WorldWideScience

Sample records for geochemical surveys

  1. National Geochemical Survey Locations and Results for Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The United States Geological Survey (USGS), in collaboration with other state and federal agencies, industry, and academia, is conducting a National Geochemical...

  2. Panay carborne radiometric and geochemical surveys

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1981-09-01

    A carborne radiometric survey and stream sediments collection were conducted in Panay and Guimaras Islands. An area in Nabas, Aklan, situated in the northwestern tip of Panay (Buruanga Peninsula) which indicated 2 to 3 times above background radioactivity was delineated. Uranium content in the stream sediment samples collected from Buruanga Peninsula was generally higher than those obtained in other parts of the island. Radioactivity measurements and uranium content in stream sediments were found to be within background levels. It is recommended that follow-up radiometric and geochemical surveys be undertaken in Buruanga Peninsula and additional stream sediments samples be collected in Panay to achieve better sampling density and coverage. (author)

  3. Semi-detailed uranium geochemical survey in Northwestern Samar (27 March 1979 - 4 July 1979)

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Ogena, M.; Tauli, G.

    1980-04-01

    A uranium geochemical survey was conducted to delineate in detail the uranium prospective area(s) in northwestern Samar. A total of 805 stream sediments and 1.115 water samples were obtained from the target areas from uranium analysis. Geochemical anomalies were indicated in San Isidro and Mauo. Geochemical correlations between uranium and trace elements (Pb, Ag, Ni, Cu, Co, Zn and Mn) were generally poor. (ELC)

  4. Reconnaissance geochemical survey for uranium and related industrial minerals in Cebu Island

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Ramos, A.F.; Magsambol, W.N.; Hernandez, E.

    1989-03-01

    Consistent with the program of evaluating the nuclear mineral resource potential and related industrial minerals of the Philippines, a reconnaissance geochemical survey was conducted in Cebu with considerable success. The total area covered by the survey was about 5,088 sq. kms. The survey consisted of systematic collection of 857 geochemical stream and water and heavy mineral samples, and measurement of radioactivity in over 352 stations. The average sampling density was about one set of samples per 15 to 30 sq. kms. All solid samples were analyzed for U, Cu, Pb, Zn, Mn, Ag, Co and Ni. Uranium, radon and conductivity were measured on most water samples collected. A total of 4,518 elemental determinations were involved. All field and analytical data were treated by statistics, and the computed parameters data were correlated with the geology of the area to establish anomalous zones. Four areas were delineated for possible uranium mineralization. Of the areas, the Mandaue river area is the most interesting for uranium. The contact zone between the diorite and the sedimentary rocks in this area appears to be a favorable geological environment for uranium mineralization. The other anomalous uranium values were found to be related with the guano and phosphate deposits. Uranium was also shown to be independent of the other seven elements in the geologic environment of Cebu. No definite elemental association could be established at present. This study also marks the thorough utilization of Q'GAS, Cadplot and Autocad, all microcomputer-based programs/systems, in the evaluation and interpretation of exploration-oriented geochemical and geological data, and with more significance in the sense that computer generated quality geochemical maps were produced, a first in the country. (Author). Appendices (23); 23 figs; 13 refs.; 4 tabs

  5. Geochemical prospecting for uranium and thorium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1980-01-01

    A brief review of analytical geochemical prospecting methods for uranium and thorium is given excluding radiometric techniques, except those utilized in the determination of radon. The indicator (pathfinder) elements useful in geochemical surveys are listed for each of the types of known uranium and thorium deposits; this is followed by sections on analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys) and gases (atmochemical surveys). All of the analytical geochemical methods are applicable in prospecting for thorium and uranium, particularly where radiometric methods fail due to attenuation by overburden, water, deep leaching and so on. Efficiency in the discovery of uranium and/or thorium orebodies is promoted by an integrated methods approach employing geological pattern recognition in the localization of deposits, analytical geochemical surveys, and radiometric surveys. (author)

  6. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Tonsina area, Valdez Quadrangle, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies

  7. Geochemical surveys in the United States in relation to health

    Energy Technology Data Exchange (ETDEWEB)

    Tourtelot, H A

    1979-12-11

    Geochemical surveys in relation to health may be classified as having one, two or three dimensions. One-dimensional surveys examine relations between concentrations of elements such as Pb in soils and other media and burdens of the same elements in humans, at a given time. The spatial distributions of element concentrations are not investigated. The primary objective of two-dimensional surveys is to map the distributions of element concentrations, commonly according to stratified random sampling designs based on either conceptual landscape units or artificial sampling strata, but systematic sampling intervals have also been used. Political units have defined sample areas that coincide with the units used to accumulate epidemiological data. Element concentrations affected by point sources have also been mapped. Background values, location of natural or technological anomalies and the geographic scale of variation for several elements often are determined. Three-dimensional surveys result when two-dimensional surveys are repeated to detect environmental changes.

  8. Sulfide geochemical survey in Dawahan, Larap, Camarines Norte (Southern Luzon), Philippines

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1979-07-01

    Sulfide geochemical activation analysis survey was conducted in Southern Luzon, Philippines. Trace elements in the rocks of Dawahan, Larap, Camarines Norte, particularly in the sulfide fraction of the rocks were determined and correlated in the search for mineral deposits in the project area. The study has shown that the Cu, V, Co, Pb, Mn, Zn, Ni, Au, Ag and As distributions in Dawahan are log normal with Cu, As and V having an excess of low values. There is a direct relationship between the mineralizations of Ag and Pb with Cu mineralization. Fair geochemical correlations were observed between Cu-Zn, Cu-As and Cu-Co. Low negative or inverse correlation exists between Cu-Mn, Cu-V and Cu-Au. Silver is a good pathfinder for copper deposits in Dawahan and adjacent areas and most probably including the Paracale mining district

  9. Neutron activation analysis in reconnaissance geochemical survey of Northwestern Mindoro

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.G.

    1987-01-01

    Instrumental neutron activation analysis (NAA) technique was used to analyze stream sediments collected in Northwestern Mindoro. The concentration levels of 18 elements were determined. It was noted that NAA is suitable for the determination of rare earth, gold, arsenic and cobalt among others because of favorable high neutron cross sections. Samples collected in regional reconnaissance geochemical surveys could be analyzed usng NAA technique to complement other non-nuclear techniques, such as atomic absorption and X-ray fluorescence analysis. (Author). 11 figs.; 2 tabs.; 12 refs

  10. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  11. Stream sediment detailed geochemical survey for Marysvale, Utah

    International Nuclear Information System (INIS)

    Butz, T.R.; Vreeland, J.L.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Marysvale detailed geochemical survey are reported. Field and laboratory data are presented for 397 stream sediment samples and 160 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Stream sediments containing significant amounts of soluble uranium (greater than or equal to 16.93 ppM) occur in numerous areas, the most prevalent being in the western portion of the survey area, within and surrounding the Mount Belknap Caldera. Thorium, beryllium, cerium, manganese, molybdenum, niobium, potassium, yttrium, zinc, and zirconium occur in concentrations greater than or equal to 84th percentile in many sediment samples taken from within and surrounding the Mount Belknap Caldera. The uranium and related variables are associated with highly silicic intrusions and extrusions of the Mount Belknap Volcanics, as well as hydrothermal activity which has occurred in the Marysvale volcanic field

  12. Geochemical and radiometric surveys of Sabkhet Al-Jaboul area by investigating trace elements, radon measurements and gamma spectrometry

    International Nuclear Information System (INIS)

    Jubeli, Y.; Aissa, M.; Al-Hilal, M.

    1999-08-01

    Radiometric and geochemical surveys were carried out over various geological formations in Sabkhet Al-Jaboul and its surrounding environment for evaluating the levels of radioactivity in the area. Therefore, a number of exploration techniques were used in this study such as gamma ray spectrometry, geochemical exploration and soil radon measurements. Although the results of this survey indicate some slight variations of which might be useful to distinguish between various lithological units, most of the obtained data do not reveal any significant radiometric values that could be considered important from the exploration point of view. However, these data were successfully handled to estimate the natural background of radioactivity throughout the geological units of the region. The results also showed the importance of the sedimentary transition contact zone where the continental fresh and salt favourable geochemical environment for uranium precipitation when other fundamental geological requirements for developing such concentrations are available. (author)

  13. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  14. Geochemical prospecting for thorium and uranium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1982-01-01

    The basic purpose of this book is to present an analysis of the various geochemical methods applicable in the search for all types of thorium and uranium deposits. The general chemistry and geochemistry of thorium and uranium are briefly described in the opening chapter, and this is followed by a chapter on the deposits of the two elements with emphasis on their indicator (pathfinder) elements and on the primary and secondary dispersion characteristics of thorium and uranium in the vicinity of their deposits. The next seven chapters form the main part of the book and describe geochemical prospecting for thorium and uranium, stressing selection of areas in which to prospect, radiometric surveys, analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys), gases (atmochemical surveys), and miscellaneous methods. A final brief chapter reviews radiometric and analytical methods for the detection and estimation of thorium and uranium. (Auth.)

  15. A national-scale geochemical and mineralogical survey of soils of the conterminous United States

    International Nuclear Information System (INIS)

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.

    2011-01-01

    Highlights: → Sampling for national-scale soil geochemical and mineralogical survey completed for conterminous USA. → Natural variation for most elements is approximately three orders of magnitude. → Composition of soil parent material is the major controlling factor. → Climate (average annual precipitation) is also an important controlling factor for some elements. → Sample archive (4800 sites) available for future investigations. - Abstract: In 2007, the US Geological Survey initiated a low-density (1 site per 1600 km 2 , c. 4800 sites) geochemical and mineralogical survey of soils of the conterminous USA. The ideal sampling protocol at each site includes a sample from 0-5 cm depth, a composite of the soil A horizon, and a sample from the soil C horizon. The 3 , HClO 4 and HF. Separate methods are used for As, Hg, Se and total C on this same size fraction. The major mineralogical components are determined by a quantitative X-ray diffraction method. Sampling was completed in 2010 with chemical and mineralogical analysis currently underway. Preliminary results for a swath from the central USA to Florida clearly show the effects of soil parent material and climate on the chemical and mineralogical composition of soils. A sample archive will be established and made available for future investigations.

  16. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Kougarok area, Bendeleben and Teller quadrangles, Seward Peninsula, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated

  17. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Haines area, Juneau and Skagway quadrangles, southeast Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical

  18. Orientation geochemical survey for uranium exploration using 230Th

    International Nuclear Information System (INIS)

    Xia Dingliang.

    1985-01-01

    The distribution of 230 Th in soils, rocks and ores and its relationship with respect to uranium ore formation are discussed for its possible use in geochemical exploration for U. 230 Th, U and Ra, being members of the same decay series, are different in their geochemical behavior upon which the study is orientated. Twenty uranium deposits and occurrences located in western and southern Hunan province are tested. Geochemical data obtained are comprehensively correlated. It is suggested that 230 Th is useful not only in U-Ra disequilibrium study but also in understanding the geochemical evolution of U ores. The data aid to interpret the genesis of uranium deposits and to assess the radioactive anomalies and uranium-bearing zones. Therefore, it can be adopted as a tool for searching in deep-buried uranium ores. The field procedure is rather simple and flexible to meet any geological environment. It is easy to read out and is less influnced by any kind of interference. In case of disequilibrium caused by oxidation and reduction during the period of ore formation it still gives good indication compared with that of radiometry, radonmetry and geochemical sampling for U

  19. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Solitario survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Solitario survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 119 groundwater and 520 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are breifly discussed. Groundwaters having concentrations of uranium greater than or equal to 11.5 ppB are observed in the western half of the survey area. These wells generally produce from the Chisos Formation and Buck Hill Volcanic Series or alluvium derived from these units. Lithium, sodium, boron, uranium/specific conductance, uranium/boron, and uranium/sulfate are noted to be most highly associated within the area of anomalously high uranium. The highest potential for uranium mineralization, in view of these groundwater data, lies in the LaVuida and Bandera Mesa areas. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium occur in numerous areas within the survey area. The highest concentrations of uranium occur in sediments derived from the Buck Hill Volcanic Series and Cretaceous limestones. Above background concentrations of arsenic, selenium, molybdenum, nickel, calcium, and strontium were noted to be associated with areas of anomalously high uranium. These elements are most prominently associated with uranium anomalies occurring in Cretaceous limestone

  20. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Pecos, Texas. Tascotal survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Tascotal survey area portion of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 337 groundwater and 611 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 80.0 ppB uranium were detected in three areas largely producing from acidic volcanoclastics in the south central portion of the survey area. High specific conductance and an association of lithium, selenium, and sodium were observed in these areas of anomalously high uranium. High uranium/specific conductance, uranium/boron, and uranium/sulfate ratios are also associated with areas of the highest uranium concentrations. Alkalinities in these areas were noted to be highly variable over short distances within the same hydrologic unit. Stream sediments containing greater than or equal to 2.57 ppM soluble uranium are located in the southwestern and the north and south central portions of the survey area. High U-FL/U-NT and low thorium/U-NT values are observed with sediments derived from acidic volcanics in the southern portions of the survey area. In areas of anomalously high uranium, an association of above background concentrations of thorium, lithium, potassium, beryllium, and zirconium were noted. In view of these data, areas containing the Buck Hill Volcanic Series, the Mitchell Mesa, and Tascotal Formations provide the best possibilities of an economical uranium deposit

  1. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  2. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical

  3. Geochemical drainage surveys for uranium: sampling and analytical methods based on trial surveys in Pennsylvania

    International Nuclear Information System (INIS)

    Rose, A.W.; Keith, M.L.; Suhr, N.H.

    1976-01-01

    Geochemical surveys near sandstone-type uranium prospects in northeastern and north-central Pennsylvania show that the deposits can be detected by carefully planned stream sediment surveys, but not by stream water surveys. Stream waters at single sites changed in U content by x10 to 50 during the 18 months of our studies, and even near known prospects, contain less than 0.2 ppB U most of the time. Uranium extractable from stream sediment by acetic acid--H 2 O 2 provides useful contrast between mineralized and nonmineralized drainages of a square mile or less; total U in sediment does not. High organic material results in increased U content of sediments and must be corrected. Changes in U content of sediment with time reach a maximum of x3 and appear to be of short duration. A sediment of about 200 mi 2 near Jim Thorpe detects anomalies extending over several square miles near known occurrences and a second anomaly about two miles northeast of Penn Haven Jct. A similar survey in Lycoming-Sullivan Counties shows anomalous zones near known prospects of the Beaver Lake area and northwest of Muncy Creek. As, Mn, Pb, and V are enriched in the mineralized zones, and perhaps in surrounding halo zones, but do not appear to be pathfinder elements useful for reconnaissance exploration

  4. Methods for geochemical analysis

    Science.gov (United States)

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  5. Chemical elements in the environment: multi-element geochemical datasets from continental to national scale surveys on four continents

    Science.gov (United States)

    Caritat, Patrice de; Reimann, Clemens; Smith, David; Wang, Xueqiu

    2017-01-01

    During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality-controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents.

  6. Geochemical Survey of Pernambuco

    International Nuclear Information System (INIS)

    Horowitz, A.; Duarte, P.J.; Almeida, M.G. de; Medeiros, M.O.

    1988-01-01

    The area studied i this work is located in a triangle formed by the Sibiro and Boca da Mata Sugar-Mills and Serinhaem country. In the Cabo Formation the search determinated conglomerates, arcos and clays. Although the highest geochemical activity have been done in the decomposed crystalin, and the values from Cabo Formation don't be encourager, this formation has lithology compatible with uranium mineralization. The Cabo Formation's sediments presents lithologic variations very expressives, with conglomerates, arcoses and clay silts, which determinate the choise of the area. This area presented favorable to uranium prospecting and to others elements interesting to ragional geochemistry. The atomic absorption analysis, fluorimetry and spectrometry were done for the following elements: Zn, V, Ti, Ni, Pb, Mn, Ga, Cu, Co, Bi, Ag, B, Mo, and U. (C.D.G.) [pt

  7. Hydrogeochemical and stream sediment detailed geochemical survey for Trans-Peco, Texas. Sierra Vieja survey area

    International Nuclear Information System (INIS)

    Butz, T.R.; Payne, A.G.; Grimes, J.G.; Helgerson, R.N.; Bard, C.S.

    1979-01-01

    Results of the Sierra Vieja survey area of the detailed geochemical survey for Trans-Pecos, Texas are reported. Field and laboratory data are presented for 29 groundwater and 240 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Highest concentrations of uranium in groundwater predominantly occur in areas marginal to the Rio Grande. These wells and spring produce from Quaternary alluvium or the Vieja Group. High specific conductance is also associated with most of the wells located marginal to the Rio Grande. The specific conductance of wells in other areas with greater than or equal to 11.5 ppB uranium are notably lower. Higher than background concentrations of molybdenum, arsenic, and vanadium are observed with wells containing greater than or equal to 11.5 ppB uranium. Total alkalinity and pH display a variable distribution throughout the survey area. Stream sediment from several areas contain greater than or equal to 2.57 soluble uranium. In areas where these concentrations account for greater than or equal to 83% of the uranium present in the sediment, above background concentrations of sodium, aluminum, barium, potassium, zirconium, cerium, and strontium are detected. The degree to which these elements are associated with favorably high uranium concentrations is related to the relative amounts of volcaniclastic and calcareous sedimentary material incorporated in the sample

  8. Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Butz, T.R.; Dean, N.E.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-05-31

    Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at the surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.

  9. Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming

    International Nuclear Information System (INIS)

    Butz, T.R.; Dean, N.E.; Bard, C.S.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at the surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines

  10. Geochemical surveys in the Lusi mud eruption

    Science.gov (United States)

    Sciarra, Alessandra; Mazzini, Adriano; Etiope, Giuseppe; Inguaggiato, Salvatore; Hussein, Alwi; Hadi J., Soffian

    2016-04-01

    The Lusi mud eruption started in May 2006 following to a 6.3 M earthquake striking the Java Island. In the framework of the Lusi Lab project (ERC grant n° 308126) we carried out geochemical surveys in the Sidoarjo district (Eastern Java Island, Indonesia) to investigate the gas bearing properties of the Watukosek fault system that crosses the Lusi mud eruption area. Soil gas (222Rn, CO2, CH4) concentration and flux measurements were performed 1) along two detailed profiles (~ 1km long), trending almost W-E direction, and 2) inside the Lusi embankment (about 7 km2) built to contain the erupted mud. Higher gas concentrations and fluxes were detected at the intersection with the Watukosek fault and the antithetic fault system. These zones characterized by the association of higher soil gas values constitute preferential migration pathways for fluids towards surface. The fractures release mainly CO2 (with peaks up to 400 g/m2day) and display higher temperatures (up to 41°C). The main shear zones are populated by numerous seeps that expel mostly CH4. Flux measurements in the seeping pools reveal that φCO2 is an order of magnitude higher than that measured in the fractures, and two orders of magnitude higher for φCH4. An additional geochemical profile was completed perpendicularly to the Watukosek fault escarpement (W-E direction) at the foots of the Penanngungang volcano. Results reveal CO2 and CH4 flux values significantly lower than those measured in the embankment, however an increase of radon and flux measurements is observed approaching the foots of the escarpment. These measurements are complemented with a database of ~350 CH4 and CO2 flux measurements and some soil gas concentrations (He, H2, CO2, CH4 and C2H6) and their isotopic analyses (δ13C-CH4, δD-CH4 and δ13C-CO2). Results show that the whole area is characterized by diffused gas release through seeps, fractures, microfractures and soil degassing. The collected results shed light on the origin of the

  11. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    Science.gov (United States)

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful

  12. Interpretation of aerial gamma-ray surveys - adding the geochemical factors

    International Nuclear Information System (INIS)

    Dickson, B.L.; Scott, K.M.

    1997-01-01

    Aerial gamma-ray surveying reflects the geochemical variations of potassium, uranium and thorium in the upper 30 cm of the Earth's surface. This thin layer is subject to the effects of weathering, which leads to loss of K in all rock types and, for felsic rocks, loss of U and Th as well. The extent of the loss depends on many factors, but is typically 20-30 per cent for all three radioelements. Intermediate and basic rocks show little change in radioelement concentrations during initial weathering, but pedogenesis can result in soils with 2-3 times the U and Th content of the parent rock. However, wide ranges in radioelement compositions occur for a given rock type and its weathered products. Mineralizing processes can also affect radioelement contents. For example, K is increased in altered rocks at the Copper Hill and Goonumbla porphyry Cu deposits in central NSW. Thorium concentration shows both depletion and enrichment during hydrothermal alteration, as illustrated by the Au prospects at Bimurra, in northeast Queensland. Uranium is even more erratically affected by alteration and is generally not a useful indicator of alteration. Regolith processes can affect these alteration signatures. Highly weathered deposits may lose their K, particularly if hosted by K-feldspar, as at Goonumbla. Transported soils may disguise or change rock signatures often in unexpected ways. The Mt Leyshon gold deposit, in north Queensland, is seen in the aerial survey as a K-rich area because its signature is not contaminated by material weathered from late-Silurian dolerites. Detailed interpretation of aerial gamma-ray surveys for exploration purposes requires the delineation of the major geological units of the survey area, then examination of the subtle variations within the most prospective units, aided by other data sets and field checking of the anomalous areas identified. 42 refs.,2 tabs., 13 figs

  13. Report on the survey of geothermal development at Okushiri Island, Hokkaido. Geochemical survey (Finger print method); Hokkaido Okushiritou chinetsu kaihatsu chosa chikagaku chosa (Finga print ho) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    The geochemical survey by the finger print method was carried out in the Okushiri Island area, Hokkaido, and places of fracture existence were extracted and districts of possible geothermal existence were estimated. The finger print method is a geochemical survey method of soil gas, and the soil gas was collected along the main roads and mountain streams at measuring intervals of 100-300m. The gas collector was buried 30cm deep from the ground surface for 17 days, and the soil gas that rose from deep underground was adsorbed/accumulated into activated carbon. The gas analysis was made by the high sensitivity Curie point pyrolysis/quadrupole mass spectrometer. As a result of the survey analysis, the existence of fracture zone was presumed in the district along the Shiromizusawa that is a branch of the Horonai River, district along the road of the Okushiri Island line and district 1.5km WSW from the 5.8K Pass. Further, out of all 12 specimens, 6 specimens of Type X were distributed in a group in the district 1km square in north, south, east and west with the top of Mt. Shokan almost as the center. The possible existence of geothermal reservoirs was presumed. (NEDO)

  14. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  15. Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona

    Science.gov (United States)

    Wenrich, K.J.; Aumente-Modreski, R. M.

    1994-01-01

    Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This

  16. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Patrick [Ormat Nevada, Inc., Reno, NV (United States); Fercho, Steven [Ormat Nevada, Inc., Reno, NV (United States); Perkin, Doug [Ormat Nevada, Inc., Reno, NV (United States); Martini, Brigette [Corescan Inc., Ascot (Australia); Boshmann, Darrick [Oregon State Univ., Corvallis, OR (United States)

    2015-06-01

    The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations at the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is

  17. Detailed geochemical survey for east-central Minnesota, geology and geochemistry of selected uranium targets

    International Nuclear Information System (INIS)

    Morey, G.B.; Lively, R.S.

    1980-01-01

    Results of a detailed geochemical survey of approximately 6820 km 2 in parts of Aitkin, Carlton, Kanabec, and Pine Counties, east-central Minnesota are reported. Geochemical data are presented for 883 groundwater samples and 200 bedrock samples. Although all of the groundwaters in the study area have similar major-element concentrations and therefore presumably a common ancestry, small differences in the minor-element concentrations serve to characterize various aquifers, both in the Quaternary deposits and in the bedrock. All of the aquifers locally yield waters having statistically anomalous concentrations of uranium or radon, but these anomalies are spatially coincident only in a few places and particularly in three geologic environments considered favorable for uranium mineralization. These include the following: (1) Thomson Formation near the unconformably overlying Fond du Lac Formation, (2) Hinckley Sandstone near a major fault system, and (3) Denham Formation near the unconformity with the McGrath Gneiss, particularly where these rocks are faulted and overlain by the Fond du Lac Formation. One additional uranium environment characterized by thin laminae of uraniferous apatite was located in the Thomson Formation during outcrop reconnaissance and sampling. The coincidence of this and other anomalously high uranium values in the bedrock with specific uranium and radon anomalies in the groundwater confirms the usefulness of the hydrogeochemical data to uranium exploration in this glaciated terrane

  18. Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes

    Science.gov (United States)

    Stockstill-Cahill, K. R.; Peplowski, P. N.

    2018-05-01

    PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.

  19. Oak Ridge Geochemical Reconnaissance Program

    International Nuclear Information System (INIS)

    Arendt, J.W.

    1977-03-01

    The Oak Ridge reconnaissance program is responsible for the geochemical survey in a 12-state area covering Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Iowa, Indiana, and Illinois as part of the National Uranium Resource Evaluation Program. The program concept is outlined and the planning and organization of the program is discussed

  20. Uranium geochemical exploration in northwestern Luzon

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.; Ogena, M.; Tauli, G.

    1980-01-01

    A reconnaissance geochemical stream water and sediment survey which was conducted in northwestern Luzon was able to detect ten (10) uranium anomalous areas. These anomalous areas are located along a north-south trending zone of Miocene marine clastics and sedimentary rocks with tuffaceous sediment intercalations. In general, northwest Luzon has low radioactivity except for two anomalous areas which have 3 to 6 times background radioactivity. Radon anomalies occur in sparsely scattered locations. The anomalous zones appear to be related to major north-south faults and secondary northeast-southwest trending structures. Geochemical correlations between uranium and other elements such as copper, lead, zinc, manganese, silver, cobalt and nickel are generally very poor. (author)

  1. A stream sediment geochemical survey of the Ganga River headwaters in the Garhwal Himalaya

    Science.gov (United States)

    Mukherjee, P.K.; Purohit, K.K.; Saini, N.K.; Khanna, P.P.; Rathi, M.S.; Grosz, A.E.

    2007-01-01

    This study models geochemical and adjunct geologic data to define provinces that are favorable for radioactive-mineral exploration. A multi-element bed-sediment geochemical survey of streams was carried out in the headwaters region of the Ganga River in northern India. Overall median values for uranium and thorium (3.6 and 13.8 ppm; maxima of 4.8 and 19.0 ppm and minima of 3.1 and 12.3 ppm respectively) exceed average upper crustal abundances (2.8 and 10.7 ppm) for these radioactive elements. Anomalously high values reach up to 8.3 and 30.1 ppm in thrust zone rocks, and 11.4 and 22.5 ppm in porphyroids. At their maxima, these abundances are nearly four- and three-fold (respectively) enriched in comparison to average crustal abundances for these rock types. Deformed, metamorphosed and sheared rocks are characteristic of the main central thrust zone (MCTZ). These intensively mylonitized rocks override and juxtapose porphyritic (PH) and proterozoic metasedimentary rock sequences (PMS) to the south. Granitoid rocks, the major protoliths for mylonites, as well as metamorphosed rocks in the MCT zone are naturally enriched in radioelements; high values associated with sheared and mylonitized zones are coincident with reports of radioelement mineralization and with anomalous radon concentrations in soils. The radioelement abundance as well as REE abundance shows a northward enrichment trend consistent with increasing grade of metamorphism indicating deformation-induced remobilization of these elements. U and Th illustrate good correlation with REEs but not with Zr. This implies that zircon is not a principal carrier of U and Th within the granitoid-dominant thrust zone and that other radioelement-rich secondary minerals are present in considerable amounts. Thus, the relatively flat, less fractionated, HREE trend is also not entirely controlled by zircon. The spatial correlation of geologic boundary zones (faults, sheared zones) with geochemical and with geophysical (Rn

  2. Geochemical signature of columbite-tantalite and radiometric survey of radioactive pegmatites in the region of Parelhas, Rio Grande do Norte, Brazil

    International Nuclear Information System (INIS)

    Moura, Jorge Costa de

    2013-01-01

    This thesis is the result of geochemical, structural and radiometric investigations on radioactive pegmatites of the Borborema Pegmatitic Province in Northeast Brazil. The studied area, located in the surroundings of the city of Parelhas in the region of the Serra da Borborema, is well known for its thousands of pegmatitic bodies exploited in primitive mines called 'garimpos'. The main goal was to find an efficient, cheap and routine inspection procedure to identify the origin of commercialized radioactive columbite-tantalite (coltan) ore. The Brazilian Nuclear Energy Agency (CNEN) controls uranium commerce and nuclear activity in Brazil. Without an effective method to characterize coltan ores from different localities it is impossible to control the trade. The here presented new method was developed by correlating structural features of these pegmatites with the geochemical behavior of their coltan samples. It was found that the variation of the ratio U/Th versus Nb 2 O 5 /Ta 2 O 5 provides geochemical signatures (analytical fingerprints) for the source location of such ore. A test of the new method with coltan samples of commercial batches from the Brazilian states Amapa and Rondonia also generated distinct geochemical signatures. A radiometric survey (CPS) was carried out in several mines and pegmatites to study the environmental impact of gamma radiation. It included in situ measurements of pegmatite walls, host rocks, soil, and accumulated water and revealed that gamma emitters are hardly solubilized and environmental gamma radiation therefore generally is not enhanced to a dangerous level. (author)

  3. Evaluation of uranium geochemical anomalies in the Charlotte 10 x 20 NTMS quadrangle

    International Nuclear Information System (INIS)

    Carpenter, R.H.

    1981-11-01

    This report contains a synthesis of published geological, geophysical, and geochemical information for portions of Cabarrus and Rowan Counties, NC, where uranium geochemical anomalies have been described by Heffner and Ferguson (1978). The results of a ground radiation survey in selected areas are also described. Based on an evaluation of published information and the data obtained in the field study, conclusions are made regarding the possible occurrence of uranium concentration. Recommendations for detailed surveys in certain areas are also presented

  4. Uruguay mining Inventory: Geochemical prospecting results of Valentines mapping

    International Nuclear Information System (INIS)

    Spangenberg, J.; Filippini, J.

    1985-01-01

    This work is about geochemical prospecting carried out into the Uruguay mining inventory framework. In this case the survey was in Valentines mapping. Florida, Durazno and Treinta y Tres provinces of Uruguay .

  5. Geochemical orientation for mineral exploration in the Hashemite Kingdom of Jordan

    Science.gov (United States)

    Overstreet, W.C.; Grimes, D.J.; Seitz, J.F.

    1982-01-01

    This report is a supplement to previous accounts of geochemical exploration conducted in the Hashemite Kingdom of Jordan by the Natural Resources Authority of the Royal Government of Jordan and the U.S. Geological Survey. The field work on which this report is based was sponsored by the U.S. Agency for International Development, U.S. Department of State. Procedures used in collecting various kinds of rocks, ores, slags, eluvial and alluvial sediments, heavy-mineral concentrates, and organic materials for use as geochemical sample media are summarized, as are the laboratory procedures followed for the analysis of these sample materials by semiquantitative spectrographic, atomic absorption, fluorometric, and X-ray diffraction methods. Geochemical evaluations of the possibilities for economic mineral deposits in certain areas are presented. The results of these preliminary investigations open concepts for further use in geochemical exploration in the search for metallic mineral deposits in Jordan. Perhaps the most desirable new activity would be hydrogeochemical exploration for uranium and base metals, accompanied by interpretation of such remote-sensing data as results of airborne radiometric surveys and computer-enhanced LANDSAT imagery. For more conventional approaches to geochemical exploration, however, several fundamental problems regarding proper choice of geochemical sample media for different geologic and geographic parts of the Country must be solved before effective surveys can be made. The present results also show that such common geochemical exploration techniques as the determination of the trace-element contents of soils, plant ash, and slags have direct application also toward the resolution of several archaeological problems in Jordan. These include the relation of trace-elements chemistry of local soils to the composition of botanic remains, the trace-elements composition of slags to the technological development of the extractive metallurgy of

  6. Top Soils Geochemical and Radioactivity Survey of Naples (Italy) Metropolitan.

    Science.gov (United States)

    Somma, R.; De Vivo, B.; Cicchella, D.

    2001-05-01

    The metropolitan area of Naples due to intense human activities is an emblematic area affected by various environmental pollution of soils and waters in addition to hydrogeological volcanic, seismic and bradyseismic hazards. The geology of the area is prevailing represented by volcanics erupted, from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. The morphology of the metropolitan area of Naples city can be subdivided in flat areas, constituted by reworked pyroclastic terrains, and by hills originated by the overlapping of different welded pyroclastic flows (i.e.: Campanian Ignimbrite and Neapoletan Yellow Tuff) intercalated with pyroclastic deposits of different origins (i.e.: Campi Flegrei, Mt. Somma-Vesuvius, Ischia) and ages. In order to compile a multi-element baseline geochemical and radioactivity mapping of the metropolitan area of the Napoli we have sampled for this study, in situ top soil and imported filling material (mainly soil, volcanic ash, pumice and scoriae). The sampling and radioactivity survey has been carried out on about 200 sampling sites covering an area of about 150 Km2, with a grid of 0.5 x 0.5 km in the urbanised downtown and 1 km x 1 km in the sub urban areas. In each site has been determined a radioactivity by a Scintrex GRS-500 at different emission spectra as total radioactivity (> 0.08 MeV and > 0.40 MeV), 238U (at 1.76 MeV mostly from 214Bi), 232Th (at 2.6 MeV mostly from 208Tl) and 40K (at 1.46 MeV mostly for 40K). The range of values of in situ soils are as follow for the in situ soils (Total radioactivity: 1327- 360 and 114- 47; 238U: 2.6- 1.3; 40K: 8.1- 3.1; 232U: 0.5- 0.1). Analyses of major, metallic elements and pH of each soil sample are in progress, while Pb isotopes compositions, for a selected number of samples, will be determined to discriminate the natural (geogenic) from the anthropogenic components in the soils by versus the anthropogenetic origin. The data

  7. DNA-based methods of geochemical prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Matthew [Mill Valley, CA

    2011-12-06

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  8. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Inmachuk, Kugruk, Kiwalik, and Koyuk River drainages, Granite Mountain, and the northern Darby Mountains, Bendeleben, Candle, Kotzebue, and Solomon quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract

  9. Geochemical mapping study of Panjang island

    International Nuclear Information System (INIS)

    Sutisna; Sumardjo

    2010-01-01

    Impact of industrial and regional development are not only related to an improvement of socio-economic, but also to an environmental conservation and sustainable. This impact could be observed on a change of geochemical mapping before and after an operational of the industry. In the relation with a regional development and resources utilization, the geochemical mapping have been done in the aim to know a resources and an elemental distribution at Panjang island. In this research, ko-Instrumental Neutron Activation Analysis (k_0-INAA) have been applied in an elemental quantification on the geochemical mapping. Pencuplikan of geochemical sample have been carried out by using a grid systematic method with a sample density of about 10 sample per square kilometre involved 85 pencuplikan point. The geochemical sample of sediment and soil have been provided as a dry weight of 100 mesh. Internal quality control have done by using a number of Standard Reference Materials obtained from US. Geological Survey. Fifteen elements of Sc, Co, In, Rb, Mo, Ba, Ce, Nd, Eu, La, Yb, Th, U, lr and Hf contained in standard materials have been evaluated. The analysis result show that a relative standard deviation less than 11 %, except for Mo (13 %) and lr (26 %). Fourteen elements of Al, Br, Ca, Co, Eu, Fe, La, U, Na, Ce, Mn, As, Sc and Th have been mapped and presented in this paper. The major elements of Ca, Al and Fe, and minor elements of Mn, U and Sc are distributed at all region. The lanthanide elements of La, Ce and Eu have vary concentration and could be found at the middle to the north of the island. (author)

  10. Computer analysis to the geochemical interpretation of soil and stream sediment data in an area of Southern Uruguay

    International Nuclear Information System (INIS)

    Spangenberg, J.

    2010-01-01

    In southern Uruguay there are several known occurrences of base metal sulphide mineralization within an area of Precambrian volcanic sedimentary rocks. Regional geochemical stream sediment reconnaissance surveys revealed new polymetallic anomalies in the same stratigraphic zone. Geochemical interpretation of multi-element data from a soil and stream sediment survey carried out in one of these anomalous areas is presented.

  11. Geochemical baseline studies of soil in Finland

    Science.gov (United States)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  12. Microbiological and Geochemical Survey of CO2-Dominated Mofette and Mineral Waters of the Cheb Basin, Czech Republic

    Directory of Open Access Journals (Sweden)

    Patryk Krauze

    2017-12-01

    Full Text Available The Cheb Basin (NW Bohemia, Czech Republic is a shallow, neogene intracontinental basin. It is a non-volcanic region which features frequent earthquake swarms and large-scale diffuse degassing of mantle-derived CO2 at the surface that occurs in the form of CO2-rich mineral springs and wet and dry mofettes. So far, the influence of CO2 degassing onto the microbial communities has been studied for soil environments, but not for aquatic systems. We hypothesized, that deep-trenching CO2 conduits interconnect the subsurface with the surface. This admixture of deep thermal fluids should be reflected in geochemical parameters and in the microbial community compositions. In the present study four mineral water springs and two wet mofettes were investigated through an interdisciplinary survey. The waters were acidic and differed in terms of organic carbon and anion/cation concentrations. Element geochemical and isotope analyses of fluid components were used to verify the origin of the fluids. Prokaryotic communities were characterized through quantitative PCR and Illumina 16S rRNA gene sequencing. Putative chemolithotrophic, anaerobic and microaerophilic organisms connected to sulfur (e.g., Sulfuricurvum, Sulfurimonas and iron (e.g., Gallionella, Sideroxydans cycling shaped the core community. Additionally, CO2-influenced waters form an ecosystem containing many taxa that are usually found in marine or terrestrial subsurface ecosystems. Multivariate statistics highlighted the influence of environmental parameters such as pH, Fe2+ concentration and conductivity on species distribution. The hydrochemical and microbiological survey introduces a new perspective on mofettes. Our results support that mofettes are either analogs or rather windows into the deep biosphere and furthermore enable access to deeply buried paleo-sediments.

  13. The outlier sample effects on multivariate statistical data processing geochemical stream sediment survey (Moghangegh region, North West of Iran)

    International Nuclear Information System (INIS)

    Ghanbari, Y.; Habibnia, A.; Memar, A.

    2009-01-01

    In geochemical stream sediment surveys in Moghangegh Region in north west of Iran, sheet 1:50,000, 152 samples were collected and after the analyze and processing of data, it revealed that Yb, Sc, Ni, Li, Eu, Cd, Co, as contents in one sample is far higher than other samples. After detecting this sample as an outlier sample, the effect of this sample on multivariate statistical data processing for destructive effects of outlier sample in geochemical exploration was investigated. Pearson and Spear man correlation coefficient methods and cluster analysis were used for multivariate studies and the scatter plot of some elements together the regression profiles are given in case of 152 and 151 samples and the results are compared. After investigation of multivariate statistical data processing results, it was realized that results of existence of outlier samples may appear as the following relations between elements: - true relation between two elements, which have no outlier frequency in the outlier sample. - false relation between two elements which one of them has outlier frequency in the outlier sample. - complete false relation between two elements which both have outlier frequency in the outlier sample

  14. Uranium exploration data and global geochemical baselines: The need for co-ordinated action

    International Nuclear Information System (INIS)

    Darnley, A.G.

    1997-01-01

    Public concern about environmental problems continues. In order to assess the magnitude of potential problems it is necessary to have comprehensive information. The absence of quantitative geochemical data to map the surface composition of the earth is one of the major information gaps in present day environmental science. An IAEA Technical Committee meeting held in November 1993 reviewed the uses of uranium exploration data for environmental purposes. Most attention was focussed on data involving radiation measurements. Uranium exploration programmes conducted since 1970 in many countries collected a considerable amount of geochemical survey data, providing information about the distribution of non-radioactive elements in the natural environment. Canada is one of several countries where such data provided the foundation for national geochemical mapping; other countries could benefit from similar actions. Increasing importance is being attached by governments to the need to enact effective environmental legislation concerning ''safe levels'' of many chemical substances. Such legislation requires geochemical variations in the natural environment. It is becoming necessary to make quantitative comparisons of element abundances across national boundaries, and from continent to continent. In 1995 the IAEA, with other organizations, supported UNESCO to publish a report concerned with the establishment of a Global Geochemical Reference Network. This is designed to provide a framework to connect all types of geochemical survey, to move towards international compatibility of data. The report contains recommendations relating to the standardization of field and laboratory methods; the use of the most sensitive analytical techniques; and standardization of data management. Ground and airborne gamma ray spectrometry, and nuclear laboratory techniques are all discussed. Following the publication of the report, the International Union of Geological Sciences has now established a

  15. Geochemical landscapes of the conterminous United States; new map presentations for 22 elements

    Science.gov (United States)

    Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.

    2001-01-01

    Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.

  16. Uruguay mining Inventory: geochemical prospecting results of Cerro de las Cuentas mapping

    International Nuclear Information System (INIS)

    Spangenberg, J.; Filippini, J.

    1986-01-01

    This work is about the geochemical prospecting carried out into the Uruguay mining inventory framework. In this case the survey was in Cerro de las Cuentas mapping. Cerro Largo department. Scale 1 / 50000.

  17. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  18. Predictive geochemical mapping using environmental correlation

    International Nuclear Information System (INIS)

    Wilford, John; Caritat, Patrice de; Bui, Elisabeth

    2016-01-01

    The distribution of chemical elements at and near the Earth's surface, the so-called critical zone, is complex and reflects the geochemistry and mineralogy of the original substrate modified by environmental factors that include physical, chemical and biological processes over time. Geochemical data typically is illustrated in the form of plan view maps or vertical cross-sections, where the composition of regolith, soil, bedrock or any other material is represented. These are primarily point observations that frequently are interpolated to produce rasters of element distributions. Here we propose the application of environmental or covariate regression modelling to predict and better understand the controls on major and trace element geochemistry within the regolith. Available environmental covariate datasets (raster or vector) representing factors influencing regolith or soil composition are intersected with the geochemical point data in a spatial statistical correlation model to develop a system of multiple linear correlations. The spatial resolution of the environmental covariates, which typically is much finer (e.g. ∼90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10-10,000 km 2 ), carries over to the predictions. Therefore the derived predictive models of element concentrations take the form of continuous geochemical landscape representations that are potentially much more informative than geostatistical interpolations. Environmental correlation is applied to the Sir Samuel 1:250,000 scale map sheet in Western Australia to produce distribution models of individual elements describing the geochemical composition of the regolith and exposed bedrock. As an example we model the distribution of two elements – chromium and sodium. We show that the environmental correlation approach generates high resolution predictive maps that are statistically more accurate and effective than ordinary kriging and inverse distance weighting interpolation

  19. Geochemical sensitivity analysis: Identification of important geochemical parameters for performance assessment studies

    International Nuclear Information System (INIS)

    Siegel, M.; Guzowski, R.; Rechard, R.; Erickson, K.

    1986-01-01

    The EPA Standard for geologic disposal of high level waste requires demonstration that the cumulative discharge of individual radioisotopes over a 10,000 year period at points 5 kilometers from the engineered barrier system will not exceed the limits prescribed in 40 CFR Part 191. The roles of the waste package, engineered facility, hydrogeology and geochemical processes in limiting radionuclide releases all must be considered in calculations designed to assess compliance of candidate repositories with the EPA Standard. In this talk, they will discuss the geochemical requirements of calculations used in these compliance assessments. In addition, they will describe the complementary roles of (1) simple models designed to bound the radionuclide discharge over the widest reasonable range of geochemical conditions and scenarios and (2) detailed geochemical models which can provide insights into the actual behavior of the radionuclides in the ground water. Finally, they will discuss development of sensitivity/uncertainty techniques designed to identify important site-specific geochemical parameters and processes using data from a basalt formation

  20. The effect of scale on the interpretation of geochemical anomalies

    Science.gov (United States)

    Theobald, P.K.; Eppinger, R.G.; Turner, R.L.; Shiquan, S.

    1991-01-01

    The purpose of geochemical surveys changes with scale. Regional surveys identify areas where mineral deposits are most likely to occur, whereas intermediate surveys identify and prioritize specific targets. At detailed scales specific deposit models may be applied and deposits delineated. The interpretation of regional geochemical surveys must take into account scale-dependent difference in the nature and objectives of this type of survey. Overinterpretation of regional data should be resisted, as should recommendations to restrict intermediate or detailed follow-up surveys to the search for specific deposit types or to a too limited suite of elements. Regional surveys identify metallogenic provinces within which a variety of deposit types and metals are most likely to be found. At intermediate scale, these regional provinces often dissipate into discrete clusters of anomalous areas. At detailed scale, individual anomalous areas reflect local conditions of mineralization and may seem unrelated to each other. Four examples from arid environments illustrate the dramatic change in patterns of anomalies between regional and more detailed surveys. On the Arabian Shield, a broad regional anomaly reflects the distribution of highly differentiated anorogenic granites. A particularly prominent part of the regional anomaly includes, in addition to the usual elements related to the granites, the assemblage of Mo, W and Sn. Initial interpretation suggested potential for granite-related, stockwork Mo deposits. Detailed work identified three separate sources for the anomaly: a metal-rich granite, a silicified and stockwork-veined area with scheelite and molybdenite, and scheelite/powellite concentrations in skarn deposits adjacent to a ring-dike complex. Regional geochemical, geophysical and remote-sensing data in the Sonoran Desert, Mexico, define a series of linear features interpreted to reflect fundamental, northeast-trending fractures in the crust that served as the prime

  1. Role of geochemical background at evaluation of investment attractiveness of recreational territories

    Directory of Open Access Journals (Sweden)

    Vdovina Ol'ga Konstantinovna

    2014-09-01

    Full Text Available The article shows the role of natural geochemical background when estimating investment attractiveness of recreational areas. It is noted, that geochemical background influence on people's sickness rate isn't considered now. Though it's understood, that even insignificant increase of geochemical background in relation to percentage abundance of Earth crest may lead to endemic diseases of people, animals and plants. An indicator of geochemical endemicity areas was proposed for assessing the impact of storage elements and of a lack of geological environment on human health. Thanks to this measure, and taking into account landscape features of the area, the authors allocated lands, dangerous and potentially dangerous in terms of endemicity. The importance of ratings was achieved by the use of those factors that could have a great influence on the cost of land development. This includes, first of all, the factors that affect population health, and economic and geographic factors that minimize the cost of the territory development and the factors that give rise to financial risks and risks of human losses. The main risk factors include: potential ecological and geochemical risk; high absolute heights, development and activity of dangerous geological processes and phenomena. Systemacity of researches was reached by using factors, that characterize the object from different aspects; readiness of area infrastructure to its exploration and possible risks. Objectivity was achieved by the use of figures obtained from the results of geochemical and engineering surveys with their metrological support.

  2. Geochemical approach values to the base line (Cu, Cr, Pb, Zn and P) for environmental studies in Montevideo coastal zone

    International Nuclear Information System (INIS)

    Brugnoli, E.; Burone, L.; Hutton, M.; Tuduri, A.; Bueno, C.; Muniz, P.; Venturini, N.; Garcia-Rodriguez, F.

    2012-01-01

    The geochemical base line values (background) represent the natural chemical concentrations (heavy metals) in sediments and soils. These are used in archaeological surveys to identify anomalies, and environmental studies of contaminated areas. In Montevideo coastal zone are explored the base line values for geochemical application and enrichment index

  3. A preliminary report of geochemical investigations in the Blackbird District

    Science.gov (United States)

    Canney, F.C.; Hawkes, H.E.; Richmond, G.M.; Vhay, J. S.

    1953-01-01

    This paper reviews an experimental geochemical prospecting survey in the Blackbird cobalt-copper mining district. The district is in east-central Idaho, about 20 miles west-southwest of Salmon. The area is one of deeply weathered nearly flat-topped upland surfaces cut by steep-walled valleys which are tributary to the canyon of Panther Creek. Most of the area has a relatively heavy vegetative cover, and outcrops are scarce except on the sides of the steeper valleys* Because of the importance of the surficial deposits and soils and the physiographic history of the region on the interpretation of the geochemical data, a separate chapter on this subject by Gerald H. Richmond follows the following brief description of the geology of the district.

  4. Regional geochemical prospecting of uranium in the Amazon region

    International Nuclear Information System (INIS)

    Zenker, A.O.; Hohn, H.

    1982-01-01

    A regional geochemical prospecting program for uranium in the Serra dos Carajas area, south of Para, was performed by NUCLEBRAS using stream sediment samples obtained from other companies acting in this area. The results of the survey are presented compared to regional geology and an aerial total count map. The different data showed a good correlation, particularly in areas mapped regionally as granitic rocks. (Author) [pt

  5. Reconnaisance geochemical survey of heavy minerals in Northern Luzon, Philippines

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Seguis, J.E.; Fernandez, L.G.

    1983-07-01

    A reconnaissance sampling was undertaken in northern Luzon to study the distribution of uranium as well as copper, lead, zinc, manganese, silver, cobalt and nickel in heavy minerals. The average background and threshold values of the elements were determined. Uranium content in the heavy mineral was low, in the order of 0.5-0.6 ppm U. Three uranium anomaly zones were delineated in Malanas Rever-Licuan area, Abra, Itogon, Benguet and Bambang, Nueva Viscaya, all within the Central Cordillera. The anomalous zones appeared to be related to copper-gold mineral areas. Geochemical correlations between uranium and the other elements were generally poor. (author)

  6. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    Science.gov (United States)

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  7. TAPIR--Finnish national geochemical baseline database.

    Science.gov (United States)

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various

  8. Geochemical survey of an illegal waste disposal site under a waste emergency scenario (Northwest Naples, Italy).

    Science.gov (United States)

    Ferrara, L; Iannace, M; Patelli, A M; Arienzo, M

    2013-03-01

    Since the mid 1980s, Naples and the Campania region have suffered from the dumping of wastes into overfilled landfills. The aim was to characterise a former cave located in Roccarainola (Naples, Italy) for its eventual destination to a controlled landfill site. A detailed hydro-geochemical survey of the area was carried out through drilling of 14 boreholes and four monitoring wells. Samples of water, sediment and soil were analysed for heavy metals and organic contaminants from a dew pond placed in the middle of the cave. The underneath aquifer was also surveyed. The nature of gases emitted from the site was investigated. Results of the geognostic survey revealed the presence of huge volumes of composite wastes, approximately half a million of cubic metre, which accumulated up to a thickness of 25.6 m. In some points, wastes lie below the free surface level of the aquifer. The sampled material from the boreholes revealed levels of As, Cd, Cr, Cu, Hg, Pb, Sn, Tl and Zn exceeding the intervention legal limits. Outstanding loads of Cd, Pb and Zn were found, with levels exceeding of about 50, 100 and 1,870 times the limit. In several points, polycyclic aromatic hydrocarbon load was extremely high, 35 vs 1 mg kg(-1) of the threshold. The aquifer was also very heavily polluted by Cd, Cr-tot, Cu, Fe, Mn, Ni, Pb and Zn, with impressive high load of Cr and Mn, up to 250-370 times the limits. Hot gases up to 62 °C with presence of xylene and ethylbenzene were found. Results indicated that the site needs an urgent intervention of recovery to avoid compromising the surrounding areas and aquifers of the Campania plain.

  9. Geochemical Characterization of the Upper and Middle Floridan Aquifer System, South Florida

    Science.gov (United States)

    Mirecki, J.; Richardson, E.; Bennett, M.; Hendel, J.

    2008-05-01

    Our study focus is to characterize the water quality and geochemical environment of the Floridan Aquifer System (FAS) throughout the regional flowpath. A synoptic survey of 21 wells (n=15, upper FAS; n=6 middle FAS) was supplemented by additional samples (n=11) obtained during exploratory well development at 4 aquifer storage recovery (ASR) pilot sites. Synoptic survey samples were analyzed intensively, yielding a dataset that consists of major and trace dissolved constituents (including metals), stable isotopes (δ18O, δ13C, δD, δ34S in sulfate and sulfide), carbon species (carbonate alkalinity and organic carbon), uranium-series radionuclides, nutrients, and selected microbes and pathogens. The objectives of this study are three-fold: 1) to provide baseline water-quality and geochemical information prior to initiation of ASR activities that are part of the Comprehensive Everglades Restoration Plan; 2) to quantify the major controls on geochemical evolution along upper and middle FAS flowpaths using geochemical modeling methods; and 3) to identify areas where water- quality may limit the feasibility of ASR methods in the FAS. Preliminary interpretations water quality changes along the regional FAS flowpath can be summarized as follows. Concentrations of dissolved constituents increase from north to south along the flow path; generally, the upper FAS has lower total dissolved solids than the middle FAS at locations where well pairs were analyzed. The redox environment changes from oxic to strongly anoxic, very close to the recharge area. Redox measurements, dissolved iron, sulfide, and sulfur isotope data are consistent with sulfate-reducing conditions. Uranium-series isotope concentrations and activities generally are below regulatory criteria, with few exceptions in both the upper and middle FAS. Areas with greater radionuclide activity occur primarily at distal flowpath locations or at the coast.

