WorldWideScience

Sample records for geochemical conceptual model

  1. A conceptual model for groundwater flow and geochemical evolution in the southern Outaouais Region, Québec, Canada

    International Nuclear Information System (INIS)

    Montcoudiol, N.; Molson, J.; Lemieux, J.-M.; Cloutier, V.

    2015-01-01

    Highlights: • Geochemical and isotope data help constrain the 2D conceptual flow model. • Stable isotopes indicate recharge occurring under conditions similar to current climate. • Mixing was found between younger ( 3 H) and older ( 14 C and 4 He) groundwater. • Mixing occurred under natural flow conditions and/or was induced during sampling. • The new conceptual model shows dominant local and intermediate flow systems. - Abstract: A conceptual model was developed for a hydrogeological flow system in the southern Outaouais Region, Quebec, Canada, where the local population relies heavily on groundwater pumped from shallow overburden aquifers and from deeper fractured crystalline bedrock. The model is based on the interpretation of aqueous inorganic geochemical data from 14 wells along a cross-section following the general flow direction, of which 9 were also analysed for isotopes (δ 18 O, δ 2 H, 3 H, δ 13 C, 14 C) and 4 for noble gases (He, Ne, Ar, Xe, Kr). Three major water types were identified: (1) Ca–HCO 3 in the unconfined aquifer as a result of silicate (Ca-feldspar) weathering, (2) Na–Cl as a remnant of the post-glacial Champlain Sea in stagnant confined zones of the aquifer, and (3) Na–HCO 3 , resulting from freshening of the confined aquifer due to Ca–Na cation exchange. Chemical data also allowed the identification of significant mixing zones. Isotope and noble gas data confirm the hypothesis of remnant water from the Champlain Sea and also support the hypothesis of mixing processes between a young tritium-rich component with an older component containing high 4 He concentrations. It is still unclear if the mixing occurs under natural flow conditions or if it is induced by pumping during the sampling, most wells being open boreholes in the bedrock. It is clear, however, that the hydrogeochemical system is dynamic and still evolving from induced changes since the last glaciation. As a next step, the conceptual model will serve as a

  2. GEOQUIMICO : an interactive tool for comparing sorption conceptual models (surface complexation modeling versus K[D])

    International Nuclear Information System (INIS)

    Hammond, Glenn E.; Cygan, Randall Timothy

    2007-01-01

    Within reactive geochemical transport, several conceptual models exist for simulating sorption processes in the subsurface. Historically, the K D approach has been the method of choice due to ease of implementation within a reactive transport model and straightforward comparison with experimental data. However, for modeling complex sorption phenomenon (e.g. sorption of radionuclides onto mineral surfaces), this approach does not systematically account for variations in location, time, or chemical conditions, and more sophisticated methods such as a surface complexation model (SCM) must be utilized. It is critical to determine which conceptual model to use; that is, when the material variation becomes important to regulatory decisions. The geochemical transport tool GEOQUIMICO has been developed to assist in this decision-making process. GEOQUIMICO provides a user-friendly framework for comparing the accuracy and performance of sorption conceptual models. The model currently supports the K D and SCM conceptual models. The code is written in the object-oriented Java programming language to facilitate model development and improve code portability. The basic theory underlying geochemical transport and the sorption conceptual models noted above is presented in this report. Explanations are provided of how these physicochemical processes are instrumented in GEOQUIMICO and a brief verification study comparing GEOQUIMICO results to data found in the literature is given

  3. Geochemical modeling of uranium mill tailings: a case study

    International Nuclear Information System (INIS)

    Peterson, S.R.; Felmy, A.R.; Serne, R.J.; Gee, G.W.

    1983-08-01

    Liner failure was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 y. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The decreases in permeability noted above are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. X-ray diffraction identified gypsum and alunite group minerals, such as jarosite, as having precipitated after acidic tailings solutions reacted with clay liners. The geochemical modeling and experimental work described above were used to construct an equilibrium conceptual model consisting of minerals and solid phases. This model was developed to represent a soil column. A computer program was used as a tool to solve the system of mathematical equations imposed by the conceptual chemical model. The combined conceptual model and computer program were used to predict aqueous phase compositions of effluent solutions from permeability cells packed with geologic materials and percolated with uranium mill tailings solutions. An initial conclusion drawn from these studies is that the laboratory experiments and geochemical modeling predictions were capable of simulating field observations. The same mineralogical changes and contaminant reductions observed in the laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 10-year history of acid attack. 24 references, 5 figures 5 tables

  4. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    Science.gov (United States)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  5. Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: A multi-isotope approach and geochemical modeling

    International Nuclear Information System (INIS)

    Carucci, Valentina; Petitta, Marco; Aravena, Ramon

    2012-01-01

    In the Tivoli Plain (Rome, Central Italy) the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using isotopic and chemical tracers. A conceptual model of the groundwater flowpaths has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as DIC/Cl − , Ca/(Ca + Mg)/SO 4 /(SO 4 + HCO 3 ), and environmental isotopes (δ 18 O, δ 2 H, 87 Sr/ 86 Sr, δ 34 S and δ 13 C) was carried out in order to determine the sources of recharge of the aquifer, the origin of solutes and the mixing processes in groundwater of Tivoli Plain. Multivariate statistical methods such as principal component analysis and Cluster analyses have confirmed the existence of different geochemical facies and the role of mixing in the chemical composition of the groundwater. Results indicate that the hydrochemistry of groundwater is characterized by mixing between end-members coming directly from carbonate recharge areas and to groundwater circulating in a deeply buried Meso-Cenozoic carbonate sequence. The travertine aquifer is fed by both flow systems, but a local contribution by direct input in the Plain has also been recognized. The stable isotope data ( 18 O, 2 H, 13 C and 34 S) supports the flow system conceptual model inferred from the geochemical data and represents key data to quantify the geochemical mixing in the different groundwaters of the Plain. The results of numerical modeling (PHREEQC) are consistent with the flowpaths derived from the hydrogeochemical conceptual model. The inverse models performed generated the main geochemical processes occurring in the groundwater flow system, which also included mixing. Geochemical and isotope modeling demonstrate an increasing influence of groundwater from the deeply buried aquifer in the travertine aquifer, enhanced by lowering of the travertine aquifer water table due to quarry pumping.

  6. SITE-94. The SKN conceptual model of Aespoe. Based on pre-investigations 1986-1990

    International Nuclear Information System (INIS)

    Sundquist, U.; Torssander, P.

    1996-12-01

    The present report describes the SKN (National Board for Spent Nuclear Fuel) conceptual model, which is a combined structural, hydrogeological and geochemical model. The development of the model has been carried out by stages with commencement in 1990. This report summarizes the main parts of the work performed. Initially, the development of the model was part of the program of SKN regarding review of SKB R and D work at Aespoe Hard Rock Laboratory. At a later stage, the SKN model was further developed and integrated into SITE-94. This development comprised evaluation of additional hydrogeological and geochemical data in order to strengthen the model. This report summarizes two earlier reports by SKN written in Swedish. Furthermore, a comprehensive description of the hydrogeological and geochemical evaluation is presented. 58 refs

  7. SITE-94. The SKN conceptual model of Aespoe. Based on pre-investigations 1986-1990

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, U.; Torssander, P. [Bergab, Goeteborg (Sweden)

    1996-12-01

    The present report describes the SKN (National Board for Spent Nuclear Fuel) conceptual model, which is a combined structural, hydrogeological and geochemical model. The development of the model has been carried out by stages with commencement in 1990. This report summarizes the main parts of the work performed. Initially, the development of the model was part of the program of SKN regarding review of SKB R and D work at Aespoe Hard Rock Laboratory. At a later stage, the SKN model was further developed and integrated into SITE-94. This development comprised evaluation of additional hydrogeological and geochemical data in order to strengthen the model. This report summarizes two earlier reports by SKN written in Swedish. Furthermore, a comprehensive description of the hydrogeological and geochemical evaluation is presented. 58 refs.

  8. Geochemical modeling: a review

    International Nuclear Information System (INIS)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted

  9. Geochemical modeling: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  10. Proceedings of the workshop on geochemical modeling

    International Nuclear Information System (INIS)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices

  11. Proceedings of the workshop on geochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices.

  12. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  13. Effect of source integration on the geochemical fluxes from springs

    International Nuclear Information System (INIS)

    Frisbee, Marty D.; Phillips, Fred M.; White, Art F.; Campbell, Andrew R.; Liu, Fengjing

    2013-01-01

    Geochemical fluxes from watersheds are typically defined using mass-balance methods that essentially lump all weathering processes operative in a watershed into a single flux of solute mass measured in streamflow at the watershed outlet. However, it is important that we understand how weathering processes in different hydrological zones of a watershed (i.e., surface, unsaturated, and saturated zones) contribute to the total geochemical flux from the watershed. This capability will improve understanding of how geochemical fluxes from these different zones may change in response to climate change. Here, the geochemical flux from weathering processes occurring solely in the saturated zone is investigated. This task, however, remains exceedingly difficult due to the sparsity of subsurface sampling points, especially in large, remote, and/or undeveloped watersheds. In such cases, springflow is often assumed to be a proxy for groundwater (defined as water residing in fully saturated geologic formations). However, springflow generation may integrate different sources of water including, but not limited to, groundwater. The authors’ hypothesis is that long-term estimates of geochemical fluxes from groundwater using springflow proxies will be too large due to the integrative nature of springflow generation. Two conceptual models of springflow generation are tested using endmember mixing analyses (EMMA) on observations of spring chemistries and stable isotopic compositions in a large alpine watershed in the San Juan Mountains of southwestern Colorado. In the “total springflow” conceptual model, springflow is assumed to be 100% groundwater. In the “fractional springflow” conceptual model, springflow is assumed to be an integration of different sources of water (e.g., groundwater, unsaturated flow, preferential flow in the soil, etc.) and groundwater is only a fractional component. The results indicate that groundwater contributions in springflow range from 2% to 100

  14. Coupled geochemical/hydrogeological modelling to assess the origin of salinity at the Tono area (Japan)

    International Nuclear Information System (INIS)

    Guimera, Jordi; Ruiz, Eduardo; Luna, Miguel; Arcos, David; Jordana, Salvador; Saegusa, Hiromitsu

    2005-01-01

    Numerical models are powerful tools for the characterization of groundwater flow, especially when integrating geochemical and hydrogeological data. This paper describes modeling exercises performed in the area surrounding the Mizunami Underground Research Laboratory (MIU) Construction Site in central Japan. A particular issue being investigated at the MIU Site is the presence of saline water detected at depth in certain boreholes. The main objective of this study is to develop conceptual physical models for the origin of this salinity and to test these conceptual models using numerical modeling techniques. One scenario being investigated is that the saline fluids represent residual Miocene age seawater which has been slightly altered by water-rock interactions. It is likely that during Miocene times, seawater inundated the Tono area. This hypothesis is partially supported by carbon and oxygen isotopic data of the calcite fracture filling materials. (author)

  15. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  16. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  17. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate......Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  18. Conceptual model for deriving the repository source term

    International Nuclear Information System (INIS)

    Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Doctor, P.G.; Williford, R.E.; Van Luik, A.E.

    1984-11-01

    Part of a strategy for evaluating the compliance of geologic repositories with federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative releases from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs

  19. Conceptual model for deriving the repository source term

    International Nuclear Information System (INIS)

    Alexander, D.H.; Apted, M.J.; Liebetrau, A.M.; Van Luik, A.E.; Williford, R.E.; Doctor, P.G.; Pacific Northwest Lab., Richland, WA; Roy F. Weston, Inc./Rogers and Assoc. Engineering Corp., Rockville, MD)

    1984-01-01

    Part of a strategy for evaluating the compliance of geologic repositories with Federal regulations is a modeling approach that would provide realistic release estimates for a particular configuration of the engineered-barrier system. The objective is to avoid worst-case bounding assumptions that are physically impossible or excessively conservative and to obtain probabilitistic estimates of (1) the penetration time for metal barriers and (2) radionuclide-release rates for individually simulated waste packages after penetration has occurred. The conceptual model described in this paper will assume that release rates are explicitly related to such time-dependent processes as mass transfer, dissolution and precipitation, radionuclide decay, and variations in the geochemical environment. The conceptual model will take into account the reduction in the rates of waste-form dissolution and metal corrosion due to a buildup of chemical reaction products. The sorptive properties of the metal-barrier corrosion products in proximity to the waste form surface will also be included. Cumulative released from the engineered-barrier system will be calculated by summing the releases from a probabilistically generated population of individual waste packages. 14 refs., 7 figs

  20. Retention/sorption and geochemical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D.; Grandia, F.; Domenech, C. [Enviros Spain, S.L., Barcelona (Spain); SCK-CEN, Mol (Belgium); Sellin, P. [SKB - Swedish Nuclear Fuel and Waste Management, SE, Stockholm (Sweden); Hunter, F.M.I.; Bate, F.; Heath, T.G.; Hoch, A. [Serco Assurance, Oxfordshire (United Kingdom); Werme, L.O. [SKB - Svensk Karnbranslehantering AB, Stockholm (Sweden); Bruggeman, C.; Maes, I.A.; Breynaert, E.; Vancluysen, J. [Leuven Katholieke Univ., Lab. for Colloid Chemistry (Belgium); Montavon, G.; Guo, Z. [Ecole des Mines, 44 - Nantes (France); Riebe, B.; Bunnenberg, C.; Meleshyn, A. [Leibniz Univ. Hannover, Zentrum fur Strahlenschutz und Radiookologie, Hannover (Germany); Dultz, S. [Leibniz Univ. Hannover, Institut fur Bodenkunde, Hannover (Germany)

    2007-07-01

    This session gathers 4 articles dealing with: the long-term geochemical evolution of the near field of a KBS-3 HLNW repository: insights from reactive transport modelling (D. Arcos, F. Grandia, C. Domenech, P. Sellin); the investigation of iron transport into bentonite from anaerobically corroding steel: a geochemical modelling study (F.M.I. Hunter, F. Bate, T.G. Heath, A. Hoch, L.O. Werme); SeO{sub 3}{sup 2-} adsorption on conditioned Na-illite: XAS spectroscopy, kinetics, surface complexation model and influence of compaction (C. Bruggeman, A. Maes, G. Montavon, E. Breynaert, Z. Guo, J. Vancluysen); the influence of temperature and gamma-irradiation on the anion sorption capacity of modified bentonites (B. Riebe, C. Bunnenberg, A. Meleshyn, S. Dultz)

  1. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  2. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  3. Rock–water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling

    International Nuclear Information System (INIS)

    Morán-Ramírez, J.; Ledesma-Ruiz, R.; Mahlknecht, J.; Ramos-Leal, J.A.

    2016-01-01

    In order to understand and mitigate the deterioration of water quality in the aquifer system underlying Guadalajara metropolitan area, an investigation was performed developing geochemical evolution models for assessment of groundwater chemical processes. The models helped not only to conceptualize the groundwater geochemistry, but also to evaluate the relative influence of anthropogenic inputs and natural sources of salinity to the groundwater. Mixing processes, ion exchange, water–rock–water interactions and nitrate pollution and denitrification were identified and confirmed using mass-balance models constraint by information on hydrogeology, groundwater chemistry, lithology and stability of geochemical phases. The water–rock interactions in the volcanic setting produced a dominant Na−HCO_3 water type, followed by Na−Mg−Ca−HCO_3 and Na−Ca−HCO_3. For geochemical evolution modeling, flow sections were selected representing recharge and non-recharge processes and a variety of mixing conditions. Recharge processes are dominated by dissolution of soil CO_2 gas, calcite, gypsum, albite and biotite, and Ca/Na exchange. Non-recharge processes show that the production of carbonic acid and Ca/Na exchange are decreasing, while other minerals such as halite and amorphous SiO_2 are precipitated. The origin of nitrate pollution in groundwater are fertilizers in rural plots and wastewater and waste disposal in the urban area. This investigation may help water authorities to adequately address and manage groundwater contamination. - Highlights: • The Inverse geochemical modeling was used to study to processes occurring in a volcanic aquifer. • Three flow sections were selected to apply inverse hydrogeochemical modeling. • Three main groundwater flows were identified: a local, intermediate and regional flow. • The models show that in the study area that groundwater is mixed with local recharge. • In the south, the aquifer has thermal influence.

  4. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-01-01

    This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)

  5. Coupling between a geochemical model and a transport model of dissolved elements

    International Nuclear Information System (INIS)

    Jacquier, P.

    1988-10-01

    In order to assess the safety analysis of an underground repository, the transport of radioelements in groundwater and their interactions with the geological medium are modelled. The objective of this work is the setting up and experimental validation of the coupling of a geochemical model with a transport model of dissolved elements. A laboratory experiment was developed at the CEA center of Cadarache. Flow-through experiments were carried out on columns filled with crushed limestone, where several inflow conditions were taken into account as the temperature, the presence of a pollutant (strontium chloride) at different concentrations. The results consist of the evolution of the chemical composition of the water at the outlet of the column. The final aim of the study is to explain these results with a coupled model where geochemical and transport phenomena are modelled in a two-step procedure. This code, called STELE, was built by introducing a geochemical code, CHIMERE, into an existing transport code, METIS. At this stage, the code CHIMERE can take into account: any chemical reaction in aqueous phase (complexation, acid-base reaction, redox equilibrium), dissolution-precipitation of minerals and solid phases, dissolution-degassing of gas. The paper intends to describe the whole process leading to the coupling which can be forecasted over the next years between geochemical and transport models

  6. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  7. Validation of the WATEQ4 geochemical model for uranium

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite [UO 2 (OH) 2 . H 2 O], UO 2 (OH) 2 , and rutherfordine ((UO 2 CO 3 ) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions

  8. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  9. Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge.

    Science.gov (United States)

    Wallis, Ilka; Prommer, Henning; Simmons, Craig T; Post, Vincent; Stuyfzand, Pieter J

    2010-07-01

    Managed Aquifer Recharge (MAR) is promoted as an attractive technique to meet growing water demands. An impediment to MAR applications, where oxygenated water is recharged into anoxic aquifers, is the potential mobilization of trace metals (e.g., arsenic). While conceptual models for arsenic transport under such circumstances exist, they are generally not rigorously evaluated through numerical modeling, especially at field-scale. In this work, geochemical data from an injection experiment in The Netherlands, where the introduction of oxygenated water into an anoxic aquifer mobilized arsenic, was used to develop and evaluate conceptual and numerical models of arsenic release and attenuation under field-scale conditions. Initially, a groundwater flow and nonreactive transport model was developed. Subsequent reactive transport simulations focused on the description of the temporal and spatial evolution of the redox zonation. The calibrated model was then used to study and quantify the transport of arsenic. In the model that best reproduced field observations, the fate of arsenic was simulated by (i) release via codissolution of arsenopyrite, stoichiometrically linked to pyrite oxidation, (ii) kinetically controlled oxidation of dissolved As(III) to As(V), and (iii) As adsorption via surface complexation on neo-precipitated iron oxides.

  10. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  11. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  12. Status report on geochemical modelling

    International Nuclear Information System (INIS)

    Read, D.

