

    Science.gov (United States)

    Gonneea, Meagan Eagle; Charette, Matthew A.; Liu, Qian; Herrera-Silveira, Jorge A.; Morales-Ojeda, Sara M.

    2014-05-01

    of the aquifer matrix following organic matter degradation and redox processes including sulfate reduction (salinity: 0.2-36.6, Ba: 7-1630 nmol kg-1, Sr: 1.3-210 μmol kg-1, U: 0.3-18 nmol kg-1, Mn: 0.6-2600 nmol kg-1, Ca: 2.1-15.2 mmol kg-1, 226Ra 20-5120 dpm 100 L-1). However, there is no evidence in the spring geochemistry that deep marine groundwater within this reaction zone exchanges with the coastal ocean via spring discharge. Total submarine groundwater discharge rates calculated from radium tracers are 40-95 m3 m-1 d-1, with terrestrial discharge contributing 75 ± 25% of the total. Global estimates of chemical loading from karst subterranean estuaries suggest Sr and U fluxes are potentially 15-28% and 7-33% of total ocean inputs (8.2-15.3 mol y-1 and 4.0-7.7 mol y-1), respectively. Radium-226 inputs from karst subterranean estuaries are 34-50 times river inputs (6.7-9.9 × 1016 dpm y-1).

  10. A link between geochemistry and geodynamics: carbonatites and kimberlites, Polar Siberia

    Science.gov (United States)

    Rass, Irene

    2010-05-01

    Geophysical evidence indicates that the Moho surface beneath the northern Siberian Platform composes crests (or ranges) up to 14 km high above deeper areas and 50-80 to 150 km wide (Chernyshov and Bokaya, 1983). These ranges at the Moho likely mark ancient rift zones with a thinner crust. More than 70% kimberlites in structures surrounding the Anabar Shield occur along these Moho crests (Kravchenko et al., 1997; Rosen and Kostyuchenko, 1998). Carbonate-rich rocks that compose pipes, along with kimberlites, in kimberlite fields, were recognized as an individual type of carbonatite rocks: kimberlitic carbonatites (Lapin and Marshintsev, 1984). They abound in kimberlite fields of both Paleozoic and Mesozoic age southeast and east of the Anabar Shield. The liquidus temperatures of related kimberlites, determined based on their major-component chemistries, are 1429-1441оC and 1349-1518оC, respectively (Perchuk and Vaganov, 1980). Compared to classic carbonatites in ring complexes, kimberlitic carbonatites are characterized by the lowest relative concentrations of P and Sr, slightly lower REE, and high contents of Cr, Ti, and Zr (Rass, 1998). Mesozoic kimberlitic carbonatites exhibit a dependence of their geochemistry, position relative to the axial zones of the Moho crests, and the temperatures of the associated kimberlites, from the Kuoika to the Lower Kuonamka field: from trace elements between the silicate and carbonate components of the deep-sitting magmas. Their experimentally determined parameters are still scarce (Green, 1994) and obviously insufficient for any conclusions about the physicochemical conditions of the exsolution and/or melting of the parental magmas, so that any empirical dependences the identified in them provide information on the lateral heterogeneity of the mantle material in the northern Siberian Platform. References Chernyshov N.V. and Bokaya L.I., in: Structural Elements of the Earth's Crust and Their Evolution. Nauka, Novosibirsk, 1983

  11. Analyzing microbial and sediment geochemistry to identify safe aquifer zones in an Arsenic prone aquifer

    Science.gov (United States)

    Kibria, G.; Hossain, M.; Kirk, M. F.; Bhattacharya, P.; Ahmed, K.; Datta, S.

    2013-12-01

    The assessment of the incidence of arsenic (As) and other oxyanions was examined in Bengal delta floodplain groundwaters from Matlab Upazila, Bangladesh. Our field campaign in 2013 covered an area of ~400km2 between North and South Matlab. Shallow tubewells except those installed within off-white sediments are mostly contaminated with high As. In our field studies we found the wells installed within light grey medium sand, the As concentration was found below 50μg/L. Groundwater abstracted from oxidized reddish sediments in contrast to reduced greyish sediments, contain significantly lower amount of dissolved As and can be a source of safe water. Sediment geochemistry and adsorption extent of oxidized red brown and reduced grey sediments to attenuate As are studied here. Sediment cores were collected at regular intervals from within depth of ~125m in Matlab. This study describes the color, lithofacies and mineralogy of the sediments The stable isotopes of groundwaters from various depths within a piezometer nest are studied also to determine the extent of hydraulic conductivity between depths of aquifers along with mechanism of recharge of the groundwater at those depths. DNA recovered from Matlab core samples averaged 450ng/g from course-grained samples and 800ng/g from fine-grained samples. After sequencing the DNA, it was found that microbial community in red or light gray sediments are different than gray-dark gray sediments (e.g. Burkholderiaceae and Pseudomonadacee are common in grey/ dark gray sediment but Streptomycetaceae is common in red/ light grey color). Rhodocyclaceae, Aeromonadaceae, Shewanellaceae are the common genera present in these sediments that are capable of reducing Fe in this aquifer environment. Synchrotron aided μXANES and μXRD studies conducted for solid state As and S speciation in the core samples at different depths indicate the occurrences of hotspots of As differently distributed in red-brown and grey sediments. Samples collected

  12. Post-impact hydrothermal system geochemistry and mineralogy: Rochechouart impact structure, France.

    Science.gov (United States)

    Simpson, Sarah

    2014-05-01

    Hypervelocity impacts generate extreme temperatures and pressures in target rocks and may permanently alter them. The process of cratering is at the forefront of research involving the study of the evolution and origin of life, both on Mars and Earth, as conditions may be favourable for hydrothermal systems to form. Of the 170 known impact structures on Earth, over one-third are known to contain fossil hydrothermal systems [1]. The introduction of water to a system, when coupled with even small amounts of heat, has the potential to completely alter the target or host rock geochemistry. Often, the mineral assemblages produced in these environments are unique, and are useful indicators of post-impact conditions. The Rochechouart impact structure in South-Central France is dated to 201 ± 2 Ma into a primarily granitic target [2]. Much of the original morphological features have been eroded and very little of the allochthonous impactites remain. This has, however, allowed researchers to study the shock effects on the lower and central areas of the structure, as well as any subsequent hydrothermal activity. Previous work has focused on detailed classification of the target and autochthonous and allochthonous impactites [3, 4], identification of the projectile [5], and dating the structure using Ar-isotope techniques [2]. Authors have also noted geochemical evidence of K-metasomatism, which is pronounced throughout all lithologies as enrichment in K2O and depletion in CaO and Na2O [3, 4, 5]. This indicates a pervasive hydrothermal system, whose effects throughout the structure have yet to be studied in detail, particularly in those parts at and below the transient floor. The purpose of this study is to classify the mineralogical and geochemical effects of the hydrothermal system. Samples were collected via permission from the Réserve Naturelle de l'Astroblème de Rochechouart-Chassenon [6]. Sample selection was based on the presence of secondary mineralization in hand

  13. Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand

    Science.gov (United States)

    Srisuksawad, Kanitha; Porntepkasemsan, Boonsom; Nouchpramool, Sunun; Yamkate, Pathom; Carpenter, Roy; Peterson, Michael L.; Hamilton, Terry

    1997-07-01

    Downcore concentration profiles of 210Pb, U, and Th isotopes, Al, Fe, Ti, Mn and Sc were measured in sediment box cores collected at 22 stations (16-70 m water depth) covering most of the Thai zone of the Gulf of Thailand. Distributions of excess 210Pb and the detrital elements were used to study spatial variations in sedimentary processes, mineralogy, and geochemistry between different regions of the gulf. Steady-state depositional concentrations and fluxes of excess 210Pb are 3-10 times lower in Gulf of Thailand sediments than in sediments from mid-latitudes in the northern hemisphere, reflecting lower 210Pb inputs from atmospheric fallout at 6-13°N latitude and from lower production of 210Pb from 226Ra in the shallower waters of the Gulf. U and Th concentrations are approximately 2-3 times higher than those in shelf sediments from mid-latitudes of North America, consistent with a higher proportion of granitic source rocks in the Thai environment. Downcore variations in 228Th/ 232Th activity ratios and in U activities reveal that exchange of interstitial and overlying waters and their dissolved chemicals occurs down to 20 cm in 8 of 10 cores. This benthic exchange may be important in budgets of fluxes of other soluble chemicals in this shallow shelf sea. A net flux of U isotopes from overlying water into Gulf of Thailand sediments occurs, in contrast to their release from sediments of the tropical Amazon shelf. Detectable levels of 137Cs were found only in sediments near the mouth of the largest river, the Chao Phraya. The detrital elements 232Th, 230Th, Al, Ti, and Sc all show relatively uniform downcore concentration profiles. This supports a key assumption in calculations of sediment accumulation rates from downcore profiles of 210Pb activity, that steady-state depositional conditions exist and that basic sediment mineralogy and grain size does not change. 210Pb model derived mass accumulation rates vary between 270 and 490 mg/cm 2 per year in the upper Gulf

  14. Petrography, geochemistry and tectonic setting of Salmabad Tertiary volcanic rocks, southeast of Sarbisheh, eastern Iran

    Directory of Open Access Journals (Sweden)

    Masoumeh Goodarzi

    2014-10-01

    is attributed to the mantle source, presumably metasomatized by the Sistan ocean subduction. The trace element features are consistent with the roles played by subducted sediments and fluid released from the subducted slab in magma genesis. Acknowledgements The authors would like to thank reviewers for the constructive comments which greatly contributed to the improvement of the manuscript. References Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5: 605-614. Camp, V.E. and Griffis, R., 1982. Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos, 15(3: 221-239. Gill, R., 2010. Igneous rocks and processes. Wiley-Blackwell, Malaysia, 428 pp. Harangi, S., Downes, H., Thirlwall, M., Gmeling, K., 2007. Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkalineVolcanic Rocks in the Western Carpathian arc, Eastern Central Europe. Journal of petrology, 48(12: 2261-2287. Jung, D., Keller, J., Khorasani, R., Marcks, Chr., Baumann, A. and Horn, P., 1983. Petrology of the Tertiary magmatic activity the northern Lut area, East of Iran. Ministry of mines and metals, Geological survey of Iran, geodynamic project (geotraverse in Iran, Tehran, Report 51, pp. 285-336. Karimpour, M.H., Stern, C.R., Farmer, L., Saadat, S. and Malekezadeh, A., 2011. Review of age, Rb-Sr geochemistry and petrogenesis of Jurassic to Quaternary igneous rocks in Lut Block, Eastern Iran. Geopersia, 1(1:19-36. Kuscu, G.G. and Geneli, F., 2010. Review of post-collisional volcanism in the central Anatolian volcanic province(Turkey, with special reference to the Tepekoy volcanic complex. International Journal of Earth Sciences, 99(3: 593-621. Richards, J.P., Spell, T., Rameh, E., Razique, A. and Fletcher T., 2012. High Sr/Y Magmas Reflect Arc Maturity,High Magmatic Water Content, and

  15. Geochemistry of mylonitic tourmaline-bearing granite- gneiss pluton in the northeast of June mine

    Directory of Open Access Journals (Sweden)

    Arezoo Moradi

    2017-07-01

    character (Pearce et al., 1984. Acknowledgements The study was completed at the Shahrekord University and it was supported by the office of graduate studies. The authors are grateful to the office for their support. References Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Chemical Geology, 20(7: 641–644. Mohajjel, M. and Fergusson, C.L., 2000. Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Structural Geology, 22(8: 1125-1139. Nutman, A.P., Mohajjel, M., Bennett, V.C. and Fergusson, C.L., 2014. Gondwanan Eoarchean Neoproterozoic ancient crustal material in Iran and Turkey: zircon U–Pb–Hf isotopic evidence1. Canadian Journal of Earth Sciences, 51(3: 272–285. Pearce, J.A., Harris, N.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4: 956–983. Shabanian, N., Davoudian, A.R., Khalili, M. and Khodami, M., 2010. Texture evidences imply on dynamic conditions in late-stage to post magmatic crystallization from dynamo-magmatic gnessies of Ghaleh-Dezh, Azna. Iranian Society of Crystallography and Mineralogy, 18(3: 463-472. (in Persian with English abstract Shabanian, N., Khalili, M., Davoudian, A.R. and Mohajjel, M., 2009. Petrography and geochemistry of mylonitic granite from Ghaleh-Dezh, NW Azna, Sanandaj-Sirjan Zone, Iran. Neues Jahrbuch Fur Mineralogie-Abhandlungen, 185(3: 233-248. Shakerardakani, F., Neubauer, F., Masoudi, F., Mehrabi, B., Liu, X., Dong, Y., Mohajjel, M., Monfaredi, B. and Friedl, G., 2015. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud–Azna region (NWIran: Laser-ablation ICP–MS zircon ages and geochemistry. Tectonophysics, 647–648: 146–171. Sun, S.S. and McDonough, W.E., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders

  16. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; W. Quinlan

    2003-10-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, a new field demonstration, Springdale Prospect in Manistee County, Michigan was begun to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path. The surface geochemistry sampling at the original Bear Lake demonstration site was updated several months after the prospect was confirmed and production begun. As expected, the anomaly appears to be diminishing as the positive (apical) anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir.

  17. Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting

    Science.gov (United States)

    Armstrong-Altrin, John S.; Nagarajan, Ramasamy; Madhavaraju, Jayagopal; Rosalez-Hoz, Leticia; Lee, Yong Il; Balaram, Vysetti; Cruz-Martínez, Adriana; Avila-Ramírez, Gladis

    2013-04-01

    This study focuses on the Jurassic (Huayacocotla and Pimienta Formations) and Upper Cretaceous (Méndez Formation) shales from the Molango Region, Hidalgo, Mexico. In this article, we discuss the mineralogy, major, and trace element geochemistry of the Mesozoic shales of Mexico. The goal of this study is to constrain the provenance of the shales, which belong to two different periods of the Mesozoic Era and to understand the weathering conditions and tectonic environments of the source region.

  18. Geochemistry of late Quaternary tephra-sediment sequence from north-eastern Basin of Mexico (Mexico): implications to tephrochronology, chemical weathering and provenance

    OpenAIRE

    Priyadarsi D. Roy; José Luis Arce; Rufino Lozano; M.P. Jonathan; Elena Centeno; Socorro Lozano

    2012-01-01

    A ca.30 m thick tephra-sediment sequence from the north-eastern Basin of Mexico (Pachuca subbasin, central Mexico) is investigated for stratigraphy and multi-element geochemistry to understand the tephrochronology, provenance and conditions of chemical weathering during Late Quaternary. Chemical compositions of tephra layers are compared with products from surrounding volcanic structures (Apan- Tezontepece, Acoculco, Huichapan, Sierra de las Cruces and Tláloc) in order to identify their sourc...

  19. Geochemistry of the Caledonian Basic Volcanic Rocks at the South Margin of the Qinling Orogenc Belt,and Its Tectonic Implications

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The geochemistry of the basic volcanic rocks at the south margin of the Qinling orogenic belt(SMQOB) suggests that they were formed in an intraplate tectonic setting.The REE distribution patterns show these rocks are strongly enriched in LREE with high ∑REE, and their trace elements geochemistry is similar to that of contimental flood basalt.All the above evidence suggests that the Caledonian basic volcanic rocks in the SMQOB were tholeiitic basalts formed in an intraplate spreading-initial rift tectonic setting.The characteristics of regional geology and geochemistry indicate that there was an intraplate spreading-rift tectonic setting between the South Qingling block and the Yangtze block in the Caledonian epoch.The dynamic spreading in this district began in the Early Caledonian and then the intraplate spreadinginitial rifts were formed in the Late Caledonian.As a result of spreading of the Tethys and geodynamic processes in deep mantle ,the Mianlue-Huashan oceanic basin was formed between the Qinling block and the Yangtze block in Devonian,and the Qinling microplate was separated from the northern part of the Yangtze plate.

  20. Geochronology and geochemistry of the Heihe mafic pillow lavas in the Qinling Mountains, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Zongqing

    2001-01-01

    significance, Chinese Science Bull., 1995, 40(19):1686-1688.[14]Pei Xianzhi, Composition and Tectinic Evolution of the Shangdan Structural Zone in the East Qinling, China (in Chinese), Xi'an: Xi'an Maps Publishing House, 1997.[15]Jiang Changyi, Su Shengrui, Zhao Taiping et al., Intruded Rock Belt in the North Qinling Area and Jinning Movement (in Chinese), Beijing: Geological Publishing House, 1988.[16]Zhang Zongqing, Zhang Guowei, Fu Guomin et al., Geochronology of metamorpic strata in the Qinling Mountains and its tectonic implications, Science in China, Ser. D, 1996, 39(3): 283-292.[17]Zhang Qi, Zhang Zongqing, Sun Yong et al., Trace element and isotopic geochemistry of metebasalts from Danfeng Group in Shangxian-Danfeng area, Shaanxi Province, Acta Petrologica Sinica (in Chinese), 1995, 11(1): 43-54.[18]Zhang Benren, Luo Tingchuan, Ouyang Jianping et al., Geochemical Study of the Lithosphere, Tectonism and Metallo-genesis in the Qingling-Dabashan Region (in Chinese), Wuhan: China University of Geosciences Press, 1994.[19]Li, S., Hart, S. R., Zheng, S. et al., Timing of collision between the North and South China blocks: The Sm-Nd isotopic age evidence, Science in China, Ser. B, 1989, 32(3): 312-319.[20]Li, S., Chen, Y. Z., Zhang Guowei, A l Ga B. P. Alpine peridotite body emplaced into the Qingling group: Evidence for the existence of the late proterozoic plate tectonics in the North Qinling area, Geol. Review (in Chinese), 1991, 37(3): 235-242.[21]Zhang Guowei, Meng Qingren, Lai Shaocong, Tectonics and structure of Qinling orogenic belt, Science in China, Ser. B, 995, 38(10): 1379.[22]Liu Guohui, Zhang Shouguang, You Zhendong et al., The Major Metamorphic Rock Groups in the Qinling Orogenic Belt and Their Metamorphic Evolution (in Chinese), Beijing: Geological Publishing House, 1993.[23]You Zhendong, Suo Shutian, Han Yujing et al., The major characteristcs of the metamorphic complex of the Qinling oro-genic belt and their

  1. Petrology and Geochemistry of LEW 88663 and PAT 91501: High Petrologic L Chondrites

    Science.gov (United States)

    Mittlefehldt, D. W.; Lindstrom, M. M.; Field, S. W.

    1993-07-01

    (sub)20.7, clinopyroxene Wo(sub)34.3En(sub)52.4Fs(sub)13.3, plagioclase Ab(sub)81.6An(sub)14.0Or(sub)44. Geochemistry: We have completed INM analysis of LEW 88663 only; analyses of PAT 91501 are in progress. The weighted mean lithophile element (refractory, moderately volatile, and volatile) content of LEW 88663 normalized to average L chondrites [1] is 0.97. The weighted mean siderophile element (excluding Fe) content is only 0.57x L. This supports the suggestion that LEW 88663 lost metal relative to average L chondrites, although not as complete as implied earlier [1]. The mean lithophile-element abundance is that of L chondrites, but the lithophile-element pattern is fractionated. Highly incompatible elements are enriched in LEW 88663 relative to L chondrites (e.g., La 2.6x, Sm 1.9x L chondrites), while the more compatible elements are near L chondrite levels or depleted (e.g., Lu 1.1x, Sc 0.94x, Cr 0.87x L chondrites). Discussion: LEW 88663 and PAT 91501 are texturally similar to the Shaw L7 chondrite [3] and to poikilitic textured clasts in LL chondrites [4]. Several textural and mineralogical characteristics of PAT 91501 indicate that this stone is in part igneous. Large rounded troilite +/- metal nodules imply that melting occurred in the metal-troilite system. Interstitial material consists of euhedral, zoned chromites, euhedral clinopyroxene overgrowths on orthopyroxene, and plagioclase + glass. Olivine often shows euhedral faces in contact with the interstitial regions. These textures indicate that the interstitial regions were molten. The average pyroxene compositions in PAT 91501 indicate equilibration at 1200 degrees C [5], above the ordinary chondrite solidus [6]. Although PAT 91501 is in part igneous in origin, we have yet to determine whether it represents an extension of parent body heating from that of metamorphosed L chondrites, or whether it represents impact melting on the parent body. We will evaluate shock features, cooling rates, and the bulk

  2. PGE geochemistry of Jiding ophiolite in Tibet and its constraint on mantle processes

    Institute of Scientific and Technical Information of China (English)

    XIA; Bin

    2001-01-01

    Tectonostratigrhic Terrance Map of Himalaya and Adjaccent Areas (in Chinese), Lanzhou: Gansu Science and Technology Publishing House, 1993, 1026.[12]Xia. B., Guo, L. Z., Si, Y. S., The Ophiolites and Tectonostratigraphic Terrances in Southwest Xizang (Tibet) (in Chinese), Guangzhou: Zhongshan University Press, 1998, 79-83.[13]Bi, H., Wang, Z. G., Wang, Y. L. et al., History of tectono-magmatic evolution in the western Kulun orogen, Science in China, Ser. D, 1999,42(6): 604-619.[14]Qi, L., Hu, J., Fast determination of platium group elements and gold in geological samples by ICP-MS, Rock and Mineral Anlysis (in Chinese), 1999, 18(4): 267-270.[15]Sun, S. S., Wallace, D. A., Hoatson, D. M. et al,, Use of geochemistry as a guide to platinum group element poential of mafic-ultramafic rock: Examples from thewest pilbara block and halls creek mobile zone, Western Australia. Prec. Res.,1991,50: 1-35.[16]Brügmann, G. E.. Arndt, N. T., Hofmann. A. W. et al., Noble metal abundances in komatite suites from Alexo, Ontaio, and Gorgona Island, Colombia, Geochim. Cosmochim. Acta, 1987, 51: 2159-2169.[17]Sun. S. S., Chemical composition and origin of the earth's primitive mantle, Geochim. Cosmochim. Acta, 1982,46: 179-192.[18]Edward, S. J., Harzburgites and refractory melts in the Lewis Hill massif, Bay of Islands ophiolite complex: The base-metals and precious-metals story, Canadian Mineralogist, 1990, 28: 537-552.[19]Hazel. M. P, Richard, A. L., Platinum and palladium in the Troodos ophiolite complex, Cyprus, Canadian Mineralogist, 1990. 28: 607-617.[20]Wang, Z. H.. Hou, Q. L., Li, J. L. et al., Platinum-group elements for the Kudi ophiolite, Western Kunlun, China, Chinese Science Bulletin, 2000, 45(5): 551-556.[21]Hamlyn, P. R., Keays, R. R., Cameron, W. E., Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas, Geochim. Cosmochim. Acta, 1985,49:1797-1811.[22]Barnes, S. J., Naldrett, A. J

  3. Geology, mineralization and geochemistry of the Aqkand Cu occurrence (north of Zanjan, Tarom-Hashtjin zone

    Directory of Open Access Journals (Sweden)

    Maryam Feyzi

    2017-02-01

    Full Text Available Introduction The Aqkand Cu occurrence, 48 km north of Zanjan, is located in the Tarom subzone of the Western Alborz-Azerbaijan structural zone. Apart from small scale geological maps of the area, i.e., 1:250,000 geological maps of Bandar-e-Anzali (Davies, 1977 and 1:100,000 geological maps of Hashtjin (Faridi and Anvari, 2000 and a number of unpublished perlite exploration reports, prior to this research no work has been done on Cu mineralization at Aqkand. The present paper provides an overview of the geological framework, the mineralization characteristics, and the results of geochemistry study of the Aqkand Cu occurrence with an application to the ore genesis. Identification of these characteristics can be used as a model for exploration of this type of copper mineralization in the Tarom area and elsewhere. Materials and methods Detailed field work has been carried out at different scales in the Aqkand area. About 35 polished thin and thin sections from host rocks and mineralized and altered zones were studied by conventional petrographic and mineralogic methods at the University of Zanjan. In addition, a total of 6 samples from ore zones at the Aqkand occurrence were analyzed by ICP-MS for trace elements and REE compositions at Kimia Pazhuh Alborz Co., Isfahan, Iran. Results and Discussion The oldest units exposed in the Aqkand area are Eocene volcanic rocks which are overlain unconformably by Oligocene acidic rocks. The Eocene units consist of lithic and vitric tuff with intercalations of andesitic basalt lavas (equal to Karaj Formation, Hirayama et al., 1966. The andesitic basalt lavas show porphyritic texture consisting of plagioclase and altered ferromagnesian minerals set in a fine-grained groundmass. The Oligocene acidic rocks consist of rhyolite-rhyodacite, perlite, pitchstone and ignimbrite. These rocks are exposed as domes and lava flows. The rhyolite-rhyodacite lavas usually show onion-skin weathering and locally display flow bands