  10. Geologic and geochemical studies of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, R.E.; Shimp, N.F.

    1980-06-30

    The Illinois State Geological Survey is conducting geological and geochemical investigations to evaluate the potential of New Albany Group shales as a source of hydrocarbons, particularly natural gas. Geological studies include stratigraphy and structure, mineralogic and petrographic characterization; analyses of physical properties; and development of a computer-based resources evaluation system. Geochemical studies include organic carbon content and trace elements; hydrocarbon content and composition; and adsorption/desorption studies of gas through shales. Separate abstracts have been prepared for each task reported.

  11. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  12. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    Science.gov (United States)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  13. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona.

    Science.gov (United States)

    Marsac, Kara E; Burnley, Pamela C; Adcock, Christopher T; Haber, Daniel A; Malchow, Russell L; Hausrath, Elisabeth M

    2016-12-01

    This study compares high resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (National Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Neutron activation analysis of geochemical samples

    International Nuclear Information System (INIS)

    Rosenberg, R.; Zilliacus, R.; Kaistila, M.

    1983-06-01

    The present paper will describe the work done at the Technical Research Centre of Finland in developing methods for the large-scale activation analysis of samples for the geochemical prospecting of metals. The geochemical prospecting for uranium started in Finland in 1974 and consequently a manually operated device for the delayed neutron activation analysis of uranium was taken into use. During 1974 9000 samples were analyzed. The small capacity of the analyzer made it necessary to develop a completely automated analyzer which was taken into use in August 1975. Since then 20000-30000 samples have been analyzed annually the annual capacity being about 60000 samples when running seven hours per day. Multielemental instrumental neutron activation analysis is used for the analysis of more than 40 elements. Using instrumental epithermal neutron activation analysis 25-27 elements can be analyzed using one irradiation and 20 min measurement. During 1982 12000 samples were analyzed for mining companies and Geological Survey of Finland. The capacity is 600 samples per week. Besides these two analytical methods the analysis of lanthanoids is an important part of the work. 11 lanthanoids have been analyzed using instrumental neutron activation analysis. Radiochemical separation methods have been developed for several elements to improve the sensitivity of the analysis

  15. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    International Nuclear Information System (INIS)

    Ellefsen, Karl J.; Smith, David B.

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples. - Highlights: • We evaluate a clustering procedure by applying it to geochemical data. • The procedure generates a hierarchy of clusters. • Different levels of the hierarchy show geochemical processes at different spatial scales. • The clustering method is Bayesian finite mixture modeling. • Model parameters are estimated with Hamiltonian Monte Carlo sampling.

  16. Computer analysis to the geochemical of soil and stream sediments data in an area of Southern Uruguay

    International Nuclear Information System (INIS)

    Spangenberg, J.

    2012-01-01

    This work is about geochemical interpretation of multi-element data from a soil and stream sediment survey carried out in Southern of Uruguay .This zone has several occurrences of metal sulphide mineralization

  17. Advanced cost-effective surface geochemical techniques for oil/gas/uranium exploration, environmental assessments and pipeline monitoring - a template for India

    International Nuclear Information System (INIS)

    Lafleur, Paul; Chanrasekharan, G.Y.V.N.; Rajender Rao, S.

    2011-01-01

    Advanced geochemical soil gas methods have been successfully developed for the exploration of oil/gas/uranium and for environmental assessments. Application of these cost-effective technologies in India can substantially reduce exploration risk while accelerating the development of oil/gas/uranium onshore resources. A reliable and effective monitoring system using geochemical soil gas surveys ensures that CO 2 Enhanced Oil Recovery operations as well as CO 2 sequestration projects are safe and acceptable for the disposal of CO 2 , Soil gas surveys along with other technologies can also be applied for monitoring of oil/gas pipelines for leakage, especially those that are old or pass through populated regions

  18. Geochemical survey maps of the wildernesses and roadless areas in the White Mountains National Forest, Coos, Grafton, and Carroll counties, New Hampshire

    Science.gov (United States)

    Canney, F.C.; Howd, F.H.; Domenico, J.A.; Nakagawa, H.M.

    1987-01-01

    The Wilderness Act (Public Law 88-577, September 3, 1964) and related acts require the U.S. Geological Survey and the U.S. Bureau of Mines to survey certain areas on Federal lands to determine what mineral values, if any, may be present. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results a geochemical survey of the Great Gulf and Presidential Range-Dry River Wilderness Areas; the Dartmouth Range, Wild River, Pemigewasset, Kinsman Mountain, Mount Wolf-Gordon Pond, Jobildunk, Carr Mountain, Sandwich Range, and the Dry River Extention (2 parcels) Roadless Areas; and the intervening and immediately surrounding areas in the White Mountain National Forest, Coos, Grafton, and Carroll Counties, New Hampshire. The Great Gulf Wilderness was established when the Wilderness Act was passed in 1964, and the Presidential Range-Dray Wiver Wilderness was established by Public Law 93-622, January 3, 1975. The Dartmouth Range, Wild River, Pemigewasset, Kinsman Mountain, Mount Wolf-Gordon Pond, Carr Mountain, and Jobildunk areas were classified as a further planning area during the Second Roadless Area Review and Evaluation (RARE II) by the U.S. Forest Service, January 1979.

  19. Proceedings of the workshop on geochemical modeling

    International Nuclear Information System (INIS)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices

  20. Proceedings of the workshop on geochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices.

  1. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons

  2. Historical reconstruction of oil and gas spills during moderate and strong earthquakes and related geochemical surveys in Southern Apennines

    Science.gov (United States)

    Sciarra, Alessandra; Cantucci, Barbara; Ferrari, Graziano; Pizzino, Luca; Quattrocchi, Fedora

    2016-04-01

    The aim of this study is to contribute to the assessment of natural hazards in a seismically active area of southern Italy through the joint analysis of historical sources and fluid geochemistry. In particular, our studies have been focalized in the Val d'Agri basin, in the Apennines extensional belt, since it hosts the largest oilfield in onshore Europe and normal-fault systems with high seismogenic potential (up to M7). The work was organized into three main themes: 1) literature search aimed at identifying fluid emissions during previous moderate-strong earthquakes; 2) consultation of local and national archives to identify historic local place names correlated to natural fluids emissions; 3) geochemical sampling of groundwater and gas issuing at surface, identified on the basis of the bibliographic sources. A reasoned reading of written documents and available historical data was performed. Moreover, we reworked information reported in historical catalogues, referred to liquid and gas hydrocarbon leakages occurred during seismic events of the past (in a range of magnitude from 5 to 7) in the Southern Apennines (with a particular focus on the Val d'Agri). Special attention was given to the phenomena of geochemical emissions related to major historical earthquakes that took place in the area, most notably that of 16 December 1857 (M = 7). A careful analysis of the Robert Mallet's report, a complete work aimed at describing the social impact and the effects on the environment produced by this earthquake through illustrated maps and diagrams, included several hundred monoscopic and stereoscopic photographs, was done. From archival sources (at national and/or local administrations), "sensitive" sites to the onset of leakage of liquid and gaseous hydrocarbons in the past were identified. A soil-gas survey (22 gas concentrations and flux measurements) and 35 groundwater samplings were carried out in specific sites recognized through the above studies. From a

  3. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Farmington Project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Farmington project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 71 groundwater samples, 345 stream sediment samples, and 178 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from <0.20 to 21.77 ppB. The highest values are from groundwaters producing from areas in or near the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations, and the Farmington Canyon Complex. The uranium:boron ratio delineates an anomalous trend associated with the Farmington Canyon Complex. Variables associated with uranium in groundwaters producing from the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations include the uranium:sulfate ratio, boron, barium, potassium, lithium, silicon, chloride, selenium, and vanadium. Soluble uranium concentrations (U-FL) in stream sediments range from 0.99 to 86.41 ppM. Total uranium concentrations (U-NT) range from 1.60 to 92.40 ppM. Thorium concentrations range from <2 to 47 ppM. Anomalous concentrations of these variables are associated with the Farmington Canyon Complex. Variables which are associated with uranium include cerium, sodium, niobium, phosphorus, titanium, and yttrium

  4. History and progress of the North American Soil Geochemical Landscapes Project, 2001-2010

    Science.gov (United States)

    Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Rivera, Francisco Moreira; Rencz, Andrew N.; Garrett, Robert G.

    2012-01-01

    In 2007, the U.S. Geological Survey, the Geological Survey of Canada, and the Mexican Geological Survey initiated a low-density (1 site per 1600 km2, 13323 sites) geochemical and mineralogical survey of North American soils (North American Soil Geochemical Landscapes Project). Sampling and analytical protocols were developed at a series of workshops in 20032004 and pilot studies were conducted from 20042007. The ideal sampling protocol at each site includes a sample from 05 cm depth, a composite of the soil A horizon, and a sample from the soil C horizon. The 3, HClO4, and HF. Separate methods are used for As, Hg, Se, and total C on this same size fraction. The major mineralogical components are determined by a quantitative X-ray diffraction method. Sampling in the conterminous U.S. was completed in 2010 (c. 4800 sites) with chemical and mineralogical analysis currently underway. In Mexico, approximately 66% of the sampling (871 sites) had been done by the end of 2010 with completion expected in 2012. After completing sampling in the Maritime provinces and portions of other provinces (472 sites, 7.6% of the total), Canada withdrew from the project in 2010. Preliminary results for a swath from the central U.S. to Florida clearly show the effects of soil parent material and climate on the chemical and mineralogical composition of soils. A sample archive will be established and made available for future investigations.

  5. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  6. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs.

    Science.gov (United States)

    Brazelton, William J; Morrill, Penny L; Szponar, Natalie; Schrenk, Matthew O

    2013-07-01

    Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.

  7. Marine gamma spectrometric survey

    International Nuclear Information System (INIS)

    Kostoglodov, V.V.

    1979-01-01

    Presented are theoretical problems physical and geochemical prerequisites and possibilities of practical application of the method of continuous submarine gamma-spectrometric survey and radiometric survey destined for rapid study of the surface layer of marine sediments. Shown is high efficiency and advantages of this method in comparison with traditional and widely spread in marine geology methods of bottom sediments investigation

  8. Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran

    Science.gov (United States)

    Ghezelbash, Reza; Maghsoudi, Abbas

    2018-05-01

    The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.

  9. The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America

    Science.gov (United States)

    Reeves, J. B.; Smith, D.B.

    2009-01-01

    In 2004, soils were collected at 220 sites along two transects across the USA and Canada as a pilot study for a planned soil geochemical survey of North America (North American Soil Geochemical Landscapes Project). The objective of the current study was to examine the potential of diffuse reflectance (DR) Fourier Transform (FT) mid-infrared (mid-IR) and near-infrared (NIRS) spectroscopy to reduce the need for conventional analysis for the determination of major and trace elements in such continental-scale surveys. Soil samples (n = 720) were collected from two transects (east-west across the USA, and north-south from Manitoba, Canada to El Paso, Texas (USA), n = 453 and 267, respectively). The samples came from 19 USA states and the province of Manitoba in Canada. They represented 31 types of land use (e.g., national forest, rangeland, etc.), and 123 different land covers (e.g., soybeans, oak forest, etc.). The samples represented a combination of depth-based sampling (0-5 cm) and horizon-based sampling (O, A and C horizons) with 123 different depths identified. The set was very diverse with few samples similar in land use, land cover, etc. All samples were analyzed by conventional means for the near-total concentration of 49 analytes (Ctotal, Ccarbonate and Corganic, and 46 major and trace elements). Spectra were obtained using dried, ground samples using a Digilab FTS-7000 FT spectrometer in the mid- (4000-400 cm-1) and near-infrared (10,000-4000 cm-1) at 4 cm-1 resolution (64 co-added scans per spectrum) using a Pike AutoDIFF DR autosampler. Partial least squares calibrations were develop using: (1) all samples as a calibration set; (2) samples evenly divided into calibration and validation sets based on spectral diversity; and (3) samples divided to have matching analyte concentrations in calibration and validation sets. In general, results supported the conclusion that neither mid-IR nor NIRS would be particularly useful in reducing the need for conventional

  10. Geochemical prospecting for rare earth elements using termite mound materials

    Science.gov (United States)

    Horiuchi, Yu; Ohno, Tetsuji; Hoshino, Mihoko; Shin, Ki-Cheol; Murakami, Hiroyasu; Tsunematsu, Maiko; Watanabe, Yasushi

    2014-12-01

    The Blockspruit fluorite prospect, located in North West State of the Republic of South Africa, occurs within an actinolite rock zone that was emplaced into the Kenkelbos-type granite of Proterozoic age. There are a large number of termite mounds in the prospect. For geochemical prospecting for rare earth elements (REEs), in total, 200 samples of termite mound material were collected from actinolite rock and granite zones in the prospect. Geochemical analyses of these termite mound materials were conducted by two methods: portable X-ray fluorescence (XRF) spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). Comparison of the two methods broadly indicates positive correlations of REEs (La, Ce, Pr, Nd, and Y), in particular Y and La having a strong correlation. As the result of modal abundance analyses, the actinolite rock at surface mainly consists of ferro-actinolite (89.89 wt%) and includes xenotime (0.26 wt%) and monazite (0.21 wt%) grains as REE minerals. Termite mound materials from actinolite rock also contain xenotime (0.27 wt%) and monazite (0.41 wt%) grains. In addition, termite mound materials from the actinolite rock zone have high hematite and Fe silicate contents compared to those from granite zone. These relationships suggest that REE minerals in termite mound materials originate form actinolite rock. Geochemical anomaly maps of Y, La, and Fe concentrations drawn based on the result of the portable XRF analyses show that high concentrations of these elements trend from SW to NE which broadly correspond to occurrences of actinolite body. These results indicate that termite mounds are an effective tool for REE geochemical prospection in the study area for both light REEs and Y, but a more detailed survey is required to establish the distribution of the actinolite rock body.

  11. The role of geochemical prospecting in phased uranium exploration. A case history

    International Nuclear Information System (INIS)

    Smith, A.Y.; Armour-Brown, A.; Olsen, H.; Lundberg, B.; Niesen, P.L.

    1976-01-01

    The commencement of a UNDP/IAEA uranium exploration project in Northern Greece in 1971 offered the opportunity to test and apply an exploration strategy based on a phased use of geochemical exploration methods. The paper reviews the exploration task, the strategy selected, and some results obtained. The project area (22000 km 2 ) was explored by car-borne survey, covering 15000 km of road and track. Concurrently, a stream sediment geochemical survey was begun which aimed at a nominal sample density of one sample per square kilometre. Samples were analysed for copper, lead, zinc, silver, cobalt, nickel, molybdenum, mercury and manganese, in addition to uranium. At each site, a general reading of radioactivity was made, and treated like another element analysis. The reconnaissance programme succeeded in delineating a number of important target areas, varying in size from a few to several hundred square kilometres with significant uranium potential. Follow-up and detailed surveys have been carried out over a number of these, including a sedimentary basin of continental deposits which have been found to contain occurrences of secondary uranium minerals, and two areas in which granitic bodies have been found to have fracture systems and secondary uranium mineralization of economic interest. In no case has sufficient work been yet done to prove economic deposits of uranium. The phased strategy used has, however, already been demonstrated to be effective in the environment of northern Greece. (author)

  12. Appliance of geochemical engineering in radioactive waste disposal

    International Nuclear Information System (INIS)

    Li Shuang; Zhang Chengjiang; Ni Shijun; Li Kuanliang

    2008-01-01

    The basic foundation of applying geochemical engineering to control environment, common engineering models of disposal radioactive waste and the functions of the engineering barriers are introduced in this paper. The authors take the geochemical engineering barrier materiel research of a radioactive waste repository as an example to explain the appliance of geochemical engineering in the disposal of radioactive waste. And the results show that it can enhance the security of the nuclear waste repository if we use geochemical engineering barrier. (authors)

  13. A geochemical atlas of North Carolina, USA

    Science.gov (United States)

    Reid, J.C.

    1993-01-01

    A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only

  14. Novel geochemical techniques integrated in exploration for uranium deposits at depth

    International Nuclear Information System (INIS)

    Kyser, K.

    2014-01-01

    Mineral deposits are in fact geochemical anomalies, and as such their detection and assessment of their impact on the environment should be facilitated using geochemical techniques. Although geochemistry has been used directly in the discovery of uranium deposits and more indirectly in shaping deposit models, the novel applications of geochemistry and integration with other data can be more effective in formulating exploration and remediation strategies. Recent research on the use of geochemistry in detecting uranium deposits at depth include: (1) more effective integration of geochemical with geophysical data to refine targets, (2) revealing element distributions in and around deposits to adequately assess the total chemical environment associated with the deposit, (3) the use of element tracing using elemental concentrations and isotopic compositions in the near surface environment to detect specific components that have migrated to the surface from uranium deposits at depth, (4) understand the effects of both macro- and micro-environments on element mobility across the geosphere-biosphere interface to enhance exploration using select media for uranium at depth. Geophysical data used in exploration can identify areas of conductors where redox contrasts may host mineralization, structures that act to focus fluids during formation of the deposits and act as conduits for element migration to the surface, and contrasts in geology that are required for the deposits. However, precision of these data is greatly diminished with depth, but geochemical data from drill core or surface media can enhance target identification when integrated with geophysical data. Geochemical orientation surveys over known unconformity-related deposits at depth clearly identify mineralization 900m deep. Drill core near the deposit, clay-size fractions separated from soil horizons and vegetation over and far from the deposit record element migration from the deposit as radiogenic He, Rn and Pb

  15. Methodological approaches in estimating anomalous geochemical field structure

    International Nuclear Information System (INIS)

    Gavrilov, R; Rudmin, M

    2015-01-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas

  16. Geochemical modeling: a review

    International Nuclear Information System (INIS)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted

  17. Geochemical modeling: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  18. NOAA and MMS Marine Minerals Geochemical Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Minerals Geochemical Database was created by NGDC as a part of a project to construct a comprehensive computerized bibliography and geochemical database...

  19. Use of partial dissolution techniques in geochemical exploration

    Science.gov (United States)

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  20. Notes on the geochemical survey for uranium in Mindoro Island, Philippines

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.G.; Villamater, D.T.; Seguis, J.E.; Ibe, M.G.

    1981-03-01

    Geochemical reconnaisance using stream sediment and heavy-mineral concentrates panned from coarse alluvium has been carried out in Mindoro Island, one of the oldest and diverse geologic terrains in the Philippines. A total of 135 selected sampling points situated near accessible areas along the periphery of the island were sampled. The samples were collected at a density of one sample per 53 sq. km. A set minus 80 mesh stream sediment fraction and heavy-mineral concentrates was obtained from each sampling point. Mobile or extractable and total uranium were determined. A large uranium anomaly was delineated over the Carboniferous Mindoro Metamorphics as well as in areas underlain by Early Tertiary sedimentary formations. Another group of anomalies were outlined in the southern part of the island underlain by Jurassic Mansalay Formation and Early to Middle Tertiary sedimentary rocks with associated limestone and coal measures. (author)

  1. Uruguay mining Inventory: Geochemical prospecting results of Valentines mapping; Inventario minero del Uruguay : Resultados de la prospeccion geoquimica del fotoplano Valentines

    Energy Technology Data Exchange (ETDEWEB)

    Spangenberg, J; Filippini, J

    1985-07-01

    This work is about geochemical prospecting carried out into the Uruguay mining inventory framework. In this case the survey was in Valentines mapping. Florida, Durazno and Treinta y Tres provinces of Uruguay .

  2. Geochemical and mineralogical characteristics of Lithomargic clay

    African Journals Online (AJOL)

    Administrator

    Geochemical and mineralogical characteristics of Lithomargic clay. GEOCHEMICAL AND .... tries, as filling material in the pulp and paper, toothpaste and paint industries as well ..... tions very vital to human health and other ac- tivities of man.

  3. FY 1992 report on the survey of geothermal development promotion. Geochemical survey (No. A-1 - Haneyama area); 1992 nendo chinetsu kaihatsu sokushin chosa chijo chosa hokokusho futai shiryo. Chikagaku chosa hokokusho (No. A-1 Haneyama chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-05-01

    For the purpose of studying an expanse and characteristics of the geothermal system and a possibility of geothermal development in the Haneyama area, Oita Prefecture, geochemical survey was conducted. In the survey, various kinds of analyses were made for 13 specimens of hot spring water and 5 specimens of surface water in the area of about 280km{sup 2} at 402 measuring points of the concentration of Hg in soil gas. The results of the survey were as follows: In this survey area, it was thought that the HCO{sub 3} type geothermal water of a comparatively low temperature which was heated by the wide-spread conduction heat from the depths was widely distributed deeper than the depth of 500-700m, and it was presumed that a possibility was low of existence of a high geothermal potential which can be used for the geothermal power generation in the part deeper than the drilling depth of 700m. In the Noya area in the southwest part of the survey area, the high temperature deep geothermal reservoir was confirmed. In this area, the high temperature neutral-alkalescent Cl-SO{sub 4} type geothermal water was distributed in the depth of several 100 meters or deeper. The geothermal water seemed to flow from NE to SW along the structure in the NE-SW direction, and it was concluded that the area was the most promising one. (NEDO)

  4. Probabilistic, sediment-geochemical parameterisation of the groundwater compartment of the Netherlands for spatially distributed, reactive transport modelling

    Science.gov (United States)

    Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper

    2017-04-01

    Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the

  5. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Cottonwood project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of Cottonwood project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 15 groundwater samples, 79 stream sediment samples, and 85 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from 0.25 to 3.89 ppB. The highest concentrations are from groundwaters from the Little Cottonwood and Ferguson Stocks. Variables that appear to be associated with uranium in groundwater include cobalt, iron, potassium, manganese, nickel, sulfate, and to a lesser extent, molybdenum and strontium. This association is attributed to the Monzonitic Little Cottonwood Stock, granodioritic to granitic and lamprophyric dikes, and known sulfide deposits. Soluble uranium concentrations (U-FL) in stream sediments range from 0.31 to 72.64 ppM. Total uranium concentrations (U-NT) range from 1.80 to 75.20 ppM. Thorium concentrations range from <2 to 48 ppM. Anomalous values for uranium and thorium are concentrated within the area of outcrop of the Little Cottonwood and Ferguson Stocks. Variables which are areally associated with high values of uranium, thorium, and the U-FL:U-NT ratio within the Little Cottonwood Stock are barium, copper, molybdenum, and zinc. High concentrations of these variables are located near sulfide deposits within the Little Cottonwood Stock

  6. Proceedings of 13. International Geochemical Exploration Symposium. 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analyical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  7. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    Rose, A.W.

    1977-01-01

    The processes and types of dispersion that produce anomalies in stream water, stream sediment, and ground water, and the factors that must be considered in planning and interpreting geochemical surveys are reviewed. Examples of surveys near known deposits show the types of results to be expected. Background values depend mainly on the content of U in rocks of the drainage area. In igneous rocks, U tends to increase with potassium from ultramafic rocks (0.01 ppM) to granitic rocks (1 to 5 ppM). Some alkalic rocks have unusually high contents of U (15 to 100 ppM). Uranium-rich provinces marked by igneous rocks unusually rich in U are recognized in several areas and appear to have a deep crustal or mantle origin. In western U.S., many tertiary tuffaceous rocks have a high U content. Sandstones, limestones, and many shales approximate the crustal abundance at 0.5 to 4 ppM, but black shales, phosphates, and some organic materials are notably enriched in U. Uranium is very soluble in most oxidizing waters at the earth's surface, but is precipitated by reducing agents (organic matter, H 2 S) and adsorbed by organic material and some Fe oxides. In most surface and ground waters, U correlates approximately with the total dissolved solids, conductivity, and bicarbonate concentration of the water, and with the U content of rocks it comes into contact with. Most surveys of stream water near known districts show distinct anomalies extending a few km to tens of km downstream. A complication with water is the large variability with time, up to x 50, as a result of changes in the ratio of ground water to direct runoff, and changes in rate of oxidation and leaching. Collection and analysis of water samples also pose some difficulties

  8. Metallogenetic characterization of granitoid rocks through geochemical prospection: the Lagoa Real example related to uranium mineralization in Bahia state, Brazil; Caracterizacao metalogenetica de corpos gratinoides atraves de prospeccao geoquimica: o exemplo da suite intrusiva Lagoa Real relacionada a mineralizacoes de uranio no Estado da Bahia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.E., E-mail: cprmsa@bahianet.com.br [Servico Geologico do Brasil (GEREMI/SUREG/SA/CPRM), Salvador, BA (Brazil)

    2011-07-01

    Within a broad metallogenetic evaluation program carried out by CPRM - Geological Survey of Brazil in covenant with the CBPM - Companhia Baiana de Pesquisa Mineral in the central part of the Sao Francisco Craton, the Lagoa Real granitoid rocks was one of the selected targets. The work included geochemical exploration supplemented by follow-in survey and integrated 1:200.000 scale geochemical cartography. The Lagoa Real granitoid was recognized with composition ranging from monzogranitic to alcaligranitic type. The geochemical surveying led to the definition of the metallogenetic specialization of the granitoid rock, with characteristic geochemical and mineralogic associations. These associations are related to uranium mineralization. The genetic model using stream sediment and pan concentrate data, show similarity with the metallogenetic model of zonal partitioning proposed by Routhier (1963), for plutonogenic lode deposits with potential for Sn, W, Nb, Be, REE, Au, and U. In this work emphasis is given to the importance of the integrated use of different prospective methods toward the evaluation of granitoid systems, particularly the combination of geochemical surveying methods with results for a better understanding of the geologic and metallogenetic settings. (author)

  9. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  10. Groundwater discharge mapping at Altnabreac by thermal infrared linescan surveying

    International Nuclear Information System (INIS)

    Brereton, N.R.; Hall, D.H.

    1983-07-01

    A thermal infra-red linescan survey has been carried out of the area around Altnabreac, Caithness. The objectives of the survey were: to assess the applicability of the technique to the location of springs discharging from peat covered crystalline rocks; to provide the locations of springs for a subsequent geochemical sampling programme; and to gain clearer understanding of the ground water circulation patterns in the area. The number and distribution of springs located by the survey has proved to be far greater than had been previously anticipated and the capabilities of the technique have been clearly demonstrated. The results, together with other geochemical and hydrogeological data, indicate that the majority of the springs represent near surface recent groundwaters circulating within the moraine deposits and weathered granite. (author)

  11. Geochemical controls on groundwater chemistry in shales

    International Nuclear Information System (INIS)

    Von Damm, K.L.

    1989-01-01

    The chemistry of groundwaters is one of the most important parameters in determining the mobility of species within a rock formation. A three pronged approach was used to determine the composition of, and geochemical controls, on groundwaters specifically within shale formations: (1) available data were collected from the literature, the US Geological Survey WATSTORE data base, and field sampling, (2) the geochemical modeling code EQ3/6 was used to simulate interaction of various shales and groundwaters, and (3) several types of shale were reacted with synthetic groundwaters in the laboratory. The comparison of model results to field and laboratory data provide a means of validating the models, as well as a means of deconvoluting complex field interactions. Results suggest that groundwaters in shales have a wide range in composition and are primarily of the Na-Cl-HCO 3 - type. The constancy of the Na:Cl (molar) ratio at 1:1 and the Ca:Mg ratio from 3:1 to 1:1 suggests the importance of halite and carbonates in controlling groundwater compositions. In agreement with the reaction path modeling, most of the groundwaters are neutral to slightly alkaline at low temperatures. Model and experimental results suggest that reaction (1) at elevated temperatures, or (2) in the presence of oxygen will lead to more acidic conditions. Some acetate was found to be produced in the experiments; depending on the constraints applied, large amounts of acetate were produced in the model results. 13 refs., 1 tab

  12. The IUGS/IAGC Task Group on Global Geochemical Baselines

    Science.gov (United States)

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  13. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    Science.gov (United States)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared

  14. Reconnaissance Geochemical Study

    African Journals Online (AJOL)

    distribution patterns. The geochemical distribution maps of the elements reveal that Cu, Pb, Zn, Co, Sc, Ni, Cr, .... After filtration, the leached solutions were diluted with ultra ...... some other rare earth elements in the study area. The occurrence ...

  15. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  16. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  17. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate......Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  18. Concerning evaluation of eco-geochemical background in remediation strategy

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for

  19. Geochemical investigations by the U.S. Geological Survey on uranium mining, milling, and environmental restoration

    Science.gov (United States)

    Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.

    2000-01-01

    Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.

  20. Applications of inductively coupled plasma spectroscopy to geochemical reconnaissance for uranium exploration

    International Nuclear Information System (INIS)

    Cagle, G.W.; Butz, T.R.

    1980-01-01

    The analysis of large numbers of natural groundwater and stream sediment samples by Inductively Coupled Plasma (ICP) Spectroscopy has been applied to a geochemical reconnaissance program as part of the National Uranium Resource Evaluation Program. Approximately 25 elements have been determined in over 60,000 samples by ICP analysis. These data are combined with additional measurements obtained by atomic absorption, colorimetry, neutron activation, and fluorescence spectroscopy. Results are presented and interpreted in terms of the uranium favorability of areas in Texas where this survey has been completed

  1. Geochemical mapping of Anheung, Wonju and Eomjeong sheets (1:50,000)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Soo; Seo, Hyo Joon; Shin, Seong Cheon; Chi, Se Jung; Kim, Seong Jae [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    A geochemical mapping was undertaken on the three quadrangles of the Anheung, Wonju and Eomjeong sheets (1:50,000, new edition) in the southwestern Taebaeg Mineralized Belt. The survey area, ca. 1,900 km{sup 2}, is covered mostly by Jurassic granites and Precambrian metamorphic rocks, and partly by Cambro-Ordovician limestones and the Cretaceous igneous and sedimentary rocks. Light mineral stream sediments and water samples, totally 751 for each media, were collected from active channels of primary or secondary order with a mean sampling density of 1/2.4 km{sup 2}. Geochemical maps were made on 17 elements (i.e., Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, V, W, Zn) for stream sediments. Geochemical distribution maps for water samples were independently made on major and minor components (i.e., Na, K, Li, Si, Ca, Mg, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, V, Zn, F{sup -}, Cl{sup -}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}) and other physico-chemical properties (i.e., Electric Conductivity, Total Dissolved Solids, pH, Dissolved Oxygen). Analysis was carried out by Ion Coupled Plasma Spectrometry and Ion Chromatography. Geochemical anomalies were evaluated based upon geological and other field information. The Ag-As, Cu-Pb-Zn and W-Mo anomalies of stream sediments in the northern Anheung and southern Eomjeong sheets indicate a contamination derived from mining districts. Pb-Zn anomalies from southeastern area in the Eomjeong sheet may suggest a potential of polymetallic deposits near Mesozoic granites intruding the Ogcheon strata. High concentrations of Ca, Na, K, Cl{sup -} and NO{sub 3}{sup -} in stream waters around Chungju and Wonju imply a strong pollution over urban districts and stock farms. (author). 57 refs., 70 figs.

  2. Geochemical Constraints on Archaeal Diversity in the Vulcano Hydrothermal System

    Science.gov (United States)

    Rogers, K. L.; Amend, J. P.

    2006-12-01

    The shallow marine hydrothermal system of Vulcano, Italy hosts a wide diversity of cultured thermophilic Archaea, including Palaeococcus helgesonii, Archaeoglobus fulgidus, and Pyrococcus furiosus, to name a few. However, recent studies have revealed a plethora of uncultured archaeal lineages in the Vulcano system. For example, a 16S rRNA gene survey of an onshore geothermal well identified a diverse archaeal community including deeply-branching uncultured Crenarchaeota, Korarchaeota, and Euryarchaeota. Additionally, culture-independent hybridization techniques suggested that Archaea account for nearly half of the microbial community in the Vulcano system. Furthermore, geochemical characterization of fluids revealed numerous lithotrophic and heterotrophic exergonic reactions that could support as yet uncultured organisms. Archaeal diversity throughout the Vulcano hydrothermal system was investigated using 16S rRNA gene surveys at five submarine vents and an onshore sediment seep. Overall, archaeal diversity was higher (10 groups) at submarine vents with moderate temperatures (59°C) compared with higher temperature (94°C) vents (4 groups). Archaeal communities at the moderately thermal vents were dominated by Thermococcales and also contained Archaeoglobales, Thermoproteales, and uncultured archaea among the Korarchaeota, Marine Group I, and the Deep-sea Hydrothermal Vent Euryarchaeota (DHVE). Fluid composition also affects the microbial community structure. At two high-temperature sites variations in archaeal diversity can be attributed to differences in iron and hydrogen concentrations, and pH. Comparing sites with similar temperature and pH conditions suggests that the presence of Desulfurococcales is limited to sites at which metabolic energy yields exceed 10 kJ per mole of electrons transferred. The Vulcano hydrothermal system hosts diverse archaeal communities, containing both cultured and uncultured species, whose distribution appears to be constrained by

  3. Geochemical Investigations of Groundwater Stability

    International Nuclear Information System (INIS)

    Bath, Adrian

    2006-05-01

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  4. Discovery of Wolitu Pb-Zn deposit through geochemical prospecting under loess cover in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-09-01

    Full Text Available We report the finding of the Wolitu Pb-Zn deposit in Inner Mongolia, China, through a series of geochemical surveys. The Wolitu area, located in the loess-cover area in the Hure Banner, Tongliao City, Inner Mongolia, and neighboring the Horqin Sandy Land to the north, had no previous history of Pb-Zn mining or record of Pb-Zn mineralization. Our study identified a large Pb-Zn anomaly with potential zones of mineralization by stream sediment survey. Random rock sampling reveals limonitization at sporadic outcrops in the gullies. The high concentrations of Pb in the residual debris provided guidelines to fix the position for exploratory trench. Oxidized concealed orebodies were identified by trenching. Blind orebodies in veins hosted within the structural zone between slates and marbles of the upper Carboniferous Shizuizi Formation and the Permian granite were discovered by drilling. It is computed that the ore reserve may reach up to 540,000 tones with Pb grade of 1.27% and Zn of 1.9%. This case study is an excellent example for identifying potential polymetallic deposits in loess covered terrains using geochemical exploration.

  5. Scientific fundamentals of the exploration and calculability of a waste repository. Project part III, sub-project 2: Validity and applicability of geochemical models

    International Nuclear Information System (INIS)

    Baumann, J.

    1991-04-01

    The thermodynamic computer models WATEQF, PHREEQE, EQ3NR/EQ6, and SOLMINEQ 88 have been verified for their applicability to describe geochemical processes in the system salt stock/cap rock/ground water, i.e. processes such as dissolution, sedimentation, exchange and redox reactions. To begin with, the hydrochemical data obtained by the hydrogeological survey at the Gorleben site have been evaluated to thus form a reference data base. Then, these data have been used to derive the essential conditions and benchmark data to establish a geochemical model. (HP) [de

  6. Adjustment of geochemical background by robust multivariate statistics

    Science.gov (United States)

    Zhou, D.

    1985-01-01

    Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.

  7. Geochemical signature of columbite-tantalite and radiometric survey of radioactive pegmatites in the region of Parelhas, Rio Grande do Norte, Brazil; Assinatura geoquimica de columbita-tantalita e levantamento radiometrico de pegmatitos radioativos da regiao de Parelhas, RN, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Jorge Costa de

    2013-07-01

    This thesis is the result of geochemical, structural and radiometric investigations on radioactive pegmatites of the Borborema Pegmatitic Province in Northeast Brazil. The studied area, located in the surroundings of the city of Parelhas in the region of the Serra da Borborema, is well known for its thousands of pegmatitic bodies exploited in primitive mines called 'garimpos'. The main goal was to find an efficient, cheap and routine inspection procedure to identify the origin of commercialized radioactive columbite-tantalite (coltan) ore. The Brazilian Nuclear Energy Agency (CNEN) controls uranium commerce and nuclear activity in Brazil. Without an effective method to characterize coltan ores from different localities it is impossible to control the trade. The here presented new method was developed by correlating structural features of these pegmatites with the geochemical behavior of their coltan samples. It was found that the variation of the ratio U/Th versus Nb{sub 2}O{sub 5}/Ta{sub 2}O{sub 5} provides geochemical signatures (analytical fingerprints) for the source location of such ore. A test of the new method with coltan samples of commercial batches from the Brazilian states Amapa and Rondonia also generated distinct geochemical signatures. A radiometric survey (CPS) was carried out in several mines and pegmatites to study the environmental impact of gamma radiation. It included in situ measurements of pegmatite walls, host rocks, soil, and accumulated water and revealed that gamma emitters are hardly solubilized and environmental gamma radiation therefore generally is not enhanced to a dangerous level. (author)

  8. Geochemical signature of columbite-tantalite and radiometric survey of radioactive pegmatites in the region of Parelhas, Rio Grande do Norte, Brazil; Assinatura geoquimica de columbita-tantalita e levantamento radiometrico de pegmatitos radioativos da regiao de Parelhas, RN, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Jorge Costa de

    2013-07-01

    This thesis is the result of geochemical, structural and radiometric investigations on radioactive pegmatites of the Borborema Pegmatitic Province in Northeast Brazil. The studied area, located in the surroundings of the city of Parelhas in the region of the Serra da Borborema, is well known for its thousands of pegmatitic bodies exploited in primitive mines called 'garimpos'. The main goal was to find an efficient, cheap and routine inspection procedure to identify the origin of commercialized radioactive columbite-tantalite (coltan) ore. The Brazilian Nuclear Energy Agency (CNEN) controls uranium commerce and nuclear activity in Brazil. Without an effective method to characterize coltan ores from different localities it is impossible to control the trade. The here presented new method was developed by correlating structural features of these pegmatites with the geochemical behavior of their coltan samples. It was found that the variation of the ratio U/Th versus Nb{sub 2}O{sub 5}/Ta{sub 2}O{sub 5} provides geochemical signatures (analytical fingerprints) for the source location of such ore. A test of the new method with coltan samples of commercial batches from the Brazilian states Amapa and Rondonia also generated distinct geochemical signatures. A radiometric survey (CPS) was carried out in several mines and pegmatites to study the environmental impact of gamma radiation. It included in situ measurements of pegmatite walls, host rocks, soil, and accumulated water and revealed that gamma emitters are hardly solubilized and environmental gamma radiation therefore generally is not enhanced to a dangerous level. (author)

  9. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  10. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    Science.gov (United States)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a

  11. Alligator Rivers Analogue project. Geochemical Data Bases

    International Nuclear Information System (INIS)

    Bennett, D.G.; Read, D.

    1992-01-01

    The Koongarra uranium deposit in the Northern Territory of Australia is being studied to evaluate the processes involved in the geochemical alteration of the ore body and the formation of the uranium dispersion fan. A broad range of research is being undertaken into the geochemistry and hydrology of the site with the aim of understanding the transport of radionuclides through the system. During the project a range of geochemical and hydrogeochemical models have been developed to account for measured data from the site and with which to predict site evolution. The majority of these models are based on the premise of thermodynamic chemical equilibrium and employ fundamental thermodynamic data to characterise the chemistry of the system. From the differences which exist between the thermodynamic data bases (Appendices I and II) it is possible to gain a view of the level of uncertainty associated with thermodynamic data in each set of calculations. This report gives a brief introduction to the geochemical processes underlying the models, and details the equations used to quantify the more common of these processes (e.g. aqueous speciation and mineral solubility). A description is given of the computer codes (EQ3/6, PHREEQE, MINTEQ) most commonly used during the project for geochemical modelling. Their key features are highlighted and comparisons made. It is concluded that the degree of uncertainty in geochemical modelling studies arising as a result of using one code rather than another is relatively insignificant when compared to that related to differences in the underlying data bases. 73 refs., 3 figs

  12. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  13. The Source, Spatial Distribution and Risk Assessment of Heavy Metals in Soil from the Pearl River Delta Based on the National Multi-Purpose Regional Geochemical Survey.

    Science.gov (United States)

    Zhang, Lingyan; Guo, Shuhai; Wu, Bo

    2015-01-01

    The data on the heavy metal content at different soil depths derived from a multi-purpose regional geochemical survey in the Pearl River Delta (PRD) were analyzed using ArcGIS 10.0. By comparing their spatial distributions and areas, the sources of heavy metals (Cd, Hg, As and Pb) were quantitatively identified and explored. Netted measuring points at 25 ×25 km were set over the entire PRD according to the geochemical maps. Based on the calculation data obtained from different soil depths, the concentrations of As and Cd in a large area of the PRD exceeded the National Second-class Standard. The spatial disparity of the geometric centers in the surface soil and deep soil showed that As in the surface soil mainly came from parent materials, while Cd had high consistency in different soil profiles because of deposition in the soil forming process. The migration of Cd also resulted in a considerable ecological risk to the Beijiang and Xijiang River watershed. The potential ecological risk index followed the order Cd ≥ Hg > Pb > As. According to the sources, the distribution trends and the characteristics of heavy metals in the soil from the perspective of the whole area, the Cd pollution should be repaired, especially in the upper reaches of the Xijiang and Beijiang watershed to prevent risk explosion while the pollution of Hg and Pb should be controlled in areas with intense human activity, and supervision during production should be strengthened to maintain the ecological balance of As.

  14. Distinguishing of uranium-bearing sandstone by the geochemical characteristics in northern Sichuan

    International Nuclear Information System (INIS)

    Wang Wangzhang; Zhang Zhufeng; Wang Yunliang; Sun Shuqin.

    1994-01-01

    Expounding geochemical characteristics of sandstone-type uranium deposits in northern Sichuan, the authors demonstrate the favourable and unfavourable conditions for enrichment of uranium on the basis of element abundances and ratios of U, Th and K measured by the gamma-ray spectroscopy surveying. The differences between uranium-bearing and non-uranium sandstones and between red sandstone (clay stone) and greenish sandstone can be determined by the gamma-ray spectroscopy (measuring U, Th and K) and XRF analysis (measuring As and Ba). Therefore, the prospecting of the sandstone-type uranium deposits in northern Sichuan can be concentrated in a certain range

  15. Sharp fronts within geochemical transport problems

    International Nuclear Information System (INIS)

    Grindrod, P.

    1995-01-01

    The authors consider some reactive geochemical transport problems in groundwater systems. When incoming fluid is in disequilibrium with the mineralogy sharp transition fronts may develop. They show that this is a generic property for a class of systems where the timescales associated with reaction and diffusion phenomena are much shorter than those associated with advective transport. Such multiple timescale problems are relevant to a variety of processes in natural systems: mathematically methods of singular perturbation theory reduce the dimension of the problems to be solved locally. Furthermore, they consider how spatial heterogeneous mineralogy can impact upon the propagation of sharp geochemical fronts. The authors developed an asymptotic approach in which they solve equations for the evolving geometry of the front and indicate how the non-smooth perturbations due to natural heterogeneity of the mineralogy on underlying ground water flow field are balanced against the smoothing effect of diffusion/dispersive processes. Fronts are curvature damped, and the results here indicate the generic nature of separate front propagation within both model (idealized) and natural (heterogeneous) geochemical systems

  16. Tracking riverborne sediment and contaminants in Commencement Bay, Washington, using geochemical signatures

    Science.gov (United States)

    Takesue, Renee K.; Conn, Kathleen E.; Dinicola, Richard S.

    2017-09-29

    Large rivers carry terrestrial sediment, contaminants, and other materials to the coastal zone where they can affect marine biogeochemical cycles and ecosystems. This U.S. Geological Survey study combined river and marine sediment geochemistry and organic contaminant analyses to identify riverborne sediment and associated contaminants at shoreline sites in Commencement Bay, Puget Sound, Washington, that could be used by adult forage fish and other marine organisms. Geochemical signatures distinguished the fine fraction (contaminants were measured in surface sediment did not have measurable 7Be activities in that layer, so their contaminant assemblages were attributed to sources from previous years. Concentrations of organic contaminants (the most common of which were polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fecal sterols) were higher in the contaminants in marine rather than river sediment, indicates that riverborne sediment-bound contaminants are retained in shallow marine habitats of Commencement Bay. The retention of earlier inputs complicates efforts to identify recent inputs and sources. Understanding modern sources and fates of riverborne sediment and contaminants and their potential ecological impacts will therefore require a suite of targeted geochemical studies in such marine depositional environments.

  17. The geological, geochemical, topographical and hydrogeological characteristics of the Broubster natural analogue site, Caithness

    International Nuclear Information System (INIS)

    Ball, T.K.; Milodowski, A.E.

    1991-01-01

    One of the four analogue sites chosen for investigation by the British Geological Survey is the uranium mineralization at Broubster, Caithness, Scotland. Naturally occurring uranium has been leached from a thin mineralized limestone horizon and has been carried by groundwater flow into a peat bog about 100 m away. This process has probably been going on for at least 5 000 years. Standard surveying, hydrogeological and geochemical methods have been applied in the investigation and analysis of the area. Selected samples of the mineralization, peat soils and associated groundwaters have been examined in detail. This report summarizes the main findings accumulated since 1968 when the site was first discovered, and provides a useful information base for further modelling work. 27 refs.; 12 plates; 40 figs.; 17 tabs

  18. The geological, geochemical, topographical and hydrogeological characteristics of the Broubster natural analogue site, Caithness

    International Nuclear Information System (INIS)

    Ball, T.K.; Milodowski, A.E.

    1989-06-01

    One of the four natural analogue sites chosen for investigation by the British Geological Survey is the uranium mineralisation at Broubster, Caithness, Scotland. Naturally occurring uranium has been leached from a thin mineralised limestone horizon and has been carried by groundwater flow into a peat bog about 100m away. This process has probably been going on for at least 5000 years. Standard surveying, hydrogeological and geochemical methods have been applied in the investigation and analysis of the area. Selected samples of the mineralisation, peat soils and associated groundwaters have been examined in detail. This report summarises the main findings accumulated since 1968 when the site was first discovered, and provides a useful information base for further modelling work. (author)

  19. Significance of geochemical characterization to performance at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.

    1993-01-01

    The U.S. concept for permanent disposal of high-level radioactive waste resembles those of other countries in that it relies upon burial in a deep geologic medium. This concept relies upon multiple barriers to retard transport of radionuclides to the accessible environment; those barriers consist of the waste form, waste container, engineered barrier system (including possible backfill) and retardant properties of the host rock. Because mobilization of radionuclides is fundamentally a geochemical problem, an understanding of past, present, and future geochemical processes is a requisite part of site characterization studies conducted by the U.S. Department of Energy at Yucca Mountain, Nevada. Geochemical information is needed for evaluating three favorable conditions (the rates of geochemical processes, conditions that promote precipitation or sorption of radionuclides or prohibit formation of colloids, and stable mineral assemblages) and four potentially adverse conditions of the site (groundwater conditions that could increase the chemical reactivity of the engineered barried system or reduce sorption, potential for gaseous radionuclide movement, and oxidizing groundwaters) for key issues of radionuclide release, groundwater quality, and stability of the geochemical environment. Preliminary results of long-term heating experiments indicate that although zeolites can be modified by long-term, low temperature reactions, their beneficial sorptive properties will not be adversely affected. Mineral reactions will be controlled by the aqueous activity of silica in groundwater with which the minerals are in contact. Geochemical barriers alone may satisfy release requirements to the accessible environment for many radionuclides; however, additional site specific geochemical and mineralogical data are needed to test existing and future radionuclide transport models

  20. Robust statistics and geochemical data analysis

    International Nuclear Information System (INIS)

    Di, Z.

    1987-01-01

    Advantages of robust procedures over ordinary least-squares procedures in geochemical data analysis is demonstrated using NURE data from the Hot Springs Quadrangle, South Dakota, USA. Robust principal components analysis with 5% multivariate trimming successfully guarded the analysis against perturbations by outliers and increased the number of interpretable factors. Regression with SINE estimates significantly increased the goodness-of-fit of the regression and improved the correspondence of delineated anomalies with known uranium prospects. Because of the ubiquitous existence of outliers in geochemical data, robust statistical procedures are suggested as routine procedures to replace ordinary least-squares procedures

  1. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-01-01

    This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)

  2. Integrated geophysical-geochemical methods for archaeological prospecting

    OpenAIRE

    Persson, Kjell

    2005-01-01

    A great number of field measurements with different methods and instruments were conducted in attempts to develop a method for an optimal combination of various geochemical and geophysical methods in archaeological prospecting. The research presented in this thesis focuses on a study of how different anthropogenic changes in the ground can be detected by geochemical and geophysical mapping and how the results can be presented. A six-year pilot project, Svealand in Vendel and Viking periods (S...

  3. Retention/sorption and geochemical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D.; Grandia, F.; Domenech, C. [Enviros Spain, S.L., Barcelona (Spain); SCK-CEN, Mol (Belgium); Sellin, P. [SKB - Swedish Nuclear Fuel and Waste Management, SE, Stockholm (Sweden); Hunter, F.M.I.; Bate, F.; Heath, T.G.; Hoch, A. [Serco Assurance, Oxfordshire (United Kingdom); Werme, L.O. [SKB - Svensk Karnbranslehantering AB, Stockholm (Sweden); Bruggeman, C.; Maes, I.A.; Breynaert, E.; Vancluysen, J. [Leuven Katholieke Univ., Lab. for Colloid Chemistry (Belgium); Montavon, G.; Guo, Z. [Ecole des Mines, 44 - Nantes (France); Riebe, B.; Bunnenberg, C.; Meleshyn, A. [Leibniz Univ. Hannover, Zentrum fur Strahlenschutz und Radiookologie, Hannover (Germany); Dultz, S. [Leibniz Univ. Hannover, Institut fur Bodenkunde, Hannover (Germany)

    2007-07-01

    This session gathers 4 articles dealing with: the long-term geochemical evolution of the near field of a KBS-3 HLNW repository: insights from reactive transport modelling (D. Arcos, F. Grandia, C. Domenech, P. Sellin); the investigation of iron transport into bentonite from anaerobically corroding steel: a geochemical modelling study (F.M.I. Hunter, F. Bate, T.G. Heath, A. Hoch, L.O. Werme); SeO{sub 3}{sup 2-} adsorption on conditioned Na-illite: XAS spectroscopy, kinetics, surface complexation model and influence of compaction (C. Bruggeman, A. Maes, G. Montavon, E. Breynaert, Z. Guo, J. Vancluysen); the influence of temperature and gamma-irradiation on the anion sorption capacity of modified bentonites (B. Riebe, C. Bunnenberg, A. Meleshyn, S. Dultz)

  4. Geochemical prospect ion results of Treinta y Tres aerial photo

    International Nuclear Information System (INIS)

    Zeegers, H.; Bonnefoy, D.; Garau, M.; Spangenberg, J.

    1981-01-01

    This report shows the geochemical prospect ion results carried out within the framework of the multielemental geochemical strategy. The samples were studied by e spectrometry in the laboratories of Orleans.

  5. Western states uranium resource survey

    International Nuclear Information System (INIS)

    Tinney, J.F.

    1977-01-01

    ERDA's National Uranium Resource Evaluation (NURE) program was established to provide a comprehensive description of uranium resources in the United States. To carry out this task, ERDA has contracted with various facilities, including universities, private companies, and state agencies, to undertake projects such as airborne radiometric surveys, geological and geochemical studies, and the development of advanced geophysical technology. LLL is one of four ERDA laboratories systematically studying uranium distribution in surface water, groundwater, and lake and stream sediments. We are specifically responsible for surveying seven western states. This past year we have designed and installed facilities for delayed-neutron counting and neutron-activation analysis, completed seven orientation surveys, and analyzed several thousand field samples. Full-scale reconnaissance surveys began last fall

  6. Geochemical and Geophysical Characteristics of the Balud Ophiolitic Complex (BOC, Masbate Island, Philippines: Implications for its Generation, Evolution and Emplacement

    Directory of Open Access Journals (Sweden)

    Pearlyn C. Manalo

    2015-01-01

    Full Text Available This paper presents the first field, geochemical and geophysical information on the recently recognized Early Cretaceous Balud Ophiolitic Complex (BOC in the island of Masbate in the Central Philippines. Mapping of the western limb of the island revealed that only the upper crustal section of the BOC is exposed in this area. Geochemically, the pillow basalts are characterized by transitional mid-oceanic ridge basalt-island arc tholeiitic compositions. Gravity surveys yielded low Bouguer anomaly values that are consistent with the highly dismembered nature of the BOC. Short wavelength, high amplitude magnetic anomalies registered across the study area are attributed to shallow magnetic sources. This is taken to support the model that the ophiolitic complex occurs as thin crustal slivers that are not deeply-rooted in the mantle. Comparing BOC with other ophiolites in the Central Philippines, such as those in the islands of Sibuyan, Leyte and Bohol, suggests the possibility of a common or contiguous source for similarly-aged and geochemically composed crust-mantle sequences in the region.

  7. Geochemistry of soils along a transect from Central Mexico to the Pacific Coast: a pilot study for continental-scale geochemical mapping

    Science.gov (United States)

    Chiprés, J.A.; de la Calleja,; Tellez, J.I.; Jiménez, F.; Cruz, Carlos; Guerrero, E.G.; Castro, J.; Monroy, M.G.; Salinas, J.C.