    1991-12-01

    This report describes the findings of a review undertaken on behalf of the project management group of the programme 'Endlagersicherheit in der Nachbetriebsphase' based at GSF-IfT (Forschungszentrum fuer Umwelt und Gesundheit - Institut fuer Tieflagerung) to establish the current status of research into the simulation of geochemical processes relevant to radiological assessment. The review is intended to contribute to Stage 1 of a strategy formulated to enhance the use of geochemical models in Germany. Emphasis has been placed on processes deemed to be of greatest relevance to performance assessment for a HLW-repository in a salt dome principally, speciation-solubility in high salinity solutions, complexation by natural organics and generation-transport of colloids. For each of these and other topics covered, a summary is given of fundamental concepts, theoretical representations and their limitations, highlighting, where appropriate, the advantages and disadvantages of alternative approaches. The availability of data to quantify any given representation is addressed, taking into account the need for information at elevated temperatures and pressures. Mass transfer is considered in terms of aqueous, particulate and gas-mediated transport, respectively. (orig.) [de

  13. Geochemical Parameters Required from the SKB Site Characterisation Programme

    International Nuclear Information System (INIS)

    Bath, Adrian

    2002-01-01

    SKB has described its approach to site characterisation in a number of Technical Reports. One of the scientific topics in which specific information requirements and priorities are set out is geochemistry. This report for SKI examines critically whether the geochemical parameters identified in the SKB programme documents will be adequate for safety and regulatory requirements. It also examines some of the details of parameter requirements and interpretation tools that will be necessary to convert site investigation data into knowledge about chemical conditions and groundwater movements. The SKB strategy for geochemical data focuses on a small number of 'suitability indicators', primarily dissolved oxygen, pH and salinity. Their parameter requirements aim to assess those primary characteristics, as well as to acquire a wider range of data that will support those assessments and provide a broader understanding of candidate areas. An initial observation in this review that, though it is a primary suitability indicator, dissolved oxygen apparently will not be measured and instead will be inferred from other redox indicators. This raises a number of issues about sampling and monitoring measures, analytical data reliability and sensitivity, and the degree of confidence in geochemical understanding. A geochemical programme involves reconnaissance by desk study and acquisition of new data at levels of details that are appropriate to the stage of site investigations. As early as possible, a conceptual model of a candidate area should help to define the objectives of geochemical measurements on both rock and groundwater samples. It is recommended that parameters requirements should be defined and considered not only in terms of isolated measurements but more in terms of addressing broader objectives that relate to safety and also to geoscientific understanding. The safety priorities remain (e.g. dissolved oxygen) but will then be supported by an understanding of processes

  14. Geochemical Parameters Required from the SKB Site Characterisation Programme

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2002-01-01

    SKB has described its approach to site characterisation in a number of Technical Reports. One of the scientific topics in which specific information requirements and priorities are set out is geochemistry. This report for SKI examines critically whether the geochemical parameters identified in the SKB programme documents will be adequate for safety and regulatory requirements. It also examines some of the details of parameter requirements and interpretation tools that will be necessary to convert site investigation data into knowledge about chemical conditions and groundwater movements. The SKB strategy for geochemical data focuses on a small number of 'suitability indicators', primarily dissolved oxygen, pH and salinity. Their parameter requirements aim to assess those primary characteristics, as well as to acquire a wider range of data that will support those assessments and provide a broader understanding of candidate areas. An initial observation in this review that, though it is a primary suitability indicator, dissolved oxygen apparently will not be measured and instead will be inferred from other redox indicators. This raises a number of issues about sampling and monitoring measures, analytical data reliability and sensitivity, and the degree of confidence in geochemical understanding. A geochemical programme involves reconnaissance by desk study and acquisition of new data at levels of details that are appropriate to the stage of site investigations. As early as possible, a conceptual model of a candidate area should help to define the objectives of geochemical measurements on both rock and groundwater samples. It is recommended that parameters requirements should be defined and considered not only in terms of isolated measurements but more in terms of addressing broader objectives that relate to safety and also to geoscientific understanding. The safety priorities remain (e.g. dissolved oxygen) but will then be supported by an understanding of

  15. Use of natural geochemical tracers to improve reservoir simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, O.; Chatzichristos, C.; Sagen, J.; Muller, J.; Kleven, R.; Bennett, B.; Larter, S.; Stubos, A.K.; Adler, P.M.

    2005-01-01

    This article introduces a methodology for integrating geochemical data in reservoir simulations to improve hydrocarbon reservoir models. The method exploits routine measurements of naturally existing inorganic ion concentration in hydrocarbon reservoir production wells, and uses the ions as non-partitioning water tracers. The methodology is demonstrated on a North Sea field case, using the field's reservoir model, together with geochemical information (SO{sub 4}{sup 2}, Mg{sup 2+} K{sup +}, Ba{sup 2+}, Sr{sup 2+}, Ca{sup 2+}, Cl{sup -} concentrations) from the field's producers. From the data-set we show that some of the ions behave almost as ideal sea-water tracers, i.e. without sorption to the matrix, ion-exchange with the matrix or scale-formation with other ions in the formation water. Moreover, the dataset shows that ion concentrations in pure formation-water vary according to formation. This information can be used to allocate produced water to specific water-producing zones in commingled production. Based on an evaluation of the applicability of the available data, one inorganic component, SO{sub 4}{sup 2}, is used as a natural seawater tracer. Introducing SO{sub 4}{sup 2} as a natural tracer in a tracer simulation has revealed a potential for improvements of the reservoir model. By tracking the injected seawater it was possible to identify underestimated fault lengths in the reservoir model. The demonstration confirms that geochemical data are valuable additional information for reservoir characterization, and shows that integration of geochemical data into reservoir simulation procedures can improve reservoir simulation models. (author)

  16. The conceptualization model problem—surprise

    Science.gov (United States)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  17. Geochemical modeling of the nuclear-waste repository system. A status report

    International Nuclear Information System (INIS)

    Deutsch, W.J.

    1980-12-01

    The primary objective of the geochemical modeling task is to develop an understanding of the waste-repository geochemical system and provide a valuable tool for estimating future states of that system. There currently exists a variety of computer codes which can be used in geochemical modeling studies. Some available codes contain the framework for simulating a natural chemical system and estimating, within limits, the response of that system to environmental changes. By data-base enhancement and code development, this modeling technique can be even more usefully applied to a nuclear-waste repository. In particular, thermodynamic data on elements not presently in the data base but identified as being of particular hazard in the waste-repository system, need to be incorporated into the code to estimate the near-field as well as the far-field reactions during a hypothetical breach. A reaction-path-simulation code, which estimates the products of specific rock/water reactions, has been tested using basalt and ground water. Results show that the mass-transfer capabilities of the code will be useful in chemical-evolution studies and scenario analyses. The purpose of this report is to explain the status of geochemical modeling as it currently applies to the chemical system of a hypothetical nuclear-waste repository in basalt and to present the plan proposed for further developmet and application

  18. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    International Nuclear Information System (INIS)

    Ellefsen, Karl J.; Smith, David B.

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples. - Highlights: • We evaluate a clustering procedure by applying it to geochemical data. • The procedure generates a hierarchy of clusters. • Different levels of the hierarchy show geochemical processes at different spatial scales. • The clustering method is Bayesian finite mixture modeling. • Model parameters are estimated with Hamiltonian Monte Carlo sampling.

  19. Conceptual models of information processing

    Science.gov (United States)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  20. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    International Nuclear Information System (INIS)

    Kalin, R.M.

    1996-01-01

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs

  1. Basic concepts and formulations for isotope geochemical modelling of groundwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, R M [The Queen` s University, Belfast, Northern Ireland (United Kingdom). Dept. of Civil Engineering

    1996-10-01

    This chapter describes the basic chemical principles and methodologies for geochemical models and their use in the field of isotope hydrology. Examples of calculation procedures are given on actual field data. Summary information on available PC software for geochemical modeling is included. The specific software, NETPATH, which can be used for chemical speciation, mass balance and isotope balance along a flow path in groundwater systems, is discussed at some length with an illustrative example of its application to field data. (author). Refs, 14 figs, 15 tabs.

  2. Geochemical modelling. Pt.1, Pt.2

    International Nuclear Information System (INIS)

    Skytte Jensen, B.; Jensen, H.; Pearson, F.J.

    1992-01-01

    This work is carried out under cost-sharing contract with the European Atomic Energy Community in the framework of its fourth research programme on radioactive waste management and radioactive waste storage. This final report is subdivided into two parts. In the first part, JENSEN, a computer code for the computation of chemical equilibria in aqueous systems, describes the structure, function and use of a new geochemical computer program intended for PC's. The program, which is written in Turbo Pascal, version 4, is fundamentally similar to most other geochemical programs, but combines in one program several of the merits these programs have. The intention has been to make an advanced program, which also should be user friendly and fast, and to attain this several new algorithms have been developed and implemented. The program has a built-in database mainly based on the CHEMVAL compilation containing data for 395 soluble species and 149 minerals. The program can find equilibria in the presence of all or some of these soluble species, under conditions or fixed or floating pH and / or Redox potential. The program by itself eliminates a bad guess of a candidate for precipitation. In the present version, the program can identify which minerals and how much of them there will be formed when equilibrium is established. In the second part, LITTLE JOE, an expert system to support geochemical modelling, describes the construction of a minor expert system for use in the evaluation of analytical data for the composition of ground waters from limestone formation. Although the example given is rather limited in scope, the application of the expert system for the evaluation of the analytical data clearly demonstrates the mature expert knowledge imbedded in the system which is contrasted with the uncritical acceptance of analytical or theoretical data. With the overall neglect of ion-exchange and the formation of solid solutions in geochemical calculations, geochemistry is

  3. Comparison of thermodynamic databases used in geochemical modelling

    International Nuclear Information System (INIS)

    Chandratillake, M.R.; Newton, G.W.A.; Robinson, V.J.

    1988-05-01

    Four thermodynamic databases used by European groups for geochemical modelling have been compared. Thermodynamic data for both aqueous species and solid species have been listed. When the values are directly comparable any differences between them have been highlighted at two levels of significance. (author)

  4. Geochemical sensitivity analysis: Identification of important geochemical parameters for performance assessment studies

    International Nuclear Information System (INIS)

    Siegel, M.; Guzowski, R.; Rechard, R.; Erickson, K.

    1986-01-01

    The EPA Standard for geologic disposal of high level waste requires demonstration that the cumulative discharge of individual radioisotopes over a 10,000 year period at points 5 kilometers from the engineered barrier system will not exceed the limits prescribed in 40 CFR Part 191. The roles of the waste package, engineered facility, hydrogeology and geochemical processes in limiting radionuclide releases all must be considered in calculations designed to assess compliance of candidate repositories with the EPA Standard. In this talk, they will discuss the geochemical requirements of calculations used in these compliance assessments. In addition, they will describe the complementary roles of (1) simple models designed to bound the radionuclide discharge over the widest reasonable range of geochemical conditions and scenarios and (2) detailed geochemical models which can provide insights into the actual behavior of the radionuclides in the ground water. Finally, they will discuss development of sensitivity/uncertainty techniques designed to identify important site-specific geochemical parameters and processes using data from a basalt formation

  5. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  6. Hydrologic-geochemical modeling needs for nuclear waste disposal systems performance assessments from the NEA perspective

    International Nuclear Information System (INIS)

    Muller, A.B.

    1986-01-01

    Credible scenarios for releases from high level nuclear waste repositories require radionuclides to be mobilized and transported by ground water. The capability to predict ground water flow velocities and directions as well as radionuclide concentrations in the flow system as a function of time are essential for assessing the performance of disposal systems. The first of these parameters can be estimated by hydrologic modeling while the concentrations can be predicted by geochemical modeling. The complementary use of empirical and phenomenological approaches to the geochemical modeling, when effectively coupled with hydrologic models can provide the tools needed for realistic performance assessment. An overview of the activities of the NEA in this area, with emphasis on the geochemical data bases (ISIRS for Ksub(d) data and the thermochemical data base critical review), rock/water interaction modeling (code development and short-courses), and hydrologic-geochemical code coupling (workshop and in-house activities) is presented in this paper from the perspective of probabilistic risk assessment needs. (author)

  7. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    Science.gov (United States)

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  8. Field-based tests of geochemical modeling codes: New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  9. Geochemical modelling of the weathering zone of the 'Mina Fe' U deposit (Spain): A natural analogue for nuclear spent fuel alteration and stability processes in radwaste disposal

    International Nuclear Information System (INIS)

    Arcos, D.; Perez del Villar, L.; Bruno, J.; Domenech, C.

    2008-01-01

    The 'Mina Fe' U deposit (Salamanca, Spain) has been studied in the context of Enresa's programme for U-mine sites restoration and also as a natural analogue for processes in high-level nuclear waste (HLNW) geological disposal. The investigations encompassed an array of geoscience disciplines, such as structural geology, mineralogy, hydrogeology and elemental and isotopic geochemistry and hydrogeochemistry of the site. Based on the obtained results, a conceptual mineralogical and geochemical model was performed integrating the main geochemical processes occurring at the site: the interaction between oxidised and slightly acidic water with pyrite, pitchblende, calcite and dolomite, as essential minerals of the U fracture-filling mineralisation, and hydroxyapatite from the host rock, as the main source of P. This conceptual model has been tested in a systematic numerical model, which includes the main kinetic (pyrite and pitchblende dissolution) and equilibrium processes (carbonate mineral dissolution, and goethite, schoepite and autunite secondary precipitation). The results obtained from the reactive-transport model satisfactorily agree with the conceptual model previously established. The assumption of the precipitation of coffinite as a secondary mineral in the system cannot be correctly evaluated due to the lack of hydrochemical data from the reducing zone of the site and valid thermodynamic and kinetic data for this hydrated U(IV)-silicate. This precipitation can also be hampered by the probable existence of dissolved U(IV)-organic matter and/or uranyl carbonate complexes, which are thermodynamically stable under the alkaline and reducing conditions that prevail in the reducing zone of the system. Finally, the intense downwards oxic and acidic alteration in the upper part of the system is of no relevance for the performance assessment of a HLNW disposal. However, the acidic and oxidised conditions are quickly buffered to neutral-alkaline and reducing at very

  10. Conceptual IT model

    Science.gov (United States)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  11. Overview of geochemical modeling needs for nuclear waste management

    International Nuclear Information System (INIS)

    Isherwood, D.J.; Wolery, T.J.

    1985-01-01

    Geochemical modeling needs for nuclear waste management are discussed with an emphasis on data base development and computer code. Other areas for future research include: precipitation kinetics, fixed fugacity, sorption, glasslt. slashwater interactions, redox disequilibrium and kinetics, radiolysis, solid solutions, and isotopic fractionation. 15 references

  12. Conceptualizing Telehealth in Nursing Practice: Advancing a Conceptual Model to Fill a Virtual Gap.

    Science.gov (United States)

    Nagel, Daniel A; Penner, Jamie L

    2016-03-01

    Increasingly nurses use various telehealth technologies to deliver health care services; however, there has been a lag in research and generation of empirical knowledge to support nursing practice in this expanding field. One challenge to generating knowledge is a gap in development of a comprehensive conceptual model or theoretical framework to illustrate relationships of concepts and phenomena inherent to adoption of a broad range of telehealth technologies to holistic nursing practice. A review of the literature revealed eight published conceptual models, theoretical frameworks, or similar entities applicable to nursing practice. Many of these models focus exclusively on use of telephones and four were generated from qualitative studies, but none comprehensively reflect complexities of bridging nursing process and elements of nursing practice into use of telehealth. The purpose of this article is to present a review of existing conceptual models and frameworks, discuss predominant themes and features of these models, and present a comprehensive conceptual model for telehealth nursing practice synthesized from this literature for consideration and further development. This conceptual model illustrates characteristics of, and relationships between, dimensions of telehealth practice to guide research and knowledge development in provision of holistic person-centered care delivery to individuals by nurses through telehealth technologies. © The Author(s) 2015.

  13. Development of thermodynamic databases and geochemical/transport models for prediction of long-term radionuclide migration (Germany)

    International Nuclear Information System (INIS)

    Kienzler, B.

    2000-01-01

    The isolation capacity of a repository system for radionuclides is described by geochemical modeling. The models for interpretation of experimental findings and for long-term extrapolation of experimental results are based on thermodynamic approaches. The geochemical models include dissolution reactions of waste forms, the evolution of the geochemical milieu, interactions of radionuclides with constituents of the groundwater (brines) and the precipitation of new solid phases. Reliable thermodynamic data, understanding of radionuclide complexation in aqueous multi-electrolyte solutions at the relevant ionic strength and knowledge on the formation of pure and mixed solids and on sorption processes are urgently needed for such model calculations. (author)

  14. Conceptual modelling of human resource evaluation process

    Directory of Open Access Journals (Sweden)

    Negoiţă Doina Olivia

    2017-01-01

    Full Text Available Taking into account the highly diverse tasks which employees have to fulfil due to complex requirements of nowadays consumers, the human resource within an enterprise has become a strategic element for developing and exploiting products which meet the market expectations. Therefore, organizations encounter difficulties when approaching the human resource evaluation process. Hence, the aim of the current paper is to design a conceptual model of the aforementioned process, which allows the enterprises to develop a specific methodology. In order to design the conceptual model, Business Process Modelling instruments were employed - Adonis Community Edition Business Process Management Toolkit using the ADONIS BPMS Notation. The conceptual model was developed based on an in-depth secondary research regarding the human resource evaluation process. The proposed conceptual model represents a generic workflow (sequential and/ or simultaneously activities, which can be extended considering the enterprise’s needs regarding their requirements when conducting a human resource evaluation process. Enterprises can benefit from using software instruments for business process modelling as they enable process analysis and evaluation (predefined / specific queries and also model optimization (simulations.

  15. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21 Consulting S.L., Barcelona (Spain))

    2010-12-15

    /condensation process /Karnland et al. 2009/. Once bentonite is water saturated, the transport of solutes is driven by diffusion. Although Donnan equilibrium /Birgersson and Karnland 2009/ and anion exclusion /Muurinen et al. 2004/ are able to influence the mobility of chloride in the bentonite buffer, under the high temperature LOT A2 test conditions, measured data seem to indicate a relatively low influence of these processes on the transport of chloride. For this reason, the transport of chloride has been modelled taking into account advective, dispersive and diffusive fluxes that are believed to have occurred in the LOT A2 test. Numerical results were conducted at fixed thermal gradients for both heated and non-heated bentonite based on the temperatures recorded during the experiment for both heated and non-heated bentonite. The computed evolution of the bentonite saturation indicates that, within approximately one year, the bentonite blocks located at the depth of the heater are completely water saturated which agrees with measured data. The simulated transport of chloride is also in good agreement with data measured at the end of the LOT A2 test for the two cases considered, reflecting the reliability of the conceptual model defined for the LOT A2 test. Based on the geochemical data obtained at end of the LOT A2 test, and on previous modelling exercises /Arcos et al. 2006/, the main geochemical processes that are believed to have developed during the LOT A2 test are: (i) precipitation/dissolution of carbonate, sulphate and silica minerals and, (ii) cation exchange in the montmorillonite interlayer. Numerical results predict the dissolution - precipitation of anhydrite, calcite and silica in the heated bentonite in agreement with data measured at the end of the LOT A2 test

  16. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    International Nuclear Information System (INIS)

    Sena, Clara; Salas, Joaquin; Arcos, David

    2010-12-01

    /condensation process /Karnland et al. 2009/. Once bentonite is water saturated, the transport of solutes is driven by diffusion. Although Donnan equilibrium /Birgersson and Karnland 2009/ and anion exclusion /Muurinen et al. 2004/ are able to influence the mobility of chloride in the bentonite buffer, under the high temperature LOT A2 test conditions, measured data seem to indicate a relatively low influence of these processes on the transport of chloride. For this reason, the transport of chloride has been modelled taking into account advective, dispersive and diffusive fluxes that are believed to have occurred in the LOT A2 test. Numerical results were conducted at fixed thermal gradients for both heated and non-heated bentonite based on the temperatures recorded during the experiment for both heated and non-heated bentonite. The computed evolution of the bentonite saturation indicates that, within approximately one year, the bentonite blocks located at the depth of the heater are completely water saturated which agrees with measured data. The simulated transport of chloride is also in good agreement with data measured at the end of the LOT A2 test for the two cases considered, reflecting the reliability of the conceptual model defined for the LOT A2 test. Based on the geochemical data obtained at end of the LOT A2 test, and on previous modelling exercises /Arcos et al. 2006/, the main geochemical processes that are believed to have developed during the LOT A2 test are: (i) precipitation/dissolution of carbonate, sulphate and silica minerals and, (ii) cation exchange in the montmorillonite interlayer. Numerical results predict the dissolution - precipitation of anhydrite, calcite and silica in the heated bentonite in agreement with data measured at the end of the LOT A2 test

  17. National Identity: Conceptual models, discourses and political change

    DEFF Research Database (Denmark)

    Harder, Peter

    2014-01-01

    of conceptual models or discourses. This is especially important in cases that involve conflictive political issues such as national and ethnic identity. The article reports on a historical project with a linguistic dimension in my department (PI Stuart Ward, cf. Ward 2004), which aims to throw light......Cognitive Linguistics has demonstrated the applicability of a conceptual approach to the understanding of political issues, cf. Lakoff (2008) and many others. From a different perspective, critical discourse analysis has approached political concepts with a focus on issues involving potentially...... divisive features such as race, class, gender and ethnic identity. Although discourses are not identical to conceptual models, conceptual models are typically manifested in discourse, and discourses are typically reflections of conceptualizations, a theme explored e.g. in Hart and Lukes (2007). As argued...