  4. Impact of seasonal oxygen deficiency on the phosphorous geochemistry of surface sediments along the Western Continental Shelf of India

    Directory of Open Access Journals (Sweden)

    Josia Jacob

    2010-08-01

    Full Text Available The intensification of the natural coastal hypoxic zone over the western Indian shelf in the recent years and its impact on the biogeochemistry and marine life is a matter of concern. This study examines the influence of the seasonal oxygen deficiency on the phosphorus geochemistry of the surface sediments along the western continental shelf of India (WCSI. Speciation of phosphorus along with the geochemical characteristics (total organic carbon – TOC, total nitrogen – TN, and total phosphorus – TP of the surface sediments and the hydrography of the western continental shelf of India (WCSI were studied, during late summer monsoon (LSM and spring intermonsoon (SIM. The hydrography of the WCSI revealed upwelling and associated seasonal oxygen deficiency with denitrifying suboxic conditions along the inner shelf and hypoxic conditions along the outer shelf. High concentrations of dissolved phosphate (PO4 and dissolved Iron (Fe were also observed in the subsurface water of the inner shelf during LSM. The shelf water of the WCSI was oligotrophic and oxygen rich during SIM. A latitudinal enrichment of TOC, TN and TP in the surface sediments was observed at 13–17° N, along the WCSI during LSM, where seasonal suboxia was intense. Authigenic apatite bound phosphorus (Paut was the major phosphorus species along the WCSI during LSM whereas detrital flourapatite bound phosphorus (Pdet was the major species during SIM. Substantial depletion of reactive iron(III-bound phosphorus (ΔPFe was observed in the surface sediments of the WCSI during LSM which showed significant correlation with the enrichment of PO4 (ΔPO4 in the overlying water during LSM compared to SIM. PO4 diffusing into the water column from the sediments by reductive dissolution of PPFe probably leads to high dissolved PO4 along the inner shelf water during LSM which agrees with the

  5. Contribution to uranium geochemistry in intrusive granites; Contribution a la geochimie de l'uranium dans les granites intrusifs

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-01-15

    This work aims to define the position of a certain number of French granitic deposits within the field of the geochemistry of granites in general, and of the geochemistry of uranium in particular. The regions concerned are: - 3 French Hercynian ranges, in the Vendee, in Brittany and in the Morvan, - 1 African range, probably precambrian, of the Hoggar. For each range, the petrochemical framework is first of all determined and then the degree of chemical homogeneity of the rocks is evaluated. In the petrochemical groups thus obtained the geochemical behaviour of the uranium is studied. From a point of view of the geochemistry of the granites under investigation, a comparison of the laws of distribution of the major elements in the 4 ranges shows up a convergence of average composition which was not anticipated by geological and petrographic considerations alone. The statistical and geochemical distribution laws of the total uranium as a function of the petrochemical variations are established. A study of the chemical forms of uranium in the rocks has drawn an attention to the qualitative and quantitative importance of the fraction of this uranium soluble in dilute acids. We have therefore reconsidered on the one hand, the laws of distribution of the insoluble uranium, which represents essentially the uranium fixed in crystalline structures (zircon, allanite...), and we have justified on the other hand the interest presented by the soluble uranium: this, although more complex in character, presents a geochemical unity in post magmatic phenomena which makes possible to find a genetic connection between the uraniferous deposits and the intrusive massifs. Finally we have given a plan of the geochemical cycle of uranium, in which we hope to have provided some more accurate data on the igneous phase. (author) [French] Le but du travail presente est de situer sur le plan de la geochimie des granites en general, sur le plan de la geochimie de l'uranium en particulier

  6. Using geochemistry to identify the source of groundwater to Montezuma Well, a natural spring in Central Arizona, USA: Part 2

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Manning, Andrew H.; Hunt, Andrew G.

    2012-01-01

    Montezuma Well is a unique natural spring located in a sinkhole surrounded by travertine. Montezuma Well is managed by the National Park Service, and groundwater development in the area is a potential threat to the water source for Montezuma Well. This research was undertaken to better understand the sources of groundwater to Montezuma Well. Strontium isotopes (87Sr/86Sr) indicate that groundwater in the recharge area has flowed through surficial basalts with subsequent contact with the underlying Permian aged sandstones and the deeper, karstic, Mississippian Redwall Limestone. The distinctive geochemistry in Montezuma Well and nearby Soda Springs (higher concentrations of alkalinity, As, B, Cl, and Li) is coincident with added carbon dioxide and mantle-sourced He. The geochemistry and isotopic data from Montezuma Well and Soda Springs allow for the separation of groundwater samples into four categories: (1) upgradient, (2) deep groundwater with carbon dioxide, (3) shallow Verde Formation, and (4) mixing zone. δ18O and δD values, along with noble gas recharge elevation data, indicate that the higher elevation areas to the north and east of Montezuma Well are the groundwater recharge zones for Montezuma Well and most of the groundwater in this portion of the Verde Valley. Adjusted groundwater age dating using likely 14C and δ13C sources indicate an age for Montezuma Well and Soda Springs groundwaters at 5,400–13,300 years, while shallow groundwater in the Verde Formation appears to be older (18,900). Based on water chemistry and isotopic evidence, groundwater flow to Montezuma Well is consistent with a hydrogeologic framework that indicates groundwater flow by (1) recharge in higher elevation basalts to the north and east of Montezuma Well, (2) movement through the upgradient Permian and Mississippian units, especially the Redwall Limestone, and (3) contact with a basalt dike/fracture system that provides a mechanism for groundwater to flow to the surface

  7. Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Gazel, Esteban; Madrigal, Pilar

    2016-05-01

    Ultramafic rocks exposed on the continent serve as a window into oceanic and continental processes of water-peridotite interaction, so called serpentinization. In both environments there are active carbon and sulfur cycles that contain abiogenic and biogenic processes, which are eventually imprinted in the geochemical signatures of the basement rocks and the calcite and magnesite deposits associated with fluids that issue from these systems. Here, we present the carbon and sulfur geochemistry of ultramafic rocks and carbonate deposits from the Santa Elena ophiolite in Costa Rica. The aim of this study is to leverage the geochemistry of the ultramafic sequence and associated deposits to distinguish between processes that were dominant during ocean floor alteration and those dominant during low-temperature, continental water-peridotite interaction. The peridotites are variably serpentinized with total sulfur concentrations up to 877 ppm that is typically dominated by sulfide over sulfate. With the exception of one sample the ultramafic rocks are characterized by positive δ34Ssulfide (up to + 23.1‰) and δ34Ssulfate values (up to + 35.0‰). Carbon contents in the peridotites are low and are isotopically distinct from typical oceanic serpentinites. In particular, δ13C of the inorganic carbon suggests that the carbon is not derived from seawater, but rather the product of the interaction of meteoric water with the ultramafic rocks. In contrast, the sulfur isotope data from sulfide minerals in the peridotites preserve evidence for interaction with a hydrothermal fluid. Specifically, they indicate closed system abiogenic sulfate reduction suggesting that oceanic serpentinization occurred with limited input of seawater. Overall, the geochemical signatures preserve evidence for both oceanic and continental water-rock interaction with the majority of carbon (and possibly sulfate) being incorporated during continental water-rock interaction. Furthermore, there is

  8. Formation Water Geochemistry and Its Controlling Factors: Case Study on Shiwu Rifted Sub-basin of Songliao Basin, NE China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A common way to trace fluid flow and hydrocarbon accumulation is by studying the geochemistry of formation water. This paper focuses on the spacial distribution of the geochemical features of the formation water in the Shiwu Rifted Basin and its indication of the water-rock interaction processes. The hydrodynamic field controls the spacial distribution of formation water. Due to the penetration of meteoric water, the salinity is below 4,500mg/L at the basin margin and the severely faulted central ridge and increases basin ward to 7,000-10,000mg/L. The vertical change of formation water can be divided into 3 zones, which correspond respectively to the free replacement zone (<1,250m), the obstructed replacement zone (1,250m-1,650m) and thelagged zone (>1,650m) in hydrodynamics. In the free replacement zone, the formation water is NaHCO3-type with its salinity increased to 10,000mg/L. The formation water in the obstructed replacement zone is Na2SO4-type with its salinity decreased to 5,000mg/L-7,000mg/L because of the dehydration of mud rocks. The formation water in the lagged zone is CaCl2-type, but its salinity decreases sharply at a depth of 1,650m and then increases vertically downward to 10,000mg/L. This phenomenon can be best explained by the osmosis effect rather than the dehydration of mud rocks. The relationships between Cl--HCO3- and Na++K+-Ca2+ show that the initial water-rock interaction is the dissolution of NaCl and calcium-bearing carbonate, causing an increase of Na+-K+-Ca2+-Cl- and salinity. The succeeding water-rock interaction is albitization, which leads to a decrease of Na+ and an increase of Ca2+ simultaneously, and generates CaCl2-type fluid. The above analysis shows that the geochemical evolution of formation water is governed by the water-rock interactions, while its spacial distribution is controlled by the hydrological conditions. The water-rock interaction processes are supported by other geological observations, suggesting that

  9. Organic geochemistry and petroleum geology, tectonics and basin analysis of southern Tarim and northern Qaidam basins, northwest China

    Science.gov (United States)

    Hanson, Andrew Dean

    Organic geochemistry of oils from the Tarim basin, NW China, distinguish at least seven genetic groups of oils. The largest group are derived from Middle-Upper Ordovician anoxic slope-facies marls coincident with the margins of structural uplifts. Other groups include non-marine derived oils in the Luntai uplift, from southwest Tarim, in the Kuqa depression, and west of the Bachu uplift. A seep sample from west of Kashi clusters with Luntai oils. These results suggest that numerous source-rock horizons occur, but they are really restricted. Organic geochemistry of oils from northern Qaidam defines a family of hypersaline, anoxic lacustrine derived oils. Cenozoic outcrop samples from northern Qaidam are too organic lean to be of source quality, but dark laminated upper Oligocene mudstones from the Shi 28 well are of fair to good quality. Biomarkers provide a good correlation between the oils and the core samples. Organic matter is from algae and bacteria and lacks terrestrial material. Hydrocarbons are contained in upper Oligocene, Miocene, and Pliocene reservoirs. Eight oils are from NW Qaidam, but one sample comes from NE Qaidam, an area previously believed to only produce oils derived from Jurassic source rocks. Thus an unidentified Cenozoic source rock occurs in NE Qaidam. Thermal modeling indicates generation occurred in northwestern Qaidam within the last 3 million years, agreeing with observed low maturity biomarker parameters. Cenozoic stratigraphy in northern Qaidam and southern Tarim basins record the tectonic history of the surrounding structural/topographic elements. Paleocurrents record flow away from adjacent ranges from the Miocene to the present. Provenance data tie sediments to adjacent structural elements. Petrography indicates increasingly immature sandstones in Miocene and younger sediments relative to pre-Miocene samples. Apatite fission-track results from southeastern Tarim yield a cooling age of 17 +/- 1 Ma indicative of unroofing since at

  10. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    Science.gov (United States)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  11. Spherical disharmonics in the Earth sciences and the spatial solution: Ridges, hotspots, slabs, geochemistry and tomography correlations

    Science.gov (United States)

    Ray, Terrill W.; Anderson, Don L.

    1994-01-01

    There is increasing use of statistical correlations between geophysical fields and between geochemical and geophysical fields in attempts to understand how the Earth works. Typically, such correlations have been based on spherical harmonic expansions. The expression of functions on the sphere as spherical harmonic series has many pitfalls, especially if the data are nonuniformly and/or sparsely sampled. Many of the difficulties involved in the use of spherical harmonic expansion techniques can be avoided through the use of spatial domain correlations, but this introduces other complications, such as the choice of a sampling lattice. Additionally, many geophysical and geochemical fields fail to satisfy the assumptions of standard statistical significance tests. This is especially problematic when the data values to be correlated with a geophysical field were collected at sample locations which themselves correlate with that field. This paper examines many correlations which have been claimed in the past between geochemistry and mantle tomography and between hotspot, ridge, and slab locations and tomography using both spherical harmonic coefficient correlations and spatial domain correlations. No conclusively significant correlations are found between isotopic geochemistry and mantle tomography. The Crough and Jurdy (short) hotspot location list shows statistically significant correlation with lowermost mantle tomography for degree 2 of the spherical harmonic expansion, but there are no statistically significant correlations in the spatial case. The Vogt (long) hotspot location list does not correlate with tomography anywhere in the mantle using either technique. Both hotspot lists show a strong correlation between hotspot locations and geoid highs when spatially correlated, but no correlations are revealed by spherical harmonic techniques. Ridge locations do not show any statistically significant correlations with tomography, slab locations, or the geoid; the

  12. Impact of Phosphogypsum waste on the Geochemistry of the coastal water of Ghannouche -Gabes (SE of Tunisia).

    Science.gov (United States)

    Ben Amor, R.; Fathallah, S.; Gueddari, M.

    2009-04-01

    Impact of Phosphogypsum waste on the Geochemistry of the coastal water of Ghannouche -Gabes (SE of Tunisia). R. Ben Amor, S. Fathallah, M. Gueddari (R.U. of Geochemistry and of Environmental Geology, Faculty of Sciences of Tunis, Department of Geology, 2092 Manar I) Corresponding author: R. Ben Amor; E-mail:magba_rim@yahoo.fr The littoral Ghannouche - Gabes (SE of Tunisia), has been known since the 1970's, an important industrialization especially after the installation of the chemical complex for the treatment of phosphates. These industries are at the origin of various waste materials, the most significant one is phosphogypsum (PG) which is released into the sea. The aim of this paper is to identify and to analyze the different entropic and natural factors, which govern the chemical composition in major elements, dissolved oxygen, pH and temperature of Ghannouche -Gabes coastal water, while studying, in particular, the impact of PG waste on the spatial distribution of these parameters. The result of the chemical analyses of the samples taken in June 2003, show that Na, K and Cl are conserved in solution and they evolve with constant Na/Cl and K/Cl ratio. The values of these ratios are similar to sea water average. The concentration of the other elements are controlled, first, by processes of precipitation or dissolution of the carbonated (Ca, Mg and HCO3) or sulphated (Ca and SO4) minerals, and second, by dilution or evaporation phenomena and by the phosphogypsum waste. The spatial distribution of these elements, of the pH, the dissolved oxygen and the temperature and the result of the saturation index with respect to calcite, gypsum and fluorite, by using of the PhreeqC program, show that the zone, located at north of the study area, between the commercial and the fishing port, is highly influenced by the PG waste. In this area, where the PG is released and which is relatively sheltered by the dams of the commercial and fishing port, waters are characterised by

  13. Elemental geochemistry and strontium-isotope stratigraphy of Cenomanian to Santonian neritic carbonates in the Zagros Basin, Iran

    Science.gov (United States)

    Navidtalab, Amin; Rahimpour-Bonab, Hossain; Huck, Stefan; Heimhofer, Ulrich

    2016-12-01

    A Neo-Tethyan upper Cenomanian-Santonian neritic carbonate ramp succession (Sarvak and Ilam formations), drilled in the Zagros Basin in southwest Iran, was investigated via detailed sedimentology, microfacies analysis, elemental geochemistry and Sr-isotope stratigraphy (SIS). The succession contains two exposure surfaces, which are known as the CT-ES and mT-ES (Cenomanian-Turonian and middle Turonian, respectively), and associated prominent negative carbon-isotope excursions that represent important regional stratigraphic marker horizons. Precise knowledge about the onset of platform exposure and the duration of the exposure-related hiatus, however, is currently lacking due to a rather low-resolved shallow-water biostratigraphic framework and a bulk carbonate carbon-isotope pattern that clearly differs from global Late Cretaceous reference curves. Therefore, the existing bio-chemostratigraphic framework was complemented by bulk carbonate strontium-isotope stratigraphy (SIS). As bulk carbonate material is in particular prone to diagenetic alteration, a careful selection of least altered samples has been carried out by means of elemental geochemistry and petrography. In contrast to what could be expected, the meteoric alteration of limestones beneath both exposure surfaces is not clearly expressed by increasing iron and manganese and coeval decreasing strontium contents. On the contrary, the impact of meteoric diagenesis is well illustrated via pronounced increases in Rb concentrations and concomitant prominent positive shifts to radiogenic strontium-isotope values, an observation that clearly reflects the decay of continentally derived 87Rb into 87Sr. Rubidium corrected strontium-isotope values place the CT-ES around the Cenomanian-Turonian boundary and point to an exposure duration of less than 0.4 Myr. This rather short-term CT-ES related hiatus is supported by petrographic evidence, which indicates a youth karstification stage of strata beneath the CT

  14. Indoor radon measurements in south west England explained by topsoil and stream sediment geochemistry, airborne gamma-ray spectroscopy and geology.

    Science.gov (United States)

    Ferreira, Antonio; Daraktchieva, Zornitza; Beamish, David; Kirkwood, Charles; Lister, T Robert; Cave, Mark; Wragg, Joanna; Lee, Kathryn

    2016-05-20

    Predictive mapping of indoor radon potential often requires the use of additional datasets. A range of geological, geochemical and geophysical data may be considered, either individually or in combination. The present work is an evaluation of how much of the indoor radon variation in south west England can be explained by four different datasets: a) the geology (G), b) the airborne gamma-ray spectroscopy (AGR), c) the geochemistry of topsoil (TSG) and d) the geochemistry of stream sediments (SSG). The study area was chosen since it provides a large (197,464) indoor radon dataset in association with the above information. Geology provides information on the distribution of the materials that may contribute to radon release while the latter three items provide more direct observations on the distributions of the radionuclide elements uranium (U), thorium (Th) and potassium (K). In addition, (c) and (d) provide multi-element assessments of geochemistry which are also included in this study. The effectiveness of datasets for predicting the existing indoor radon data is assessed through the level (the higher the better) of explained variation (% of variance or ANOVA) obtained from the tested models. A multiple linear regression using a compositional data (CODA) approach is carried out to obtain the required measure of determination for each analysis. Results show that, amongst the four tested datasets, the soil geochemistry (TSG, i.e. including all the available 41 elements, 10 major - Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti - plus 31 trace) provides the highest explained variation of indoor radon (about 40%); more than double the value provided by U alone (ca. 15%), or the sub composition U, Th, K (ca. 16%) from the same TSG data. The remaining three datasets provide values ranging from about 27% to 32.5%. The enhanced prediction of the AGR model relative to the U, Th, K in soils suggests that the AGR signal captures more than just the U, Th and K content in the soil. The

  15. Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents.

    Science.gov (United States)

    Robidart, Julie C; Roque, Annelys; Song, Pengfei; Girguis, Peter R

    2011-01-01

    Much of what is known regarding Riftia pachyptila physiology is based on the wealth of studies of tubeworms living at diffuse flows along the fast-spreading, basalt-hosted East Pacific Rise (EPR). These studies have collectively suggested that Riftia pachyptila and its chemoautotrophic symbionts are physiologically specialized, highly productive associations relying on hydrogen sulfide and oxygen to generate energy for carbon fixation, and the symbiont's nitrate reduction to ammonia for energy and biosynthesis. However, Riftia also flourish in sediment-hosted vents, which are markedly different in geochemistry than basalt-hosted systems. Here we present data from shipboard physiological studies and global quantitative proteomic analyses of Riftia pachyptila trophosome tissue recovered from tubeworms residing in the EPR and the Guaymas basin, a sedimented, hydrothermal vent field. We observed marked differences in symbiont nitrogen metabolism in both the respirometric and proteomic data. The proteomic data further suggest that Riftia associations in Guaymas may utilize different sulfur compounds for energy generation, may have an increased capacity for energy storage, and may play a role in degrading exogenous organic carbon. Together these data reveal that Riftia symbionts are far more physiologically plastic than previously considered, and that--contrary to previous assertions--Riftia do assimilate reduced nitrogen in some habitats. These observations raise new hypotheses regarding adaptations to the geochemical diversity of habitats occupied by Riftia, and the degree to which the environment influences symbiont physiology and evolution.

  16. Geochemistry of Two Types of Basalts in the Emeishan Basaltic Province: Evidence for Mantle Plume-Lithosphere Interaction

    Institute of Scientific and Technical Information of China (English)

    张招崇; 王福生

    2002-01-01

    Based on the temporal-spatial distribution and geochemical characteristics, the Emeishan basalts can be divided into two types: high-P2O-TiO2 basalt (HPT) and low-P2O5-TiO2 basalt (LPT), which differ distinctly in geochemistry: the LPTs are characterized by relatively high abundances of MgO, total FeO and P2O5 and compatible elements (Cr, Ni, Sc), and relatively low contents of moderately compatible elements (V, Y, Yb, Co), LREE and other incompatible elements compared with the HPT. On the diagrams of trace element ratios, they are plotted on an approximately linear mixing line between depleted and enriched mantle sources, suggesting that these two types of basalts resulted from interactions of varying degrees between mantle plume and lithospheric mantle containing such volatile-rich minerals as amphibole and apatite. The source region of the LPT involves a smaller proportion of lithospheric components, while that of the HTP has a larger proportion of lithospheric components. Trachyte is generated by partial melting of the basic igneous rocks at the base of the lower continental crust. Both the two types of magmas underwent certain crystal fractionation and contamination of the lower crust at high-level magma chambers and en route to the surface.

  17. [In Situ Analysis of Element Geochemistry in Submarine Basalt in Hydrothermal Areas from Ultraslow Spreading Southwest Indian Ridge].

    Science.gov (United States)

    Wang, Yan; Sun, Xiao-ming; Xu, Li; Liang, Ye-heng; Wu, Zhong-wei; Fu, Yu; Huang, Yi

    2015-03-01

    In this study, we analyze element geochemistry of submarine basalt in situ, which is sampled in hydrothermal areas from ultraslow spreading Southwest Indian Ridge, including the fresh basalt rocks (B19-9, B15-13) and altered basalt (B5-2). And we can confirm that altered mineral in B5-2 is celadonite by microscope and Raman Spectrum. Furthermore, amygdaloidal celadonites are analyzed by electron microprobe (EPMA) and EDS-line scanning. The results show that K-contents decrease and Na-contents increase from the core to the edge in these altered minerals, indicating the transition from celadonite to saponite. Celadonite is an altered minerals, forming in low temperature (< 50 degrees C) and oxidizing condition, while saponite form in low water/rock and more reducing condition. As a result, the transition from celadonite to saponite suggests environment change from oxidizing to reducing condition. Using the result of EPMA as internal standard, we can analyze rare earth elements (REE) in altered mineral in situ. Most of result show positive Eu anomaly (Δ(Eu)), indicating hydrothermal fluid transform from oxidizing to reducing, and reducing fluid rework on the early altered minerals. Comparison with REE in matrix feldspar both in altered and unaltered zoning, we find that reducing fluid can leach REE from the matrix feldspar, leading to lower total REE concentrations and positive Eu anomaly. So leaching process play an important role in hydrothermal system.

  18. Proceedings of the Institute of Geology and Geochemistry of Fuel Minerals of the Ukrainian SSR Academy of Sciences, No. 16

    Energy Technology Data Exchange (ETDEWEB)

    Kityk, V.I.

    1981-01-01

    Data are presented on the genesis of transverse dislocations in the central Black Sea region and the role of mud volcanes in the formation of the structure and relief of the Kerchenskiy Peninsula, biostratigraphy of Cretaceous and Paleogene deposits on the southern slope of the Ukrainian Carpathians, nature of arrangement of the buried reefs and bioherms in the lower Permian deposits of the Dnieper-Donets Basin, nature and mechanism of the formation of folded deformations in the sedimentary mass of the central Donbass, substance composition and thickness of the salt deposits of the Transcarpathian trough. Questions are covered of the development of the science on the origin of fossil fuels, evaluation of the coals in the L'vov-Volynskiy basin according to the international classification, geochemistry of carbon containing fluids in magmatic hydrothermal-metasomatic processes, geochemical laws governing metamorphism of organic matter of coal formations in the Ukraine. A number of articles cover the hydrogeology and geophysics of oil-gas and coal geology of the Ukraine and definite scientific-applied developments.