    2009-01-01

    The Mexican Geological Survey (SGM), the National Institute of Statistics, Geography and Informatics (INEGI) and the Autonomous University of San Luis Potosi (UASLP) have established a multidisciplinary team with the objective of creating a national program of geochemical mapping of soils in Mexico. This is being done as part of the North American Soil Geochemical Landscapes Project in partnership with the US Geological Survey and the Geological Survey of Canada. As the first step, a pilot study was conducted over a transect that extends from the Mexico–US border near Ciudad Juarez in the north to the Pacific Ocean in the south. This pilot transect was conducted in two phases, and this paper presents results from the first phase, which sampled soils at about a 40-km spacing along a 730-km transect beginning in Central Mexico and ending at the Pacific Coast. Samples were collected from the A and C horizons at each site and 60 elements were analyzed. This pilot study demonstrates that geochemical mapping based on a 40-km spacing is adequate to identify broad-scale geochemical patterns. Geologic influence (i.e., soil parent material) was the most important factor influencing the distribution of elements along the transect, followed by the influence of regional mineralization. The study also showed that influence by human activities over the transect is minimal except possibly in large mining districts. A comparison of element abundance in the A horizon with the environmental soil guidelines in Mexico showed that the natural concentrations of the studied soils were lower than the established threshold for soil restoration with the exception of V and As. The former had a median value (75 mg/kg) approximately equal to the value established in Mexico for soil restoration in agricultural and residential lands (78 mg/kg), and the latter had three values higher than the 22 mg/kg threshold for soil restoration in agricultural and residential lands. These cases demonstrate

  8. Geochemical behaviour of natural uranium-series nuclides in geological formation

    International Nuclear Information System (INIS)

    Yamakawa, Minoru

    1991-01-01

    Recent research and investigation show that the Tono uranium deposit and its natural uranium-series nuclides have been preserved, without any significant changes like re-migration or reconcentration, throughout geological events such as upheaval-submergence, marine transgression-regression, and faulting which can readily change geological, hydrogeological, and geochemical conditions. This situation might have come about as a result of being kept in a geometrical closure system, with reducing and milk alkalic geochemical conditions, from the hydrogeological and geochemical point of view. (author)

  9. Statistical interpretation of geochemical data

    International Nuclear Information System (INIS)

    Carambula, M.

    1990-01-01

    Statistical results have been obtained from a geochemical research from the following four aerial photographies Zapican, Carape, Las Canias, Alferez. They have been studied 3020 samples in total, to 22 chemical elements using plasma emission spectrometry methods.

  10. Fiscal 1989 geothermal development promotion survey. Annex to on-the-ground survey report, geothermal development promotion survey (Geochemical survey report - No. 32: Hachijojima district); 1989 nendo chinetsu kaihatsu sokushin chosa chijo chosa hokokusho futai shiryo (Chikagaku chosa hokokusho - No.32 Hachijojima chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-11-01

    A geochemical survey was conducted by examining soil gas and hot spa water temperature for contributing to the clarification of the subsurface geothermal structure in the Hachijojima district, Tokyo. Mercury concentration, carbon dioxide gas concentration, and 1 m-deep temperature were measured at 155 sites; and chemical and isotope analyses were conducted for 10 specimens of hot spa water and 6 specimens of surface water. After examination, 5 significant locations were isolated at the regions of Yaene-Ogago, Taredo, the northern foot of Mt. Nishi to Weather Station, the southern foot of Mt. Higashi, and the region to the south of Mt. Higashi with hot spa distributed therein. The significant locations are situated in the vicinity of a mar that produced deposit by magma-steam eruption, an alteration zone, and the parasitic volcano in Mt. Higashi, and in an area with hot spa distributed therein. It is therefore concluded that they are closely related with volcanic activities. It is inferred that geothermal signs in the Mt. Nishi area reflect a relatively deep-seated structure. As for the mercury and carbon dioxide gas concentration levels in the Mt. Higashi area, it is inferred that they again represent geothermal signs reflecting a relatively deep-seated structure. (NEDO)

  11. Regional geochemical maps of uranium in Northern Scotland. Environmental and economic considerations

    International Nuclear Information System (INIS)

    Plant, J.

    1978-01-01

    The Institute of Geological Studies geochemical mapping programme is outlined. The natural levels of uranium in rocks, soils and waters are discussed. Some practical details of geochemical mapping are given. Applications of geochemical maps of uranium in Scotland are considered: economic applications and medical geography and agriculture. A list of 38 references is appended. (U.K.)

  12. Geochemical site-selection criteria for HLW repositories in Europe and North America

    International Nuclear Information System (INIS)

    Savage, David; Arthur, Randolph C.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

    2000-01-01

    Geochemical as well as socio-economic issues associated with the selection of potential sites to host a high-level nuclear waste repository have received considerable attention in repository programs in Europe (Belgium, Finland, France, Germany, Spain, Sweden, Switzerland and the U.K.) and North America (Canada and the United States). The objective of the present study is to summarize this international experience with particular emphasis on geochemical properties that factor into the adopted site-selection strategies. Results indicate that the geochemical properties of a site play a subordinate role, at best, to other geotechnical properties in the international site-selection approaches. In countries where geochemical properties are acknowledged in the site-selection approach, requirements are stated qualitatively and tend to focus on associated impacts on the stability of the engineered barrier system and on radionuclide transport. Site geochemical properties that are likely to control the long-term stability of geochemical conditions and radionuclide migration behavior are unspecified, however. This non-prescriptive approach may be reasonable for purposes of screening among potential sites, but a better understanding of site properties that are most important in controlling the long-term geochemical evolution of the site over a range of possible scenarios would enable the potential sites to be ranked in terms of their suitability to host a repository. (author)

  13. Granite-repository - geochemical environment

    International Nuclear Information System (INIS)

    1979-04-01

    Some geochemical data of importance for a radioactive waste repository in hard rock are reviewed. The ground water composition at depth is assessed. The ground water chemistry in the vicinity of uranium ores is discussed. The redox system in Swedish bedrock is described. Influences of extreme climatic changes and of repository mining and construction are also evaluated

  14. Stream sediment geochemical surveys for uranium

    International Nuclear Information System (INIS)

    Price, V.; Ferguson, R.B.

    1979-01-01

    Stream sediment is more universally available than ground and surface waters and comprises the bulk of NURE samples. Orientation studies conducted by the Savannah River Laboratory indicate that several mesh sizes can offer nearly equivalent information. Sediment is normally sieved in the field to pass a 420-micrometer screen (US Std. 40 mesh) and that portion of the dried sediment passing a 149-micrometer screen (US Std. 100 mesh) is recovered for analysis. Sampling densities usually vary with survey objectives and types of deposits anticipated. Principal geologic features that can be portrayed at a scale of 1:250,000, such as major tectonic units, plutons, and pegmatite districts, are readily defined using a sampling density of 1 site per 5 square miles (13 km 2 ). More detailed studies designed to define individual deposits require greater sampling density. Analyses for elements known to be associated with uranium in a particular mineral host may be used to estimate the relative proportion of uranium in several forms. For example, uranium may be associated with thorium and cerium in monazite, and with zirconium and hafnium in zircon. Readily leachable uranium may be adsorbed to trapped in oxide coatings on mineral particles. Soluble or mobile uranium may indicate an ore source, whereas uranium in monazite or zircon is not likely to be economically attractive. Various schemes may be used to estimate for form of uranium in a sample. Simple elemental ratios are a useful first approach. Multiple ratios and subtractive formulas empirically designed to account for the presence of particular minerals are more useful. Residuals calculated from computer-derived regression equations or factor scores appear to have the greatest potential for locating uranium anomalies

  15. Geochemical Distribution of Lead and Chromium in River Getsi-Kano

    African Journals Online (AJOL)

    Geochemical forms of lead (Pb) and Chromium (Cr) from the sediment of River Getsi Kano-Nigeria were determined using Atomic Absorption spectrometer for eighteen months. Apart from determination of the metals in water, geochemical forms of the metals were also evaluated into five fractions. Exchangeable, bound to ...

  16. Heavy mineral survey for uranium in the Philippines

    International Nuclear Information System (INIS)

    Tauchid, M.; Santos, G. Jr.; Hernandez, E.; Bernido, C.

    1983-01-01

    A reconnaissance geochemical survey for uranium was carried out in the island of Samar in the Philippines covering an area of about 13,000 km 2 . The survey represents the first practical demonstration in the country of the use of geochemical techniques to outline large possibly interesting areas within a short period and with modest monetary expenditure. The survey entailed the systematic collection of 1530 heavy mineral concentrates, stream sediments and water samples, and the measurement of radioactivity at 510 stations along the major drainage system of Samar. The average sampling density was 1/20-25 km 2 . All solid samples were analysed for U, Cu, Pb, Zn, Mn, Ag, Co and Ni. Uranium, radon, conductivity and pH were measured in most of the water samples collected. More than 9000 chemical determinations were made. Results of the survey clearly point to the usefulness of heavy mineral sampling at the low density level of observation. The non-magnetic fraction of the heavy mineral concentrates outlined strong and well defined areas of interest for most of the elements analysed. Stream sediment sampling at this sampling density indicated weaker, less clearly defined anomalies. Uranium and radon analyses performed on stream water samples and ground scintillometer readings provided invaluable complementary information relevant to the evaluation of the island's uranium potential. (author)

  17. Geochemical prospecting in Guiana

    International Nuclear Information System (INIS)

    Coulomb, R.

    1957-01-01

    During the last few years geochemical prospecting techniques have become common usage in the field of mineral deposit prospecting. The real scope of these methods lies in their use in the prospecting of large areas. The most promising use of the geochemistry and hydro-geochemistry of uranium is in heavily forested tropical territories, with few outcrops, where radiometry is strongly handicapped. (author) [fr

  18. Baseline geochemical data for stream sediment and surface water samples from Panther Creek, the Middle Fork of the Salmon River, and the Main Salmon River from North Fork to Corn Creek, collected prior to the severe wildfires of 2000 in central Idaho

    Science.gov (United States)

    Eppinger, Robert G.; Briggs, Paul H.; Brown, Zoe Ann; Crock, James G.; Meier, Allen; Theodorakos, Peter M.; Wilson, Stephen A.

    2001-01-01

    In 1996, the U.S. Geological Survey conducted a reconnaissance baseline geochemical study in central Idaho. The purpose of the baseline study was to establish a 'geochemical snapshot' of the area, as a datum for monitoring future change in the geochemical landscape, whether natural or human-induced. This report presents the methology, analytical results, and sample descriptions for water, sediment, and heavy-mineral concentrate samples collected during this geochemical investigation. In the summer of 2000, the Clear Creek, Little Pistol, and Shellrock wildfires swept across much of the area that was sampled. Thus, these data represent a pre-fire baseline geochemical dataset. A 2001 post- fire study is planned and will involve re-sampling of the pre-fire baseline sites, to allow for pre- and post-fire comparison.

  19. Summary report on geochemical barrier special study

    International Nuclear Information System (INIS)

    1988-12-01

    Long-term management of uranium mill tailings must provide assurance that soluble contaminants will not migrate beyond the Point of Compliance. Conventional management alternatives provide containment through the use of physical barriers which are designed to prevent migration of water through the tailings pile. An alternative is to geochemically modify the tailings to immobilize the contaminants. This investigation examined three potential geochemical modifiers to determine their ability to immobilize inorganic groundwater contaminants found in uranium mill tailings. These modifiers were hydrated lime (Ca(OH) 2 ), limestone (CaCO 3 ), and a sphaegnum peat moss. This investigation focused on both the geochemical interactions between the tailings and the modifiers, and the effects the modifiers had on the physical strength of the tailings. The geochemical investigations began with characterization of the tailings by X-ray diffraction and scanning electron microscopy. This was followed by batch leaching experiments in which various concentrations of each modifier were added to tailings in shaker flasks and allowed to come to equilibrium. Finally, column experiments were conducted to simulate flow through a tailings pile. The results show that all of the modifiers were at least moderately effective at immobilizing most of the groundwater contaminants of concern at uranium mill tailings sites. Hydrated lime was able to achieve 90 percent concentration reduction of arsenic, cadmium, selenium, uranium, and sulfate when added at a two percent concentration. Limestone was somewhat less effective and peat removed greater than 90 percent of arsenic, lead, uranium, and sulfate at a one percent concentration. The column tests showed that kinetic and/or mass transfer limitations are important and that sufficient time must be allowed for the immobilization reactions to occur

  20. Proceedings of 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analytical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  1. Geochemical modelling. Pt.1, Pt.2

    International Nuclear Information System (INIS)

    Skytte Jensen, B.; Jensen, H.; Pearson, F.J.

    1992-01-01

    This work is carried out under cost-sharing contract with the European Atomic Energy Community in the framework of its fourth research programme on radioactive waste management and radioactive waste storage. This final report is subdivided into two parts. In the first part, JENSEN, a computer code for the computation of chemical equilibria in aqueous systems, describes the structure, function and use of a new geochemical computer program intended for PC's. The program, which is written in Turbo Pascal, version 4, is fundamentally similar to most other geochemical programs, but combines in one program several of the merits these programs have. The intention has been to make an advanced program, which also should be user friendly and fast, and to attain this several new algorithms have been developed and implemented. The program has a built-in database mainly based on the CHEMVAL compilation containing data for 395 soluble species and 149 minerals. The program can find equilibria in the presence of all or some of these soluble species, under conditions or fixed or floating pH and / or Redox potential. The program by itself eliminates a bad guess of a candidate for precipitation. In the present version, the program can identify which minerals and how much of them there will be formed when equilibrium is established. In the second part, LITTLE JOE, an expert system to support geochemical modelling, describes the construction of a minor expert system for use in the evaluation of analytical data for the composition of ground waters from limestone formation. Although the example given is rather limited in scope, the application of the expert system for the evaluation of the analytical data clearly demonstrates the mature expert knowledge imbedded in the system which is contrasted with the uncritical acceptance of analytical or theoretical data. With the overall neglect of ion-exchange and the formation of solid solutions in geochemical calculations, geochemistry is

  2. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  3. Brazil Geologic Basic Survey Program - Barbacena - Sheet SF.23-X-C-III -Minas Gerais State

    International Nuclear Information System (INIS)

    Brandalise, L.A.

    1991-01-01

    The present report refers to the Barbacena sheet (SF.23-X-C-III) systematic geological mapping, on the 1:10,000 scale, related to the Levantamentos Geologicos Basicos do Brasil Program - PLGB, carried out by CPRM for the DNPM. Integrated to geochemical and geophysical surveys, the geological mapping not only yielded geophysical and geochemical maps but a consistent to the 1:100.000 scale Metallogenetic/Provisional one as well. The geological mapping carried out during the Project has really evidenced that samples of distinct stratigraphic units had been employed to define the one and only isochrone. However geochronologic Rb/Sr dating performed during the geological mapping phase evidenced Archean ages for rocks of the Sao Bento dos Torres Metamorphic Suite (2684 ± 110 m.y.) and ages of about 2000 m.y. for the Ressaquinha Complex rocks. An analysis of crustal evolution patterns based on geological mapping, gravimetric survey data, aeromagnetometry and available geochronologic data is given in the Chapter 6, Part II, in the test. Major element oxides, trace-elements and rare-earths elements were analysed to establish parameters for the rocks environment elucidation. Geochemical survey was carried out with base on pan concentrated and stream sediments distributed throughout the sheet. (author)

  4. Review of geochemical measurement techniques for a nuclear waste repository in bedded salt

    International Nuclear Information System (INIS)

    Knauss, K.G.; Steinborn, T.L.

    1980-01-01

    A broad, general review is presented of geochemical measurement techniques that can provide data necessary for site selection and repository effectiveness assessment for a radioactive waste repository in bedded salt. The available measurement techniques are organized according to the parameter measured. The list of geochemical parameters include all those measurable geochemical properties of a sample whole values determine the geochemical characteristics or behavior of the system. For each technique, remarks are made pertaining to the operating principles of the measurement instrument and the purpose for which the technique is used. Attention is drawn to areas where further research and development are needed

  5. Behaviour of nature and technogenic radioisotopes in buried geochemical barriers

    International Nuclear Information System (INIS)

    Kuznetsov, V.A.; Onoshko, M.P.; Generalova, V.A.

    1998-01-01

    Behaviour of potassium 40, radium 226, thorium 232, strontium 90 and cesium 137 on geochemical barriers connected with buried soils and cut-off meander sediments of the Holocene age of the Sozh river valley are examined. Some sides of the barrier geochemical structure caused by syngeneic and epigenetic processes have been taken into consideration

  6. Management of Reclaimed Produced Water in the Rocky Mountain States Enhanced with the Expanded U.S. Geological Survey Produced Waters Geochemical Database

    Science.gov (United States)

    Gans, K. D.; Blondes, M. S.; Reidy, M. E.; Conaway, C. H.; Thordsen, J. J.; Rowan, E. L.; Kharaka, Y. K.; Engle, M.

    2016-12-01

    The Rocky Mountain states; Wyoming, Colorado, Montana, New Mexico and Utah produce annually approximately 470,000 acre-feet (3.66 billion barrels) of produced water - water that coexists with oil and gas and is brought to the surface with the pumping of oil and gas wells. Concerns about severe drought, groundwater depletion, and contamination have prompted petroleum operators and water districts to examine the recycling of produced water. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water reuse. Water with low salinity can be reclaimed for use inside and outside of the petroleum industry. Since a great proportion of petroleum wells in the Rocky Mountain states, especially coal-bed methane wells, have produced water with relatively low salinity (generally oil recovery, and even for municipal uses, such as drinking water. The USGS Produced Waters Geochemical Database, available at http://eerscmap.usgs.gov/pwapp, has 60,000 data points in this region (this includes 35,000 new data points added to the 2002 database) and will facilitate studies on the management of produced water for reclamation in the Rocky Mountain region. Expanding on the USGS 2002 database, which contains geochemical analyses of major ions and total dissolved solids, the new data also include geochemical analyses of minor ions and stable isotopes. We have added an interactive web map application which allows the user to filter data on chosen fields (e.g. TDS data set can provide critical insight for better management of produced waters in water-constrained regions of the Rocky Mountains.

  7. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    1991-01-01

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  8. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  9. GEOBASI: The geochemical Database of Tuscany Region (Italy

    Directory of Open Access Journals (Sweden)

    Brunella Raco

    2015-03-01

    Full Text Available In this study the new Regional Geochemical Database (RGDB, called GEOBASI, is presented and illustrated in the framework of a joint collaboration among the three Tuscan universities (Florence, Pisa and Siena, CNR-IGG (Institute of Geosciences and Earth Resources of Pisa, ARPAT (Regional Agency for the Environmental Protection, LAMMA (Environmental Modelling and Monitoring Laboratory for Sustainable Development Consortium and S.I.R.A. (Territorial and Environmental Informative System of Tuscany. The database has permitted the construction of a repository where the geochemical information (compositional and isotopic has been stored in a structured way so that it can be available for different groups of users (e.g. institutional, public and private companies. The information contained in the database can in fact be downloaded freely and queried to correlate geochemistry to other non compositional variables. The first phase of the project was aimed at promoting the use of the geochemical data already available from previous investigations through a powerful Web-GIS interface to implement the exploratory statistics graphical-numerical tools used to: 1 analyse the spatial variability of the investigated context, 2 highlight the geographic location of data pertaining to classes of values or single cases, 3 compare the results of different analytical methodologies applied to the determination of the same element and/or chemical species, 4 extract the geochemical data related to specific monitoring plans and/or geographical areas, and finally 5 recover information about data below the detection limit to understand their impact on the behaviour of the investigated variable. Developments of this project will be focused on the definition of rules and standardized methods in a way that external users could also interactively pursue the RGDB. Furthermore, a detailed investigation of the Scarlino-Follonica plain will permit the improvement and test of

  10. Geochemical Anomalies in the Sediments of Lake Druksiai

    International Nuclear Information System (INIS)

    Kleinas, A.

    1999-01-01

    In order to evaluate the impact of Ignalina Nuclear Power Plant (NPP) on natural processes in Lake Druksiai and accumulation of pollutants, in 19931997, carrying on the state scientific program, the Marine Geochemistry Division of the Institute of Geography performed lithological geochemical mapping of lake bottom sediments on a scale of 1 .50 000. The results obtained enabled to distinguish zones of higher anthropogenous geochemical load, where geochemical anomalies of pollutants, including oil hydrocarbons and heavy metals, had been taken into account. Applying concentration coefficients for oil hydrocarbons and heavy metals (Cr, Cu, Ni, Pb, and Zn) and their natural background, the attempt was made to differentiate natural and technogenous components in the geochemical anomalies As expected, the finer sediments -aleurite-pelite mud - showed amounts of oil hydrocarbons and heavy metals being 12.1 times higher than in fine sand - the most coarse of the sediments studied Sediments with organic mater exceeding 20% contained 11.7 times more pollutants than those with organic matter below 1 .5%. Calculations of concentration coefficients (CC) showed no elements in no stations exceeded 10 - the sediments did not reach the category of high pollution However, in many sites, the coefficients exceeded values of 1-2, thus, showing sediments attributable to the categories of weakly polluted or just polluted. Mapping model done by GIS methods (by superimposing schemes of pollutant CCs distribution in the lake and summing them) for geochemical anomalies two derivative map-schemes were obtained for oil hydrocarbons and heavy metals. They showed that clean sediments cover just 24.75% (according to the pollutant background for soil types) and 12.35% (according to the organic matter background for its amount intervals) lake bottom area. Zones slightly polluted by an element at least cover 69.7 and 80.29% of lake area, correspondingly; whereas zones slightly polluted by all

  11. Effect of source integration on the geochemical fluxes from springs

    International Nuclear Information System (INIS)

    Frisbee, Marty D.; Phillips, Fred M.; White, Art F.; Campbell, Andrew R.; Liu, Fengjing

    2013-01-01

    Geochemical fluxes from watersheds are typically defined using mass-balance methods that essentially lump all weathering processes operative in a watershed into a single flux of solute mass measured in streamflow at the watershed outlet. However, it is important that we understand how weathering processes in different hydrological zones of a watershed (i.e., surface, unsaturated, and saturated zones) contribute to the total geochemical flux from the watershed. This capability will improve understanding of how geochemical fluxes from these different zones may change in response to climate change. Here, the geochemical flux from weathering processes occurring solely in the saturated zone is investigated. This task, however, remains exceedingly difficult due to the sparsity of subsurface sampling points, especially in large, remote, and/or undeveloped watersheds. In such cases, springflow is often assumed to be a proxy for groundwater (defined as water residing in fully saturated geologic formations). However, springflow generation may integrate different sources of water including, but not limited to, groundwater. The authors’ hypothesis is that long-term estimates of geochemical fluxes from groundwater using springflow proxies will be too large due to the integrative nature of springflow generation. Two conceptual models of springflow generation are tested using endmember mixing analyses (EMMA) on observations of spring chemistries and stable isotopic compositions in a large alpine watershed in the San Juan Mountains of southwestern Colorado. In the “total springflow” conceptual model, springflow is assumed to be 100% groundwater. In the “fractional springflow” conceptual model, springflow is assumed to be an integration of different sources of water (e.g., groundwater, unsaturated flow, preferential flow in the soil, etc.) and groundwater is only a fractional component. The results indicate that groundwater contributions in springflow range from 2% to 100

  12. Drowning in Geochemical Data: The Good, the bad, and the Ugly

    Science.gov (United States)

    Hofmann, A. W.; Goldstein, S. L.

    2008-12-01

    Geochemical databases are placing unprecedented amounts of geochemical data at the fingertips of professionals and students. How these data are being used is taking an increasingly important role in shaping our thinking about the Earth. Databases have helped to expose (and eventually kill?) some long- cherished myths, such as the idea of the well-homogenized upper-mantle reservoir, and and they have made geochemical data accessible to geophysicists and enabled them to look at geochemistry with fresh eyes, leading to genuinely new insights. Yet, their very accessibility also makes them "dangerous tools" in the hands of the inexperienced. Statistical treatment of masses of geochemical data without, or with excessive, filtering can yield all sorts of "answers" we would probably be better off without. Data that are severely flawed (due to alteration or poor analytical quality, errors in published data, or errors during data entry) might not be easily identified by, say, a geodynamicist. Other dangers stem from overrepresentation of over-sampled locations and the general, but faulty, assumption of random sampling of the Earth. We will show examples where raw downloads of data from databases without extensive screening can yield data collections where the garbage swamps the useful information. We will also show impressive but meaningless correlations, e.g. upper-mantle temperature versus atmospheric temperature. The lesson is that screening is necessary. On the other hand, sound database compilations now demonstrate that average incompatible-element concentrations in global MORB are two to five times higher than published estimates. This fundamentally changes 30-year-old geochemical mass balance estimates of the mantle. OIBs are fundamentally similar to MORBs but are isotopically shifted, on average, to more "enriched" values. Mantle geochemistry is now fully consistent with dynamic models of "whole-mantle" circulation, with the likely exception of a relatively small

  13. The geochemical environment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Gascoyne, M.

    1995-01-01

    The concept for disposal of Canada's nuclear fuel waste in a geologic environment on the Canadian Shield has recently been presented by Atomic Energy of Canada Limited (AECL) to governments, scientists, and the public, for review. An important part of this concept concerns the geochemical environment of a disposal vault and includes consideration of rock and groundwater compositions, geochemical interactions between rocks, groundwaters, and emplaced vault materials, and the influences and significance of anthropogenic and microbiological effects following closure of the vault. This paper summarizes the disposal concept and examines aspects of the geochemical environment. The presence of saline groundwaters and reducing conditions at proposed vault depths (500-1000 m) in the Canadian Shield has an important bearing on the stability of the used nuclear fuel, its container, and buffer and backfill materials. The potential for introduction of anthropogenic contaminants and microbes during site investigations and vault excavation, operation, and sealing is described with examples from AECL's research areas on the Shield and in their underground research laboratory in southeastern Manitoba. (author)

  14. Well sediments: a medium for geochemical prospecting, an example from the Nisa region, Portugal

    NARCIS (Netherlands)

    Vriend, S.P.; Dekkers, M.J.; Janssen, M.A.; Commandeur, J.

    1991-01-01

    Vriend, S.P., Dekkers, M.J.. Janssen, M.A. and Commandeur, J., 1991. Well sediments: a medium for geochemical prospecting, an example from the Nisa region. Portugal. In: A.W. Rose and P.M. Taufen I Editors). Geochemical Exploration ! 989. J. Geochem. Expior., 4 ! : ! 5 I- 167. Tile potential of

  15. Validation of the WATEQ4 geochemical model for uranium

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite [UO 2 (OH) 2 . H 2 O], UO 2 (OH) 2 , and rutherfordine ((UO 2 CO 3 ) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions

  16. Lateritinga project: a geochemical orientation study for Amazon lateritic

    International Nuclear Information System (INIS)

    Costa, M.L. da

    1990-01-01

    The aim of this project is the development of systematic geochemical orientation survey in lateritic weathered terrain, like those form Amazon Region. The main selected targets (sheets) are: Turiacu, Cajuapara and Serra dos Carajas, with 690 samples collected (soils and lateritic rocks). For the Aurizona-Serra do Pirocaua target (Turiacu sheet), within the purpose of this work, 49 samples were collected in a 100x 200m regular grid. From all samples the fraction minor than 200 mesh was taken to analyses (by XRF, AA, OES, ICP and fire assay) for SiO sub(2), Fe sub(2) O sub(3), TiO sub(2), P sub(2) O sub(5), Sr, Ba, Y, Nb, Zr, Ga, Sc, Ni, Co, Cr, Cu, Mn, V, As, Bi, Pt, Pd, Th, Au and REE, as well for their mineralogy by XRD. The chemical results were submitted to statistical treatment with the Geoquant-software for IBM-compatible microcomputer. (author)

  17. Modeling Background Radiation in our Environment Using Geochemical Data

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L.; Marsac, Kara [University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Hausrath, Elisabeth [Uniiversity of Nevada, Las Vegas; Haber, Daniel [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  18. Stand-off laser-induced breakdown spectroscopy of aluminum and geochemical reference materials at pressure below 1 torr

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang-Jae; Choi, Soo-Jin; Yoh, Jack J., E-mail: jjyoh@snu.ac.kr

    2014-11-01

    Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy that utilizes a highly irradiated pulse laser focused on the target surface to produce plasma. We obtain spectroscopic information from the microplasma and determine the chemical composition of the sample based on its elemental and molecular emission peaks. We develop a stand-off LIBS system to analyze the effect of the remote sensing of aluminum and various geochemical reference materials at pressures below 1 torr. Using a commercial 4 inch refracting telescope, our stand-off LIBS system is configured at a distance of 7.2 m from the four United States Geological Survey (USGS) geochemical samples that include granodiorite, quartz latite, shale-cody, and diabase, which are selected for planetary exploration. Prepared samples were mixed with a paraffin binder containing only hydrogen and carbon, and were pelletized for experimental convenience. The aluminum plate sample is considered as a reference prior to using the geochemical samples in order to understand the influence of a low pressure condition on the resulting LIBS signal. A Q-switched Nd:YAG laser operating at 1064 nm and pulsed at 10 Hz with 21.7 to 48.5 mJ/pulse was used to obtain signals, which showed that the geochemical samples were successfully detected by the present stand-off detection scheme. A low pressure condition generally results in a decrease of the signal intensity, while the signal to noise ratio can vary according to the samples and elements of various types. We successfully identified the signals at below 1 torr with stand-off detection by a tightly focused light detection and by using a relatively larger aperture telescope. The stand-off LIBS detection at low pressure is promising for potential detection of the minor elements at pressures below 1 torr. - Highlights: • Stand-off LIBS signals at below 1 torr are compared to those of in-situ conditions. • Vacuum condition provides easier detection of the

  19. Kriging - a challenge in geochemical mapping

    Czech Academy of Sciences Publication Activity Database

    Štojdl, J.; Matys Grygar, Tomáš; Elznicová, J.; Popelka, J.; Váchová, T.; Hošek, Michal

    2017-01-01

    Roč. 19, APR (2017) ISSN 1607-7962. [EGU General Assembly 2017. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:61388980 Keywords : kriging * geochemical mapping Subject RIV: DD - Geochemistry http://meetingorganizer.copernicus.org/EGU2017/EGU2017-3615.pdf

  20. Geochemical signature of columbite-tantalite and environmental impact of radioactive pegmatite mining in the Parelhas region, Rio Grande do Norte, Northeast Brazil

    International Nuclear Information System (INIS)

    Moura, Jorge Costa de; Cruz, Paulo R.; Pereira, Valmir; Ludka, Isabel P.; Mendes, Julio C.

    2013-01-01

    This article comprises geochemical, structural and radiometric investigations on radioactive pegmatites of the Borborema Pegmatitic Province in Northeast Brazil. The studied area is located in the surroundings of the city of Parelhas, in the geotectonic Province of Borborema. It is well known for its thousands of pegmatitic bodies exploited in primitive mines called garimpos. The main goal was to find an efficient, cheap and routine inspection procedure to identify the origin of commercialized radioactive columbite-tantalite (coltan) ore. The Brazilian Nuclear Energy Agency (CNEN) controls uranium commerce and nuclear activity in Brazil. Without an effective method to characterize coltan ores from different localities it is impossible to control the trade. The here presented new method was developed by correlating structural features of these pegmatites with the geochemical behavior of their coltan samples. It was found that the variation of U/Th vs. Nb 2 O 5 /Ta 2 O 5 provides geochemical signatures (analytical fingerprints) for the source location of such ore. The new method was tested with coltan samples of commercial batches from the Brazilian states of Amapa and Rondonia and also generated distinct geochemical signatures. A radiometric survey (CPS) to study the environmental impact of gamma radiation was also carried out in several mines and pegmatites. It included in situ measurements of pegmatite walls, enclosing rocks, soil, and accumulated water and revealed that gamma emitters are hardly solubilized and therefore environmental gamma radiation generally is not enhanced to a dangerous level. (author)

  1. Status report on geochemical modelling

    International Nuclear Information System (INIS)

    Read, D.

    1991-12-01

    This report describes the findings of a review undertaken on behalf of the project management group of the programme 'Endlagersicherheit in der Nachbetriebsphase' based at GSF-IfT (Forschungszentrum fuer Umwelt und Gesundheit - Institut fuer Tieflagerung) to establish the current status of research into the simulation of geochemical processes relevant to radiological assessment. The review is intended to contribute to Stage 1 of a strategy formulated to enhance the use of geochemical models in Germany. Emphasis has been placed on processes deemed to be of greatest relevance to performance assessment for a HLW-repository in a salt dome principally, speciation-solubility in high salinity solutions, complexation by natural organics and generation-transport of colloids. For each of these and other topics covered, a summary is given of fundamental concepts, theoretical representations and their limitations, highlighting, where appropriate, the advantages and disadvantages of alternative approaches. The availability of data to quantify any given representation is addressed, taking into account the need for information at elevated temperatures and pressures. Mass transfer is considered in terms of aqueous, particulate and gas-mediated transport, respectively. (orig.) [de

  2. Geochemical evidence for waning magmatism and polycyclic volcanism at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Perry, F.V.; Crowe, B.M.

    1992-01-01

    This paper reports that petrologic and geochemical studies of basaltic rocks in the Yucca Mountain region are currently focused on understanding the evolution of volcanism in the Crater Flat volcanic field and the mechanisms of polycyclic volcanic field and the mechanisms of polycyclic volcanism at the Lathrop Wells volcanic center, the youngest center in the Crater Flat volcanic field. Geochemical and petrologic data indicate that the magma chambers which supplied the volcanic centers at Crater Flat became situated at greater crustal depths as the field evolved. Deep magma chambers may be related to a waning magma flux that was unable to sustain upper crustal magma conduits and chambers. Geochemical data from the Lathrop Wells volcanic center indicate that eruptive units identified from field and geomorphic relationships are geochemically distinct. The geochemical variations cannot be explained by fractional crystallization of a single magma batch, indicating that several magma batches were involved in the formation of the Lathrop Wells center. Considering the low magma flux in the Yucca Mountain region in the Quaternary, the probability of several magma batches erupting essentially simultaneously at Lathrop Wells is considered remote

  3. Expression of Geochemical Controls on Water Quality in Loch Vale, Rocky Mountain National Park

    Science.gov (United States)

    Podzorski, H.; Navarre-Sitchler, A.; Stets, E.; Clow, D. W.

    2017-12-01

    Relationships between concentrations of rock weathering products and discharge provide insight into the interactions between climate and solute dynamics. This concentration-discharge (C-Q) relationship is especially interesting in high alpine regions, due to their susceptibility to changes in the timing and magnitude of snowmelt. Previous studies looking at C-Q relationships have concluded that concentrations of conservative solutes remain relatively constant as discharge varies; however, these results may be due to relatively small sample sizes, especially at higher discharge values. Using water chemistry data collected regularly by the U.S. Geological Survey from Loch Vale, a high-elevation catchment in Rocky Mountain National Park, C-Q relationships were examined to determine possible geochemical controls on stream solute concentrations. A record of over 20 years of C-Q data resulted in a pattern that shows little variation in conservative solute concentrations during base flow and larger variations in concentrations around peak discharge. This observed pattern is consistent with accumulation of solutes in pore water during base flow, which are then flushed out and diluted by snowmelt. Further evidence of this flushing out mechanism is found in patterns of hysteresis that are present in annual C-Q relationships. Before peak discharge, concentrations of weathering products are higher than after peak discharge at similar values of discharge. Based on these observations, we hypothesize that the geochemical processes controlling stream chemistry vary by season. During the winter, solute concentrations are transport-limited due to slow subsurface flushing resulting in concentrations that are effectively constant and close to equilibrium. During the spring and summer, concentrations drop sharply after peak discharge due to a combination of dilution and reaction-limited processes under conditions with faster subsurface flow and continued snowmelt. This study provides

  4. Literature survey of redox reactions in the near field

    International Nuclear Information System (INIS)

    Miki, Takahito; Chiba, Tamotsu; Inagaki, Manabu; Sasamoto, Hiroshi; Yui, Mikazu

    2000-01-01

    This report presents a summary of literature survey about geochemical reactions which are important to evaluate the redox conditions in the near field rock mass and buffer. The results of literature survey are summarized as follows; Minerals including ferrous iron and organic materials in the rock mass are important reductants. Initial stage after closure of repository, oxygen will be consumed by pyrite, because the reaction rate between pyrite and oxygen is relatively fast. It is possible to estimate the redox capacity for reductants by rock (mineral)-water interaction experiment in a laboratory. And it is expected that the ferrous iron-rich rock and higher porosity rock may have bigger redox capacity. It is impossible to estimate the oxygen consumption rate by reductants such as minerals including ferrous iron. The rate law and rate constant for the oxidation reaction of ferrous iron in the solution are also determined. As a conclusion, it seems that we can evaluate kinetically the evolution of geochemical conditions in the near field rock mass and buffer by excavation of drifts, based on data derived from these existing literatures. (author)

  5. Compilation of new and previously published geochemical and modal data for Mesoproterozoic igneous rocks of the St. Francois Mountains, southeast Missouri

    Science.gov (United States)

    du Bray, Edward A.; Day, Warren C.; Meighan, Corey J.

    2018-04-16

    The purpose of this report is to present recently acquired as well as previously published geochemical and modal petrographic data for igneous rocks in the St. Francois Mountains, southeast Missouri, as part of an ongoing effort to understand the regional geology and ore deposits of the Mesoproterozoic basement rocks of southeast Missouri, USA. The report includes geochemical data that is (1) newly acquired by the U.S. Geological Survey and (2) compiled from numerous sources published during the last fifty-five years. These data are required for ongoing petrogenetic investigations of these rocks. Voluminous Mesoproterozoic igneous rocks in the St. Francois Mountains of southeast Missouri constitute the basement buried beneath Paleozoic sedimentary rock that is over 600 meters thick in places. The Mesoproterozoic rocks of southeast Missouri represent a significant component of approximately 1.4 billion-year-old (Ga) igneous rocks that crop out extensively in North America along the southeast margin of Laurentia and subsequent researchers suggested that iron oxide-copper deposits in the St. Francois Mountains are genetically associated with ca. 1.4 Ga magmatism in this region. The geochemical and modal data sets described herein were compiled to support investigations concerning the tectonic setting and petrologic processes responsible for the associated magmatism.

  6. Geochemical methods for identification of formations being prospective for uranium

    International Nuclear Information System (INIS)

    Zhukova, A.M.; Komarova, N.I.; Spiridonov, A.A.; Shor, G.M.

    1985-01-01

    Geochemical methods of uranium content evaluation in metamorphic, ultrametamorphic and sedimentary formations are considered. At that, the following four factors are of the highest importance: 1) average uranium content-geochemical background; 2) character of uranium distribution; 3) forms of uranium presence; 4) the value of thorium-uranium ratio. A complex of radiogeochemical criteria, favourable for uranium presence is formulated: high average background content of total and '' mobile''uranium and high value of variation coefficient (80-100% and above); low (approximately one or lower) thorium-uranium ratio; sharp increase in uranium concentration in accessory minerals. Radiogeochemical peculiarities of metamorphic and ultrametamorphic formations prospective for uranium are enumerated. The peculiarities condition specificity of geochemical prospecting methods. Prospecting methods first of all must be directed at the evaluation of radioelement distribution parameters and specification of the forms of their presence

  7. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  8. Synthesizing Earth's geochemical data for hydrogeochemical analysis

    Science.gov (United States)

    Brantley, S. L.; Kubicki, J.; Miller, D.; Richter, D.; Giles, L.; Mitra, P.

    2007-12-01

    For over 200 years, geochemical, microbiological, and chemical data have been collected to describe the evolution of the surface earth. Many of these measurements are data showing variations in time or in space. To forward predict hydrologic response to changing tectonic, climatic, or anthropogenic forcings requires synthesis of these data and utilization in hydrogeochemical models. Increasingly, scientists are attempting to synthesize such data in order to make predictions for new regions or for future time periods. However, to make such complex geochemical data accessible requires development of sophisticated cyberinfrastructures that both invite uploading as well as usage of data. Two such cyberinfrastructure (CI) initiatives are currently developing, one to invite and promote the use of environmental kinetics data (laboratory time course data) through ChemxSeer, and the other to invite and promote the use of spatially indexed geochemical data for the Earth's Critical Zone through CZEN.org. The vision of these CI initiatives is to provide cyber-enhanced portals that encourage domain scientists to upload their data before publication (in private cyberspace), and to make these data eventually publicly accessible (after an embargo period). If the CI can be made to provide services to the domain specialist - e.g. to provide data analysis services or data comparison services - we envision that scientists will upload data. In addition, the CI can promote the use and comparison of datasets across disciplines. For example, the CI can facilitate the use of spatially indexed geochemical data by scientists more accustomed to dealing with time-course data for hydrologic flow, and can provide user-friendly interfaces with CI established to facilitate the use of hydrologic data. Examples of the usage of synthesized data to predict soil development over the last 13ky and its effects on active hydrological flow boundaries in surficial systems will be discussed for i) a N

  9. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    Science.gov (United States)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic

  10. Geochemical fingerprints and pebbles zircon geochronology

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 7. Geochemical fingerprints and pebbles zircon geochronology: Implications for the provenance and tectonic setting of Lower Cretaceous sediments in the Zhucheng Basin (Jiaodong peninsula, North China). Jin-Long Ni Jun-Lai Liu Xiao-Ling Tang ...

  11. User’s guide for GcClust—An R package for clustering of regional geochemical data

    Science.gov (United States)

    Ellefsen, Karl J.; Smith, David B.

    2016-04-08

    GcClust is a software package developed by the U.S. Geological Survey for statistical clustering of regional geochemical data, and similar data such as regional mineralogical data. Functions within the software package are written in the R statistical programming language. These functions, their documentation, and a copy of the user’s guide are bundled together in R’s unit of sharable code, which is called a “package.” The user’s guide includes step-by-step instructions showing how the functions are used to cluster data and to evaluate the clustering results. These functions are demonstrated in this report using test data, which are included in the package.

  12. Geochemical, hydrological, and biological cycling of energy residual. Research plan

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1983-03-01

    Proposed research goals and specific research areas designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biophysical mechanisms that contribute to the transport and long term fate of energy residuals in natural systems can be understood are described. Energy development and production have resulted in a need for advanced scientific information on the geochemical transformations, transport rates, and potential for bioaccumulation of contaminants in subsurface environments

  13. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  14. A hydro-geochemical study of Nahr-Ibrahim catchment area: Fluvial metal transport

    International Nuclear Information System (INIS)

    Korfali, Samira

    2004-01-01

    peaks only to calcite, dolomite and quartz. No speciation of metals in flood plain soils was done, nor XRD. The flood plain contains mostly terra rossa soils high in oxides and it is expected that the Ferric soil phase would have a major role in metal retention. The objective of this study is a complete hydro-geochemical survey of Nahr-Ibrahim catchment area and this study would clarify fluvial metal transport within the catchment area. The outcome of this work might assess the factors that influence water quality. This is attained through an improved knowledge of river hydrology, texture of sediment and soil, minerals in soil and sediment and soil and sediment geochemistry

  15. Archean crust-mantle geochemical differentiation

    Science.gov (United States)

    Tilton, G. R.

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  16. Archean crust-mantle geochemical differentiation

    Science.gov (United States)

    Tilton, G. R.

    1983-01-01

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  17. Geochemical signature of columbite-tantalite and environmental impact of radioactive pegmatite mining in the Parelhas region, Rio Grande do Norte, Northeast Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Jorge Costa de; Cruz, Paulo R.; Pereira, Valmir, E-mail: jcmoura@cnen.gov.br, E-mail: pcruz@cnen.gov.br, E-mail: vpereira@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Ludka, Isabel P.; Mendes, Julio C., E-mail: ludka@geologia.ufrj.br, E-mail: julio@geologia.ufrj.br [Universidade Federal de Rio do Janeiro (CCMN/UFRJ), Rio de Janeiro, RJ (Brazil). Centro de Ciencias Matematicas e da Natureza. Dept. de Geologia

    2013-07-01

    This article comprises geochemical, structural and radiometric investigations on radioactive pegmatites of the Borborema Pegmatitic Province in Northeast Brazil. The studied area is located in the surroundings of the city of Parelhas, in the geotectonic Province of Borborema. It is well known for its thousands of pegmatitic bodies exploited in primitive mines called garimpos. The main goal was to find an efficient, cheap and routine inspection procedure to identify the origin of commercialized radioactive columbite-tantalite (coltan) ore. The Brazilian Nuclear Energy Agency (CNEN) controls uranium commerce and nuclear activity in Brazil. Without an effective method to characterize coltan ores from different localities it is impossible to control the trade. The here presented new method was developed by correlating structural features of these pegmatites with the geochemical behavior of their coltan samples. It was found that the variation of U/Th vs. Nb{sub 2}O{sub 5}/Ta{sub 2}O{sub 5} provides geochemical signatures (analytical fingerprints) for the source location of such ore. The new method was tested with coltan samples of commercial batches from the Brazilian states of Amapa and Rondonia and also generated distinct geochemical signatures. A radiometric survey (CPS) to study the environmental impact of gamma radiation was also carried out in several mines and pegmatites. It included in situ measurements of pegmatite walls, enclosing rocks, soil, and accumulated water and revealed that gamma emitters are hardly solubilized and therefore environmental gamma radiation generally is not enhanced to a dangerous level. (author)

  18. Acceptance of the 2014 Geochemical Society Distinguished Service Award by Carla Koretsky

    Science.gov (United States)

    Koretsky, Carla

    2015-06-01

    I am deeply touched to have received the Geochemical Society Distinguished Service Award. It was a great surprise when I received the notice that I had been chosen for the award. It has been a tremendous pleasure to work on behalf of student members of the Geochemical Society, Japanese Geochemical Society and the European Association of Geochemists to organize the student travel grants over the past few years. Certainly, this is not an effort that I undertook on my own. Many, many members of the GS, the JGS and the EAG generously donated their time and expertise to serve as reviewers for the many travel grant applicants we receive each year. Seth Davis, the GS Chief Operating Officer, spent countless hours helping to organize applications, the website, distribution of funds and many other aspects of the competition. Without Seth and the many expert reviewers, we could not run the travel grant program each year and provide this important financial support to allow more students to experience the Goldschmidt Conference. I also enjoyed my time as Geochemical News co-editor, and I should point out that GN during those years was ably co-edited by Johnson Haas. It has been a pleasure to see Elements take off, and GN evolve into a timely source of important announcements and information about cutting-edge science since I stepped down as co-editor. I feel very fortunate to work with so many outstanding colleagues in the global geochemical community, and I am a little embarrassed, and also very grateful, to have been selected for the Geochemical Society Distinguished Service Award. Thank you!

  19. Geochemical analysis of brine samples for exploration of Borate deposits in the South of Sabzevar

    Directory of Open Access Journals (Sweden)

    Mahdi Bemani

    2016-07-01

    suggested for detailed exploration (Bemani et al., 2014. Generally speaking, for considering the spatial distribution of data the fractal method could better identify the anomalies. Also, EDA is a quick and easy method to detect anomalies. Acknowledgment The authors are grateful to the Kaniran Mining Company and the south Khorasan branch of the Iranian Mining Engineering Organization for their financial support of this study. References Bemani, M., 2012. Prospecting and Exploring of Borax in the south of Sabzevar, combination of remote sensing, field surveying and geochemical studying. M.Sc. Thesis, University of Yazd, Yazd, Iran, 137 pp (in Persian with English abstract. Bemani, M., Mojtahedzadeh, S.H. and Kohsari, A.H., 2014. Investigation of geology, mineralogy and genesis of Mohammadabad-Oryan index boron (south of Sabzevar. Iranian Journal of Crystallography and Mineralogy 22(1: 173- 186 (in Persian with English abstract. Carranza, E.J.M., 2009. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. In: M. Hale (Editor, Handbook of exploration and environmental geochemistry. Elsevier, Amsterdam, pp. 51-115. Filliben, J.J. and Heckert, A., 2005. Exploratory data analysis. Engineering Statistics Handbook, Internet, National Institute of Standards and Technology, http://www.itl.nist.gov/div898/handbook/eda/section3/eda356.htm. Hasanipak, A.A. and Sharafaddin, M., 2005. Exploratory Data Analysis.Tehran University press, Tehran 996 pp (in Persian.

  20. Geochemical disturbance of soil cover in the nonferrous mining centers of the Selenga River basin.

    Science.gov (United States)

    Timofeev, Ivan V; Kosheleva, Natalia E

    2017-08-01

    The anthropogenic geochemical transformation of soil cover in large nonferrous mining centers of the Selenga River basin was assessed. The results of the geochemical survey of 2010-2012 revealed the spatial distribution patterns and abundances of 18 hazardous heavy metals and metalloids in the soils of Erdenet (Mongolia) and Zakamensk (Buryat republic, Russian Federation). In both cities, mining activities disturbed soil cover which accumulates Mo, Cu, As, Sb, W in Erdenet and Bi, W, Cd, Be, Pb, Mo, Sb in Zakamensk. Maximum accumulation of elements in Erdenet is restricted to the industrial zone. In Zakamensk, it has spread on ½ of the territory with the degree of multielemental pollution exceeding the extremely dangerous level by 16 times. The effect of mining centers on the state of the river system is local and does not spread to the Selenga River. Downstream from Erdenet, an artificial pool intercepts heavy metal and metalloid flows of the Erdenetii-Gol River. By contrast, downstream from the tailing dumps of the Dzhida tungsten-molybdenum plant the concentrations of ore elements W and Mo and their accessories Bi and Cd in the Modonkul River exceed background values by 146, 20, 57, and 21 times, respectively, decreasing by an order of magnitude 30 km downstream.

  1. Identification of hydrologic and geochemical pathways using high frequency sampling, REE aqueous sampling and soil characterization at Koiliaris Critical Zone Observatory, Crete

    Energy Technology Data Exchange (ETDEWEB)

    Moraetis, Daniel, E-mail: moraetis@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece); Stamati, Fotini; Kotronakis, Manolis; Fragia, Tasoula; Paranychnianakis, Nikolaos; Nikolaidis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece)

    2011-06-15

    Highlights: > Identification of hydrological and geochemical pathways within a complex watershed. > Water increased N-NO{sub 3} concentration and E.C. values during flash flood events. > Soil degradation and impact on water infiltration within the Koiliaris watershed. > Analysis of Rare Earth Elements in water bodies for identification of karstic water. - Abstract: Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices.

  2. Statistical treatment of geochemical data and its application in the geologic mapping and in the definition of the geochemical anomalies in the Alvo 2-Corpo 4 -Provincia Mineral de Carajas

    International Nuclear Information System (INIS)

    Moura, C.A.V.

    1982-01-01

    It was given a statistical treatment for the geochemical data about soil in the are named Alvo2 - Corpo4- in the Provincia Mineral de Carajas, Para, Brazil, for application of the geological mapping and definition of geochemical anomalies. (A.B.) [pt

  3. Chlorine isotopes potential as geo-chemical tracers

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Banerjee, R.

    The potential of chlorine isotopes as tracers of geo-chemical processes of earth and the oceans is highlighted based on systematic studies carried out in understanding the chlorine isotope fractionation mechanism, its constancy in seawater and its...

  4. Stream Sediment Geochemical Survey of Selected Element In Catchment Area Of Saguling Lake

    Directory of Open Access Journals (Sweden)

    Wardhani Eka

    2018-01-01

    Full Text Available Saguling Lake is one of the largest lakes in West Java Province that accommodates domestic and non-domestic wastes via the Citarum River as its main water source. This study aims to determine the geochemical background concentration (Cbg in water catchment area of Saguling Lake. The knowledge of the Cbg of heavy metals is essential for defining pollution, identifying the source of contamination, and for establishing reliable environmental quality criteria for sediments. The value of Cbg will be used for assessment of the sediment quality in Saguling Lake. Assessment of sediment quality is very important to determine the actual condition of water in the lake and as the basis for management of waters environment in the future. The search was taken at 22 sampling points in the unpolluted water catchment area. Samples were collected and analyzed for Cd, Cr, Cu, and Pb. Each sample was digested in agua regia and analyzed by ICP-EOS. Results showed Cbg which are: Cd 0.34 ± 0.10 mg/kg, Cr 110.57 ± 28.61 mg/kg, Cu 49.93 ± 9.28 mg/kg, and Pb 18.62 ± 9.83 mg/kg. Based on the assessment result, it is concluded that the sediment quality in Saguling Lake is categorized as polluted by Cd, Cr, Cu, and Pb metals.

  5. Geochemical typification of kimberlite and related rocks of the North Anabar region, Yakutia

    Science.gov (United States)

    Kargin, A. V.; Golubeva, Yu. Yu.