  18. Quantification of source-term profiles from near-field geochemical models

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-01-01

    A geochemical model of the near-field is described which quantitatively treats the processes of engineered barrier degradation, buffering of aqueous chemistry by solid phases, nuclide solubilization and transport through the near-field and release to the far-field. The radionuclide source-terms derived from this model are compared with those from a simpler model used for repository safety analysis. 10 refs., 2 figs., 2 tabs

  19. Field-based tests of geochemical modeling codes usign New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1994-06-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  20. OWL references in ORM conceptual modelling

    Science.gov (United States)

    Matula, Jiri; Belunek, Roman; Hunka, Frantisek

    2017-07-01

    Object Role Modelling methodology is the fact-based type of conceptual modelling. The aim of the paper is to emphasize a close connection to OWL documents and its possible mutual cooperation. The definition of entities or domain values is an indispensable part of the conceptual schema design procedure defined by the ORM methodology. Many of these entities are already defined in OWL documents. Therefore, it is not necessary to declare entities again, whereas it is possible to utilize references from OWL documents during modelling of information systems.

  1. Geochemical modelling of the weathering zone of the 'Mina Fe' U deposit (Spain): A natural analogue for nuclear spent fuel alteration and stability processes in radwaste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D. [AMPHOS XXI Consulting S.L., Passeig de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain)], E-mail: david.arcos@amphos21.com; Perez del Villar, L. [CIEMAT, Dpto.de Medio Ambiente, Avda, Complutense 22, 28040 Madrid (Spain); Bruno, J.; Domenech, C. [AMPHOS XXI Consulting S.L., Passeig de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain)

    2008-04-15

    The 'Mina Fe' U deposit (Salamanca, Spain) has been studied in the context of Enresa's programme for U-mine sites restoration and also as a natural analogue for processes in high-level nuclear waste (HLNW) geological disposal. The investigations encompassed an array of geoscience disciplines, such as structural geology, mineralogy, hydrogeology and elemental and isotopic geochemistry and hydrogeochemistry of the site. Based on the obtained results, a conceptual mineralogical and geochemical model was performed integrating the main geochemical processes occurring at the site: the interaction between oxidised and slightly acidic water with pyrite, pitchblende, calcite and dolomite, as essential minerals of the U fracture-filling mineralisation, and hydroxyapatite from the host rock, as the main source of P. This conceptual model has been tested in a systematic numerical model, which includes the main kinetic (pyrite and pitchblende dissolution) and equilibrium processes (carbonate mineral dissolution, and goethite, schoepite and autunite secondary precipitation). The results obtained from the reactive-transport model satisfactorily agree with the conceptual model previously established. The assumption of the precipitation of coffinite as a secondary mineral in the system cannot be correctly evaluated due to the lack of hydrochemical data from the reducing zone of the site and valid thermodynamic and kinetic data for this hydrated U(IV)-silicate. This precipitation can also be hampered by the probable existence of dissolved U(IV)-organic matter and/or uranyl carbonate complexes, which are thermodynamically stable under the alkaline and reducing conditions that prevail in the reducing zone of the system. Finally, the intense downwards oxic and acidic alteration in the upper part of the system is of no relevance for the performance assessment of a HLNW disposal. However, the acidic and oxidised conditions are quickly buffered to neutral-alkaline and

  2. Geochemical modelling of bentonite porewater in high-level waste repositories

    Science.gov (United States)

    Wersin, Paul

    2003-03-01

    The description of the geochemical properties of the bentonite backfill that serves as engineered barrier for nuclear repositories is a central issue for perfomance assessment since these play a large role in determining the fate of contaminants released from the waste. In this study the porewater chemistry of bentonite was assessed with a thermodynamic modelling approach that includes ion exchange, surface complexation and mineral equilibrium reactions. The focus was to identify the geochemical reactions controlling the major ion chemistry and acid-base properties and to explore parameter uncertainties specifically at high compaction degrees. First, the adequacy of the approach was tested with two distinct surface complexation models by describing recent experimental data performed at highly varying solid/liquid ratios and ionic strengths. The results indicate adequate prediction of the entire experimental data set. Second, the modelling was extended to repository conditions, taking as an example the current Swiss concept for high-level waste where the compacted bentonite backfill is surrounded by argillaceous rock. The main reactions controlling major ion chemistry were found to be calcite equilibrium and concurrent Na-Ca exchange reactions and de-protonation of functional surface groups. Third, a sensitivity analysis of the main model parameters was performed. The results thereof indicate a remarkable robustness of the model with regard to parameter uncertainties. The bentonite system is characterised by a large acid-base buffering capacity which leads to stable pH-conditions. The uncertainty in pH was found to be mainly induced by the pCO 2 of the surrounding host rock. The results of a simple diffusion-reaction model indicate only minor changes of porewater composition with time, which is primarily due to the geochemical similarities of the bentonite and the argillaceous host rock. Overall, the results show the usefulness of simple thermodynamic models to

  3. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  4. A Structural Equation Model of Conceptual Change in Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  5. GEOCHEMICAL AND ISOTOPIC CONSTRAINTS ON GROUND-WATER FLOW DIRECTIONS, MIXING AND RECHARGE AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    A. Meijer; E. Kwicklis

    2000-01-01

    This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report Development Plan entitled ''Geochemical and Isotopic Constraints on Groundwater Flow Directions, Mixing and Recharge at Yucca Mountain'' (CRWMS M and O 1999a). As stated in this Development Plan, the purpose of the work is to provide an analysis of groundwater recharge rates, flow directions and velocities, and mixing proportions of water from different source areas based on groundwater geochemical and isotopic data. The analysis of hydrochemical and isotopic data is intended to provide a basis for evaluating the hydrologic system at Yucca Mountain independently of analyses based purely on hydraulic arguments. Where more than one conceptual model for flow is possible, based on existing hydraulic data, hydrochemical and isotopic data may be useful in eliminating some of these conceptual models. This report documents the use of geochemical and isotopic data to constrain rates and directions of groundwater flow near Yucca Mountain and the timing and magnitude of recharge in the Yucca Mountain vicinity. The geochemical and isotopic data are also examined with regard to the possible dilution of groundwater recharge from Yucca Mountain by mixing with groundwater downgradient from the potential repository site. Specifically, the primary tasks of this report, as listed in the AMR Development Plan (CRWMS M and O 1999a), consist of the following: (1) Compare geochemical and isotopic data for perched and pore water in the unsaturated zone with similar data from the saturated zone to determine if local recharge is present in the regional groundwater system; (2) Determine the timing of the recharge from stable isotopes such as deuterium ( 2 H) and oxygen-18 ( 18 O), which are known to vary over time as a function of climate, and from radioisotopes such as carbon-14 ( 14 C) and chlorine-36 ( 36 Cl); (3) Determine the magnitude of recharge from relatively

  6. Modeling of geochemical processes in the submarine discharge zone of hydrothermal solutions

    Directory of Open Access Journals (Sweden)

    С. М. Судариков

    2017-06-01

    Full Text Available The paper reviews the main methods and analyzes modeling results for geochemical processes in the submarine discharge zone of hydrothermal solutions of mid-ocean ridges. Initial data for modeling have been obtained during several marine expeditions, including Russian-French expedition SERPENTINE on the research vessel «Pourquoi Рas?» (2007. Results of field observations, laboratory experiments and theoretical developments are supported by the analysis of regression model of mixing between hydrothermal solutions and sea water. Verification of the model has been carried out and the quality of chemical analysis has been assessed; degree and character of participation of solution components in the hydrothermal process have been defined; the content of end members has been calculated basing on reverse forecasting of element concentration, depending on regression character; data for thermodynamic modeling have been prepared. Regression model of acid-base properties and chloridity of mineralizing thermal springs confirms adequacy of the model of double-diffusive convection for forming the composition of hydrothermal solutions.  Differentiation of solutions according to concentrations of chloride-ion, depending on temperature and pH indicator within this model, is associated with phase conversions and mixing of fluids from two convection cells, one of which is a zone of brine circulation. In order to carry out computer thermodynamic modeling, hydro-geochemical and physicochemical models of hydrothermal discharge zone have been created. Verification of the model has been carried out basing on changes of Mn concentration in the hydrothermal plume. Prevailing forms of Mn migration in the plume are Mn2+, MnCl+, MnCl2. Two zones have been identified in the geochemical structure of the plume: 1 high-temperature zone (350-100 °С with prevalence of chloride complexes – ascending plume; 2 low-temperature zone (100-2 °С, where predominant form of

  7. Role of conceptual models in nuclear power plant operation

    International Nuclear Information System (INIS)

    Williams, M.D.; Moran, T.P.; Brown, J.S.

    1982-01-01

    A crucial objective in plant operation (and perhaps licensing) ought to be to explicitly train operators to develop, perhaps with computer aids, robust conceptual models of the plants they control. The question is whether we are actually able to develop robust conceptual models and validate their robustness. Cognitive science is just beginning to come to grips with this problem. This paper describes some of the evolving technology for building conceptual models of physical mechanisms and some of the implications of such models in the context of nuclear power plant operation

  8. COSMO: a conceptual framework for service modelling and refinement

    NARCIS (Netherlands)

    Quartel, Dick; Steen, Maarten W.A.; Pokraev, S.; van Sinderen, Marten J.

    This paper presents a conceptual framework for service modelling and refinement, called the COSMO (COnceptual Service MOdelling) framework. This framework provides concepts to model and reason about services, and to support operations, such as composition and discovery, which are performed on them

  9. Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer

    NARCIS (Netherlands)

    Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.

    2014-01-01

    This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed

  10. Overview of geochemical modeling needs for nuclear waste management

    International Nuclear Information System (INIS)

    Isherwood, D.; Wolery, T.

    1984-01-01

    Research needs include, but are not limited to: measurement of basic thermodynamic data at elevated temperatures for species identified by modelers as potentially important; evaluation of substances which control or limit precipitation and/or nucleation kinetics; sorption studies specifically designed to provide data needed for modeling. This includes the rate of sorption, desorption, and the characterization of the solid and aqueous phases; site-mixing models and thermodynamic data for secondary minerals that form solid solutions; the development of standard techniques for measuring rate laws for precipitation and dissolution kinetics; and measurement of rate laws describing redox kinetics, dissolution, and precipitation involving aqueous species and solid phases of interest to geochemical modelers

  11. Educational game models: conceptualization and evaluation ...

    African Journals Online (AJOL)

    Educational game models: conceptualization and evaluation. ... The Game Object Model (GOM), that marries educational theory and game design, forms the basis for the development of the Persona Outlining ... AJOL African Journals Online.

  12. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    Science.gov (United States)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  13. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    Science.gov (United States)

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  14. Quantitative study of Portland cement hydration by X-Ray diffraction/Rietveld analysis and geochemical modeling

    Science.gov (United States)

    Coutelot, F.; Seaman, J. C.; Simner, S.

    2017-12-01

    In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.

  15. Conceptual models in the field of library catalogues

    Directory of Open Access Journals (Sweden)

    Marija Petek

    2000-01-01

    Full Text Available The publishing world is changing quickly and so must also bibliographic control. It is tirne to re-examine cataloguing rules and MARC formats. This can be done by the method of conceptual modelling. Some conceptual models are presented; an IFLA study on the functional requirements for bibliographic records is described in detail.

  16. Geochemical modelling of the sorption of tetravalent radioelements

    International Nuclear Information System (INIS)

    Bond, K.A.; Tweed, C.J.

    1991-05-01

    The results of an experimental study of the sorption of a range of tetravalent radioelements, plutonium (IV), tin (IV), thorium(IV) and uranium(IV), onto clay at pH8 and pH11 have been successfully simulated using a triple layer sorption model. The model has been incorporated into HARPHRQ, a geochemical program based on PHREEQE. The model has been parameterised using data for sorption onto ferric oxyhydroxide and goethite. The effects of hydroxycarboxylic acids on the sorption process have also been investigated experimentally. It was generally observed that in the presence of 2x10 -3 M gluconate, sorption was reduced by up two orders of magnitude. The model has satisfactorily simulated these lower sorptivities, through assuming competing sorption and complexation reactions. This work, therefore, further confirms the need to take account of such organic materials in safety assessment modelling. (author)

  17. Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes

    Science.gov (United States)

    Stockstill-Cahill, K. R.; Peplowski, P. N.

    2018-05-01

    PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.

  18. Template for Conceptual Model Construction: Model Review and Corps Applications

    National Research Council Canada - National Science Library

    Henderson, Jim E; O'Neil, L. J

    2007-01-01

    .... The template will expedite conceptual model construction by providing users with model parameters and potential model components, building on a study team's knowledge and experience, and promoting...

  19. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    Science.gov (United States)

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  20. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  1. Compilation of kinetic data for geochemical calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.; Savage, D.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

    2000-01-01

    Kinetic data, including rate constants, reaction orders and activation energies, are compiled for 34 hydrolysis reactions involving feldspars, sheet silicates, zeolites, oxides, pyroxenes and amphiboles, and for similar reactions involving calcite and pyrite. The data are compatible with a rate law consistent with surface reaction control and transition-state theory, which is incorporated in the geochemical software package EQ3/6 and GWB. Kinetic data for the reactions noted above are strictly compatible with the transition-state rate law only under far-from-equilibrium conditions. It is possible that the data are conceptually consistent with this rate law under both far-from-equilibrium and near-to-equilibrium conditions, but this should be confirmed whenever possible through analysis of original experimental results. Due to limitations in the availability of kinetic data for mine-water reactions, and in order to simplify evaluations of geochemical models of groundwater evolution, it is convenient to assume local-equilibrium in such models whenever possible. To assess whether this assumption is reasonable, a modeling approach accounting for couple fluid flow and water-rock interaction is described that can be use to estimate spatial and temporal scale of local equilibrium. The approach is demonstrated for conditions involving groundwater flow in fractures at JNC's Kamaishi in-situ tests site, and is also used to estimate the travel time necessary for oxidizing surface waters to migrate to the level of a HLW repository in crystalline rock. The question of whether local equilibrium is a reasonable assumption must be addressed using an appropriate modeling approach. To be appropriate for conditions at the Kamaishi site using the modeling approach noted above, the fracture fill must closely approximate a porous mine, groundwater flow must be purely advective and diffusion of solutes across the fracture-host rock boundary must not occur. Moreover, the mineralogical and

  2. Research needs for coupling geochemical and flow models for nuclear waste isolation

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.

    1985-01-01

    An overview of coupling geochemical and flow models for nuclear waste disposal is presented and research needs are discussed. Topics considered include, chemical effects on flow, fluid and rock properties, pressure effects, water-rock equilibria, and reaction kinetics. 25 references

  3. Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-06-01

    Assessing the suitability of Yucca Mtn., NV as a potential repository for high-level nuclear waste requires the means to simulate ion-exchange behavior of zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs or Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites

  4. Achievements and Problems of Conceptual Modelling

    Science.gov (United States)

    Thalheim, Bernhard

    Database and information systems technology has substantially changed. Nowadays, content management systems, (information-intensive) web services, collaborating systems, internet databases, OLAP databases etc. have become buzzwords. At the same time, object-relational technology has gained the maturity for being widely applied. Conceptual modelling has not (yet) covered all these novel topics. It has been concentrated for more than two decades around specification of structures. Meanwhile, functionality, interactivity and distribution must be included into conceptual modelling of information systems. Also, some of the open problems that have been already discussed in 1987 [15, 16] still remain to be open. At the same time, novel models such as object-relational models or XML-based models have been developed. They did not overcome all the problems but have been sharpening and extending the variety of open problems. The open problem presented are given for classical areas of database research, i.e., structuring and functionality. The entire are of distribution and interaction is currently an area of very intensive research.

  5. Guide for developing conceptual models for ecological risk assessments

    International Nuclear Information System (INIS)

    Suter, G.W., II.

    1996-05-01

    Ecological conceptual models are the result of the problem formulation phase of an ecological risk assessment, which is an important component of the Remedial Investigation process. They present hypotheses of how the site contaminants might affect the site ecology. The contaminant sources, routes, media, routes, and endpoint receptors are presented in the form of a flow chart. This guide is for preparing the conceptual models; use of this guide will standardize the models so that they will be of high quality, useful to the assessment process, and sufficiently consistent so that connections between sources of exposure and receptors can be extended across operable units (OU). Generic conceptual models are presented for source, aquatic integrator, groundwater integrator, and terrestrial OUs

  6. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-01-01

    Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist

  7. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  8. Conceptual Model and Numerical Approaches for Unsaturated Zone Flow and Transport

    International Nuclear Information System (INIS)

    H.H. Liu

    2004-01-01

    The purpose of this model report is to document the conceptual and numerical models used for modeling unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This work was planned in ''Technical Work Plan for: Unsaturated Zone Flow Model and Analysis Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.5, 2.1.1, 2.1.2 and 2.2.1). The conceptual and numerical modeling approaches described in this report are mainly used for models of UZ flow and transport in fractured, unsaturated rock under ambient conditions. Developments of these models are documented in the following model reports: (1) UZ Flow Model and Submodels; (2) Radionuclide Transport Models under Ambient Conditions. Conceptual models for flow and transport in unsaturated, fractured media are discussed in terms of their applicability to the UZ at Yucca Mountain. The rationale for selecting the conceptual models used for modeling of UZ flow and transport is documented. Numerical approaches for incorporating these conceptual models are evaluated in terms of their representation of the selected conceptual models and computational efficiency; and the rationales for selecting the numerical approaches used for modeling of UZ flow and transport are discussed. This report also documents activities to validate the active fracture model (AFM) based on experimental observations and theoretical developments. The AFM is a conceptual model that describes the fracture-matrix interaction in the UZ of Yucca Mountain. These validation activities are documented in Section 7 of this report regarding use of an independent line of evidence to provide additional confidence in the use of the AFM in the UZ models. The AFM has been used in UZ flow and transport models under both ambient and thermally disturbed conditions. Developments of these models are documented

  9. Assessing alternative conceptual models of fracture flow

    International Nuclear Information System (INIS)

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  10. Probabilistic, sediment-geochemical parameterisation of the groundwater compartment of the Netherlands for spatially distributed, reactive transport modelling

    Science.gov (United States)

    Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper

    2017-04-01

    Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the

  11. Geochemical modeling of magmatic gas scrubbing

    Directory of Open Access Journals (Sweden)

    B. Gambardella

    2005-06-01

    Full Text Available The EQ3/6 software package, version 7.2 was successfully used to model scrubbing of magmatic gas by pure water at 0.1 MPa, in the liquid and liquid-plus-gas regions. Some post-calculations were necessary to account for gas separation effects. In these post-calculations, redox potential was considered to be fixed by precipitation of crystalline a-sulfur, a ubiquitous and precocious process. As geochemical modeling is constrained by conservation of enthalpy upon water-gas mixing, the enthalpies of the gas species of interest were reviewed, adopting as reference state the liquid phase at the triple point. Our results confirm that significant emissions of highly acidic gas species (SO2(g, HCl(g, and HF(g are prevented by scrubbing, until dry conditions are established, at least locally. Nevertheless important outgassing of HCl(g can take place from acid, HCl-rich brines. Moreover, these findings support the rule of thumb which is generally used to distinguish SO2-, HCl-, and HF-bearing magmatic gases from SO2-, HCl-, and HF-free hydrothermal gases.

  12. Geochemical Modeling Of F Area Seepage Basin Composition And Variability

    International Nuclear Information System (INIS)

    Millings, M.; Denham, M.; Looney, B.

    2012-01-01

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin

  13. Geochemical modelling of CO2-water-rock interactions for carbon storage : data requirements and outputs

    International Nuclear Information System (INIS)

    Kirste, D.

    2008-01-01

    A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.