  19. Trace element geochemistry of feed coal, fly and bottom ashes of Turkish power plants: implications for ash utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, R.A.; Karayigit, A.I.; Goldsmith, S.; Onacak, T.; Rose, M. [Cardiff University, Cardiff (United Kingdom). Dept of Earth Sciences

    1998-12-31

    Recent environmental concern has led to studies of the fate of environmentally sensitive elements (ESEs) during the combustion of coal in power plants. Of particular interest has been the partioning of potentially hazardous trace elements in coal-combustion waste products (fly ash and bottom ash) and in flue gases. This paper reports on a preliminary investigation into the trace element geochemistry of feed coals, bottom ash and fly ash in thirteen power units in Turkey. It concentrates on sixteen trace elements, five of which are of major environmental concern (Be, As, Mo, Pb, and Tl), two of moderate concern (Cu and Zn), three of minor concern (Mn, Co and Ba). Two of the ESEs are radiogenic (Th and U). Ti, Cs, La, and W, which show interesting distributions, are also considered. The approach has been to analyse the feed coals to highlight any significant element enrichment and to carry out mass balance calculations to determine the partioning of elements between bottom and fly ash. Results indicate that solid residues, particularly fly ash may show unusually high concentrations of moderately volatile ESEs such as As, Pb, Tl, Mo, Be and Zn. The use of such enriched fly ash should be treated with caution. 9 refs., 2 figs., 3 tabs.

  20. Geology, geochemistry and Ar Ar geochronology of the Nangimali ruby deposit, Nanga Parbat Himalaya (Azad Kashmir, Pakistan)

    Science.gov (United States)

    Pêcher, A.; Giuliani, G.; Garnier, V.; Maluski, H.; Kausar, A. B.; Malik, R. H.; Muntaz, H. R.

    2002-12-01

    The Nangimali ruby deposit in the southern part of the Nanga Parbat Himalaya, has been investigated through field work, geochemistry, stable and radiogenic isotopes. It outcrops in the Shontar valley in a large north-vergent syncline consisting of high-grade metamorphic gneisses capped by a metasedimentary series dominated by marbles and amphibolites. The ore-body is stratiform. Ruby is found within 0.1-2 cm thick shear-veinlets and gash veins cutting dolomitic marbles and carbonate-bearing bands. The marbles of the Nangimali Formation display restricted ranges in δ18O (from 23.6 to 27.6‰ relative to SMOW) and in δ13C (from -1.9 to 2.6‰ relative to PDB). Fluid infiltration along the shear-zone in the marble has no effect on the isotopic signatures of the carbonates. Fluids are metamorphic and CO 2 is derived from the decarbonation of marbles. Mass-balance and geochemical analyses suggest that the mobilisation by the fluids of aluminium and chromium in the marbles is sufficient to enable the formation of ruby in the shear-zone. Rubies have been indirectly dated using a stepwise 40Ar- 39Ar laser heating technique on syngenetic phlogopites. The Miocene age records a Neogene cooling in the South of the Nanga Parbat massif and a minimum formation age for ruby of 16 Ma.

  1. Environmental Geochemistry of Heavy Metal Contaminants in Soil and Stream Sediment in Panzhihua Mining and Smelting Area,Southwestern China

    Institute of Scientific and Technical Information of China (English)

    滕彦国; 庹先国; 倪师军; 张成江; 徐争启

    2003-01-01

    Mining and smelting activities are the main causes for the increasing pollution ofheavy metals in soil, water body and stream sediment. An environmental geochemical investiga-tion was carried out in and around the Panzhihua mining and smelting area to determine the ex-tent of chemical contamination in soil and sediment. The main objective of this study was to in-vestigate the environmental geochemistry of Ti, V, Cr, Mn, Cu, Pb, Zn and As in soil andsediment and to assess the degree of pollution in the study area. The data of heavy metal con-centrations reveal that soils and sediments in the area have been slightly contaminated. Geo-chemical maps of Igeo of each heavy metal show that the contaminated sites are located in V-Ti-magnetite sloping and smelting, gangues dam. The pollution sources of the selected elementscome mainly from dusts resultant from mining activities and other three-waste-effluents. The areaneeds to be monitored regularly for trace metal, especially heavy metal enrichment.

  2. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    Science.gov (United States)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  3. Geochemistry of Rare Earth Elements (REE) in the Weathered Crusts from the Granitic Rocks in Sulawesi Island, Indonesia

    Institute of Scientific and Technical Information of China (English)

    Adi Maulana; Kotaro Yonezu; Koichiro Watanabe

    2014-01-01

    We report for the first time the geochemistry of rare earth elements (REE) in the weath-ered crusts of I-type and calc-alkaline to high-K (shoshonitic) granitic rocks at Mamasa and Palu re-gion, Sulawesi Island, Indonesia. The weathered crusts can be divided into horizon A (lateritic profile) and B (weathered horizon). Quartz, albite, kaolinite, halloysite and montmorrilonite prevail in the weathered crust. Both weathered profiles show that the total REE increased from the parent rocks to the horizon B but significantly decrease toward the upper part (horizon A). LREE are enriched toward the upper part of the profile as shown by La/YbN value. However, HREE concentrations are high in horizon B1 in Palu profile. The total REE content of the weathered crust are relatively elevated com-pared to the parent rocks, particularly in the lower part of horizon B in Mamasa profile and in horizon B2 in Palu profile. This suggests that REE-bearing accessory minerals may be resistant against weath-ering and may remain as residual phase in the weathered crusts. The normalized isocon diagram shows that the mass balance of major and REE components between each horizon in Mamasa and Palu weathering profile are different. The positive Ce anomaly in the horizon A of Mamasa profile indicated that Ce is rapidly precipitated during weathering and retain at the upper soil horizon.

  4. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  5. Isotope geochemistry reveals ontogeny of dispersal and exchange between main-river and tributary habitats in smallmouth bass Micropterus dolomieu.

    Science.gov (United States)

    Humston, R; Doss, S S; Wass, C; Hollenbeck, C; Thorrold, S R; Smith, S; Bataille, C P

    2017-02-01

    Radiogenic strontium isotope ratios ((87) Sr:(86) Sr) in otoliths were compared with isotope ratios predicted from models and observed in water sampling to reconstruct the movement histories of smallmouth bass Micropterus dolomieu between main-river and adjacent tributary habitats. A mechanistic model incorporating isotope geochemistry, weathering processes and basin accumulation reasonably predicted observed river (87) Sr:(86) Sr across the study area and provided the foundations for experimental design and inferring fish provenance. Exchange between rivers occurred frequently, with nearly half (48%) of the 209 individuals displaying changes in otolith (87) Sr:(86) Sr reflecting movement between isotopically distinct rivers. The majority of between-river movements occurred in the first year and often within the first few months of life. Although more individuals were observed moving from the main river into tributaries, this pattern did not necessarily reflect asymmetry in exchange. Several individuals made multiple movements between rivers over their lifetimes; no patterns were found, however, that suggest seasonal or migratory movement. The main-river sport fishery is strongly supported by recruitment from tributary spawning, as 26% of stock size individuals in the main river were spawned in tributaries. The prevailing pattern of early juvenile dispersal documented in this study has not been observed previously for this species and suggests that the process of establishing seasonal home-range areas occurs up to 2 years earlier than originally hypothesized. Extensive exchange between rivers would have substantial implications for management of M. dolomieu populations in river-tributary networks.

  6. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge.

    Science.gov (United States)

    Anawar, Hossain Md

    2015-08-01

    The oxidative dissolution of sulfidic minerals releases the extremely acidic leachate, sulfate and potentially toxic elements e.g., As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Th, U, Zn, etc. from different mine tailings and waste dumps. For the sustainable rehabilitation and disposal of mining waste, the sources and mechanisms of contaminant generation, fate and transport of contaminants should be clearly understood. Therefore, this study has provided a critical review on (1) recent insights in mechanisms of oxidation of sulfidic minerals, (2) environmental contamination by mining waste, and (3) remediation and rehabilitation techniques, and (4) then developed the GEMTEC conceptual model/guide [(bio)-geochemistry-mine type-mineralogy- geological texture-ore extraction process-climatic knowledge)] to provide the new scientific approach and knowledge for remediation of mining wastes and acid mine drainage. This study has suggested the pre-mining geological, geochemical, mineralogical and microtextural characterization of different mineral deposits, and post-mining studies of ore extraction processes, physical, geochemical, mineralogical and microbial reactions, natural attenuation and effect of climate change for sustainable rehabilitation of mining waste. All components of this model should be considered for effective and integrated management of mining waste and acid mine drainage.

  7. Geofluids Assessment of the Ayub and Shafa Hot Springs in Kopet-Dagh Zone (NE Iran: An Isotopic Geochemistry Approach

    Directory of Open Access Journals (Sweden)

    Hossein Mohammadzadeh

    2017-01-01

    Full Text Available Geothermal energy has a wide range of uses in our life. It is very important to characterize the temperature and the depth of geothermal reservoirs. The aim of this paper is the determination of type, origin source of water temperature, and depth of water circulation in the Ayub-Peighambar and Shafa (AP and SH hot springs, located in NE Iran, using hydrogeochemistry and environmental isotopes (2H and 18O. AP hot spring has elevated temperature (36–40°C and as such is very important for balneotherapy and geotourism industry purposes. The average values of δ18O and δ2H for this hot spring (−10‰ and −73‰, resp. are analogous to that of geothermal and meteoric waters. This indicates that the heat source cannot be related to volcanic activities (with average δ18O value of about 5‰ and it is most probably associated with geothermal gradient with deep circulation of groundwater through faults. Based on Na-K geothermometers coupled with isotopic (18O and 2H geochemistry the temperature of the AP geothermal reservoir was estimated to be in the range of 100–150°C with 3–5 and 4.2 kilometres’ depth, respectively. Chemically, the AP samples are CaSO4 facies with a chemically homogeneous source and steam heated waters type.

  8. Sm-Nd isotope geochemistry and U/Pb geochronological data of the Campina Grande complex, Paraiba State, NE Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, C.N. [Pernambuco Univ., Recife, PE (Brazil). Pos-Graduacao em Geociencias; Guimaraes, I.P.; Silva Filho, A.F. da [Pernambuco Univ., Recife, PE (Brazil). Dept. de Geologia; Beurlen, H. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Engenharia de Minas

    1997-12-31

    The Campina Grande Complex (CCG) constitutes a 250 Km{sup 2} intrusion within the high grade gneiss-migmatitic terrain, in the contact zone between the Mesoproterozoic Pajeu-Paraiba Fold Belt and the Archean Caldas Brandao Massif of the Borborema Province, NE Brazil. The contact of the complex is made by the Guarabira Shear Zone (west) and the Campina Grande Shear Zone in the south. The CCG is composed of coarse grained porphyritic quartz-monzonites, quartz-monzodiorites and medium grained porphyritic granodiorites. Mafic enclaves are common and show composition ranging from diorites to quartz diorites. Field and petrographic features point out to magma mixing and mingling processes involved in the CCG evolution. Basalts of probably Cretaceous age occur as dykes cutting in the CCG. This work presents and discusses the Sm-Nd isotope geochemistry of the CCG and a gabro which occur very close to the south contact of the CCG. This also presents the U/Pb in zircon geochronological data for the CCG. (author) 4 refs., 2 figs.

  9. Combine the soil water assessment tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed scale.

    Science.gov (United States)

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun

    2014-09-15

    Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings.

  10. Deep subsurface sulfate reduction and methanogenesis in the Iberian Pyrite Belt revealed through geochemistry and molecular biomarkers.

    Science.gov (United States)

    Puente-Sánchez, F; Moreno-Paz, M; Rivas, L A; Cruz-Gil, P; García-Villadangos, M; Gómez, M J; Postigo, M; Garrido, P; González-Toril, E; Briones, C; Fernández-Remolar, D; Stoker, C; Amils, R; Parro, V

    2014-01-01

    The Iberian Pyrite Belt (IPB, southwest of Spain), the largest known massive sulfide deposit, fuels a rich chemolithotrophic microbial community in the Río Tinto area. However, the geomicrobiology of its deep subsurface is still unexplored. Herein, we report on the geochemistry and prokaryotic diversity in the subsurface (down to a depth of 166 m) of the Iberian Pyritic belt using an array of geochemical and complementary molecular ecology techniques. Using an antibody microarray, we detected polymeric biomarkers (lipoteichoic acids and peptidoglycan) from Gram-positive bacteria throughout the borehole. DNA microarray hybridization confirmed the presence of members of methane oxidizers, sulfate-reducers, metal and sulfur oxidizers, and methanogenic Euryarchaeota. DNA sequences from denitrifying and hydrogenotrophic bacteria were also identified. FISH hybridization revealed live bacterial clusters associated with microniches on mineral surfaces. These results, together with measures of the geochemical parameters in the borehole, allowed us to create a preliminary scheme of the biogeochemical processes that could be operating in the deep subsurface of the Iberian Pyrite Belt, including microbial metabolisms such as sulfate reduction, methanogenesis and anaerobic methane oxidation. © 2013 John Wiley & Sons Ltd.

  11. High resolution profile of inorganic aqueous geochemistry and key redox zones in an arsenic bearing aquifer in Cambodia.

    Science.gov (United States)

    Richards, Laura A; Magnone, Daniel; Sovann, Chansopheaktra; Kong, Chivuth; Uhlemann, Sebastian; Kuras, Oliver; van Dongen, Bart E; Ballentine, Christopher J; Polya, David A

    2017-07-15

    Arsenic contamination of groundwaters in South and Southeast Asia is a major threat to public health. In order to better understand the geochemical controls on the mobility of arsenic in a heavily arsenic-affected aquifer in northern Kandal Province, Cambodia, key changes in inorganic aqueous geochemistry have been monitored at high vertical and lateral resolution along dominant groundwater flow paths along two distinct transects. The two transects are characterized by differing geochemical, hydrological and lithological conditions. Arsenic concentrations in groundwater are highly heterogenous, and are broadly positively associated with iron and negatively associated with sulfate and dissolved oxygen. The observed correlations are generally consistent with arsenic mobilization by reductive-dissolution of iron (hydr)oxides. Key redox zones, as identified using groupings of the PHREEQC model equilibrium electron activity of major redox couples (notably ammonium/nitrite; ammonium/nitrate; nitrite/nitrate; dissolved oxygen/water) have been identified and vary with depth, site and season. Mineral saturation is also characterized. Seasonal changes in groundwater chemistry were observed in areas which were (i) sandy and of high permeability; (ii) in close proximity to rivers; and/or (iii) in close proximity to ponds. Such changes are attributed to monsoonal-driven surface-groundwater interactions and are consistent with the separate provenance of recharge sources as identified using stable isotope mixing models. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Geochemistry and mineralogy of platinum-group elements (PGE in chromites from Centralnoye I, Polar Urals, Russia

    Directory of Open Access Journals (Sweden)

    Jan Pašava

    2011-01-01

    Full Text Available The Polar Urals region of northern Russia is well known for large chromium (Cr-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt. New data on platinum (Pt-group elements (PGE, geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium (Ir values. These values indicate the predominance of ruthenium–osmium–iridium (Ru–Os–Ir-bearing phases among the platinum-group mineral (PGM assemblage that is typical of mantle-hosted chromite ores. Low Pt values in chromites and increased Pt values in host dunites might reflect the presence of cumulus PGM grains. The most abundant PGM found in the chromite is erlichmanite (up to 15 μm. Less common are cuproiridsite (up to 5 μm, irarsite (up to 4–5 μm, and laurite (up to 4 μm. The predominant sulfide is heazlewoodite, in intergrowth with Ni–Fe alloys, sporadically with pentlandite, and rarely with pure nickel. Based on the average PGE values and estimated Cr-ore resources, the Centralnoye I deposit can be considered as an important resource of PGE.

  13. Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry

    Science.gov (United States)

    Nardi, Albert; Idiart, Andrés; Trinchero, Paolo; de Vries, Luis Manuel; Molinero, Jorge

    2014-08-01

    This paper presents the development, verification and application of an efficient interface, denoted as iCP, which couples two standalone simulation programs: the general purpose Finite Element framework COMSOL Multiphysics® and the geochemical simulator PHREEQC. The main goal of the interface is to maximize the synergies between the aforementioned codes, providing a numerical platform that can efficiently simulate a wide number of multiphysics problems coupled with geochemistry. iCP is written in Java and uses the IPhreeqc C++ dynamic library and the COMSOL Java-API. Given the large computational requirements of the aforementioned coupled models, special emphasis has been placed on numerical robustness and efficiency. To this end, the geochemical reactions are solved in parallel by balancing the computational load over multiple threads. First, a benchmark exercise is used to test the reliability of iCP regarding flow and reactive transport. Then, a large scale thermo-hydro-chemical (THC) problem is solved to show the code capabilities. The results of the verification exercise are successfully compared with those obtained using PHREEQC and the application case demonstrates the scalability of a large scale model, at least up to 32 threads.

  14. Long-term agricultural non-point source pollution loading dynamics and correlation with outlet sediment geochemistry

    Science.gov (United States)

    Ouyang, Wei; Jiao, Wei; Li, Xiaoming; Giubilato, Elisa; Critto, Andrea

    2016-09-01

    Some agricultural non-point source (NPS) pollutants accumulate in sediments in the outlet sections of watersheds. It is crucial to evaluate the historical interactions between sediment properties and watershed NPS loading. Therefore, a sediment core from the outlet of an agricultural watershed was collected. The core age was dated using the 210Pb method, and sedimentation rates were determined using the constant rate of supply (CRS) model. The total nitrogen (TN), total phosphorus (TP), Cd, Pb, Cu, Ni and Cr accumulations in the sediment generally showed fluctuating increases, with the highest sedimentation fluxes all occurring in approximately 1998. The measurement of specific mass sedimentation rates reflected a record of watershed soil erosion dynamics. Using SWAT (Soil and Water Assessment Tool) to simulate long-term watershed agricultural NPS pollution loadings, the historical interactions between sediment properties and NPS loadings were further evaluated. The N leaching process weakened these interactions, but the historical accumulations of TP and heavy metals in sediments generally correlated well with watershed NPS TP loading. The regression analysis suggested that Pb and Cr were the most suitable indexes for assessing long-term NPS TN and TP pollution, respectively. Assessing the NPS loading dynamics using the vertical characteristics of sediment geochemistry is a new method.

  15. Rb-Sr and Nd-Sr isotope geochemistry and petrogenesis of the Misho Mountains mafic dikes (NW Iran

    Directory of Open Access Journals (Sweden)

    Maryam Ahankoub

    2017-02-01

    Full Text Available Introduction There are some theories about the Paleotethys event during the Paleozoic that have been proposed by geologists (Metcalfe, 2006. Some scientist offered some pieces of evidence about the northern margin of Gondwana (Zhu et al., 2010. The Paleotethys Ocean and Hercynian orogenic report first in Iran, have been Offered from the Morrow and Misho Mountain (Eftekharnejad, 1981. Misho Mountains is located between the north and south Misho faults and cause the formation of a positive flower structure (Moayyed and Hossainzade, 2011. There is theory about Misho southern fault as the best candidate of the Paleotethys suture zone (Moayyed and Hossainzade, 2011. Geochemistry and Sr –Nd isotopic data of the A2 granitic and Synite rocks of the East Misho, indicate that the magmatism post collision has occurred in the active continental margin by extensional zones of the following the closure of the Paleotethys (Ahankoub, 2012. Granite and syenite rocks have been cut by mafic dikes. Mafic dikes are often formed in extensional tectonic settings related to mantle plume or continental break –up (Zhu et al., 2009. In this paper, we use the geochemistry and Nd-Sr isotope data to determined petrogenesis, tectono-magmatic setting and age of Misho mafic dikes. Materials and methods After petrography study of 30 thin sections of mafic dike rocks, 8 samples were selected for whole-rock chemical analyses using ICP-MS and ICP-AES instruments by ACME Company in Vancouver, Canada. We prepared 6 sample For Sm-Nd and Rb-Sr analysis. Sr and Nd isotope ratios were measured with a thermal ionization mass spectrometer, VG Sector 54–30 at the Nagoya University. The isotope abundances of Rb, Sr, Nd, and Sm were measured by the ID method with a Finnigan MAT Thermoquad THQ thermal ionization quadrupole mass spectrometer at the Nagoya University. NBS987 and JNdi-1 were measured as natural Sr and Nd isotope ratio standards (Tanaka et al., 2000. Averages and 2σ errors

  16. Mineralogy and Geochemistry of Upper Maastrichtian-Middle Eocene Clay - Rich Volcano - Sedimentary Units from South-Eastern of Elazıg Basin (Eastern Turkey)

    Science.gov (United States)

    Akkoca, Dicle Bal; Daş, Burhan

    2017-04-01

    Clay-rich Hazar-Maden volcano-sediments were deposited along the southern branch of the Neotethys Ocean margin during Upper Maastrichtian - Middle Eocene times. Mineralogy and geochemistry of Hatunkoy section from the south - easthern of Elazıg were studied by X-ray powder diffraction (XRD), ICP-AES, ICP-MS. The Upper Jurassic - Lower Cretaceous Guleman Ophiolites, Upper Maastrichtian - Middle Eocene Hazar Group, the Middle Eocene Maden Group, Pliocene-Quaternary alluvial deposits are situated in the study area. The Guleman Ophiolites are composed of dunite, harzburgite with podiform chromite, alternating dunite-wherlite, clinopyroxenite banded gabbro, quartz gabbro/diorite or plagiogranite and volcanites. The Hazar Group consists of limestone and interbedded shale and sandstone. The Maden Group has a complex lithology consisting of limestones, red-green clayey limestones, sandstone, agglomerate, tuffs, reddish mudstone and basaltic-andesitic pillow lavas. Mineralogy and geochemistry of Hazar and Maden Group samples are similar in Hatunkoy section. All samples consist of clay minerals (chlorite, illite), calcite, quartz, and feldspar. SiO2, Al2O3, Fe2O3, K2O contents show that samples are convenient with Fe shales and shales. The ratios of Zr/TiO2, Th/Sc, Zr/Sc, Y/Ni-Cr/V, Al/(Al+Fe+Mn) show dominance of neutral-basic volcanism in the area. Rare earth elements (REE) concentrations of samples are normalized to chondrite values and it is determined that low light rare earth elements (LREEs) are enriched in comparison to high rare earth elements (HREEs), and the absence of Eu anomalies shows that our samples are generally neutral-basic in composition. REE of samples were compared with North American shale composite (NASC), European shale (ES) and Post-Archean Australian shale (PAAS). Elements are not in concurrence with these compositions. Key Words:Mineralogy, Geochemistry, Volcano sedimentary Units, Eastern Turkey.

  17. THE GEOCHEMISTRY AND AGES OF ROCKS IN THE FOOTWALL OF THE BUTULIYN-NUR AND ZAGAN METAMORPHIC CORE COMPLEXES (NORTH MONGOLIA – WESTERN TRANSBAIKALIA)

    OpenAIRE

    T. V. Donskaya; A.M. MAZUKABZOV

    2015-01-01

    This article reviews data on ages of rocks in the footwall of the Butuliyn-Nur and Zagan metamorphic core complexes (MCC) and provides new data on the geochemistry of the rock complexes. It is noted that the oldest rocks are mylonitized gneisses on rhyolites (554 Ma) in the footwall of the Butuliyn-Nur MCC. The Late Permian – Triassic (249–211 Ma) igneous rocks are ubiquitous in the footwall of the Butuliyn-Nur and Zagan MCC. The youngest rocks in the studied MCC are the Jurassic granitoids (...

  18. Influence of floral assemblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza-East lignite (Bulgaria)

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, A.; Sachsenhofer, R.F.; Zdravkov, A.; Kostova, I.; Gratzer, R. [University of Leoben, Leoben (Austria)

    2005-07-01

    Numerous differences in the petrography and organic geochemistry of two Tertiary, low rank coal deposits of Bulgaria, formed within comparable depositional environments, are outlined. Different floral assemblages are indicated as the main sources of organic matter. For the Eocene Bourgas sub-bituminous coals a warm climate plant community dominated by angiosperms is reflected in the biomarker composition, whereas a coniferous flora was the main source of the resinous organic matter of the Miocene Maritza-East lignite. The results are in agreement with palaeobotanical data. These differences in the peat forming vegetation of the Paleogene compared to the Neogene of Bulgaria are attributed to decreasing temperature during the Tertiary.