    2017-11-01

    The results of geochemical typification of kimberlites and related rocks (alneites and carbonatites) of the North Anabar region are presented with consideration of the geochemical specification of their source and estimation of their potential for diamonds. The content of representative trace elements indicates the predominant contribution of an asthenospheric component (kimberlites and carbonatites) in their source, with a subordinate contribution of vein metasomatic formations containing Cr-diopside and ilmenite. A significant contribution of water-bearing potassium metasomatic parageneses is not recognized. According to the complex of geochemical data, the studied rocks are not industrially diamondiferous.

  6. NEW GEOCHEMICAL DATA OF BASALTS IN THE TSOROIDOG AREA, CENTRAL MONGOLIA

    Directory of Open Access Journals (Sweden)

    T. Oyunchimeg

    2017-01-01

    Full Text Available At present, geochemical data are widely used for reconstructing geodynamic settings, especially, volcanic rocks of mafic composition, i.e., basalts, because they are widespread in many orogenic belts and are indicative of different geodynamic environments. In general, we propose the reconstruction of the tectonic settings of basalts according to their relationships with associated ocean plate stratigraphy (OPS sediments, their petrogenesis and their geochemical features.

  7. Application of radio-geochemical exploration to investigation on geo-ecological environment

    International Nuclear Information System (INIS)

    Ye Qingsen

    2000-01-01

    Taking investigation on radon hazards and natural radioactivity as examples, the author expounds the prospects of the application of radio-geochemical exploration to the investigation on geo-ecological environment. It is especially emphasized that the methods of radio-geochemical exploration can not be only widely applied in the field of traditional radio-geological prospecting but also play an important role in the investigation on geo-ecological environment

  8. Geochemical Parameters Required from the SKB Site Characterisation Programme

    International Nuclear Information System (INIS)

    Bath, Adrian

    2002-01-01

    SKB has described its approach to site characterisation in a number of Technical Reports. One of the scientific topics in which specific information requirements and priorities are set out is geochemistry. This report for SKI examines critically whether the geochemical parameters identified in the SKB programme documents will be adequate for safety and regulatory requirements. It also examines some of the details of parameter requirements and interpretation tools that will be necessary to convert site investigation data into knowledge about chemical conditions and groundwater movements. The SKB strategy for geochemical data focuses on a small number of 'suitability indicators', primarily dissolved oxygen, pH and salinity. Their parameter requirements aim to assess those primary characteristics, as well as to acquire a wider range of data that will support those assessments and provide a broader understanding of candidate areas. An initial observation in this review that, though it is a primary suitability indicator, dissolved oxygen apparently will not be measured and instead will be inferred from other redox indicators. This raises a number of issues about sampling and monitoring measures, analytical data reliability and sensitivity, and the degree of confidence in geochemical understanding. A geochemical programme involves reconnaissance by desk study and acquisition of new data at levels of details that are appropriate to the stage of site investigations. As early as possible, a conceptual model of a candidate area should help to define the objectives of geochemical measurements on both rock and groundwater samples. It is recommended that parameters requirements should be defined and considered not only in terms of isolated measurements but more in terms of addressing broader objectives that relate to safety and also to geoscientific understanding. The safety priorities remain (e.g. dissolved oxygen) but will then be supported by an understanding of processes

  9. Geochemical Parameters Required from the SKB Site Characterisation Programme

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2002-01-01

    SKB has described its approach to site characterisation in a number of Technical Reports. One of the scientific topics in which specific information requirements and priorities are set out is geochemistry. This report for SKI examines critically whether the geochemical parameters identified in the SKB programme documents will be adequate for safety and regulatory requirements. It also examines some of the details of parameter requirements and interpretation tools that will be necessary to convert site investigation data into knowledge about chemical conditions and groundwater movements. The SKB strategy for geochemical data focuses on a small number of 'suitability indicators', primarily dissolved oxygen, pH and salinity. Their parameter requirements aim to assess those primary characteristics, as well as to acquire a wider range of data that will support those assessments and provide a broader understanding of candidate areas. An initial observation in this review that, though it is a primary suitability indicator, dissolved oxygen apparently will not be measured and instead will be inferred from other redox indicators. This raises a number of issues about sampling and monitoring measures, analytical data reliability and sensitivity, and the degree of confidence in geochemical understanding. A geochemical programme involves reconnaissance by desk study and acquisition of new data at levels of details that are appropriate to the stage of site investigations. As early as possible, a conceptual model of a candidate area should help to define the objectives of geochemical measurements on both rock and groundwater samples. It is recommended that parameters requirements should be defined and considered not only in terms of isolated measurements but more in terms of addressing broader objectives that relate to safety and also to geoscientific understanding. The safety priorities remain (e.g. dissolved oxygen) but will then be supported by an understanding of

  10. Ionizing radiation and radionuclides in the environment: sources, origin, geochemical processes and health risks

    International Nuclear Information System (INIS)

    Dangic, A.

    1995-01-01

    Ionizing radiation related to the radioactivity and radionuclides appears to be ones of most dangerous environmental risks to the human health. The paper considers appearance and importance of radionuclides, both natural (cosmogenic and Earth's) and anthropogenic, mode of their entering into and movement through the environment. Most risk to the population are radionuclides related to the geological-geochemical systems - in Serbia, high concentrations of radionuclides related to these sources were indicated at a number of localities. Movement of radionuclides through the environment is regulated by the geochemical processes i.e. the geochemical cycles of the elements. For the discovering of radionuclides in the nature, the assessment of the health risks to the population and the related protection are necessary multilayer geochemical studies. (author)

  11. Geophysical and geochemical techniques for exploration of hydrocarbons and minerals

    International Nuclear Information System (INIS)

    Sittig, M.

    1980-01-01

    The detailed descriptive information in this book is based on 389 US patents that deal with geophysical and geochemical techniques useful for the exploration of hydrocarbons and minerals. Where it was necessary to round out the complete technological picture, a few paragraphs from cited government reports have been included. These techniques are used in prospecting for oil, coal, oil shale, tar sand and minerals. The patents are grouped under the following chapters: geochemical prospecting; geobiological prospecting; geophysical exploration; magnetic geophysical prospecting; gravitational geophysical prospecting; electrical geophysical prospecting; nuclear geophysical prospecting; seismic geophysical prospecting; and exploratory well drilling. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, this book presents an advanced, industrially oriented review of modern methods of geophysical and geochemical exploration techniques

  12. The geochemical profile of Mn, Co, Cu and Fe in Kerteh Mangrove Forest, Terengganu

    International Nuclear Information System (INIS)

    Kamaruzzaman, B.Y.; Antotina, A.; Airiza, Z.; Syalindran, S.; Ong, M.C.

    2007-01-01

    The geochemical profile of Kerteh mangrove sediments was analyzed for the vertical and horizontal distribution. The 100 cm core sediment sample and 15 surface sediments samples were taken from the field. The geochemical elements of Mn, Co, Cu and Fe of the sediments were analyzed. Geochemical proxy of Mn, Co, Cu and Fe were analyzed by using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The mean concentrations of Mn, Co, Cu and Fe for the vertical distribution were 210.18 μg/ g, 15.55 μg/ g, 43.65 μg/ g and 1.88 μg/ g respectively. on the other hand, the mean concentrations of the geochemical elements for horizontal distributions were 230.50 μg/ g for Mn, 17.57 μg/ g for Co, 43.381 μg/ g for Cu and 2.93 μg/ g for Fe. Enrichment factor and normalization was used to point out the level of pollution. The EF and the normalization indicated that all the geochemical elements were from the natural sources. (author)

  13. Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: Integrating molecular surveys, geochemical processes and isolation of novel Fe-active microorganisms

    Directory of Open Access Journals (Sweden)

    Mark A Kozubal

    2012-03-01

    Full Text Available Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park (YNP. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 84 °C and pH 2.4 to 3.6. All iron-oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65-70 °C, but increased in diversity below 60 °C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were observed for M. yellowstonensis str. MK1 and Sulfolobales str. MK5 cultures, and these rates are close to those measured in situ. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88 oC.

  14. Landscape and bio- geochemical strategy for monitoring transformation and reclamation of the soil mining sites

    Science.gov (United States)

    Korobova, Elena

    2010-05-01

    Sites of active or abandoned mining represent areas of considerable technogenic impact and need scientifically ground organization of their monitoring and reclamation. The strategy of monitoring and reclamation depends on the scale and character of the physical, chemical and biological consequences of the disturbances. The geochemical studies for monitoring and rehabilitation of the career-dump complexes should methodically account of formation of the particular new landforms and the changes in circulation of the remobilized elements of the soil cover. However, the general strategy should account of both the initial and transformed landscape geochemical structure of the area with due regard to the natural and new content of chemical elements in the environmental components. For example the tailings and waste rocks present new geochemical fields with specifically different concentration of chemical elements that cause formation of new geochemical barriers and landscapes. The way of colonization of the newly formed landscapes depends upon the new geochemical features of the technogenic environment and the adaptive ability of local and intrusive flora. The newly formed biogeochemical anomalies need organization of permanent monitoring not only within the anomaly itself but also of its impact zones. Spatial landscape geochemical monitoring combined with bio-geochemical criteria of threshold concentrations seems to be a helpful tool for decision making on reclamation and operation of the soil mining sites to provide a long-term ecologically sustainable development of the impact zone as a whole.

  15. Version 4. 00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  16. Version 4.00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  17. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai’i and Maui

    Energy Technology Data Exchange (ETDEWEB)

    Fercho, Steven [Ormat Nevada, Inc., Reno, NV (United States); Owens, Lara [Ormat Nevada, Inc., Reno, NV (United States); Walsh, Patrick [Ormat Nevada, Inc., Reno, NV (United States); Drakos, Peter [Ormat Nevada, Inc., Reno, NV (United States); Martini, Brigette [Corescan Inc., Ascot (Australia); Lewicki, Jennifer L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kennedy, Burton M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several shallow

  18. National Uranium Resource Evaluation Program. Hydrogeochemical and stream sediment pilot survey of Llano area, Texas

    International Nuclear Information System (INIS)

    Nichols, C.E.; Kane, V.E.; Minkin, S.C.; Cagle, G.W.

    1976-01-01

    A pilot geochemical survey of the Llano, Texas, area was conducted during February and March 1976. The purpose of this work was to prepare for a subsequent reconnaissance geochemical survey of uranium in Central Texas. Stream sediment, stream water, well water, and plant ash from five geologic areas were analyzed in the laboratory for approximately 25 parameters. Examples of anomalous values in stream sediment and stream water indicate the usefulness of both sample types in identifying anomalies at a regional reconnaissance-scale station spacing of approximately 5 km (3 mi). Groundwater samples, which generally best indicate the geochemistry of formations at depth in a survey of this type, represent another important tool in detecting uranium mineralization. Anomalies in San Saba County are associated with the Marble Falls-Smithwich Formations and the Strawn Series (Pennsylvanian), the Houy Formation (Devonian and lower Mississippian), and the Hickory Sandstone Member of the Riley Formation (Cambrian). In Burnet County anomalous values are due to the influence of the Valley Spring Formation (Precambrian); and in Blanco County anomalies are found associated with the Riley Formation

  19. Determination of geochemical and natural radioactivity characteristics in Bilecik Marble, Turkey

    Science.gov (United States)

    Yerel Kandemir, Suheyla; Ozbay, Nurgul

    2014-05-01

    Natural stones are one of the oldest known building materials. There are more than 400 natural stone in Turkey. Recently, the demand for the natural stone types in markets has been increasing rapidly. For this reason, the geochemical and natural radioactivity characteristics of natural stone are very important. Bilecik province is located at the northwest part of Turkey and it is surrounded by Sakarya, Bursa, Eskisehir and Kutahya city. Bilecik is one of the important marble industry regions of Turkey. Thus, the geochemical and natural radioactivity characteristics of Bilecik marble are very important. In this study, Bilecik marble was collected to determine the geochemistry and natural radioactivity. Then, analyses of geochemical and natural radioactivity in the marble samples are interpreted. ACKNOWLEDGMENT This study is supported by Bilecik Seyh Edebali University scientific project (Project Number =2011-02-BIL.03-04).

  20. The role of atomic absorption spectrometry in geochemical exploration

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  1. Development of geophysical and geochemical data processing software based on component GIS

    International Nuclear Information System (INIS)

    Ke Dan; Yu Xiang; Wu Qubo; Han Shaoyang; Li Xi

    2013-01-01

    Based on component GIS and mixed programming techniques, a software which combines the basic GIS functions, conventional and unconventional data process methods for the regional geophysical and geochemical data together, is designed and developed. The software has many advantages, such as friendly interface, easy to use and utility functions and provides a useful platform for regional geophysical and geochemical data processing. (authors)

  2. Geochemical prospect ion results of Mariscala aerial photo

    International Nuclear Information System (INIS)

    Filippini, J.

    1989-01-01

    This report shows the geochemical prospect ion results carried out within the framework of the metalical mining prospect ion in Mariscala aerial photo. Lavalleja district belong to the Mining inventory programme of Uruguay.

  3. Geochemical methodology for gold prospect ion in Uruguay

    International Nuclear Information System (INIS)

    Spangenber, J.

    1987-01-01

    This work is about the history of gold prospection in Uruguay. In this study there are considered the geochemical aspects, the gold performance, the applicability to mining prospection and the gold prospection aluvionar

  4. Geochemical and biogeochemical investigations in national parks [Badania geochemiczne i biogeochemiczne w parkach narodowych

    Science.gov (United States)

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.

    1998-01-01

    National parks hold a key position among nature protection areas including a diversity of resources - natural, cultural, recreational and scenic. These "inviolable sanctuaries" are simultaneosuly ecologic knots and pristine nature refuges due to the presence of a number of unique plant and animal species. These species make up a natural gene bank. Classically, the level of biologic degradation in national parks is determined on the basis of qualitative and quantitative studies of plant bioindicators. Their scope encompasses phytosociologic survey the purpose of which is to identify floral assemblages with a detailed list of species to record future changes in their number. The best biomonitors of air quality are epiphytic lichens, ground mosses and conifers. Geochemical and biogeochemical investigations are widely performed in the U.S.A. to evaluate the degree of pollution in the nature protection areas including national parks (Gough et al., 1988a, b; Crock et al., 1992a, 1993; Jackson et al., 1995). Variability of element concentrations in soils and plants is assessed by using unbalanced, nested analysis-of-variance (ANOVA). It enables obtaining important statistical information with a minimum number of samples. In some cases a combined grid and barbell sampling design is applied (Jackson et al., 1995). In specific mountainous parks a method of 2-3 transects parallel to the extent of range (crest) is recommended. To determine the impact of a single pollution source on a given park, traverse sampling beginning near the emitter is used (Crock et al., 1992, 1993). The obtained results are a "snapshot" of chemical composition of soils and plant bioindicators that can be a reference for any future changes in the concentration level of chemical elements and organics. In addition, baseline element and organics composition of the media mentioned above can be compared with that obtained for geochemical atlases of polluted urban and industrial areas. Geochemical and

  5. Geochemical and isotopic evidences for a severe anthropogenic boron contamination: A case study from Castelluccio (Arezzo, central Italy)

    International Nuclear Information System (INIS)

    Venturi, Stefania; Vaselli, Orlando; Tassi, Franco; Nisi, Barbara; Pennisi, Maddalena; Cabassi, Jacopo; Bicocchi, Gabriele; Rossato, Luca

    2015-01-01

    In 2009 a deterioration of garden plants watered with domestic wells was related to high boron concentrations (up to 57 mg/L) measured in the shallow aquifer from the industrial area of Castelluccio (Tuscany, Italy), where several factories are or were using boron compounds for their industrial processes. Since 2012 a geochemical and isotopic survey of stream, ground and waste waters, and sediment samples was performed. In addition, monthly geochemical surveys were carried out from January to September 2013, during which concentrations of boron up to 139 mg/L were measured. The geochemical dataset also included raw (borax and sodium boron-hydride) and anthropogenic materials (B-rich slags and muds stored in one of the local factories), the latter being, to the best of our knowledge, analyzed for the first time in this work for bulk and leachate boron concentration and isotopic ratios. The results highlighted that the high concentrations of boron found in the local shallow aquifer had unequivocally an anthropogenic source. It was suggested that prolonged interaction between industrial (presently stored at ground level or buried) by-products and waste and meteoric waters was likely the main process responsible of the groundwater contamination as supported by the analysis of the major solutes. The dispersion of the contaminant could not clearly be observed downward the shallow hydrogeological circuit. Consequently, the presence of other sources of boron in the industrial area of Castelluccio cannot be excluded. This would also explain the reason why no univocal results were obtained by the "1"1B/"1"0B isotopic ratios measured in water, sediment and (bulk and leachate) anthropogenic samples. To minimize the boron contamination a hydraulic barrier should be constructed where the highest concentrations of boron were measured. - Highlights: • High boron concentrations were measured in a groundwater system near Arezzo (Italy). • Several factories in the local

  6. Geochemical correlations between uranium and other components in U-bearing formations of Ogcheon belt

    International Nuclear Information System (INIS)

    Lee, M.S.; Chon, H.T.

    1980-01-01

    Some components in uranium-bearing formations which consist mainly of black shale, slate and low grade coal-bearing formation of Ogcheon Belt were processed statistically in order to find out the geochemical correlations with uranium. Geochemical enrichment of uranium, vanadium and molybdenum in low grade coal-bearing formations and surrounding rocks is remarkable in the studied area. Geochemical correlation coefficient of uranium and molybdenum in the rocks displays about 0.6 and that of uranium and fixed carbon about 0.4. Uranium and vanadium in uranium-bearing low grade coals denote very high correlation with fixed carbon, which is considered to be responsible for enrichment of metallic elements, especially molybdenum. Close geochemical correlation of uranium-molybdenum couple in the rocks can be applied as a competent exploration guide to low grade uranium deposits of this area. (author)

  7. Evaluation of disposal site geochemical performance using a containment factor

    International Nuclear Information System (INIS)

    Lerman, A.; Domenico, P.A.; Bartlett, J.W.

    1988-01-01

    The containment factor is a measure of retention by geologic setting of wastes released from a repository. The factor is alternatively defined either in terms of several measurable hydrological and geochemical parameters, or in terms of amounts of waste components that may be released to the geologic setting and, subsequently, to the environment. Containment factors for individual waste components in a given geologic setting are functions of groundwater to rock volume ratios, sorption or exchange characteristics of the rocks, and containment time to groundwater travel time ratios. For high-level radioactive wastes, containment factors based on the NRC and EPA limit values for cumulative releases from waste and to the environment provide a measure of the geochemical performance of the geologic setting in tuff, basalt, and salt. The containment factor values for individual nuclides from high-level wastes indicate that for some of the nuclides containment may be achieved by groundwater travel time along. For other nuclides, additional performance functions need to be allocated to geochemical retention by such processes as sorption, ion-exchange or precipitation

  8. Environmental and geochemical assessment of surface sediments on irshansk ilmenite deposit area

    Directory of Open Access Journals (Sweden)

    Наталия Олеговна Крюченко

    2015-03-01

    Full Text Available It is revealed the problem of pollution of surface sediments of Irshansk ilmenite deposit area of various chemical elements hazard class (Mn, V, Ba, Ni, Co, Cr, Mo, Cu, Pb, Zn. It is determined its average content in surface sediments of various functional areas (forest and agricultural land, flood deposits, reclaimed land, calculated geochemical criteria, so given ecological and geochemical assessment of area

  9. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  10. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  11. Geochemical modeling of the nuclear-waste repository system. A status report

    International Nuclear Information System (INIS)

    Deutsch, W.J.

    1980-12-01

    The primary objective of the geochemical modeling task is to develop an understanding of the waste-repository geochemical system and provide a valuable tool for estimating future states of that system. There currently exists a variety of computer codes which can be used in geochemical modeling studies. Some available codes contain the framework for simulating a natural chemical system and estimating, within limits, the response of that system to environmental changes. By data-base enhancement and code development, this modeling technique can be even more usefully applied to a nuclear-waste repository. In particular, thermodynamic data on elements not presently in the data base but identified as being of particular hazard in the waste-repository system, need to be incorporated into the code to estimate the near-field as well as the far-field reactions during a hypothetical breach. A reaction-path-simulation code, which estimates the products of specific rock/water reactions, has been tested using basalt and ground water. Results show that the mass-transfer capabilities of the code will be useful in chemical-evolution studies and scenario analyses. The purpose of this report is to explain the status of geochemical modeling as it currently applies to the chemical system of a hypothetical nuclear-waste repository in basalt and to present the plan proposed for further developmet and application

  12. Radio spectrometric survey of un-surveyed areas in Syria

    International Nuclear Information System (INIS)

    Aissa, M.; Al-Hent, R; Jubeli, Y.

    2002-11-01

    The values and distribution of the radioelements e U, e Th, % K and Ur units in the surface geological formations of the west and south sectors of Syrian region, were estimated using carbone gamma ray spectrometric survey. The radiometric maps were prepared, as well as, many geological profiles, cross sections studied in different locations and geochemical samples were analyzed by laboratory gamma ray spectrometry and by x-ray diffractometry, the results of the all sets were compared. In general, the survey shows, low radioelement concentrations in the area, especially on basic rocks (Jabal Al-arab, Hawran) south Syria, and on ultra basic rocks (ophiolitic complex) north-west Syria, but there are some separate anomalous spots were connected with phosphate rocks, detected on cretaceous and Palaeogene age. Some times we noticed high radioelement concentrations haloes associated with fractured zones were already arise from secondary uranium mineralization, as a result of solutions movement through fissures in carbonatic and/or chalk like limestone rocks. finally, the obtained concentrations, represent a background values which has no significant importance for uranium exploration point of view. (author)

  13. Geothermal investigations with isotope and geochemical techniques in Latin America

    International Nuclear Information System (INIS)

    1992-03-01

    The IAEA Co-ordinated Research Programme (CRP) for Latin America on the Use of Isotope and Geochemical Techniques in Geothermal Exploration started in 1984. The first activity carried out was a Seminar on isotope and geochemical techniques in geothermal exploration, which took place in June 1984 in Morelia, Mexico. During the seminar, which was attended by representatives of the institutions which later took part in the programme, the objectives, main research lines, and geothermal fields to be studied during the CRP were discussed. The first research contracts were awarded towards the end of 1984. The field work started in 1985 and continued through 1990. During the implementation of the CRP a considerable number of geothermal fields were studied in the nine participating countries. The investigations carried out were geochemically quite comprehensive in most cases, but in some others they were still in a reconnaissance stage when the CRP ended: the latter studies are not reported in these proceedings, but the data obtained are in principle available from the relevant national institutions. While investigations with conventional geochemical techniques had already started in several fields before 1985, isotope methods were applied for the first time in all cases during this CRP. Due to the remoteness and high elevation of many of the fields studied and the adverse meteorological conditions during long periods of the year, the investigations could not proceed rapidly: this is the main reason for the unusually long duration of the CRP, which could be concluded only after more than five years after its inception

  14. Use of natural geochemical tracers to improve reservoir simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, O.; Chatzichristos, C.; Sagen, J.; Muller, J.; Kleven, R.; Bennett, B.; Larter, S.; Stubos, A.K.; Adler, P.M.

    2005-01-01

    This article introduces a methodology for integrating geochemical data in reservoir simulations to improve hydrocarbon reservoir models. The method exploits routine measurements of naturally existing inorganic ion concentration in hydrocarbon reservoir production wells, and uses the ions as non-partitioning water tracers. The methodology is demonstrated on a North Sea field case, using the field's reservoir model, together with geochemical information (SO{sub 4}{sup 2}, Mg{sup 2+} K{sup +}, Ba{sup 2+}, Sr{sup 2+}, Ca{sup 2+}, Cl{sup -} concentrations) from the field's producers. From the data-set we show that some of the ions behave almost as ideal sea-water tracers, i.e. without sorption to the matrix, ion-exchange with the matrix or scale-formation with other ions in the formation water. Moreover, the dataset shows that ion concentrations in pure formation-water vary according to formation. This information can be used to allocate produced water to specific water-producing zones in commingled production. Based on an evaluation of the applicability of the available data, one inorganic component, SO{sub 4}{sup 2}, is used as a natural seawater tracer. Introducing SO{sub 4}{sup 2} as a natural tracer in a tracer simulation has revealed a potential for improvements of the reservoir model. By tracking the injected seawater it was possible to identify underestimated fault lengths in the reservoir model. The demonstration confirms that geochemical data are valuable additional information for reservoir characterization, and shows that integration of geochemical data into reservoir simulation procedures can improve reservoir simulation models. (author)

  15. Estimation of Supraglacial Dust and Debris Geochemical Composition via Satellite Reflectance and Emissivity

    Science.gov (United States)

    Casey, Kimberly Ann; Kaab, Andreas

    2012-01-01

    We demonstrate spectral estimation of supraglacial dust, debris, ash and tephra geochemical composition from glaciers and ice fields in Iceland, Nepal, New Zealand and Switzerland. Surface glacier material was collected and analyzed via X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD) for geochemical composition and mineralogy. In situ data was used as ground truth for comparison with satellite derived geochemical results. Supraglacial debris spectral response patterns and emissivity-derived silica weight percent are presented. Qualitative spectral response patterns agreed well with XRF elemental abundances. Quantitative emissivity estimates of supraglacial SiO2 in continental areas were 67% (Switzerland) and 68% (Nepal), while volcanic supraglacial SiO2 averages were 58% (Iceland) and 56% (New Zealand), yielding general agreement. Ablation season supraglacial temperature variation due to differing dust and debris type and coverage was also investigated, with surface debris temperatures ranging from 5.9 to 26.6 C in the study regions. Applications of the supraglacial geochemical reflective and emissive characterization methods include glacier areal extent mapping, debris source identification, glacier kinematics and glacier energy balance considerations.

  16. Estimation of Supraglacial Dust and Debris Geochemical Composition via Satellite Reflectance and Emissivity

    Directory of Open Access Journals (Sweden)

    Kimberly Casey

    2012-09-01

    Full Text Available We demonstrate spectral estimation of supraglacial dust, debris, ash and tephra geochemical composition from glaciers and ice fields in Iceland, Nepal, New Zealand and Switzerland. Surface glacier material was collected and analyzed via X-ray fluorescence spectroscopy (XRF and X-ray diffraction (XRD for geochemical composition and mineralogy. In situ data was used as ground truth for comparison with satellite derived geochemical results. Supraglacial debris spectral response patterns and emissivity-derived silica weight percent are presented. Qualitative spectral response patterns agreed well with XRF elemental abundances. Quantitative emissivity estimates of supraglacial SiO2 in continental areas were 67% (Switzerland and 68% (Nepal, while volcanic supraglacial SiO2 averages were 58% (Iceland and 56% (New Zealand, yielding general agreement. Ablation season supraglacial temperature variation due to differing dust and debris type and coverage was also investigated, with surface debris temperatures ranging from 5.9 to 26.6 C in the study regions. Applications of the supraglacial geochemical reflective and emissive characterization methods include glacier areal extent mapping, debris source identification, glacier kinematics and glacier energy balance considerations.

  17. Baseline Geochemical Data for Medical Researchers in Kentucky

    Science.gov (United States)

    Anderson, W.

    2017-12-01

    According to the Centers for Disease Control, Kentucky has the highest cancer incidence and death rates in the country. New efforts by geochemists and medical researchers are examining ways to diagnose the origin and sources of carcinogenesis. In an effort to determine if naturally occurring geochemical or mineral elements contributes to the cancer causation, the Kentucky Geological Survey has established a Minerals and Geochemical Database that is available to medical researchers for examination of baseline geochemistry and determine if naturally occurring mineral or chemical elements contribute to the high rate of cancers in the state. Cancer causation is complex, so if natural sources can be accounted for, then researchers can focus on the true causation. Naturally occurring minerals, metals and elements occur in many parts of the state, and their presence is valuable for evaluating causation. For example, some data in the database contain maps showing (a) statewide elemental geochemistry, (b) areas of black shale oxidation occurrence, which releases metals in soil and surface waters, (c) some clay deposits in the state that can contain high content of rare earth elements, and (d) site-specific uranium occurrences. Knowing the locations of major ore deposits in the state can also provide information related to mineral and chemical anomalies, such as for base metals and mercury. Radionuclide data in soil and water analyses are limited, so future research may involve obtaining more analyses to determine radon potential. This database also contains information on faulting and geology in the state. Although the metals content of trees may not seem relevant, the ash and humus content of degraded trees affects soil, stream sediment and water geochemistry. Many rural homes heat with wood, releasing metals into the surrounding biosphere. Stressed vegetation techniques can be used to explore for ore deposits and look for high metal contents in soils and rocks. These

  18. Geochemical characteristics of peat from two raised bogs of Germany

    Science.gov (United States)

    Mezhibor, A. M.

    2016-11-01

    Peat has a wide range of applications in different spheres of human activity, and this is a reason for a comprehensive study. This research represents the results of an ICP-MS study of moss and peat samples from two raised bogs of Germany. Because of the wide use of sphagnum moss and peat, determining their geochemical characteristics is an important issue. According to the results obtained, we can resume that the moss samples from Germany are rich in Cu, As, Y, Zr, Nb, and REE. The geochemical composition of the bogs reflects the regional environmental features and anthropogenic influence.

  19. A new approach for geochemical surveys of large areas for uranium resource potential

    International Nuclear Information System (INIS)

    Arendt, J.W.; Butz, T.R.; Cagle, G.W.; Kane, V.E.; Nichols, C.E.

    1977-01-01

    The Grand Junction, Colorado office of the United States Energy Research and Development Administration (ERDA) is conducting the National Uranium Resource Evaluation Program to evaluate the uranium resources in the United States and Alaska. The program is designed to identify favorable areas for uranium exploration, to assess the supply of domestic resources, and to improve exploration technology. The Nuclear Division of the Union Carbide Corporation has been assigned the responsibility of conducting a hydrogeochemical and stream sediment survey of the mid-continental states in the United States. This survey covers approximately 2,500,000 km 2 (1,000,000 mi 2 ) and includes the states of Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, Wisconsin, Michigan, Indiana, Illinois, and Iowa. The uranium potential of sandstones, Precambrian conglomerates, veins, granites, and phosphorites is being assessed utliizing a three-part program consisting of pilot surveys in each geological province and two phases of reconnaissance sampling of drainage basins. Samples of stream sediment, stream water, groundwater, algae, and vegetation are analyzed for uranium and some 20 additional elements. Data resulting from this program is released to private industry by ERDA as it becomes available. Analysis of results from a typical three-part survey are given. For distinctive geological regions, the pilot survey will: (1) define characteristic concentration background levels of the elements of interest, (2) identify potential uranium pathfinder elements, (3) determine relationship between stream, stream sediment and botanical samples, (4) identify any necessary modification to field sampling techniques, and (5) determine necessary sensitivities required for chemical analysis. The first reconnaissance phase average sample spacing of one station per 250 km 2 (100 mi 2 ) drainage basin is shown to delineate general boundaries of uranium provinces, and the second

  20. FY 2000 report on the geothermal development promotion survey - No.C-4 Shiro-mizukoshi area. Resource survey (Primary); 2000 nendo chinetsu kaihatsu sokushin chosa. No. C-4 Shiromizukoshi chiiki shigen chosa hokokusho (Dai 1 ji)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    As a part of the FY 2000 geothermal development promotion survey, survey was conducted in the Shiro-mizukoshi area (about 10km{sup 2}), Kagoshima prefecture, the gradually-inclined area located at the southwest foot of Volcano Kirishima, and the results were summed up. In the survey, the following were carried out: surface survey such as geology/alteration zone/fracture system, high-density gravity exploration, electromagnetic exploration, geochemical fluid survey, core test by drilling three exploration boreholes, temperature log, temperature recovery test, water injection test, short-term jetting test, etc. N12-SZ-1 came across the reservoir associated with the ENE-WSW system fault at a depth of 1,085m. The result of the temperature log and the geochemical temperature indicated that the temperature of the reservoir was between 230 and 240 degrees C. However, the reservoir was regarded as the vapor heating reservoir heated by the high-temperature vapor which is thought to be the shallow ground water separated from the deep reservoir. N12-SZ-2 was a large lost circulation zone at a depth between 1,325 and 1,486m, which indicated that N12-SZ-2 came across the ENE-WSW system Shiro-mizukoshi fault. N12-SZ-3 seems to be the area into which ground water flows. (NEDO)

  1. Application of integrated Landsat, geochemical and geophysical data in mineral exploration

    International Nuclear Information System (INIS)

    Conradsen, K.; Nilsson, G.; Thyrsted, T.; Gronlands Geologiske Undersogelse, Copenhagen, Denmark)

    1985-01-01

    In South Greenland (20000 sq. km) a remote sensing investigation is executed in connection with uranium exploration. The investigation includes analysis of Landsat data, conversion of geological, geochemical and geophysical data to image format compatible with Landsat images, and analysis of the total set of integrated data. The available geochemical data consisted of samples from 2000 sites, analyzed for U, K, Rb, Sr, Nb, Ga, Y, and Fe. The geophysical data comprised airborne gamma-spectrometric measurements and aeromagnetic data. The interpolation routines consisted of a kriging procedure for the geochemical data and a minimum curvature routine for the geophysical data. The analysis of the integrated data set is at a preliminary stage. As example a composite image showing Landsat channel 7, magnetic values, and Fe values as respectively intensity, hue and saturation is analyzed. It reveals alkaline intrusions and basaltic layers as anomalies while other anomalies cannot be accounted for on the basis of the present geological knowledge. 12 references

  2. Geochemical interpretation of gamma-ray spectrometry images from the Achala granite (Cordoba, Argentina)

    International Nuclear Information System (INIS)

    Lopez, Luis E.

    1998-01-01

    Data of an old spectrometry gamma-ray survey carried out in the Sierras Pampeanas Range by the National Atomic Energy Commission (Argentina) were reprocessed to obtain a corrected digital archive. The geochemical interpretation of the 250 x 250 meters spectrometric grids from the Achala batholith area was based on the behaviour of the radioelements in a peraluminous magma. Spectrometric maps of potassium, uranium, thorium and their ratios were used. In particular, the Th grid was very useful to define the primary magmatic evolution of the granitoids. K and U correlate roughly with Th distribution. The observed positive correlation between Th and U is thought to be the result of surficial leaching of U from uraninite. Finally, U/Th ratio allows to determine both, the magmatic evolution of the rocks and the mineral phase responsible for U content. (author)

  3. Report on the geothermal development promotion survey. No.36. Mt. Amemasudake area; Chinetsu kaihatsu sokushin chosa hokokusho. No. 36 Amemasudake chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The paper summed up the results of the geothermal development promotion survey 'Mt. Amemasudake area' which was carried out at Akaigawa village, Yoichi county, Hokkaido, from FY 1991 to FY 1994. In the survey, the following were conducted for the comprehensive analysis: surface survey such as geology/alteration zone survey, geochemical survey, gravity exploration, electromagnetic exploration and electric exploration, core test by drilling 5 boreholes, test to induce jetting of geothermal fluids, measurement of in-borehole temperature/pressure, survey of geochemical properties of geothermal water. As to the fracture system in this area, the Amemasudake fault and the Amemasuzawa fault are especially important, and it was assumed that these faults had relation to the present geothermal distribution. It is thought that structural conditions of geothermal reservoirs are fractures in basement rocks. As a result of the borehole survey, it was indicated that the center of the high-temperature part with a temperature of 250 degrees C or more was in the boundary zone southeast of this area at a level of 500m below sea level. The scale, which reached about 3km both in east/west and north/south, is almost the same scale as that of the neighboring Toyoha area where great potentiality of the geothermal development is expected. (NEDO)

  4. Report on the geothermal development promotion survey. No.36. Mt. Amemasudake area; Chinetsu kaihatsu sokushin chosa hokokusho. No. 36 Amemasudake chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The paper summed up the results of the geothermal development promotion survey 'Mt. Amemasudake area' which was carried out at Akaigawa village, Yoichi county, Hokkaido, from FY 1991 to FY 1994. In the survey, the following were conducted for the comprehensive analysis: surface survey such as geology/alteration zone survey, geochemical survey, gravity exploration, electromagnetic exploration and electric exploration, core test by drilling 5 boreholes, test to induce jetting of geothermal fluids, measurement of in-borehole temperature/pressure, survey of geochemical properties of geothermal water. As to the fracture system in this area, the Amemasudake fault and the Amemasuzawa fault are especially important, and it was assumed that these faults had relation to the present geothermal distribution. It is thought that structural conditions of geothermal reservoirs are fractures in basement rocks. As a result of the borehole survey, it was indicated that the center of the high-temperature part with a temperature of 250 degrees C or more was in the boundary zone southeast of this area at a level of 500m below sea level. The scale, which reached about 3km both in east/west and north/south, is almost the same scale as that of the neighboring Toyoha area where great potentiality of the geothermal development is expected. (NEDO)

  5. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    International Nuclear Information System (INIS)

    Kalin, R.M.

    1996-01-01

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs

  6. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, R M [The Queen` s University, Belfast, Northern Ireland (United Kingdom). Dept. of Civil Engineering

    1996-10-01

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs.

  7. Some methodical questions of study of vertical geochemical zoning of ore deposits

    International Nuclear Information System (INIS)

    Sochevanov, N.N.; Gorelova, E.K.

    1975-01-01

    Taking a hydrothermal uranium deposit as an example, the advisability of dividing ore-localizing structures (for the purpose of making a calculation for a single geochemical zonality) into five zones, a supra-, an upper, a central, a lower and an infra-ore one, has been shown. It is recommended to determine the place of elements in the geochemical zonality sequence by taking into account the productivity of their aureoles and the location of the centre of gravity of their reserves in the ore, supra- and infra-ore horizons. When considering the peculiarities of a zonality, it is irrational to take account of elements determined with an insufficient sensitivity as well as of low-contrast or unstable ones. When calculating tracer ratios the most contrasting data can be obtained by using the most distant elements in the geochemical zonality sequence

  8. Geochemical radioactive investigation of beach sands and stream sediments, using heavy minerals, trace elements and radon measurements, (Qerdaha sheet of the Syrian coast)

    International Nuclear Information System (INIS)

    Jubeli, Y.; Kattaa, B.; Al-Hilal, M.

    2000-05-01

    Reconnaissance geochemical radiometric survey of stream sediments resulting from the weathering of outcropped rocks in and around the study area was performed. This survey included heavy mineral sampling, trace and radioelements and radon measurements to evaluate the radioactivity of the source rocks and to understand the nature and distribution of the heavy minerals and trace elements in the study area. Several techniques were used to achieve these objectives. The results of heavy mineral geochemical survey show that the abundant minerals are iron oxides (magnetite, hematite, goehtite and limonite) pyroxene and olivine; less abundant minerals are apatite, ilmenite, garnet, barite, siderite and gloconite, while rare minerals are zircon and rutile. Amphibole is reported as an abundant mineral in sand dunes and is less abundant in samples located in the northern part of the study area. The amphibole seems to be derived from the ophiolitic complex north of the study area. Grain size analysis of heavy minerals revealed that the concentration of economic minerals such as zircon rutile and ilmenite increases with the decrease of the grain size. The microscopic study showed fragments and fossils of foraminifere mostly impregnated with heavy metals such as iron and manganese resulting from diagenetic metasomatism and replacement processes of. Fish teeth (< 2 mm) and oolite of iron were also noticed in most of the samples. The morphology of heavy mineral grains shows that most of the grains are angular to subangular suggesting that they were transported for short distance from their source rocks. Normally, phosphate pellets, gloconite and iron ooids are not considered since their original morphological features show clear roundness that attributed to their sedimentological origin, not to transportation factor. The source rock of most of the heavy mineral assemblage is the basalt. Apatite and gloconite are derived from the phosphorite and phosphatized limestone encountered

  9. Geochemical characterization of the siliciclastic rocks of Chitravati ...

    Indian Academy of Sciences (India)

    V Somasekhar

    2018-05-23

    May 23, 2018 ... Chitravati Group of Cuddapah Supergroup to decipher the provenance and depositional environment. Both the units ... Based on major element geochemical classification diagram, Pulivendla Quartzite .... The youngest age limit of the Nallamalai ...... eastern Oregon and western Idaho, USA: Implications for.

  10. Uruguay Mining inventory. Florida fotoplano geochemical prospecting results

    International Nuclear Information System (INIS)

    Zeegers, H.; Artignan, D.; Vairon, P.

    1982-01-01

    This work is about the geochemical prospecting carried out in Florida fotoplano within the framework of Uruguay Mining inventory. In this work were covered 660 km2 obtaining 752 samples for study which were analyzed by Plasma Emission Spectrometry in Orleans BRGM laboratories

  11. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in many countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. One of the key questions about radionuclide diffusion and retention is to know the chemistry and chemical reactions and sorption processes that will occur in the rock and their effects on radionuclide mobility. In this context, the knowledge of the pore water chemistry is essential for performance assessment purposes. This information allows to establish a reliable model for the main water-rock interactions, which control the physico-chemical parameters and the chemistry of the major elements of the system. An important issue in order to model the pore water chemistry in clayey media is to determine the respective volume accessible to cations and anions, i.e, the amount of water actually available for chemical reactions/solute transport. This amount is usually referred as accessible porosity or geochemical porosity. By using the anion inventories, i.e. the anion content obtained from aqueous leaching, and assuming that all Cl - , Br - and SO4 2- leached in the aqueous extracts originates from pore water, the concentration of a conservative ion can be converted into the real pore water concentration if the accessible porosity is known. In this work, the accessible porosity or geochemical porosity has been determined in core samples belonging to four different formations: Boom Clay from Hades URL (Belgium, BE), Opalinus Clay from Mont Terri (Switzerland, CH), and Callovo-Oxfordian argillite from Bure URL (France, FR). The geochemical or chloride porosity was defined as the ratio between the pore water volume containing Cl-bearing pore water and the total volume of a sample

  12. Analysis on geochemical conditions of uranium mineralization in Bashibulake uranium deposit, Xinjiang

    International Nuclear Information System (INIS)

    Liu Zhangyue; Dong Wenming; Cai Genqing; Liu Hongxu; Deng Huabo

    2011-01-01

    By studying the palaeoclimate and metallogenesis related geochemical indexes, this paper proposes that the hosting rocks should form in geochemical oxidation setting under arid palaeoclimate. The study on element assemblage associated with uranium mineralization indicates that the target hosting rocks suffered from different degrees of reworking of reducing fluid at first and then being superimposed by supergene oxidative fluid at tectonic uplifting stage. The uranium mineralization is located in reworked and superimposed places of two types of fluid. (authors)

  13. The geochemical chararateristics of the marble deposits east of ...

    African Journals Online (AJOL)

    ), marbles were investigated with the view to establishing marble occurrences and their geochemical characteristics. Crystalline rocks of the Nigerian Basement Complex (migmatite – gneiss complex) underlie the area. Ten marble bodies were ...

  14. Comparison of thermodynamic databases used in geochemical modelling

    International Nuclear Information System (INIS)

    Chandratillake, M.R.; Newton, G.W.A.; Robinson, V.J.

    1988-05-01

    Four thermodynamic databases used by European groups for geochemical modelling have been compared. Thermodynamic data for both aqueous species and solid species have been listed. When the values are directly comparable any differences between them have been highlighted at two levels of significance. (author)

  15. Uruguay Mining inventory. Minas fotoplano geochemical prospecting results

    International Nuclear Information System (INIS)

    Zeegers, H.; Artignan, D.; Vairon, P.

    1982-01-01

    This work is about the geochemical prospecting carried out in Minas fotoplano within the framework of Uruguay Mining inventory. In this work were covered 380 km2 obtaining with 433 samples for study which were analized by Plasma Emission Spectrometry in Orleans BRGM laboratories

  16. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Rose, A.W.; Smith, A.T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program

  17. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  18. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    International Nuclear Information System (INIS)

    Mani, Devleena; Kumar, T. Satish; Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V.

    2011-01-01

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana–Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r 2 < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  19. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Directory of Open Access Journals (Sweden)

    Robert eDanczak

    2016-05-01

    Full Text Available Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11 and Parcubacteria (OD1 that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  20. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Science.gov (United States)

    Danczak, Robert; Yabusaki, Steven; Williams, Kenneth; Fang, Yilin; Hobson, Chad; Wilkins, Michael

    2016-05-01

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  1. Coupling between a geochemical model and a transport model of dissolved elements

    International Nuclear Information System (INIS)

    Jacquier, P.

    1988-10-01

    In order to assess the safety analysis of an underground repository, the transport of radioelements in groundwater and their interactions with the geological medium are modelled. The objective of this work is the setting up and experimental validation of the coupling of a geochemical model with a transport model of dissolved elements. A laboratory experiment was developed at the CEA center of Cadarache. Flow-through experiments were carried out on columns filled with crushed limestone, where several inflow conditions were taken into account as the temperature, the presence of a pollutant (strontium chloride) at different concentrations. The results consist of the evolution of the chemical composition of the water at the outlet of the column. The final aim of the study is to explain these results with a coupled model where geochemical and transport phenomena are modelled in a two-step procedure. This code, called STELE, was built by introducing a geochemical code, CHIMERE, into an existing transport code, METIS. At this stage, the code CHIMERE can take into account: any chemical reaction in aqueous phase (complexation, acid-base reaction, redox equilibrium), dissolution-precipitation of minerals and solid phases, dissolution-degassing of gas. The paper intends to describe the whole process leading to the coupling which can be forecasted over the next years between geochemical and transport models

  2. Establishing geochemical background levels of selected trace elements in areas having geochemical anomalies: The case study of the Orbetello lagoon (Tuscany, Italy)

    International Nuclear Information System (INIS)

    Romano, Elena; Bergamin, Luisa; Croudace, Ian W.; Ausili, Antonella; Maggi, Chiara; Gabellini, Massimo

    2015-01-01

    The determination of background concentration values (BGVs) in areas, characterised by the presence of natural geochemical anomalies and anthropogenic impact, appears essential for a correct pollution assessment. For this purpose, it is necessary to establish a reliable method for determination of local BGVs. The case of the Orbetello lagoon, a geologically complex area characterized by Tertiary volcanism, is illustrated. The vertical concentration profiles of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were studied in four sediment cores. Local BGVs were determined considering exclusively samples not affected by anthropogenic influence, recognized by means of multivariate statistics and radiochronological dating ( 137 Cs and 210 Pb). Results showed BGVs well-comparable with mean crustal or shale values for most of the considered elements except for Hg (0.87 mg/kg d.w.) and As (16.87 mg/kg d.w.), due to mineralization present in the catchment basin draining into the lagoon. - Highlights: • Pollution assessment in areas with geochemical anomalies needs local reference values. • A new method for the determination of background values (BGV) was established. • Geochemical data from unpolluted samples of sediment cores were used. • Statistics and geochronology were applied to recognize unpolluted sediments. • Anthropogenically influenced samples were not considered for BGV determination. - A method including multivariate statistics and radiochronological dating is proposed for determining local background values for trace elements using analytical data form sediment cores

  3. Mineralogical and geochemical studies of phosphorite nodules in ...

    African Journals Online (AJOL)

    Mineralogical and geochemical studies of phosphorite nodules in the Dange Formation Sokoto Basin, Northwestern Niveria. OA Adekeye, SO Akande. Abstract. No Abstract Available Journal of Mining and Geology Vol.40(2) 2004: 101-106. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT ...

  4. Geochemical assessment of light gaseous hydrocarbons in near ...

    Indian Academy of Sciences (India)

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil ... Kalpana1 D J Patil1 A M Dayal1. National Geophysical Research Institute, Uppal Road, Hyderabad 500606, India.

  5. Geochemical consequences of the Chernobyl accident.; Geokhimicheskie posledstviya Chernobyl`skoj katastrofy.

    Energy Technology Data Exchange (ETDEWEB)

    Kopejkin, V A [VNIIGEOLNERUD, Kazan` (Russian Federation)

    1994-12-31

    Geochemical features of Cs, Sr, U, Pu behaviour in the zone of their hypergenesis are presented in the article. Necessary conditions for these elements filtration on the natural geochemical barriers are shown. Data of radionuclide composition of water for five years of observation in << Ryzhiy Les >> and dissolved forms of radionuclides are described. Geologic and hydrogeologic conditions of the Chernobyl NPP site are shortly characterized. Radionuclide composition in the ground water of contaminated water pools is analyzed. It is proposed to cover by the law all {alpha}-elements (Pu, Am, Np) and not only plutonium as it currently takes place.

  6. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    Science.gov (United States)

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  7. Hydrologic-geochemical modeling needs for nuclear waste disposal systems performance assessments from the NEA perspective

    International Nuclear Information System (INIS)

    Muller, A.B.

    1986-01-01

    Credible scenarios for releases from high level nuclear waste repositories require radionuclides to be mobilized and transported by ground water. The capability to predict ground water flow velocities and directions as well as radionuclide concentrations in the flow system as a function of time are essential for assessing the performance of disposal systems. The first of these parameters can be estimated by hydrologic modeling while the concentrations can be predicted by geochemical modeling. The complementary use of empirical and phenomenological approaches to the geochemical modeling, when effectively coupled with hydrologic models can provide the tools needed for realistic performance assessment. An overview of the activities of the NEA in this area, with emphasis on the geochemical data bases (ISIRS for Ksub(d) data and the thermochemical data base critical review), rock/water interaction modeling (code development and short-courses), and hydrologic-geochemical code coupling (workshop and in-house activities) is presented in this paper from the perspective of probabilistic risk assessment needs. (author)

  8. Recent developments and evaluation of selected geochemical techniques applied to uranium exploration

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.; Cadigan, R.A.; Felmlee, J.K.; Reimer, G.M.; Spirakis, C.S.

    1976-01-01

    Various geochemical techniques for uranium exploration are currently under study by the geochemical techniques team of the Branch of Uranium and Thorium Resources, US Geological Survey. Radium-226 and its parent uranium-238 occur in mineral spring water largely independently of the geochemistry of the solutions and thus are potential indicators of uranium in source rocks. Many radioactive springs, hot or cold, are believed to be related to hydrothermal systems which contain uranium at depth. Radium, when present in the water, is co-precipitated in iron and/or manganese oxides and hydroxides or in barium sulphate associated with calcium carbonate spring deposits. Studies of surface water samples have resulted in improved standardized sample treatment and collection procedures. Stream discharge has been shown to have a significant effect on uranium concentration, while conductivity shows promise as a ''pathfinder'' for uranium. Turbid samples behave differently and consequently must be treated with more caution than samples from clear streams. Both water and stream sediments should be sampled concurrently, as anomalous uranium concentrations may occur in only one of these media and would be overlooked if only one, the wrong one, were analysed. The fission-track technique has been applied to uranium determinations in the above water studies. The advantages of the designed sample collecting system are that only a small quantity, typically one drop, of water is required and sample manipulation is minimized, thereby reducing contamination risks. The fission-track analytical technique is effective at the uranium concentration levels commonly found in natural waters (5.0-0.01 μg/litre). Landsat data were used to detect alteration associated with uranium deposits. Altered areas were detected but were not uniquely defined. Nevertheless, computer processing of Landsat data did suggest a smaller size target for further evaluation and thus is useful as an exploration tool

  9. In situ geochemical properties of clays subject to thermal loading

    International Nuclear Information System (INIS)

    Chapman, N.A.

    1980-01-01

    Compositional variation and geochemical environment in an argillaceous unit are a function of age, depth of burial and mode of origin. This paper considers the variation limits likely to be encountered in potential repository host rocks and examines the significance of factors such as porosity, pore-fluid pressure, total fluid content, and major and accessory mineral component behaviors in controlling the geochemical environment in the neighbourhood of a thermally active waste canister. Particular attention is paid to the use of Eh-pH diagrams in assessing corrosion environments and nuclide speciation. The paper outlines the variables which must be considered when endeavouring to interpret such plots (e.g. temperature, concentration, concurrent reactions and probabilities) and uses the behavior of various iron minerals found in clay deposits under specific conditions to illustrate the complexities. The overall thermal stability of various clay and accessory minerals is discussed and extended to attempt to predict behavior under deep repository conditions, using available data on the diagenetic characteristics of clay-rich sediments. The physical behavior of fluids in plastic clays is considered and methods evaluated for deriving induced geochemical conditions in a thermally active repository. The latter section is particularly related to canister corrosion studies, in situ experiments, and waste dissolution parameters

  10. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    International Nuclear Information System (INIS)

    Thomas, J.M.; Benedict, F.C. Jr.; Rose, T.P.; Hershey, R.L.; Paces, J.B.; Peterman, Z.E.; Farnham, I.M.; Johannesson, K.H.; Singh, A.K.; Stetzenbach, K.J.; Hudson, G.B.; Kenneally, J.M.; Eaton, G.F.; Smith, D.K.

    2003-01-01

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units

  11. Geochemical reactivity of rocks of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Chuman, T.; Gürtlerová, P.; Hruška, Jakub; Adamová, M.