  14. ADOxx Modelling Method Conceptualization Environment

    Directory of Open Access Journals (Sweden)

    Nesat Efendioglu

    2017-04-01

    Full Text Available The importance of Modelling Methods Engineering is equally rising with the importance of domain specific languages (DSL and individual modelling approaches. In order to capture the relevant semantic primitives for a particular domain, it is necessary to involve both, (a domain experts, who identify relevant concepts as well as (b method engineers who compose a valid and applicable modelling approach. This process consists of a conceptual design of formal or semi-formal of modelling method as well as a reliable, migratable, maintainable and user friendly software development of the resulting modelling tool. Modelling Method Engineering cycle is often under-estimated as both the conceptual architecture requires formal verification and the tool implementation requires practical usability, hence we propose a guideline and corresponding tools to support actors with different background along this complex engineering process. Based on practical experience in business, more than twenty research projects within the EU frame programmes and a number of bilateral research initiatives, this paper introduces the phases, corresponding a toolbox and lessons learned with the aim to support the engineering of a modelling method. ”The proposed approach is illustrated and validated within use cases from three different EU-funded research projects in the fields of (1 Industry 4.0, (2 e-learning and (3 cloud computing. The paper discusses the approach, the evaluation results and derived outlooks.

  15. The structure of conceptual models with application to the Aespoe HRL project

    International Nuclear Information System (INIS)

    Olsson, Olle; Baeckblom, G.; Wikberg, P.; Gustafson, G.; Stanfors, R.

    1994-05-01

    In performance assessment a sequence of models is used to describe the function of the geological barrier. This report proposes a general structure and terminology for description of these models. A model description consists of the following components: A conceptual model which defines the geometric framework in which the problem is solved, the dimensions of the modelled volume, descriptions of the processes included in the model, and the boundary conditions; Data which are introduced into the conceptual model, and a mathematical or numerical tool used to produce output data. Contradictory to common practice in geohydrologic modelling it is proposed that the term conceptual model is restricted to define in what way the model is constructed, and that this is separated from any specific application of the conceptual model. Hence, the conceptual model should not include any specific data. 5 refs, 2 figs, 4 tabs

  16. Conceptual geohydrological model of the separations area

    International Nuclear Information System (INIS)

    Root, R.W.; Marine, I.W.

    1977-01-01

    Subsurface drilling in and around the Separations Areas (F-Area and H-Area of the Savannah River Plant) is providing detailed information for a conceptual model of the geology and hydrology underlying these areas. This conceptual model will provide the framework needed for a mathematical model of groundwater movement beneath these areas. Existing information substantiates the presence of two areally extensive clay layers and several discontinuous clay and sandy-clay layers. These layers occur in and between beds of clayey and silty sand that make up most of the subsurface material. Within these sand beds are geologic units of differing hydraulic conductivity. For the present scale of the model, the subsurface information is considered adequate in H-Area, but additional drilling is planned in F-Area

  17. Validation of the Continuum of Care Conceptual Model for Athletic Therapy

    Directory of Open Access Journals (Sweden)

    Mark R. Lafave

    2015-01-01

    Full Text Available Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete’s return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT. The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1 heading descriptors; (2 the order of the model; (3 the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline.

  18. Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity.

    Science.gov (United States)

    Marson, Daniel

    2016-09-01

    The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Simulation of radionuclide retardation at Yucca Mountain using a stochastic mineralogical/geochemical model

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Campbell, K.; Eggert, K.; Travis, B.J.

    1990-01-01

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain. Several different realizations of spatially distributed sorption coefficients are used to study the sensitivity of radionuclide migration. These sorption coefficients are assumed to be functions of the mineralogic assemblages of the underlying rock. The simulations were run with TRACRN 1 , a finite-difference porous flow and radionuclide transport code developed for the Yucca Mountain Project. Approximately 30,000 nodes are used to represent the unsaturated and saturated zones underlying the repository in three dimensions. Transport calculations for a representative radionuclide cation, 135 Cs, and anion, 99 Tc, are presented. Calculations such as these will be used to study the effectiveness of the site's geochemical barriers at a mechanistic level and to help guide the geochemical site characterization program. The preliminary calculations should be viewed as a demonstration of the modeling methodology rather than as a study of the effectiveness of the geochemical barriers. The model provides a method for examining the integration of flow scenarios with transport and retardation processes as currently understood for the site. The effects on transport of many of the processes thought to be active at Yucca Mountain may be examined using this approach. 11 refs., 14 figs., 1 tab

  20. Tumor heterogeneity and progression: conceptual foundations for modeling.

    Science.gov (United States)

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  1. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis

    Science.gov (United States)

    Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan

    2016-07-01

    Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.

  2. Conceptual Model of Dynamic Geographic Environment

    Directory of Open Access Journals (Sweden)

    Martínez-Rosales Miguel Alejandro

    2014-04-01

    Full Text Available In geographic environments, there are many and different types of geographic entities such as automobiles, trees, persons, buildings, storms, hurricanes, etc. These entities can be classified into two groups: geographic objects and geographic phenomena. By its nature, a geographic environment is dynamic, thus, it’s static modeling is not sufficient. Considering the dynamics of geographic environment, a new type of geographic entity called event is introduced. The primary target is a modeling of geographic environment as an event sequence, because in this case the semantic relations are much richer than in the case of static modeling. In this work, the conceptualization of this model is proposed. It is based on the idea to process each entity apart instead of processing the environment as a whole. After that, the so called history of each entity and its spatial relations to other entities are defined to describe the whole environment. The main goal is to model systems at a conceptual level that make use of spatial and temporal information, so that later it can serve as the semantic engine for such systems.

  3. WATEQ3 geochemical model: thermodynamic data for several additional solids

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.

    1982-09-01

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG 0 /sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs

  4. Appliance of geochemical engineering in radioactive waste disposal

    International Nuclear Information System (INIS)

    Li Shuang; Zhang Chengjiang; Ni Shijun; Li Kuanliang

    2008-01-01

    The basic foundation of applying geochemical engineering to control environment, common engineering models of disposal radioactive waste and the functions of the engineering barriers are introduced in this paper. The authors take the geochemical engineering barrier materiel research of a radioactive waste repository as an example to explain the appliance of geochemical engineering in the disposal of radioactive waste. And the results show that it can enhance the security of the nuclear waste repository if we use geochemical engineering barrier. (authors)

  5. Driver Performance Model: 1. Conceptual Framework

    National Research Council Canada - National Science Library

    Heimerl, Joseph

    2001-01-01

    ...'. At the present time, no such comprehensive model exists. This report discusses a conceptual framework designed to encompass the relationships, conditions, and constraints related to direct, indirect, and remote modes of driving and thus provides a guide or 'road map' for the construction and creation of a comprehensive driver performance model.

  6. The ACTIVE conceptual framework as a structural equation model

    Science.gov (United States)

    Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.

    2018-01-01

    Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be

  7. The ACTIVE conceptual framework as a structural equation model.

    Science.gov (United States)

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from

  8. Conceptual Models as Tools for Communication Across Disciplines

    Directory of Open Access Journals (Sweden)

    Marieke Heemskerk

    2003-12-01

    Full Text Available To better understand and manage complex social-ecological systems, social scientists and ecologists must collaborate. However, issues related to language and research approaches can make it hard for researchers in different fields to work together. This paper suggests that researchers can improve interdisciplinary science through the use of conceptual models as a communication tool. The authors share lessons from a workshop in which interdisciplinary teams of young scientists developed conceptual models of social-ecological systems using data sets and metadata from Long-Term Ecological Research sites across the United States. Both the process of model building and the models that were created are discussed. The exercise revealed that the presence of social scientists in a group influenced the place and role of people in the models. This finding suggests that the participation of both ecologists and social scientists in the early stages of project development may produce better questions and more accurate models of interactions between humans and ecosystems. Although the participants agreed that a better understanding of human intentions and behavior would advance ecosystem science, they felt that interdisciplinary research might gain more by training strong disciplinarians than by merging ecology and social sciences into a new field. It is concluded that conceptual models can provide an inspiring point of departure and a guiding principle for interdisciplinary group discussions. Jointly developing a model not only helped the participants to formulate questions, clarify system boundaries, and identify gaps in existing data, but also revealed the thoughts and assumptions of fellow scientists. Although the use of conceptual models will not serve all purposes, the process of model building can help scientists, policy makers, and resource managers discuss applied problems and theory among themselves and with those in other areas.

  9. Can Bayesian Belief Networks help tackling conceptual model uncertainties in contaminated site risk assessment?

    DEFF Research Database (Denmark)

    Troldborg, Mads; Thomsen, Nanna Isbak; McKnight, Ursula S.

    different conceptual models may describe the same contaminated site equally well. In many cases, conceptual model uncertainty has been shown to be one of the dominant sources for uncertainty and is therefore essential to account for when quantifying uncertainties in risk assessments. We present here......A key component in risk assessment of contaminated sites is the formulation of a conceptual site model. The conceptual model is a simplified representation of reality and forms the basis for the mathematical modelling of contaminant fate and transport at the site. A conceptual model should...... a Bayesian Belief Network (BBN) approach for evaluating the uncertainty in risk assessment of groundwater contamination from contaminated sites. The approach accounts for conceptual model uncertainty by considering multiple conceptual models, each of which represents an alternative interpretation of the site...

  10. Predictive geochemical mapping using environmental correlation

    International Nuclear Information System (INIS)

    Wilford, John; Caritat, Patrice de; Bui, Elisabeth

    2016-01-01

    The distribution of chemical elements at and near the Earth's surface, the so-called critical zone, is complex and reflects the geochemistry and mineralogy of the original substrate modified by environmental factors that include physical, chemical and biological processes over time. Geochemical data typically is illustrated in the form of plan view maps or vertical cross-sections, where the composition of regolith, soil, bedrock or any other material is represented. These are primarily point observations that frequently are interpolated to produce rasters of element distributions. Here we propose the application of environmental or covariate regression modelling to predict and better understand the controls on major and trace element geochemistry within the regolith. Available environmental covariate datasets (raster or vector) representing factors influencing regolith or soil composition are intersected with the geochemical point data in a spatial statistical correlation model to develop a system of multiple linear correlations. The spatial resolution of the environmental covariates, which typically is much finer (e.g. ∼90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10-10,000 km 2 ), carries over to the predictions. Therefore the derived predictive models of element concentrations take the form of continuous geochemical landscape representations that are potentially much more informative than geostatistical interpolations. Environmental correlation is applied to the Sir Samuel 1:250,000 scale map sheet in Western Australia to produce distribution models of individual elements describing the geochemical composition of the regolith and exposed bedrock. As an example we model the distribution of two elements – chromium and sodium. We show that the environmental correlation approach generates high resolution predictive maps that are statistically more accurate and effective than ordinary kriging and inverse distance weighting interpolation

  11. Process generalization in conceptual models

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    In conceptual modeling, the universe of discourse (UoD) is divided into classes which have a taxonomic structure. The classes are usually defined in terms of attributes (all objects in a class share attribute names) and possibly of events. For enmple, the class of employees is the set of objects to

  12. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  13. GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling

    International Nuclear Information System (INIS)

    Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas

    2015-01-01

    Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and

  14. Alligator Rivers Analogue project. Geochemical Data Bases

    International Nuclear Information System (INIS)

    Bennett, D.G.; Read, D.

    1992-01-01

    The Koongarra uranium deposit in the Northern Territory of Australia is being studied to evaluate the processes involved in the geochemical alteration of the ore body and the formation of the uranium dispersion fan. A broad range of research is being undertaken into the geochemistry and hydrology of the site with the aim of understanding the transport of radionuclides through the system. During the project a range of geochemical and hydrogeochemical models have been developed to account for measured data from the site and with which to predict site evolution. The majority of these models are based on the premise of thermodynamic chemical equilibrium and employ fundamental thermodynamic data to characterise the chemistry of the system. From the differences which exist between the thermodynamic data bases (Appendices I and II) it is possible to gain a view of the level of uncertainty associated with thermodynamic data in each set of calculations. This report gives a brief introduction to the geochemical processes underlying the models, and details the equations used to quantify the more common of these processes (e.g. aqueous speciation and mineral solubility). A description is given of the computer codes (EQ3/6, PHREEQE, MINTEQ) most commonly used during the project for geochemical modelling. Their key features are highlighted and comparisons made. It is concluded that the degree of uncertainty in geochemical modelling studies arising as a result of using one code rather than another is relatively insignificant when compared to that related to differences in the underlying data bases. 73 refs., 3 figs

  15. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    Science.gov (United States)

    Charlton, Scott R.; Parkhurst, David L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.

  16. A Proposed Conceptual Model of Military Medical Readiness

    National Research Council Canada - National Science Library

    Van Hall, Brian M

    2007-01-01

    .... The basis for the proposed conceptual model builds on common and accepted latent variable and theoretical modeling techniques proposed by healthcare scholars, organizational theorists, mathematical...

  17. Extension of the EQ3/6 computer codes to geochemical modeling of brines

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.J.; Wolery, T.J.

    1984-10-23

    Recent modifications to the EQ3/6 geochemical modeling software package provide for the use of Pitzer's equations to calculate the activity coefficients of aqueous species and the activity of water. These changes extend the range of solute concentrations over which the codes can be used to dependably calculate equilibria in geochemical systems, and permit the inclusion of ion pairs, complexes, and undissociated acids and bases as explicit component species in the Pitzer model. Comparisons of calculations made by the EQ3NR and EQ6 compuer codes with experimental data confirm that the modifications not only allow the codes to accurately evaluate activity coefficients in concentrated solutions, but also permit prediction of solubility limits of evaporite minerals in brines at 25/sup 0/C and elevated temperatures. Calculations for a few salts can be made at temperatures up to approx. 300/sup 0/C, but the temperature range for most electrolytes is constrained by the availability of requisite data to values less than or equal to 100/sup 0/C. The implementation of Pitzer's equations in EQ3/6 allows application of these codes to problems involving calculation of geochemical equilibria in brines; such as evaluation of the chemical environment which might be anticipated for nuclear waste canisters located in a salt repository. 26 references, 3 figures, 1 table.

  18. Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.

    Science.gov (United States)

    Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J

    2017-05-01

    Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth

  19. Principles of the landscape-geochemical and radio-ecological mapping of the territory polluted by technogenic radionuclides

    International Nuclear Information System (INIS)

    Sobotovich, Eh.V.; Shestopalov, V.M.; Pushkarev, A.V.; Mezhdunardonyj Nauchnyj Tsentr' Institut Chernobylya' Ukrainskogo Otdeleniya Vsemirnoj Laboratorii, Kiev; Institut Sel'skokhozyajstvennoj Radiologii, Akademii Agrarnykh Nauk Ukrainy, Kiev; Gosudarstvennoe Geologicheskoe Predpriyatie 'Geoprogn oz' Goskomiteta Geologii i Ispol'zovaniya Nedr Ukrainy, Kiev; AN Ukrainskoj SSR, Kiev

    1993-01-01

    The conceptual and methodical principles of radio-ecological mapping of the territory polluted by radionuclides as a result of catastrophe at the Chernobyl Nuclear Power Plant are reported. The radio-ecological mapping is based on the landscape-geochemical mapping of the polluted territory which is regarded as a unique natural-technogenic geochemical province. The ecological risk for the inhabitants residing here depends both on the degree and nature of pollution by radionuclides and on the landscape-geochemical factors influencing the radionuclide redistribution and secondary accumulation in different biosphere elements. It is substantiated as necessary to compile three types of radio-ecological maps which are of different purpose: control over the economic activities, protection of the population viability, the prediction of radio-ecological situation and the informing of population

  20. Analysis of Subjective Conceptualizations Towards Collective Conceptual Modelling

    DEFF Research Database (Denmark)

    Glückstad, Fumiko Kano; Herlau, Tue; Schmidt, Mikkel Nørgaard

    2013-01-01

    This work is conducted as a preliminary study for a project where individuals' conceptualizations of domain knowledge will thoroughly be analyzed across 150 subjects from 6 countries. The project aims at investigating how humans' conceptualizations differ according to different types of mother la...

  1. Developing rural palliative care: validating a conceptual model.

    Science.gov (United States)

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  2. Geochemical isotope compartment model of the nitrogen cycle

    International Nuclear Information System (INIS)

    Weise, G.; Wetzel, K.; Stiehl, G.

    1981-01-01

    A model of the global cycle of nitrogen and its isotopes is described. It takes into account geochemical reservoirs (nitrogen in magmatic metamorphic, and sedimentary rocks and in the atmosphere) and the nitrogen exchange between magmatic rocks and the outer mantle, the transition of nitrogen exchange between sedimentary rocks and the atmosphere. With the aid of the mathematical formalisms of the compartment theory and on the basis of all available delta 11 N values assumptions regarding the isotope effects in forming these nitrogen fluxes data have been obtained on the degree of the nitrogen exchange between the earth crust and the outer mantle and on other nitrogen fluxes characterizing the global nitrogen cycle. (author)

  3. Geologic, geochemical, microbiologic, and hydrologic characterization at the In Situ Redox Manipulation Test Site

    International Nuclear Information System (INIS)

    Vermeul, V.R.; Teel, S.S.; Amonette, J.E.

    1995-07-01

    This report documents results from characterization activities at the In Situ Redox Manipulation (ISRM) Field Test Site which is located within the 100-HR-3 Operable Unit of the US Department of Energy's (DOE's) Hanford Site in Richland, Washington. Information obtained during hydrogeologic characterization of the site included sediment physical properties, geochemical properties, microbiologic population data, and aquifer hydraulic properties. The purpose of obtaining this information was to improve the conceptual understanding of the hydrogeology beneath the ISRM test site and provide detailed, site specific hydrogeologic parameter estimates. The resulting characterization data will be incorporated into a numerical model developed to simulate the physical and chemical processes associated with the field experiment and aid in experiment design and interpretation

  4. EQ3/6 geochemical modeling task plan for Nevada Nuclear Waste Storage Investigations (NNWSI)

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, D.; Wolery, T.

    1984-04-10

    This task plan outlines work needed to upgrade the EQ3/6 geochemical code and expand the supporting data bases to allow the Nevada Nuclear Waste Storage Investigations (NNWSI) to model chemical processes important to the storage of nuclear waste in a tuff repository in the unsaturated zone. The plan covers the fiscal years 1984 to 1988. The scope of work includes the development of sub-models in the EQ3/6 code package for studying the effects of sorption, precipitation kinetics, redox disequilibrium, and radiolysis on radionuclide speciation and solubility. The work also includes a glass/water interactions model and a geochemical flow model which will allow us to study waste form leaching and reactions involving the waste package. A special emphasis is placed on verification of new capabilities as they are developed and code documentation to meet NRC requirements. Data base expansion includes the addition of elements and associated aqueous species and solid phases that are specific to nuclear waste (e.g., actinides and fission products) and the upgrading and documentation of the thermodynamic data for other species of interest.

  5. Non-monotonic reasoning in conceptual modeling and ontology design: A proposal

    CSIR Research Space (South Africa)

    Casini, G

    2013-06-01

    Full Text Available -1 2nd International Workshop on Ontologies and Conceptual Modeling (Onto.Com 2013), Valencia, Spain, 17-21 June 2013 Non-monotonic reasoning in conceptual modeling and ontology design: A proposal Giovanni Casini1 and Alessandro Mosca2 1...

  6. Conceptual language models for domain-specific retrieval

    NARCIS (Netherlands)

    Meij, E.; Trieschnigg, D.; de Rijke, M.; Kraaij, W.

    2010-01-01

    Over the years, various meta-languages have been used to manually enrich documents with conceptual knowledge of some kind. Examples include keyword assignment to citations or, more recently, tags to websites. In this paper we propose generative concept models as an extension to query modeling within

  7. Toolkit for Conceptual Modeling (TCM): User's Guide and Reference

    NARCIS (Netherlands)

    Dehne, F.; Wieringa, Roelf J.