  19. Geochronology, geochemistry, and tectonic characterization of Quaternary large-volume travertine deposits in the southwestern United States and their implications for CO2 sequestration

    Science.gov (United States)

    Priewisch, Alexandra

    Travertines are freshwater carbonates that precipitate from carbonic groundwater due to the degassing of CO2. Travertine deposits are often situated along faults that serve as conduits for CO2-charged groundwater and their geochemistry often records mixing of deeply-derived fluids and volatiles with shallow meteoric water. Travertines are surface expressions of dynamic mantle processes related to the tectonic setting. This dissertation includes four chapters that focus on different aspects of travertine formation and their scientific value. They are excellent, although underestimated, diagnostic tools for climatology, hydrology, tectonics, geochemistry, geomicrobiology, and they can inform carbon sequestration models. Quaternary large-volume travertine deposits in New Mexico and Arizona occur in an extensional tectonic stress regime on the southeastern Colorado Plateau and along the Rio Grande rift. They accumulated above fault systems during episodes of high hydraulic head in confined aquifers, increased regional volcanic activity, and high input of mantle-derived volatiles such as CO 2 and He. Stable isotope and trace element geochemistry of travertines is controlled by groundwater geochemistry as well as the degassing of CO 2. The geochemical composition allows for distinguishing different travertine facies and evaluating past groundwater flow. The travertine deposits in New Mexico are interpreted to be extinct CO2 fields due to the large volumes that accumulated and in analogy to the travertine deposits in Arizona that are associated with an active CO2-gas field. Travertines are natural analogues for CO2 leakage along fault systems that bypassed regional cap rocks and they provide important insight into the migration of CO2 from a reservoir to the surface. The volume of travertine can be used to infer the integrated CO2 leakage along a fault system over geologic time. This leakage is estimated as: (1) CO2 that becomes fixed in CaCO3/travertine (tons of carbon

  20. Geochemistry and geochronology of HP mélanges from Tinos and Andros, cycladic blueschist belt, Greece

    Science.gov (United States)

    Bulle, Florian; Bröcker, Michael; Gärtner, Claudia; Keasling, Alan

    2010-06-01

    U-Pb zircon geochronology, Sr-Nd isotope and bulk-rock geochemistry have been applied to meta-igneous and meta-sedimentary rocks from high-pressure metamorphic mélanges exposed on the Cycladic islands of Tinos, Syros and Andros. Ion microprobe (SHRIMP) U-Pb zircon dating of 7 samples representing meta-igneous blocks (Tinos), a blackwall zone (Tinos) and chlorite-talc schists from block-matrix contacts (Syros and Tinos) yielded Cretaceous ages of c. 80 Ma. Many of the criteria commonly used to distinguish between magmatic or metamorphic zircon genesis (internal structure, Th/U ratio, REE characteristics, Ti-in zircon thermometry, enclosed mineral phases) do not provide unambiguous constraints for the mode of formation. However, a magmatic origin for Cretaceous zircon of meta-gabbros and eclogites is considered likely. Supporting evidence for a previously suggested metamorphic origin for c. 80 Ma zircon in eclogite has not been found. Zircon of the same age occurring in chlorite-talc schists is presumably related to non-magmatic processes. Well-defined Cretaceous age groups clustering at c. 79 Ma also occur in the detrital zircon populations of 2 quartz mica schists representing the mélange matrix on Tinos, and suggest a much later time for sediment accumulation than previously assumed. The importance of c. 57 Ma zircon ages remains unclear, but may record either HP metamorphic processes or a post-57 Ma depositional age. The youngest age group in a third quartz mica schist from Tinos, collected outside the main mélange occurrences, clusters at c. 226-238 Ma. In all clastic metasediments from Tinos, most data points plot along the concordia between c. 300 and 900 Ma; single data points indicate concordant ages of c. 2.5 Ga, 2.3 Ga and 1 Ga, respectively. The youngest 206Pb/ 238U age group that has been recognized in a felsic paragneiss from Andros indicates an age of 163.1 ± 3.9 Ma, and mostly represents overgrowths around zircon with ages in the range from ˜ 272

  1. Mineralogy and geochemistry of secondary carbonates from NanTroSEIZE reference sites C0011 and C0012

    Science.gov (United States)

    Fisher, A. J.; Sample, J. C.; Tripati, A.; Torres, M. E.

    2013-12-01

    Two reference sites were drilled seaward of the Nankai Trough subduction system to characterize properties of materials before entering the zone of deformation. Secondary carbonates can increase sediment strength and record variations in pore water characteristics over time. For this study, we analyzed up to 86 carbonates for mineralogy, major element geochemistry, and stable isotope geochemistry. Carbonate cement abundances range from 2 % to 79 %. In order from most to least abundant, the carbonate mineralogy is calcite, Mn-Fe bearing calcites, magnesium calcite, and dolomite. Total carbonate abundances show no trend with depth, and Mn-Fe calcites with abundances of 2-5%, are common. High-Mg calcite and dolomite are scarce and are most abundant in the upper 500 m at site C0011. Calcite abundance maxima (14.49% and 13.36%) occur at two depths at site C0012 corresponding with sandier volcanic units in the Shikoku basin facies (Unit II 151-220 mbsf) and Unit V (416-529 mbsf). Calcite abundance maxima (14 % and 10 %) occur at two depths at site C0011 (Unit I (0-340 mbsf) and Unit IV (529-538 mbsf)), but do not appear related to sedimentary lithology. General textural relationships obtained from scanning electron microscopy display primarily calcite and Mn-Fe calcite pore-filling cements with less abundant secondary Fe- and Mg-rich clay cements. Carbon isotope delta values (vs. VPDB) range from -23.36 ‰ to 0.26 ‰ at Site C0011 and from -22.48 ‰ to 0.09‰ at Site C0012. The values are consistent with mixtures of seawater dissolved inorganic carbon and contributions from oxidized methane. Carbon isotope values become depleted starting at ~400 mbsf at site C0011 and ~180 mbsf at site C0012. Oxygen isotope values (vs. VPDB) range from -11.88 ‰ to 1.65 ‰ at Site C0011 and from -15.96 ‰ to 5.70 ‰ at Site C0012. The strongest 18O depletions occur below a depth of 420 mbsf at C0011 and 330 mbsf at C0012. Carbonate clumped isotope thermometry of samples from C

  2. Mini-Journals: Incorporating Inquiry, Quantitative Skills and Writing into Homework Assignments for Geochemistry and Planetary Science

    Science.gov (United States)

    Whittington, A. G.; Speck, A.; Witzig, S.

    2011-12-01

    As part of an NSF-funded project, "CUES: Connecting Undergraduates to the Enterprise of Science," new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors, fulfills the computing requirement by having 50% of the grade come from five spreadsheet-based homework assignments), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). Inquiry involves activities where the learner engages in scientifically oriented questions, gives priority to evidence in responding to questions, formulates explanations from evidence, connects explanations to scientific knowledge, and communicates and justifies explanations. We engage students in inquiry-based learning by presenting homework exercises as "mini-journal" articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the mini-journal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. Example assignments from Geochemistry include "Trace Element Partitioning During Mantle Melting and MORB Crystallization" and "Isotopic Investigations of Crustal Evolution in the Midcontinent US". The key differences between the old and new

  3. Environmental changes in the western Amazônia: morphological framework, geochemistry, palynology and radiocarbon dating data

    Directory of Open Access Journals (Sweden)

    Adriana M.C. Horbe

    2011-09-01

    Full Text Available The sediments from the Coari lake, a “terra firme” lake sculpted into Plio-Pleistocene deposits, and the Acará lake, a flooding-type lake developed on Quaternary sediments in the floodplain of the mid-Solimões river, in the western Amazônia, Brazil, were studied to investigate the environmental condition of their developing. This study includes mineral composition, geochemistry, Pb isotope, palinology, radiocarbon-age and morphological framework of the lakes obtained from SRTM satellite images. The geological and the environmental conditions in the two lakes are highly variable and suggest that their evolution reflect autogenic processes under humid rainforest condition. Although kaolinite, quartz, muscovite, illite, and smectite are the main minerals in both lakes, the geochemistry indicates distinct source, the Acará lake sediments have higher concentrations of Al2O3, Fe2O3, FeO, CaO, K2O, MgO, Na2O, P2O5, Ba, V, Cu, Ni, Zn, Pb, Sr, Li, Y and La and have more radiogenic Pb than the Coari lake sediments. The radiocarbon ages suggest that at 10160 yr BP the Coari lake started to be developed due to avulsion of the Solimões river, and the Acará lake was formed by the meander abandonment of Solimões river retaining its grass dominated shore at ca. 3710 yr BP.Os sedimentos do lago Coari, de ambiente de terra firme eesculpido nos depósitos do Plio-Pleistocenos, e o Acará, típico lago de várzea e ambos formados nos sedimentos quaternários da planície de inundação do médio Solimões, no oeste da Amazônia, Brasil, foram estudados para investigar as condições ambientais durante sua formação. Este estudo inclui dados da composição mineralógica, química, isótopos de Pb, palinologia, datações de radiocarbono e a configuração morfológica dos lagos obtida por imagens SRTM. As condições geológica e ambiental dos lagos variam e sugerem que suas evoluções refletem processos autogenéticos em condições de floresta úmida

  4. Modeling petroleum generation and geochemistry of crude oils in Ras Budran field, northern gulf of Suez, Egypt: implications for prospectivity

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M.A. [Geology Dept., Alexandria Univ. (Egypt)

    2005-12-01

    Petroleum generation modeling of the pre-rift succession in Ras Budran Field, which is located in the northern Gulf of Suez province in Egypt, showed that the best oil prone source rocks identified are the carbonate dominated one in the Upper Cretaceous and the Middle Eocene. These source rocks contain type-II kerogen (liptinitic materials) and progressively increase in their peak of oil generation from 0.63 and 0.83 vitrinite reflectance at a depth of about 3000 meters during the early of middle Miocene age and could have charged traps during the intra Rudeis tectonic phase. Crude oil and source rock extract interrelationships display a great similarity in their geologic occurrences and biological marker distributions. The biomarker characteristics indicate a low relative abundance of oleanane index around 5% pristane/phytane ratio<1, higher C{sub 35}/C{sub 34} homohopanes>1 and higher gammacerane indices >30%, suggesting a typical marine organic matter with source rock deposition under reducing conditions, Marginally mature stage of oil generation is indicated by the relatively low sterane isomerization of C{sub 29} {alpha}{alpha}{alpha} 20S/(S+R) and C{sub 29}{alpha}{beta}{beta}/({alpha}{beta}{beta}+{alpha}{alpha}{alpha}) of about 06 and relatively low aromatic sulfur compound rations. Crude oil geochemistry and related source rock potential define genetically related oils which ware generated from marginally mature and organic-rich carbonate source rocks, most probably from the pre-rift Duwi and Thebes formations. The best oil prone for future prospectivity would be oriented west of Ras Budran Field toward the deep marine of the Gulf, where the undiscovered reserves are expected to be accumulated within the pre-rift reservoirs in the footwalls of the normal faulted blocks. (orig.)

  5. Stream-Sediment Geochemistry in Mining-Impacted Drainages of the Yankee Fork of the Salmon River, Custer County, Idaho

    Science.gov (United States)

    Frost, Thomas P.; Box, Stephen E.

    2009-01-01

    This reconnaissance study was undertaken at the request of the USDA Forest Service, Region 4, to assess the geochemistry, in particular the mercury and selenium contents, of mining-impacted sediments in the Yankee Fork of the Salmon River in Custer County Idaho. The Yankee Fork has been the site of hard-rock and placer mining, primarily for gold and silver, starting in the 1880s. Major dredge placer mining from the 1930s to 1950s in the Yankee Fork disturbed about a 10-kilometer reach. Mercury was commonly used in early hard-rock mining and placer operations for amalgamation and recovery of gold. During the late 1970s, feasibility studies were done on cyanide-heap leach recovery of gold from low-grade ores of the Sunbeam and related deposits. In the mid-1990s a major open-pit bulk-vat leach operation was started at the Grouse Creek Mine. This operation shut down when gold values proved to be lower than expected. Mercury in stream sediments in the Yankee Fork ranges from below 0.02 ppm to 7 ppm, with the highest values associated with old mill locations and lode and placer mines. Selenium ranges from below the detection limit for this study of 0.2 ppm to 4 ppm in Yankee Fork sediment samples. The generally elevated selenium content in the sediment samples reflect the generally high selenium contents in the volcanic rocks that underlie the Yankee Fork and the presence of gold and silver selenides in some of the veins that were exploited in the early phases of mining.

  6. A comprehensive survey of lignin geochemistry in the sedimentary organic matter along the Kapuas River (West Kalimantan, Indonesia)

    Science.gov (United States)

    Loh, Pei Sun; Chen, Chen-Tung Arthur; Anshari, Gusti Z.; Wang, Jough-Tai; Lou, Jiann-Yuh; Wang, Shu-Lun

    2012-01-01

    In this first study of lignin geochemistry in the world's longest river on an island, surface sediments were collected along the Kapuas River, three lakes in the upper river, a tributary in the lower river and a separate river during June-July 2007 and December 2007-January 2008. The samples were analyzed for lignin-derived phenols and bulk elemental and stable carbon isotope compositions. Λ values (the sum of eight lignin phenols, expressed as mg/100 mg organic carbon (OC)) ranged from 0.13 to 3.70. Ratios of syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) ranged from 0.34 to 1.18 and 0.28 to 1.40, respectively, indicating the presence of non-woody angiosperm tissues. The high vanillic acid to vanillin (Ad/Al)v (0.71-2.01) and syringic acid to syringaldehyde (Ad/Al)s (0.72-2.12) ratios indicate highly degraded lignin materials. In the upper Kapuas River, highly degraded soil materials discharged from lands that were barren as a result of deforestation activities were detected in the locations directly in those vicinities. The middle Kapuas River showed rapid organic matter degradation, probably due to the presence of fresh terrestrial and phytoplankton organic matter fueling the biogeochemical cycling. The Kapuas Kecil River, one of the two branches in the lower reach of the Kapuas River, showed higher levels and diagenesis of sedimentary organic matter due to input from anthropogenic sources and increased marine organic matter near the mouth. This study shows that different stretches along the river exhibit different levels and composition of sedimentary organic matter, as well as different carbon dynamics, which is directly attributable to the varying landscapes and quality of organic matter.

  7. Mineralogical anomalies and their influences on elemental geochemistry of the main workable coal beds from the Dafang Coalfield, Guizhou, China

    Science.gov (United States)

    Dai, S.; Ren, D.; Li, D.; Chou, C.-L.; Luo, K.

    2006-01-01

    Mineralogy and geochemistry of the No. 11 Coal bed were investigated by using inductively-coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDX), sequential chemical extraction procedure (SCEP), and optical microscopy. The results show that the No. 11 Coal bed has very high contents of veined quartz (Vol. 11.4%) and veined ankerite (Vol. 10.2 %). The veined ankerite was generally coated by goethite and the veined quartz embraced chalcopyrite, sphalerite, and selenio-galena. In addition, a trace amount of kaolinite was filled in the veins. These seven minerals often occur in the same veins. The formation temperatures of the veined ankerite and quartz are 85??C and 180??C respectively, indicating their origins of iron-rich calcic and siliceous low-temperature hydrothermal fluids in different epigenetic periods. Studies have also found that the veined quartz probably formed earlier than the veined ankerite, and at least three distinct ankerite formation stages were observed by the ration of Ca/Sr and Fe/Mn of ankerite. The mineral formation from the early to late stage is in order of sulfide, quartz, kaolinite, ankerite, and goethite. The veined ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn, which are as high as 0.09%, 74.0 ??g/g, 33.6 ??g/g, 185 ??g/g, and 289 ??g/g in this coal seam, respectively. However, the veined quartz is the main carrier of Pd, Pt, and Ir, which are 1.57 ??g/g, 0.15 ??g/g, and 0.007 ??g/g in this coal seam, respectively. In addition, chalcopyrite, sphalerite, and selenio-galena of hydrothermal origin were determined in the veined quartz, and these three sulfide minerals are also important carriers of Cu, Zn and Pb in the No. 11 Coal bed.

  8. Time-series analysis of ion and isotope geochemistry of selected springs of the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Lyles, B.F.; Edkins, J.; Jacobson, R.L.; Hess, J.W.

    1990-11-01

    The temporal variations of ion and isotope geochemistry were observed at six selected springs on the Nevada Test Site, Nye County, Nevada and included: Cane, Whiterock, Captain Jack, Topopah, Tippipah, and Oak Springs. The sites were monitored from 1980 to 1982 and the following parameters were measured: temperature, pH, electrical conductance, discharge, cations (Ca{sup 2+}, Mg{sup 2+}. Na{sup +}, K{sup +}), anions Cl{sup {minus}}, SO{sub 4}{sup 2{minus}}. HCO{sub 3}{sup {minus}}, silica, stable isotopes ({delta}{sup 18}O, {delta}D, {delta}{sup 13}C), and radioactive isotopes ({sup 3}H, {sup 14}C). A more detailed study was continued from 1982 to 1988 at Cane and Whiterock Springs. Field microloggers were installed at these sites in 1985 to measure the high frequency response of temperature, electrical conductance, and discharge to local precipitation. Stage fluctuations near the discharge point dissolve minerals/salts as groundwater inundates the mineralized zone immediately above the equilibrium water table. This phenomena was most noticeable at Whiterock Spring and lagged the discharge response by several hours. Stable isotope analysis of precipitation and groundwater suggests a 1.5 to 2 month travel time for meteoric water to migrate from the recharge area to the discharge point. Groundwater age determinations suggest a mean age of approximately 30 years at Whiterock Spring and possibly older at Cane Spring. However, the short travel time and geochemical integrity of recharge pulses suggest that the waters are poorly mixed along the flow paths. 25 refs., 25 figs., 24 tabs.

  9. On the mineral characteristics and geochemistry of the Florida phosphate of Four Corners and Hardee County mines

    Science.gov (United States)

    Baghdady, Ashraf R.; Howari, Fares M.; Al-Wakeel, Mohamed I.

    2016-08-01

    The Florida phosphate deposits in Four Corners and Hardee County mines are composed mainly of phosphate minerals and quartz in addition to subordinate proportions of feldspars, dolomite, calcite, gypsum, kaolinite, attapulgite and montmorillonite. These phosphorites contain three structurally different types of mudclasts: massive mudclasts, mudclasts with concentric structure and mudclasts consisting of agglomerates of apatite microparticles. The latter are represented by particles resembling phosphatized fossil bacteria associated with microbial filaments, and hollow apatite particles having surfacial coatings and connected to microbial filaments. The Florida phosphate particles are reworked and vary in mineral composition, color and shape. They are composed of a mixture of well-crystalline species including carbonate fluorapatite (francolite), carbonate apatite and fluorapatite. The color variation of the phosphate particles is related to difference in mineral composition, extent of diagenetic effects and reworking. The light-colored mudclasts are characterized by the presence of carbonate apatite and aluminum hydroxide phosphate minerals, whereas the dark mudclasts are rich in iron aluminum hydroxide phosphate minerals. The Florida phosphorites are suggested to be formed partially by authigenetic precipitation, replacement of the sea floor carbonate and diatomite, and microbial processes. With respect to elemental geochemistry, the analyzed particles contain small percentages of sulfur and iron which are related to the occurrence of pyrite. Traces of silica and alumina are recorded which may be attributed to the diagenetic. Some of the tested particles are relatively rich in phosphorous, fluorine, calcium, and magnesium, while poor in silicon, potassium and sulfur. Whereas, the bioclasts (especially teeth) are relatively rich in calcium, phosphorous and fluorine while poor in silicon, aluminum, magnesium and potassium. Hence, the microchemical analyses revealed

  10. Mineralogy and geochemistry of the main glauconite bed in the Middle Eocene of Texas: paleoenvironmental implications for the verdine facies.

    Directory of Open Access Journals (Sweden)

    Sherie C Harding

    Full Text Available The Main Glauconite Bed (MGB is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe(3+ 0.89 Mg0.45 Al0.67 Fe(2+ 0.30 Ti0.01 Mn0.01 Σ = 2.33 (Si1.77 Al0.23 O5.00 (OH4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions.

  11. Mineralogy and geochemistry of the main glauconite bed in the Middle Eocene of Texas: paleoenvironmental implications for the verdine facies.

    Science.gov (United States)

    Harding, Sherie C; Nash, Barbara P; Petersen, Erich U; Ekdale, A A; Bradbury, Christopher D; Dyar, M Darby

    2014-01-01

    The Main Glauconite Bed (MGB) is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA) from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe(3+) 0.89 Mg0.45 Al0.67 Fe(2+) 0.30 Ti0.01 Mn0.01) Σ = 2.33 (Si1.77 Al0.23) O5.00 (OH)4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions.

  12. Geochemistry of mercury mineralization and its environmental influence in the Tavreh area, west of Khoy, NW Iran

    Directory of Open Access Journals (Sweden)

    Ali Imamalipour

    2011-11-01

    Full Text Available Mercury mineralization has occurred in relation with a listwaenitic type hydrothermal alteration system in Tavreh area located northwest of Khoy. Mercury-bearing alteration zone which has an area about 0.4 km2 is situated in one of Aland river upstreams. The only mercury compound found in this district is mercury sulfide (cinnabar deposited as vein and veinlet forms. Geochemical investigations indicate that mercury distribution has variable values which vary between 0.36-10500 ppm. Its average in alteration zone is 300 ppm, although its average reaches to 0.35 percent in the mineralized veins. Considering the Clarke amount of mercury, it has increased more than 3750 times in overall alteration zone and more than 46000 times in mineralized veins. Based on the stream sediment heavy mineral geochemistry, distribution of cinnabar under physical weathering and transportation processes has occurred at least 7 km far away from the altered zone in downstream sediments. Mercury concentrations in samples taken from surface and underground waters are less than 0.1µg/L. In comparison with mercury concentrations, data obtained from other world’s ore fields and considering the maximum permissible contaminant level in drinking waters, it can be concluded that the waters of this region have not been contaminated in mercury. Therefore, despite the extent of anomalous zone in Tavreh region, this zone cannot play a role as the contaminant source of environment. It is seemed that due to presence of mercury as stable mercury sulfide compound, the possibility of its leakage could not been obtained due to decomposition of this mineral.

  13. Rn, He and CO{sub 2} soil gas geochemistry for the study of active and inactive faults

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, S. [Earth Science Department - University ' La Sapienza' , Piazzale A. Moro 5, 00185 Rome (Italy); Voltattorni, N., E-mail: nunzia.voltattorni@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome (Italy)

    2010-08-15

    Two Italian areas, characterized by different seismological histories, were investigated to enhance the basic knowledge of gas migration mechanisms during earthquakes. Sharp variations occur in the movement and concentration of some gaseous species due to the evolution of the local stress regime. The first area (Colpasquale) is located in the central Italian region of Marche and provided a good location to study gas migration in a seismically active region. The area was devastated by a sequence of shallow earthquakes over a 3 month-long period (September-December, 1997). The occurrence of this catastrophic event, as well as the long duration of the 'seismic sequence', presented a unique opportunity to study gas migration in a zone undergoing active displacement. Soil gas surveys were performed 1 day, 1 week, 1 year and 2 years after the main shock (Ms 5.6) in the Colpasquale area. In particular, results highlight a change in the Rn distribution during the three monitoring years indicating a variation of gas migration that may be linked to the evolution of the stress regime. The second study area is located in the Campidano Graben (southern part of Sardinia Island). This area is characterized by seismic quiescence, displaying an almost complete lack of historical earthquakes and instrumentally recorded seismicity. The consistently low values observed for all analyzed gases suggest that the studied area is likely characterized by sealed, non-active faults that prevent significant gas migration. The comparison of data from both studied areas indicate that soil gas geochemistry is useful to locate tectonic discontinuities even when they intersect non-cohesive clastic rocks near the surface and thus are not visible (i.e., 'blind faults').