    2014-01-01

    Roč. 10, č. 2 (2014), s. 341-349 ISSN 1744-5647 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : geochemical reactivity * Czech Republic * susceptibility to weathering Subject RIV: EH - Ecology, Behaviour Impact factor: 1.193, year: 2014

  12. Rapid coastal survey of anthropogenic radionuclides, metals, and organic compounds in surficial marine sediments

    International Nuclear Information System (INIS)

    Noakes, J.E.; Noakes, S.E.; Dvoracek, D.K.; Culp, R.A.; Bush, P.B.

    1999-01-01

    A towed survey system, the GIMS/CS 3 , has been developed to enable the rapid measurement and mapping of a variety of physical and geochemical parameters in the surficial sediments of aquatic environments while the survey vessel is underway. With its capability for measuring radiometric, elemental and organic compound constituents of sediments, as well as bathymetry and water quality parameters, the GIMS/CS 3 provides a cost-effective means of performing reconnaissance determinations of contaminant distributions and environmental monitoring tasks over broad geographic regions

  13. Haemorrhagic diarrhoea and reproductive failure in Bonsmara cattle resulting from anomalous heavy metal concentrations in soils, forages and drinking water associated with geochemical anomalies of toxic elements on the farm Puntlyf, South Africa

    Science.gov (United States)

    Elsenbroek, J. H.; Meyer, J.; Myburgh, J.

    2003-05-01

    Poor livestock health conditions are associated with geochemical Pb anomalies on a farm approximately 40km east of Pretoria, South Africa. A generic risk assessment of drinking water for Bonsmara cattle obtained from three separate subterranean water sources on the farm, revealed the presence of several potentially hazardous constituents suspected for the development of adverse health effects in the herd. The two main symptoms of the herd, namely, severe haemorrhagic diarrhoea in calves and reproductive failure in cows, have been investigated. A selenium-induced copper deficiency was proposed as the main cause to the calf diarrhoea, due to complexing between high concentrations of Se, Mo, Hg and Pb in drinking water. It was also anticipated that such Cu deficiencies would lead to low systemic Se inducing hypothyroidism in the cows due to inadequate iodine activation required for thyroid hormone formation and consequently adversely affect reproduction. The anomalous Pb in borehole drinking water on the southem part of the farm, suggests a clear genetic link with the underlying geochemical Pb anomalies detected by means of an ongoing regional geochemical survey.

  14. Geochemical indicators of gold ore fields

    International Nuclear Information System (INIS)

    Shcherbakov, Yu.G.

    1995-01-01

    The principles of selection of indicators for genetic reconstructions and prognostic valuations of gold mineralization of diverse morphological and geochemical types have been substantiated. The neutron-activation analysis with radiochemical separation and detection limit of 1-10 -8 %, instrumental neutron-activation analysis and atomic-absorption analysis are the main methods of determination of gold low contents in the rocks, as well as diverse elements, including transition, rare earth elements and tellurium, in gold. 50 refs.; 1 fig.; 3 tabs

  15. Lead transport in intra-oceanic subduction zones: 2D geochemical-thermo-mechanical modeling of isotopic signatures

    NARCIS (Netherlands)

    Baitsch-Ghirardello, B.; Stracke, A.; Connolly, J.A.D.; Nikolaeva, K.M.; Gerya, T.V.

    2014-01-01

    Understanding the physical-chemical mechanisms and pathways of geochemical transport in subduction zones remains a long-standing goal of subduction-related research. In this study, we perform fully coupled geochemical-thermo-mechanical (GcTM) numerical simulations to investigate Pb isotopic

  16. Geochemical databases. Part 1. Pmatch: a program to manage thermochemical data. Part 2. The experimental validation of geochemical computer models

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.; Avis, J.D.; Nilsson, K.; Skytte Jensen, B.

    1993-01-01

    This work is carried out under cost-sharing contract with European Atomic Energy Community in the framework of its programme on Management and Storage of Radioactive Wastes. Part 1: PMATCH, A Program to Manage Thermochemical Data, describes the development and use of a computer program, by means of which new thermodynamic data from literature may be referenced to a common frame and thereby become internally consistent with an existing database. The report presents the relevant thermodynamic expressions and their use in the program is discussed. When there is not sufficient thermodynamic data available to describe a species behaviour under all conceivable conditions, the problems arising are thoroughly discussed and the available data is handled by approximating expressions. Part II: The Experimental Validation of Geochemical Computer models are the results of experimental investigations of the equilibria established in aqueous suspensions of mixtures of carbonate minerals (Calcium, magnesium, manganese and europium carbonates) compared with theoretical calculations made by means of the geochemical JENSEN program. The study revealed that the geochemical computer program worked well, and that its database was of sufficient validity. However, it was observed that experimental difficulties could hardly be avoided, when as here a gaseous component took part in the equilibria. Whereas the magnesium and calcium carbonates did not demonstrate mutual solid solubility, this produced abnormal effects when manganese and calcium carbonates were mixed resulting in a diminished solubility of both manganese and calcium. With tracer amounts of europium added to a suspension of calcite in sodium carbonate solutions long term experiments revealed a transition after 1-2 months, whereby the tracer became more strongly adsorbed onto calcite. The transition is interpreted as the nucleation and formation of a surface phase incorporating the 'species' NaEu(Co 3 ) 2

  17. Research on geochemical exploration in geotherm development

    International Nuclear Information System (INIS)

    Hirowatari, Kazuo; Imaizumi, Yukio; Koga, Akito; Iwanaga, Tatsuto.

    1987-01-01

    The decisive factor of geotherm development is to improve the exploration techniques. By effectively carrying out the selection of promising development spots and the decision of well drilling positions, the geotherm development exceeding existing energy sources becomes feasible. There have been many problems in conventional geotherm exploration such as the high cost and long work period, therefore, it was decided to advance the research on geochemical exploration techniques which are relatively simple and can be carried out with low cost. When the techniques of geochemistry are used, for example, in the case that there are hot springs or fumaroles, the temperature, origin, properties and so on of underground hot water reservoirs can be estimated from their chemical composition. The method of examining the mercury concentration in soil and soil air has been in practical use in the geothermal districts where the ground surface symptom lacks. This time, the method of investigation using radon, thoron and gamma ray as the exploration indices was newly studied. The index compositions for geochemical exploration, new exploration index compositions, the method of measurement, the basic investigation and on-the-spot investigation are reported. (Kako, I.)

  18. Application of soil radon survey to searching for sandstone-type uranium deposit at western margin of Ordos basin

    International Nuclear Information System (INIS)

    Liu Hanbin; Yin Jinshuang; Cui Yonghui

    2006-01-01

    On the basis of condition tests of soil radon survey at certain uranium deposit in Ordos basin, regional soil radon survey was carried but in a study area of western margin of Ordos basin. By processing of soil radon survey data, five anomalous areas with certain metallogenic potential have been delineated. Then, discovered anomalies have been interpreted and evaluated for providing important reference for further drilling work. Research results indicate that by soil radon survey, anomalies may be distinguished in a basin, and soil radon survey could be an important geochemical prospecting method for rapid evaluation of sandstone-type uranium deposit in basin areas. (authors)

  19. Geochemical studies of potential source minerals of radon: case studies in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Rajnai, G.; Nagy-Balogh, J.; Gal-Solymos, K.; Konc, Z.; Breitner, D.; Barabas, A.; Szabo, C. [Eotvos Univ., Lithosphere Fluid Research Lab, Dept. of Petrology and Geochemistry, Budapest (Hungary); Barabas, A. [Eotvos Univ., Dept. of Geophysics, Budapest (Hungary)

    2006-07-01

    In Hungary, during the past decade five distinct regions have been chosen to find possible explanations of the uncommonly high radon background radiation values. The main aim of the research is to study U- and Th-bearing minerals in petrographic and geochemical characters. Besides the microscopic techniques, whole rock and in situ geochemical analytical methods were applied to determine the bulk U and Th content of the studied geological samples. We assume that some of the radon measured is related to the U and Th contents of the samples. (authors)

  20. Geochemical evolution of the near field of a KBS-3 repository

    International Nuclear Information System (INIS)

    Arcos, David; Grandia, Fidel; Domenech, Cristina

    2006-09-01

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier

  1. Geochemical properties and nuclear chemical characteristics of Oklo natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Science

    1997-07-01

    There are six uranium deposits in the Gabonese Republic in the cnetral Africa. `Fission reactor zone`, the fission chain reactions generated about 200 billion years ago, was existed in a part of them. CEA begun geochemical researches of Oklo deposits etc. in 1991. The geochemical and nuclear chemical properties of Oklo were reviewed from the results of researches. Oklo deposits is consisted of main five sedimentary faces such as sandstone (FA), Black Shale formation (FB), mudstone (FC), tuff (FD) and volcaniclastic sandstone (FE) from the bottom on the base rock of granite in the Precambrian era. Uranium is enriched in the upper part of FA layer and the under part of FB layer. {sup 235}U/{sup 238}U, U content, fission proportion, duration time, neutron fluence, temperature, restitution factor of {sup 235}U and epithermal index ({gamma}) were investigated and compared. The geochemical properties of Oklo are as followed: large enrich of uranium, the abundance ratio of {sup 235}U as same as that of enriched uranium, interaction of natural water and small rear earth elements. These factors made casually Oklo fission reactor. (S.Y.)

  2. Geochemical evolution of the near field of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, David; Grandia, Fidel; Domenech, Cristina [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier.

  3. Establishing nursery estuary otolith geochemical tags for Sea Bass (Dicentrarchus labrax): Is temporal stability estuary dependent?

    Science.gov (United States)

    Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William

    2016-12-01

    The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.

  4. Report on the geothermal survey of the Kitayuzawa district of Otaki Village, Iburi Province, Hokkaido. Hokkaido Kitayuzawa chiikino chinetsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, F; Konoya, M; Yokoyama, H; Wake, T; Kakiichi, K

    1974-01-01

    Cumulative data from a three year survey of the Kitayuzawa district of Otaki Village (Iburi, Hokkaido) are analyzed. The district is a well known hot spring area, where spring temperatures exceed 90/sup 0/C. The three-year study included geological, geochemical, and geophysical surveys; electrical, magnetic, and microearthquake studies; and a test well of 500 ..pi.. depth. The hot spas are associated with intrusive zones (dikes) near the Kitayuzawa-Osaru River. These zones can be detected by magnetic surveys. Studies of rock alteration indicated that positive thermal anomalies are associated with zeolite zones. Based on the geochemical and geophysical data, it is estimated that the thermal energy discharged in the Kitayuzawa district is about 14.4 Mcal/s. The waters of these springs are characterized as simple, vadose hot-water. A low-resistivity zone surrounds the springs and extends to the eastern sector of the district. Future studies of the area will include more numerous and deeper exploratory boreholes in the eastern sector. About 40 illustrations are provided, and 29 references are given.

  5. Overview of the geochemical code MINTEQ: applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Graham, M.J.; Peterson, S.R.

    1985-09-01

    The MINTEQ geochemical computer code, developed at Pacific Northwest Laboratory, integrates many of the capabilities of its two immediate predecessors, WATEQ3 and MINEQL. MINTEQ can be used to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments or the interaction of ground water with solidified low-level wastes. The code is capable of performing calculations of ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial solidified low-level wastes. The wastes being evaluated include power reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code is being upgraded before the geochemical modeling is performed. Thermodynamic data for cobalt, antimony, cerium, and cesium solid phases and aqueous species are being added to the database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the wastes predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partical field validation of the geochemical model. 28 refs

  6. Report on the geological-geochemical research carried out within the area of geochemical anomaly P7, Vathyrema, Drama Department

    International Nuclear Information System (INIS)

    Stavropoulos, Athanasios.

    1982-08-01

    The investigated area covering about 30 km 2 is situated in the crystalline massive of Rhodope (north of Drama deparment, E. Macedonia) where granitoids constitute its main petrological type. The geological-geochemical and radiometric investigations carried out so far in the area have localized a large number of places with high values of γ-radiation (1.000 - 15.000 c/s), as well as high concentrations of uranium (50-500 ppm). The uranium mineralization within the zone of oxidation is expressed by the uranium mineral autunite, accompanied by intensive hematitization-limonitization and chloritization-kaolinization, and additionally by small spots and veinlets of pyrite and galena. It seems that tectonic control exists on the uranium mineralization, since most of the anomalous concentrations of uranium are sitting along mylonite zones rich in chlorite and kaolin. There have been discerned seven more anomalous part areas which will have to be covered by geochemical stream sediment sampling (phase 3), as well as geological mapping (scale 1:5.000). The results from the research conducted within the concerned anomaly lead us to the conclusion that this area is very promising and possibilities of localization of uranium payable concentrations are very high. (N.Ch.)

  7. An integrated geophysical and geochemical exploration of critical zone weathering on opposing montane hillslope

    Science.gov (United States)

    Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.

    2017-12-01

    Quantifying coupled geochemical and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate geochemical and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated geochemical and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. Geochemical samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. Geochemical data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while geochemical data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance

  8. Gamma radiometric survey of Jamaica

    International Nuclear Information System (INIS)

    Lalor, G.C.; Robotham, H.; Miller, J.M.; Simpson, P.R.

    1989-01-01

    The results of a total gamma radiometric survey of Jamaica, carried out with car-borne instrumentation, are presented and the data compared with the contents of potassium, thorium and uranium in rocks and in surface (soil, stream-sediment, pan concentrate and water) samples obtained at six sites selected to be representative of the principal rock types and surface environments of Jamaica. The work formed part of an orientation study for a regional geochemical survey of the CARICOM countries of the Caribbean. The initial results indicate that enhanced gamma activity is correlated with enrichment in uranium and thorium, but not potassium, in terra rossa soils and/or bauxite deposits in limestone. Elsewhere, gamma levels are increased on the Above Rocks Cretaceous basement Inlier, where they correlate generally with the presence of volcanogenic sediments and a granodiorite intrusion. The lowest radioactivity was recorded in the vicinity of ultrabasic rocks in the Blue Mountains Inlier. (author)

  9. Geochemical and hydrodynamic phosphorus retention mechanisms in lowland catchments

    NARCIS (Netherlands)

    van der Grift, B.

    2017-01-01

    The release of phosphorus (P) to surface water from heavily fertilised agricultural fields is of major importance for surface water quality. The research reported in this thesis examined the role of geochemical and hydrodynamic processes controlling P speciation and transport in lowland catchments

  10. Mining inventory of Uruguay. Polanco fotoplano geochemical prospecting results

    International Nuclear Information System (INIS)

    Zeegers, H; Artignan, D; Vairon, P

    1982-01-01

    This work is about the geochemical prospecting carried out in Polanco fotoplano within the framework of Uruguay Mining inventory . In this work were covered 660 km2 obtaining 685 samples for study which were analyzed by Plasma Emission Spectrometry in Orleans BRGM laboratories

  11. Mineral and Geochemical Classification From Spectroscopy/Diffraction Through Neural Networks

    Science.gov (United States)

    Ferralis, N.; Grossman, J.; Summons, R. E.

    2017-12-01

    Spectroscopy and diffraction techniques are essential for understanding structural, chemical and functional properties of geological materials for Earth and Planetary Sciences. Beyond data collection, quantitative insight relies on experimentally assembled, or computationally derived spectra. Inference on the geochemical or geophysical properties (such as crystallographic order, chemical functionality, elemental composition, etc.) of a particular geological material (mineral, organic matter, etc.) is based on fitting unknown spectra and comparing the fit with consolidated databases. The complexity of fitting highly convoluted spectra, often limits the ability to infer geochemical characteristics, and limits the throughput for extensive datasets. With the emergence of heuristic approaches to pattern recognitions though machine learning, in this work we investigate the possibility and potential of using supervised neural networks trained on available public spectroscopic database to directly infer geochemical parameters from unknown spectra. Using Raman, infrared spectroscopy and powder x-ray diffraction from the publicly available RRUFF database, we train neural network models to classify mineral and organic compounds (pure or mixtures) based on crystallographic structure from diffraction, chemical functionality, elemental composition and bonding from spectroscopy. As expected, the accuracy of the inference is strongly dependent on the quality and extent of the training data. We will identify a series of requirements and guidelines for the training dataset needed to achieve consistent high accuracy inference, along with methods to compensate for limited of data.

  12. A geostatistical method applied to the geochemical study of the Chichinautzin Volcanic Field in Mexico

    Science.gov (United States)

    Robidoux, P.; Roberge, J.; Urbina Oviedo, C. A.

    2011-12-01

    The origin of magmatism and the role of the subducted Coco's Plate in the Chichinautzin volcanic field (CVF), Mexico is still a subject of debate. It has been established that mafic magmas of alkali type (subduction) and calc-alkali type (OIB) are produced in the CVF and both groups cannot be related by simple fractional crystallization. Therefore, many geochemical studies have been done, and many models have been proposed. The main goal of the work present here is to provide a new tool for the visualization and interpretation of geochemical data using geostatistics and geospatial analysis techniques. It contains a complete geodatabase built from referred samples over the 2500 km2 area of CVF and its neighbour stratovolcanoes (Popocatepetl, Iztaccihuatl and Nevado de Toluca). From this database, map of different geochemical markers were done to visualise geochemical signature in a geographical manner, to test the statistic distribution with a cartographic technique and highlight any spatial correlations. The distribution and regionalization of the geochemical signatures can be viewed in a two-dimensional space using a specific spatial analysis tools from a Geographic Information System (GIS). The model of spatial distribution is tested with Linear Decrease (LD) and Inverse Distance Weight (IDW) interpolation technique because they best represent the geostatistical characteristics of the geodatabase. We found that ratio of Ba/Nb, Nb/Ta, Th/Nb show first order tendency, which means visible spatial variation over a large scale area. Monogenetic volcanoes in the center of the CVF have distinct values compare to those of the Popocatepetl-Iztaccihuatl polygenetic complex which are spatially well defined. Inside the Valley of Mexico, a large quantity of monogenetic cone in the eastern portion of CVF has ratios similar to the Iztaccihuatl and Popocatepetl complex. Other ratios like alkalis vs SiO2, V/Ti, La/Yb, Zr/Y show different spatial tendencies. In that case, second

  13. Geochemical investigations at Maxey Flats radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dayal, R.; Pietrzak, R.F.; Clinton, J.

    1984-09-01

    As part of the NRC efforts to develop a data base on source term characteristics for low level wastes, Brookhaven National Laboratory (BNL) has produced and analyzed a large amount of data on trench leachate chemistry at existing shallow land burial sites. In this report, we present the results of our investigations at the Maxey Flats, Kentucky disposal site. In particular, data on trench leachate chemistry are reviewed and discussed in terms of mechanisms and processes controlling the composition of trench solutes. Particular emphasis is placed on identifying both intra- and extra-trench factors and processes contributing to source term characteristics, modifications, and uncertainties. BNL research on the Maxey Flats disposal site has provided important information not only on the source term characteristics and the factors contributing to uncertainties in the source term but also some generic insights into such geochemical processes and controls as the mechanics of leachate formation, microbial degradation and development of anoxia, organic complexation and radionuclide mobility, redox inversion and modification of the source term, solubility constraints on solute chemistry, mineral authigenesis, corrosion products and radionuclide scavenging, and the role of organic complexants in geochemical partitioning of radionuclides. A knowledge of such processes and controls affecting the geochemical cycling of radionuclides as well as an understanding of the important factors that contribute to variability and uncertainties in the source term is essential for evaluating the performance of waste package and the site, making valid predictions of release for dose calculations, and for planning site performance monitoring as well as remedial actions. 43 references, 47 figures, 30 tables

  14. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    International Nuclear Information System (INIS)

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; Hedges, Sheila W.; Lopano, Christina L.; Guthrie, George D.; Hakala, J. Alexandra

    2017-01-01

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24–48 h) fluid enrichment of certain elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales. - Highlights: • Metal concentrations could be at their peak in produced waters recovered 24–48 after fracturing. • Carbonate

  15. Heavy mineral survey for rare earths in the Northern part of Palawan

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Santos, G.P.; Magsambol, W.N.; Ramos, A.F.; Petrache, C.A.; Tabora, E.U.

    1992-01-01

    A reconnaissance geochemical survey for rare earths was carried out over the northern half of Palawan with considerable success. The survey represents the first systematic geochemical exploration effort to look for indigenous rare earth resources in the Philippines. Total area covered was about 5,000 sq km. The survey entailed the systematic collection of 740 heavy mineral panned concentrate and stream sediment samples along streams and rivers. The average sampling density was about one set of sample per 2-15 sq km. A total of 218 heavy mineral samples were analyzed for lathanum, cerium, praseodymium, neodymium and yttrium. Analysis of stream sediments for rare earths was discontinued due to the high detection limit of the X-ray fluorescence spectrometer. Results of the survey clearly indicated the effectiveness of heavy mineral sampling for rare earths at the reconnaissance level of exploration. Six anomalous and well-defined areas of interest were delineated for possible rare earth mineralization. Three priority zones were further outlined from the six prospective areas for possible follow-up surveys. Mineralogical examination of heavy minerals revealed the presence of major allanite and minor monazite as the potential hosts of rare earths in the priority zone number one. Gray monazite was identified in the priority zone number two as the rare earth mineral. Minute specks and grains of gold were visibly present in some of the heavy mineral samples taken in this area. A combined mineralization of rare earths and gold in this area is a possibility. The discovery of the first gray nodular monazite in Palawan may extend the age of the oldest rocks in the Philippines to Lower Paleozoic. A separate study to establish the age of the oldest rocks in the country is likewise necessary. (auth.). 27 refs.; 6 figs.; 8 tabs

  16. Geothermal development promotion survey report. No. 29. Upper reach region of Oita river; 1988-1990 chinetsu kaihatsu sokushin chosa hokokusho. No. 29 Oitagawa joryu chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The results of surveys conducted in the Oita river region, Oita Prefecture, in fiscal 1988-1989 are compiled in this report. Conducted were a geological/alteration zone survey, geochemical survey, electric prospecting (Schlumberger method), electromagnetic surveillance (simplified magnetotelluric method), electromagnetic surveillance (EMAP - Environmental Monitoring and Assessment Program method), heat flow rate survey, test boring, environmental impact survey, and so forth. Conclusions are mentioned below. It is inferred that the geothermal fluid results from groundwater originating in meteoric water, that the meteoric water takes many years to flow from the mountainous region into the ground where it is stored mainly in the Shonai stratum, that the stored water is warmed by heat from rocks in the neighborhood for development into a geothermal fluid, and that the geothermal fluid finally forms a hot spring water reservoir. Hot spring water reservoirs are found widely distributed in the basin of the Oita river. In view of the ground temperature distribution and the hot spring water geochemical temperature determined by structure boring, it is concluded that possibilities are quite low that there exists a high-temperature geothermal fluid usable for power generation. (NEDO)

  17. NURE aerial gamma ray and magnetic detail survey of portions of northeast Washington. Volume I. Data acquisition, reduction and interpretation. Final report

    International Nuclear Information System (INIS)

    1981-11-01

    As part of the Department of Energy (DOE) National Uranium Evaluation Program a rotary wing detailed high sensitivity radiometric and magnetic survey was performed which encompassed 8 areas in the northeastern portion of Washington State. The total area surveyed consisted of approximately 9105 line miles. The survey was flown with a Sikorsky S58T helicopter equipped with a high sensitivity gamma ray spectrometer and magnetometer. The airborne spectrometer system was calibrated at the DOE calibration facilities at Walker Field in Grand Junction, Colorado and at the Dynamic Test Range at Lake Mead, Arizona. The radiometric data was corrected and normalized to 400 feet terrain clearance and identified as to rock type by correlating each sample with existing geologic map information. A multi-variate analysis was performed, which together with the radiometric and magnetic contour maps was utilized in the geochemical analysis of each area. The survey data is presented in the form of contour maps, stacked profiles, histograms and microfiche copies of the data listings. This graphic material is presented in the individual area reports. The results of the geologic and geochemical evaluation are presented as individual chapters of this narrative report

  18. Uruguay Mining inventory. Las Animas fotoplano geochemical prospecting results

    International Nuclear Information System (INIS)

    Zeegers, H.; Spangenberg, J.

    1981-01-01

    This work is about the geochemical prospecting carried out in Las Animas fotoplano within the framework of Uruguay Mining inventory. In this work were covered 660 km2 obtaining 738 samples for study which were analyzed by Plasma Emission Spectrometry in Orleans BRGM laboratories.

  19. Overview of geochemical modeling needs for nuclear waste management

    International Nuclear Information System (INIS)

    Isherwood, D.J.; Wolery, T.J.

    1985-01-01

    Geochemical modeling needs for nuclear waste management are discussed with an emphasis on data base development and computer code. Other areas for future research include: precipitation kinetics, fixed fugacity, sorption, glasslt. slashwater interactions, redox disequilibrium and kinetics, radiolysis, solid solutions, and isotopic fractionation. 15 references

  20. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    International Nuclear Information System (INIS)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal

  1. Geochemical monitoring using noble gases and carbon isotopes: study of a natural reservoir

    International Nuclear Information System (INIS)

    Jeandel, E.

    2008-12-01

    To limit emissions of greenhouse gases in the atmosphere, CO 2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO 2 . Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general information on its use. (author)

  2. Analysis of the geochemical gradient created by surface-groundwater interactions within riverbanks of the East River in Crested Butte, Colorado

    Science.gov (United States)

    Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.

    2016-12-01

    An improved understanding of the geochemical gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the geochemical gradient in the hyporheic zone is described using a variety of geochemical properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear geochemical gradient that displays a distinct zone in the subsurface where the geochemical conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the geochemical gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the geochemical gradient at differing rates. Overall, this characterization of the geochemical gradient along stream banks will produce results that will aid in the further use of geochemical methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.

  3. Drift pumice in the central Indian Ocean Basin: Geochemical evidence

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Mudholkar, A.V.; JaiSankar, S.; Ilangovan, D.

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which...

  4. Pilot studies for the North American Soil Geochemical Landscapes Project - Site selection, sampling protocols, analytical methods, and quality control protocols

    Science.gov (United States)

    Smith, D.B.; Woodruff, L.G.; O'Leary, R. M.; Cannon, W.F.; Garrett, R.G.; Kilburn, J.E.; Goldhaber, M.B.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0-5 cm and a composite of each of the O, A, and C horizons. The Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion. A separate sample of 0-5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of

  5. Development of thermodynamic databases and geochemical/transport models for prediction of long-term radionuclide migration (Germany)

    International Nuclear Information System (INIS)

    Kienzler, B.

    2000-01-01

    The isolation capacity of a repository system for radionuclides is described by geochemical modeling. The models for interpretation of experimental findings and for long-term extrapolation of experimental results are based on thermodynamic approaches. The geochemical models include dissolution reactions of waste forms, the evolution of the geochemical milieu, interactions of radionuclides with constituents of the groundwater (brines) and the precipitation of new solid phases. Reliable thermodynamic data, understanding of radionuclide complexation in aqueous multi-electrolyte solutions at the relevant ionic strength and knowledge on the formation of pure and mixed solids and on sorption processes are urgently needed for such model calculations. (author)

  6. High-level radioactive waste disposal: Key geochemical issues and information needs for site characterization

    International Nuclear Information System (INIS)

    Brooks, D.J.; Bembia, P.J.; Bradbury, J.W.; Jackson, K.C.; Kelly, W.R.; Kovach, L.A.; Mo, T.; Tesoriero, J.A.

    1986-01-01

    Geochemistry plays a key role in determining the potential of a high-level radioactive waste disposal site for long-term radionuclide containment and isolation. The Nuclear Regulatory Commission (NRC) has developed a set of issues and information needs important for characterizing geochemistry at the potential sites being investigated by the Department of Energy Basalt Waste Isolation Project, Nevada Nuclear Waste Storage Investigations project, and Salt Repository Project. The NRC site issues and information needs consider (1) the geochemical environment of the repository, (2) changes to the initial geochemical environment caused by construction and waste emplacement, and (3) interactions that affect the transport of waste radionuclides to the accessible environment. The development of these issues and information needs supports the ongoing effort of the NRC to identify and address areas of geochemical data uncertainty during prelicensing interactions

  7. A Guide for Using Geochemical Methods in Dredged Material, Sediment Tracking, and Sediment Budget Studies

    Science.gov (United States)

    2017-06-26

    geochemical markers such as radioisotopes and stable isotopes, organic matter, and mineralogy/elemental composition are recognized and established methods ...further elucidate the original erosion source of accumulating sediment (Hoefs 2009). 2.3 Radioisotopes Radioisotopic dating is based on measuring the...ER D C TR -1 7- 3 Dredging Operations and Environmental Research Program A Guide for Using Geochemical Methods in Dredged Material

  8. Predictive geophysics: geochemical simulations to geophysical targets

    Science.gov (United States)

    Chopping, R. G.; Cleverley, J.

    2017-12-01

    With an increasing focus on deep exploration for covered targets, new methods are required to target mineral systems under cover. Geophysical responses are driven by physical property contrasts; for example, density contrasts provide a gravity signal, acoustic impedance contrasts provide a seismic reflection signal. In turn, the physical properties for basement, crystalline rocks which host the vast majority of mineral systems are determined almost wholly by the mineralogy of the rocks in question. Mineral systems, through the transport of heat and reactive fluids, will serve to modify the physical properties of country rock as they chemically alter the hosting strata. To understand these changes, we have performed 2D reactive transport modelling that simulates the formation of Archean gold deposits of the Yilgarn Craton, Western Australia. From this, we derive a model of mineralogy that we can use to predict the density, magnetic susceptibility and seismic reflection changes associated with ore formation. It is then possible to predict the gravity, magnetic and seismic reflection responses associated with these deposits. Scenario mapping, such as testing the ability to resolve buried ore bodies or the geophysical survey spacing required to resolve the mineral system, can be performed to produce geophysical targets from these geochemical simulations. We find that there is a gravity response of around 9% of the unaltered response for deposits even buried by 1km of cover, and there is a magnetic spike associated with proximal alteration of the ore system. Finally, seismic reflection response is mostly characterised by additional reflections along faults that plumb the alteration system.

  9. The Nasca and Palpa geoglyphs: geophysical and geochemical data

    Science.gov (United States)

    Hartsch, Kerstin; Weller, Andreas; Rosas, Silvia; Reppchen, Gunter

    2009-10-01

    The Nasca geoglyphs in the stone desert in southern Peru are part of our world cultural heritage. These remarkable drawings have roused the interest of scientists from different disciplines. Here we report the results of integrated geophysical, petrophysical, mineralogical, and geochemical investigations of the geoglyphs at six test sites in the stone desert around Nasca and Palpa. The geomagnetic measurements revealed clear indications of subsurface structures that differ from the visible surface geoglyphs. The high-resolution geoelectrical images show unexpected resistivity anomalies underneath the geoglyphs down to a depth of about 2 m. Remarkable structures were revealed in both vertical and lateral directions. No evidence was found of geochemical or mineralogical alterations of the natural geogenic materials (desert pavement environment versus geoglyphs). Neither salts nor other mineral materials were used by the Nasca people to alter or prepare the surfaces of geoglyphs. This supports the hypothesis that the Nasca people simply removed stone material down to the natural hard pan horizon to create the geoglyphs.

  10. pplication of Fractal Technique for Analysis of Geophysical - Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mehrnia

    2017-02-01

    calculated based on measuring the fractal dimensional variations in the recursive patterns (Mehrnia, 2013. In practice, the Area-Concentration equations (Mandelbrot, 2005 were applied in resistivity, induction polarization, Pb and Zn datasets for achieving the nonlinear relationships in anomalous regions which were characterized by increasing in regression coefficients with more spatial correlation of the variable than linear statistics (Mehrnia, 2013. Results and Discussion This research showed that both linear and nonlinear statistics are able to estimate the spatial association of geochemical anomalies with geophysical variables. A meaningful increase in the regression coefficient was also revealed after measuring the self-similar peculiarities of concentration values on gridded plots (Salehi, 2004; Torkashvand et al., 2009. From the fractal point of view, Pb ore-minerals have been deposited in the western sub-region, while Zn mineralization seems to be extended in the depth of eastern alterations. Also a predictable geochemical zonation can be considered in the western target (meaningful Pb anomalies that is more patterned than the eastern halos according to geological observations (Momenzadeh and Ziseman, 1981 and mineralogical evidences (Salehi, 2004. An increase in Supra ore/Sub ore proportional content was measured in the western sub-region which indicated more reliable potential of Pb mineralization (Galena as a particular indication of sulfide-rich minerals than the same phases of ore forming processes in the eastern sub-region, although the content of Pb-ores rapidly decreases in the eastern target and is replaced by Zn minerals (Sphalerite as particular indication of sulfide-rich mineralization. Because power law relationships are significant in both geochemical and geophysical anomalies (Mehrnia, 2013 a detailed program including borehole geophysics and litho-geochemical land-surveys should be considered in the prospected regions. Therefore, upcoming phases

  11. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ( 18 O, 2 H, 13 C, 34 S, 87 Sr, 15 N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  12. Coastal Aquifer Contamination and Geochemical Processes Evaluation in Tugela Catchment, South Africa—Geochemical and Statistical Approaches

    Directory of Open Access Journals (Sweden)

    Badana Ntanganedzeni

    2018-05-01

    Full Text Available Assessment of groundwater quality, contamination sources and geochemical processes in the coastal aquifer of Tugela Catchment, South Africa were carried out by the geochemical and statistical approach using major ion chemistry of 36 groundwater samples. Results suggest that the spatial distribution pattern of EC, TDS, Na, Mg, Cl and SO4 are homogenous and elevated concentrations are observed in the wells in the coastal region and few wells near the Tugela River. Wells located far from the coast are enriched by Ca, HCO3 and CO3. Durov diagrams, Gibbs plots, ionic ratios, chloro alkaline indices (CAI1 and CAI2 and correlation analysis imply that groundwater chemistry in the coastal aquifer of Tugela Catchment is regulated by the ion exchange, mineral dissolution, saline sources, and wastewater infiltration from domestic sewage; septic tank leakage and irrigation return flow. Principle component analysis also ensured the role of saline and anthropogenic sources and carbonates dissolution on water chemistry. Spatial distributions of factor score also justify the above predictions. Groundwater suitability assessment indicates that around 80% and 90% of wells exceeded the drinking water standards recommended by the WHO and South African drinking water standards (SAWQG, respectively. Based on SAR, RSC, PI, and MH classifications, most of the wells are suitable for irrigation in the study region. USSL classification suggests that groundwater is suitable for coarse-textured soils and salt-tolerant crops. The study recommends that a proper management plan is required to protect this coastal aquifer efficiently.

  13. Landscape-geochemical factors of deposit formation

    International Nuclear Information System (INIS)

    Batulin, S.G.

    1980-01-01

    Effect of landscape-geochemical factors on hydrogenic formation of uranium ores is considered. The primary attention is paid to finding reasons for hydrogeochemical background increase in the regions of arid climate. Problems of uranium distribution in alluvial landscapes, hydrogeochemical regime of ground waters, reflecting the effect of waters of the zone of aeration are revealed. Chemical composition of porous solutions in the zone of aeration, as well as historical geochemindstry of landscape a its role from the view point of uranium solution formation in the arid zone are considered [ru

  14. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Peterson, S.R.; Opitz, B.E.; Graham, M.J.; Eary, L.E.

    1987-03-01

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model

  15. Geochemical trends in the weathered profiles above granite gneiss ...

    African Journals Online (AJOL)

    Geochemical trends in the weathered profiles above granite gneiss and schist of Abeokuta area, southwestern Nigeria. Anthony T Bolarinwa, Anthony A Elueze. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol. 41(1): 19-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT ...

  16. Isotope and geochemical techniques applied to geothermal investigations. Proceedings of the final research co-ordination meeting held in Dumaguete City, Philippines, 12-15 October 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    In the last ten years, geothermal energy has emerged as an alternative source of energy for electrical and non-electrical uses. In some of these countries geothermal energy contributed up to 40% of the national power requirement. In others, it is being widely used in agriculture, aquaculture, air conditioning, kiln and fruit drying, pulp and paper industry, greenhouses and food processing. The Co-ordinated Research Programme (CRP) on the Application of Isotope and Geochemical Techniques to Geothermal Exploration in the Middle East, Asia, the Pacific and Africa aimed at integrating isotope techniques with traditional geochemical and hydrological methods in understanding the characteristics of geothermal systems. It involved isotopic and chemical surveys of hot to cold springs, wells and rivers in exploration areas as well as in exploited reservoirs where problems such as return of injected wastewaters are experienced. This publication is a compilation of the scientific papers presented at the final Research Co-ordination Meeting, held in Dumaguete City, Philippines, from 12 to 15 October 1993. Refs, figs and tabs.

  17. Assessment of diagenetic alteration of dinosaur eggshells through petrography and geochemical analysis

    Science.gov (United States)

    Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.

    2012-12-01

    Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.

  18. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    Science.gov (United States)

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  19. Geochemical investigation of UMTRAP designated site at Durango, Colorado

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Durango, Colorado. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the UMTRA Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover system which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted remove easily soluble salts and acids extracted to remove cabonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Three major conclusions are: (1) carbonate salts and low TDS characterize the tailings; (2) the adjacent area and raffinate ponds contain contaminants deposited by a single event of fluid permeation of the soils; and (3) the Animas River adjacent to the site has elevated gross alpha activity attributed to 226 Ra in the sediments derived from the tailings or milling activities

  20. Geochemical modeling of uranium mill tailings: a case study

    International Nuclear Information System (INIS)

    Peterson, S.R.; Felmy, A.R.; Serne, R.J.; Gee, G.W.

    1983-08-01

    Liner failure was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 y. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The decreases in permeability noted above are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. X-ray diffraction identified gypsum and alunite group minerals, such as jarosite, as having precipitated after acidic tailings solutions reacted with clay liners. The geochemical modeling and experimental work described above were used to construct an equilibrium conceptual model consisting of minerals and solid phases. This model was developed to represent a soil column. A computer program was used as a tool to solve the system of mathematical equations imposed by the conceptual chemical model. The combined conceptual model and computer program were used to predict aqueous phase compositions of effluent solutions from permeability cells packed with geologic materials and percolated with uranium mill tailings solutions. An initial conclusion drawn from these studies is that the laboratory experiments and geochemical modeling predictions were capable of simulating field observations. The same mineralogical changes and contaminant reductions observed in the laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 10-year history of acid attack. 24 references, 5 figures 5 tables

  1. Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada

    Science.gov (United States)

    du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.

    2013-04-23

    Petrographic and geochemical data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and geochemical data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The geochemical data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.

  2. Application of Neutron Activation Analysis to Geochemical Studies of Mineral Resources

    Energy Technology Data Exchange (ETDEWEB)

    Winchester, J. W. [Department Of Meteorology and Oceanography, University of Michigan, Ann Arbor, MI (United States); Catoggio, J. A. [Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (Argentina)

    1969-03-15

    Sensitive and accurate measurement of closely related trace element concentrations in naturally occurring materials leads to the most useful geochemical information in the study of crystallizing systems. Studies of the rare earth elements have shown regularities that can be related to geological crystallization processes in igneous and sedimentary materials, and it is likely that similar studies of economic mineral deposits will lead to similar information. An analytical method should be chosen with great care to assure adequate sensitivity for the trace elements under investigation. Neutron activation analysis and spark source mass spectrometry both have high sensitivity adequate for many geochemical applications. However, simpler methods, such as atomic absorption, absorption spectrophotometry and electrochemical methods have adequate sensitivity for many elements and are preferred when suitable. (author)

  3. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ({sup 18}O, {sup 2}H, {sup 13}C, {sup 34}S, {sup 87}Sr, {sup 15}N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  4. Geochemical approach to evaluate deforest of mangroves

    OpenAIRE

    Ishiga, Hiroaki; Diallo, Ibrahima M'bemba; Bah Mamadou Lamine Malick,; Ngulimi. Faustine Miguta,; Magai. Paschal Justin,; Shati Samwel Stanley,

    2016-01-01

    Processes of mangrove deforest related human activities were examined. To evaluate changes of soil feature, multielements geochemical compositions of mangrove muds and soils of deforest were analyzed. To describe present situation of the mangrove, Conakry in Guinea, Dar es Salaam in Tanzania, Sundarbans of Bangladesh and Nago in Okinawa of Japan were selected. Soil samples of the forests were evaluated enrichment of biologically concentrated heavy metals such as Zn, Cu and Fe, and TS (total s...

  5. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  6. Stream-sediment geochemical exploration for uranium in Narigan area Central Iran

    International Nuclear Information System (INIS)

    Yazdi, M.; Khoshnoodi, K.; Kavand, M.; Ashteyani, A. R.

    2009-01-01

    Uranium deposits of Iran occur mainly in the Central Iran zone. Several uranium deposits have been discovered in this zone. The Narigan area is one of the most important uranium mineralized area in this zone. The uranium bearing sequences in this area are contained in the plutonic to volcanic rocks of Narigan which intruded to the Pre-Cambrian pyroclastics rocks. Plutonic and volcanic rocks are granite, rhyolite and volcanoclastic. Diabasic dykes have been intruded to these igneous rocks. The plutonic and volcanic rocks have been covered by Cretaceous limestones which seem to be youngest the rocks in this area. The aim of our project is to develop a regional exploration strategy for uranium in these igneous rocks. A grid-based sampling was planned following the results of the previous geochemical mapping at a scale of 1:100,000, integrated with geophysical data and alteration zones and outcrop of intrusive rocks. The following results are based on geological, and stream geochemical explorations in 1:20000 scale of this area. During this study 121 samples were collected from the stream sediments of <80 mesh for final sampling. Ten percent of the samples were used for checking laboratories errors. The samples were collected according to conventional methods from 30-40 cm depth of stream sediments. Finally, geochemical and radiometric data were combined and the results introduced 3 anomalies in the Narigan area

  7. Investigation of a natural geochemical barrier

    International Nuclear Information System (INIS)

    1991-02-01

    Groundwater data from lysimeters and monitor wells in the vicinity of the Bowman, North Dakota, Uranium Mill Tailings Remedial Action (UMTRA) Project site indicated that there is a mechanism in the subsurface which cleans up downward-percolating fluids. It was hypothesized that clays and organic materials in the sediments sequestered hazardous constituents from infiltrating fluids. A program was designed to collect sediment cores from various locations on and around the site and to analyze the sediments to determine whether there has been a build up of hazardous constituents in any specific type of sedimentary material. Materials that concentrate the hazardous constituents would be potential candidates to be used in constructed geochemical barriers. The water quality of the groundwater contained within the sedimentary section indicates that there is a transport of contaminants down through the sediments and that these contaminants are removed from solution by the iron-bearing minerals in the organic-rich lignite beds. The data gathered during the course of this investigation indicate that the lignite ashing operations have added very little of the hazardous constituents of concern--arsenic, chromium, molybdenum, selenium, or uranium--to the sediments beneath the UMTRA Project site. At both locations, the hazardous constituents are concentrated in the upper most lignite bed. These data offer a natural analog for laboratory tests in which sphagnum peat was used to sequester hazardous constituents. Constructed geochemical barriers are a viable mechanism for the clean-up of the majority of hazardous constituents from uranium mill tailings in groundwater

  8. Geochemical studies of backfill aggregates, lake sediment cores and the Hueco Bolson Aquifer

    Science.gov (United States)

    Thapalia, Anita

    Aquifer that an important sources of water in the El Paso/Cd. Juraez metroplex. To delineate the boundary between fresh and brackish water from the northern Hueco Bolson Aquifer, we utilize an integrative geochemical, geophysical, and sedimentological approach. The goal of this study is to use geophysical well-log analysis and the water chemical analysis for identifying the changes in the quality of the groundwater. A detailed microgravity survey is utilized to explore the subsurface geological structures that control the conduits and/or barriers of groundwater flow. A detailed geochemical analysis of aquifer samples provide salinity of groundwater that will complement to the subsurface structures obtained from the geophysical study. This fundamental research in developing methods from an integrated approach to estimate aquifer quality can be used as an analog for similar studies in other arid regions.

  9. Geochemical signature of radioactive waste: oil NORM

    International Nuclear Information System (INIS)

    Costa, Gilberto T. de Paula; Costa-de-Moura, Jorge; Gomes, Carlos de Almeida; Sampaio, Emidio A. Lopes

    2017-01-01

    The Brazilian Nuclear Agency (CNEN) rules all nuclear activity in Brazil as demanded by the Federal Constitution, articles 21, XXIII, and 177, V, and by the Federal Acts 4.118/62 and 10.308/2001. Therefore, the CNEN is responsible for any radioactive waste disposal in the country. Oil Naturally Occurring Radioactive Materials (Oil NORM) in this paper refers to waste coming from oil exploration. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for each oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is a specific geochemical modeling of oil sludge NORM samples which are analyzed for radioisotopes normally present in oil pipes, such as 228 Ac, 214 Bi and 214 Pb. The activity ratios are plotted in scatter diagrams. This method was successfully tested with data of different sources obtained from analysis reports from the Campos Basin/Brazil and from literature. (author)

  10. Geochemical signature of radioactive waste: oil NORM

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Gilberto T. de Paula; Costa-de-Moura, Jorge; Gomes, Carlos de Almeida; Sampaio, Emidio A. Lopes, E-mail: gilberto.costa@cnen.gov.br, E-mail: jcmoura@cnen.gov.br, E-mail: cgomes@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Div. de Controle de Rejeitos e Transporte de Materiais Radioativos

    2017-07-01

    The Brazilian Nuclear Agency (CNEN) rules all nuclear activity in Brazil as demanded by the Federal Constitution, articles 21, XXIII, and 177, V, and by the Federal Acts 4.118/62 and 10.308/2001. Therefore, the CNEN is responsible for any radioactive waste disposal in the country. Oil Naturally Occurring Radioactive Materials (Oil NORM) in this paper refers to waste coming from oil exploration. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for each oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is a specific geochemical modeling of oil sludge NORM samples which are analyzed for radioisotopes normally present in oil pipes, such as {sup 228}Ac, {sup 214}Bi and {sup 214}Pb. The activity ratios are plotted in scatter diagrams. This method was successfully tested with data of different sources obtained from analysis reports from the Campos Basin/Brazil and from literature. (author)

  11. Hydrothermal system of the Papandayan Volcano from temperature, self-potential (SP) and geochemical measurements

    Science.gov (United States)

    Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra

    2017-07-01

    Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.

  12. Field-based tests of geochemical modeling codes: New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  13. Identification of source of a marine oil-spill using geochemical and chemometric techniques

    International Nuclear Information System (INIS)

    Lobao, Marcio M.; Cardoso, Jari N.; Mello, Marcio R.; Brooks, Paul W.; Lopes, Claudio C.; Lopes, Rosangela S.C.

    2010-01-01

    Research highlights: → San Marcos bay (Maranhao, Brazil) contains small levels of petroleum hydrocarbons. → Oil pollution in San Marcos bay is low-level but chronic. → Aliphatic biomarkers were more useful for spill-oil source correlation in the area. - Abstract: The current work aimed to identify the source of an oil spill off the coast of Maranhao, Brazil, in September 2005 and effect a preliminary geochemical survey of this environment. A combination of bulk analytical parameters, such as carbon isotope (δ 13 C) and Ni/V ratios, and conventional fingerprinting methods (High Resolution Gas Chromatography and Mass Spectrometry) were used. The use of bulk methods greatly speeded source identification for this relatively unaltered spill: identification of the likely source was possible at this stage. Subsequent fingerprinting of biomarker distributions supported source assignment, pointing to a non-Brazilian oil. Steranes proved the most useful biomarkers for sample correlation in this work. Distribution patterns of environmentally more resilient compound types, such as certain aromatic structures, proved inconclusive for correlation, probably in view of their presence in the background.

  14. Brent coal typing by combined optical and geochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Ducazeaux, J.; Le Tran, K.; Nicolas, G. (Societe Nationale des Petroles d' Aquitaine (SNPA), 64 - Pau (France))

    1991-12-01

    Palynological,petrographical and organic geochemical studies show that various kinds of coal occur throughout the Middle Jurassic Brent Group in the Viking Graben. Two types of coal with strong contrast in terms of source rock potential are thoroughly investigated in this study. It is found that they are relevant to two distinct organic facies. Though having the same organic carbon content, they are very different with respect to the petroleum generating potential, one being a conventional gas-prone coal of type III kerogen and the other one of type II-(III) kerogen which should be considered as an oil-generating coal. Explanations are sought for the difference observed, both geochemically and optically. Palynological study shows the occurrence of two distinct communities of land plants in relation with the depositional environment and climatic changes, whilst coal petrographical study shows that the macerals are unevenly and differently distributed in these two coal types. The original organic material and the depositional environment appear to be the main controlling factors. 13 Refs.; 8 Figs.

  15. Geochemical behaviour of uranium in the cycle of alteration

    International Nuclear Information System (INIS)

    Chervet, J.; Coulomb, R.

    1958-01-01

    The investigation of the genesis of secondary mineralized accumulations, and the prospecting of deposits from microchemical anomalies in the surface material, is requiring a well-developed knowledge of the geochemical properties of the uranium during the alteration phase. In the present work, the authors tried to track the uranium history during a part of his natural creeping. a) They describe some most typical mineralogical observations of alteration phenomena and material migration, picked up in place on the deposits. b) They give experimental results concerning the solubilities of the uranium minerals and the factors affecting this solubility. c) They study the water circulation in granitic batholites, and the influence of the occurrence of the uranium deposits on their composition. d) They observe the amplitude of phenomena restricting the dispersions: fixations, precipitations, etc., and the behaviour of growth in uraniferous areas. e) Finally, the opposition chemical alteration-radioactive equilibrium results in an important imbalance in altered materials. The authors tried to use the measurement of this imbalance to explain geochemical processes. (author) [fr

  16. Development of data processing system for regional geophysical and geochemical exploration of sandstone-hosted uranium deposits based on ArcGIS Engine

    International Nuclear Information System (INIS)

    Han Shaoyang; Ke Dan; Hou Huiqun; Hu Shuiqing

    2010-01-01

    According to the data processing need of geophysical and geochemical exploration of sandstone-hosted uranium deposits, the function design of the regional geophysical and geochemical data processing system is completed in the paper. The geophysical and geochemical data processing software with powerful functions is also developed based on ArcGIS Engine which remedies the shortage of GIS software for performing the geophysical and geochemical data processing. The development technique route of system software and key techniques are introduced, and the development processes of system software are showed through some development examples. Application practices indicate that the interface of developed system software with friendly interface and utility functions, may quickly perform the data processing of regional geophysical and geochemical exploration and provide the helpful deep information for predicting metallogenic prospective areas of sandstone-hosted uranium deposits. The system software is of a great application foreground. (authors)

  17. Geochemical analysis of the sealing system. Technical Report to work package 9.1.2. Preliminary safety case of the Gorleben site (VSG)

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Mingliang; Herbert, Horst-Juergen

    2012-02-15

    The geochemical reaction simulation of ground water and brines with sealing materials for a proposed repository at the Gorleben site is a task under the framework of the VSG project. The calculations presented in this report are aimed to provide a preliminary evaluation of the geochemical stability of three potential engineering barrier materials foreseen in the shaft sealing system in case of groundwater and brine intrusion. The long-term stability of these materials is a key issue for the sealing function of the shaft seals. This is governed by many factors such as geotechnical, hydraulic and geochemical processes. In order to better understand the potential effect of geochemical processes on the long-term properties of these sealing materials, geochemical simulations of the potential interactions between groundwater and brine and shaft sealing materials were performed.

  18. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, K.M.; Sterne, R.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclides under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.

  19. Magnetic and geochemical characterization of Andosols developed on basalts in the Massif Central, France

    Science.gov (United States)

    Grison, Hana; Petrovsky, Eduard; Stejskalova, Sarka; Kapicka, Ales

    2015-05-01

    Identification of Andosols is primarily based upon the content of their colloidal constituents—clay and metal-humus complexes—and on the determining of andic properties. This needs time and cost-consuming geochemical analyses. Our primary aim of this study is to describe the magnetic and geochemical properties of soils rich in iron oxides derived from strongly magnetic volcanic basement (in this case Andosols). Secondary aim is to explore links between magnetic and chemical parameters of andic soils with respect to genesis factors: parent material age, precipitation, and thickness of the soil profile. Six pedons of andic properties, developed on basaltic lavas, were analyzed down to parent rock by a set of magnetic and geochemical methods. Magnetic data of soil and rock samples reflect the type, concentration, and particle-size distribution of ferrimagnetic minerals. Geochemical data include soil reaction (pH in H2O), cation exchange capacity, organic carbon, and different forms of extractable iron and aluminum content. Our results suggest the following: (1) magnetic measurements of low-field mass-specific magnetic susceptibility can be a reliable indicator for estimating andic properties, and in combination with thermomagnetic curves may be suitable for discriminating between alu-andic and sil-andic subtypes. (2) In the studied Andosols, strong relationships were found between (a) magnetic grain-size parameters, precipitation, and exchangeable bases; (b) concentration of ferrimagnetic particles and degree of crystallization of free iron; and (c) parameters reflecting changes in magneto-mineralogy and soil genesis (parent material age + soil depth).