    1997-01-01

    The Toolkit for Conceptual Modeling (TCM) is a suite of graphical editors for a number of graphical notation systems that are used in software specification methods. The notations can be used to represent the conceptual structure of the software - hence the name of the suite. This manual describes

  8. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-01-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments

  9. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  10. A Conceptual Model of Military Recruitment

    Science.gov (United States)

    2009-10-01

    Hiring Expectancies – Expectancy (VIE) Theory ( Vroom , 1996) states individuals choose among a set of employment alternatives on the basis of the...A Conceptual Model of Military Recruitment Presented at NATO Technical Course HFM 180 – Strategies to Address Recruiting and Retention Issues in...the Military Fariya Syed October, 2009 Based on A Proposed Model Of Military Recruitment (Schreurs & Syed, 2007) Report Documentation Page

  11. Modeling Background Radiation in our Environment Using Geochemical Data

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L.; Marsac, Kara [University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Hausrath, Elisabeth [Uniiversity of Nevada, Las Vegas; Haber, Daniel [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  12. An integrated geological, geochemical, and geophysical investigation of uranium metallogenesis in selected granitic plutons of the Miramichi Anticlinorium, New Brunswick

    International Nuclear Information System (INIS)

    Hassan, H.H.; McAllister, A.L.

    1992-01-01

    Integrated geological, geochemical, and geophysical data for the post-tectonic granitic rocks of the North Pole, Burnthill, Dungarvon, Trout Brook, and Rocky Brook plutons and surrounding areas were examined to assess their potential for uranium mineralization. Geological, geochemical, and geophysical criteria that are thought to be useful guides for uranium exploration were also established for the host granites. The granitic plutons were emplaced discordantly, late in the tectonomagmatic sequence and at shallow depths within the metasedimentary rocks of the Miramichi Anticlinorium. Geochemically, the host granites are highly evolved (Si0 2 > 75 wt. %), peraluminous and have strong similarities with ilmenite-series 'S-type' and 'A-type' granitoids. Uranium occurrences are spatially and perhaps temporally associated with late-phase differentiates of the plutons where elevated levels of other lithophile elements such as Sn, W, Mo, and F were also detected. Geophysically, the granitic plutons are associated with distinctively high aeroradiometric eU, eTh, and K anomalies that coincide with strong negative Bouguer anomalies and low magnetic values. Conceptual models involving magmatic and hydrothermal processes have been adopted to explain the concentration of uranium and associated metals in the granitic plutons

  13. Preliminary modelling study of geochemical interactions between a used-fuel disposal vault and the surrounding geosphere

    International Nuclear Information System (INIS)

    McMurry, J.

    1995-10-01

    In the Environmental Impact Statement (EIS) and the related documents that describe the Canadian nuclear fuel waste disposal concept (AECL 1994), it has been assumed that a disposal vault would have no significant geochemical impact on the geosphere, and so no such effects were included explicitly in the postclosure assessment model. The purpose of this study was to estimate the general magnitude and significance of vault-induced geochemical changes over an expected range of temperatures. The results of the preliminary modelling are used broadly to evaluate the implications of these changes for the migration of radionuclides through the geosphere. The geochemical modelling program PHREEQE was used to calculate the changes in mineral solubilities that would result from the transfer of aqueous species from the vault to the geosphere or that would result from groundwater-granite interactions enhanced by vault-derived elevated temperatures. Twelve representative vault water compositions, derived from predicted interactions with buffer material and backfill over a range of temperatures up to 95 deg C, were used in the modelling. For the conditions modelled it was determined that the interactions of the geosphere with dissolved vault constituents, and the relatively modest maximum increase in groundwater temperature produced by a vault, would have a limited impact on the geosphere. The conclusions of this preliminary study are qualified by some of the simplifying assumptions used in the modelling. More realistic modelling of natural systems requires a more detailed representation of water-solid interactions with a variety of vault materials at elevated temperatures. (author) 48 refs., 13 tabs, 4 figs

  14. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    Science.gov (United States)

    Parkhurst, David L.; Wissmeier, Laurin

    2015-01-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  15. Towards a Model of Technology Adoption: A Conceptual Model Proposition

    Science.gov (United States)

    Costello, Pat; Moreton, Rob

    A conceptual model for Information Communication Technology (ICT) adoption by Small Medium Enterprises (SMEs) is proposed. The research uses several ICT adoption models as its basis with theoretical underpinning provided by the Diffusion of Innovation theory and the Technology Acceptance Model (TAM). Taking an exploratory research approach the model was investigated amongst 200 SMEs whose core business is ICT. Evidence from this study demonstrates that these SMEs face the same issues as all other industry sectors. This work points out weaknesses in SMEs environments regarding ICT adoption and suggests what they may need to do to increase the success rate of any proposed adoption. The methodology for development of the framework is described and recommendations made for improved Government-led ICT adoption initiatives. Application of the general methodology has resulted in new opportunities to embed the ethos and culture surrounding the issues into the framework of new projects developed as a result of Government intervention. A conceptual model is proposed that may lead to a deeper understanding of the issues under consideration.

  16. Study of the coupling of geochemical models based on thermodynamic equilibrium with models of component transfer as solutions in porous media or fractures

    International Nuclear Information System (INIS)

    Coudrain-Ribstein, A.

    1985-01-01

    This study is a contribution of analyses possibilities of modelling the transfer of components in the underground taking into account complexes geochemical phenomena. In the first part, the aim and the methodology of existing codes are presented. The transfer codes describe with a great precision the physical phenomena of transport but they are based on a very simple conceptualisation of the geochemical phenomena of retention by the rock. The geochemical models are interested by a stable unity of volume. They allow to compute the equilibrium distribution of the components between the chemical species of the solution, and the solid and gaseous phases. They use important thermodynamic data bases corresponding to each possible reaction. To sum up the situation about the geochemical codes in Europe and United States, a list of about thirty codes describe their method and potentialities. The mathematical analysis of the different methods used in both types of codes is presented. Then, the principles of a modelisation associating the potentialities of the transport codes and the geochemical codes are discussed. It is not possible to think of a simple coupling. A general code must be established on the bases of the existing codes but also on new concepts and under new constraints. In such studies one must always deal with the problem of the reactions kinetics. When the velocity of the reactions is big enough versus the velocity of transport processes, the assumption of local geochemical equilibrium can be retained. A general code would be very cumbersome, expensive and difficult to use. The results would be difficult to analyse and exploit. On the other hand, for each case study, a detailed analysis can point out many computing simplifications without simplifying the concepts [fr

  17. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  18. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    Science.gov (United States)

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  19. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak; Troldborg, Mads; McKnight, Ursula S.

    2012-01-01

    site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level...... the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We...... propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same...

  20. Conceptual Model of Quantities, Units, Dimensions, and Values

    Science.gov (United States)

    Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar

    2011-01-01

    JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.

  1. Geology and Conceptual Model of the Domuyo Geothermal Area, Patagonia, Argentina

    Science.gov (United States)

    Fragoso, A. S.; Ferrari, L.; Norini, G.

    2017-12-01

    Cerro Domuyo is the highest mountain in Patagonia and its western slope is characterized by thermal springs with boiling fluids as well as silicic domes and pyroclastic deposits that suggest the existence of a geothermal reservoir. Early studies proposed that the thermal springs were fault-controlled and the reservoir was located in a graben bounded by E-W normal faults. A recent geochemical study estimated a temperature of 220ºC for the fluid reservoir and a thermal energy release of 1.1 GW, one of the world largest advective heat flux from a continental volcanic center. We carried out a geologic survey and U-Pb and U-Th geochronologic study to elaborate an updated conceptual model for the Domuyo geothermal area. Our study indicates that the Domuyo Volcanic Complex (DVC) is a dome complex overlying an older, Middle Miocene to Pliocene volcanic sequence widely exposed to the southwest and to the north, which in turn covers: 1) the Jurassice-Early Creteacoeus Neuquen marine sedimentary succession, 2) silicic ignimbrites dated at 186.7 Ma and, 3) the Paleozoic metamorphic basement intruded by 288 Ma granite bodies. These pre-Cenozoic successions are involved in dominantly N-S trending folds and thrust faults later displaced by E-W striking normal faults with a right lateral component of motion that underlie the DVC. The volcanic cycle forming the DVC is distinctly bimodal with the emplacement of massive silicic domes but also less voluminous olivine basalts on its southern slope. The central dome underwent a major collapse that produced 0.35 km3 of ash and block flow and associated pyroclastic flows that filled the valley to the southwest up to 30 km from the source. This was followed by a voluminous effusive activity that formed silicic domes dated between 254-322 Ky, which is inferred to overlain a partially molten silicic magma chamber. Integrating the geologic model with magnetotelluric and gravity surveys we developed a conceptual model of the geothermal system

  2. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  3. Towards methodical modelling: Differences between the structure and output dynamics of multiple conceptual models

    Science.gov (United States)

    Knoben, Wouter; Woods, Ross; Freer, Jim

    2016-04-01

    Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.

  4. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    Science.gov (United States)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared

  5. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona.

    Science.gov (United States)

    Marsac, Kara E; Burnley, Pamela C; Adcock, Christopher T; Haber, Daniel A; Malchow, Russell L; Hausrath, Elisabeth M

    2016-12-01

    This study compares high resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (National Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-30

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  7. Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research

    Science.gov (United States)

    Fried, Leanne; Mansfield, Caroline; Dobozy, Eva

    2015-01-01

    This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…

  8. A unifying conceptual model of entrepreneurial management

    DEFF Research Database (Denmark)

    Senderovitz, Martin

    This article offers a systematic analysis and synthesis of the area of entrepreneurial management. Through a presentation of two main perspectives on entrepreneurial management and a newly developed unifying conceptual entrepreneurial management model, the paper discusses a number of theoretical...

  9. Using Annotated Conceptual Models to Derive Information System Implementations

    Directory of Open Access Journals (Sweden)

    Anthony Berglas

    1994-05-01

    Full Text Available Producing production quality information systems from conceptual descriptions is a time consuming process that employs many of the world's programmers. Although most of this programming is fairly routine, the process has not been amenable to simple automation because conceptual models do not provide sufficient parameters to make all the implementation decisions that are required, and numerous special cases arise in practice. Most commercial CASE tools address these problems by essentially implementing a waterfall model in which the development proceeds from analysis through design, layout and coding phases in a partially automated manner, but the analyst/programmer must heavily edit each intermediate stage. This paper demonstrates that by recognising the nature of information systems, it is possible to specify applications completely using a conceptual model that has een annotated with additional parameters that guide automated implementation. More importantly, it will be argued that a manageable number of annotations are sufficient to implement realistic applications, and techniques will be described that enabled the author's commercial CASE tool, the Intelligent Develope to automated implementation without requiring complex theorem proving technology.

  10. Menthor Editor: An Ontology-Driven Conceptual Modeling Platform

    NARCIS (Netherlands)

    Moreira, João Luiz; Sales, Tiago Prince; Guerson, John; Braga, Bernardo F.B; Brasileiro, Freddy; Sobral, Vinicius

    2016-01-01

    The lack of well-founded constructs in ontology tools can lead to the construction of non-intended models. In this demonstration we present the Menthor Editor, an ontology-driven conceptual modelling platform which incorporates the theories of the Unified Foundational Ontology (UFO). We illustrate

  11. Modelling in Primary School: Constructing Conceptual Models and Making Sense of Fractions

    Science.gov (United States)

    Shahbari, Juhaina Awawdeh; Peled, Irit

    2017-01-01

    This article describes sixth-grade students' engagement in two model-eliciting activities offering students the opportunity to construct mathematical models. The findings show that students utilized their knowledge of fractions including conceptual and procedural knowledge in constructing mathematical models for the given situations. Some students…

  12. Geochemical databases. Part 1. Pmatch: a program to manage thermochemical data. Part 2. The experimental validation of geochemical computer models

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.; Avis, J.D.; Nilsson, K.; Skytte Jensen, B.

    1993-01-01

    This work is carried out under cost-sharing contract with European Atomic Energy Community in the framework of its programme on Management and Storage of Radioactive Wastes. Part 1: PMATCH, A Program to Manage Thermochemical Data, describes the development and use of a computer program, by means of which new thermodynamic data from literature may be referenced to a common frame and thereby become internally consistent with an existing database. The report presents the relevant thermodynamic expressions and their use in the program is discussed. When there is not sufficient thermodynamic data available to describe a species behaviour under all conceivable conditions, the problems arising are thoroughly discussed and the available data is handled by approximating expressions. Part II: The Experimental Validation of Geochemical Computer models are the results of experimental investigations of the equilibria established in aqueous suspensions of mixtures of carbonate minerals (Calcium, magnesium, manganese and europium carbonates) compared with theoretical calculations made by means of the geochemical JENSEN program. The study revealed that the geochemical computer program worked well, and that its database was of sufficient validity. However, it was observed that experimental difficulties could hardly be avoided, when as here a gaseous component took part in the equilibria. Whereas the magnesium and calcium carbonates did not demonstrate mutual solid solubility, this produced abnormal effects when manganese and calcium carbonates were mixed resulting in a diminished solubility of both manganese and calcium. With tracer amounts of europium added to a suspension of calcite in sodium carbonate solutions long term experiments revealed a transition after 1-2 months, whereby the tracer became more strongly adsorbed onto calcite. The transition is interpreted as the nucleation and formation of a surface phase incorporating the 'species' NaEu(Co 3 ) 2

  13. Conceptual Commitments of the LIDA Model of Cognition

    Science.gov (United States)

    Franklin, Stan; Strain, Steve; McCall, Ryan; Baars, Bernard

    2013-06-01

    Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses "conceptual commitments" and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

  14. Conceptual models for cumulative risk assessment.

    Science.gov (United States)

    Linder, Stephen H; Sexton, Ken

    2011-12-01

    In the absence of scientific consensus on an appropriate theoretical framework, cumulative risk assessment and related research have relied on speculative conceptual models. We argue for the importance of theoretical backing for such models and discuss 3 relevant theoretical frameworks, each supporting a distinctive "family" of models. Social determinant models postulate that unequal health outcomes are caused by structural inequalities; health disparity models envision social and contextual factors acting through individual behaviors and biological mechanisms; and multiple stressor models incorporate environmental agents, emphasizing the intermediary role of these and other stressors. The conclusion is that more careful reliance on established frameworks will lead directly to improvements in characterizing cumulative risk burdens and accounting for disproportionate adverse health effects.

  15. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.

    Science.gov (United States)

    Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M

    2016-11-01

    To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.

  16. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  17. Adsorption of phosphate from municipal effluents using cryptocrystalline magnesite: complementing laboratory results with geochemical modelling

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-11-01

    Full Text Available chemisorption. Adsorption isotherms fitted well to Langmuir adsorption isotherm than Freundlich adsorption isotherms, demonstrating monolayer adsorption. PHREEQC geochemical model showed Mg(sub3)(PO(sub4))(sub2) and MgHPO(sub4):3H(sub2)O as the phosphatebearing...

  18. Combining sediment fingerprinting and a conceptual model for erosion and sediment transfer to explore sediment sources in an Alpine catchment

    Science.gov (United States)

    Costa, A.; Stutenbecker, L.; Anghileri, D.; Bakker, M.; Lane, S. N.; Molnar, P.; Schlunegger, F.

    2017-12-01

    In Alpine basins, sediment production and transfer is increasingly affected by climate change and human activities, specifically hydropower exploitation. Changes in sediment sources and pathways significantly influence basin management, biodiversity and landscape evolution. We explore the dynamics of sediment sources in a partially glaciated and highly regulated Alpine basin, the Borgne basin, by combining geochemical fingerprinting with the modelling of erosion and sediment transfer. The Borgne basin in southwest Switzerland is composed of three main litho-tectonic units, which we characterised following a tributary-sampling approach from lithologically characteristic sub-basins. We analysed bulk geochemistry using lithium borate fusion coupled with ICP-ES, and we used it to discriminate the three lithologic sources using statistical methods. Finally, we applied a mixing model to estimate the relative contributions of the three sources to the sediment sampled at the outlet. We combine results of the sediment fingerprinting with simulations of a spatially distributed conceptual model for erosion and transport of fine sediment. The model expresses sediment erosion by differentiating the contributions of erosional processes driven by erosive rainfall, snowmelt, and icemelt. Soil erodibility is accounted for as function of land-use and sediment fluxes are linearly convoluted to the outlet by sediment transfer rates for hillslope and river cells, which are a function of sediment connectivity. Sediment connectivity is estimated on the basis of topographic-hydraulic connectivity, flow duration associated with hydropower flow abstraction and permanent storage in hydropower reservoirs. Sediment fingerprinting at the outlet of the Borgne shows a consistent dominance (68-89%) of material derived from the uppermost, highly glaciated reaches, while contributions of the lower part (10-25%) and middle part (1-16%), where rainfall erosion is predominant, are minor. This result is

  19. Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models

    Science.gov (United States)

    Delgado, Cesar

    2015-04-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic

  20. A Conceptual Framework of Business Model Emerging Resilience

    OpenAIRE

    Goumagias, Nik; Fernandes, Kiran; Cabras, Ignazio; Li, Feng; Shao, Jianhao; Devlin, Sam; Hodge, Victoria Jane; Cowling, Peter Ivan; Kudenko, Daniel

    2016-01-01

    In this paper we introduce an environmentally driven conceptual framework of Business Model change. Business models acquired substantial momentum in academic literature during the past decade. Several studies focused on what exactly constitutes a Business Model (role model, recipe, architecture etc.) triggering a theoretical debate about the Business Model’s components and their corresponding dynamics and relationships. In this paper, we argue that for Business Models as cognitive structures,...

  1. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  2. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2.

    Science.gov (United States)

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article is to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of papers, the authors consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. They specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type to the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure, and which characteristics of the problem might be most easily represented in a specific modeling method, are presented. Each section contains a number of recommendations that were iterated among the authors, as well as the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making.

  3. Geochemical Testing And Model Development - Residual Tank Waste Test Plan

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Connelly, M.P.

    2010-01-01

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  4. The relation between geochemical characteristics and landslide in Hungtsaiping area, Nantou, Taiwan

    Science.gov (United States)

    Lin, P.; Tsai, L.

    2009-12-01

    Hungtsaiping is located at the south bank of the Yonglu stream, Chungliao Village of Nantou County, central Taiwan. Hungtsaiping landslide was triggered by the Chi-Chi earthquake (Mw=7.6) occurring on September 20, 1999 UTC near the town of Chi-Chi in Nantou County, central Taiwan. Coping with the geological and geomorphologic investigations, this study makes an attempt to find the relation between geochemical characteristics and landslide in Hungtsaiping area. Water samples were collected from spring waters, creeks, ponds, groundwater and the Yonglu stream once every month from May 2008 to May 2009. Oxygen and hydrogen stable isotopic, ionic concentrations, as well as electrical conductivity and pH value were analyzed. The results indicate that calcium and magnesium bicarbonate-rich water was found on the top and the middle part of the slope. On the other hand, sodium bicarbonate-rich water as well as exceptionally high sulfate concentration was found on the foot of the slope, the sulfate content decreased with increasing elevations until the middle part of slope. A conceptual model of flow process and water origin in Hungtsaiping landslide was established by summarizing the features of hydrogeochemical analyses and the profiles in this study. Keywords: landslide, geochemical characteristics, isotope, hydrochemistry. Fig. 1 The sampling locations of Hungtsaiping landslide. Fig. 2 Isogram: the concentration of sulfate in May 2008 in Hungtsaiping area.

  5. Arsenic mobilization in an oxidizing alkaline groundwater: Experimental studies, comparison and optimization of geochemical modeling parameters

    International Nuclear Information System (INIS)

    Hafeznezami, Saeedreza; Lam, Jacquelyn R.; Xiang, Yang; Reynolds, Matthew D.; Davis, James A.; Lin, Tiffany; Jay, Jennifer A.