  14. Geochemistry and flooding as determining factors of plant species composition in Dutch winter-flooded riverine grasslands.

    Science.gov (United States)

    Beumer, Victor; van Wirdum, Geert; Beltman, Boudewijn; Griffioen, Jasper; Grootjans, Ab P; Verhoeven, Jos T A

    2008-08-25

    Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been subject to flooding in the last decades. It may thus affect existing nature with its conservation values. The goal of this study was to clarify the geochemical and hydrological factors determining plant species composition of winter-flooded river valley grasslands. A correlative study was carried out in 43 sites in 13 Dutch river valley floodplains, with measurements of flooding regime, vegetation composition, soil nutrients and soil pH status. With the use of canonical correspondence analysis (CCA) the plant species composition was investigated in relation to the geochemical variables and the winter winter-flooding regime. We found that the distributions of target species and non-target species were clearly correlated with geochemical characteristics and flooding regime. Clustering of sites within the CCA plots has led us to distinguish between four types of winter flooding in our areas: floodplains with (a) accumulating rain water, (b) low groundwater levels flooded with river water, (c) discharging groundwater and (d) high groundwater levels flooded with river water. Our major conclusions are (1) the winter groundwater level of winter-flooded grasslands was important for evaluating the effects of winter flooding on the geochemistry and plant species composition, and (2) winter winter-flooding effects were largely determined by the nature of the flooding. A high frequency of flooding particularly favoured a small set of common plant species. In areas with groundwater seepage, winter flooding may provide geochemical conditions suitable for diverse vegetation types with rare species. Rainwater flooded sites appeared less suitable for most target species.

  15. Extensional Lower Cretaceous volcanism in the Coastal Range (29°20'-30°S), Chile: geochemistry and petrogenesis

    Science.gov (United States)

    Morata, D.; Aguirre, L.

    2003-12-01

    Lower Cretaceous volcanism in the Coastal Range (29°20'-30°S) of Chile is mainly represented by highly porphyritic (20-30% phenocrysts) lavas with unzoned Ca-rich plagioclase (An 57-54Ab 40-42Or 3-4), clinopyroxene (Wo 40En 43Fs 17), magnetite, and minor idiomorphic, altered olivines. Geochemically, these lavas are characterized by a relative homogeneity with high Al 2O 3 and low MgO contents, and classified as high-K to shoshonitic basaltic andesites to andesites generated in an intra-arc extensional setting due to oblique subduction. Their isotopic geochemistry is characterized by highly homogeneous low initial Sr ratios (( 87Sr/ 86Sr) 0˜0.7036) and positive ɛNd values ( ɛNd=+2.9 to +4.7 ( 143Nd/ 144Nd) 0˜0.5127) that are very different from those proposed as representative of 'Andean-type' magmatism. A non-Andean modern setting dominated by subduction associated with intra-arc extension is proposed. On a ( 87Sr/ 86Sr) 0 versus ɛNd diagram, these lavas fit a model mixing curve for which the end members are Pacific MORB and Jurassic plutonic rocks from the Coastal Range. Coeval granitoids from the Coastal Range and lavas from the High Andes plot on the same field. Isotopically depleted mafic magmas could be metasomatized by the subducted sediments, which would increase their LILE content, and then partially contaminated by Jurassic plutonic rocks. The genesis of this magmatism may be related to a global low-spreading rate of 5 cm yr -1 in the southeast Pacific during 125-110 Ma.

  16. Gas and Water Geochemistry of Seeps from the Salton Sea Geothermal System (California, USA) and the Implications for Seep Processes

    Science.gov (United States)

    Mazzini, A.; Svensen, H.; Hammer, O.; Onderdonk, N.; Polteau, S.; Planke, S.

    2008-12-01

    Water, mud, gas, and petroleum-bearing seeps are part of the Salton Sea Geothermal System in Southern California. Seeps in the Davis-Schrimpf seep field (~120x120 m) show considerable variations in both temperature and water geochemistry. Here we have investigated the spatial variation in carbon isotope composition of the two main seep gases, CO2 and CH4. In addition, seep water isotope composition has been analyzed to determine the source of the water, and temperature monitoring has been done during a 90 day period from mid December 2006. Gas analyses results show a 10 variation in the ^13C of methane and a 2 variation in the ^13C of carbon dioxide. The water salinity varies between fresh (1-3 g/L) in the gryphons, to hypersaline brine (145 g/L) in the pools. In situ evaporation can explain the salinity variations, supported by ^18O and ^D data, where most water samples are enriched in ^18O and define an evaporation trend in the ^D-^18O space. We conclude that the seep waters represent meteoric waters modified by surface evaporation, with little or no evidence for a deep hydrothermal component. Seep gases, on the other hand, have a deep hydrothermal/metamorphic origin. Time series analyses of the temperature monitoring data shown fundamental differences between the gryphons and pools, where the former are dominated by hydrothermal input and the latter by diurnal variations in air temperature. Our results highlight the complex dynamics of the seep field, and demonstrate the importance of detailed studies, both in space and time, to understand even well constrained seep systems.

  17. Sediment geochemistry and accumulation rates on the northeastern shelf of the Gulf of Cádiz (SW Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Roberta Guerra

    2010-11-01

    Full Text Available Geochemistry, total organic carbon and total nitrogen of three sediment cores collected in the Gulf of Cádiz and the Guadalquivir prodelta areas in Spain were investigated. The C/N ratio, mostly around 10, seems to indicate a predominantly marine origin for the sedimentary organic matter. Major and minor elements (Si, Ti, Al, Fe, Mg, Ca, K, Na, P, S and trace elements (Mn, Sc, V, Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Ba, Ce, Pb, Hg showed significant differences in bulk chemical composition between the two areas. Despite the effects of bioturbation, vertical changes in downcore profiles of heavy metals occur only in the cores of the Cádiz area, although the concentrations keep to low levels. The relatively high concentrations of Zr and Y, elements commonly associated with the heavy minerals fraction, at the top of cores from the Cádiz area are attributed to an enrichment of heavy minerals related to selective transport that concentrates this fraction. 137Cs and 210Pb activities in one of the two sediment cores collected in the Gulf of Cádiz were also measured. The distribution of excess 210Pb was used to determine the modern (last 100 yr mass accumulation rate and the depth of sediment mixing on the continental shelf of the gulf. Estimated sediment accumulation rate was 0.1 g cm-2 yr-1. The uppermost 4 cm had uniform excess 210Pb activity profiles above a region of steadily decreasing 210Pb activity, and this phenomenon was attributed to sediment mixing (bioturbation. 137Cs activity was lower than 3 Bq kg-1 and the profile does not show evidence of fallout peaks.

  18. Petrography, geochemistry and geochronology of granite hosted rhyodacites associated with a disseminated pyrite mineralization (Arnolz, Southern Bohemian Massif, Austria)

    Science.gov (United States)

    Göd, Richard; Kurzweil, Johannes; Klötzli, Urs

    2017-04-01

    The study focuses on a subvolcanic rhyodacite dyke intruding a fine grained biotite granite and paragneisses of the South Bohemian Massif, part of the Variscan Orogenic Belt in Central Europe. The subvertical dyke strikes NNE, displays a thickness of about 30 m and has been traced by boulder mapping for approximately 7 km. The rhyodacites have been affected by two hydrothermal fluids. An older one of oxidizing condition giving rise to a reddish to brownish type of rock (Type I) and a younger fluid of reducing condition causing a greenish variety (Type II). The hydrothermal alteration is associated with the formation of the clay minerals chlorite, sericite, kaolinite and smectite and a disseminated pyrite mineralization. Bulk chemistries of the rhyodacites emphasize the hydrothermal alterations to be isochemical with the exception of sulphur enriched up to a maximum of 0.6 wt%. Trace element composition of the rhyodacites points to a barren geochemical environment in terms of base and precious elements. Sulphur isotope investigations of pyrites from the rhyodacites and the hosting granites respectively yield d34S data ranging from +0.07 to -2.22 ‰, emphasizing a magmatic origin of the sulphur. Geochronological investigations yield in situ U/Pb zircon ages of 312 ± 4 Ma for the biotite granite and of 292 ± 4 Ma for the rhyodacitic dykes indicating a time gap of ≈ 20 Ma between these two intrusive events. A contemporaneous but geochemically specialized granitic intrusion associated with NW striking "felsitic" dykes occurs about 10 to 20 km to the NW of Arnolz. However, the rhyodacites around Arnolz differ significantly from these felsitic dykes in their geochemistry and alteration phenomena which points to a different magmatic source. This coincides with a change in the orientation of the dykes from a NW direction controlling the geochemically specialized intrusions in the NW to a dominating NNE direction mirrored by the studied rhyodacites at Arnolz.

  19. Geochemistry of Metamafic Dykes from the Quanji Massif:Petrogenesis and Further Evidence for Oceanic Subduction, Late Paleoproterozoic, NW China

    Institute of Scientific and Technical Information of China (English)

    Hassan Abdelslam Mustafa; Qinyan Wang; Nengsong Chen; Fanxi Liao; Min Sun; Meshaal Abdelgadir Salih

    2016-01-01

    A suite of ~1.84–1.92 Ga metamafic dykes within the paragneiss suite (khondalite) of the Quanji massif in NW China, has been chosen in this study for further understanding the tectonic evo-lution and possible links to the global Columbia supercontinent. Occurrence and field relations sug-gest that they were formed coevally with a previous studied ~1.83–1.85 Ga metamafic dyke swarms. Whole-rock major and trace elemental geochemistry suggests precursor magma of the amphibolites being generated from a volcanic arc-related tectonic setting rather than a back-arc environment where the metamafic dyke swarms were emplaced. The metamafic dykes show enrichment of LREE and strongly negative anomalies for Ta-Nb, Zr-Hf and Ti, have high SiO2 (49.3 wt.%–52.5 wt.%) but low MgO (6.40 wt.%–7.76 wt.%) contents and Mg# (Mg#=[100×(MgO/40.3)]/[MgO/40.3+FeO/71.8]) values (45.7–52.1), suggesting evolved precursor magma. The high values of La/Ta (22.2–42.8) and La/Nb (1.71–2.47), mildly negativeεNd(t) values (-2.51–0.15), with depleted mantle model ages (TDM) of 2.45–2.84 Ga, suggest that their precursor magmas were possibly derived from a subduction-related fluid metasomatized Archean sub-continental lithospheric mantle. This study provides further evi-dence for oceanic plate subduction prevailing before or around ~1.85 Ga, which confirms a prolonged subduction-accretion-collision history in the NW China which is possibly linked to the assembly of the Columbia supercontinent.

  20. Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Biswas, Ashis; Hendry, M Jim; Essilfie-Dughan, Joseph

    2017-02-01

    This study investigated the geochemistry of arsenic (As) in low sulfide-high carbonate coal waste rock of the Elk Valley, British Columbia, Canada. Its abundance and mineralogical associations in waste rock of different placement periods were determined in addition to its mobilization into porewater and rock-drain effluent. The mean (5.34mg/kg; 95% confidence interval: 4.95-5.73mg/kg) As concentration in the waste rock was typical of sedimentary rock. Electron microprobe and As K-edge X-ray absorption near-edge spectroscopic analyses showed the As is predominantly associated with primary pyrites in both source and freshly blasted waste rock. However, in aged waste rock the As is associated with both primary pyrites and secondary Fe oxyhydroxides. Oxidation of pyrite in waste rock dumps was reflected by the presence of high concentrations of SO4(2-) in porewater and oxidation rims of Fe oxyhydroxides around pyrite grains. Acid released from pyrite oxidation to Fe oxyhydroxides is neutralized by carbonate mineral dissolution that buffers the pH in the waste rock to circumneutral values. Adsorption of As onto secondary Fe oxyhydroxides provides an internal geochemical control on As release during pyrite oxidation and porewater flushing from the dump, resulting in the low As concentrations observed in porewater (median: 9.91μg/L) and rock-drain effluent (median: 0.31μg/L). Secondary Fe oxyhydroxides act as a long-term sink for As under present day hydrologic settings in waste rock dumps in the Elk Valley.

  1. The 1.88 Ga Kotalahti and Vammala nickel belts, Finland: geochemistry of the mafic and ultramafic metavolcanic rocks

    Directory of Open Access Journals (Sweden)

    Stephen J. Barnes

    2009-12-01

    Full Text Available The mafic and ultramafic volcanic rocks within the Svecofennian (1.88 Ga Kotalahti and Vammala Nickel Belts, Finland, are spatially associated and coeval with a suite of mineralized mafic–ultramafic intrusions. They have been divided into five suites based on major element geochemistry and spatial distribution: the Rantasalmi high- and low-Mg suites, the Vammala high-Mg suite, and the Rantasalmi, Kestilä and Pielavesi low-Mg suites. The Rantasalmi and Vammala high-Mg suites are very similar and probably comagmatic, and the Kestilä and Rantasalmi low-Mg suites are derived from them by a combination of fractionation and crustal assimilation. The Pielavesi suite is interpreted as an unrelated suite of island-arc affinity.On the basis of their trace element contents, the Kotalahti Belt intrusions are comagmatic with part of the analyzed volcanic rocks. In the Vammala Belt it is likely that the parent magmas to the intrusions and picrite magmas have a common mantle source but have evolved along distinct paths, and the picrites probably do not represent parent magmas tapped directly from the intrusions. Platinum-group element data show localised evidence for depletionby sulfide extraction. Vammala picrites are predominantly S-undersaturated, with the exception of lavas in the Stormi area. In the Kotalahti Belt the volcanic rocks are predominantlyS-undersaturated, while the volcanic rocks in the more northern part of the Belt are predominantly S-saturated. These spatial differences imply that the PGE contents of the metavolcanic rocks can be used as regional area selection criteria for intrusive nickel-copper-(PGE deposits within the Finnish Svecofennian.

  2. Trace element and isotope geochemistry of Cretaceous-Tertiary boundary sediments: identification of extra-terrestrial and volcanic components

    Science.gov (United States)

    Margolis, S. V.; Doehne, E. F.

    1988-01-01

    Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.

  3. Mineralogy and Geochemistry of the Main Glauconite Bed in the Middle Eocene of Texas: Paleoenvironmental Implications for the Verdine Facies

    Science.gov (United States)

    Harding, Sherie C.; Nash, Barbara P.; Petersen, Erich U.; Ekdale, A. A.; Bradbury, Christopher D.; Dyar, M. Darby

    2014-01-01

    The Main Glauconite Bed (MGB) is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA) from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe3+0.89 Mg0.45 Al0.67 Fe2+0.30 Ti0.01 Mn0.01) Σ = 2.33 (Si1.77 Al0.23) O5.00 (OH)4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions. PMID:24503875

  4. Efficacy of acetate-amended biostimulation for uranium sequestration: Combined analysis of sediment/groundwater geochemistry and bacterial community structure

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jie; Veeramani, Harish; Qafoku, Nikolla; Singh, Gargi; Riquelme Breazeal, Maria V.; Pruden, Amy; Kukkadapu, Ravi K.; Gartman, Brandy N.; Hochella, Michael F.

    2017-03-01

    Systematic flow-through column experiments were conducted using sediments and ground water collected from different subsurface localities at the U.S. Department of Energy’s Integrated Field Research Challenge site in Rifle, Colorado. The principal purpose of this study is to gain a better understanding of the interactive effects of groundwater geochemistry, sediment mineralogy, and indigenous bacterial community structures on the efficacy of uranium removal from the groundwater with/without acetate amendment. Overall, we find that the subtle variations in the sediments’ mineralogy, particle size, redox conditions, as well as contents of metal(loid) co-contaminants showed a pronounced effect on the associated bacterial population and composition, which mainly determines the system’s performance with respect to uranium removal. Positive relationship was identified between the abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, and the sediments’ propensity to sequester aqueous uranium. In contrast, no obvious connections were observed between the abundance of common iron-reducing bacteria, e.g., Geobacter spp., and the sediments’ ability to sequester uranium. In the sediments with low bacterial biomass and the absence of sulfate-reducing conditions, abiotic adsorption onto mineral surfaces such as phyllosilicates likely played a relatively major role in the attenuation of aqueous uranium; however, in these scenarios, acetate amendment induced detectable rebounds in the effluent uranium concentrations. The results of this study suggest that reductive immobilization of uranium can be achieved under predominantly sulfate-reducing conditions, and provide insight into the integrated roles of various biogeochemical components in long-term uranium sequestration.

  5. Tracing recent environmental changes and pedogenesis using geochemistry and micromorphology of alluvial soils, Sabie-Sand River Basin, South Africa

    Science.gov (United States)

    Eze, Peter N.; Knight, Jasper; Evans, Mary

    2016-09-01

    Three pedons on the alluvial terraces of the Sabie-Sand River Basin within Kruger National Park, South Africa, were studied to improve our understanding of recent environmental changes, and assess degree of chemical weathering and pedogenesis in the area using geochemical and micromorphology proxies. Particle-size distributions were obtained using Malvern Mastersizer; soil geochemistry was determined by XRF and thin sections by routine laboratory procedures. The soils are predominantly sandy (> 94% sand in all samples). The mean phi-values of the soils had little variation suggesting that reworking of sediments upwards in individual profiles produced a more uniform pedogenesis rather than coming from different physical sources. Calcification is the dominant pedogenic process in these alluvial soils. The Chemical Index of Alteration (CIA) proved a more suitable index than Chemical Index of Weathering (CIW) for evaluating weathering in the terraces. The micromass and b-fabrics are mostly granostriated and partly brown mosaic speckled. MISECA values for the degree of soil development range from 4 to 9, which mean weakly to moderately-developed soils. Coarse secondary calcite nodules and coatings are responsible for cementation as observed in pedon 2, which suggests calcium carbonate precipitation from periodical flooding and evaporating groundwater events. The features and diagnostic properties of the soils on the alluvial terraces along the Sabie-Sand River provide evidence for land surface impacts of recent environmental changes in this internationally important conservation area. Precise dating of calcium carbonate precipitates is, however, needed to put the observed evidence into a wider geochronological perspective.

  6. Excursions to C4 vegetation recorded in the Upper Pleistocene loess of Surduk (Northern Serbia: an organic isotope geochemistry study

    Directory of Open Access Journals (Sweden)

    C. Hatté

    2013-05-01

    Full Text Available Loess sequences have been intensively studied to characterize past glacial climates of the 40–50° north and south latitude zones. Combining different approaches of sedimentology, magnetism, geochemistry, geochronology and malacology allows the general pattern of the climate and environment of the last interglacial–glacial cycle in Eurasia and America to be characterized. Previous studies performed in Europe have highlighted the predominance (if not the sole occurrence of C3 vegetation. The presence of C3 plants suggests a regular distribution of precipitation along the year. Therefore, even if the mean annual precipitation remained very low during the most extensive glacial times, free water was available for more than 2 months per year. Contrarily, the δ13C record of Surduk (Serbia clearly shows the occurrence and dominance of C4 plants during at least 4 episodes of the last glacial times at 28.0–26.0 kyr cal BP, 31.4–30.0 kyr cal BP, 53.4–44.5 kyr cal BP and 86.8–66.1 kyr. The C4 plant development is interpreted as a specific atmospheric circulation pattern that induces short and dry summer conditions. As possible explanation, we propose that during "C4 episodes", the Mediterranean Sea would have been under the combined influence of the following: (i a strong meridional circulation unfavorable to water evaporation that reduced the Mediterranean precipitation on the Balkans; and (ii a high positive North Atlantic Western Russian (NA/WR-like atmospheric pattern that favored northerlies over westerlies and reduced Atlantic precipitation over the Balkans. This configuration would imply very dry summers that did not allow C3 plants to grow, thus supporting C4 development. The intra-"C4 episode" periods would have occurred under less drastic oceanic and atmospheric patterns that made the influence of westerlies on the Balkans possible.

  7. Petrography, geochemistry and geochronology of granite hosted rhyodacites associated with a disseminated pyrite mineralization (Arnolz, Southern Bohemian Massif, Austria)

    Science.gov (United States)

    Göd, Richard; Kurzweil, Johannes; Klötzli, Urs

    2016-09-01

    The study focuses on a subvolcanic rhyodacite dyke intruding a fine grained biotite granite and paragneisses of the South Bohemian Massif, part of the Variscan Orogenic Belt in Central Europe. The subvertical dyke strikes NNE, displays a thickness of about 30 m and has been traced by boulder mapping for approximately 7 km. The rhyodacites have been affected by two hydrothermal fluids. An older one of oxidizing condition giving rise to a reddish to brownish type of rock (Type I) and a younger fluid of reducing condition causing a greenish variety (Type II). The hydrothermal alteration is associated with the formation of the clay minerals chlorite, sericite, kaolinite and smectite and a disseminated pyrite mineralization. Bulk chemistries of the rhyodacites emphasize the hydrothermal alterations to be isochemical with the exception of sulphur enriched up to a maximum of 0.6 wt%. Trace element composition of the rhyodacites points to a barren geochemical environment in terms of base and precious elements. Sulphur isotope investigations of pyrites from the rhyodacites and the hosting granites respectively yield d34S data ranging from +0.07 to -2.22 ‰, emphasizing a magmatic origin of the sulphur. Geochronological investigations yield in situ U/Pb zircon ages of 312 ± 4 Ma for the biotite granite and of 292 ± 4 Ma for the rhyodacitic dykes indicating a time gap of ≈ 20 Ma between these two intrusive events. A contemporaneous but geochemically specialized granitic intrusion associated with NW striking "felsitic" dykes occurs about 10 to 20 km to the NW of Arnolz. However, the rhyodacites around Arnolz differ significantly from these felsitic dykes in their geochemistry and alteration phenomena which points to a different magmatic source. This coincides with a change in the orientation of the dykes from a NW direction controlling the geochemically specialized intrusions in the NW to a dominating NNE direction mirrored by the studied rhyodacites at Arnolz.

  8. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    Science.gov (United States)

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These

  9. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.

    2013-01-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  10. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements.

    Science.gov (United States)

    Argyraki, Ariadne; Kelepertzis, Efstratios

    2014-06-01

    Understanding urban soil geochemistry is a challenging task because of the complicated layering of the urban landscape and the profound impact of large cities on the chemical dispersion of harmful trace elements. A systematic geochemical soil survey was performed across Greater Athens and Piraeus, Greece. Surface soil samples (0-10cm) were collected from 238 sampling sites on a regular 1×1km grid and were digested by a HNO3-HCl-HClO4-HF mixture. A combination of multivariate statistics and Geographical Information System approaches was applied for discriminating natural from anthropogenic sources using 4 major elements, 9 trace metals, and 2 metalloids. Based on these analyses the lack of heavy industry in Athens was demonstrated by the influence of geology on the local soil chemistry with this accounting for 49% of the variability in the major elements, as well as Cr, Ni, Co, and possibly As (median values of 102, 141, 16 and 24mg kg(-1) respectively). The contribution to soil chemistry of classical urban contaminants including Pb, Cu, Zn, Sn, Sb, and Cd (medians of 45, 39, 98, 3.6, 1.7 and 0.3mg kg(-1) respectively) was also observed; significant correlations were identified between concentrations and urbanization indicators, including vehicular traffic, urban land use, population density, and timing of urbanization. Analysis of soil heterogeneity and spatial variability of soil composition in the Greater Athens and Piraeus area provided a representation of the extent of anthropogenic modifications on natural element loadings. The concentrations of Ni, Cr, and As were relatively high compared to those in other cities around the world, and further investigation should characterize and evaluate their geochemical reactivity.

  11. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.

    2013-04-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  12. Applicability of Electrical and Electroanalytical Techniques to Detect Water and Characterize the Geochemistry of Undisturbed Planetary Soils

    Science.gov (United States)

    Seshadri, S.; Buehler, M. G.; Anderson, R. C.; Kuhlman, G. M.; Keymeulen, D.; Cheung, I. W.; Schaap, M. G.