  20. Geological, Geochemical 1 and Rb-Sr isotopic studies on tungsten 2 ...

    Indian Academy of Sciences (India)

    37

    Geological, Geochemical and Rb-Sr isotopic studies on tungsten. 1 mineralised ..... From the field relations it is demonstrated that SG (biotite-bearing granitic gneiss) and. 120 ..... cases Ba) and vice-versa for the low concentration. 291.

  1. Principles of the landscape-geochemical and radio-ecological mapping of the territory polluted by technogenic radionuclides

    International Nuclear Information System (INIS)

    Sobotovich, Eh.V.; Shestopalov, V.M.; Pushkarev, A.V.; Mezhdunardonyj Nauchnyj Tsentr' Institut Chernobylya' Ukrainskogo Otdeleniya Vsemirnoj Laboratorii, Kiev; Institut Sel'skokhozyajstvennoj Radiologii, Akademii Agrarnykh Nauk Ukrainy, Kiev; Gosudarstvennoe Geologicheskoe Predpriyatie 'Geoprogn oz' Goskomiteta Geologii i Ispol'zovaniya Nedr Ukrainy, Kiev; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The conceptual and methodical principles of radio-ecological mapping of the territory polluted by radionuclides as a result of catastrophe at the Chernobyl Nuclear Power Plant are reported. The radio-ecological mapping is based on the landscape-geochemical mapping of the polluted territory which is regarded as a unique natural-technogenic geochemical province. The ecological risk for the inhabitants residing here depends both on the degree and nature of pollution by radionuclides and on the landscape-geochemical factors influencing the radionuclide redistribution and secondary accumulation in different biosphere elements. It is substantiated as necessary to compile three types of radio-ecological maps which are of different purpose: control over the economic activities, protection of the population viability, the prediction of radio-ecological situation and the informing of population

  2. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  3. Status report on geochemical field results from Atlantic study sites

    International Nuclear Information System (INIS)

    Wilson, T.R.S.; Thomson, J.; Hydes, D.J.; Colley, S.

    1983-01-01

    This report summarises the results of preliminary geochemical investigations at three North Atlantic study areas. The two eastern sites, on the Cape Verde abyssal plain (CV2) and east of Great Meteor Seamount (GME) were visited during 1982. The results presented are preliminary. Studies in the western Atlantic, close to the Nares Abyssal Plain study site are more detailed and are presented in a separate paper. The report shows for the first time the relative redox status of the three sites. The differences are unexpectedly large, the most reduced cores being recovered at GME and the most oxidised at CV2. The sporadic nature of Recent sediment accumulation at these sites is also emphasised. In order to place these preliminary results in context their relevance to the production of mathematical system models is discussed in a closing section. The necessity for such models to rest on sound foundations of geochemical understanding is noted. Suggestions on future research priorities are offered for discussion. (author)

  4. The research on the geochemical characteristics of Longyuanba composite pluton in Nanling region

    International Nuclear Information System (INIS)

    Zhang Min; Chen Peirong; Ling Hongfei

    2006-01-01

    The Longyuanba composite pluton, located in the eastern part of the Nanling Range, is an important part of the Nanling granites belt, which was regarded as a portion of Yanshanian epoch Pitou pluton to the east of it, and was lowly studied. The newest research shows that, the main body of Longyuanba pluton formed in Indosinian, different from Pitou pluton, which is Yanshanian. From main elements geochemical characteristics, there is obvious gap between Indosinian granites, Yanshanian granites and Yanshanian syenites in major oxides composition, which implies that there is possibly no fractional crystallization relationship between them. Form trace element geochemical characteristics, Indosinian Σ granites are enriched in LREE and high in REE. Yanshanian granites are depleted in MREE and low in Σ REE and ratios of Th/U, Nb/Ta, Zr/Hf, and obvious in fraction. The above characteristics show that, liquid action was rather strong in Yanshanian magmatism. Yanshanian syenites are enriched in high field elements and REE, are similar with A-type granite. Sr, Nd isotopic geochemical characteristics show that, Longyuanba composite pluton belongs to crust-original S-type granite and its original resource is early-Proterozoic crust from crust-mantle fraction. (authors)

  5. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses

    International Nuclear Information System (INIS)

    Bucko, Michal S.; Magiera, Tadeusz; Johanson, Bo; Petrovsky, Eduard; Pesonen, Lauri J.

    2011-01-01

    The aim of this study is to test the applicability of snow surveying in the collection and detailed characterization of vehicle-derived magnetic particles. Road dust extracted from snow, collected near a busy urban highway and a low traffic road in a rural environment (southern Finland), was studied using magnetic, geochemical and micro-morphological analyses. Significant differences in horizontal distribution of mass specific magnetic susceptibility (χ) were noticed for both roads. Multi-domain (MD) magnetite was identified as the primary magnetic mineral. Scanning electron microscope (SEM) analyses of road dust from both roads revealed: (1) angular-shaped particles (diameter ∼1-300 μm) mostly composed of Fe, Cr and Ni, derived from circulation of motor vehicles and (2) iron-rich spherules (d ∼ 2-70 μm). Tungsten-rich particles (d < 2 μm), derived from tyre stud abrasion were also identified. Additionally, a decreasing trend in χ and selected trace elements was observed with increasing distance from the road edge. - Highlights: → Snow surveying is an effective method in studies of vehicle-derived particles. → Multi-domain (MD) magnetite was identified as the primary magnetic mineral. → Particles mostly composed of Fe, Cr and Ni were identified in the roadside snow. → Snow located near the road is contaminated by heavy metals. - Snow surveying is an effective method in detailed studies of vehicle-derived magnetic particles.

  6. Brazil Geological Basic Survey Program - Lima Duarte - Sheet SF.23-X-C-VI - Minas Gerais State

    International Nuclear Information System (INIS)

    Pinto, C.P.

    1991-01-01

    The present report refers to the Lima Duarte sheet (SF.23-X-C-VI) systematic geological mapping, on the 1:100.000 scale. The surveyed area, localized in the Zona da Mata, Juiz de Fora micro-region, in South Minas Gerais, is dominantly composed by metamorphic rocks of the granulite and amphibolite facies and presents important diphtheritic process. An analysis of the Crustal Evolution Patterns based mostly on geological mapping, and gravimetric, air magneto metric and geochronologic data is given in the Chapter 6, Part II, of the text. Geophysical information is in the Chapter 5, Part II. Seventy two samples were analysed for oxides, trace-elements and REE, to provide litho environment and metallogenesis definition subsidies. Were studied 174 petrographic thin section, and 48 samples of quartzite and schist residual materials were analysed for heavy metals. Seven hundred and fifty outcrops were described. A geochemical survey, based on 81 pan concentrated samples and 277 stream sediments was carried out throughout the Sheet. The anomalies found in the stream sediments reflect the geochemical signature of the analysed elements for the litho types of the investigated terrains. (author)

  7. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's Geochemical Program Plan

    International Nuclear Information System (INIS)

    Harrison, W.; Seitz, M.; Fenster, D.; Lerman, A.; Brookins, D.; Tisue, M.

    1984-02-01

    Describe the management program for coordinating subcontractors and their work, and integrating research results. Appropriate flowcharts should be included. Provide more information on the overall scope of the program. For each subcontractor, provide specific workscopes that indicate whether analytical activities are developmental or routine, approximate number of analyses to be made, and something of the adequacy of the analyses to meet program goals. Indicate interfaces with other earth-science disciplines like hydrology and with other groups doing relevant geochemical research and engineering design. Address the priorities for each activity or group of activities. High priority should be given to early development of a geochemical statement of what constitutes suitable salt for a repository. Reference standard procedures for sampling, sample preservation, and sample analysis wherever appropriate or, if not appropriate, indicate that any deviations from standard procedures will be documented. Ensure that appropriate quality assurance procedures will be followed for the procedures listed above. Include specific procedures for the choice, verification, validation, and documentation of computer codes related to the geochemical aspects of repository performance assessment. Include activities addressing regional hydrochemistry and make clear that each principal hydrogeologic unit at each site will be studied geochemically. Indicate that proposed plans for obtaining hydrogeochemical data will be included in each site characterization plan. Describe how site geochemical stability will be handled, especially with respect to dissolution, postemplacement geochemistry, human influences, and climatic variations. Minor recommendations and suggested improvements in the text of the plan are given in Sec. 5

  8. Geochemical reconnaissance for uranium in the Palmyrides region of central Syria

    International Nuclear Information System (INIS)

    Jubeli, Y.M.

    1990-01-01

    An account is given of the application of multielement reconnaissance rock chemistry, coupled with ground scintillation γ-ray measurements, to the investigation of the dispersion patterns of uranium and other major and trace elements in the rocks of the arid Palmyrides region of central Syria. The region is underlain by 10 km of sediments that accumulated in an interplatform depression during the Mesozoic and Caenozoic. Uranium and associated elements were syngenetically incorporated into the Upper Cretaceous and Lower Palaeogene sediments - especially phosphorites, which are well represented in the region. The oxidizing environment of the region has facilitated the subsequent geochemical redistribution of uranium. In the investigation more than 400 lithogeochemical samples collected from an area of approximately 9000 km 2 were analysed for over 30 elements. The resulting data were interpreted with the aid of univariate and multivariate statistical methods and the areal distribution of uranium, its associated elements, multivariate geochemical functions and factor scores were mapped with the use of computer graphics. Anomalies of U are accompanied by concentrations of As, Se, V, Mo, Zn, Cd, Cu, Ni and P in various combinations. The highest U concentrations are found in the Upper Cretaceous, which contains a high proportion of phosphatic rocks; younger sediments contain progressively less U. Uranium anomalies close to faults, which have provided conduits for wider U migration, are superimposed on this pattern. Lithogeochemical methods thus define geochemical dispersion patterns with good contrast and delineate areas for further investigation. (author)

  9. Evolution of geochemical conditions in SFL 3-5

    International Nuclear Information System (INIS)

    Karlsson, Fred; Lindgren, M.; Skagius, K.; Wiborgh, M.; Engkvist, I.

    1999-12-01

    The evolution of geochemical conditions in the repository for long-lived low- and intermediate-level waste, SFL 3-5, and in the vicinity of the repository are important when predicting the retention of radionuclides and the long-term stability of engineered barriers. In this study the initial conditions at different repository sites at 300 - 400 m depth, the influence of repository construction and operation, the expected conditions after repository closure and saturation, and the evolution in a long-term perspective are discussed. Groundwaters that are found at these depths have near-neutral pH and are reducing in character, but the composition can vary from saline to non-saline water. The water chemistry in the near-field will mainly be influenced by the composition of the groundwater and by the large amounts of cementitious material that can be found in the repository. Disturbances caused during construction and operation are not expected to be permanent. Studies of old concrete indicate that leaching of concrete is a slow process. The geochemical conditions in the repository are therefore expected to be stable and prevail for hundreds of thousand years. However, the evolution of the surrounding environment may influence the conditions in long-term perspective

  10. Evolution of geochemical conditions in SFL 3-5

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Fred [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Lindgren, M.; Skagius, K.; Wiborgh, M. [Kemakta Konsult AB, Stockholm (Sweden); Engkvist, I. [Barsebaeck Kraft AB (Sweden)

    1999-12-01

    The evolution of geochemical conditions in the repository for long-lived low- and intermediate-level waste, SFL 3-5, and in the vicinity of the repository are important when predicting the retention of radionuclides and the long-term stability of engineered barriers. In this study the initial conditions at different repository sites at 300 - 400 m depth, the influence of repository construction and operation, the expected conditions after repository closure and saturation, and the evolution in a long-term perspective are discussed. Groundwaters that are found at these depths have near-neutral pH and are reducing in character, but the composition can vary from saline to non-saline water. The water chemistry in the near-field will mainly be influenced by the composition of the groundwater and by the large amounts of cementitious material that can be found in the repository. Disturbances caused during construction and operation are not expected to be permanent. Studies of old concrete indicate that leaching of concrete is a slow process. The geochemical conditions in the repository are therefore expected to be stable and prevail for hundreds of thousand years. However, the evolution of the surrounding environment may influence the conditions in long-term perspective.

  11. Developing protocols for geochemical baseline studies: An example from the Coles Hill uranium deposit, Virginia, USA

    International Nuclear Information System (INIS)

    Levitan, Denise M.; Schreiber, Madeline E.; Seal, Robert R.; Bodnar, Robert J.; Aylor, Joseph G.

    2014-01-01

    Highlights: • We outline protocols for baseline geochemical surveys of stream sediments and water. • Regression on order statistics was used to handle non-detect data. • U concentrations in stream water near this unmined ore were below regulatory standards. • Concentrations of major and trace elements were correlated with stream discharge. • Methods can be applied to other extraction activities, including hydraulic fracturing. - Abstract: In this study, we determined baseline geochemical conditions in stream sediments and surface waters surrounding an undeveloped uranium deposit. Emphasis was placed on study design, including site selection to encompass geological variability and temporal sampling to encompass hydrological and climatic variability, in addition to statistical methods for baseline data analysis. The concentrations of most elements in stream sediments were above analytical detection limits, making them amenable to standard statistical analysis. In contrast, some trace elements in surface water had concentrations that were below the respective detection limits, making statistical analysis more challenging. We describe and compare statistical methods appropriate for concentrations that are below detection limits (non-detect data) and conclude that regression on order statistics provided the most rigorous analysis of our results, particularly for trace elements. Elevated concentrations of U and deposit-associated elements (e.g. Ba, Pb, and V) were observed in stream sediments and surface waters downstream of the deposit, but concentrations were below regulatory guidelines for the protection of aquatic ecosystems and for drinking water. Analysis of temporal trends indicated that concentrations of major and trace elements were most strongly related to stream discharge. These findings highlight the need for sampling protocols that will identify and evaluate the temporal and spatial variations in a thorough baseline study

  12. [Reproduction of European bank vole (Myodes glareolus, Rodentia) under conditions of natural geochemical anomalies].

    Science.gov (United States)

    Baĭtimirova, E A; Mamina, V P; Zhigal'skiĭ, O A

    2010-01-01

    Estimates of abundance, morpho-functional state of ovaries, potential and actual fecundity of European bank vole, Myodes glareolus, inhabiting the territories of natural geochemical anomalies that are situated over ultra-basic rock and have an excess content of chrome, nickel, and cobaltare obtained. The population adaptive response to extreme geochemical conditions that facilitates the species survival under unfavorable environmental conditions and is manifested through an increase in potential and actual fecundity, decline of pre-implantation mortality, and decrease in proportion of females with pre-implantation losses is revealed. It is shown that in anomalous areas the intensity of folliculogenesis in mature voles is independent of the population cycle phase. As for immature animals residing within geochemical anomalies, an increase in size and numbers of follicles in ovaries is observed which is indicative of maturation fastening. An increase in potential and actual fecundity, as well as changes in morpho-functional state of ovaries, can be interpreted as means of birth rate accelerating which is supposed to compensate high postnatal mortality and maintain population abundance.

  13. Geochemical factors in borehole-shaft plug longevity

    International Nuclear Information System (INIS)

    Roy, D.M.

    1981-01-01

    Geochemical investigations that address factors controlling the longevity of repository sealing materials in a geochemical environment are discussed. Studies are being made of cement-based materials as major candidates for seals for borehole plugging, and shaft and tunnel sealing in certain potential repository environments. Factors controlling the extent of attainment of equilibrium of the plug components with time and the rate of approach to a state of stable equilibrium of the plug component chemical subsystem within the total system are discussed. The effect of these factors on changes in physical, mechanical and thermal properties of a seal system, and the consequent effectiveness of the seal in preventing transport of radioactive waste species are the dominant features to be determined. Laboratory experiments on the effects of anticipated temperature, pressure, and environmental factors (including chemical composition and specific rock type) are described. Thermodynamic studies are used to determine the potentially stable reaction products under conditions similar to those anticipated for the repository boreholes, shafts, and tunnels during and after the operating stage. Multitemperature reaction series are studied, and reaction kinetics are investigated for the purpose of predicting the course of likely reactions. Detailed studies of permeability, diffusion, and interfacial properties and chemical and microphase characterization of the products of experiments are carried out. Characterization studies of old and ancient cements, mortars, and concretes and prototype man-made seal materials are performed to further assess the factors associated with longevity

  14. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    Science.gov (United States)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  15. Geochemical characteristics of the Permian sedimentary rocks from Qiangtang Basin: Constraints for paleoenvironment and paleoclimate

    Directory of Open Access Journals (Sweden)

    Junjie Hu

    2017-01-01

    Full Text Available Qiangtang Basin is expected to become important strategic petroleum exploitation area in China. However, little research has been done on the Permian strata in this area. This paper presents Lower Permian Zhanjin Formation geochemical data from the Jiaomuri area, reconstructing the paleo-depositional environment and providing information for further petroleum exploration. The geochemical characteristics of 19 samples were investigated. These geochemical samples show a developed mud flat characteristic with light rich clay content. The geological data were used to constrain the paleoredox environment, which proved that these sediments were deposited mainly beneath a slightly oxic water column with relatively low paleoproductivity as evidenced by the P/Ti (mean of 0.07 and Ba/Al (mean of 20.5. Palaeoclimate indexes such as the C-value (0.24-1.75 and Sr/Cu (1.28-11.58 reveal a humid climatic condition during Zhanjin Formation sediment deposition. The ω(LaN/ω(YbN ratio values indicate a fast sedimentary rate during the deposition period.

  16. Some results of NURE uranium geochemical studies

    International Nuclear Information System (INIS)

    Price, V. Jr.

    1979-01-01

    Some technical developments of the National Uranium Resource Evaluation Program which are of general application in geochemical exploration are being studied. Results of stream water and suspended and bottom sediment analyses are compared for an area near Williamsport, Pennsylvania. Variations of uranium content of water samples with time in the North Carolina Piedmont are seen to correlate with rainfall. Ground water samples from coastal and piedmont areas were analyzed for helium. All media sampled provide useful information when properly analyzed and interpreted as part of a total geological analysis of an area

  17. Quality assurance and quality control of geochemical data—A primer for the research scientist

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.

    2011-01-01

    Geochemistry is a constantly expanding science. More and more, scientists are employing geochemical tools to help answer questions about the Earth and earth system processes. Scientists may assume that the responsibility of examining and assessing the quality of the geochemical data they generate is not theirs but rather that of the analytical laboratories to which their samples have been submitted. This assumption may be partially based on knowledge about internal and external quality assurance and quality control (QA/QC) programs in which analytical laboratories typically participate. Or there may be a perceived lack of time or resources to adequately examine data quality. Regardless of the reason, the lack of QA/QC protocols can lead to the generation and publication of erroneous data. Because the interpretations drawn from the data are primary products to U.S. Geological Survey (USGS) stakeholders, the consequences of publishing erroneous results can be significant. The principal investigator of a scientific study ultimately is responsible for the quality and interpretation of the project's findings, and thus must also play a role in the understanding, implementation, and presentation of QA/QC information about the data. Although occasionally ignored, QA/QC protocols apply not only to procedures in the laboratory but also in the initial planning of a research study and throughout the life of the project. Many of the tenets of developing a sound QA/QC program or protocols also parallel the core concepts of developing a good study: What is the main objective of the study? Will the methods selected provide data of enough resolution to answer the hypothesis? How should samples be collected? Are there known or unknown artifacts or contamination sources in the sampling and analysis methods? Assessing data quality requires communication between the scientists responsible for designing the study and those collecting samples, analyzing samples, treating data, and

  18. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed

  19. Geochemical processes to mobilization of radionuclides from radioactive waste

    International Nuclear Information System (INIS)

    Bragea, M.

    2005-01-01

    On time to alteration the waste by natural weather in isolated area of waste dumps we can notice chemical, biochemical and geochemical modification. Disposability and flow of water are two of the most important parameter which affect the waste chemistry and migration of contamination from wastes. The water behaves like a mechanism of transport for cationic and anionic components and influenced solubility and salt migration from dump. The salt migration towards residue surfaces is affected by short distance between water and surface. The salts are redissolving and moving through the capillary towards the surface when precipitate. The reactions inside of waste are influenced by geochemical point of view mainly by the amount of sulfated salts and chloride, by the disposability of water, pH and by the chemical mineral heterogeneous of waste. Obviously, if the process of alteration by atmospherically agents and those effects about waste can be minimized we could minimize even chemical modification in order to form the salts. This paper examines the mechanism by which 226 Ra and U nat can enter in groundwater and those, which control its concentration. (author)

  20. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  1. Geochemical study of coral skeletons from the Puerto Morelos Reef, southeastern Mexico

    Science.gov (United States)

    Kasper-Zubillaga, Juan J.; Armstrong-Altrin, John S.; Rosales-Hoz, Leticia

    2014-12-01

    Geochemical analyses in coral skeletons have been used as a proxy of marine environmental conditions and to understand the mechanisms of adsorption of chemical elements into the coral skeletons and growth forms. However, little attention has been given to show the possible differences in the growth rates of corals based upon major, trace, rare earth element and microprobe analyses to examine the physical-chemical conditions influencing those differences. Our goal is to show how branch and fan corals incorporate elements into their skeletons comparing them with their coral growth rates. We determine the development of the skeletons of two branching (Acropora palmata, Acropora cervicornis) and one fan shaped (Gorgonia ventalina) colonies in the Puerto Morelos Reef, southeastern Mexico based upon geochemical data and the influence of terrigenous input into the species. Mg and Sr concentrations were the most statistically significant elements among the species studied suggesting that Mg concentration in Gorgonia ventalina is probably not linked to its growth rate. Mn content in the sea water is adsorbed by the three corals during past growth rates during high rainfall events. Sr concentration may be associated with the growth rate of Acropora palmata. Little differences in the growth rate in Acropora palmata may be associated with low rates of calcitization, negligible changes in the Sr concentration and little influence of temperature and water depth in its growth. Trace elements like Cr, Co, Ni and V adsorbed by the corals are influenced by natural concentration of these elements in the sea-water. Rare earth elements in the corals studied suggests abundant inorganic ions CO32- with variable pH in modern shallow well-oxygenated sea water. Lack of terrigenous input seawards is supported by geochemical, geomorphological and biological evidences. This study is an example of how geochemical data are useful to observe the differences in environmental conditions related to

  2. Applications of prospecting geochemical techniques to the search for and to the study of uranium deposits in metropolitan France

    International Nuclear Information System (INIS)

    Grimbert, Arnold

    1957-01-01

    After having recalled facts which leaded the CEA to use new geochemical techniques for the prospecting of uranium deposits through sampling and analysis of soils and waters, the author describes the organisation and methods implemented for this prospecting activity: team composition for sampling and analysis, role of each engineer and technician in the prospecting stages (preliminary study, routine prospecting, result interpretation), sampling and analysis processes. He also reports campaigns of geochemical prospecting: study of the La Chapelle Largeau deposit (objectives, geological context, preliminary study, routine prospecting, study of geochemical anomalies), tactical research on Verneix indices (study of radioactivity anomaly discovered by radio-prospecting), strategical searches in a non prospected area in the South of Avallon. The author discusses the issues of efficiency and cost price of this geochemical prospecting technique in soils and in waters. Appendices present the equipment and operation modality for soil sampling, and for soil sample preparation, and principles, equipment and products for soil analysis and for water analysis [fr

  3. Geochemical and sedimentological signature of catastrophic saltwater inundations (tsunami), New Zealand

    International Nuclear Information System (INIS)

    Chague-Goff, C.; Goff, J.R.

    1999-01-01

    Three tidal marshes in Able Tasman National Par, New Zealand, were studied using geochemical, sedimentological and radiometric dating techniques. Charcoal and plant material samples were taken from one core in each inlet for 14 C analysis. radiocarbon ages were converted to dendrocalibrated years . All samples produced a terrestrial 13 C signal. Near surface samples were date d by measuring 137 Cs. A 1700 year record of catastrophic saltwater inundations (CSI) events (Tsunami) was produced. Up to four such events were identified, with ruptures of one or more of the Wellington, Wairarapa and Alpine Faults being the most likely tsunamigenic source. CSI signatures include: peaks in Fe and/or S, a peak in fines and contemporaneous or delayed peaks in organic content and/or loss on ignition (LOI). Geochemical data in association with grain size analyses proved to be a valuable tool in the interpretation of these events

  4. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    Science.gov (United States)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  5. Application of the geological surveying methods employed at Gorleben to cavern projects in the central European zechstein basin

    International Nuclear Information System (INIS)

    Wilke, F.; Bornemann, O.; Behlau, J.; Mingerzahn, G.

    2002-01-01

    The investigations at Gorleben date back more than 20 years. New methods were developed and applied, especially for detailed stratigraphic and geochemical characterization of the zechstein formation and also geophysical survey methods and geological mapping of complex folds in saline structures. The greatest feat was the 3D imaging of all geological information accompanied by visualization of complex stratigraphic entities [de

  6. Actual stage of organic geochemical knowledge from Campos and Espirito Santo basins, Brazil

    International Nuclear Information System (INIS)

    Gaglianone, P.C.; Trindade, L.A.F.

    1987-01-01

    Campos and Espirito Santo basins display several similar geochemical aspects. The microbial and other degradation processes caused changes in the composition of the oils in the reservoir rocks. The oils are biodegraded in different degrees, with the reservoir temperature developing an important role in the control of the biodegradation process. The migration pathway model is similar for Campos and Espirito Santo basins, involving the upward secondary migration through a window in the evaporitic seals. The oils passed to the marine sequence where migration and accumulation were controlled by faults, regional unconformities and by reservoirs. The geochemical correlation of oils are realized by gaseous and liquid chromatography analysis, carbon isotopes and biolabelled compounds. (author)

  7. Geochemical fingerprints by activation analysis of tephra layers in Lake Van sediments, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Landmann, Guenter [Technische Universitaet Darmstadt, Institut fuer Angewandte Geowissenschaften, Schnittspahnstr. 9, 64287 Darmstadt (Germany); Steinhauser, Georg; Sterba, Johannes H. [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria); Kempe, Stephan [Technische Universitaet Darmstadt, Institut fuer Angewandte Geowissenschaften, Schnittspahnstr. 9, 64287 Darmstadt (Germany); Bichler, Max, E-mail: bichler@ati.ac.a [Vienna University of Technology, Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

    2011-07-15

    We discuss geochemical and sedimentological characteristics of 12 tephra layers, intercalated within the finely laminated sediments of Lake Van. Within the about 15 kyr long sediment record studied, volcanic activity concentrated in the periods 2.6-7.2 and 11.9-12.9 kyr B.P. Concentrations of 25 elements provide the geochemical fingerprint of each tephra layer and allow comparison to literature values of potential source volcanoes such as Mts. Nemrut and Suephan. The youngest two tephra layers (and probably also the other three ashes from the 2.6-7.2 kyr B.P. eruptions) originate from the Nemrut volcano. The source of the older tephra (11.9-12.9 kyr B.P.), however, remains unidentified.

  8. Field-based tests of geochemical modeling codes usign New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1994-06-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  9. Current approaches to geochemical reconnaissance for uranium in the Canadian Shield

    International Nuclear Information System (INIS)

    Cameron, E.M.; Hornbrook, E.H.W.

    1976-01-01

    Wide-interval geochemical reconnaissance is currently being carried out over large areas of the Canadian Shield by the Geological Survey of Canada. This work is in support of the federal-provincial Uranium Reconnaissance Program. The paper reviews the methodology employed for this reconnaissance to outline areas of enhanced potential for uranium and other mineral commodities. The generally low relief of the Shield virtually restricts wide-interval reconnaissance to the mobile elements that can travel some distance in solution. The high mobility of uranium, particularly in waters of neutral pH, makes it one of the most suitable types of mineralization for detection. For much of the Shield the most appropriate sampling media are lake sediments and lake waters. Centre-lake sediments are homogeneous, and are readily and economically collected utilizing helicopter support. They provide a good response for uranium and a variety of other indicator elements. Waters collected at the same sample sites are a useful supplement in the search for uranium mineralization, particularly in carbonate terrain. However, because of the very low content of uranium in many Shield waters, they present as yet unresolved problems of analysis and storage. The influence of organic material, iron and manganese on the uranium content of lake sediments are examined. Their scavenging influence has been found to be significant only at their lower concentration levels, particularly for organic matter and iron. For the majority of centre-lake samples the effect is negligible. The choice of sample interval is related to total survey costs, to speed of coverage, and to ability to detect uranium and other types of mineralization. For current G.S.C. programs a sample density of one per five square mile appears optimal. The results are presented as l:250,000 symbol maps that are prepared largely by computer, and as 1:1,000,000 contoured compilation maps. (author)

  10. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis

    Science.gov (United States)

    Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan

    2016-07-01

    Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.

  11. Simulation of radionuclide retardation at Yucca Mountain using a stochastic mineralogical/geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.; Travis, B.J.

    1990-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain. Several different realizations of spatially distributed sorption coefficients are used to study the sensitivity of radionuclide migration. These sorption coefficients are assumed to be functions of the mineralogic assemblages of the underlying rock. The simulations were run with TRACRN 1 , a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Transport calculations for a representative radionuclide cation, 135 Cs, and anion, 99 Tc, are presented. Calculations such as these will be used to study the effectiveness of the site's geochemical barriers at a mechanistic level and to help guide the geochemical site characterization program. The preliminary calculations should be viewed as a demonstration of the modeling methodology rather than as a study of the effectiveness of the geochemical barriers. The model provides a method for examining the integration of flow scenarios with transport and retardation processes as currently understood for the site. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. 11 refs., 14 figs., 1 tab

  12. Geochemical studies on island arc volcanoes

    International Nuclear Information System (INIS)

    Notsu, Kenji

    1998-01-01

    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87 Sr/ 86 Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87 Sr/ 86 Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3 He/ 4 He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO 2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO 2 , SO 2 and HCl) simultaneously in the volcanic plume spectra. (author)

  13. Geochemical dispersion of uranium near prospects in Pennsylvania

    International Nuclear Information System (INIS)

    Rose, A.W.; Schmiermund, R.L.; Mahar, D.L.

    1977-06-01

    The geochemical dispersion of U was investigated near sedimentary uranium prospects in eastern and north-central Pennsylvania. Near Jim Thorpe, known uranium occurrences in the Catskill Fm. are limited to the base of the Duncannon member. At Penn Haven Junction, roll-type U deposits with appreciable Pb and Se are localized adjacent to an oxidized tongue of channel-filling conglomeratic sandstone. The channel and encircling U occurrences furnish a large target for geochemical exploration. Selective extractions show that the organic, Fe-oxide, sand and silt fractions of stream sediments are the major hosts for U in stream sediments. Fe-oxides have a greater affinity for U than organic matter but are less abundant. The U content of organic matter is about 10 5 times the U content of stream water. Stream sediments furnish a representative sample of the average content of U, Zn, Cu, and major elements in soils of a drainage basin in north-central Pennsylvania, so a semiquantitative appraisal of weathering uranium occurrences can be made from stream sediments in climates and topography like Pennsylvania. The flux of uranium leaving the basin in solution is about equal to that leaving as sediment. Uranium is considerably less mobile than Ca and Na. A new method of extracting uranium from water samples, using a liquid ion exchanger (Amberlite LA-1), shows promise for simple field application

  14. Geochemical baseline level and function and contamination of phosphorus in Liao River Watershed sediments of China.

    Science.gov (United States)

    Liu, Shaoqing; Wang, Jing; Lin, Chunye; He, Mengchang; Liu, Xitao

    2013-10-15

    The quantitative assessment of P contamination in sediments is a challenge due to sediment heterogeneity and the lacking of geochemical background or baseline levels. In this study, a procedure was proposed to determine the average P background level and P geochemical baseline level (GBL) and develop P geochemical baseline functions (GBF) for riverbed sediments of the Liao River Watershed (LRW). The LRW has two river systems - the Liao River System (LRS) and the Daliao River System (DRS). Eighty-eight samples were collected and analyzed for P, Al, Fe, Ca, organic matter, pH, and texture. The results show that Fe can be used as a better particle-size proxy to construct the GBF of P (P (mg/kg) = 39.98 + 166.19 × Fe (%), R(2) = 0.835, n = 66). The GBL of P was 675 mg/kg, while the average background level of P was 355 mg/kg. Noting that many large cities are located in the DRS watershed, most of the contaminated sites were located within the DRS and the riverbed sediments were more contaminated by P in the DRS watershed than in the LRS watershed. The geochemical background and baseline information of P are of great importance in managing P levels within the LRW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Laboratory investigations into the reactive transport module of carbon dioxide sequestration and geochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch; Enayati, M.; Mokhtari, B. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of)

    2008-07-01

    Over long time periods, geological sequestration in some systems shows mineralization effects or mineral sequestration of carbon dioxide, converting the carbon dioxide to a less mobile form. However, a detailed investigation of these geological systems is needed before disposing of carbon dioxide into these formations. Depleted oil and gas reservoirs and underground aquifers are proposed candidates for carbon dioxide injection. This paper presented an experimental investigation into the reactive transport module for handling aquifer sequestration of carbon dioxide and modeling of simultaneous geochemical reactions. Two cases of laboratory carbon dioxide sequestration experiments, conducted for different rock systems were modeled using the fully coupled geochemical compositional simulator. The relevant permeability relationships were compared to determine the best fit with the experimental results. The paper discussed the theory of modeling; geochemical reactions and mineral trapping of carbon dioxide; and application simulator for modeling including the remodeling of flow experiments. It was concluded that simulated changes in porosity and permeability could mimic experimental results to some extent. The study satisfactorily simulated the results of experimental observations and permeability results could be improved if the Kozeny-Carman equation was replaced by the Civan power law. 6 refs., 2 tabs., 21 figs.

  16. Impact assessment of artificial recharge and geo-chemical characterization of the waters of the slick Tebolba (Eastern Tunisia)

    International Nuclear Information System (INIS)

    Ferchichi, Hajer

    2007-01-01

    This study concerned the impact assessment of artificial recharge of a coastal aquifer (Tebolba) from the waters of the dam Nebhana and chemical characterization of its waters. The analysis maps piezometric drawn and salinity at various dates since 1940, the establishment of chronic recharge from the years 1992 to 2006, as well as geochemical study of groundwater in the slick Tebolba have enabled us to reach the many results. This study using a multidisciplinary approach (hydrodynamics and geochemical) seeks an assessment of impacts of recharging the water table in Tebolba from the waters of the dam Nebhana through the history of the qualitative and quantitative water the water and a hydro-geochemical study the current state of the waters of the water. (Author). 45 refs

  17. Terrigenous sediment provenance from geochemical tracers, south Molokai reef flat, Hawaii

    Science.gov (United States)

    Takesue, R.K.

    2010-01-01

    Land-derived runoff is one of the greatest threats to coral-reef health. Identification of runoff sources is an important step in erosion mitigation efforts. A geochemical sediment provenance study was done in uplands and across the adjacent fringing reef on the southeast shore of Molokai, Hawaii, to determine whether sediment runoff originated from hillsides or gulches. Source-region identification was based on geochemical differences between alkalic basalt, which outcrops on hillsides, and tholeiitic basalt, which outcrops in gulches. In Kawela watershed, copper to iron ratios (Cu/Fe) were distinct in hillside soil versus gulch sediment and suggest that hillside erosion is the predominant mechanism of sediment delivery to the nearshore. This suggests that runoff-mitigation efforts should take steps to reduce hillside erosion. Cadmium to thorium ratios (Cd/Th) in nearshore sediment suggest that there is a high-Cd source of runoff east of Kamalo Gulch. This compositional difference is consistent with the predominance of tholeiitic basalt on the eastern end of Molokai.

  18. Quantitative study of Portland cement hydration by X-Ray diffraction/Rietveld analysis and geochemical modeling

    Science.gov (United States)

    Coutelot, F.; Seaman, J. C.; Simner, S.

    2017-12-01

    In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.

  19. Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils

    Science.gov (United States)

    Kosheleva, N. E.; Kasimov, N. S.; Vlasov, D. V.

    2015-05-01

    The bulk contents and concentrations of mobile (extracted by an ammonium acetate buffer with EDTA) Cd, Pb, Sb, As, Bi, Zn, and Cu were determined in the surface horizons of urban soils in the Eastern administrative okrug of Moscow. The regression analysis showed that the accumulation of these metals and metalloids in the soils is controlled by the physicochemical soil properties and by number of anthropogenic factors and landscape conditions (geochemical position, type of loose deposits, character of land use, dust load, vehicle emissions, building pattern, percent of green areas, and the extent of sealed soils). The precipitation of studied elements on the geochemical barriers had the following regularities: Cd, Cu, and Zn accumulated on the alkaline barriers; Bi, Sb, As, Cu, Pb, and Zn, on chemisorption barriers; Sb, As, and Pb, on organomineral barriers; and Cd and Cu, on the sorption-sedimentation barriers. Technogenic transformation of the physicochemical properties of urban soils resulted in the increase of the mean bulk contents of heavy metals and metalloids by 33-99%; the portion of elements fixed on the geochemical barriers increased by 26-50%.

  20. Petrographical and geochemical properties of plagiogranites and gabbros in Guleman ophiolite

    Directory of Open Access Journals (Sweden)

    Ayşe Didem KILIÇ

    2009-06-01

    Full Text Available Petrographical and geochemical properties of gabbros and plagiogranites of Guleman ophiolite are determined. It was concluded that gabbros can be basic rocks on subduction zone and plagioclase-rich leucocratic rocks (plagiogranite are differentiation products of fractional crystallization of a basic magma in the magma chamber.

  1. Instrumental neutron and photon activation analyses of selected geochemical reference materials

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Řanda, Z.

    2010-01-01

    Roč. 284, č. 1 (2010), s. 157-163 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z30460519 Keywords : neutron activation analysis * photon activation analysis * geochemical reference materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Analytical chemistry Impact factor: 0.777, year: 2010

  2. A geochemical and geophysical reappraisal to the significance of the recent unrest at Campi Flegrei caldera (Southern Italy)

    Science.gov (United States)

    Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia

    2017-04-01

    Volcanic unrest at calderas involve complex interaction between magma, hydrothermal fluids and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterised by the highest volcanic risk on Earth for the extreme urbanisation, undergoes unrest phenomena involving several meters of uplift and intense shallow micro-seismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapour-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed 1) for two decades since the 1982-84 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and 2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing a relatively modest heating and overpressure of the hydrothermal system. Our results do have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.

  3. Possible uses of geochemical and isotopical investigations of ground waters in oil and gas prospecting

    International Nuclear Information System (INIS)

    Mercado, A.; Kahanovitz, Y.

    1978-07-01

    This work describes the use of geochemical investigation of ground waters for finding deep organic accumulations. It is based on the identification of abnormal values of chemical and isotopical parameters: bicarbonates, CO 2 , sulfates, carbon 13 and carbon 14. Further improvements will make this method a useful tool in oil and gas prospecting and detection as well as in the detection of geochemical anomalies. The advantages of the method are its low cost and relative rapidity; the disadvantage is that it can be carried out only when water sources are present in the exploration field. (B.G.)

  4. Research needs for coupling geochemical and flow models for nuclear waste isolation

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.

    1985-01-01

    An overview of coupling geochemical and flow models for nuclear waste disposal is presented and research needs are discussed. Topics considered include, chemical effects on flow, fluid and rock properties, pressure effects, water-rock equilibria, and reaction kinetics. 25 references

  5. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    Science.gov (United States)

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  6. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  7. Extension of the EQ3/6 computer codes to geochemical modeling of brines

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.J.; Wolery, T.J.

    1984-10-23

    Recent modifications to the EQ3/6 geochemical modeling software package provide for the use of Pitzer's equations to calculate the activity coefficients of aqueous species and the activity of water. These changes extend the range of solute concentrations over which the codes can be used to dependably calculate equilibria in geochemical systems, and permit the inclusion of ion pairs, complexes, and undissociated acids and bases as explicit component species in the Pitzer model. Comparisons of calculations made by the EQ3NR and EQ6 compuer codes with experimental data confirm that the modifications not only allow the codes to accurately evaluate activity coefficients in concentrated solutions, but also permit prediction of solubility limits of evaporite minerals in brines at 25/sup 0/C and elevated temperatures. Calculations for a few salts can be made at temperatures up to approx. 300/sup 0/C, but the temperature range for most electrolytes is constrained by the availability of requisite data to values less than or equal to 100/sup 0/C. The implementation of Pitzer's equations in EQ3/6 allows application of these codes to problems involving calculation of geochemical equilibria in brines; such as evaluation of the chemical environment which might be anticipated for nuclear waste canisters located in a salt repository. 26 references, 3 figures, 1 table.

  8. The Survey of hydro-geochemical and health related of water quality in Ramian city, Golestan province

    Directory of Open Access Journals (Sweden)

    fahimeh Khanduzi

    2015-12-01

    Full Text Available Background and Purpose: Investigation of water quality is an important step for the suitable use of water resources in order to drinking and irrigation. Water quality affects agriculture programming.  Hence the need of the study of water quality is strongly considered in the water resources management. Material and Methods: In this study Hydro-geochemical quality of ground water resources in the Ramian city -Golestan province has been studied for drinking and agriculture purpose. For this purpose, 15 qualitative characteristics of the 13 wells of Golestan province in two dry and wet seasons in 2011-2012 were analyzed by Aua Chem and Aq-qa. Results: The results showed that the ground water in the study area is classified in hard and very hard water. The original cations and anions in water are Ca2+> Mg2+> Na+ and HCO3-> Cl-> SO42-. Based on hydro-chemical diagram the dominant of water type is classified as Ca-HCO3. Salinity index of water indicated that more samples in two seasons are in the middle class. According to Schuler and Wilcox groundwater quality index, they are moderate suitable for agricultural and drinking consumption and in for agricultural purpose and 77% cases are in C3-S1 category. Conclusion: The results show that too much salt is one of the most important problems of water supply in the Ramian city for irrigation. This reduced plant growth or even stops the growth of some plant. If water resources in this area do not manage, after shortly time the soil will be suffered and polluted.

  9. Report of the strategical geochemical prospect ion in Alferez aerial photo

    International Nuclear Information System (INIS)

    Carambula, M.

    1990-01-01

    In this work are remarked four anomalous zones in the west of the Alferez aerial photo.The best interest of its is the the existence of niobium and the possible existence of enriched mining in rare land. By the geochemical treatment carried out was detected the differentiation of Vallle Chico formation.

  10. Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes

    OpenAIRE

    Kraus,Stefan; Kurbatov,Andrei; Yates,Martin

    2013-01-01

    In the northern Antarctic Peninsula area, at least 12 Late Plelstocene-Holocene volcanic centers could be potential sources of tephra layers in the region. We present unique geochemical fingerprints for ten of these volcanoes using major, trace, rare earth element, and isotope data from 95 samples of tephra and other eruption products. The volcanoes have predominantly basaltic and basaltic andesitic compositions. The Nb/Y ratio proves useful to distinguish between volcanic centers located on ...

  11. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Seme, R.J.; Piepkho, M.G.

    1995-03-01

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner

  12. Magnetic and Geochemical Properties of Andic Soils from the Massif Central, France

    Science.gov (United States)

    Grison, H.; Petrovsky, E.; Dlouha, S.; Kapicka, A.

    2014-12-01

    Ferrimagnetic iron oxides are the key magnetic minerals responsible for enhancement of the magnetic susceptibility in soils. Soils with andic properties contain high amount of Fe-oxides, but only few attempts were made to characterize these soils using magnetic methods. Magnetic susceptibility is in particular suitable for its sensitivity and fast measurement; the presence of Fe-oxides can be easily identified directly in the field. The aim of our study is to describe main magnetic and geochemical properties of soils rich in Fe oxides derived from strongly magnetic volcanic basement. The studied sites are located at the basalt parent rock formed during Pleistocene, Pliocene and Miocene. Investigated soils are exposed to the mountainous climate with the perudic soil moisture regime and cryic temperature soil regime. Seven basalt soil profiles with typical andic properties were analyzed down to parent rock by a set of magnetic and geochemical methods. The magnetic susceptibility was measured in situ and in laboratory using the Bartington MS2D and AGICO MFK1. Its temperature dependence was measured in order to assess phase transformations of magnetic minerals using the KLY4. Magnetic data were completed by the hysteresis, IRM and DCD measurements using ADE EV9 VSM. Geochemical data include soil reaction (pH), organic carbon, cations exchange capacity, and extractable iron and aluminium in the soil extracted by a dithionite-citrate, acid-ammonium oxalate and a pyrophosphate solution. Scanning electron microscopy was done for top/sub-soil and rock samples. Geochemical soil properties reflecting iron oxide stability correlate well with mass-specific magnetic susceptibility. Well pronounced relationship was observed between magnetic grain size, precipitation and soil pH, second group is reflecting concentration of feri-magnetic particles and age of parent rock, and the third group reflects degree of weathering and the thermomagnetic indices expressing changes in magneto

  13. Development of TIGER code for radionuclide transport in a geochemically evolving region

    International Nuclear Information System (INIS)

    Mihara, Morihiro; Ooi, Takao

    2004-01-01

    In a transuranic (TRU) waste geological disposal facility, using cementitious materials is being considered. Cementitious materials will gradually dissolve in groundwater over the long-term. In the performance assessment report of a TRU waste repository in Japan already published, the most conservative radionuclide migration parameter set was selected considering the evolving cementitious material. Therefore, a tool to perform the calculation of radionuclide transport considering long-term geochemically evolving cementitious materials, named the TIGER code, Transport In Geochemically Evolving Region was developed to calculate a more realistic performance assessment. It can calculate radionuclide transport in engineered and natural barrier systems. In this report, mathematical equations of this code are described and validated with analytical solutions and results of other codes for radionuclide transport. The more realistic calculation of radionuclide transport for a TRU waste geological disposal system using the TIGER code could be performed. (author)

  14. Geochemical mass balance for sulfur- and nitrogen-bearing acid components: Eastern United States

    International Nuclear Information System (INIS)

    Bischoff, W.D.; Mackenzie, F.T.; Paterson, V.L.

    1984-01-01

    The impact on a geographical region of SO 2 and nitrogen oxides (NO /SUB x/ ) emissions to the atmosphere because of man's activities (e.g., burning of fossil fuels and smelting of sulfide ores) usually has not been considered in terms of a regional geochemical mass balance model. Mass balance models, however, have been employed extensively on a global scale. The models evaluate reservoir sizes, processes and fluxes associated with the transfer of a substance within a system of interest. The models may be steady- or transient-state, and include assessment of historical (geologic), present and future data and processes. In this chapter a geochemical mass balance model is applied to constituents of acid precipitation (H + , NO - 3 and SO 2- ) to evaluate the impact of acid precipitation on the eastern United States

  15. Estimation of erosion amount by geochemical characteristic in the Horonobe area, northern Hokkaido

    International Nuclear Information System (INIS)

    Takahashi, Kazuharu; Niizato, Tadafumi; Yasue, Ken-ichi; Ishii, Eiichi

    2005-08-01

    This article presents the results of the estimated amount of erosion and uplifting based on mineralogy and organic geochemical characters of the Neogene siliceous rock (Wakkanai and Koetoi Formations) in Horonobe. As a result of the transformational change of silica minerals, it was clarified that the erosion amount was about 0.66 [m ky -1 ] or more at the large uplift site, and about 0.21 [m ky -1 ] or more at the small uplift site at Hokushin region, Horonobe area. In this case of the correlation with the palaeo-geothermal temperature and the sterane/sterene ratio, the ratio is effective measure to estimate the burial depth and erosion amount. We think that the estimation of the amount of erosion and uplifting became possible in high resolution by the organic geochemical character. (author)

  16. Constraining Lateral Evolution of Magmatic Behavior in North Tanzania from Geophysical and Geochemical Analyses

    Science.gov (United States)

    Gautier, S.; Tiberi, C.; Parat, F.; Baudouin, C.

    2016-12-01

    In the framework of CRAFTI and CoLiBrEA experiments in 2013, we proceeded to both seismic and geochemical studies along an EW profile through the North Tanzania Divergence. The data were collected along a line starting at the Ngorongoro volcanic area, ending at Kitumbeine edifice and crossing the rift valley. Recent seismological studies show lateral and depth variations for both velocity and Vp/Vs ratio within this area, particularly a change of Moho depth between the western and central parts of the rift. These two zones also exhibit diverse geochemical signatures that involve different magma storage (depth of reservoir, magma volume) and ascent as well as higher partial melts content for the western part. We take advantage of the recent and precise 3D lithospheric velocity models and receiver functions in this area to compare the structure and nature of Ngorongoro area and rift valley. We first compute ray path and establish regional coherency maps between piercing points, Vp/Vs ratio and tomographic images. Second, those results are compared with the composition of magma at depth obtained from a petrophysical and geochemical analysis of lava samples. We will discuss those results in terms of magmatic processes, and how they interact with the rifting in a cratonic lithosphere.

  17. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    Science.gov (United States)

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  18. U-Pb SHRIMP data and geochemical characterization of granitoids intruded along the Coxixola shear zone, Provincia Borborema, NE Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Ignez de Pinho; Silva Filho, Adejardo Francisco da; Silva, Francis M.J.V. da, E-mail: ignez@ufpe.br [Universidade Federal de Pernanmbuco (UFPE), Recife, PE (Brazil). Dept. de Geologia; Armstrong, Richard [Australian National University (Australia)

    2011-07-01

    A large volume of granitic magmatism associated with large scale shear zone and metamorphism under high-T amphibolite facies conditions characterize the Brasiliano Orogeny in the Borborema Province, NE Brazil. Granitoids from two plutons and later dykes intruded along the Coxixola shear zone show distinct crystallization ages and geochemical signature. The oldest granitoids (618 ± 5 Ma), Serra de Inacio Pereira Pluton are coeval with the peak of regional metamorphism and they were probably originated by melting of a paleoproterozoic source. The granitoids from the Serra do Marinho Pluton show crystallization age of 563 ± 4 Ma and geochemical signature of post-collisional A-type granites. The later dykes have crystallization age of 526 ± 7 Ma, geochemical signature of A-type granitoids. (author)

  19. Induced Polarization Surveying for Acid Rock Screening in Highway Design

    Science.gov (United States)

    Butler, K. E.; Al, T.; Bishop, T.

    2004-05-01

    Highway and pipeline construction agencies have become increasingly vigilant in their efforts to avoid cutting through sulphide-bearing bedrock that has potential to produce acid rock drainage. Blasting and fragmentation of such rock increases the surface area available for sulphide oxidation and hence increases the risk of acid rock drainage unless the rock contains enough natural buffering capacity to neutralize the pH. In December, 2001, the New Brunswick Department of Transportation (NBOT) sponsored a field trial of geophysical surveying in order to assess its suitability as a screening tool for locating near-surface sulphides along proposed highway alignments. The goal was to develop a protocol that would allow existing programs of drilling and geochemical testing to be targeted more effectively, and provide design engineers with the information needed to reduce rock cuts where necessary and dispose of blasted material in a responsible fashion. Induced polarization (IP) was chosen as the primary geophysical method given its ability to detect low-grade disseminated mineralization. The survey was conducted in dipole-dipole mode using an exploration-style time domain IP system, dipoles 8 to 25 m in length, and six potential dipoles for each current dipole location (i.e. n = 1 - 6). Supplementary information was provided by resistivity and VLF-EM surveys sensitive to lateral changes in electrical conductivity, and by magnetic field surveying chosen for its sensitivity to the magnetic susceptibility of pyrrhotite. Geological and geochemical analyses of samples taken from several IP anomalies located along 4.3 line-km of proposed highway confirmed the effectiveness of the screening technique. IP pseudosections from a region of metamorphosed shales and volcaniclastic rocks identified discrete, well-defined mineralized zones. Stronger, overlapping, and more laterally extensive IP anomalies were observed over a section of graphitic and sulphide-bearing metasedimentary

  20. Determination of geochemical characters of insterstitial waters of pleistocene Italian clay formations

    International Nuclear Information System (INIS)

    Fontanive, A.; Gragnani, R.; Mignuzzi, C.; Spat, G.