    2016-01-01

    Arsenic (As) mobilization and contamination of groundwater affects millions of people worldwide. Progress in developing effective in-situ remediation schemes requires the incorporation of data from laboratory experiments and field samples into calibrated geochemical models. In an oxidizing aquifer where leaching of high pH industrial waste from unlined surface impoundments led to mobilization of naturally occurring As up to 2 mg L −1 , sequential extractions of solid phase As as well as, batch sediment microcosm experiments were conducted to understand As partitioning and solid-phase sorptive and buffering capacity. These data were combined with field data to create a series of geochemical models of the system with modeling programs PHREEQC and FITEQL. Different surface complexation modeling approaches, including component additivity (CA), generalized composite (GC), and a hybrid method were developed, compared and fitted to data from batch acidification experiments to simulate potential remediation scenarios. Several parameters strongly influence the concentration of dissolved As including pH, presence of competing ions (particularly phosphate) and the number of available sorption sites on the aquifer solids. Lowering the pH of groundwater to 7 was found to have a variable, but limited impact (<63%) on decreasing the concentration of dissolved As. The models indicate that in addition to lowering pH, decreasing the concentration of dissolved phosphate and/or increasing the number of available sorption sites could significantly decrease the As solubility to levels below 10 μg L −1 . The hybrid and GC modeling results fit the experimental data well (NRMSE<10%) with reasonable effort and can be implemented in further studies for validation. - Highlights: • Samples were collected from an oxidizing aquifer where high pH waste has led to mobilization of naturally occurring As. • Three surface complexation modeling approaches were used in modeling adsorption

  6. [Impact of small-area context on health: proposing a conceptual model].

    Science.gov (United States)

    Voigtländer, S; Mielck, A; Razum, O

    2012-11-01

    Recent empirical studies stress the impact of features related to the small-area context on individual health. However, so far there exists no standard explanatory model that integrates the different kinds of such features and that conceptualises their relation to individual characteristics of social inequality. A review of theoretical publications on the relationship between social position and health as well as existing conceptual models for the impact of features related to the small-area context on health was undertaken. In the present article we propose a conceptual model for the health impact of the small-area context. This model conceptualises the location of residence as one dimension of social inequality that affects health through the resources as well as stressors which are inherent in the small-area context. The proposed conceptual model offers an orientation for future empirical studies and can serve as a basis for further discussions concerning the health relevance of the small-area context. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

    2007-07-30

    This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow

  8. MARKET ENTRY STRATEGIES TO EMERGING MARKETS: A CONCEPTUAL MODEL OF TURNKEY PROJECT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Bistra Vassileva

    2016-11-01

    Full Text Available The main purpose of the paper is to analyse the international market entry strategies in the light of globalisation processes and to propose a conceptual model of turnkey projects as market entry mode. The specific research objectives are as follows: 1. to develop an integrated framework of the turnkey marketing process as a conceptual model; 2. to analyse BRICS countries as potential host countries for turnkey projects implementation; 3. to assess potential implications of proposed conceptual model for global market entry decisions.

  9. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  10. Conceptual models in man-machine design verification

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1985-01-01

    The need for systematic methods for evaluation of design concepts for new man-machine systems has been rapidly increasing in consequence of the introduction of modern information technology. Direct empirical methods are difficult to apply when functions during rare conditions and support of operator decisions during emergencies are to be evaluated. In this paper, the problems of analytical evaluations based on conceptual models of the man-machine interaction are discussed, and the relations to system design and analytical risk assessment are considered. Finally, a conceptual framework for analytical evaluation is proposed, including several domains of description: 1. The problem space, in the form of a means-end hierarchy; 2. The structure of the decision process; 3. The mental strategies and heuristics used by operators; 4. The levels of cognitive control and the mechanisms related to human errors. Finally, the need for models representing operators' subjective criteria for choosing among available mental strategies and for accepting advice from intelligent interfaces is discussed

  11. An Empirical Review of the Connection Between Model Viewer Characteristics and the Comprehension of Conceptual Process Models

    NARCIS (Netherlands)

    Mendling, Jan; Recker, Jan; Reijers, Hajo A.; Leopold, Henrik

    2018-01-01

    Understanding conceptual models of business domains is a key skill for practitioners tasked with systems analysis and design. Research in this field predominantly uses experiments with specific user proxy cohorts to examine factors that explain how well different types of conceptual models can be

  12. Motivation to Improve Work through Learning: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Kueh Hua Ng

    2014-12-01

    Full Text Available This study aims to enhance our current understanding of the transfer of training by proposing a conceptual model that supports the mediating role of motivation to improve work through learning about the relationship between social support and the transfer of training. The examination of motivation to improve work through motivation to improve work through a learning construct offers a holistic view pertaining to a learner's profile in a workplace setting, which emphasizes learning for the improvement of work performance. The proposed conceptual model is expected to benefit human resource development theory building, as well as field practitioners by emphasizing the motivational aspects crucial for successful transfer of training.

  13. A Conceptual Culture Model for Design Science Research

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2016-03-01

    Full Text Available The aim of design science research (DSR in information systems is the user-centred creation of IT-artifacts with regard to specific social environments. For culture research in the field, which is necessary for a proper localization of IT-artifacts, models and research approaches from social sciences usually are adopted. Descriptive dimension-based culture models most commonly are applied for this purpose, which assume culture being a national phenomenon and tend to reduce it to basic values. Such models are useful for investigations in behavioural culture research because it aims to isolate, describe and explain culture-specific attitudes and characteristics within a selected society. In contrast, with the necessity to deduce concrete decisions for artifact-design, research results from DSR need to go beyond this aim. As hypothesis, this contribution generally questions the applicability of such generic culture dimensions’ models for DSR and focuses on their theoretical foundation, which goes back to Hofstede’s conceptual Onion Model of Culture. The herein applied literature-based analysis confirms the hypothesis. Consequently, an alternative conceptual culture model is being introduced and discussed as theoretical foundation for culture research in DSR.

  14. Sierra toolkit computational mesh conceptual model

    International Nuclear Information System (INIS)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-01-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  15. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1992-01-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes. 86 refs., 1 fig., 1 tab

  16. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  17. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2.

    Science.gov (United States)

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article was to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of articles, we consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. We specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type with the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective, and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure and which characteristics of the problem might be most easily represented in a specific modeling method are presented. Each section contains a number of recommendations that were iterated among the authors, as well as among the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Conceptual basis for developing of trainig models in complex ...

    African Journals Online (AJOL)

    This paper presents conceptual basis for developing of training models of interactive assembling system for automatic building of application software systems, ... software generation, such as: program module compatibility, formalization of computer interaction and choosing of formal model for human machine interface.

  19. Uranium(VI) transport modeling: geochemical data and submodels

    International Nuclear Information System (INIS)

    Tripathi, V.S.

    1984-01-01

    Understanding the geochemical mobility of U(VI) and modeling its transport is important in several contexts including ore genesis, uranium exploration, nuclear and mill-tailings waste management, and solution mining of uranium ores. Adsorption is a major control on partitioning of solutes at the mineral/solution interface. The effect of carbonate, fluoride, and phosphate complexing on adsorption of uranium was investigated. A critical compilation of stability constants of inorganic complexes and solid compounds of U(VI) necessary for proper design of experiment and for modeling transport of uranium was prepared. The general features of U(VI) adsorption in ligand-free systems are similar to those characteristic of other hydrolyzable metal ions. The adsorption processes studied were found to be reversible. The adsorption model developed in ligand-free systems, when solution complexing is taken into account, proved remarkably successful in describing adsorption of uranium in the presence of carbonate and fluoride. The presence of phosphate caused a much smaller decrease in the extent of adsorption than expected; however, a critical reassessment of the stability of UO 2 2+ .HPO 4 2- complexes, showed that phosphato complexes, if any, are extremely weak under experimental conditions. Removal of uranium may have occurred due to precipitation of sodium uranyl phosphates in addition to adsorption

  20. Elements of a flexible approach for conceptual hydrological modeling : 1. Motivation and theoretical development

    NARCIS (Netherlands)

    Fenicia, F.; Kavetski, D.; Savenije, H.H.G.

    2011-01-01

    This paper introduces a flexible framework for conceptual hydrological modeling, with two related objectives: (1) generalize and systematize the currently fragmented field of conceptual models and (2) provide a robust platform for understanding and modeling hydrological systems. In contrast to

  1. Geochemical Investigations of Groundwater Stability

    International Nuclear Information System (INIS)

    Bath, Adrian

    2006-05-01

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  2. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1991-10-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes

  3. Modelling of water-gas-rock geo-chemical interactions. Application to mineral diagenesis in geological reservoirs

    International Nuclear Information System (INIS)

    Bildstein, Olivier

    1998-01-01

    Mineral diagenesis in tanks results from interactions between minerals, water, and possibly gases, over geological periods of time. The associated phenomena may have a crucial importance for reservoir characterization because of their impact on petrophysical properties. The objective of this research thesis is thus to develop a model which integrates geochemical functions necessary to simulate diagenetic reactions, and which is numerically efficient enough to perform the coupling with a transport model. After a recall of thermodynamic and kinetic backgrounds, the author discusses how the nature of available analytic and experimental data influenced choices made for the formalization of physical-chemical phenomena and for behaviour laws to be considered. Numerical and computational aspects are presented in the second part. The model is validated by using simple examples. The different possible steps during the kinetic competition between two mineral are highlighted, as well the competition between mineral reaction kinetics and water flow rate across the rock. Redox reactions are also considered. In the third part, the author reports the application of new model functions, and highlights the contribution of the modelling to the understanding of some complex geochemical phenomena and to the prediction of reservoir quality. The model is applied to several diagenetic transformations: cementation of dolomitic limestone by anhydride, illite precipitation, and thermal reduction of sulphates [fr

  4. Organizational intellectual capital and the role of the nurse manager: A proposed conceptual model.

    Science.gov (United States)

    Gilbert, Jason H; Von Ah, Diane; Broome, Marion E

    Nurse managers must leverage both the human capital and social capital of the teams they lead in order to produce quality outcomes. Little is known about the relationship between human capital and social capital and how these concepts may work together to produce organizational outcomes through leadership of nurses. The purpose of this article was to explore the concepts of human capital and social capital as they relate to nursing leadership in health care organizations. Specific aims included (a) to synthesize the literature related to human capital and social capital in leadership, (b) to refine the conceptual definitions of human capital and social capital with associated conceptual antecedents and consequences, and (c) to propose a synthesized conceptual model guiding further empirical research of social capital and human capital in nursing leadership. A systematic integrative review of leadership literature using criteria informed by Whittemore and Knafl (2005) was completed. CINAHL Plus with Full Text, Academic Search Premier, Business Source Premier, Health Business FullTEXT, MEDLINE, and PsychINFO databases were searched for the years 1995 to 2016 using terms "human capital," "social capital," and "management." Analysis of conceptual definitions, theoretical and conceptual models, antecedents and consequences, propositions or hypotheses, and empirical support for 37 articles fitting review criteria resulted in the synthesis of the proposed Gilbert Conceptual Model of Organizational Intellectual Capital. The Gilbert Conceptual Model of Organizational Intellectual Capital advances the propositions of human capital theory and social capital theory and is the first model to conceptualize the direct and moderating effects that nurse leaders have on the human capital and social capital of the teams they lead. This model provides a framework for further empirical study and may have implications for practice, organizational policy, and education related to nursing

  5. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Michelle H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaplan, Daniel I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions. this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.

  6. [Self-Determination in Medical Rehabilitation - Development of a Conceptual Model for Further Theoretical Discussion].

    Science.gov (United States)

    Senin, Tatjana; Meyer, Thorsten

    2018-01-22

    Aim was to gather theoretical knowledge about self-determination and to develop a conceptual model for medical rehabilitation- which serves as a basis for discussion. We performed a literature research in electronic databases. Various theories and research results were adopted and transferred to the context of medical rehabilitation and into a conceptual model. The conceptual model of self-determination reflects on a continuum which forms of self-determination may be present in situations of medical rehabilitation treatments. The location on the continuum depends theoretically on the manifestation of certain internal and external factors that may influence each other. The model provides a first conceptualization of self-determination focusing on medical rehabilitation which should be further refined and tested empirically. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Technologies for conceptual modelling and intelligent query formulation

    CSIR Research Space (South Africa)

    Alberts, R

    2008-11-01

    Full Text Available The aim of the project is to devise and evaluate algorithms, methodologies, techniques and interaction paradigms to build a tool for conceptual modelling and query management of complex data repositories based on a framework with solid formal...

  8. Conceptual models of microseismicity induced by fluid injection

    Science.gov (United States)

    Baro Urbea, J.; Lord-May, C.; Eaton, D. W. S.; Joern, D.

    2017-12-01

    Variations in the pore pressure due to fluid invasion are accountable for microseismic activity recorded in geothermal systems and during hydraulic fracturing operations. To capture this phenomenon on a conceptual level, invasion percolation models have been suggested to represent the flow network of fluids within a porous media and seismic activity is typically considered to be directly related to the expansion of the percolated area. Although such models reproduce scale-free frequency-magnitude distributions, the associated b-values of the Gutenberg-Richter relation do not align with observed data. Here, we propose an alternative conceptual invasion percolation model that decouples the fluid propagation from the microseismic events. Instead of a uniform pressure, the pressure is modeled to decay along the distance from the injection site. Wet fracture events are simulated with a stochastic spring block model exhibiting stick-slip dynamics as a result of the variations of the pore pressure. We show that the statistics of the stick-slip events are scale-free, but now the b-values depend on the level of heterogeneity in the local static friction coefficients. Thus, this model is able to reproduce the wide spectrum of b-values observed in field catalogs associated with fluid induced microseismicity. Moreover, the spatial distribution of microseismic events is also consistent with observations.

  9. Simulation of reactive geochemical transport in groundwater using a semi-analytical screening model

    Science.gov (United States)

    McNab, Walt W.

    1997-10-01

    A reactive geochemical transport model, based on a semi-analytical solution to the advective-dispersive transport equation in two dimensions, is developed as a screening tool for evaluating the impact of reactive contaminants on aquifer hydrogeochemistry. Because the model utilizes an analytical solution to the transport equation, it is less computationally intensive than models based on numerical transport schemes, is faster, and it is not subject to numerical dispersion effects. Although the assumptions used to construct the model preclude consideration of reactions between the aqueous and solid phases, thermodynamic mineral saturation indices are calculated to provide qualitative insight into such reactions. Test problems involving acid mine drainage and hydrocarbon biodegradation signatures illustrate the utility of the model in simulating essential hydrogeochemical phenomena.

  10. A Conceptual Model to Identify Intent to Use Chemical-Biological Weapons

    Directory of Open Access Journals (Sweden)

    Mary Zalesny

    2017-10-01

    Full Text Available This paper describes a conceptual model to identify and interrelate indicators of intent of non-state actors to use chemical or biological weapons. The model expands on earlier efforts to understand intent to use weapons of mass destruction by building upon well-researched theories of intent and behavior and focusing on a sub-set of weapons of mass destruction (WMD to account for the distinct challenges of employing different types of WMD in violent acts. The conceptual model is presented as a first, critical step in developing a computational model for assessing the potential for groups to use chemical or biological weapons.

  11. IN DRIFT CORROSION PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  12. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  13. A Conceptual Model of eLearning Adoption

    Directory of Open Access Journals (Sweden)

    Muneer Abbad

    2011-05-01

    Full Text Available Internet-based learning systems are being used in many universities and firms but their adoption requires a solid understanding of the user acceptance processes. The technology acceptance model (TAM has been used to test the acceptance of various technologies and software within an e-learning context. This research aims to discuss the main factors of a successful e-learning adoption by students. A conceptual research framework of e-learning adoption is proposed based on the TAM model.

  14. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    Science.gov (United States)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  15. Business Model Innovation: An Integrative Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Bernd Wirtz

    2017-01-01

    Full Text Available Purpose: The point of departure of this exploratory study is the gap between the increasing importance of business model innovation (BMI in science and management and the limited conceptual assistance available. Therefore, the study identi es and explores scattered BMI insights and deduces them into an integrative framework to enhance our understanding about this phenomenon and to present a helpful guidance for researchers and practitioners. Design/Methodology/Approach: The study identi es BMI insights through a literature-based investigation and consolidates them into an integrative BMI framework that presents the key elements and dimensions of BMI as well as their presumed relationships. Findings: The study enhances our understanding about the key elements and dimensions of BMI, presents further conceptual insights into the BMI phenomenon, supplies implications for science and management, and may serve as a helpful guidance for future research. Practical Implications: The presented framework provides managers with a tool to identify critical BMI issues and can serve as a conceptual BMI guideline. Research limitations: Given the vast amount of academic journals, it is unlikely that every applicable scienti c publication is included in the analysis. The illustrative examples are descriptive in nature, and thus do not provide empirical validity. Several implications for future research are provided. Originality/Value: The study’s main contribution lies in the unifying approach of the dispersed BMI knowledge. Since our understanding of BMI is still limited, this study should provide the necessary insights and conceptual assistance to further develop the concept and guide its practical application.

  16. Application of the PHREEQC geochemical computer model during the design and operation of UK mine water treatment schemes

    Energy Technology Data Exchange (ETDEWEB)

    Croxford, S.J.; England, A.; Jarvis, A.P. [IMC White Young Green Engineering and Environment, Sutton-in-Ashfield (United Kingdom)

    2004-07-01

    The UK Coal Authority operates more than 20 full-scale mine water treatment schemes. The PHREEQC geochemical model has been used during the design and operation of two of the UK Coal Authority's treatment systems to assess whether it is possible to more accurately predict the fate and behaviour of contaminants through the treatment process. These systems are at Frances Colliery, Fife, Scotland, and at Horden Colliery, County Durham, England. The characteristics of the mine water at these sites, and the treatment systems installed to remediate them, are described. At Frances Colliery the following issues have been investigated using the PHREEQC model: determination of optimum alkali dose rate; and investment of secondary mineralization that causes pipe fouling. At Horden Colliery areas investigated using the PHREEQC model are: prediction of sludge volume production for various alkali reagents; predication of the influence of elevated carbon dioxide partial pressures on alkali requirements; and influence of elevated chloride concentration on sludge characteristics and production. The results of the investigation are presented and discussed. The study suggests that geochemical modelling may be a useful tool in determining both the geochemical processes occurring within a mine water treatment system and ultimately the likely costs involved during the operation of a particular scheme. Plans for future work include further validation of the PHREEQC model predictions by careful sampling and analysis of water chemistry and secondary mineral phases through the treatment systems. In the future it is hoped that the PHREEQC model may become a useful tool in the design phase of mine water treatment systems. 7 refs., 8 tabs.

  17. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  18. A conceptual and disease model framework for osteoporotic kyphosis.

    Science.gov (United States)

    Bayliss, M; Miltenburger, C; White, M; Alvares, L

    2013-09-01

    This paper presents a multi-method research project to develop a conceptual framework for measuring outcomes in studies of osteoporotic kyphosis. The research involved literature research and qualitative interviews among clinicians who treat patients with kyphosis and among patients with the condition. Kyphosis due to at least one vertebral compression fracture is prevalent among osteoporotic patients, resulting in well-documented symptoms and impact on functioning and well-being. A three-part study led to development of a conceptual measurement framework for comprehensive assessment of symptoms, impact, and treatment benefit for kyphosis. A literature-based disease model (DM) was developed and tested with physicians (n = 10) and patients (n = 10), and FDA guidelines were used to develop a final disease model and a conceptual framework. The DM included signs, symptoms, causes/triggers, exacerbations, and functional status associated with kyphosis. The DM was largely confirmed, but physicians and patients added several concepts related to impact on functioning, and some concepts were not confirmed and removed from the DM. This study confirms the need for more comprehensive assessment of health outcomes in kyphosis, as most current studies omit key concepts.

  19. The EQ3/6 software package for geochemical modeling: Current status

    International Nuclear Information System (INIS)

    Worlery, T.J.; Jackson, K.J.; Bourcier, W.L.; Bruton, C.J.; Viani, B.E.; Knauss, K.G.; Delany, J.M.

    1988-07-01

    EQ3/6 is a software package for modeling chemical and mineralogic interactions in aqueous geochemical systems. The major components of the package are EQ3NR (a speciation-solubility code), EQ6 (a reaction path code), EQLIB (a supporting library), and a supporting thermodynamic data base. EQ3NR calculates aqueous speciation and saturation indices from analytical data. It can also be used to calculate compositions of buffer solutions for use in laboratory experiments. EQ6 computes reaction path models of both equilibrium step processes and kinetic reaction processes. These models can be computed for closed systems and relatively simple open systems. EQ3/6 is useful in making purely theoretical calculations, in designing, interpreting, and extrapolating laboratory experiments, and in testing and developing submodels and supporting data used in these codes. The thermodynamic data base supports calculations over the range 0-300 degree C. 60 refs., 2 figs

  20. The EQ3/6 software package for geochemical modeling: Current status

    Energy Technology Data Exchange (ETDEWEB)

    Wolery, T.J.; Jackson, K.J.; Bourcier, W.L.; Bruton, C.J.; Viani, B.E.; Knauss, K.G.; Delany, J.M.