    2005-01-01

    The search for life is a primary goal of NASA s planetary exploration program. The search is, of necessity, tiered in both the detection approach (looking for evidence of microbial fossils or the presence of water in the geological history of a planetary body and/or looking for evidence of water, energy sources, precursors to life, signatures of life and/or life itself in the present day planetary environment) and in the survey method (scale, range, specificity) employed. Terrestrial investigations suggests that life as we know it requires water. Thus, the search for extant microbial life and habitats requires identifying water-bearing soils. Determining Reduction-Oxidation (REDOX) couples present in water, once it is found, provides information on soil geochemistry and identifies potential chemical energy sources for life. Mars offers a near-term target for conducting this search. The identification of gully formation [1], layered deposits [2] and elemental ratios of bromine and chlorine [3] present indirect evidence that water was abundant locally in the Martian past. Additionally, Viking images of polar ice and frost formation on the surface of Mars demonstrate that water can exist in at least some near-surface regions of present-day Mars. Atmospheric pressure data further suggest that liquid water may be stable for short periods of time in the mid-latitudes of the Martian surface. [4] Measurements of the global distribution of hydrogen in the Martian regolith offer tantalizing indirect evidence that water may at least exist in near-surface soils. [5] Evidently, any water to be found is likely to exist as soil mixtures at levels ranging between approx.0.5% and approx.5 %.

  13. Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect

    Energy Technology Data Exchange (ETDEWEB)

    Vuataz, F.D.; Goff, F.

    1987-12-01

    On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

  14. Geochemistry and environment evolution of Core E in the Laizhou Bay since last stage of Middle Pleistocene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Geochemistry analysis has been done on Core E (37°07' N, 118°55′ E; depth: 82.1 m)taken from the Laizhou Bay in 1994. Nine kinds of invariable elements, 15 kinds of microelements and the content of lime carbonate are measured by means of ICP. The results indicate that most of the in variable elements and microelements in Core E show significant changes in the boundary stratotype, and the ratios between elements (Mn/Fe, Sr/Ba, Ti/Al) in particular. So they can be used as characteristic indicator to stratigraphic division of Quaternary. The changes of invariable elements are primarily con trolled by the host minerals, and they mainly indicate the provenance as well as the sedimentation and depositional environment. Several elements, such as Fe, Al, Ca, Mg, Mn and Ti, are very sensitive to the provenance and environment. The distribution of microelements differs in four depositional periods:last stage of Middle Pleistocene, last interglacial period, last glacial period and Recent epoch, and espe cially in the "cold period" and "warm period". The loops in the cycle curves of the most microelements correspond with the sand bed sediments, among which there are six sand units representing "warm peri od" sediments, and one representing "cold period" sediments. The carbonate is on the high side in the aeolian silt sediments formed in the glacial lowering of sea level in Core E, but on the low side in the transgressive sand beds formed in the interglacial period. The content variation of carbonate has a direct bearing on the grain size and the styles of sediments, and is a good indicator to the climate, environment and stratigraphic division.

  15. Geochronology and geochemistry of the high Mg dioritic dikes in Eastern Tianshan, NW China: Geochemical features, petrogenesis and tectonic implications

    Science.gov (United States)

    Li, Deng-Feng; Zhang, Li; Chen, Hua-Yong; Hollings, Pete; Cao, Ming-Jian; Fang, Jing; Wang, Cheng-Ming; Lu, Wan-Jian

    2016-01-01

    Zircon U-Pb ages of high Mg dioritic dikes in the Mesoproterozoic Kawabulake Group in the Eastern Tianshan area, NW China indicate that they were emplaced in the Early Carboniferous at 353-348 Ma. The dikes consist of medium-grained plagioclase and hornblende with minor clinopyroxene and trace quartz. They are characterized by intermediate SiO2 (60-62 wt.%), low TiO2 (0.63-0.71 wt.%), relatively high Al2O3 (15.1-15.8 wt.%) and MgO contents (3.45-4.15 wt.%) with Mg# generally higher than 56 (56-59). The geochemistry of the high Mg diorites suggest they were formed by similar magmatic processes to sanukitoid high Mg Andesites such as those of the Setouchi volcanic belt, Japan. Zircons from the high Mg dioritic dikes have εHf(t) values of -6.8 to +14.5. The dominantly positive values suggest a juvenile source, whereas the small number of negative values suggests mature components were also incorporated into the source. Similarly, the positive εNd(t) values (0 to +2.2) are interpreted to reflect a juvenile source whereas the negative values of (-5.2 to 0) suggest participation of old crustal rocks in the petrogenesis of the diorites. The variable εHf(t) and εNd(t) values suggest that the mature material was assimilated during magma ascent rather than in the mantle wedge which would result in more uniform values. Mass balance calculations suggest that the dioritic dikes were derived from sources composed of approximately 97% juvenile mantle-derived material and 3% sediment. Petrographic, elemental, and isotopic evidence suggest that the dioritic dikes were generated by partial melting of depleted mantle that migrated into the shallow crust where it assimilated older sedimentary rocks of the Mesoproterozoic Kawabulake Group.

  16. Geochemistry of two contrasting deep fluids in the Sardinia microplate (western Mediterranean): Relationships with tectonics and heat sources

    Science.gov (United States)

    Paternoster, M.; Oggiano, G.; Sinisi, R.; Caracausi, A.; Mongelli, G.

    2017-04-01

    The Sardinia microplate in the western Mediterranean represents an ideal example for examining the relationship between fluid geochemistry, tectonic and heat sources in hydrothermal circuits. It consists of a portion of Variscan basement partly covered by sedimentary (mainly carbonate) and volcanic successions that record significant Permian to Pliocene geodynamic events within the southern European margin. The regional structure of the northern Sardinia is dominated by Tertiary ENE-WSW trending strike-slip and NNW-SSE trending normal faults, both capable of controlling deep and shallow fluid circulation. In this paper, results of a detailed geochemical investigation of waters and gases coming from a W-E trending section of central-north Sardinia are presented in order to explain the contrasting thermal and geochemical features of two - already known groups - of fluids. The Volcanic Logudoro Waters (VLW) is a group of cold to hypothermal Na-HCO3 waters characterised by high CO2 contents and mantle-derived He, that are localized in the volcanic-dominated Tertiary grabens. The He mantle signature within the VLW waters is associated with Plio-Pleistocene Quaternary volcanism where the outgassing of mantle-derived fluids is reasonably due recently active magma sources at depth. The currently active emission of mantle-derived gas linked to cold and hypothermal waters, provides evidence that the heat diffusion associated with the Plio-Pleistocene volcanism has already ended. In contrast, the Granite Variscan Basement Waters (GBW) group is characterised by hot-NaCl-rich waters, containing high concentrations of both dissolved N2 and radiogenic 4He. The high contribution of 4He produced by radiogenic decay of U and Th in the crust indicates a supply of radiogenic heat to the hydrothermal system localized within the granitic basement or in the tectonic contact between granite and Tertiary covers.

  17. Petrography, Geochemistry and Proposed Genesis of Ordovician Oolitic Iron Formation Members of the Lashkarak Formation, Eastern Alborz

    Directory of Open Access Journals (Sweden)

    Mansoore Maghsoudloo Mahalli

    2016-07-01

    Full Text Available Introduction Oolitic iron formations are sedimentary rocks with >5 vol.% oolites and >15 wt.% iron, corresponding to 21.4 wt.% Fe2O3 (Young, 1989; Petranek and Van Houten, 1997; Mucke and Farshad, 2005. In Iran, new iron oolite-bearing members have been identified in the Lashkarak Formation (lower-middle Ordovician in the Abarsej, Dehmola and Simehkuh sections, eastern Alborz (Ghobadi Pour et al., 2011. At present, the mineralogy and geochemistry of these members are not known. Consequently, research reported here was conducted to reveal the mineralogical and geochemical characteristics of Ordovician oolitic iron formationmembers and to discuss their genesis and economic importance. Materials and Analyses Field geology and sampling was carried out to collect 25 samples from the ooliticiron formation members in the Abarsej, Dehmola and Simehkuh section in eastern Alborz. Samples were prepared for polished-thin sections (n=10, XRD analysis (n=15. Whole-rock chemical analysis (n=15 by XRF for major elements and by ICP-ES for trace elements was performed by laboratories at the SarCheshmeh copper mine complex, Kerman, Iran. One sample was analyzed by SEM at the Wales Museum, UK. Results Microscopic studies show that the oolitic iron formation members are hosted by carbonate argillite rocks. They are mainly composed of oolites rather than pisoliths (small bodies somewhat larger and more irregular than oolites, whereas oolites have mainly ellipsoidal forms and locally spherical shapes. Most (6 oolites show banding with a central core. Simple oolites without a core are scarce. Mineralogically, oolites are mainly chamositic and hematitic in composition; goethite, pyrite and glauconite occur in traces and siderite is absent. Quartz, calcite and zircon are accessory minerals which are present in the groundmass. Geochemically, TFeO % of the oolitic iron formation horizons ranges from 8 to 48 % with an average of 21%. The CaO content ranges from 2 to 37% and

  18. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR; VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; A. Wylie; W. Quinlan

    2004-01-01

    The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, a new field demonstration, Springdale Prospect in Manistee County, Michigan was begun to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path. The main news this reporting period is the confirmed discovery of producing hydrocarbons at the State Springdale & O'Driscoll No.16-16 demonstration well in Manistee County. This well was spudded in late November, tested and put on production in December 2003. To date it is flowing nearly 100 barrels of liquid hydrocarbons per day, which is a good well in Michigan. Reserves have not been established yet. The surface geochemistry sampling at the Springdale demonstration site will be repeated this spring after the well has been on production for several months to see if the anomaly pattern changes. We expect that the anomaly will diminish as the original positive (apical) anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir. This is the behavior that we observed at the Bear lake demonstration well reported last quarter.

  19. Stable (C, O, S isotopes and whole-rock geochemistry of carbonatites from Alto Paranaíba Igneous Province, SE Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Siqueira Gomide

    Full Text Available ABSTRACT: The present work investigates the relationship between whole-rock geochemistry and stable isotope composition from carbonatites belonging to the Tapira, Araxá, Salitre, Serra Negra, Catalão I, and Catalão II alkaline-carbonatite complexes of the Alto Paranaiba Igneous Province (APIP, central Brazil and from the Jacupiranga Complex, of the Ponta Grossa Province, southeast Brazil. The APIP complexes are ultrapotassic, comprising bebedourites, phoscorites, nelsonites, and carbonatites, whereas Jacupiranga is a sodic complex composed of ijolite-series rocks, syenites, carbonatites, and alkaline gabbros. The geochemistry data allied to mineralogical constraints allowed us to classify the carbonatites into five groups, and to devise a chemical index (BaO/(BaO+SrO to gauge the magmatic evolution of the studied carbonatites.The APIP carbonatites evolve from apatite-rich calciocarbonatites toward Ba-, Sr-, and rare earth element (REE-rich magnesiocarbonatites. This evolution is mostly driven by apatite, phlogopite, dolomite, and calcite fractionation and consequent enrichment in monazite, norsethite, and strontianite. Stable isotope data show a wide diversity of petrogenetic processes in play at the APIP, relatively to the Jacupiranga Complex, which is interpreted as a result of the shallower intrusion levels of the APIP complexes. Such shallower emplacement, at low lithostatic pressure, allowed for a complex interplay of fractional crystallization, liquid immiscibility, degassing, and interaction with hydrothermal and carbohydrothermal systems.

  20. Magnitude and extent of the impact of a small-scale gold-mine on the geochemistry of stream bed and floodplain sediments in the Horsefly catchment, British Columbia, Canada

    OpenAIRE

    Perk, Marcel; Vogels, Marjolein F. A.; Clark, Deirdre E.; Owens, Philip N.; Petticrew, Ellen L.

    2014-01-01

    Mining represents a major source of metal contamination for fluvial systems worldwide. Monitoring and understanding the effects on downstream water and sediment quality is essential for effective management of active and abandoned mine sites. This study aims to determine the downstream effects of the abandoned, small-scale hydraulic Black Creek gold mine on the geochemistry of fine (

  1. Major and Trace Element Geochemistry of Coals and Intra-Seam Claystones from the Songzao Coalfield, SW China

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2015-12-01

    Full Text Available Silicic, mafic and alkali intra-seam tonsteins have been known from SW China for a number of years. This paper reports on the geochemical compositions of coals and tonsteins from three seam sections of the Songzao Coalfield, SW China, and evaluates the geological factors responsible for the chemical characteristics of the coal seams, with emphasis on the influence from different types of volcanic ashes. The roof and floor samples of the Songzao coal seams mostly have high TiO2 contents, consistent with a high TiO2 content in the detrital sediment input from the source region, namely mafic basalts from the Kangdian Upland on the western margin of the coal basin. The coals from the Songzao Coalfield generally have high ash yields and are highly enriched in trace elements including Nb, Ta, Zr, Hf, rare earth elements (REE, Y, Hg and Se; some variation occurs among different seam sections due to input of geochemically different volcanic ash materials. The geochemistry of the Songzao coals has also been affected by the adjacent tonstein/K-bentonite bands. The relatively immobile elements that are enriched in the altered volcanic ashes also tend to be enriched in the adjacent coal plies, possibly due to leaching by groundwaters. The coals near the alkali tonstein bands in the Tonghua and Yuyang sections of the Songzao Coalfield are mostly high in Nb, Ta, Zr, Hf, Th, U, REE and Y. Coal samples overlying the mafic K-bentonite in the Tonghua section are high in V, Cr, Zn and Cu. The Datong coal, which has neither visible tonstein layers nor obvious volcanogenic minerals, has high TiO2, V, Cr, Ni, Cu and Zn concentrations in the intervals between the coal plies affected by mafic and alkaline volcanic ashes. This is consistent with the suggestion that a common source material was supplied to the coal basin, derived from the erosion of mafic basaltic rocks of the Kangdian Upland. Although the Songzao coal is generally a high-sulfur coal, most of the

  2. A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: Application to uranium bioreduction.

    Science.gov (United States)

    Istok, J D; Park, M; Michalsen, M; Spain, A M; Krumholz, L R; Liu, C; McKinley, J; Long, P; Roden, E; Peacock, A D; Baldwin, B

    2010-03-01

    concentration and speciation, major ion geochemistry, mineralogy, microbial biomass and community composition were in qualitative agreement with experimental observations although the available data precluded rigorous model testing. While originally developed for use in better understanding of bioimmobilization of heavy metals and radionuclides, the modeling approach is potentially useful for exploring the coupling of microbial growth and geochemical reactions in a variety of other basic and applied biotechnology research settings.

  3. A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: Application to uranium bioreduction

    Energy Technology Data Exchange (ETDEWEB)

    Istok, Jonathan D.; Park, Melora M.; Michalsen, Mandy M.; Spain, A. M.; Krumholz, Lee R.; Liu, Chongxuan; McKinley, James P.; Long, Philip E.; Roden, Eric E.; Peacock, Aaron D.; Baldwin, Brett R.

    2010-04-01

    geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. While originally developed for use in better understanding bioimmobilization of heavy metals and radionuclides, the modeling approach is potentially useful for exploring the coupling of microbial growth and geochemical reactions in a variety of other basic and applied biotechnology research settings.

  4. A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: Application to uranium bioreduction

    Science.gov (United States)

    Istok, J. D.; Park, M.; Michalsen, M.; Spain, A. M.; Krumholz, L. R.; Liu, C.; McKinley, J.; Long, P.; Roden, E.; Peacock, A. D.; Baldwin, B.

    2010-03-01

    concentration and speciation, major ion geochemistry, mineralogy, microbial biomass and community composition were in qualitative agreement with experimental observations although the available data precluded rigorous model testing. While originally developed for use in better understanding of bioimmobilization of heavy metals and radionuclides, the modeling approach is potentially useful for exploring the coupling of microbial growth and geochemical reactions in a variety of other basic and applied biotechnology research settings.

  5. Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio

    Science.gov (United States)

    Tomlinson, Emma L.; Albert, Paul G.; Wulf, Sabine; Brown, Richard J.; Smith, Victoria C.; Keller, Jörg; Orsi, Giovanni; Bourne, Anna J.; Menzies, Martin A.

    2014-10-01

    Unraveling the eruptive history of the Island of Ischia (southern Italy) is problematic due to its burial, caldera collapse, resurgent uplift and erosion. Here, we present new major and trace element glass data for 39-75 ka proximal tephra deposits, including those of the caldera-forming Monte Epomeo Green Tuff (MEGT) eruption. Correlations with the distal tephra archive preserved at Lago Grande di Monticchio (LGdM) are used to constrain the timing of as yet undated eruptive events. Out of 13 LGdM tephras analysed from the 39-104 ka time window, glass geochemical data show that all are compositionally consistent with the explosive volcanic eruptions of Ischia, whilst 5 of them can be correlated with specific proximal deposits. Pre-MEGT pyroclastic sequences comprise three compositional groups, these groups occur repeatedly in sucessive eruptions. Proximal-distal correlations indicate that the Porticello eruption occurred at 59 ± 2 ka and the Tisichiello eruption probably occurred at 76 ± 3 ka. The MEGT eruption is correlated with LGdM TM-19, which has been directly dated at 55 ± 2 ka. Post-MEGT tephras form compositional groups that overlap with the pre-MEGT but are displaced to lower FeO and TiO2 and lower incompatible element contents. Proximal-distal correlations indicate that the Schiappone and Pietre Rosse eruptions occurred at 50.6 ± 2.0 ka and 45 ± 6 ka, respectively. Tephra from the MEGT eruption span a wide compositional range, broadly overlapping the three pre-MEGT compositional groups but are displaced to higher Nd and Y and contain an additional less evolved glass population. Glass geochemistry is used to recognise and confirm distal equivalents of the MEGT at LGdM (TM-19) and in the Ionian (Y-7), Adriatic (PRAD 1870) and Tyrrhenian (C-18, MD 28) seas. Distal occurences of MEGT tephra define a dispersal axis to the south-southeast and are found as far as 540 km from Ischia, making the MEGT one of the most widely dispersed late Quaternary

  6. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Shintaro, E-mail: sichi@meiji.ac.jp [Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571 (Japan); Nakamura, Toshihiro [Department of Applied Chemistry, Meiji University, Kawasaki 214-8571 (Japan)

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na{sub 2}O, MgO, Al{sub 2}O{sub 3}, SiO{sub 2}, P{sub 2}O{sub 5}, K{sub 2}O, CaO, TiO{sub 2}, MnO, and total Fe{sub 2}O{sub 3}). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g{sup −1} range (e.g., 140 μg g{sup −1} for Na{sub 2}O, 31 μg g{sup −1} for Al{sub 2}O{sub 3}, and 8.9 μg g{sup −1} for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry. - Highlights: • X-ray fluorescence determination of major oxides was performed using 1.1 mg of sample. • Preparation and measurement techniques of the XRF micro glass bead specimen were optimized. • Calibration curves using synthetic standards showed good

  7. Geochemistry of Apatite from the Apatite-rich Iron Deposits in the Ningwu Region, East Central China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magnetite, apatite and actinolite (or diopside). The second type occurs within magnetite-apatite veins in the iron ores. The third type is seen in magnetite-apatite veins and (or)nodules in host rocks (i.e. gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins filling fractures in the Xiangshan Group. Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented. The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores, nelsonites. They are enriched in light REE, with pronounced negative Eu anomalies. The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types, e.g.immiscibility. Early magmatic apatites contain 3031.48-12080 ×10-6 REE. Later hydrothermal apatite contains 1958 ×10-6 REE, indicating that the later hydrothermai ore-forming solution contains lower REE. Although gabbro-diorite porphyry and apatite show similar REE patterns, gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies,caused both by reduction environment of mantle source region and by fractionation and crystallization (immiscibility) under a high oxygen fugacity condition. Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu2+ by earlier diopsite during ore magma cooling.The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of 87Sr/86Sr values from 0.7071 to 0.7073, similar to those of the volcanic and subvoicanic rocks, indicating that apatites were formed by liquid immiscibility and

  8. Saltpan impact crater, South Africa: Geochemistry of target rocks, breccias, and impact glasses, and osmium isotope systematics

    Science.gov (United States)

    Koeberl, Christian; Reimold, Wolf Uwe; Shirey, Steven B.

    1994-07-01

    The Pretoria Saltpan crater is a well-preserved 220,000 year-old, 1.13 km-diameter, simple impact crater. The crater was formed in Nebo granites of the Bushveld Complex. Some minor intrusions thought to be younger than the Nebo granite are present at the crater and have earlier been believed to support a volcanic origin of the structure, but recent geological studies showed them to be part of the regional geology and of Proterozoic age. We studied the petrology and geochemistry of fourteen target granite samples, three suevitic breccias, nine intrusive rocks, as well as melt agglutinates, handpicked impact glass fragments and sulfide spherules from the Saltpan impact crater. Unconsolidated suevitic breccias recovered from different depths in the crater were found to contain abundant evidence of shock metamorphism. The target rock granites show only limited compositional variability. The major and trace element composition of the bulk breccia is very similar to that of average basement granite. Impact glass fragments recovered from the unconsolidated suevitic breccia have a CIPW normative composition similar to that of the basement granites. No evidence for admixture from any of the minor intrusions was found. The similarity of trace element abundances and ratios, and REE patterns between impact glasses and granites favors derivation of the glasses from the granites. The impact glass fragments show considerable enrichments of Mg, Cr, Fe, Co, Ni, and Ir, compared to the basement granites. The abundances of these elements in the glasses (after correction for indigenous concentrations) can be explained by admixture of about ≤ 10% of a chondritic component. High Ir concentrations (≈ 100 ppb) have been found in sulfide spherule samples, which may complement the (lower) Ir abundances in the glasses and could indicate some fractionation during impact. Re-Os isotopic studies were applied to further investigate the presence of a meteoritic component in the suevitic

  9. Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides

    Science.gov (United States)

    Neveu, Marc; Desch, Steven J.; Castillo-Rogez, Julie C.

    2017-09-01

    serpentines, NH4-phyllosilicates, and carbonates on Ceres' surface; and of Na and NH4-carbonate and chloride in Ceres' bright spots. They also match results from previous modeling studies with similar assumptions, and systematically expand these results to heretofore unexplored physico-chemical conditions. This work involved the compilation and careful validation of a comprehensive PHREEQC database, which combines the advantages of the default databases phreeqc.dat (carefully vetted data, molar volumes) and llnl.dat (large diversity of species), and should be of broad use to anyone seeking to model aqueous geochemistry at pressures that differ from 1 bar with PHREEQC.

  10. Part A: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    Science.gov (United States)

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to

  11. Part D: Geochemistry of Soil Samples from 50 Solution-Collapse Features on the Coconino Plateau, Northern Arizona

    Science.gov (United States)

    Van Gosen, Bradley S.; Wenrich, Karen J.

    1991-01-01

    Soil sampling surveys were conducted during 1984-1986 across 50 solution-collapse features exposed on the Coconino Plateau of northern Arizona in order to determine whether soil geochemistry can be used to distinguish mineralized breccia pipes from unmineralized collapse features. The 50 sampled features represent the variety of collapse features that crop out on plateau surfaces in northwestern Arizonaoodeeplyorooted solution-collapse breccia pipes, near-surface gypsum collapses, and sinkholes. Of the 50 features that were sampled in this study, 3 are confirmed breccia pipes that contain significant uranium and base-metal minerals, I is believed to be a sinkhole with no economic potential, and 4 are stratabound copper deposits whose possible relationship to breccia pipes is yet to be determined. The remaining collapse features are suspected to overlie breccia pipes, although some of these may represent near surface gypsum collapse features. However, no exploratory drilling results or breccia exposures exist to indicate their underlying structure. The low cost and ease of soil sampling suggested that this technique be evaluated for breccia pipe exploration. This report provides the locations and geochemical results for the soil sampling surveys and brief descriptions of the 50 collapse features. The analytical results of almost 2,000 soil samples are provided in tabular hardcopy and dBase III Plus diskcopy format. The analytical data is provided in digital format to allow the reader to choose their own methods for evaluating the effectiveness of soil sampling over known and suspected breccia pipes. A pilot survey conducted over 17 collapse features in 1984 suggested that soil sampling might be useful in distinguishing mineralized breccia pipes from other circular features. Followup detailed surveys in 1985 and 1986 used a radial sampling pattern at each of 50 sites; at least one third of the samples were collected from areas outside of the collapse feature to

  12. Comparison of Five Hydrothermal Vent Fields at the Mid-Atlantic Ridge: Which Parameters Control the Differences in Fluid Geochemistry?

    Science.gov (United States)

    Schmidt, K.; Koschinsky, A.; Garbe-Schönberg, D.; Seifert, R.