    1985-01-01

    The geochemical characters of clay formations and of their pore water are fundamental with regards to the mobility of the radionuclides as well as to the corrosion processes on enginered barriers. Experimental researches have been carried out in different types of clay, which represent Italian formations, for the characterization of pore water. A squeezer system, which reaches 1500 Kg/cm 2 in pressure, and an analytical micro-scale methodology, for the determination of dissolved constituents in pore water, were set up. The extracted pore water ranges from 60% to 85% in relation to consolidation state of clay. The chemical composition of the extracted fluid has been checked during the squeezing. During this step the observed variations were smaller than those between the different specimens of the same sample. The comparison between the results obtained by squeezing and by a multiple washing technique, using increasing water/sediment ratios, shows that the last one does not give reliable results on the chemical composition of pore water. This is due to the presence of easily weatherable minerals and to the exchange processes between the clayey minerals and the solution. Nevertheless both these techniques have supplied complementary information about geochemical processes in water-rock interaction. The salinity of pore water ranges from 0.45 g/l to 24.5 g/l and the chemism always shows a high content of calcium-magnesium sulfate, or sodium chloride or calcium-magnesium-sulfate with sodium chloride. The correlation between geochemical composition of pore water and mineralogical composition of clay is not significant

  1. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-01-01

    Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist

  2. Geochemical and geophysical investigations, and fluid inclusion studies in the exploration area of Zafarghand (Northeast Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Alaminia

    2017-11-01

    Full Text Available Introduction Urumieh-Dokhtar Magmatic Arc (UDMA is a good prospective area for Cu, Cu-Mo and Cu-Au deposits (Fig. 1A and B. The Zafarghand district is located in the central part of the UDMA and the northeastern Isfahan. The present study concerns geological observations, alteration investigations, geochemical data and fluid inclusion studies. The purpose of the research is to identify geochemical anomalies and source of metals in this area. Geochemical anomalies for mineralizing elements and element associations were identified by using statistical analysis methods. Additionally, these results together suggest a site for exploration drilling in this study area. Materials and methods We collected 186 samples (rock along multi-cross sections oriented perpendicular to the strike of the South -Ardestan fault (Fig. 2.Trace element concentrations were determined by the ICP-MS technique in Amdel laboratory (Australia. Thin sections and doubly polished sections (100–200 µm thick from quartz veins were prepared from samples collected from the Zafarghand district in the University of Isfahan. Heating and freezing experiments on fluid inclusions were performed as defined (by Goldstein and Reynolds (1994 on a Linkam THM600 stage. Results Igneous rocks in the Zafarghand area are dominated by the Eocene and post Eocene acidic-intermediate rocks that include dacite, rhyodacite and andesite associated with diorite, quartz diorite and microdiorite intrusions. The present investigations indicate that all rocks of the Zafarghand district exhibit a variety of alterations. Hydrothermal alterations include phyllic, potassic, silicification, and argillic with widespread propylitic. The mineralization consists of malachite, azurite, hematite, and goethite, rare amounts of magnetite, pyrite, and chalcopyrite. Numerical traditional statistical analysis techniques have been applied to interpret the geochemical data of the study area. These methods are aimed at

  3. Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis

    Science.gov (United States)

    Ueki, Kenta; Iwamori, Hikaru

    2017-10-01

    In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.

  4. Alterations in geochemical associations in artificially disturbed deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Parthiban, G.; Banaulikar, S.; Sarkar, S.

    Alterations in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. NAGENDER NATH, G. PARTHIBAN, AND S. BANAULIKAR National Institute of Oceanography, Dona Paula, Goa, India SUBHADEEP SARKAR Department of Geology and Geophysics, Indian... the lithogenic component by transporting it from other locations within the Basin during commercial mining operations. Keywords manganese nodule mining, artificial benthic disturbance experiment, environmental impact assessment, metals Trace metals in marine...

  5. Quantification of source-term profiles from near-field geochemical models

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-01-01

    A geochemical model of the near-field is described which quantitatively treats the processes of engineered barrier degradation, buffering of aqueous chemistry by solid phases, nuclide solubilization and transport through the near-field and release to the far-field. The radionuclide source-terms derived from this model are compared with those from a simpler model used for repository safety analysis. 10 refs., 2 figs., 2 tabs

  6. METHYL MERCURY PRODUCTION IN NATURAL-COLLECTED SEDIMENT WITH DIFFERENT GEOCHEMICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    Markus T. Lasut

    2010-06-01

    Full Text Available Production of methyl mercury (MeHg has been shown in laboratory experiments using mercuric chloride (HgCl2 compound released into natural-collected sediments with different geochemical conditions. While the HgCl2 concentration was 30 µl of 113 ppm of HgCl2, the geochemical conditions [pH, salinity, total organic content (TOC, sulfur] of sampled sediments were A: 8.20, 0.00 ppt, 1.97%, and 0.92 ppt, respectively; B: 7.90, 2.00 ppt, 4.69%, and 1.98 ppt, respectively; and C: 8.20, 24.00 ppt, 1.32 %, and 90.90 ppt, respectively. A control was set with no HgCl2. Samples and control were incubated in room temperature of 27 ± 1 °C. Observations were done along 9 days with interval of 3 days. While total Hg was measured using mercury analyzer with Cold Vapor-Atomic Absorbtion Spectrophometer (CV-AAS system, MeHg was measured by using a gas chromatograph with ECD detector after extracted by dithizone-sodium sulfide extraction method. The result shows that MeHg was found in both treatment and control experiments. The concentrations of the MeHg varied according to the geochemical condition of the sampled sediments. Peak production of MeHg occurred on the third day; however, the production was not significantly affected by the incubation time. Optimum production was found inversely related to the pH, in which highest and lowest the pH formed an ineffectively methylated mercury species. The TOC was significantly correlated to the optimum production. Salinity and sulfate contents were found not correlated to the optimum of MeHg production.   Keywords: Methyl mercury; methylation process; sediment; biogeochemistry

  7. Geochemical investigation of UMTRAP designated site at Salt Lake City, Utah

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Salt Lake City, Utah. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the Uranium Mill Tailings Remedial Action Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover system which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples were water extracted to remove easily soluble salts and acid extracted to remove carbonates and hydroxides. The water extracts and solid samples were anlyzed for the major and trace elements. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Four major conclusions are: (1) sediments in the ditches and creeks adjacent to the site contain tailings, however, the waters were generally not contaminated; (2) tailings are mixed with the soils within a meter below the tailings in some locations, however, water-soluble contaminants decrease to below background levels within 30 cm below the tailings; (3) there has not been significant acid seepage into the soils below the tailings; and (4) salt crusts on the tailings contain trace elements, with the elements that form chloride complexes having the greatest accumulation

  8. Gamma Spectrometric Determination of U, Th, K and Some Geochemical Applications

    International Nuclear Information System (INIS)

    Dodona, A.; Tashko, A.

    2001-01-01

    The application of 'in situ' gamma-spectrometric method (''infinite'' environment), made possible the simultanious determination of U, Th and K. 4 channel gamma-spectrometric analyser with NaI(TI) scintilation counter crystal detector (103 cm 3 φ=50x50mm) was used to determin U, Th(more than 1-2 ppm) and K (more than 1%) in laboratory conditions. The detector was inserted into a lead camera and calibrated for measurement geometry with vessel of ''Marineli'' type of a 17o cm 3 volume. The study of main factors, which influence in the gamma spectrometric measurements, (the technical, physical, geometrical and time parameters) has been carried out. International standards of U, Th, K and internal monitoring standard samples are used for the calibration. External analytical control has been realized by other radiometric and chemical methods. The detection limits ( 1 ppm Th, 2ppm U and 1% K) and the relative errors (17-20% for 1-10 ppm U, Th and 10-15% for more than 10 ppm U, Th and more than 1% K) guarantee a quantitative analysis that may be used successfully in the geochemical studies. Some geochemical applications, based on the content of Th, U and Th/U ratio in rocks samples that we have we have analyzed with this method, are shown in this paper. U, Th and their ratio are used as trace elements to indicate the differences between the acidic magmatic rocks of Albania (Th/U ratio=2-6 and>10). The bimodal character of Th/U scattering in ignimbrides and monzonites (Korabi zone) shows that in addition to the ''normal'' rocks, there are also some ones enriched with Th, So, the differential analysis of Th, U, and K may be used as geochemical exploration criteria for the radioactive and non-radioactive mineralization, such as REE (Rare Earth Elements), phospghorites, bauxites, placers etc. (authors)

  9. Instrumental neutron and photon activation analyses of selected geochemical reference materials

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Řanda, Zdeněk

    2010-01-01

    Roč. 284, č. 1 (2010), s. 157-163 ISSN 0236-5731 R&D Projects: GA AV ČR IAA300130706 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron activation analysis * photon activation analysis * geochemical reference materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.777, year: 2010

  10. Geochemical modelling of bentonite porewater in high-level waste repositories

    Science.gov (United States)

    Wersin, Paul

    2003-03-01

    The description of the geochemical properties of the bentonite backfill that serves as engineered barrier for nuclear repositories is a central issue for perfomance assessment since these play a large role in determining the fate of contaminants released from the waste. In this study the porewater chemistry of bentonite was assessed with a thermodynamic modelling approach that includes ion exchange, surface complexation and mineral equilibrium reactions. The focus was to identify the geochemical reactions controlling the major ion chemistry and acid-base properties and to explore parameter uncertainties specifically at high compaction degrees. First, the adequacy of the approach was tested with two distinct surface complexation models by describing recent experimental data performed at highly varying solid/liquid ratios and ionic strengths. The results indicate adequate prediction of the entire experimental data set. Second, the modelling was extended to repository conditions, taking as an example the current Swiss concept for high-level waste where the compacted bentonite backfill is surrounded by argillaceous rock. The main reactions controlling major ion chemistry were found to be calcite equilibrium and concurrent Na-Ca exchange reactions and de-protonation of functional surface groups. Third, a sensitivity analysis of the main model parameters was performed. The results thereof indicate a remarkable robustness of the model with regard to parameter uncertainties. The bentonite system is characterised by a large acid-base buffering capacity which leads to stable pH-conditions. The uncertainty in pH was found to be mainly induced by the pCO 2 of the surrounding host rock. The results of a simple diffusion-reaction model indicate only minor changes of porewater composition with time, which is primarily due to the geochemical similarities of the bentonite and the argillaceous host rock. Overall, the results show the usefulness of simple thermodynamic models to

  11. Application of isotopic and hydro-geochemical methods in identifying sources of mine inrushing water

    Institute of Scientific and Technical Information of China (English)

    Dou Huiping; Ma Zhiyuan; Cao Haidong; Liu Feng; Hu Weiwei; Li Ting

    2011-01-01

    Isotopic and hydro-geochemical surveys were carried out to identify the source of mine inrushing water at the #73003 face in the Laohutai Mine.Based on the analysis of isotopes and hydro-chemical features of surface water,groundwater from different levels and the inrushing water,a special relationship between water at the #73003 face and cretaceous water has been found.The results show that the isotopic and hydro-chemical features of the inrushing water are completely different from those of other groundwater bodies,except for the cretaceous water.The isotopic and hydrochemical characteristics of cretaceous water are similar to the inrushing water of the #73003 face,which aided with obtaining the evidence for the possible source of the inrushing water at the #73003 face.The isotope calculations show that the inrushing water at the #73003 face is a mixture of cretaceous water and Quaternary water,water from the cretaceous conglomerate is the main source,accounting for 67% of the inrushing water,while the Quaternary water accounts for 33%.The conclusion is also supported by a study of inrushing-water channels and an active fault near the inrushing-water plot on the #73003 face.

  12. Hydrogeological and geochemical monitoring system for deep disposal in rock mass

    International Nuclear Information System (INIS)

    Itoh, K.; Otsuka, Y.; Ohi, Y.

    1996-01-01

    For investigation and construction of deep underground disposal site, it is very important to monitor three dimensional hydrogeological and geochemical condition for long term in all stages of investigation, construction and management. In deep geological disposal site, permeability of rock mass should be extremely lower than conventional civil engineering field, and natural piezometric pressure should be much higher than conventional groundwater monitoring in civil engineering. So, pressure measuring device should have wide measuring range and high precision especially for interference hydraulic test in investigation stage. And, simultaneous pressure measurement in plural points would be required for cost minimization. Recently, some kinds of multi-point pressure monitoring system has been presented. However, most of all system requires borehole with large diameter, and for utilization in plural boreholes, centralized sensor control is very difficult. And, in groundwater sampling for geochemical investigation, it is important to keep original chemical condition through sampling and transportation from sampling depth to surface. For these purposes, the authors have developed multi well multi point piezometric pressure measuring device, and groundwater sampling system for 1,000m depth. (author)

  13. Geochemical characteristics of Lower Jurassic source rocks in the Zhongkouzi Basin

    Science.gov (United States)

    Niu, Haiqing; Han, Xiaofeng; Wei, Jianshe; Zhang, Huiyuan; Wang, Baowen

    2018-01-01

    Zhongkouzi basin is formed in Mesozoic and Cenozoic and developed on the Hercynian folded belt, the degree of exploration for oil and gas is relatively low hitherto. In order to find out the geochemical characteristics of the source rocks and the potentials for hydrocarbon generation. The research result shows that by analysis the geochemical characteristics of outcrop samples and new core samples in Longfengshan Group, Longfengshan Group are most developed intervals of favorable source rocks. They are formed in depression period of the basin when the sedimentary environments is salt water lacustrine and the water is keeping stable; The organic matter abundance is middle-higher, the main kerogen type is II1-II2 and few samples act as III type, The organic matter maturity is low maturity to medium maturity. The organic matter maturity of the source rock from eastern part of the basin is higher than in the western region. The source rock of Longfengshan Group are in the hydrocarbon generation threshold. The great mass of source rocks are matured and in the peak stage of oil generation.

  14. Hydrological and geochemical investigation on the volcanic rock and gneissic rock area

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kwon; Jeong, Chan Ho; Ryu, Kun Seok; Kim, Byoung Yeop; Park, Hyung Kun; Yu, Sang Woo; Jang, Hyu Kun; Lee, Suk Chi; Choi, Ki Young; Jeon, Hyu Woong; Kim, Do Hyoung [Daejong University, Daejeon (Korea, Republic of)

    2010-01-15

    The purpose of this study is to supply the basic data and optimum study site among volcanic rock area and gneissic rock area for high-level radioactive waste disposal. For this purpose, geological, hydrogeological and geochemical data from previously published literatures were collected and analyzed. In this study, we selected 36 volcanic rock sites and 26 gneissic sites as the candidate sites for high level radwaste disposal. Finally, for four sites(M-1, M-13, V-1 and V-13 sites) were selected as the study sites. The geochemical characteristics of groundwaters of each study site were statistically analyzed. The nitrate contamination and the sea water mixing will be important factors on the assessment of behaviour of radionuclides under groundwater environment. From the deep geothermal study, alkaline and sodium-bicarbonate chemical environment, and sea water mixing should be considered as the key factors for the deep disposal of high-level radioactive waste

  15. Obtaining reasonable assurance on geochemical aspects of performance assessment of deep geologic repositories

    International Nuclear Information System (INIS)

    Van Luik, A.E.; Serne, R.J.

    1986-01-01

    Providing reasonable assurance that a deep geologic disposal system will perform as required by regulation involves, in part, the building of confidence by providing a sound scientific basis for the site characterization, engineered system design, and system performance modeling efforts. Geochemistry plays a role in each of these activities. Site characterization must result in a description of the in situ geochemical environment that will support the design of the engineered system and the modeling of the transport of specific radionuclides to the accessible environment. Judging the adequacy of this site characterization effort is a major aspect of providing reasonable assurance. Within site characterization, there are a number of geochemical issues that need to be addressed such as the usefulness of natural analog studies, and assessing the very long-term stability of the site geochemistry, given expected temperature and radiation conditions

  16. Baseline and premining geochemical characterization of mined sites

    Science.gov (United States)

    Nordstrom, D. Kirk

    2015-01-01

    A rational goal for environmental restoration of new, active, or inactive mine sites would be ‘natural background’ or the environmental conditions that existed before any mining activities or other related anthropogenic activities. In a strictly technical sense, there is no such thing as natural background (or entirely non-anthropogenic) existing today because there is no part of the planet earth that has not had at least some chemical disturbance from anthropogenic activities. Hence, the terms ‘baseline’ and ‘pre-mining’ are preferred to describe these conditions. Baseline conditions are those that existed at the time of the characterization which could be pre-mining, during mining, or post-mining. Protocols for geochemically characterizing pre-mining conditions are not well-documented for sites already mined but there are two approaches that seem most direct and least ambiguous. One is characterization of analog sites along with judicious application of geochemical modeling. The other is reactive-transport modeling (based on careful synoptic sampling with tracer-injection) and subtracting inputs from known mining and mineral processing. Several examples of acidic drainage are described from around the world documenting the range of water compositions produced from pyrite oxidation in the absence of mining. These analog sites provide insight to the processes forming mineralized waters in areas untouched by mining. Natural analog water-chemistry data is compared with the higher metal concentrations, metal fluxes, and weathering rates found in mined areas in the few places where comparisons are possible. The differences are generally 1–3 orders of magnitude higher for acid mine drainage.

  17. Geochemical normalization of magnetic susceptibility for investigation of floodplain sediments

    Czech Academy of Sciences Publication Activity Database

    Faměra, Martin; Matys Grygar, Tomáš; Elznicová, J.; Grison, Hana

    2018-01-01

    Roč. 77, č. 5 (2018), č. článku 189. ISSN 1866-6280 R&D Projects: GA ČR(CZ) GA15-00340S Institutional support: RVO:61388980 ; RVO:67985530 Keywords : Background functions * Geochemical normalization * Mass-specific magnetic susceptibility * Post-depositional processes * Provenance Subject RIV: DD - Geochemistry OBOR OECD: Environmental sciences (social aspects to be 5.7); Geology (GFU-E) Impact factor: 1.569, year: 2016

  18. Geochemical mapping in polluted floodplains using handheld XRF, geophysical imaging, and geostatistics

    Czech Academy of Sciences Publication Activity Database

    Hošek, Michal; Matys Grygar, Tomáš; Popelka, J.; Kiss, T.; Elznicová, J.; Faměra, Martin

    2017-01-01

    Roč. 19, APR (2017) ISSN 1607-7962. [EGU General Assembly 2017. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:61388980 Keywords : Dipole electromagneting profilling * electric resistivity tomography * floodplain contamination * geochemical mapping Subject RIV: DD - Geochemistry http://meetingorganizer.copernicus.org/EGU2017/EGU2017-3573-3.pdf

  19. Research on the hydrogeological and geochemical conditions at the coastal area and submarine formations

    International Nuclear Information System (INIS)

    Tokunaga, Tomochika; Taniguchi, Makoto; Goto, Junji

    2003-05-01

    One of the major concerns for the high-level radioactive waste disposal is the possibility of the radionuclides to reach biosphere by groundwater flow. Recent research results have shown that the fresh groundwater discharge from subsea formations are widespread phenomena, thus, it is necessary to evaluate the submarine groundwater discharge as possible pathways of contaminant discharge towards the biosphere. It is also important to unravel the groundwater flow and associated material transport at the coastal area and subsea formations. To better understand the groundwater flow processes and the submarine groundwater discharge, we have conducted the hydrological, hydrogeological, geochemical, and numerical modeling studies at the Kurobe alluvial fan and its offshore, Toyama Prefecture, Japan. In this report, the results of the following research activities are presented: 1) Development and application of a method to detect the locations of the submarine groundwater discharge. 2) Development and application of a method to collect uncontaminated groundwater samples from subsea formations. 3) Measurements of submarine groundwater discharge fluxes by automated seepage meter. 4) Hydrological and geochemical studies for groundwater flow at the coastal area. 5) Geochemical studies to understand sources of fresh submarine groundwater discharge. 6) Examination of groundwater flow and submarine groundwater discharge using methane concentration and carbon isotope ratio. 7) Numerical modeling studies for coastal groundwater flow system. (author)

  20. Isotopic-geochemical investigation of Vitosh pluton (Bulgaria)

    International Nuclear Information System (INIS)

    Amelin, Yu.V.; Drubetskoj, E.R.; Monchev, N.B.; Nejmark, L.A.; Ovchinnikova, G.V.; Levskij, L.K.

    1989-01-01

    A set of isotope-geochronological (Rb-Sr, K-Ar, uranium fission tracks) and isotope-geochemical (Sr, Pb, Nd, He) methods was used to establish genesis and age of multi-phase Vitosh pluton. The investigation results have shown that primary magma from which pluton rocks were formed is generated at the level of high mantle - low crust. Insignificant difference in time of implantation and crystallization between variuos pluton phases is established. In the interval 84-79 millions of years the velocity of rock cooling and the velocity of pluton lift to the surface were estimated. In the interval 79-0 millions of years these velocities decrease essentially. After formation the rocks were not subjected to additional heat affects

  1. Geochemical factors influencing vault design and layout

    International Nuclear Information System (INIS)

    Gascoyne, M.; Stroes-Gascoyne, S.; Sargent, F.P.

    1995-01-01

    The design and construction of a vault for used nuclear fuel in crystalline rock may be influenced by a number of geochemical factors. During the siting stage, information is needed regarding the rock type, heterogeneities in its composition and the mineralogy of permeable zones because these will cause variations in thermal conductivity, strength and radionuclide sorptive properties of the rock. These factors may affect decisions regarding depth of vault construction, tunnel dimensions and spacing of panels and waste containers. The decision on whether groundwaters are allowed to flow freely into a planned excavation may depend on measurements of their chemical compositions, microbiological contents and presence of hazardous or corrosive constituents. During site characterization, borehole drilling from the surface and subsequent hydraulic testing will introduce both chemical and microbiological contaminants that may further influence this decision. During vault construction, the geochemistry of the rock may cause changes to the characterization, design and construction of the vault. For example, high salinity fluids in micropores in the rock could prevent the use of radar surveys to detect fractures in the surrounding rock. High rock salinity may also cause unacceptably high total dissolved solids loadings in water discharged from the facility. Again, the presence of toxic, corrosive or radioactive constituents in inflowing groundwater may require grouting or, if inflow is needed for service operations, development of treatment facilities both above and below ground. In addition, the use of explosives will cause high organic and nitrate loadings in service water as well as the possible impregnation of these chemicals in the damaged wall-rock surrounding an excavation. These chemicals may remain despite cleaning efforts and act as nutrients to promote microbial activity in the post-closure phase. In the operational phase, further design and construction, changes

  2. Geochemical evaluation of the near-field for future HLW repository at Olkiluoto

    International Nuclear Information System (INIS)

    Idiart, A.; Maia, F.; Arcos, D.

    2013-10-01

    The concept for the final disposal of spent nuclear fuel in Finland considers an engineered and natural (crystalline rock) multi-barrier system surrounding the spent fuel. This work aims at predicting and making a quantitative assessment of the geochemical evolution of the near-field (canister, buffer, backfill and adjacent fractured bedrock) during the unsaturated thermal period and in the long-term, after saturation has been completed. The groundwater/bentonite buffer interaction during the unsaturated thermal period is tackled through a two-dimensional (2D) axisymmetric scheme using the thermo-hydro-geochemical code TOUGHREACT. In turn, the long-term interaction of the fully water-saturated buffer and backfill with groundwater is assessed through 3D numerical models using the reactive transport code PHAST under isothermal conditions. A set of base cases have been set up based on the most plausible set of input data. In addition, a limited number of sensitivity cases have been conducted to analyse the influence of key parameters controlling the system and reduce uncertainty. Predicted mineralogical changes of accessory minerals in the bentonite for the thermal period are controlled by the dependence of mineral solubilities on temperature and on the solute transport by advection during the saturation process, and diffusion during the whole period. The results of the thermal period indicate that a small amount of the primary amorphous silica is redistributed in the buffer: dissolution close to the canister and precipitation close to the buffer - rock interface. Primary calcite dissolution/precipitation is minimal, remaining stable throughout the simulation time in all cases. Anhydrite precipitates near the canister due to the elevated temperature, while it dissolves from the outside of the buffer. The results indicate that there is no significant evaporation of water near the copper canister and thus no chloride salt reaches saturation. The geochemical changes of

  3. Modeling of geochemical processes in the submarine discharge zone of hydrothermal solutions

    Directory of Open Access Journals (Sweden)

    С. М. Судариков

    2017-06-01

    Full Text Available The paper reviews the main methods and analyzes modeling results for geochemical processes in the submarine discharge zone of hydrothermal solutions of mid-ocean ridges. Initial data for modeling have been obtained during several marine expeditions, including Russian-French expedition SERPENTINE on the research vessel «Pourquoi Рas?» (2007. Results of field observations, laboratory experiments and theoretical developments are supported by the analysis of regression model of mixing between hydrothermal solutions and sea water. Verification of the model has been carried out and the quality of chemical analysis has been assessed; degree and character of participation of solution components in the hydrothermal process have been defined; the content of end members has been calculated basing on reverse forecasting of element concentration, depending on regression character; data for thermodynamic modeling have been prepared. Regression model of acid-base properties and chloridity of mineralizing thermal springs confirms adequacy of the model of double-diffusive convection for forming the composition of hydrothermal solutions.  Differentiation of solutions according to concentrations of chloride-ion, depending on temperature and pH indicator within this model, is associated with phase conversions and mixing of fluids from two convection cells, one of which is a zone of brine circulation. In order to carry out computer thermodynamic modeling, hydro-geochemical and physicochemical models of hydrothermal discharge zone have been created. Verification of the model has been carried out basing on changes of Mn concentration in the hydrothermal plume. Prevailing forms of Mn migration in the plume are Mn2+, MnCl+, MnCl2. Two zones have been identified in the geochemical structure of the plume: 1 high-temperature zone (350-100 °С with prevalence of chloride complexes – ascending plume; 2 low-temperature zone (100-2 °С, where predominant form of

  4. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    Science.gov (United States)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  5. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chia-Chuan; Kar, Sandeep [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Jean, Jiin-Shuh, E-mail: jiinshuh@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Wang, Chung-Ho [Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan (China); Lee, Yao-Chang [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Sracek, Ondra [OPV s.r.o. (Groundwater Protection Ltd.), Bělohorská 31, 169 00 Praha 6 (Czech Republic); Department of Geology, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Li, Zhaohui [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Department of Geosciences, University of Wisconsin – Parkside, Kenosha, WI 53144 (United States); Bundschuh, Jochen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Faculty of Engineering and Surveying and National Centre for Engineering in Agriculture, The University of Southern Queensland, Toowoomba (Australia); Yang, Huai-Jen [Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan (China); Chen, Chien-Yen [Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan (China)

    2013-11-15

    Highlights: ► Study represents geochemical characteristics and their spatial variability among six mud volcanoes of southern Taiwan. ► Anoxic mud volcanic fluids containing high NaCl imply connate water as the possible source. ► δ{sup 18}O-rich fluids is associated with silicate and carbonate mineral released through water–rock interaction. ► High As content in mud and its sequential extraction showed mostly adsorbed As on organic and sulphidic phases. ► Organic matter specially humic acid showed redox dependence and it may play an important role in binding and mobility of arsenic. -- Abstract: The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ{sup 18}O-rich fluids may be associated with silicate and carbonate mineral released through water–rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of

  6. Evaluation of geochemical properties used in area-to-location screening for a nuclear waste repository at the Nevada Test Site

    International Nuclear Information System (INIS)

    Purson, J.D.

    1983-03-01

    The area-to-location screening of a potential site for a nuclear waste repository is dependent on geologic compatibility. Specifically, the geochemical properties of candidate locations are significant in the overall site evaluation. This report describes three geochemical factors or attributes and their application to an area-to-location screening of the southwestern quadrant of the Nevada Test Site and contiguous areas. These are only 3 of 31 attributes examined in the screening process. Geochemical and rock media considerations relevant to site screening include: (1) retardation by hydraulics - a study of ground-water movement through fractures vs a permeable matrix; (2) thermal stability of minerals - a measurement of undesirable mineral assemblages in the rock; and (3) retardation by sorption - an evaluation of the total sorptive capacity at a location, based on stratigraphy and lithology. Twelve potential host rocks situated in 20 locations are examined; 2 of these have consistently fewer favorable characteristics, and 6 others have generally fewer favorable characteristics than the 4 remaining rock units. The four units that appear most favorable by geochemical measures are the tuffaceous beds of Calico Hills, granite intrusives, the densely welded Topopah Spring tuff, and the Crater Flat Tuff at Yucca Mountain

  7. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake

    Energy Technology Data Exchange (ETDEWEB)

    Dompierre, Kathryn A. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A9 (Canada); Lindsay, Matthew B.J., E-mail: matt.lindsay@usask.ca [Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Cruz-Hernández, Pablo [Department of Geology, University of Huelva, Campus ‘El Carmen’, E-21071 Huelva (Spain); Halferdahl, Geoffrey M. [Environmental Research and Development, Syncrude Canada Limited, Edmonton, Alberta T6N 1H4 (Canada)

    2016-06-15

    Geochemical characteristics of fluid fine tailings (FFT) were examined in Base Mine Lake (BML), which is the first full-scale demonstration oil sands end pit lake (EPL) in northern Alberta, Canada. Approximately 186 Mm{sup 3} of FFT was deposited between 1994 and 2012, before BML was established on December 31, 2012. Bulk FFT samples (n = 588) were collected in July and August 2013 at various depths at 15 sampling sites. Temperature, solid content, electrical conductivity (EC), pH, Eh and alkalinity were measured for all samples. Detailed geochemical analyses were performed on a subset of samples (n = 284). Pore-water pH decreased with depth by approximately 0.5 within the upper 10 m of the FFT. Major pore-water constituents included Na (880 ± 96 mg L{sup −1}) and Cl (560 ± 95 mg L{sup −1}); Ca (19 ± 4.1 mg L{sup −1}), Mg (11 ± 2.0 mg L{sup −1}), K (16 ± 2.3 mg L{sup −1}) and NH{sub 3} (9.9 ± 4.7 mg L{sup −1}) were consistently observed. Iron and Mn concentrations were low within FFT pore water, whereas SO{sub 4} concentrations decreased sharply across the FFT–water interface. Geochemical modeling indicated that FeS{sub (s)} precipitation was favoured under SO{sub 4}-reducing conditions. Pore water was also under-saturated with respect to gypsum [CaSO{sub 4}·2H{sub 2}O], and near saturation with respect to calcite [CaCO{sub 3}], dolomite [CaMg(CO{sub 3}){sub 2}] and siderite [FeCO{sub 3}]. X-ray diffraction (XRD) suggested that carbonate-mineral dissolution largely depleted calcite and dolomite. X-ray absorption near edge structure (XANES) spectroscopy revealed the presence of FeS{sub (s)}, pyrite [FeS{sub 2}], and siderite. Carbonate-mineral dissolution and secondary mineral precipitation have likely contributed to FFT dewatering and settlement. However, the long-term importance of these processes within EPLs remains unknown. These results provide a reference for assessing the long-term geochemical evolution of oil sands EPLs, and offer

  8. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  9. Petrological mineralogical and geochemical characterization of the granitoids and fracture fillings developed in Ratones Mines (Spain)

    International Nuclear Information System (INIS)

    Buil Gutierrez, B.

    2002-01-01

    The petrological, mineralogical and geochemical characterisation of the granitoids and fracture fillings developed in the Ratones Mine (Caceres, Spain) has been done in order to understand rock-water interaction processes which control water geochemical parameters. Special interest has been devoted to the analysis and interpretation of REE patterns in the solid phase (granitoids and fracture fillings) because they constitute geochemical tracers in water-rock interaction process. Moreover, REE are considered as actinide analogues. In order to characterise the solid phase (granitoids and fracture fillings) several investigation scales (system, outcrop, whole rock, mineral and geochemical components) have been considered and different types of samples have been analysed. These factors control the methodological approach used in this investigation. The analytical methods we have used in this investigation are microscope, qualitative and semi-quantitative methods (XRD, SEM,EDAX) and quantitative methods (ICP-MS, XRF, EM, LAM-IC-MS). The bulk of the granitoids located around the Ratones Mine Belongs to the alkaline feldspar granite-sienogranite lihotype and they show a peraluminous and subalkaline pattern. From the mineralogical point of view, they are composed by quartz, K-feldspar (Or>90%), showing sericitation, moscovitization and turmolinization altherations, alkaline plagioclase (An-=-3%), usually altered to sericite, saussirite and less frequently affected by moscovitization processes, Fe-Al biotite, frequently affected by chloritization processes and sometimes replaced by muscovite, and finally muscovite (>2% celadonite and <4% paragonite) both of primary and secondary origin. The differences observed between the different lithotypes are related with the modal proportion of the principal minerals,with the presence or absence of certain accessory minerals ( turmaline, cordierite), with specific textural patterns, grain size and also with the richness in specific

  10. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R. JEFFREY

    2004-01-01

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past

  11. A Low-Li Geochemical Province in the NE Atlantic

    DEFF Research Database (Denmark)

    Bailey, J. C.; Gwozdz, R.

    1978-01-01

    Lithium was analysed in 392 basalts and related igneous rocks from the North Atlantic Tertiary-Recent province using activation analysis and Čerenkov counting. Monotonous Li values of 5.5±2 ppm in NE Atlantic basalts define a low-Li geochemical province which has persisted for 60 million years...... basalt series. No whole-rock coherence is observed between Li and Mg, K, Rb or Ca. Mantle phlogopite is considered to play an insignificant rôle in controlling the Li levels of NE Atlantic basalts....

  12. The Narssaq-project - a geochemical, ecological environmental research project

    International Nuclear Information System (INIS)

    Soerensen, H.; Rose-Hansen, J.

    1978-01-01

    Two types of mineral occurrences near the town of Narssaq in South Greenland are recorded to be worth mining in the near future: the uranium occurrences at Kvanefjeld in the northern part of the Ilimaussaq intrusion and the zirconium occurrences in the southern part on the south coast of the Kangerdluarssuk fjord. Consideration of the environment plays a large part in discussions regarding the exploitation of these minerals. A report is given of the geochemical, ecological environmental investigations carried out at Narssaq since 1974. (BP)

  13. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N.

    1992-05-01

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  14. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M A; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  15. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany

    International Nuclear Information System (INIS)

    Norra, Stefan; Lanka-Panditha, Mahesh; Kramar, Utz; Stueben, Doris

    2006-01-01

    This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0-5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by

  16. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  17. GEOCHEMICAL AND ISOTOPIC CONSTRAINTS ON GROUND-WATER FLOW DIRECTIONS, MIXING AND RECHARGE AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    A. Meijer; E. Kwicklis

    2000-01-01

    This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report Development Plan entitled ''Geochemical and Isotopic Constraints on Groundwater Flow Directions, Mixing and Recharge at Yucca Mountain'' (CRWMS M and O 1999a). As stated in this Development Plan, the purpose of the work is to provide an analysis of groundwater recharge rates, flow directions and velocities, and mixing proportions of water from different source areas based on groundwater geochemical and isotopic data. The analysis of hydrochemical and isotopic data is intended to provide a basis for evaluating the hydrologic system at Yucca Mountain independently of analyses based purely on hydraulic arguments. Where more than one conceptual model for flow is possible, based on existing hydraulic data, hydrochemical and isotopic data may be useful in eliminating some of these conceptual models. This report documents the use of geochemical and isotopic data to constrain rates and directions of groundwater flow near Yucca Mountain and the timing and magnitude of recharge in the Yucca Mountain vicinity. The geochemical and isotopic data are also examined with regard to the possible dilution of groundwater recharge from Yucca Mountain by mixing with groundwater downgradient from the potential repository site. Specifically, the primary tasks of this report, as listed in the AMR Development Plan (CRWMS M and O 1999a), consist of the following: (1) Compare geochemical and isotopic data for perched and pore water in the unsaturated zone with similar data from the saturated zone to determine if local recharge is present in the regional groundwater system; (2) Determine the timing of the recharge from stable isotopes such as deuterium ( 2 H) and oxygen-18 ( 18 O), which are known to vary over time as a function of climate, and from radioisotopes such as carbon-14 ( 14 C) and chlorine-36 ( 36 Cl); (3) Determine the magnitude of recharge from relatively

  18. Geochemical features of the elemental composition of meadowsweet (Filipendula ulmaria (L).Maxim) in Kemerovo Oblast

    Science.gov (United States)

    Zhdanov, V. A.; Sobolev, I. S.; Baranovskaya, N. V.; Kolesnikova, E. A.; Chernenkaya, E. V.; Yalaltdinova, A. R.

    2016-09-01

    Biogeochemical sampling of the aboveground part of meadowsweet (Fillipendula Ulmaria (L). Maxim) allowed us to study ecological and geochemical features of 10 regions in Kemerovo Oblast, including both natural and man-made landscapes. The content of 55 elements in the plant is determined by ICP-MS. Statistical analysis of the results allowed us to establish the effect of the soil mineral composition and the mining region specificity on the elemental composition of meadowsweet, to reveal significant positive correlations of the elements and to establish a statistically significant difference in the studied areas on the basis of the content of some elements. Sample reference to one of the clusters, followed by an assessment of their geochemical features is determined by the K-average method.

  19. Geochemical study of military bases impact on the environment in Belarus

    International Nuclear Information System (INIS)

    Kudelsky, A.V.; Lukashev, V.K.; Kovalyov, A.A.

    2000-01-01

    It has been established that the geochemical and ecological situation in the sites formerly occupied by military bases does not satisfy nature management and living standards. The concentrations of heavy metals (Pb, Zn, Cd, Mo and Cu), oil products and semi-volatile organic compounds in soil and ground which exceed the permissible contamination limits make them dangerous for utilisation and require cleaning up measures

  20. Groundwater sources and geochemical processes in a crystalline fault aquifer

    Science.gov (United States)

    Roques, Clément; Aquilina, Luc; Bour, Olivier; Maréchal, Jean-Christophe; Dewandel, Benoît; Pauwels, Hélène; Labasque, Thierry; Vergnaud-Ayraud, Virginie; Hochreutener, Rebecca

    2014-11-01

    The origin of water flowing in faults and fractures at great depth is poorly known in crystalline media. This paper describes a field study designed to characterize the geochemical compartmentalization of a deep aquifer system constituted by a graben structure where a permeable fault zone was identified. Analyses of the major chemical elements, trace elements, dissolved gases and stable water isotopes reveal the origin of dissolved components for each permeable domain and provide information on various water sources involved during different seasonal regimes. The geochemical response induced by performing a pumping test in the fault-zone is examined, in order to quantify mixing processes and contribution of different permeable domains to the flow. Reactive processes enhanced by the pumped fluxes are also identified and discussed. The fault zone presents different geochemical responses related to changes in hydraulic regime. They are interpreted as different water sources related to various permeable structures within the aquifer. During the low water regime, results suggest mixing of recent water with a clear contribution of older water of inter-glacial origin (recharge temperature around 7 °C), suggesting the involvement of water trapped in a local low-permeability matrix domain or the contribution of large scale circulation loops. During the high water level period, due to inversion of the hydraulic gradient between the major permeable fault zone and its surrounding domains, modern water predominantly flows down to the deep bedrock and ensures recharge at a local scale within the graben. Pumping in a permeable fault zone induces hydraulic connections with storage-reservoirs. The overlaid regolith domain ensures part of the flow rate for long term pumping (around 20% in the present case). During late-time pumping, orthogonal fluxes coming from the fractured domains surrounding the major fault zone are dominant. Storage in the connected fracture network within the

  1. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    Science.gov (United States)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2018-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  2. Metal pollution in a contaminated bay: Relationship between metal geochemical fractionation in sediments and accumulation in a polychaete

    International Nuclear Information System (INIS)

    Fan, Wenhong; Xu, Zhizhen; Wang, Wen-Xiong

    2014-01-01

    Jinzhou Bay in Northern China has been seriously contaminated with metals due to the impacts of smelting activities. In this study, we investigated the relationship between metal accumulation in a deposit-feeding polychaete Neanthes japonica and metal concentration and geochemical fractionation (Cd, Cu, Pb, Zn and Ni) in sediments of Jinzhou Bay. Compared with the historical data, metals in the more mobile geochemical fraction (exchangeable and carbonate fractions) were gradually partitioned into the more stable fraction (Fe–Mn oxides) over time. Metal concentration and geochemical fractionation in sediment significantly affected metal bioavailability and accumulation in polychaetes, except for Ni. Metal accumulation in polychaetes was significantly influenced by Fe or Mn content, and to a lesser degree by organic matter. Prediction of metal bioaccumulation in polychaetes was greatly improved by normalizing metal concentrations to Mn content in sediment. The geochemical fractionation of metals in sediments including the exchangeable, organic matter and Fe–Mn oxides were important in controlling the sediment metal bioavailability to polychaetes. - Highlights: • Metals in contaminated sediments gradually partitioned into the more stable phase over time. • Metal accumulation in polychaetes was more significantly influenced by Fe/Mn content than by organic matter. • Prediction of metal bioaccumulation greatly improved by normalizing metals to Mn content in sediment. • Metals in exchangeable, organic matter and Fe–Mn oxides were important in controlling their bioavailability. - Prediction of metal bioaccumulation in polychaetes was significantly improved by normalizing metal concentrations to Mn content in sediment

  3. Geochemical investigation of groundwater in the Tono area, Japan. Chemical characteristics and groundwater evolution

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Hama, Katsuhiro; Yoshida, Hidekazu

    1997-01-01

    Geochemical investigations form an important part of the R and D program at the Tono study site, central Japan. Detailed geological structure and groundwater chemistry have been studied to understand the geochemical environment in the sedimentary and crystalline rocks distributed in this area. The chemical evolution of the groundwater in the sedimentary rocks is characterized with the variation in Na + , Ca 2+ and HCO 3 - concentrations, and ion exchange and dissolution of calcite are dominant reactions in the evolution of groundwater. Geological investigation shows that a fracture system of crystalline rock can be classified into:intact zone, moderately fractured zone and intensely fractured zone, according to the frequency and the width of fractures and fractured zones. The groundwater in the intact and fractured zones of crystalline rock are characterized by Na + -Ca 2+ -HCO 3 - or Na + -HCO 3 - dominated water, and Na + -Ca 2+ -Fe 2+ -HCO 3 - dominated water. The chemical evolution of groundwater is, generally, controlled by water-rock interaction between plagioclase, iron minerals and groundwater. The groundwater at depth of G.L.-186m in the crystalline rock at the Tono area is characterized by the mixture between the oxidized surface water and the reduced groundwater. The investigation based on correlation between geological structures and groundwater chemistry can be applied to understand the geochemical environment in deep crystalline rock, and will support the development of a realistic hydrogeochemical model. (author)

  4. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  5. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  6. Geochemical Characteristics of the Gyeongju LILW Repository II. Rock and Minera

    International Nuclear Information System (INIS)

    Kim, Geon Young; Koh, Yong Kwon; Choi, Byoung Young; Shin, Seon Ho; Kim, Doo Haeng

    2008-01-01

    Geochemical study on the rocks and minerals of the Gyeongju low and intermediate level waste repository was carried out in order to provide geochemical data for the safety assessment and geochemical modeling. Polarized microscopy, X-ray diffraction method, chemical analysis for the major and trace elements, scanning electron microscopy (SEM), and stable isotope analysis were applied. Fracture zones are locally developed with various degrees of alteration in the study area. The study area is mainly composed of granodiorite and diorite and their relation is gradational in the field. However, they could be easily distinguished by their chemical property. The granodiorite showed higher Sig 2 content and lower MgO and Fe 2 O 3 contents than the diorite. Variation trends of the major elements of the granodiorite and diorite were plotted on the same line according to the increase of Sig 2 content suggesting that they were differentiated from the same magma. Spatial distribution of the various elements showed that the diorite region had lower Sig 2 , Al 2 O 3 , Na 2 O and K 2 O contents, and higher CaO, Fe 2 O 3 contents than the granodiorite region. Especially, because the differences in the CaO and Na 2 O distribution were most distinct and their trends were reciprocal, the chemical variation of the plagioclase of the granitic rocks was the main parameter of the chemical variation of the host rocks in the study area. Identified fracture-filling minerals from the drill core were montmorillonite, zeolite minerals, chlorite, illite, calcite and pyrite. Especially pyrite and laumontite, which are known as indicating minerals of hydrothermal alteration, were widely distributed in the study area indicating that the study area was affected by mineralization and/or hydrothermal alteration. Sulfur isotope analysis for the pyrite and oxygen-hydrogen stable isotope analysis for the clay minerals indicated that they were originated from the magma. Therefore, it is considered that

  7. Secondary geochemical reactions in hydrothermal energy harnessing; Geochemische Folgereaktionen bei der hydrogeothermalen Energiegewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, M.

    1996-12-01

    This thesis is in six parts: description of geothermal energy harnessing, analytics, geochemical-thermodynamic modellings, experimental investigations, discussion of results, summary. (HW) [Deutsch] Die vorliegende Dissertationsschrift gliedert sich in 6 Teile: - Beschreibung der geothermischen Energienutzung - Analytik - geochemische-thermodynamische Modellierungen - experimentelle Untersuchungen - Diskussion der Ergebnisse - Zusammenfassung. (HW)

  8. Predicted risk of cobalt deficiency in grazing sheep from a geochemical survey; communicating uncertainty with the IPCC verbal scale.

    Science.gov (United States)

    Lark, R. M.; Ander, E. L.; Cave, M. R.; Knights, K. V.; Glennon, M. M.; Scanlon, R. P.

    2014-05-01

    Deficiency or excess of certain trace elements in the soil causes problems for agriculture, including disorders of grazing ruminants. Farmers and their advisors in Ireland use index values for the concentration of total soil cobalt and manganese to identify where grazing sheep are at risk of cobalt deficiency. We used cokriging with topsoil data from a regional geochemical survey across six counties of Ireland to form local cokriging predictions of cobalt and manganese concentrations with an attendant distribution which reflects the joint uncertainty of these predictions. From this distribution we then computed conditional probabilities for different combinations of cobalt and manganese index values, and so for the corresponding inferred risk to sheep of cobalt deficiency and the appropriateness of different management interventions. The challenge is to communicate these results effectively to an audience comprising, inter alia, farmers, agronomists and veterinarians. Numerical probabilities are not generally well-understood by non-specialists. For this reason we presented our results as maps using a verbal scale to communicate the probability that a deficiency is indicated by local soil conditions, or that a particular intervention is indicated. In the light of recent research on the effectiveness of the verbal scale used by the Intergovernmental Panel on Climate Change to communicate probabilistic information we reported the geostatistical predictions as follows. First, we use the basic IPCC scale with intensifiers, but we also indicate the corresponding probabilities (as percentages) as recommended by Budescu et al. (2009). Second, we make it clear that the source of uncertainty in these predictions is the spatial variability of soil Co and Mn. The outcome under consideration is therefore that a particular soil management scenario would be indicated if the soil properties were known without error, possible uncertainty about the implications of particular soil

  9. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  10. Collected radiochemical and geochemical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kleinberg, J [comp.

    1990-05-01

    This revision of LA-1721, 4th Ed., Collected Radiochemical Procedures, reflects the activities of two groups in the Isotope and Nuclear Chemistry Division of the Los Alamos National Laboratory: INC-11, Nuclear and radiochemistry; and INC-7, Isotope Geochemistry. The procedures fall into five categories: I. Separation of Radionuclides from Uranium, Fission-Product Solutions, and Nuclear Debris; II. Separation of Products from Irradiated Targets; III. Preparation of Samples for Mass Spectrometric Analysis; IV. Dissolution Procedures; and V. Geochemical Procedures. With one exception, the first category of procedures is ordered by the positions of the elements in the Periodic Table, with separate parts on the Representative Elements (the A groups); the d-Transition Elements (the B groups and the Transition Triads); and the Lanthanides (Rare Earths) and Actinides (the 4f- and 5f-Transition Elements). The members of Group IIIB-- scandium, yttrium, and lanthanum--are included with the lanthanides, elements they resemble closely in chemistry and with which they occur in nature. The procedures dealing with the isolation of products from irradiated targets are arranged by target element.

  11. Expected Geochemical and Mineralogical Properties of Meteorites from Mercury: Inferences from Messenger Data

    Science.gov (United States)

    McCubbin, F. M.; McCoy, T. J.

    2016-01-01

    Meteorites from the Moon, Mars, and many types of asteroid bodies have been identified among our global inventory of meteorites, however samples of Mercury and Venus have not been identified. The absence of mercurian and venusian meteorites could be attributed to an inability to recognize them in our collections due to a paucity of geochemical information for Venus and Mercury. In the case of mercurian meteorites, this possibility is further supported by dynamical calculations that suggest mercurian meteorites should be present on Earth at a factor of 2-3 less than meteorites from Mars [1]. In the present study, we focus on the putative mineralogy of mercurian meteorites using data obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which has provided us with our first quantitative constraints on the geochemistry of planet Mercury. We have used the MESSENGER data to compile a list of mineralogical and geochemical characteristics that a meteorite from Mercury is likely to exhibit.

  12. Combination of geo- pedo- and technogenic magnetic and geochemical signals in soil profiles - Diversification and its interpretation: A new approach.

    Science.gov (United States)

    Szuszkiewicz, Marcin; Łukasik, Adam; Magiera, Tadeusz; Mendakiewicz, Maria

    2016-07-01

    Magnetic and geochemical parameters of soils are determined with respect to geology, pedogenesis and anthropopression. Depending on local conditions these factors affect magnetic and geochemical signals simultaneously or in various configurations. We examined four type of soils (Entic Podzol, Eutric Cambisol, Humic Cambisol and Dystric Cambisol) developed on various bedrock (the Tumlin Sandstone, basaltoid, amphibolite and serpentinite, respectively). Our primary aim was to characterize the origin and diversification of the magnetic and geochemical signal in soils in order to distinguish the most reliable methods for correct interpretation of measured parameters. Presented data include selected parameters, both magnetic (mass magnetic susceptibility - χ, frequency-dependent magnetic susceptibility - χfd and thermomagnetic susceptibility measurement - TSM), and geochemical (selected heavy metal contents: Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn). Additionally, the enrichment factor (EF) and index of geoaccumulation (Igeo) were calculated. Our results suggest the following: (1) the χ/Fe ratio may be a reliable indicator for determining changes of magnetic signal origin in soil profiles; (2) magnetic and geochemical signals are simultaneously higher (the increment of χ and lead and zinc was noted) in topsoil horizons because of the deposition of technogenic magnetic particles (TMPs); (3) EF and Igeo evaluated for lead and zinc unambiguously showed anthropogenic influence in terms of increasing heavy metal contents in topsoil regardless of bedrock or soil type; (4) magnetic susceptibility measurements supported by TSM curves for soil samples of different genetic horizons are a helpful tool for interpreting the origin and nature of the mineral phases responsible for the changes of magnetic susceptibility values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Concerning initial and secondary character of radionuclide distribution in elementary landscape geochemical systems

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2017-04-01

    Specificity of radionuclide distribution in elementary landscape geochemical systems (ELGS) treated as local system of geochemically linked elementary terrestrial units (in toposequence: watershed-slope-closing depression), belongs to one of the less investigated but practically significant problems of current geochemistry. First measurements after the Chernobyl accident showed a considerable variation of Cs-137 distribution in all examined ELGS (Shcheglov et al, 2001; Romanov, 1989; Korobova, Korovaykov, 1990; Linnik, 2008). The results may be interpreted in frames of two alternative hypotheses: 1) irregularity of the initial contamination; 2) secondary redistribution of the initially regular level of fallout. But herewith only a disproof of the first hypothesis automatically justifies the second one. Factors responsible for initial irregularity of surface contamination included: 1) the presence of the so-called "hot" particles in the initial fallout; 2) interception of radionuclides by forest canopy; 3) irregular aerial particles deposition; 4) uneven initial precipitation. Basing on monitoring Cs-137 spatial distribution that has been performed since 2005, we demonstrate that the observed spatial irregularity in distribution of Cs-137 in ELGS reflects a purely secondary distribution of initial reserves of radionuclides in fallout matter due to its migration with water in local geochemical systems. This statement has some significant consequences. 1. Mechanism of migration of matter in ELGS is complicated and could not be reduced solely to a primitive moving from watershed to closing depression. 2. The control of migration of "labeled atoms" (Cs-137) permits to understand common mechanism of migration of water in all systems on the level of ELGS. 3. Understanding formation of the structure of contamination zones in ELGS permits to use mathematical model to solve the inverse problem of restoration of the initially equable level of their contamination. Performed

  14. Evaluation on changes caused by volcanic activities in the groundwater environment as a natural barrier for the HLW disposal. Literature survey and groundwater observation conducted at Mt. Iwate

    International Nuclear Information System (INIS)

    Mahara, Yasunori; Nakata, Eiji; Tanaka, Kazuhiro

    2000-01-01

    It is very important in the site characterization for the HLW disposal to understand changes in geochemical performances caused by volcanic activities in the groundwater environment as the natural barrier. The various effects and its magnitude of changes were listed up and were filed from literature surveys of the correlation between volcanic activities and hydrological can geochemical changes (e.g. water temperature, water pressure, water level, dissolved gas concentration of He and Rn, isotopic ratio of He, and chloride concentration) in volcanic aquifer. However, it is difficult to evaluate the magnitude of impacts, which volcanic activities will give to the groundwater environment in the natural barrier, through only the literature surveys. We have started monitoring of groundwater level and changes in groundwater quality, since volcanic activities have enhanced at Mt. Iwate from June in 1998. Judging from variation of isotopic ratio of dissolved He in groundwater, a prompt and sharp signals indicating volcanic activities will easily be found in shallow groundwater and discharged ponds. On the other hands, geochemical conditions in deep groundwater surroundings from some 100 m to 1000 m deep will be very stable, if the area being more than 5 km apart from the volcanic active center. Consequently, our observed results suggest that the groundwater environment which is not directly disturbed by the underground magmatic activities spreads under the area that is connected to trench side of the volcanic front. (author)

  15. Role of Mineral Deposits in Global Geochemical Cycles

    Science.gov (United States)

    Kesler, S.; Wilkinson, B.