    1988-07-01

    EQ3/6 is a software package for modeling chemical and mineralogic interactions in aqueous geochemical systems. The major components of the package are EQ3NR (a speciation-solubility code), EQ6 (a reaction path code), EQLIB (a supporting library), and a supporting thermodynamic data base. EQ3NR calculates aqueous speciation and saturation indices from analytical data. It can also be used to calculate compositions of buffer solutions for use in laboratory experiments. EQ6 computes reaction path models of both equilibrium step processes and kinetic reaction processes. These models can be computed for closed systems and relatively simple open systems. EQ3/6 is useful in making purely theoretical calculations, in designing, interpreting, and extrapolating laboratory experiments, and in testing and developing submodels and supporting data used in these codes. The thermodynamic data base supports calculations over the range 0-300{degree}C. 60 refs., 2 figs.

  1. River City High School Guidance Services: A Conceptual Model.

    Science.gov (United States)

    American Coll. Testing Program, Iowa City, IA.

    This model describes how the guidance staff at a hypothetical high school communicated the effectiveness of the guidance program to students, parents, teachers, and administrators. A description of the high school is presented, and guidance services and personnel are described. A conceptual model responding to student needs is outlined along with…

  2. A conceptual and calculational model for gas formation from impure calcined plutonium oxides

    International Nuclear Information System (INIS)

    Lyman, John L.; Eller, P. Gary

    2000-01-01

    Safe transport and storage of pure and impure plutonium oxides requires an understanding of processes that may generate or consume gases in a confined storage vessel. We have formulated conceptual and calculational models for gas formation from calcined materials. The conceptual model for impure calcined plutonium oxides is based on the data collected to date

  3. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Y., E-mail: yann.lucas@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Schmitt, A.D., E-mail: anne-desiree.schmitt@univ-fcomte.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)] [Universite de Franche-Comte et CNRS-UMR 6249, Chrono-Environnement, 16, Route de Gray, 25030 Besancon Cedex (France); Chabaux, F., E-mail: francois.chabaux@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Clement, A.; Fritz, B. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Elsass, Ph. [BRGM, GEODERIS, 1, rue Claude Chappe, 57070 Metz (France); Durand, S. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)

    2010-11-15

    Research highlights: {yields} Major and trace elements along with strontium and uranium isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect a conservative mixing. {yields} A coupled hydrogeochemical model demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process. {yields} The model requires only a small amount of montmorillonite. {yields} It is necessary to consider the pollution history to explain the important chloride, sodium and calcium concentration modifications. {yields} The model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. - Abstract: In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves

  4. Iron and Sulfur Species and Sulfur Isotopic Compositions of Authigenic Pyrite in Gas Hydrate-Bearing Sediments from Hydrate Ridge, Cascadia Margin (ODP Leg 204): A Proposal of Conceptual Models to Indicate the Non-Steady State Depositional and Diagenetic Processes

    Science.gov (United States)

    Liu, C.; Jiang, S. Y.; Su, X.

    2017-12-01

    Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.

  5. Patient-Clinician Communication About Pain: A Conceptual Model and Narrative Review.

    Science.gov (United States)

    Henry, Stephen G; Matthias, Marianne S

    2018-02-01

    Productive patient-clinician communication is an important component of effective pain management, but we know little about how patients and clinicians actually talk about pain in clinical settings and how it might be improved to produce better patient outcomes. The objective of this review was to create a conceptual model of patient-clinician communication about noncancer pain, review and synthesize empirical research in this area, and identify priorities for future research. A conceptual model was developed that drew on existing pain and health communication research. CINAHL, EMBASE, and PubMed were searched to find studies reporting empirical data on patient-clinician communication about noncancer pain; results were supplemented with manual searches. Studies were categorized and analyzed to identify crosscutting themes and inform model development. The conceptual model comprised the following components: contextual factors, clinical interaction, attitudes and beliefs, and outcomes. Thirty-nine studies met inclusion criteria and were analyzed based on model components. Studies varied widely in quality, methodology, and sample size. Two provisional conclusions were identified: contrary to what is often reported in the literature, discussions about analgesics are most frequently characterized by patient-clinician agreement, and self-presentation during patient-clinician interactions plays an important role in communication about pain and opioids. Published studies on patient-clinician communication about noncancer pain are few and diverse. The conceptual model presented here can help to identify knowledge gaps and guide future research on communication about pain. Investigating the links between communication and pain-related outcomes is an important priority for future research. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  7. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  8. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    Science.gov (United States)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  9. Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...

    African Journals Online (AJOL)

    IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...

  10. Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases

    International Nuclear Information System (INIS)

    Haase, Christoph; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2013-01-01

    Highlights: • CO 2 and calcite dissolution is calculated. • The codes PHREEQC, Geochemist’s Workbench, EQ3/6, and FactSage are used. • Comparison with Duan and Li (2008) shows lowest deviation using phreeqc.dat and wateq4f.dat. • Using Pitzer databases does not improve accurate calculations. • Uncertainty in dissolved CO 2 is largest using the geochemical models. - Abstract: A prognosis of the geochemical effects of CO 2 storage induced by the injection of CO 2 into geologic reservoirs or by CO 2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO 2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO 2 and the overlaying formations in the case of a CO 2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO 2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO 2 solubilities and can influence the safety issues. This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO 2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H 2 O–CO 2 –NaCl–CaCO 3 for the calculated range of dissolved calcite and CO 2 is the

  11. Methods for geochemical analysis

    Science.gov (United States)

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  12. A beginner's guide to writing the nursing conceptual model-based theoretical rationale.

    Science.gov (United States)

    Gigliotti, Eileen; Manister, Nancy N

    2012-10-01

    Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.

  13. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    Science.gov (United States)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from

  14. Advertisement Effectiveness for Print Media: A Conceptual Model

    OpenAIRE

    Prateek Maheshwari; Nitin Seth; Anoop Kumar Gupta

    2015-01-01

    The objective of present research paper is to highlight the importance of measuring advertisement effectiveness in print media and to develop a conceptual model for advertisement effectiveness. The developed model is based on dimensions on which advertisement effectiveness depends and on the dimensions which are used to measure the effectiveness. An in-depth and extensive literature review is carried out to understand the concept of advertisement effectiveness and its var...

  15. Geochemical mole-balance modeling with uncertain data

    Science.gov (United States)

    Parkhurst, David L.

    1997-01-01

    Geochemical mole-balance models are sets of chemical reactions that quantitatively account for changes in the chemical and isotopic composition of water along a flow path. A revised mole-balance formulation that includes an uncertainty term for each chemical and isotopic datum is derived. The revised formulation is comprised of mole-balance equations for each element or element redox state, alkalinity, electrons, solvent water, and each isotope; a charge-balance equation and an equation that relates the uncertainty terms for pH, alkalinity, and total dissolved inorganic carbon for each aqueous solution; inequality constraints on the size of the uncertainty terms; and inequality constraints on the sign of the mole transfer of reactants. The equations and inequality constraints are solved by a modification of the simplex algorithm combined with an exhaustive search for unique combinations of aqueous solutions and reactants for which the equations and inequality constraints can be solved and the uncertainty terms minimized. Additional algorithms find only the simplest mole-balance models and determine the ranges of mixing fractions for each solution and mole transfers for each reactant that are consistent with specified limits on the uncertainty terms. The revised formulation produces simpler and more robust mole-balance models and allows the significance of mixing fractions and mole transfers to be evaluated. In an example from the central Oklahoma aquifer, inclusion of up to 5% uncertainty in the chemical data can reduce the number of reactants in mole-balance models from seven or more to as few as three, these being cation exchange, dolomite dissolution, and silica precipitation. In another example from the Madison aquifer, inclusion of the charge-balance constraint requires significant increases in the mole transfers of calcite, dolomite, and organic matter, which reduce the estimated maximum carbon 14 age of the sample by about 10,000 years, from 22,700 years to

  16. Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran

    Science.gov (United States)

    Ghezelbash, Reza; Maghsoudi, Abbas

    2018-05-01

    The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.

  17. A conceptual model specification language (CMSL Version 2)

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1992-01-01

    Version 2 of a language (CMSL) to specify conceptual models is defined. CMSL consists of two parts, the value specification language VSL and the object spercification language OSL. There is a formal semantics and an inference system for CMSL but research on this still continues. A method for

  18. Conceptual model for concrete long time degradation in a deep nuclear waste repository

    International Nuclear Information System (INIS)

    Lagerblad, B.; Traegaardh, J.

    1996-04-01

    Cement-based materials are fundamentally unstable in a long time perspective. With time the concrete will change properties both as a consequence of recrystallization and chemical interaction with the environment. One of the main difficulties with a conceptual model for concrete degradation is the change in the geochemical environment with time. During the first period the concrete will alter as a result of contact with atmospheric gases, especially CO 2 which will carbonate the surface. Later the degradation will mainly be governed by the composition of the groundwater with which it will try to equilibrate. Considering the chemical conditions at repository depths (500 m), it is possible that the groundwater will change composition from normal to saline. This may in fact be an advantage because the solubility of cement paste components decreases. However, the concrete will influence the groundwater composition and create an aureole with increased pH around it. Most of the components in both the fresh and saline water will not be harmful to concrete. One of the problems may be the chlorine anions, as this anion may substitute for sulfate in some of the cement phases. This will not degrade the concrete but the sulfates in the cement may be released to the groundwater. The end product of the concrete, after leaching and after the pH buffer capacity has been lost, will be a mix of metastable calcium silicate hydrates, zeolite and clay minerals. 72 refs

  19. Conceptual Model for Effective Sports Marketing in Nigeria | Akarah ...

    African Journals Online (AJOL)

    Conceptual Model for Effective Sports Marketing in Nigeria. ... that are influenced by the sports market mix and sports consumers that are influenced by psychological factors and notes that; ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  20. Penerapan Model Pembelajaran Conceptual Understanding Procedures (CUPS sebagai Upaya Mengatasi Miskonsepsi Matematis Siswa

    Directory of Open Access Journals (Sweden)

    Asri Gita

    2018-01-01

    Full Text Available Kesalahan dalam memahami konsep menjadi salah satu faktor yang menyebabkan miskonsepsi pada pelajaran matematika. Miskonsepsi pada materi bangun datar disebabkan oleh cara belajar siswa yang hanya menghafalkan bentuk dasar tanpa memahami hubungan antar bangun datar dan sifat-sifatnya. Upaya yang dilakukan dalam mengatasi miskonsepsi tersebut adalah dengan menerapkan pembelajaran konstruktivis. Salah satu model pembelajaran konstruktivis adalah Conceptual Understanding Procedures (CUPs. Tujuan dari penelitian ini adalah untuk mengetahui penerapan model pembelajaran Conceptual Understanding Procedures (CUPs sebagai upaya mengatasi miskonsepsi matematis siswa pada materi sifat-sifat bangun datar segiempat. Subjek penelitian adalah 12 orang siswa SMP yang mengalami miskonsepsi pada materi sifat-sifat bangun datar segiempat. Teknik pengumpulan data pada penelitian ini melalui tes, video, observasi, dan wawancara. Validitas dan reliabilitas data melalui credibility, dependability, transferability, dan confirmability. Hasil dari penelitian ini menunjukkan bahwa penerapan model pembelajaran Conceptual Understanding Procedures (CUPs yang terdiri dari fase individu, fase kelompok triplet, dan fase interpretasi seluruh kelas dapat mengatasi miskonsepsi siswa pada materi sifat-sifat bangun datar segiempat. Perubahan miskonsepsi siswa juga dapat dilihat dari nilai tes yang mengalami peningkatan nilai berdasarkan nilai tes awal dan tes akhir siswa. Kata Kunci: Conceptual Understanding Procedures (CUPs, miskonsepsi, segiempat.   ABSTRACT Mistakes in understanding the concept became one of the factors that led to misconceptions in mathematics. The misconceptions in plane shapes are caused by the way of learning of students who only memorize the basic form without understanding the relationship between the plane shapes and its properties. Efforts made in overcoming these misconceptions is to apply constructivist learning. One of the constructivist learning

  1. A conceptual model of political market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.

    2005-01-01

    . The remaining four constructs are attitudinal, designed to capture the awareness of members to the activities and importance of stakeholder groups in society, both internal and external to the organisation. The model not only allows the level of a party's political market orientation to be assessed, but also......This article proposes eight constructs of a conceptual model of political market orientation, taking inspiration from the business and political marketing literature. Four of the constructs are 'behavioural' in that they aim to describe the process of how information flows through the organisation...

  2. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  3. A Conceptual Model of Technology Transfer for Public Universities in Mexico

    Directory of Open Access Journals (Sweden)

    Hugo Necoechea

    2013-12-01

    Full Text Available Technology transfer from academic and scientific institutions has been transformed into a strategic variable for companies and nations who wish to cope with the challenges of a global economy. Since the early 1970s, many technology transfer models have tried to introduce key factors in the process. Previous studies have shown that technology transfer is influenced by various elements. This study is based on a review of two recent technology transfer models that we have used as basic concepts for developing our own conceptual model. Researcher–firm networks have been considered as key elements in the technology transfer process between public universities and firms. The conceptual model proposed could be useful to improve the efficiency of existing technology transfer mechanisms.

  4. A year 2003 conceptual model for the U.S. telecommunications infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Roger Gary; Reinert, Rhonda K.

    2003-12-01

    To model the telecommunications infrastructure and its role and robustness to shocks, we must characterize the business and engineering of telecommunications systems in the year 2003 and beyond. By analogy to environmental systems modeling, we seek to develop a 'conceptual model' for telecommunications. Here, the conceptual model is a list of high-level assumptions consistent with the economic and engineering architectures of telecommunications suppliers and customers, both today and in the near future. We describe the present engineering architectures of the most popular service offerings, and describe the supplier markets in some detail. We also develop a characterization of the customer base for telecommunications services and project its likely response to disruptions in service, base-lining such conjectures against observed behaviors during 9/11.

  5. Interacting Conceptual Spaces

    OpenAIRE

    Bolt, Josef; Coecke, Bob; Genovese, Fabrizio; Lewis, Martha; Marsden, Daniel; Piedeleu, Robin

    2016-01-01

    We propose applying the categorical compositional scheme of [6] to conceptual space models of cognition. In order to do this we introduce the category of convex relations as a new setting for categorical compositional semantics, emphasizing the convex structure important to conceptual space applications. We show how conceptual spaces for composite types such as adjectives and verbs can be constructed. We illustrate this new model on detailed examples.

  6. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fujita, Yoshiko [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  7. Extracting conceptual models from user stories with Visual Narrator

    NARCIS (Netherlands)

    Lucassen, Garm; Robeer, Marcel; Dalpiaz, Fabiano; van der Werf, Jan Martijn E. M.; Brinkkemper, Sjaak

    2017-01-01

    Extracting conceptual models from natural language requirements can help identify dependencies, redundancies, and conflicts between requirements via a holistic and easy-to-understand view that is generated from lengthy textual specifications. Unfortunately, existing approaches never gained traction

  8. Preliminary geohydrologic conceptual model of the Los Medanos region near the Waste Isolation Pilot Plant for the purpose of performance assessment

    International Nuclear Information System (INIS)

    Brinster, K.F.

    1991-01-01

    This report describes a geohydrologic conceptual model of the northern Delaware Basin to be used in modeling three-dimensional, regional ground-water flow for assessing the performance of the Waste Isolation Pilot Plant (WIPP) in the Los Medanos region near Carlsbad, New Mexico. Geochemical and hydrological evidence indicates that flow is transient in the Rustler Formation and the Capitan aquifer in response to changing geologic, hydrologic, and climatic conditions. Before the Pleistocene, ground-water flow in the Rustler Formation was generally eastward, but uneven tilting of the Delaware Basin lowered the regional base level and formed fractures in the evaporitic sequence of rocks approximately parallel to the basin axis. Dissolution along the fractures, coupled with erosion, formed Nash Draw. Also, the drop in base level resulted in an increase in the carrying power of the Pecos River, which began incising the Capitan/aquifer near Carlsbad, New Mexico. Erosion and downcutting released hydraulic pressure that caused a reversal in Rustler ground-water flow direction near the WIPP. Flow in the Rustler west of the WIPP is toward Nash Draw and eventually toward Malaga Bend; flow south of the WIPP is toward Malaga Bend. 126 refs., 70 figs., 18 tabs

  9. Sharp fronts within geochemical transport problems

    International Nuclear Information System (INIS)

    Grindrod, P.

    1995-01-01

    The authors consider some reactive geochemical transport problems in groundwater systems. When incoming fluid is in disequilibrium with the mineralogy sharp transition fronts may develop. They show that this is a generic property for a class of systems where the timescales associated with reaction and diffusion phenomena are much shorter than those associated with advective transport. Such multiple timescale problems are relevant to a variety of processes in natural systems: mathematically methods of singular perturbation theory reduce the dimension of the problems to be solved locally. Furthermore, they consider how spatial heterogeneous mineralogy can impact upon the propagation of sharp geochemical fronts. The authors developed an asymptotic approach in which they solve equations for the evolving geometry of the front and indicate how the non-smooth perturbations due to natural heterogeneity of the mineralogy on underlying ground water flow field are balanced against the smoothing effect of diffusion/dispersive processes. Fronts are curvature damped, and the results here indicate the generic nature of separate front propagation within both model (idealized) and natural (heterogeneous) geochemical systems

  10. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    Directory of Open Access Journals (Sweden)

    Anđelković Darko H.

    2012-01-01

    Full Text Available Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction. Migration of chromium in the soil is conditioned by the level of chromium soil contamination, the soil organic matter content, and rainwater acidity. Chromium (III and chromium(VI were determined by spectrophotometric method with diphenilcarbazide in acidic media. Comparing the results of chromium speciation in leachate obtained by experimental model systems and geochemical modelling calculations using Visual MINTEQ model, a correlation was observed regarding the influence of the tested parameters. Leachate solutions showed that the concentration of Cr depended on the organic matter content. The influence of pH and soil organic matter content is in compliance after its definition through experimental and theoretical way. The computer model - Stockholm Humic Model used to evaluate the leaching results corresponded rather well with the measured values.

  11. Conceptual Modeling in the Time of the Revolution: Part II

    Science.gov (United States)

    Mylopoulos, John

    Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.

  12. Towards Smart and Resilient City: A Conceptual Model

    Science.gov (United States)

    Arafah, Y.; Winarso, H.; Suroso, D. S. A.

    2018-05-01

    This paper aims to compare five smart city models selected based on a number of specific criteria. Following the comparison and assessment performed, we draw conclusions and further linkages identifying the components and characters found in resilient cities. The purpose of this analysis is to produce a new approach and concept: the “smart and resilient city.” Through in-depth literature study, this paper analyzes five conceptual smart city models deemed to have a background, point of view, and benchmark towards software group, as they focus on welfare, inclusion, social equality, and competitiveness. Analyzing the strategies, methods, and techniques of five smart city models, this paper concludes that there has been no inclusion of resilience concepts in the assessment, especially in the context of natural disasters. Basically, the models are also interrelated and there are some things that overlap. As a recommendation, there is a model that tries to combine the components and character of smart city and resilient city into one entity that is embedded as a whole in a conceptual picture towards the new concept, the “smart and resilient city”. The concept of smart city and resilient city go hand in hand with each other and thus are interrelated. Therefore, it is imperative to study that concept deeper, in this case primarily in the context of disaster.

  13. TAPIR--Finnish national geochemical baseline database.

    Science.gov (United States)

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various

  14. Our evolving conceptual model of the coastal eutrophication problem

    Science.gov (United States)

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  15. Regime transitions in near-surface temperature inversions : a conceptual model

    NARCIS (Netherlands)

    van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.

    2017-01-01

    A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes

  16. A Conceptual Model of the World of Work.

    Science.gov (United States)

    VanRooy, William H.