    2006-12-01

    ultramafic rocks closely intergrown clearly controls the fluid geochemistry at these vent sites. Characteristic for both sites are also the smoking craters without any bioogical inhabitation. With respect to the temporal evolution of hydrothermal systems the young post-eruptive and phase-separated systems at 4°49'S are expected to show significant changes in temperature and chemistry within the next years with strong influences in the biological community. The ultramafic-hosted Logatchev field has shown a rather constant fluid composition for about 10 years indicating continuous serpentinization in the sub- seafloor without significant changes in alteration patterns and heat supply.

  13. Hydrogeology and geochemistry of low-permeability oil-shales - Case study from HaShfela sub-basin, Israel

    Science.gov (United States)

    Burg, Avihu; Gersman, Ronen

    2016-09-01

    Low permeability rocks are of great importance given their potential role in protecting underlying aquifers from surface and buried contaminants. Nevertheless, only limited data for these rocks is available. New appraisal wells drilled into the oil shale unit (OSU) of the Mt. Scopus Group in the HaShfela sub-basin, Central Israel, provided a one-time opportunity for detailed study of the hydrogeology and geochemistry of this very low permeability unit. Methods used include: slug tests, electrical logs, televiewer imaging, porosity and permeability measurements on core samples, chemical analyses of the rock column and groundwater analyses. Slug tests yielded primary indication to the low permeability of the OSU despite its high porosity (30-40%). Hydraulic conductivities as low as 10-10-10-12 m/s were calculated, using both the Hvorslev and Cooper-Bredehoeft-Papadopulos decoding methods. These low conductivities were confirmed by direct measurements of permeability in cores, and from calculations based on the Kozeny-Carman approach. Storativity was found to be 1 · 10-6 and specific storage - 3.8 · 10-9 m-1. Nevertheless, the very limited water flow in the OSU is argued to be driven gravitationally. The extremely slow recovery rates as well as the independent recovery of two adjacent wells, despite their initial large head difference of 214 m, indicate that the natural fractures are tight and are impermeable due to the confining stress at depth. Laboratory measured permeability is similar or even higher than the field-measured values, thereby confirming that fractures and bedding planes do not form continuous flow paths. The vertical permeability along the OSU is highly variable, implying hydraulic stratification and extremely low vertical hydraulic conductivity. The high salinity of the groundwater (6300-8000 mgCl/L) within the OSU and its chemical and isotopic compositions are explained by the limited water flow, suggesting long residence time of the water

  14. Soil geochemistry controls fire severity: A soil approach to improved understanding of forest fire consequences in southwest Montana.

    Science.gov (United States)

    Callahan, R.; Hartshorn, T.

    2014-12-01

    9 μg/g). Of the 30 trace metals examined, barium explained the greatest fraction of variance in post-burn LOI (R2 =0.79); gallium explained slightly less variance (R2=0.67). Our results document the promise of post-burn soil geochemistry to indicate soil burn severity, which could complement vegetation-based and remotely sensed indices.

  15. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    Science.gov (United States)

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity

  16. Geochemistry of FBC waste-coal slurry solid mixtures. Final technical report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-12-31

    The three tasks conducted in this research project were related to understanding the geochemistry and mineralogy of the co-disposal of fluidized bed combustion (FBC) wastes with coal slurry solid (CSS) from a coal preparation plant. During coal cleaning, pyrite, other heavy minerals and rock fragments are separated from the coal and discharged in an aqueous slurry to an impoundment. After dewatering and closure of the impoundment, the pyrite can oxidize and produce acid that can migrate into the underlying groundwater system. The addition of FBC residue to the CSS will buffer the pore water pH to approximately 7.8. In Task 1, soluble components and acid-base react ion products from mixtures of FBC waste and CSS were extracted for 3 to 180 days in aqueous batch experiments. The results of these extractions showed that, eventually, the extracts would attain a pH between 7 and 8. That pH range is characteristic of an aqueous system in equilibrium with calcite, gypsum, and atmospheric carbon dioxide. After 180 days, the mean calcium concentration in all of the extracts was 566{+-}18 mg/L and sulfate concentrations averaged 2420{+-}70 mg/L. In Task 2, three extracts from CSS/FBC residue mixtures were prepared for use in experiments to determine the adsorption/desorption reactions that occur between solutes in the extracts and two common Illinois soils. Time constraints allowed the use of only two of the extracts for adsorption studies. The concentrations of most solutes were not significantly lowered by adsorption at the pH of the extract-soil suspension, nor over a wide range of pH. The results suggest that the type of solutes that were released by the CSS/FBC residue mixture would not be attenuated by adsorption. In a modified Task 3, the literature on the kinetics of pyrite oxidation in near-neutral to alkaline pH was reviewed in preparation for future development of a computer model of pyrite oxidation in CSS/FBC residue codisposal.

  17. The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development

    Science.gov (United States)

    Harkness, Jennifer S.; Darrah, Thomas H.; Warner, Nathaniel R.; Whyte, Colin J.; Moore, Myles T.; Millot, Romain; Kloppmann, Wolfram; Jackson, Robert B.; Vengosh, Avner

    2017-07-01

    Since naturally occurring methane and saline groundwater are nearly ubiquitous in many sedimentary basins, delineating the effects of anthropogenic contamination sources is a major challenge for evaluating the impact of unconventional shale gas development on water quality. This study investigates the geochemical variations of groundwater and surface water before, during, and after hydraulic fracturing and in relation to various geospatial parameters in an area of shale gas development in northwestern West Virginia, United States. To our knowledge, we are the first to report a broadly integrated study of various geochemical techniques designed to distinguish natural from anthropogenic sources of natural gas and salt contaminants both before and after drilling. These measurements include inorganic geochemistry (major cations and anions), stable isotopes of select inorganic constituents including strontium (87Sr/86Sr), boron (δ11B), lithium (δ7Li), and carbon (δ13C-DIC), select hydrocarbon molecular (methane, ethane, propane, butane, and pentane) and isotopic tracers (δ13C-CH4, δ13C-C2H6), tritium (3H), and noble gas elemental and isotopic composition (helium, neon, argon) in 105 drinking-water wells, with repeat testing in 33 of the wells (total samples = 145). In a subset of wells (n = 20), we investigated the variations in water quality before and after the installation of nearby ( 50 mg/L). The integrated geochemical data indicate that the saline groundwater originated via naturally occurring processes, presumably from the migration of deeper methane-rich brines that have interacted extensively with coal lithologies. These observations were consistent with the lack of changes in water quality observed in drinking-water wells following the installation of nearby shale-gas wells. In contrast to groundwater samples that showed no evidence of anthropogenic contamination, the chemistry and isotope ratios of surface waters (n = 8) near known spills or leaks

  18. Mineralogy, Geochemistry and Mass Changes at the Mombi Bauxite Deposit, (SW Iran): Using Geochemical Characteristics of the Immobile Elements

    Science.gov (United States)

    Ahmadnejad, Farhad; Vahabzadeh, Bahman; Zamanian, Hassan; Sameti, Mona; Asadi Haroni, Hooshang

    2016-04-01

    The Mombi bauxite deposit is located 160Km northwest of Dehdasht in the Zagros fold belt of Iran. The bauxite horizons are mineralogically homogeneous, and contains high amount of boehmite, diaspore, hematite, kaolinite, and anatase. Total geochemical analysis of the bauxite shows that Al2O3, SiO2, Fe2O3 and TiO2 are the main components. The immobile elements of Al, Ti, Nb, Zr, Hf, Cr, Ta, Y and Th are enriched while Rb, Ba, K, Sr, and P are depleted during bauxitization process. Chondrite-normalized REE pattern in the bauxite ore indicates REE enrichment (ΣREE=162.8-755.28ppm, ave. ~ 399.36 ppm) relative to the argillized limestone (ΣREE=76.26-84.03 ppm, ave. ~ 80.145 ppm). These patterns also reflect enrichment in LREE relative to HREE. Both positive and negative Ce anomalies (0.48-2.0) are observed in the Mombi bauxite horizons. These anomalies are related to the oxidation state of Ce (from Ce3+ to Ce4+), ionic potential, and complication of Ce4+ with carbonate compounds in the studied horizon. The present study uses the geochemistry of immobile elements to calculate the mass changes occurred during weathering and bauxitization. The results reveal that elements such as Si, Fe, Mg, P, K, Ba, Sr and Zn are depleted, while Al, Zr, V, Cr, Ni, Ga, Y and LREEs indicate positive mass changes during the weathering and bauxitization. In addition, Nb, Hf, Ta, Bi, Rb, Cs, U and HRRE exhibit little changes, suggesting relatively immobile features. Inter-elemental relationship analyses of the bauxite by using R-mode factor analysis method suggest that the elemental behaviors of trace elements and REEs during bauxite mineralization are mainly controlled by the mineral compositions and chemical properties of the elements. R-mode factor analysis reveals a number of key findings: (i) some of the low solubility elements were concentrated in detrital zircon (Zr), in anatase (Ti), and possibly in boehmite and hematite during the later stages of bauxitisation; (ii) Fe was

  19. Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas

    Science.gov (United States)

    Hickey-Vargas, R.; Sun, M.; Holbik, S.

    2016-07-01

    In the Central Southern Volcanic Zone (CSVZ) of the Andes, the location of stratovolcanoes and monogenetic small eruptive centers (SEC) is controlled by the Liquiñe-Ofqui Fault Zone (LOFZ), a trench-parallel strike-slip feature of over 1000 km length. The geochemistry of basalts from SEC is different from those of stratovolcanoes, and are termed Type 2 and Type 1 basalts, respectively. In the region of Villarrica stratovolcano, contemporaneous SEC are more MgO-rich, and have greater light rare earth element (LREE) enrichment, lower 87Sr/86Sr and 143Nd/144Nd, and lower ratios of large ion lithophile elements (LILE) to LREE and high field strength elements (HFSE). A unique finding in this region is that basalts from one SEC, San Jorge, has Type 1 character, similar to basalts from Villarrica stratovolcano. Type 1 basalts from Villarrica and San Jorge SEC have strong signals from time-sensitive tracers of subduction input, such as high 10Be/9Be and high (238U/230Th), while Type 2 SEC have low 10Be/9Be and (238U/230Th) near secular equilibrium. Based on new trace element, radiogenic isotope and mineral analyses, we propose that Type 1 basaltic magma erupted at San Jorge SEC and Villarrica stratovolcano forms by melting of the ambient actively subduction-modified asthenosphere, while Type 2 SEC incorporate melts of pyroxenite residing in the supra-subduction zone mantle lithosphere. This scenario is consistent with the close proximity of the volcanic features and their inferred depths of magma separation. The pyroxenite forms from arc magma produced during earlier episodes of subduction modification and magmatism, which extend back >300 Ma along this segment of the western South American margin. Type 2 basaltic magmas may reach the surface during LOFZ-related decompression events, and they may also be a normal but episodic part of the magma supply to large stratovolcanoes, resulting in cryptic geochemical variations over time. The presence and mobilization of stored

  20. Chemical weathering from the CoDA (Compositional Data Analysis) point of view: new insights for the Alpine rivers geochemistry

    Science.gov (United States)

    Gozzi, Caterina; Buccianti, Antonella; Frondini, Francesco

    2017-04-01

    compositional matrix. In both cases the idea is to probe the behaviour of geochemical processes to be analysed in time or space. An application example is presented for the chemistry of the surficial waters of the Alpine region (Donnini et al., 2016). The emergence of fractal structures indicates the presence of dissipative systems, which require complexity, large numbers of inter-connected elements and stochasticity requiring caution in the use of classical spatial methods to represent geochemical phenomena. Buccianti A. & Zuo R., 2016. Weathering reactions and isometric log-ratio coordinates: Do they speak to each other? Applied Geochemistry, 75, 189-199. Donnini M., Frondini F., Probst J.L., Probst A., Cardellini C., Marchesini I., Guzzetti F., 2016. Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region. Global and Planetary Change, 136 (2016) 65-81.

  1. Mineralogy and geochemistry of trace and Rare Earth Element from the Manaila massive sulphide deposit (Eastern Carpathians, Romania)

    Science.gov (United States)

    Moldoveanu, S.; Iancu, O. G.; Kasper, H. U.

    2012-04-01

    Keywords: Eastern Carpathians, Mănăila deposit, REE, trace elements, pyrite The present paper deal with the mineralogy and trace elements geochemistry of sulphide deposits from Mănăila mine field located in NE area of Eastern Carpathians Mountains (Romania). The mineralization occurs within metamorphic rocks of Tulgheş terrane, part of Crystalline-Mezozoic zone of the Eastern Carpathians. The metamorphic rocks in Mănăila area consist of felsic metavolcanics rocks with quartzites and quartz-feldspathic rocks as prevailing types. The P-T metamorphic conditions are typical of greenschis facies with biotite and garnet (Mn-Grt) in mineral assemblage. The mineralogical study was performed using reflected light microscope and Scanning Electron Microscopy (SEM) methods. Thus, the both methods show that the main sulphides minerals are represented by pyrite and chalcopyrite, being followed by sphalerite, galena and little amount of Cu sulphosalts (tetrahedrite and bournonite) and also by gangue minerals (quartz and carbonates). Pyrite occurs as large euhedral to subhedral grains in quartz and small rounded inclusion in chalcopyrite. The trace elements analysis was achieved on whole-rock samples and involved the determination of REE, LIL (Rb, Ba, Sr) and HFS (Y, Zr, Hf, U, Th, Nb, Ta) by ICP-MS method. The concentration of LIL and HFS trace elements in mineralized rocks decrease as follows: Ba > Bi > As > Sb > Co > Ga > Ni > Cd. Even if the barium contents in Mănăila ore is high, baritina (BaSO4) was not identified throught the mineralogical analyses carried out so far. The total rare earth element content (REE) of the samples from Mănăila range from 26.84 to 246.46 ppm. Chondrite - normalized REE patterns of the mineralized rocks show that the LREE are enriched in relation to the HREE. Also a positive Ce anomalies and negative Eu anomalies are present. Y/Ho and Zr/Hf ratios are close to the chondritic ratios indicating Charge-and-Radius-Controlled (CHARAC

  2. Sedimentary sources and processes in the eastern Arabian Sea: Insights from environmental magnetism, geochemistry and clay mineralogy

    Directory of Open Access Journals (Sweden)

    Kumar Avinash

    2016-03-01

    Full Text Available The spatial distribution patterns of surficial sediment samples from different sedimentary domains (shallow to deep-sea regions of the eastern Arabian Sea were studied using sediment proxies viz. environmental magnetism, geochemistry, particle size and clay mineralogy. Higher concentrations of magnetic minerals (high χlf were recorded in the deep-water sediments when compared with the shallow water sediments. The magnetic mineralogy of one of the shallow water samples is influenced by the presence of bacterial magnetite as evidenced from the χARM/χlf vs. χARM/χfd biplot. However, the other samples are catchment-derived. The high correlation documented for χlf, anhysteretic remanent magnetisation (χARM and isothermal remanent magnetisation (IRM with Al indicates that the deep-sea surficial sediments are influenced by terrigenous fluxes which have been probably derived from the southern Indian rivers, the Sindhu (the Indus and the Narmada-Tapti rivers. A lower Mn concentration is recorded in the upper slope sediments from the oxygen minimum zone (OMZ but a higher Mn/Al ratio is documented in the lower slope and deep-sea sediments. Clay minerals such as illite (24–48.5%, chlorite (14.1–34.9%, smectite (10.6–28.7% and kaolinite (11.9–27.5% dominate the sediments of shallow and deep-sea regions and may have been derived from different sources and transported by fluvial and aeolian agents. Organic carbon (OC data indicate a low concentration in the shallow/shelf region (well oxygenated water conditions and deeper basins (increased bottom-water oxygen concentration and low sedimentation rate. High OC concentrations were documented in the OMZ (very low bottom-water oxygen concentration with high sedimentation rate. The calcium carbonate concentration of the surface sediments from the continental shelf and slope regions (<1800 m up to the Chagos-Laccadive Ridge show higher concentrations (average = 58% when compared to deep basin

  3. Reconciling the shadow of a subduction signature with rift geochemistry and tectonic environment in Eastern Marie Byrd Land, Antarctica

    Science.gov (United States)

    LeMasurier, Wesley E.; Choi, Sung Hi; Hart, Stanley R.; Mukasa, Sam; Rogers, Nick

    2016-09-01

    Basalt-trachyte volcanoes in the Marie Byrd Land (MBL) Cenozoic province lie along the Amundsen Sea coast on the north flank of the West Antarctic rift. Basalts here are characterized by OIB-like geochemistry, restricted ranges of 87Sr/86Sr (0.702535-0.703284) and 143Nd/144Nd (0.512839-0.513008) and a wide range of 206Pb/204Pb (19.357-20.934). Basalts at three MBL volcanoes display two anomalies compared with the above and with all other basalts in West Antarctica. They include 143Nd/144Nd (0.512778-0.512789) values at Mt. Takahe and Mt. Siple that are 2σ lower than other West Antarctic basalts, and Ba/Nb, Ba/La, and Ba/Th values at Mt. Murphy and Mt. Takahe that are 3-8 times higher than normal OIB. Isotope and trace element data do not support crustal and lithospheric mantle contamination, or the presence of residual mantle amphibole or phlogopite as explanations of these anomalies. The apparent coincidence of these anomalies with the site of a pre-Cenozoic convergence zone along the Gondwanaland margin suggests a subduction influence. Major episodes of subduction and granitic plutonism took place in MBL during the Devonian, Permian, and Late Cretaceous. Relicts in the source region, of components from these subducted slabs, provide a credible explanation for the uncoupling of Ba from other large ion lithophile elements (LILE), for its erratic distribution, and for the anomalously low 143Nd/144Nd at Mt. Takahe. The last episode of subduction ended ~ 85 Ma, and was followed by continental break-up, rifting and lithospheric attenuation that produced the West Antarctic rift as we know it today. Thus, the enigmatic geochemical signatures in these three volcanoes seem to have been preserved roughly 61-85 m.y. after subduction ended. New calculations of source melting depth and a new determination of lithospheric thickness suggest that the source of the anomalies resides in a fossil mélange diapir that rose from the Cretaceous subducting slab, became attached to the

  4. Issues of engineering and geochemistry in the sequestration of carbon dioxide in geological formations-saline aquifers

    Science.gov (United States)

    Garcia Orrego, Gloria Stella

    Dynamic tests were conducted to evaluate the feasibility to sequester carbon dioxide (CO2) in carbonate dolomite reservoir. Two injection rates, 0.1613 cc/min (20 pore volumes) and 0.982 cc/min (120 pore volumes) were tested to observe changes in petrophysical parameters mainly permeability and porosity under these two conditions of flow rates. The low flow rate was allowed to evaluate the effect of the bulk of the reservoir and the high flow rate evaluated the effect of dissolution on the face of the formation. The testes were carried out at reservoir-simulated conditions (2000 psia and 150°F). San Andres dolomite formation cores from wells 744 and 745 drilled during pilot area evaluation in Levelland Field. The core samples used have a high content of anhydrite and they are cemented mainly by calcite. The formation water used is representative of the Permian basin brine which has sodium 18,000 mg/L, chlorine 46,200 mg/L, calcium 6000 mg/L, sulfate 4880 mg/L, magnesium 1820 mg/L and potassium 1510 mg/L. The injection of low pore volumes was found to reduce the permeability in about 50%, the pore volume and porosity in about 25%, and the total equilibrium magnetization (Mo) from NMR T2 distribution decreased in about 17% indicating substantial reduction in porosity and permeability. The small pore sizes (bulk volume irreducible-BVI) increased in average in about 70% and the large pore sized (free fluid index-FFI) decreased in about 24%. The injection of high pore volume showed slight increase of the petrophysical properties. The total equilibrium magnetization and BVI and FFI did not present remarkable change. At the onset of this research, it was still uncertain how the interaction between CO2 and formation brine affects the geochemistry of the reservoir. Therefore, several static tests at supercritical conditions (1070 psia and 88°F) and at reservoir conditions with and without rock samples were carried out. After running the static tests for seven days, a

  5. Investigation on primary and secondary processes in Nasirabad manganese deposit, south of Neyriz: using mineralogy and Pb isotope geochemistry

    Directory of Open Access Journals (Sweden)

    Ali Reza Zarasvandi

    2013-04-01

    Full Text Available The Nasirabad manganese deposit is located 5 km south of Nasirabad, 8 km SW of Neyriz in the Fars province. Structurally, the area is placed in the southeastern part of Zagros thrust belt. In this area, the manganese mineralization occurred as ore layers and nodules, interlayered with Pichakun radiolarite chert deposits. In this study, mineralogy and geochemistry of uranium, thorium and lead isotopes were used to investigate the primary and secondary processes. In this way, in addition to petrographic and XRD studies, ICP-MS analysis was carried out in order to measure the U, Th and Pb isotopes. The strong fractionation of Fe and Mn phases and also the absence of Fe-bearing minerals in the XRD results, presence of syngenetic todorokite and quartz crystals, high U/Th ratios in some samples and Th versus U diagrams, all indicate entrance of Mn-bearing hydrothermal fluids into the sedimentary basin of the Nasirabad manganese deposit. The pyrolusites in radiolarites tests as replacement textures, host rock space filling and fracture filling pyrolusites, indicates the influence of secondary exogenic processes on primary hydrothermal mineralization. Non-homogenous 206Pb/Pb204, 207Pb/Pb204 and 208Pb/Pb204 values show non-steady hydrothermal processes in the sedimentary basin and indicate mixing of hydrothermal lead isotopes with another secondary source. Strong positive correlation between absolute values of radiogenic lead isotopes and insoluble High Field Strength Elements (HFSE such as 207Pb vs Nb (r=0.81, 207Pb vs TiO2 (r=0.93, 207Pb vs Th (r=0.79 and strong correlation between these elements and some mafic components like 208Pb vs Fe2O3 (r=0.94 and Th vs MgO (r=0.86 represent entrance of radiogenic lead with mafic detrital materials into the sedimentary basin. Similar linear trend among 206Pb/Pb204 vs 208Pb/Pb204 and 207Pb/Pb204 ratios in nodules and manganese layers show the same geochemical condition in Mn-nodules and layers formation and

  6. Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Isaacson, Lloyd S., E-mail: lisaac11@scu.edu.au [Southern Cross GeoSciences, Southern Cross University, Lismore, NSW 2480 (Australia); Burton, Edward D.; Bush, Richard T. [Southern Cross GeoSciences, Southern Cross University, Lismore, NSW 2480 (Australia); Mitchell, David R.G. [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Science, Menai, NSW 2234 (Australia); Electron Microscope Unit, University of Sydney, NSW 2006 (Australia); Johnston, Scott G. [Southern Cross GeoSciences, Southern Cross University, Lismore, NSW 2480 (Australia); Macdonald, Bennett C.T. [The Fenner School for Environment and Society, Australian National University, Canberra 0200 (Australia); Sullivan, Leigh A. [Southern Cross GeoSciences, Southern Cross University, Lismore, NSW 2480 (Australia); White, Ian [The Fenner School for Environment and Society, Australian National University, Canberra 0200 (Australia)

    2009-10-15

    Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2-7.2), were sub-oxic to oxic (Eh 59-453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L{sup -1}. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (Fe{sup Ox}) relative to the Na-dithionite extractable fraction (Fe{sup Di}), with generally high Fe{sup Ox}:Fe{sup Di} ratios (0.52-0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe{sub 5}HO{sub 3}.4H{sub 2}O) with lesser amounts of goethite ({alpha}-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite ({gamma}-FeOOH), which occurred as nanoparticles as little as {approx}5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.

  7. Interactions Between Microbial Iron Reduction and Metal Geochemistry: Effect of Redox Cycling on Transition Metal Speciation in Iron Bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    D. Craig Cooper; Flynn W. Picardal; Aaron J. Coby

    2006-02-01

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respect to Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a ~3× increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by ~12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest

  8. Seeking evidence of multidisciplinarity in environmental geochemistry and health: an analysis of arsenic in drinking water research.