    2009-12-01

    Mineral deposits represent the most extreme degree of natural concentration for most elements and their formation and destruction are important parts of global geochemical cycles. Quantitative estimates of the role that mineral deposits play in these geochemical cycles has been limited, however, by the lack of information on actual amounts of elements that are concentrated in these deposits, and their rates of formation and destruction at geologic time scales. Recent use of a “tectonic diffusion” model for porphyry copper deposits, the most important source of world copper, in conjunction with estimates of their copper content (Kesler and Wilkinson, 2008), allows an assessment of the role of copper deposits in Earth’s global copper cycles. These results indicate that ~4.5*10^8 Gg of Cu have been concentrated in porphyry copper deposits through Phanerozoic time, that deposits containing ~2.8*10^8 Gg of Cu have been removed by uplift and erosion over the same time period, and that deposits containing ~1.7*10^8 Gg remain in Earth’s crust. If styles of formation and destruction of other copper-bearing mineral deposits are similar, then all crustal deposits contain ~3*10^8 Gg of copper. This constitutes about 0.03% of the copper that resides in crustal rocks and provides a first-ever estimate of the rate at which natural geochemical cycles produce the extreme concentrations that constitute mineral deposits. Another ~8*10^8 Gg of copper have been destroyed during the uplift and erosion of mineral deposits over Phanerozoic time, a flux amounting to an annual contribution of about 1.5 Gg of copper to the near-surface environment. This amount is similar in magnitude to copper released by volcanic outgassing, but only ~2.5% of the 56 Gg of copper estimated to be released annually by weathering of average crustal rocks (Rauch and Graedel, 2007). The amount of copper removed from mineral deposits by mining, 1.1*10^4 Gg/year, is much larger than any natural

  16. Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter.

    Science.gov (United States)

    Liu, Chia-Chuan; Kar, Sandeep; Jean, Jiin-Shuh; Wang, Chung-Ho; Lee, Yao-Chang; Sracek, Ondra; Li, Zhaohui; Bundschuh, Jochen; Yang, Huai-Jen; Chen, Chien-Yen

    2013-11-15

    The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ(18)O-rich fluids may be associated with silicate and carbonate mineral released through water-rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Geochemical character of Southern African Kimberlites: a new approach based on isotopic constraints

    International Nuclear Information System (INIS)

    Smith, C.B.; Gurney, J.J.; Ebrahim, N.

    1985-01-01

    Major and trace element compositions of southern African kimberlite samples previously analysed for isotopic compositions confirm that isotopically defined Group I (basaltic) and Group II (micaceous) variants have distinctive geochemical signatures. These signatures are generally consistent with geochemical variation in petrographically defined types. Stepwise discriminant function analysis is used to define the most important geochemical distinctions at the group level and to derive a procedure which successfully classifies a large number of unknowns based on chemical composition only. In comparison to Group I, Group II kimberlites have consistently higher abundances of SiO 2 , K 2 O, Pb, Rb, Ba and LREE, and lower abundances of TiO 2 and Nb. In conjunction with isotopic results, the distinctions in incompatible element contents in particular are believed to reflect broad differences in source rock character. Results are consistent with derivation of Group I kimberlites from asthenospheric-like sources similar to those from which oceanic island basalts are produced. In contrast, Group II kimberlites are inferred to originate from sources within ancient stabilized subcontinental lithosphere characterized by time-averaged incompatible element enrichment. Group I kimberlites can be further subdivided into two isotopically similar types to some degree correlative with tectonic environment. Compared to subgroup IA (on-craton), IB kimberlites have lower SiO 2 and higher CaO, FeO + Fe 2 O 3 and volatile contents in addition to somewhat greater TiO 2 , P 2 O 5 , Nb, Zr and Y abundances, and tend to occur outside the inferred boundaries of the Kaapvaal Craton though exceptions are present and new unpublished data suggest that this group may be relatively common on the craton

  18. Application of Fractal Technique for Analysis of Geophysical - Geochemical Databases in Tekieh Pb-Zn Ore Deposit (SE of Arak)

    International Nuclear Information System (INIS)

    Mehrnia, S.R.

    2017-01-01

    In this research, two statistical techniques that consist of classical and fractal equations (Mandelbrot, 2005) were applied in geochemical (Torkashvand et al., 2009) and geophysical (Jafari, 2007) databases for obtaining the linear and nonlinear distributions of geochemical elements (Tekieh Pb-Zn content) in association with resistivity variations and induction polarization measurements (Calagari, 2010). According to linear statistical techniques (Torkashvand et al., 2009), the main central parameters such as mean, median and mode in addition to variances and standard deviations as distribution tendencies could be used for obtaining the regression coefficients of the databases. However, in fractal statistics, a reliable regression between geo electrical - geochemical anomalies should be calculated based on measuring the fractal dimensional variations in the recursive patterns (Mehrnia, 2013). In practice, the Area-Concentration equations (Mandelbrot, 2005) were applied in resistivity, induction polarization, Pb and Zn datasets for achieving the nonlinear relationships in anomalous regions which were characterized by increasing in regression coefficients with more spatial correlation of the variable than linear statistics (Mehrnia, 2013).

  19. A >100 Ma Mantle Geochemical Record: Retiring Mantle Plumes may be Premature

    Science.gov (United States)

    Konter, J. G.; Hanan, B. B.; Blichert-Toft, J.; Koppers, A. A.; Plank, T.; Staudigel, H.

    2006-12-01

    Hotspot volcanism has long been attributed to mantle plumes, but in recent years suggestions have been made that plate tectonic processes, such as extension, can account for all hotspot tracks. This explanation involves a profoundly less dynamic lower mantle, which justifies a critical evaluation before the plume model is dismissed. Such an evaluation has to involve a wide range of geochemical, geological, and geophysical techniques, broadly investigating the products of volcanism as well as the underlying lithosphere and mantle. We argue here that the combined geological record and geochemistry of intraplate volcanoes holds some important clues that help us decide between models of plume-like upwelling versus passive upwelling with lithospheric extension. The best of these integrated datasets can be obtained from the long seamount chains in the Pacific Ocean. A new combined dataset of trace element and isotopic compositions, along with modern 40Ar/39Ar ages from seamounts in the Gilbert Ridge, Tokelau chain, and West Pacific Seamount Province (WPSP) provides a record of current to Cretaceous volcanism in the South Pacific. We have reconstructed the eruptive locations of the seamounts using a range of absolute plate motion models, including some models with hotspot motion and others that use the Indo-Atlantic hotspot reference frame. Our results show that the backtracked locations consistently form clusters (300km radius) around the active ends of the Macdonald, Rurutu and Rarotonga hotspot chains, while closely matching their distinct C-HIMU and C-EM1 signatures. The oldest WPSP seamounts (older than 100 Ma) form the only exception and backtrack, with larger uncertainty, to north of Rarotonga. Therefore, the mantle currently underlying the Cook-Austral islands has produced volcanoes in three geochemically distinct areas for at least 100 m.y. Furthermore, we find the shortest mantle residence time, 0.6 Ga, for a source of mixed recycled DMM and an EM1-like

  20. An organic geochemical correlation study of some Drmno depresssion crude oils (southern part of the Pannonian Basin, Yugoslavia

    Directory of Open Access Journals (Sweden)

    D. VITOROVIC

    2001-05-01

    Full Text Available The results of an investigation of crude oils originating from the Sirakovo and Bradarac-Maljurevac localities (southern part of the Pannonian Basin are reported in this paper. The aim was to estimate the organic geochemical similarity of the crude oils from the Drmno (Kostolac depression oil fields. The nine selected samples originated from reservoir rocks of various depths. Reliable source and organic geochemical maturation parameters served as the basis for the correlation studies. The similar origin of the investigated Drmno depression crude oils was corroborated, characterized by a significant participation of terrestrial precursor biomass. They were shown to be of relatively low maturity and to have been formed during the earlier stages of the diagenet- ic-catagenetic sequence of processes leading to the formation of crude oils, most probably in source rocks ofTertiary age, corresponding to vitrinite reflectances between Ro = 0.70 % and Ro = 0.80 %. The crude oils from Bradarac-Maljurevac seemed to be somewhat less homogeneous with respect to organic geochemical parameters compared to Sirakovo crude oils.

  1. GEOCHEMICAL CONTROLS ON NUCLEAR MAGNETIC RESONANCE MEASUREMENTS

    International Nuclear Information System (INIS)

    Knight, Rosemary

    2008-01-01

    Proton nuclear magnetic resonance (NMR) is used in the Earth Sciences as a means of obtaining information about the molecular-scale environment of fluids in porous geological materials. Laboratory experiments were conducted to advance our fundamental understanding of the link between the NMR response and the geochemical properties of geological materials. In the first part of this research project, we studied the impact of both the surface-area-to-volume ratio (S/V) of the pore space and the surface relaxivity on the NMR response of fluids in sand-clay mixtures. This study highlighted the way in which these two parameters control our ability to use NMR measurements to detect and quantify fluid saturation in multiphase saturated systems. The second part of the project was designed to explore the way in which the mineralogic form of iron, as opposed to simply the concentration of iron, affects the surface relaxation rate and, more generally, the NMR response of porous materials. We found that the magnitude of the surface relaxation rate was different for the various iron-oxide minerals because of changes in both the surface-area-to-volume ratio of the pore space, and the surface relaxivity. Of particular significance from this study was the finding of an anomalously large surface relaxivity of magnetite compared to that of the other iron minerals. Differences in the NMR response of iron minerals were seen in column experiments during the reaction of ferrihydrite-coated quartz sand with aqueous Fe(II) solutions to form goethite, lepidocrocite and magnetite; indicating the potential use of NMR as a means of monitoring geochemical reactions. The final part of the research project investigated the impact of heterogeneity, at the pore-scale, on the NMR response. This work highlighted the way in which the geochemistry, by controlling the surface relaxivity, has a significant impact on the link between NMR data and the microgeometry of the pore space.

  2. Izu-Bonin rear-arc magmatism: Geochemical investigation of volcanoclastic material

    OpenAIRE

    Sæbø, Andreas

    2017-01-01

    Studied samples from the Izu Bonin rear arc show a distinct geochemical pattern that resemble the modern continental crust. In contrast to the volcanic front, samples from the Izu Bonin rear arc show enrichment of LREE (La, Ce, Pr, Nd) and higher K2O at a given SiO2. This suggest that processes leading up to the geochemistry observed in the rear arc is fundamental in creating the modern continental crust. Additional isotopic and trace element analysis from volcanic material rec...

  3. Geochemical survey of stream sediments of the Piceance Creek Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Ringrose, C.D.

    1977-01-01

    A stream sediment survey was conducted in the Piceance Creek Basin to study the spatial distribution of Zn, Mo, Hg, Cd and As for future baseline considerations. The pH and organic matter were also measured. From samples taken at the mouths (junctions) of most of the named creeks in the basin, it is concluded that none of the streams contained sediments with anomalous trace element concentrations with respect to the basin. But it is thought that Mo and possibly As could be potentially toxic because of their abundance and their mobility under the stream sediments' alkaline condition. From a different sampling plan, designed to describe the background variance of five streams (Roan, Black Sulfur, Parachute, Yellow and Piceance Creeks), it was found that most of the variance occurred at distances from 0-10 m within 2 km stream segments 10 km apart for Mo, Hg, Az, and organic matter. When the variance between the five streams was considered, it was found to dominate the variances of the other factors for Mo, Hg, and Zn. This variance between streams is actually thought to represent the variance between the major drainage system in the basin. When comparison is made between the two sampling design results, it is thought that the trace element concentrations of stream junction samples represented the best range of expected values for the entire basin. The expected ranges of the trace elements from the nested design are thought to be reasonable estimates of preliminary baselines for Parachute Creek, Roan Creek and Black Sulfur Creek within the restricted limits of the streams defined in the text. From the experience gained in pursuing this study, it is thought that composite sampling should be considered, where feasible, to reduce the analytical load and to reduce the small scale variance.

  4. Geochemical assessment of nuclear waste isolation. Report of activities during fiscal year 1982

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    The status of the following investigations is reported: canister/overpack-backfill chemical interactions and mechanisms; backfill and near-field host rock chemical interactions mechanisms; far-field host rock geochemical interactions; verification and improvement of predictive algorithms for radionuclide migration; and geologic systems as analogues for long-term radioactive waste isolation.

  5. Geochemical assessment of nuclear waste isolation. Report of activities during fiscal year 1982

    International Nuclear Information System (INIS)

    1983-07-01

    The status of the following investigations is reported: canister/overpack-backfill chemical interactions and mechanisms; backfill and near-field host rock chemical interactions mechanisms; far-field host rock geochemical interactions; verification and improvement of predictive algorithms for radionuclide migration; and geologic systems as analogues for long-term radioactive waste isolation

  6. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China

    NARCIS (Netherlands)

    Wang, Changming; Carranza, E.J.M; Zhang, Shouting; Zhang, Jing; Liu, Xiaoji Liu; Zhang, Da; Sun, Xiang; Duan, Cunji

    2013-01-01

    Recognition of primary geochemical haloes is one of the most important tools for exploring undiscovered mineral resources. This tool is being routinely applied in exploration programs at the Huanxiangwa gold deposit, Xiong'er Mountains, China. Sampling of unweathered rock for multi-element analysis

  7. Geochemical patterns in soils of the karst region, Croatia

    Science.gov (United States)

    Prohic, E.; Hausberger, G.; Davis, J.C.

    1997-01-01

    Soil samples were collected at 420 locations in a 5-km grid pattern in the Istria and Gorski Kotar areas of Croatia, and on the Croatian islands of Cres, Rab and Krk, in order to relate geochemical variation in the soils to underlying differences in geology, bedrock lithology, soil type, environment and natural versus anthropogenic influences. Specific objectives included assessment of possible agricultural and industrial sources of contamination, especially from airborne effluent emitted by a local power plant. The study also tested the adequacy of a fixed-depth soil sampling procedure developed for meager karstic soils. Although 40 geochemical variables were analyzed, only 15 elements and 5 radionuclides are common to all the sample locations. These elements can be divided into three groups: (1) those of mostly anthropogenic origin -Pb, V, Cu and Cr; (2) those of mixed origin - radionuclides and Zn; and (3) those of mostly geogene origin -Ba, Sr, Ti, Al, Na, Ca, Mg, Fe, Mn, Ni and Co. Variation in Pb shows a strong correlation with the pattern of road traffic in Istria. The distributions of Ca, Na and Mg in the flysch basins of southern Istria and Slovenia are clearly distinguishable from the distributions of these elements in the surrounding carbonate terrains, a consequence of differences in bedrock permeability, type of drainage and pH. The spatial pattern of Cs from the Chernobyl nuclear power plant accident reflects almost exclusively the precipitation in Istria during the days immediately after the explosion. ?? 1997 Elsevier Science B.V.

  8. Geochemical Astro- and Geochronological Constraints on the Early Jurassic

    Science.gov (United States)

    Storm, M.; Condon, D. J.; Ruhl, M.; Jenkyns, H. C.; Hesselbo, S. P.; Al-Suwaidi, A. H.; Percival, L.

    2017-12-01

    The Early Jurassic Hettangian and Sinemurian time scales are poorly defined due to the lack of continuous geochemical records, and the temporal constrain of the Toarcian Oceanic Anoxic Event and associated global carbon cycle perturbation is afflicted by geochemical and biostratigraphical uncertainties of the existing radiometric dates from various volcanic ash bearing sections. Here we present a continuous, orbitally paced Hettangian to Pliensbachian carbon-isotope record of the Mochras drill-core (Cardigan bay Basin, UK). The record generates new insights into the evolution and driving mechanisms of the Early Jurassic carbon cycle, and is contributing to improve the Hettangian and Sinemurian time scale. Furthermore, we introduce a new high-resolution carbon-isotope chemostratigraphy, integrated with ammonite biostratigraphy and new U/Pb single zircon geochronology of the Las Overas section (Neuquén Basin, Argentina). The studied section comprises sediments from the tenuicostatum to Dumortiera Andean Ammonite zone (tenuicostatum to levesqui European standard zones). A stratigraphically expanded negative shift in d13Corg values, from -24‰ down to -32­‰, appears in the tenuicostatum and hoelderi ammonite zone, coeval to the negative excursion in European realm which is associated with the Toarcian Oceanic Anoxic Event. The negative isotope excursion appears concomitant with an increase in sedimentary mercury levels, indicating enhanced volcanic activity. TOC values and elemental data suggest a high sedimentation dilution in the tenuicostatum to pacificum zone. The new geochronological data from several volcanic ash beds throughout the section are further improving the temporal correlation between the Early Toarcian isotope event and causal mechanisms

  9. The isotope X-ray fluorescence analysis and its application in geochemical investigations in Greenland

    International Nuclear Information System (INIS)

    Kunzendorf, H.

    1973-01-01

    The applicability of the isotope X-ray fluorescence analysis (IRFA) in the geochemical exploration was investigated. Detection limits of about 0.1% for the elements Ti, Zr, Nb, Mo and La+Ce were achieved in terrain measurements. Detection limits of 0.05% were found in the analysis of Cr, Ni, Cu, Zn, Zr, Nb, Mo, La+Ce and Pb in finely grinded rock samples. Geochemical investigations were carried out in the Ilimaussag-Intrusion in south Greenland as well as on the Mo deposits Malmbjerg and the heavy mineral occurence 'kote 800' in East Greenland. The use of portable IRFA equipment proved to be particularly suitable in the analysis of bed rocks, loose rock samples such as moraine material, in the semi-quantitative analysis of heavy mineral concentrates, the analysis of bored cores during the boring programme, as well as the analysis of finely grinded rock samples. (ORU) [de

  10. Site study plan for geochemical analytical requirements and methodologies: Revision 1

    International Nuclear Information System (INIS)

    1987-12-01

    This site study plan documents the analytical methodologies and procedures that will be used to analyze geochemically the rock and fluid samples collected during Site Characterization. Information relating to the quality aspects of these analyses is also provided, where available. Most of the proposed analytical procedures have been used previously on the program and are sufficiently sensitive to yield high-quality analyses. In a few cases improvements in analytical methodology (e.g., greater sensitivity, fewer interferences) are desired. Suggested improvements to these methodologies are discussed. In most cases these method-development activities have already been initiated. The primary source of rock and fluid samples for geochemical analysis during Site Characterization will be the drilling program, as described in various SRP Site Study Plans. The Salt Repository Project (SRP) Networks specify the schedule under which the program will operate. Drilling will not begin until after site ground water baseline conditions have been established. The Technical Field Services Contractor (TFSC) is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established SRP procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 28 refs., 9 figs., 14 tabs

  11. From extreme pH to extreme temperature: An issue in honor of the geochemical contributions of Kirk Nordstrom, USGS hydrogeochemist

    Science.gov (United States)

    Campbell, Kate M.; Verplanck, Philip L.; McCleskey, R. Blaine; Alpers, Charles N.

    2015-01-01

    This special issue of Applied Geochemistry honors Dr. D. Kirk Nordstrom, and his influential career spent primarily at the U.S. Geological Survey (USGS). This issue does not herald his retirement or other significant career milestone, but serves as a recognition of the impact his work has had on the field of geochemistry in general. This special issue grew from a symposium in Kirk’s honor (affectionately dubbed “Kirkfest”) at the Geological Society of America’s annual meeting in Denver, Colorado, USA, during October 2013. At GSA, 27 talks and 35 posters showed how Kirk’s work has influenced a wide range of current hydrogeochemical research, from geothermal processes to acid mine drainage to geochemical modeling. The breadth of his knowledge and his many contributions to the published literature have left an indelible mark on the field of geochemistry, and this special issue is a tribute to his experience and contributions.

  12. Geochemical variations during the 2012 Emilia seismic sequence

    Science.gov (United States)

    Sciarra, Alessandra; Cantucci, Barbara; Galli, Gianfranco; Cinti, Daniele; Pizzino, Luca

    2015-04-01

    Several geochemical surveys (soil gas and shallow water) were performed in the Modena province (Massa Finalese, Finale Emilia, Medolla and S. Felice sul Panaro), during 2006-2014 period. In May-June 2012, a seismic sequence (main shocks of ML 5.9 and 5.8) was occurred closely to the investigated area. In this area 300 CO2 and CH4 fluxes measurements, 150 soil gas concentrations (He, H2, CO2, CH4 and C2H6), 30 shallow waters and their isotopic analyses (δ13C- CH4, δD- CH4 and δ13C- CO2) were performed in April-May 2006, October and December 2008, repeated in May and September 2012, June 2013 and July 2014 afterwards the 2012 Emilia seismic sequences. Chemical composition of soil gas are dominated by CH4 in the southern part by CO2 in the northern part. Very anomalous fluxes and concentrations are recorded in spot areas; elsewhere CO2 and CH4 values are very low, within the typical range of vegetative and of organic exhalation of the cultivated soil. After the seismic sequence the CH4 and CO2 fluxes are increased of one order of magnitude in the spotty areas, whereas in the surrounding area the values are within the background. On the contrary, CH4 concentration decrease (40%v/v in the 2012 surveys) and CO2 concentration increase until to 12.7%v/v (2013 survey). Isotopic gas analysis were carried out only on samples with anomalous values. Pre-seismic data hint a thermogenic origin of CH4 probably linked to leakage from a deep source in the Medolla area. Conversely, 2012/2013 isotopic data indicate a typical biogenic origin (i.e. microbial hydrocarbon production) of the CH4, as recognized elsewhere in the Po Plain and surroundings. The δ13C-CO2 value suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived) probably related to anaerobic oxidation of heavy hydrocarbons. Water samples, collected from domestic, industrial and hydrocarbons exploration wells, allowed us to recognize different families of waters. Waters are meteoric in origin and

  13. Study of the coupling of geochemical models based on thermodynamic equilibrium with models of component transfer as solutions in porous media or fractures

    International Nuclear Information System (INIS)

    Coudrain-Ribstein, A.

    1985-01-01

    This study is a contribution of analyses possibilities of modelling the transfer of components in the underground taking into account complexes geochemical phenomena. In the first part, the aim and the methodology of existing codes are presented. The transfer codes describe with a great precision the physical phenomena of transport but they are based on a very simple conceptualisation of the geochemical phenomena of retention by the rock. The geochemical models are interested by a stable unity of volume. They allow to compute the equilibrium distribution of the components between the chemical species of the solution, and the solid and gaseous phases. They use important thermodynamic data bases corresponding to each possible reaction. To sum up the situation about the geochemical codes in Europe and United States, a list of about thirty codes describe their method and potentialities. The mathematical analysis of the different methods used in both types of codes is presented. Then, the principles of a modelisation associating the potentialities of the transport codes and the geochemical codes are discussed. It is not possible to think of a simple coupling. A general code must be established on the bases of the existing codes but also on new concepts and under new constraints. In such studies one must always deal with the problem of the reactions kinetics. When the velocity of the reactions is big enough versus the velocity of transport processes, the assumption of local geochemical equilibrium can be retained. A general code would be very cumbersome, expensive and difficult to use. The results would be difficult to analyse and exploit. On the other hand, for each case study, a detailed analysis can point out many computing simplifications without simplifying the concepts [fr

  14. Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: A multi-isotope approach and geochemical modeling

    International Nuclear Information System (INIS)

    Carucci, Valentina; Petitta, Marco; Aravena, Ramon

    2012-01-01

    In the Tivoli Plain (Rome, Central Italy) the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using isotopic and chemical tracers. A conceptual model of the groundwater flowpaths has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as DIC/Cl − , Ca/(Ca + Mg)/SO 4 /(SO 4 + HCO 3 ), and environmental isotopes (δ 18 O, δ 2 H, 87 Sr/ 86 Sr, δ 34 S and δ 13 C) was carried out in order to determine the sources of recharge of the aquifer, the origin of solutes and the mixing processes in groundwater of Tivoli Plain. Multivariate statistical methods such as principal component analysis and Cluster analyses have confirmed the existence of different geochemical facies and the role of mixing in the chemical composition of the groundwater. Results indicate that the hydrochemistry of groundwater is characterized by mixing between end-members coming directly from carbonate recharge areas and to groundwater circulating in a deeply buried Meso-Cenozoic carbonate sequence. The travertine aquifer is fed by both flow systems, but a local contribution by direct input in the Plain has also been recognized. The stable isotope data ( 18 O, 2 H, 13 C and 34 S) supports the flow system conceptual model inferred from the geochemical data and represents key data to quantify the geochemical mixing in the different groundwaters of the Plain. The results of numerical modeling (PHREEQC) are consistent with the flowpaths derived from the hydrogeochemical conceptual model. The inverse models performed generated the main geochemical processes occurring in the groundwater flow system, which also included mixing. Geochemical and isotope modeling demonstrate an increasing influence of groundwater from the deeply buried aquifer in the travertine aquifer, enhanced by lowering of the travertine aquifer water table due to quarry pumping.

  15. Geochemical behavior of disposed radioactive waste

    International Nuclear Information System (INIS)

    Barney, G.S.; Navratil, J.D.; Schulz, W.W.

    1984-01-01

    The papers in this book are organized to cover the chemical aspects that are important to understanding the behavior of disposed radioactive wastes. These aspects include radionuclide sorption and desorption, solubility of radionuclide compounds, chemical species of radionuclides in natural waters, hydrothermal geochemical reactions, measurements of radionuclide migration, solid state chemistry of wastes, and waste-form leaching behavior. The information in each of the papers is necessary to predict the transport of radionuclides from wastes via natural waters and thus to predict the safety of the disposed waste. Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two papers discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described

  16. Geochemical isotope compartment model of the nitrogen cycle

    International Nuclear Information System (INIS)

    Weise, G.; Wetzel, K.; Stiehl, G.

    1981-01-01

    A model of the global cycle of nitrogen and its isotopes is described. It takes into account geochemical reservoirs (nitrogen in magmatic metamorphic, and sedimentary rocks and in the atmosphere) and the nitrogen exchange between magmatic rocks and the outer mantle, the transition of nitrogen exchange between sedimentary rocks and the atmosphere. With the aid of the mathematical formalisms of the compartment theory and on the basis of all available delta 11 N values assumptions regarding the isotope effects in forming these nitrogen fluxes data have been obtained on the degree of the nitrogen exchange between the earth crust and the outer mantle and on other nitrogen fluxes characterizing the global nitrogen cycle. (author)

  17. Geochemical and isotopic characteristics and magma sources of the early Cretaceous trachybasalts of the Goby-Altai rift zone: an example of grabens in the Arts-Bogdo range

    International Nuclear Information System (INIS)

    Samojlov, V.S.; Yarmolyuk, V.V.; Kovalenko, V.I.; Ivanov, V.G.; Pakhol'chenko, Yu.A.

    1998-01-01

    Geochemical and isotopic-geochemical characteristics of the basalts of Early Cretaceous (Hoby-Altai rift zone; Arts-Bogdo region, Mongolia). Atomic absorption spectroscopy, X-ray fluorescence spectroscopy, photometry, mass spectroscopy and other methods were used. Mantle nature of the basalt geochemical specificity is shown as well as their initial melts. Data on the rubidium-strontium isotopic composition of Neocomian basalts are the following ones: 87 Sr/ 86 Sr 87 Sr/ 86 Sr > 0.707 and Rb/Sr > 0.06 [ru

  18. Mineralization and geochemical studies in the Kalchouyeh occurrence, southwest of Naein

    OpenAIRE

    Hengameh Hosseini Dinani; Hashem Bagheri; Reza Shamsipour Dehkordi

    2012-01-01

    Kalchouyeh area in southwest of Naein is located in the Urumieh-Dokhtar volcano-plutonic belt. Mineralization occurred mainly as disseminations and veinlets hosted by trachy-andesite and pyroxene andesites. For mineralogy, alteration, fluid inclusion and geochemical studies, the two major mineralized zones: A (larger vein) from the north-northwest and B (smaller vein) from the east-southeast of the area were sampled. Alteration studies revealed that the main alteration assemblages are silicif...

  19. Geothermal development promotion survey report. No. 22. Noboribetsu region; 1987-1990 chinetsu kaihatsu sokushin chosa hokokusho. No. 22 Noboribetsu chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The results of surveys conducted in the Noboribetsu region, Hokkaido, in fiscal 1987-1989 are compiled in this report. Conducted in the surveys were a geological/alteration zone survey, geochemical survey, electromagnetic surveillance (simplified magnetotelluric method), electric prospecting (Schlumberger method), electric prospecting (mise-a-la-masse method), heat flow rate survey, structural boring, precision structural boring, environmental exploration well, geothermal water survey, environmental impact survey, and so forth. Conclusions reached on the basis of the survey results are described below. It is supposed that a horizon, positioned in the Osarugawa stratum in the Karls Noboribetsu zone or in a fissure system in the Omagarisawa stratum below the Osarugawa stratum, contains a geothermal reservoir. The hot water at the Noboribetsu hot spring originates in gas or geothermal water separated from the deep-seated geothermal water while that at the Karls hot spring or the like originates in meteoric water built up in higher places. Although an area abundant in geothermal fluids is supposed to exist in the Karls-Noboribetsu zone, yet a section located between the Karls-Noboribetsu zone and the Noboribetsu hot spring area also draws attention as a zone having a potential to store geothermal fluids. (NEDO)

  20. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-01-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments

  1. Regional geochemical maps of the Tonopah 1 degree by 2 degrees Quadrangle, Nevada, based on samples of stream sediment and nonmagnetic heavy-mineral concentrate

    Science.gov (United States)

    Nash, J.T.; Siems, D.F.

    1988-01-01

    This report is part of a series of geologic, geochemical, and geophysical maps of the Tonopah 1° x 2° quadrangle, Nevada, prepared during studies of the area for the Conterminous United States Mineral Assessment Program (CUSMAP). Included here are 21 maps showing the distributions of selected elements or combinations of elements. These regional geochemical maps are based on chemical analyses of the minus-60 mesh (0.25 mm) fraction of stream-sediment samples and the nonmagnetic heavy-mineral concentrate derived from stream sediment. Stream sediments were collected at 1,217 sites. Our geochemical studies of mineralized rock samples provide a framework for evaluating the results from stream sediments.

  2. Identification and characterization of tsunami deposits off southeast coast of India from the 2004 Indian Ocean tsunami: Rock magnetic and geochemical approach

    Science.gov (United States)

    Veerasingam, S.; Venkatachalapathy, R.; Basavaiah, N.; Ramkumar, T.; Venkatramanan, S.; Deenadayalan, K.

    2014-06-01

    The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.

  3. Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils

    International Nuclear Information System (INIS)

    Censi, P.; Saiano, F.; Pisciotta, A.; Tuzzolino, N.

    2014-01-01

    The geochemical behaviour of lanthanides and yttrium (Rare Earth Elements, REEs) has been investigated mainly in geological systems where these elements represent the best proxies of processes involving the occurrence of an interface between different media. This behaviour is assessed according to features recorded in sequences of REE concentrations along the REE series normalised with respect to a reference material. In this study, the geochemical behaviour of REE was investigated in different parts of Vitis vinifera specimens grown off-soil, on soils of different nature and grafted onto several rootstocks in order to evaluate effects induced by these changes. The results indicated that roots are the plant organs where REEs are preferentially concentrated, in particular elements from Sm to Ho (middle REE, MREE) whereas Eu enrichments occur in aerial parts. The geochemical behaviour of REE suggests that MREE enrichments in roots are due to preferential MREE interactions with biological membranes or to surface complexation with newly formed phosphates. Eu-positive anomalies suggest that Eu 3+ can form stable organic complexes in place of Ca 2+ in several biological processes in xylem fluids. The possibility that Eu mobility in these fluids can be enhanced by its reductive speciation as Eu 2+ cannot be ruled out. The assessment of the geochemical behaviour of REE according to the theory of the Tetrad Effect carried out confirms that REEs coming from soil are scavenged onto root tissues or mineral surfaces whereas their behaviour in aerial parts of V. vinifera is driven by dissolved complexation. - Highlights: • REE behaviour is driven by scavenging onto authigenic solids or membranes in roots. • REE behaviour is driven by dissolved complexation in aerial plant parts. • Positive Eu anomalies are a consequence of the REE translocation by xylem fluids. • Significant REE tetrad effects are observed in Vitis vinifera plants

  4. Results of geochemical and mineralogical studies on uranium in Zechstein copper-bearing strata from Lubin-Polkowice area

    International Nuclear Information System (INIS)

    Bareja, E.

    1977-01-01

    The paper presents the results of geochemical and mineralogical studies on uranium in Zechstein copper-bearing strata from the Lubin-Polkowice area. It was found that particular lithofacial varietes of Zechstein copper-bearing strata are characterized by different concentration of uranium. The mineralogical studies made possible determination of the nature of uranium mineralization and the interdependence between uranium and lithology of copper-bearing strata. An interesting uranium mineralization was found in tectonic breccias which yield black blende and schroeckingerite as well as calcite, gypsum, pyrite, hematite and geothite. Secondary minerals such as schroeckingerite and geothite evidence intense weathering processes acting in the copper deposit. The highest value of geochemical background of uranium in the copper-bearing series is displayed by basel copper-bearing shales (so called pitch-black shales) - 68.10 x 10 -40 /0 U. Statistical distribution of that element is unimodal. Distribution of uranium is polymodal in basal sandstones of the copper-bearing series. The geochemical background of red-coloured sandstones (Rotliegendes) is low, equalling 0.39 x 10 40 /0 U, whilst that of gray-coloured sandstones (Zechstein) - 2.32 x 10 -40 /0 U. An anomallous population (344.0 x 10 -40 /0 U) found in the case of gray sandstones of the Lubin-Polkowice area evidences the effects of secondary processes on concentration of uranium. In sandstones occur black blende, carburanes as well as calcite, hematite and goethite. A bimodal distribution of uranium was found in carbonate series. Limestones are characterized by low value of geochemical background (Dsub(x1) = 0.78 x 10 -40 /0 U) whilst dolomites by markedly higher values of the background (Dsub(x2) = 2.73 x 10 -40 /0 U). (author)

  5. Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kenwell, Amy [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Navarre-Sitchler, Alexis, E-mail: asitchle@mines.edu [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Prugue, Rodrigo [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Spear, John R. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Hering, Amanda S. [Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Maxwell, Reed M. [Hydrologic Sciences and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Carroll, Rosemary W.H. [Desert Research Institute, Division of Hydrologic Sciences, 2215 Raggio Parkway, Reno, NV 89512 (United States); Williams, Kenneth H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-09-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial “hotspots”) in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. - Highlights: • Biogeochemical characterization of alluvial floodplain soils and sediments was performed to investigate parameters that may indicate microbial hot spot formation. • A correlation between geochemical parameters (total organic carbon and

  6. Using geochemical indicators to distinguish high biogeochemical activity in floodplain soils and sediments

    International Nuclear Information System (INIS)

    Kenwell, Amy; Navarre-Sitchler, Alexis; Prugue, Rodrigo; Spear, John R.; Hering, Amanda S.; Maxwell, Reed M.; Carroll, Rosemary W.H.; Williams, Kenneth H.

    2016-01-01

    A better understanding of how microbial communities interact with their surroundings in physically and chemically heterogeneous subsurface environments will lead to improved quantification of biogeochemical reactions and associated nutrient cycling. This study develops a methodology to predict potential elevated rates of biogeochemical activity (microbial “hotspots”) in subsurface environments by correlating microbial DNA and aspects of the community structure with the spatial distribution of geochemical indicators in subsurface sediments. Multiple linear regression models of simulated precipitation leachate, HCl and hydroxylamine extractable iron and manganese, total organic carbon (TOC), and microbial community structure were used to identify sample characteristics indicative of biogeochemical hotspots within fluvially-derived aquifer sediments and overlying soils. The method has been applied to (a) alluvial materials collected at a former uranium mill site near Rifle, Colorado and (b) relatively undisturbed floodplain deposits (soils and sediments) collected along the East River near Crested Butte, Colorado. At Rifle, 16 alluvial samples were taken from 8 sediment cores, and at the East River, 46 soil/sediment samples were collected across and perpendicular to 3 active meanders and an oxbow meander. Regression models using TOC and TOC combined with extractable iron and manganese results were determined to be the best fitting statistical models of microbial DNA (via 16S rRNA gene analysis). Fitting these models to observations in both contaminated and natural floodplain deposits, and their associated alluvial aquifers, demonstrates the broad applicability of the geochemical indicator based approach. - Highlights: • Biogeochemical characterization of alluvial floodplain soils and sediments was performed to investigate parameters that may indicate microbial hot spot formation. • A correlation between geochemical parameters (total organic carbon and

  7. Geochemical mapping of the Hyeonri, Bongpyeong, Yeongog and Doam sheets (1:50,000)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Soo; Seo, Hyo Joon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    A geochemical mapping was made on the four quadrangles of the Hyeonri, Bongpyeong, Yeongog and Doam Sheets (1:50,000) located in the northeastern part of South Korea. The area of about 2,500 Km{sup 2} is covered mostly the Precambrian metamorphic rocks and Jurassic granites, and partly by Permo-Triassic sedimentary and Cretaceous granites. Geochemical samples of stream sediment and natural surface water, totally 713 for each media, were systematically collected from in the primary and secondary order streams. The samples were chemically analysed for the trace elements by ICP, and anion elements of water samples were determined by IC. The pH. EC (electrical conductivity) Eh, DO (dissolved oxygen) and bicarbonate were measured in situ by digital portable equipment. Several deposits of gold, fluorite, molybdenite and iron deposits were weakly formed at or around the contact zone between metamorphic rocks and granites. The coal mines were actively operated until 1970`s in the southeastern part of the area. At present, none of them is operating owing to shortage of ore reserves and higher mining cost excepting a few non-metallic or construction stone mines. Geochemical anomalies were revealed out several areas deriving from mineralized factors or effected by some polluted evidences of human life. The anomalies of Pb, Zn, Co, Cr, Cd, etc for sulfide minerals were poorly confined around old prospects or calcareous formation of Chosun Supergroup. The conductivity of stream in the Odae national park is extremely high value to be expecting mineral deposit such as uranium or rare earth metals etc.. The anomalies with Cl, Na, Mg, NO{sub 3}, HCO{sub 3} near or along the expressway and main roads where the population, are densely, were identified to be polluted by human activities and stock-farming. (author). 36 refs., 11 tabs., 57 figs.

  8. Geochemical modelling of CO2-water-rock interactions for carbon storage : data requirements and outputs

    International Nuclear Information System (INIS)

    Kirste, D.

    2008-01-01

    A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.

  9. Defining and modeling the soil geochemical background of heavy metals from the Hengshi River watershed (southern China): Integrating EDA, stochastic simulation and magnetic parameters

    International Nuclear Information System (INIS)

    Zhou Xu; Xia Beicheng

    2010-01-01

    It is crucial to separate the soil geochemical background concentrations from anthropogenic anomalies and to provide a realistic environmental geochemical map honoring the fluctuations in original data. This study was carried out in the Hengshi River watershed, north of Guangdong, China and the method proposed combined exploratory data analysis (EDA), sequential indicator co-simulation (SIcS) and the ratio of isothermal remnant magnetization (S 100 = -IRM -100mT /SIRM). The results showed that this is robust procedure for defining and mapping soil geochemical background concentrations in mineralized regions. The rock magnetic parameter helps to improve the mapping process by distinguishing anthropogenic influences. In this study, the geochemical backgrounds for four potentially toxic heavy metals (copper 200 mg/kg; zinc 230 mg/kg; lead 190 mg/kg and cadmium 1.85 mg/kg) Cu, Zn and Cd exceeded the soil Grade II limits (for pH < 6.5) from the Chinese Environmental Quality Standard for Soils (GB 15618-1995) (EQSS) which are 100, 200, 250 and 0.3 mg/kg for Cu, Zn, Pb and Cd, respectively. In particular, the geochemical background level for Cd exceeds standard six times. Results suggest that local public health is at high-risk along the riparian region of the Hengshi River, although the watershed ecosystem has not been severely disturbed.

  10. Podoconiosis: non-infectious geochemical elephantiasis.

    Science.gov (United States)

    Davey, Gail; Tekola, Fasil; Newport, Melanie J

    2007-12-01

    This article reviews peer-reviewed publications and book chapters on the history, epidemiology, genetics, ecology, pathogenesis, pathology and management of podoconiosis (endemic non-filarial elephantiasis). Podoconiosis is a non-infectious geochemical elephantiasis caused by exposure of bare feet to irritant alkalic clay soils. It is found in at least 10 countries in tropical Africa, Central America and northwest India, where such soils coexist with high altitude, high seasonal rainfall and low income. Podoconiosis develops in men and women working barefoot on irritant soils, with signs becoming apparent in most patients by the third decade of life. Colloid-sized silicate particles appear to enter through the skin, are taken up into macrophages in the lower limb lymphatics and cause endolymphangitis and obliteration of the lymphatic lumen. Genetic studies provide evidence for high heritability of susceptibility to podoconiosis. The economic burden is significant in affected areas dependent on subsistence farming. Podoconiosis is unique in being an entirely preventable non-communicable disease. Primary prevention entails promoting use of footwear in areas of irritant soil; early stages are reversible given good foot hygiene, but late stages result in considerable economic and social difficulties, and require extended periods of elevation and occasionally nodulectomy.

  11. Signatures of geochemical changes at methane-seeps as recorded by seep carbonates

    OpenAIRE

    Himmler, Tobias

    2011-01-01

    This thesis compiles three manuscripts: (1) The first manuscript (chapter 2.1) contains petrographic and geochemical data of aragonitic seep carbonates from the Makran accretionary prism. High-resolution rare earth element (REE) analysis yield distinct total REE[aragonite] concentrations and shale-normalised REE[aragonite] patterns. The REE variations are ascribed to different pore fluid compositions and accompanied redox changes during aragonite precipitation. (2) The second manuscript (chap...

  12. Stabilities of nuclear waste forms and their geochemical interactions in repositories

    International Nuclear Information System (INIS)

    White, W.B.

    1980-01-01

    The stabilities of high-level nuclear waste forms in a repository environment are briefly discussed. The advantages and disadvantages of such waste forms as borosilicate glass, supercalcine ceramics, and synthetic minerals are presented in context with the different rock types which have been proposed as possible host rocks for repositories. It is concluded that the growing geochemical evidence favors the use of a silicate rock repository because of the effectiveness of aluminosilicate rocks as chemical barriers for most radionuclides

  13. Similarity in Evolutionary Histories of Eocene Sediments from Subathu and Cambay Basins: Geochemical and Palaeontological Studies

    Science.gov (United States)

    Chaudhuri, S.; Halder, K.; Sarkar, S.

    2017-12-01

    A systematic comparative study of microfaunal assemblage and representative geochemical elements from two Cenozoic basins of India, Mangrol-Valia Lignite Mine section (21°30'52''N:73°12'20.5''E) of Cambay Shale Formation, western India and Jigni section (33°14'45"N:74°22'0"E) from Subathu Formation in northern India was undertaken to infer the paleoenvironment, palaeobathymetry and paleoclimate of these successions. Despite a gamut of work already carried out in these two basins, the sedimentary successions still await a correlative-detailed process-based facies, geochemical characterization and paleoenvironmental analysis. With a view to fulfill this gap, the present work was carried out by studying bulk rock XRD, XRF, clay mineralogy and analyzing calcareous microfossil foraminifera from samples at equivalent depth of these two basins which are situated thousands of kilometers apart and in different tectonic settings. The faunal assemblage of Eocene sediments of Mangrol-Valia section is indicative of shallow marine and inner shelf deposition with medium oxygen supply, while that of the Jigni section suggests primarily a shallow marine condition, which gradually changes to open marine condition with time. It is pertinent to note that the two basins of Cenozoic India started their lithosuccession with coal bearing strata. Well preserved pectin aragonite shells also indicate that primarily these two basins experienced low energy lagoonal environment. The fossil assemblage in both basins also suggests a tropical moist to terrestrial lowland environment. Geochemical analysis shows that the Mangrol-Valia section mineralogically comprises of kaolinite, siderite, quartz, smectite and kaolinite with higher abundance throughout the succession indicating chemical weathering of Deccan basement and high erosional environment. Calcite is the main constituent of Jigni section that indicates intracratonic rift settings. Medium to high quartz content and other detrital

  14. Geochemical and physical drivers of microbial community structure in hot spring ecosystems

    Science.gov (United States)

    Havig, J. R.; Hamilton, T. L.; Boyd, E. S.; Meyer-Dombard, D. R.; Shock, E.

    2012-12-01

    Microbial communities in natural systems are typically characterized using samples collected from a single time point, thereby neglecting the temporal dynamics that characterize natural systems. The composition of these communities obtained from single point samples is then related to the geochemistry and physical parameters of the environment. Since most microbial life is adapted to a relatively narrow ecological niche (multiplicity of physical and chemical parameters that characterize a local habitat), these assessments provide only modest insight into the controls on community composition. Temporal variation in temperature or geochemical composition would be expected to add another dimension to the complexity of niche space available to support microbial diversity, with systems that experience greater variation supporting a greater biodiversity until a point where the variability is too extreme. . Hot springs often exhibit significant temporal variation, both in physical as well as chemical characteristics. This is a result of subsurface processes including boiling, phase separation, and differential mixing of liquid and vapor phase constituents. These characteristics of geothermal systems, which vary significantly over short periods of time, provide ideal natural laboratories for investigating how i) the extent of microbial community biodiversity and ii) the composition of those communities are shaped by temporal fluctuations in geochemistry. Geochemical and molecular samples were collected from 17 temporally variable hot springs across Yellowstone National Park, Wyoming. Temperature measurements using data-logging thermocouples, allowing accurate determination of temperature maximums, minimums, and ranges for each collection site, were collected in parallel, along with multiple geochemical characterizations as conditions varied. There were significant variations in temperature maxima (54.5 to 90.5°C), minima (12.5 to 82.5°C), and range (3.5 to 77.5°C) for

  15. The geochemical behavior of protactinium 231 and its chosen geochemical analogue thorium in the biosphere

    International Nuclear Information System (INIS)

    Gillberg-Wickman, M.

    1983-03-01

    To be able to judge whether protactinium 231 might represent a major contribution to the human radiation risk from high level radioactive waste a literature study of the geochemical behavior of protactinium has been made. The interest in protactinium determinations has, as far, been in the field of marine geochemistry and geochronology. These investigations show that thorium may be used as a chemical analogue. The content of protactinium 231 is determined by the 235 U content and consequently the occurrence of protactinium in nature is directly associated to the geochemistry of uranium. The pronounced hydrolytic tendency of protactinium and its great sorption and coprecipitation capacity ought to prevent or at least appreciably delay its transport from a back-filled nuclear waste vault to the uppermost surface of the earth. It also has a tendency to form colloids or particulates which may be strongly fixed on a rock surface. In adsorption and desorption processes kinetics must play an important role. Our knowledge in this field is quite limited. Under the physico-chemical conditions in the sea, protactinium is rapidly scavenged from the water column by particulates. It accumulates in the sediments. (author)

  16. Geochemical Processes During Managed Aquifer Recharge With Desalinated Seawater

    Science.gov (United States)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2018-02-01

    We study geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW). The DSW, post-treated at the desalination plant by calcite dissolution (remineralization) to meet the Israeli water quality standards, is recharged into the Israeli Coastal Aquifer through an infiltration pond. Water quality monitoring during two MAR events using suction cups and wells inside the pond indicates that cation exchange is the dominant subsurface reaction, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the shallow groundwater composition is similar to the recharged DSW, except for enrichment of Mg2+, Na+, Ca2+, and HCO3-. A calibrated variably-saturated reactive transport model is used to predict the geochemical evolution during 50 years of MAR for two water quality scenarios: (i) post-treated DSW (current practice) and (ii) soft DSW (lacking the remineralization post-treatment process). The latter scenario was aimed to test soil-aquifer-treatment (SAT) as an alternative post-treatment technique. Both scenarios provide an enrichment of ˜2.5 mg L-1 in Mg2+ due to cation exchange, compared to practically zero Mg2+ currently found in the Israeli DSW. Simulations of the alternative SAT scenario provide Ca2+ and HCO3- remineralization due to calcite dissolution at levels that meet the Israeli standard for DSW. The simulated calcite content reduction in the sediments below the infiltration pond after 50 years of MAR was low (<1%). Our findings suggest that remineralization using SAT for DSW is a potentially sustainable practice at MAR sites overlying calcareous sandy aquifers.

  17. Geochemical processes during managed aquifer recharge with desalinated seawater

    Science.gov (United States)

    Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.

    2017-12-01

    In this work we study the geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW) to an infiltration pond at the Menashe site, located above the Israeli coastal aquifer. The DSW is post-treated by calcite dissolution (remineralization) in order to meet the Israeli desalinated water quality criteria. Suction cups and monitoring wells inside the pond were used to monitor water quality during two MAR events on 2015 and 2016. Results show that cation exchange is dominant, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the composition of the shallow groundwater is similar to the recharged DSW, but with enrichment of Mg2+, Na+, Ca2+ and HCO3-. A calibrated variably-saturated reactive transport model was used to predict the geochemical evolution during 50 years of MAR with two water quality scenarios: post-treated DSW and soft DSW (without post-treatment). The latter scenario was aimed to test soil-aquifer-treatment as an alternative post-treatment technique. In terms of water quality, the results of the two scenarios were found within the range of the desalinated water criteria. Mg2+ enrichment was stable ( 2.5 mg L-1), higher than the zero concentration found in the Israeli DSW. Calcite content reduction was low (<1%) along the variably-saturated profile, after 50 years of MAR. This suggests that using soil-aquifer-treatment as a remineralization technique for DSW is potentially a sustainable practice, which is limited only by the current hydraulic capacity of the Menashe MAR site.

  18. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Sanuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Humphries, Seth D [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Vaniman, D. T. [Los Alamos National Laboratory; Sharma, S. K. [UNIV OF HAWAII; Misra, A. K. [UNIV OF HAWAII; Dyar, M. D. [MT. HOLYOKE COLLEGE; Smrekar, S. E. [JET PROPULSION LAB.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  19. Overview of geochemical modeling needs for nuclear waste management

    International Nuclear Information System (INIS)

    Isherwood, D.; Wolery, T.

    1984-01-01

    Research needs include, but are not limited to: measurement of basic thermodynamic data at elevated temperatures for species identified by modelers as potentially important; evaluation of substances which control or limit precipitation and/or nucleation kinetics; sorption studies specifically designed to provide data needed for modeling. This includes the rate of sorption, desorption, and the characterization of the solid and aqueous phases; site-mixing models and thermodynamic data for secondary minerals that form solid solutions; the development of standard techniques for measuring rate laws for precipitation and dissolution kinetics; and measurement of rate laws describing redox kinetics, dissolution, and precipitation involving aqueous species and solid phases of interest to geochemical modelers

  20. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea

    Science.gov (United States)

    Zhang, Guo-Liang; Luo, Qing; Zhao, Jian; Jackson, Matthew G.; Guo, Li-Shuang; Zhong, Li-Feng

    2018-05-01

    The Indian-type mantle (i.e., above the north hemisphere reference line on the plot of 208Pb/204Pb vs. 206Pb/204Pb) has been considered as a "Southern Hemisphere" geochemical signature, whose origin remains enigmatic. The South China Sea is an extensional basin formed after rifting of the Euro-Asia continent in the Northern Hemisphere, however, the geochemical nature of the igneous crust remains unexplored. For the first time, IODP Expedition 349 has recovered seafloor basalts covered by the thick sediments in the Southwest sub-basin (Sites U1433 and U1434) and the East sub-basin (Site U1431). The Southwest sub-basin consists of enriched (E)-MORB type basalts, and the East sub-basin consists of both normal (N)-MORB-type and E-MORB-type basalts based on trace element compositions. The basalts of the two sub-basins are Indian-type MORBs based on Sr-Nd-Pb-Hf isotope compositions, and the Southwest sub-basin basalts show isotopic compositions (i.e., 206Pb/204Pb of 17.59-17.89) distinctly different from the East sub-basin (i.e., 206Pb/204Pb of 18.38-18.57), suggesting a sub-basin scale mantle compositional heterogeneity and different histories of mantle compositional evolution. Two different enriched mantle end-members (EM1 and EM2) are responsible for the genesis of the Indian-type mantle in the South China Sea. We have modeled the influences of Hainan mantle plume and lower continental crust based on Sr-Nd-Pb-Hf isotope compositions. The results indicate that the influence of Hainan plume can explain the elevated 206Pb/204Pb of the East sub-basin basalts, and the recycling of lower continental crust can explain the low 206Pb/204Pb of the Southwest sub-basin basalts. Based on the strong geochemical imprints of Hainan plume in the ridge magmatism, we propose that the Hainan plume might have promoted the opening of the South China Sea, during which the Hainan plume contributed enriched component to the sub-ridge mantle and caused thermal erosion and return of lower