    Science.gov (United States)

    Aderibigbe, Abiodun D; Stewart, Alex G; Hursthouse, Andrew S

    2017-02-24

    A multidisciplinary approach to research affords the opportunity of objectivity, creation of new knowledge and potentially a more generally acceptable solution to problems that informed the research in the first place. It increasingly features in national programmes supporting basic and applied research, but for over 40 years, has been the arena for many research teams in environmental geochemistry and health. This study explores the nature of multidisciplinary research in the earth and health sciences using a sample selected from co-authored articles reporting research on arsenic (As) in drinking water from 1979 to 2013. A total of 889 relevant articles were sourced using the online version of the science citation index-expanded (SCI-expanded). The articles were classified according to author affiliation and later by author discipline/research interests using the Revised Field of Science and Technology Frascati manual DSTI/EAS/STP/NESTI (2006) 19/FINAL and a decision algorithm. Few articles were published on the topic until 2000. More articles were published across all affiliations in the last 10 years of the review period (2004-2013) than in the first 10 years (1979-1988). Only 84 (~9%) articles fell within the "earth and health" only and "earth, health and other" categories when classification was undertaken by author affiliation alone. This suggests that level of collaboration between earth and health scientists in arsenic in drinking water research may be very low. By refining the classification further using author discipline/research interests, only 28 of the 84 articles appear to be co-authored by earth and health scientists alongside professionals in other fields. More than half of these 28 articles involved descriptive non-experimental, observational study designs, limited in direct causal hypotheses and mechanistic investigation. If collaborative research is to lead to the increased multidisciplinary research, early interaction should be encouraged

  9. The Ellsworth terrane, coastal Maine: Geochronology, geochemistry, and Nd-Pb isotopic composition - Implications for the rifting of Ganderia

    Science.gov (United States)

    Schulz, K.J.; Stewart, D.B.; Tucker, R.D.; Pollock, J.C.; Ayuso, R.A.

    2008-01-01

    The Ellsworth terrane is one of a number of fault-bounded blocks that occur along the eastern margin of Ganderia, the western-most of the peri-Gondwanan domains in the northern Appalachians that were accreted to Laurentia in the Paleozoic. Geologic relations, detrital zircon ages, and basalt geochemistry suggest that the Ellsworth terrane is part of Ganderia and not an exotic terrane. In the Penobscot Bay area of coastal Maine, the Ellsworth terrane is dominantly composed of bimodal basalt-rhyolite volcanic sequences of the Ellsworth Schist and unconformably overlying Castine Volcanics. We use new U-Pb zircon geochronology, geochemistry, and Nd and Pb isotopes for these volcanic sequences to constrain the petrogenetic history and paleotectonic setting of the Ellsworth terrane and its relationship with Ganderia. U-Pb zircon geochronology for rhyolites indicates that both the Ellsworth Schist (508.6 ?? 0.8 Ma) and overlying Castine Volcanics (503.5 ?? 2.5 Ma) are Middle Cambrian in age. Two tholefitic basalt types are recognized. Type Tb-1 basalt, present as pillowed and massive lava flows and as sills in both units, has depleted La and Ce ([La/Nd]N = 0.53-0.87) values, flat heavy rare earth element (REE) values, and no positive Th or negative Ta anomalies on primitive mantle-normalized diagrams. In contrast, type Th-2 basalt, present only in the Castine Volcanics, has stightly enriched LREE ([La/Yb]N = 1.42-2.92) values and no Th or Th anomalies. Both basalt types have strongly positive ??Nd (500) values (Th-1 = +7.9-+8.6; Th-2 = +5.6-+7.0) and relatively enriched Pb isotopic compositions (206Ph/204Pb = 18.037-19.784; 207/204Pb = 15.531-15.660; 2088Pb/204Pb = 37.810-38.817). The basalts have compositions transitional between recent normal and enriched mid-ocean-ridge basalt, and they were probably derived by partial melting of compositionatly heterogeneous asthenosphenc mantle. Two types of rhyolite also are present. Type R-1 rhyolite, which mostly occurs as tuffs

  10. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones

    Science.gov (United States)

    Nothdurft, Luke D.; Webb, Gregory E.; Kamber, Balz S.

    2004-01-01

    Rare earth element and yttrium (REE+Y) concentrations were determined in 49 Late Devonian reefal carbonates from the Lennard Shelf, Canning Basin, Western Australia. Shale-normalized (SN) REE+Y patterns of the Late Devonian samples display features consistent with the geochemistry of well-oxygenated, shallow seawater. A variety of different ancient limestone components, including microbialites, some skeletal carbonates (stromatoporoids), and cements, record seawater-like REE+Y signatures. Contamination associated with phosphate, Fe-oxides and shale was tested quantitatively, and can be discounted as the source of the REE+Y patterns. Co-occurring carbonate components that presumably precipitated from the same seawater have different relative REE concentrations, but consistent REE+Y patterns. Clean Devonian early marine cements ( n = 3) display REE+Y signatures most like that of modern open ocean seawater and the highest Y/Ho ratios (e.g., 59) and greatest light REE (LREE) depletion (average Nd SN/Yb SN = 0.413, SD = 0.076). However, synsedimentary cements have the lowest REE concentrations (e.g., 405 ppb). Non-contaminated Devonian microbialite samples containing a mixture of the calcimicrobe Renalcis and micritic thrombolite aggregates in early marine cement ( n = 11) have the highest relative REE concentrations of tested carbonates (average total REE = 11.3 ppm). Stromatoporoid skeletons, unlike modern corals, algae and molluscs, also contain well-developed, seawater-like REE patterns. Samples from an estuarine fringing reef have very different REE+Y patterns with LREE enrichment (Nd SN/Yb SN > 1), possibly reflecting inclusion of estuarine colloidal material that contained preferentially scavenged LREE from a nearby riverine input source. Hence, Devonian limestones provide a proxy for marine REE geochemistry and allow the differentiation of co-occurring water masses on the ancient Lennard Shelf. Although appropriate partition coefficients for quantification of

  11. Special Characteristics and Construction Practice of Geochemistry Discipline%地球化学专业特色与建设实践

    Institute of Scientific and Technical Information of China (English)

    杨忠芳; 冯海艳; 侯青叶; 余涛; 李大鹏

    2012-01-01

    中国地质大学(北京)地球化学学科为国家级重点学科,经过几代地化人的不断努力,逐渐形成了独具我校特色的理论地球化学、壳幔演化及动力学、应用地球化学三个研究方向。通过高等学校特色专业建设要求,以人才培养方案建设为核心,以师资队伍建设为基础,以野外实践教学建设为保障,以室内试验动手能力培养为重点,以教材建设和双语教学为手段,以提高教学质量为根本,以科研项目为支撑的学科建设理念,使地球化学学科建设取得了显著成效,为我国地球化学专业人才培养作出了贡献。%The discipline of geochemistry in China University of Geosciences is the national key discipline. With the hard work of several generations, the discipline had gradually formed three unique research directions, which are the theory geochemistry, geodynamics of crustal and mantle evolution, and applied geochemistry. Through the construction of the national key discipline in high schools, and with the educational scheme construction as the focus, the teaching staff construction as the foundation, field practical teaching as the guarantee, indoor practice ability improvement as the key point, textbook construction and bilingual teaching as the approaches, improving the teaching quality as the fundamentality, and scientific research projects as the support, the discipline has got remarkable achievement and trained a lot of geochemical professional talents for our country.

  12. Microbial Paleontology, Mineralogy and Geochemistry of Modern and Ancient Thermal Spring Deposits and Their Recognition on the Early Earth and Mars"

    Science.gov (United States)

    Farmer, Jack D.

    2004-01-01

    The vision of this project was to improve our understanding of the processes by which microbiological information is captured and preserved in rapidly mineralizing sedimentary environments. Specifically, the research focused on the ways in which microbial mats and biofilms influence the sedimentology, geochemistry and paleontology of modem hydrothermal spring deposits in Yellowstone national Park and their ancient analogs. Toward that goal, we sought to understand how the preservation of fossil biosignatures is affected by 1) taphonomy- the natural degradation processes that affect an organism from the time of its death, until its discovery as a fossil and 2) diagenesis- longer-term, post-depositional processes, including cementation and matrix recrystallization, which collectively affect the mineral matrix that contains fossil biosignature information. Early objectives of this project included the development of observational frameworks (facies models) and methods (highly-integrated, interdisciplinary approaches) that could be used to explore for hydrothermal deposits in ancient terranes on Earth, and eventually on Mars.

  13. Mineralogy, geochemistry, porosity and redox properties of rocks from Forsmark. Compilation of data from the regional model volume for SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern (WSP Sverige AB, Stockholm (Sweden)); Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2009-11-15

    This report is a compilation of the data acquired during the Forsmark site investigation programme on the mineralogy, geochemistry, redox properties and porosity of different rock types at Forsmark. The aim is to provide a final summary of the available data for use during the SR-Site modelling work. Data presented in this report represent the regional model volume and have previously been published in various SKB reports. The data have been extracted from the SKB database Sicada and are presented as calculated median values, data range and lower/upper quartile. The representativity of all samples used for the calculations have been evaluated and data from samples where there is insufficient control on the rock type have been omitted. Rock samples affected by alteration have been omitted from the unaltered samples and are presented separately based on type of alteration (e.g. oxidised or albitized rock)

  14. Experimental microcosm study of the effects of Deepwater Horizon MC-252 oil on the geochemistry and microbiology of Gulf Coast sediment

    Science.gov (United States)

    Donahoe, R. J.; Bej, A.; Raulerson, A.; Rentschler, E. K.

    2011-12-01

    Microcosm experiments were conducted to examine the impact of oil contamination on Gulf Coast sediment geochemistry and microbial population dynamics. Coastal sediment and seawater were collected from a salt marsh at Bayou la Batre, Alabama, which was not severely impacted by the BP Deepwater Horizon accident of April 2010. Sediment/seawater microcosms were set up in glass jars combusted for 5 hours at 450 degrees C. Non-sterile microcosms spiked with 500 ppm of MC-252 oil were sacrificed in duplicate at various time intervals over a 14 day period to establish a data time series. Sterile controls with and without oil and a non-sterile control without oil were sacrificed in duplicate at 14 days for comparison with the time-series experiments. Solid and aqueous phases were separated by centrifugation and prepared for analysis. Sediment mineralogy was determined using X-ray diffraction and acid-extractable sediment chemistry determined using EPA Method 3051A and ICP-OES analysis. The aqueous phase chemistry was analyzed by ICP-OES and ion chromatography. The mineralogy of the salt marsh sediment is predominantly quartz, but includes reactive phases such as clays (smectite, illite), feldspar, and iron oxide. Iron-bearing clays and iron oxides can serve as electron acceptors for the growth of Fe(III)-reducing bacteria. Microwave digestions of the microcosm substrate samples were performed in triplicate and show no significant variation in major element chemistry over the course of the two week experiment, suggesting that observed temporal trends in aqueous geochemistry may be due to ion exchange processes, rather than mineral dissolution reactions. Microcosm substrate trace element data which indicate possible differences with time are being analyzed for statistical significance. Analysis of aqueous solution geochemistry reveals several interesting temporal trends. Iron and manganese were released to solution after 2 days, suggesting the presence of facultative

  15. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan; E. Taylor

    2001-07-31

    A principal goal of the Budget Period I was to demonstrate that surface geochemistry could be used to locate bypassed hydrocarbons in old fields. This part of the program was successful. A surface geochemical survey, employing 5 different techniques, was carried out in the Spring and Summer of 2000 and a demonstration well, the State Vernon & Smock 13-23 HD1 (permit number: PN 53945) was drilled in Vernon Township, Isabella County, Michigan in the late fall of 2000. A demonstration well was selected and drilled based on geologic considerations and surface geochemistry. Over 460 soil samples were collected and analyzed over the drill site. A good anomaly was detected near the proposed well site and the demonstration well, the Smock 13-23, was drilled to a depth of 3157 feet by November 17, 2000. Two laterals were drilled, and hydrocarbons were located in a zone approximately 175 feet in length. However, it was determined that the pay zone was too small and difficult reservoir conditions (water production) prevented putting the well in production. The Smock 13-23 was shut in and abandoned January 15, 2001. A post-mortem determined that the main reason the well was not economic was because the zone was nearly completely flushed by earlier recovery operations. The post mortem also revealed the presence of an unmapped shale plug crossing the first lateral. It appears that this shale was detected by the geochemical survey, but its significance was not appreciated at the time. It is possible that sections of the well were faulty, ''porposing'' up and down so as to create water blockages. We are continuing to use the Vernon Field and the demonstration well to calibrate the geochemical data. Eventually, this study may provide a standard site that can be used to test and calibrate geochemical anomalies, something that does not presently exist. A postmortem report on the well, including the geology and geochemistry used to site the well, is presented in

  16. Quelques aspects de la géochimie organique dans la prospection des hydrocarbures Several Aspects of Organic Geochemistry in Prospection for Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Kubler B.

    2006-10-01

    Full Text Available La classification, d'après la composition des huiles brutes, permet maintenant de reconnaître des origines semblables ou différentes. Dans certains cas, les corrélations non seulement entre indices et accumulations, mais entre roches mères et accumulations sont devenues sûres. L'étude, selon un fil logique du devenir des composés de la matière organique vivante, morte, fossilisée puis diagénisée, a permis de préciser l'origine organique des pétroles mais encore de lier la composition de ceux-ci aux types dominants de matière organique des bassins sédimentaires, donc de fixer les conditions de sédimentation, les environnements les plus favorables à l'accumulation et la préservation de matière organique pétroligène. Cependant, la contribution la plus importante de la géochimie organique à l'exploration est certainement d'avoir pu fixer, dans un premier temps, une fourchette de température, puis de température et de durée : le facteur thermo-temporel de naissance de production maximale puis de conservation des hydrocarbures liquides : la fenêtre à huile potentielle. Plus récemment la géochimie des gaz hydrocarburés a pu montrer que cette fenêtre à huile était encadrée par la génération de gaz légers. Ce développement récent remet en valeur des objectifs de prospection abandonnés ou classés sans intérêt. Cependant par essence même la géochimie organique, comme la majorité. des sciences qui utilisent le laboratoire, donne des résultats ponctuels : ceux-ci ne trouvent toute leur signification que si les échantillons géologiques sont bien situés dans la configuration géologique à laquelle ils appartiennent. Organic geochemistry has made great strides, thanks in particular to the range of analytical tools, often in the forefront of technological progress, which have been developed for medical and biochemical research. Classification according to the composition of crude oils now make it possible to

  17. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    Energy Technology Data Exchange (ETDEWEB)

    Kupferman, S.L. (ed.)

    1987-05-01

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group has also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base.

  18. Uranium-series radionuclides as tracers of geochemical processes in Long Island Sound. [Natural /sup 210/Pb tracer study of estuarine geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Benninger, L.K.

    1976-05-01

    An estuary can be visualized as a membrane between land and the deep ocean, and the understanding of the estuarine processes which determine the permeability of this membrane to terrigenous materials is necessary for the estimation of fluxes of these materials to the oceans. Natural radionuclides are useful probes into estuarine geochemistry because of the time-dependent relationships among them and because, as analogs of stable elements, they are much less subject to contamination during sampling and analysis. In this study the flux of heavy metals through Long Island Sound is considered in light of the material balance for excess /sup 210/Pb, and analyses of concurrent seston and water samples from central Long Island Sound are used to probe the internal workings of the estuary.

  19. REE Geochemistry of Fluorite from the Maoniuping REE Deposit, Sichuan Province, China: Implications for the Source of Ore-forming Fluids

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based on REE geochemistry, fluorite in the orefieid can be classified as the LREE-rich, LREE-flat and LREE-depleted types. The three types of fluorite formed at different stages from the same hydrothermal fluid source, with the LREE-rich fluorite forming at the relatively early stage, the LREE-flat fluorite in the middle, and the LREE-depleted fluorite at the latest stage. Various lines of evidence demonstrate that the variation of the REE contents of fluorite shows no relation to the color. The mineralization of the Maoniuping REE deposit is associated spatially and temporally with carbonatite-syenite magmatism and the ore-forming fluids are mainly derived from carbonatite and syenite melts.

  20. Fluid Inclusion Studies and Geochemistry of Rare Earth Elements of Hydrothermal Fluorites from P?hrenk, Kir?ehir, Central Turkey

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fluorite mineralization occurs along fractures and cracks of Middle Eocene and Pliocene limestones and marls in the north and northeast of the P?hrenk region (?i?ekdagi, Kirsehir). Tb/Ca ( Tb/La and Y/Ho ratios were obtained from REE contents of fluorites which have revealed that mineralization is of hydrothermal type. Negative Ce anomalies and positive Eu anomalies reflect that hydrothermal solutions once had high oxygen fugacity. Fluid inclusion studies indicate that homogenization temperatures of mineralization varied between 90oC and 200oC, and hydrothermal solutions are composed of NaCl + KCl + MgCl2 + H2O. In addition, salinity measurements show that hydrothermal solutions were mixed with meteoric or rock formation water. Geologic setting, REE geochemistry and fluid inclusion studies suggest that mineralization was deposited from a solution generated by mixing of magmatic and meteoric water under epithermal conditions.

  1. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; A. Wylie; W. Quinlan

    2004-04-01

    One of the main objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. As part of the project, several field demonstrations were undertaken to assess the validity and usefulness of the microbial surface geochemical technique. The important observations from each of these field demonstrations are briefly reviewed in this annual report. These demonstrations have been successful in identifying the presence or lack of hydrocarbons in the subsurface and can be summarized as follows: (1) The surface geochemistry data showed a fair-to-good microbial anomaly that may indicate the presence of a fault or stratigraphic facies change across the drilling path of the State Springdale & O'Driscoll No.16-16 horizontal demonstration well in Manistee County, Michigan. The well was put on production in December 2003. To date, the well is flowing nearly 100 barrels of liquid hydrocarbons per day plus gas, which is a good well in Michigan. Reserves have not been established yet. Two successful follow-up horizontal wells have also been drilled in the Springdale area. Additional geochemistry data will be collected in the Springdale area in 2004. (2) The surface geochemistry sampling in the Bear Lake demonstration site in Manistee County, Michigan was updated after the prospect was confirmed and production begun; the original subsurface and seismic interpretation used to guide the location of the geochemical survey for the Charlich Fauble re-entry was different than the interpretation used by the operator who ultimately drilled the well. As expected, the anomaly appears to be diminishing as the positive (apical) microbial anomaly is replaced by a negative (edge) anomaly, probably due to the pressure draw-down in the reservoir. (3) The geochemical sampling program over the Vernon Field, Isabella County, Michigan is now

  2. Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Hull, A.B.; Williams, L.B.

    1985-07-01

    Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

  3. Sulfur geochemistry and microbial sulfate reduction during low-temperature alteration of uplifted lower oceanic crust: Insights from ODP Hole 735B

    Science.gov (United States)

    Alford, Susan E.; Alt, Jeffrey C.; Shanks, Wayne C.

    2011-01-01

    Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/ΣS values (≤ 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100–1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures ≤ 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in δ34Ssulfide values (− 1.5 to + 16.3‰) and variable additions of sulfide are explained by variable εsulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/ΣS (≥ 0.46) and variable δ34Ssulfide (0.7 to 16.9‰). Negative δ34Ssulfate–δ34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide–sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.

  4. Vent 7504 of the San Francisco Volcanic Field (SFVF), Arizona: Sample Geochemistry and Implications for Cone Formation

    Science.gov (United States)

    Needham, D. H.; Eppler, D. B.; Bleacher, J. E.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Whitson, P. A.; Janoiko, B. A.; Mertzman, S. A.

    2015-12-01

    Vent 7504 is a complex structure in the SFVF that has 3 unit classes: a central cone with exposed dikes and cinder-covered rheomorphic facies; a SE/NW-trending ridge north of the cone with cinder-covered rheomorphic facies; and three discrete lava flows that emanate to the N from the ridge and to the SW and NW from the cone. Field observations suggest the ridge was the northern crest of an initial, larger cone. The NW portion of this cone was most likely disrupted during a catastrophic breach of lava that had accumulated within the cone; this third of three lava flows carried rafted packages of the rheomorphic cone facies to the NW, forming the linear N ridge. The final phase of pyroclastic activity was concentrated in the SW portion of the original cone, covering the top of the cone with cinders and forming the more traditional conic-shaped construct observed today. This study describes the geochemistry of 9 samples collected from the mapped units (2 from the cone, 1 from the N ridge, 1 from the N lava flow, 2 from the SW lava flow, and 3 from the NW lava flow) to further constrain the formation of Vent 7504. Geochemical analyses including back-scatter electron scanning electron microscopy and laboratory X-ray fluorescence spectroscopy were conducted on the 9 collected samples to measure bulk rock and olivine phenocryst compositions. Major element concentrations in the bulk rock and olivine compositions are strongly clustered in all samples, indicating they likely originated from a single magmatic source. Bulk rock SiO2 (~47.5 wt%) and alkali (Na2O + K2O, ~2.7 wt% + 0.71 wt%) concentrations are consistent with a basaltic classification for these samples. Trends in major elements relative to MgO are observed for the olivine phenocrysts: SiO2, Al2O3, Na2O, and TiO2 remain constant relative to MgO, but strong linear trends are observed in MnO, FeO, and NiO relative to MgO. These linear trends are expected given the potential for bivalent cation exchanges in the

  5. Trace element geochemistry of zircons from mineralizing and non-mineralizing igneous rocks related to gold ores at Yanacocha, Peru

    Science.gov (United States)

    Koleszar, A. M.; Dilles, J. H.; Kent, A. J.; Wooden, J. L.

    2012-12-01

    Zircons record important details about the evolution of magmatic systems, are relatively insensitive to alteration, and have been used to investigate the geochemistry, temperature, and oxidation state of volcanic and plutonic system. We examine zircons that span 6-7 m.y. of calc-alkaline volcanic activity in the Yanacocha district of northern Peru, where dacitic intrusions are associated with high-sulfidation gold deposits. The 14.5-8.4 Ma Yanacocha Volcanics include cogenetic lavas and pyroclastic rocks and are underlain by the andesites and dacites of the Calipuy Group, the oldest Cenozoic rocks in the region. We present data for magmatic zircons from the Cerro Fraile dacitic pyroclastics (15.5-15.1 Ma) of the Calipuy Group, and multiple eruptive units within the younger Yanacocha Volcanics: the Atazaico Andesite (14.5-13.3 Ma), the Quilish Dacite (~14-12 Ma), the Azufre Andesite (12.1-11.6 Ma), the San Jose Ignimbrite (11.5-11.2 Ma), and the Coriwachay Dacite (11.1-8.4 Ma). Epithermal high sulfidation (alunite-bearing) gold deposits are associated with the dacite intrusions of the Coriwachay and Quilish Dacites. Zircons from the non-mineralizing rocks typically have lower Hf concentrations and record Ti-in-zircon temperatures that are ~100°C hotter than zircons from the mineralizing intrusions. Temperatures recorded by zircons from the mineralizing intrusions are remarkably similar to those of the underlying Cerro Fraile dacite pyroclastics, but the zircons discussed here generally record SHRIMP-RG 206Pb/238U ages within error of previously published Ar-Ar eruption ages (eliminating antecrystic or xenocrystic origins). These observations suggest that zircons in the mineralizing intrusions form after greater extents of crystallization (and thus record elevated Hf concentrations and lower temperatures) than do zircons in the non-mineralized deposits. Unlike zircons from mineralized units associated with the porphyry Cu(Mo) deposits in Yerington, Nevada, which

  6. Influence of geological features (geochemistry and mineralogy) of soil wich constitutes adobes in their durability - Huambo, Angola.

    Science.gov (United States)

    Duarte, Isabel; Pedro, Elsa; Varum, Humberto; Mirão, José; Pinho, António

    2014-05-01

    mineralogy and geochemistry of soils used in the production of adobes applied in the construction of habitations, mainly, because from this knowledge, we can develop alternatives to the resolution of recorded pathologies and to improve the strength and durability of those adobes. For this purpose, soil samples were collected, in which mineralogical and geochemical tests were performed. Simultaneously, durability and erodibility tests were done by the method of Geelong in the selected adobes. The results obtained from this research will identify, select and characterize the materials and methods used in construction in raw earth, contributing to the development of knowledge of these sustainable buildings solutions with a strong presence in the Huambo region. From the analysis of the data obtained will be defined a strategy for the next steps of the scientific research project in course designated "Earth Construction in Angola. Characterization, applications and potentialities.". This project aims to encourage the use of the geomaterials in ecological construction and contribute, however modestly, in building solutions with better performance characteristics, comfort, safety, durability and sustainability.