    The conceptual model described in this paper resulted from the need to organize a body of knowledge related to the world of work which would enable curriculum developers to prepare accurate, realistic instructional materials. The world of work is described by applying Malinowski's scientific study of the structural components of culture. It is…

  17. Equilibrium geochemical modeling of a seasonal thermal energy storage aquifer field test

    Science.gov (United States)

    Stottlemyre, J. S.

    1980-01-01

    A geochemical mathematical modeling study designed to investigate the well plugging problems encountered at the Auburn University experimental field tests is summarized. The results, primarily of qualitative interest, include: (1) loss of injectivity was probably due to a combination of native particulate plugging and clay swelling and dispersion; (2) fluid-fluid incompatibilities, hydrothermal reactions, and oxidation reactions were of insignificant magnitude or too slow to have contributed markedly to the plugging; and (3) the potential for and contributions from temperature-induced dissolved gas solubility reductions, capillary boundary layer viscosity increases, and microstructural deformation cannot be deconvolved from the available data.

  18. On the practical modeling of conceptual overlap among multiple facets in ontology domain concepts (Mini-thesis)

    OpenAIRE

    Rodriguez-Castro, Benedicto; Glaser, Hugh; Carr, Leslie

    2007-01-01

    This report presents a study on the practical modelling of the conceptual overlap that might exist among the multiple facets that define a particular ontology domain concept. The notions of conceptual overlap and facet are defined, together with their relation to scenarios of multiple inheritance in ontology models. Starting from the notion of a value partition, a terminology of ontology modelling constructs is introduced that allows the characterization of two types of conceptual overlap wit...

  19. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively...... the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code......, conservative and reactive transport examples are presented to demonstrate the capability of the proposed model to simulate transport of charged species in heterogeneous porous media with spatially variable physical and chemical properties. The results reveal that the Coulombic cross-coupling between dispersive...

  20. A simple conceptual model of abrupt glacial climate events

    Directory of Open Access Journals (Sweden)

    H. Braun

    2007-11-01

    Full Text Available Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events to a few simple principles, namely (i the existence of two different climate states, (ii a threshold process and (iii an overshooting in the stability of the system at the start and the end of the events, which is followed by a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2, in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations. We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle.

  1. Structure of conceptual models in the senior operating staff of nuclear power plants

    Directory of Open Access Journals (Sweden)

    Oboznov A. A.

    2017-09-01

    Full Text Available Background. The relationships between conceptual model structures and an operator’s professional efficiency are of direct practical importance, particularly in the case of large-scale industrial complexes combining several human-machine systems. A typical example is the power unit of a nuclear power plant (NPP. Objective and methods. The purpose of this study was to explore the conceptual models of senior reactor operators (SROs of NPPs. The study involved 64 men working as SRO at five NPPs in Russia. The methods included: structured interviews, expert estimations, multidimensional scaling (ALSCAL, the K-means clustering algorithm, and frequency analysis. The procedure was as follows: 32 key characteristics of the power unit were defined, including shift operators’ jobs and duties, technical subsystems, types of equipment, and the crucial power unit parameters. The participants were offered a 32×32 matrix for pair-wise estimation of the strength of the links between these key characteristics on a seven-point scale (496 links in total. Results. A general scheme of key characteristics in the conceptual models was defined. is scheme was displayed in the operators regardless of their employment history. Within the scheme, however, two types of conceptual models were identified, which could be distinguished by the relative number of strong links between the key characteristics. With respect to intersystem links including key characteristics of the reactor and turbine NPP departments, this number was significantly higher in models of Type 1 than in those of Type 2. A positive correlation between the number of these links and the professional efficiency indicators was also established. Operators with Type 1 models were able to more predictably represent the power unit operation. Conclusion. The main role in creating predictable and efficient conceptual models was played by strong intersystem links in mental representations of workflow.

  2. The conceptual model of organization social responsibility

    OpenAIRE

    LUO, Lan; WEI, Jingfu

    2014-01-01

    With the developing of the research of CSR, people more and more deeply noticethat the corporate should take responsibility. Whether other organizations besides corporatesshould not take responsibilities beyond their field? This paper puts forward theconcept of organization social responsibility on the basis of the concept of corporate socialresponsibility and other theories. And the conceptual models are built based on theconception, introducing the OSR from three angles: the types of organi...

  3. Scientific fundamentals of the exploration and calculability of a waste repository. Project part III, sub-project 2: Validity and applicability of geochemical models

    International Nuclear Information System (INIS)

    Baumann, J.

    1991-04-01

    The thermodynamic computer models WATEQF, PHREEQE, EQ3NR/EQ6, and SOLMINEQ 88 have been verified for their applicability to describe geochemical processes in the system salt stock/cap rock/ground water, i.e. processes such as dissolution, sedimentation, exchange and redox reactions. To begin with, the hydrochemical data obtained by the hydrogeological survey at the Gorleben site have been evaluated to thus form a reference data base. Then, these data have been used to derive the essential conditions and benchmark data to establish a geochemical model. (HP) [de

  4. Some problems with social cognition models: a pragmatic and conceptual analysis.

    Science.gov (United States)

    Ogden, Jane

    2003-07-01

    Empirical articles published between 1997 and 2001 from 4 health psychology journals that tested or applied 1 or more social cognition models (theory of reasoned action, theory of planned behavior, health belief model, and protection motivation theory; N = 47) were scrutinized for their pragmatic and conceptual basis. In terms of their pragmatic basis, these 4 models were useful for guiding research. The analysis of their conceptual basis was less positive. First, these models do not enable the generation of hypotheses because their constructs are unspecific; they therefore cannot be tested. Second, they focus on analytic truths rather than synthetic ones, and the conclusions resulting from their application are often true by definition rather than by observation. Finally, they may create and change both cognitions and behavior rather than describe them.

  5. Geomechanical/Geochemical Modeling Studies Conducted within the International DECOVALEX Project

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.; Barr, D.; Chijimatsu, M.; Kolditz, O.; Liu, Q.; Oda, Y.; Wang, W.; Xie, M.; Zhang, C.

    2005-01-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysis of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status

  6. Geomechanical/Geochemical Modeling Studies Conducted Within the International DECOVALEX Project

    International Nuclear Information System (INIS)

    J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal; D. Barr; M.Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; M. Xie; C. Zhang

    2006-01-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysis of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status

  7. Computer-based Creativity Enhanced Conceptual Design Model for Non-routine Design of Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yutong; WANG Yuxin; DUFFY Alex H B

    2014-01-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  8. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    Science.gov (United States)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  9. Bayesian calibration of thermodynamic parameters for geochemical speciation modeling of cementitious materials

    International Nuclear Information System (INIS)

    Sarkar, S.; Kosson, D.S.; Mahadevan, S.; Meeussen, J.C.L.; Sloot, H. van der; Arnold, J.R.; Brown, K.G.

    2012-01-01

    Chemical equilibrium modeling of cementitious materials requires aqueous–solid equilibrium constants of the controlling mineral phases (K sp ) and the available concentrations of primary components. Inherent randomness of the input and model parameters, experimental measurement error, the assumptions and approximations required for numerical simulation, and inadequate knowledge of the chemical process contribute to uncertainty in model prediction. A numerical simulation framework is developed in this paper to assess uncertainty in K sp values used in geochemical speciation models. A Bayesian statistical method is used in combination with an efficient, adaptive Metropolis sampling technique to develop probability density functions for K sp values. One set of leaching experimental observations is used for calibration and another set is used for comparison to evaluate the applicability of the approach. The estimated probability distributions of K sp values can be used in Monte Carlo simulation to assess uncertainty in the behavior of aqueous–solid partitioning of constituents in cement-based materials.

  10. LCM 3.0: A Language for describing Conceptual Models

    NARCIS (Netherlands)

    Feenstra, Remco; Wieringa, Roelf J.

    1993-01-01

    The syntax of the conceptual model specification language LCM is defined. LCM uses equational logic to specify data types and order-sorted dynamic logic to specify objects with identity and mutable state. LCM specifies database transactions as finite sets of atomic object transitions.

  11. Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite

    International Nuclear Information System (INIS)

    Gustafsson, Jon Petter; Daessman, Ellinor; Baeckstroem, Mattias

    2009-01-01

    Uranium(VI), which is often elevated in granitoidic groundwaters, is known to adsorb strongly to Fe (hydr)oxides under certain conditions. This process can be used in water treatment to remove U(VI). To develop a consistent geochemical model for U(VI) adsorption to ferrihydrite, batch experiments were performed and previous data sets reviewed to optimize a set of surface complexation constants using the 3-plane CD-MUSIC model. To consider the effect of dissolved organic matter (DOM) on U(VI) speciation, new parameters for the Stockholm Humic Model (SHM) were optimized using previously published data. The model, which was constrained from available X-ray absorption fine structure (EXAFS) spectroscopy evidence, fitted the data well when the surface sites were divided into low- and high-affinity binding sites. Application of the model concept to other published data sets revealed differences in the reactivity of different ferrihydrites towards U(VI). Use of the optimized SHM parameters for U(VI)-DOM complexation showed that this process is important for U(VI) speciation at low pH. However in neutral to alkaline waters with substantial carbonate present, Ca-U-CO 3 complexes predominate. The calibrated geochemical model was used to simulate U(VI) adsorption to ferrihydrite for a hypothetical groundwater in the presence of several competitive ions. The results showed that U(VI) adsorption was strong between pH 5 and 8. Also near the calcite saturation limit, where U(VI) adsorption was weakest according to the model, the adsorption percentage was predicted to be >80%. Hence U(VI) adsorption to ferrihydrite-containing sorbents may be used as a method to bring down U(VI) concentrations to acceptable levels in groundwater

  12. Evaluation and modelling of a potential repository site - Olkiluoto case study

    International Nuclear Information System (INIS)

    Saksa, P.; Ahokas, H.; Loefman, J.; Pitkaenen, P.; Paulamaeki, S.; Snellman, M.

    1998-01-01

    The observations, interpretations and estimates resulting from site investigations were developed into conceptual bedrock model of the Olkiluoto area. Model development has been an interdisciplinary process and three major iterations have occurred. Geochemical sampling and a programme of electromagnetic and electrical soundings were carried out and interpreted to model occurrences of groundwater types. The parametrisation and modifications needed between geological models and ground-water flow simulation model is discussed. The latest groundwater flow modelling effort comprises the transient flow analysis taking into account the effects of density variations, the repository, post-glacial land uplift and global sea level rise. The main flow modeling result quantities (the amount, direction, velocity and routes as well as concentration of water) are used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. Integration of hydrological and hydrogeochemical methods and studies has provided the primary method for investigating the evolution. Testing of flow models with hydro-geochemical information is considered to improve the hydrogeological understanding of a site and increases confidence in conceptual hydrogeological models. Bedrock model allows also comparisons to be made between its time-varying versions. The evolution of fracture frequency, fracture zone structures and hydraulic conductivity has been studied. A prediction-outcome comparison was made in selected boreholes and showed that the rock type was the easiest parameter to predict

  13. Geomorphic dam-break flows. Part I: conceptual model

    OpenAIRE

    Leal, JGAB; Ferreira, RML; Cardoso, AH

    2010-01-01

    Proceedings of the Institution of Civil Engineers - Water Management 163 Issue WM6 This paper presents a one-dimensional conceptual model for simulating geomorphic dam-break flows. The model is based on conservation laws drawn from continuum mixture theory that are integrated over the flow depth,assuming that the f10w is composed of two transport layers. Closure equations were derived from the review and reanalysis of previous studies on granular flow,debris f10w and sheet flow. The sedime...

  14. Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.

    Science.gov (United States)

    Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T

    2015-01-01

    Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.

  15. Conceptualizing Programme Evaluation

    Science.gov (United States)

    Hassan, Salochana

    2013-01-01

    The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…

  16. A conceptual data model and modelling language for fields and agents

    Science.gov (United States)

    de Bakker, Merijn; de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    Modelling is essential in order to understand environmental systems. Environmental systems are heterogeneous because they consist of fields and agents. Fields have a value defined everywhere at all times, for example surface elevation and temperature. Agents are bounded in space and time and have a value only within their bounds, for example biomass of a tree crown or the speed of a car. Many phenomena have properties of both fields and agents. Although many systems contain both fields and agents and integration of these concepts would be required for modelling, existing modelling frameworks concentrate on either agent-based or field-based modelling and are often low-level programming frameworks. A concept is lacking that integrates fields and agents in a way that is easy to use for modelers who are not software engineers. To address this issue, we develop a conceptual data model that represents fields and agents uniformly. We then show how the data model can be used in a high-level modelling language. The data model represents fields and agents in space-time. Also relations and networks can be represented using the same concepts. Using the conceptual data model we can represent static and mobile agents that may have spatial and temporal variation within their extent. The concepts we use are phenomenon, property set, item, property, domain and value. The phenomenon is the thing that is modelled, which can be any real world thing, for example trees. A phenomenon usually consists of several items, e.g. single trees. The domain is the spatiotemporal location and/or extent for which the items in the phenomenon are defined. Multiple different domains can coexist for a given phenomenon. For example a domain describing the extent of the trees and a domain describing the stem locations. The same goes for the property, which is an attribute of the thing that is being modeled. A property has a value, which is possibly discretized, for example the biomass over the tree crown

  17. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    Science.gov (United States)

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of

  18. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    Science.gov (United States)

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  19. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    Directory of Open Access Journals (Sweden)

    Christopher R Kelble

    Full Text Available There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society

  20. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    Science.gov (United States)

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  1. ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT

    Science.gov (United States)

    Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...

  2. A participative and facilitative conceptual modelling framework for discrete event simulation studies in healthcare

    OpenAIRE

    Kotiadis, Kathy; Tako, Antuela; Vasilakis, Christos

    2014-01-01

    Existing approaches to conceptual modelling (CM) in discrete-event simulation do not formally support the participation of a group of stakeholders. Simulation in healthcare can benefit from stakeholder participation as it makes possible to share multiple views and tacit knowledge from different parts of the system. We put forward a framework tailored to healthcare that supports the interaction of simulation modellers with a group of stakeholders to arrive at a common conceptual model. The fra...

  3. Hydrogeology of northern Sierra de Chiapas, Mexico: a conceptual model based on a geochemical characterization of sulfide-rich karst brackish springs

    Science.gov (United States)

    Rosales Lagarde, Laura; Boston, Penelope J.; Campbell, Andrew R.; Hose, Louise D.; Axen, Gary; Stafford, Kevin W.

    2014-09-01

    Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.

  4. A Conceptual Space Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    1999-01-01

    Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....

  5. A conceptual model for the development and management of the ...

    African Journals Online (AJOL)

    A conceptual model for the development and management of the Cape Flats ... rainfall; this rainfall pattern has implications for recharge and water management issues in ... Keywords: water resource management, Cape Town, water quality, ...

  6. Testing an integral conceptual model of frailty.

    Science.gov (United States)

    Gobbens, Robbert J; van Assen, Marcel A; Luijkx, Katrien G; Schols, Jos M

    2012-09-01

    This paper is a report of a study conducted to test three hypotheses derived from an integral conceptual model of frailty.   The integral model of frailty describes the pathway from life-course determinants to frailty to adverse outcomes. The model assumes that life-course determinants and the three domains of frailty (physical, psychological, social) affect adverse outcomes, the effect of disease(s) on adverse outcomes is mediated by frailty, and the effect of frailty on adverse outcomes depends on the life-course determinants. In June 2008 a questionnaire was sent to a sample of community-dwelling people, aged 75 years and older (n = 213). Life-course determinants and frailty were assessed using the Tilburg frailty indicator. Adverse outcomes were measured using the Groningen activity restriction scale, the WHOQOL-BREF and questions regarding healthcare utilization. The effect of seven self-reported chronic diseases was examined. Life-course determinants, chronic disease(s), and frailty together explain a moderate to large part of the variance of the seven continuous adverse outcomes (26-57%). All these predictors together explained a significant part of each of the five dichotomous adverse outcomes. The effect of chronic disease(s) on all 12 adverse outcomes was mediated at least partly by frailty. The effect of frailty domains on adverse outcomes did not depend on life-course determinants. Our finding that the adverse outcomes are differently and uniquely affected by the three domains of frailty (physical, psychological, social), and life-course determinants and disease(s), emphasizes the importance of an integral conceptual model of frailty. © 2011 Blackwell Publishing Ltd.

  7. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    Science.gov (United States)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  8. MARKET ENTRY STRATEGIES TO EMERGING MARKETS: A CONCEPTUAL MODEL OF TURNKEY PROJECT DEVELOPMENT

    OpenAIRE

    Bistra Vassileva; Miroslav Nikolov

    2016-01-01

    The main purpose of the paper is to analyse the international market entry strategies in the light of globalisation processes and to propose a conceptual model of turnkey projects as market entry mode. The specific research objectives are as follows: 1. to develop an integrated framework of the turnkey marketing process as a conceptual model; 2. to analyse BRICS countries as potential host countries for turnkey projects implementation; 3. to assess potential implications of proposed concep...

  9. Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))

    2008-05-15

    Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction

  10. Geophysical and geochemical models of the Earth's shields and rift zones

    International Nuclear Information System (INIS)

    Chung, D.H.

    1977-01-01

    This report summarizes a collection of, synthesis of, and speculation on the geophysical and geochemical models of the earth's stable shields and rift zones. Two basic crustal types, continental and oceanic, and two basic mantle types, stable and unstable, are described. It is pointed out that both the crust and upper mantle play a strongly interactive role with surface geological phenomena ranging from the occurrence of mountains, ocean trenches, oceanic and continental rifts to geographic distributions of earthquakes, faults, and volcanoes. On the composition of the mantle, there is little doubt regarding the view that olivine constitutes a major fraction of the mineralogy of the earth's upper mantle. Studies are suggested to simulate the elasticity and composition of the earth's lower crust and upper mantle

  11. BIM-enabled Conceptual Modelling and Representation of Building Circulation

    OpenAIRE

    Lee, Jin Kook; Kim, Mi Jeong

    2014-01-01

    This paper describes how a building information modelling (BIM)-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs), which follow an object-oriented data modelli...

  12. A conceptual framework for measuring airline business model convergence

    OpenAIRE

    Daft, Jost; Albers, Sascha

    2012-01-01

    This paper develops a measurement framework that synthesizes the airline and strategy literature to identify relevant dimensions and elements of airline business models. The applicability of this framework for describing airline strategies and structures and, based on this conceptualization, for assessing the potential convergence of airline business models over time is then illustrated using a small sample of five German passenger airlines. For this sample, the perception of a rapprochement ...

  13. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    Science.gov (United States)

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  14. A conceptual model of referee efficacy

    Directory of Open Access Journals (Sweden)

    Félix eGuillén

    2011-02-01

    Full Text Available This paper presents a conceptual model of referee efficacy, defines the concept, proposes sources of referee specific efficacy information, and suggests consequences of having high or low referee efficacy. Referee efficacy is defined as the extent to which referees believe they have the capacity to perform successfully in their job. Referee efficacy beliefs are hypothesized to be influenced by mastery experiences, referee knowledge/education, support from significant others, physical/mental preparedness, environmental comfort, and perceived anxiety. In turn, referee efficacy beliefs are hypothesized to influence referee performance, referee stress, athlete rule violations, athlete satisfaction, and co-referee satisfaction.

  15. Strategies to Move From Conceptual Models to Quantifying Resilience in FEW Systems

    Science.gov (United States)

    Padowski, J.; Adam, J. C.; Boll, J.; Barber, M. E.; Cosens, B.; Goldsby, M.; Fortenbery, R.; Fowler, A.; Givens, J.; Guzman, C. D.; Hampton, S. E.; Harrison, J.; Huang, M.; Katz, S. L.; Kraucunas, I.; Kruger, C. E.; Liu, M.; Luri, M.; Malek, K.; Mills, A.; McLarty, D.; Pickering, N. B.; Rajagopalan, K.; Stockle, C.; Richey, A.; Voisin, N.; Witinok-Huber, B.; Yoder, J.; Yorgey, G.; Zhao, M.

    2017-12-01

    Understanding interdependencies within Food-Energy-Water (FEW) systems is critical to maintain FEW security. This project examines how coordinated management of physical (e.g., reservoirs, aquifers, and batteries) and non-physical (e.g., water markets, social capital, and insurance markets) storage systems across the three sectors promotes resilience. Coordination increases effective storage within the overall system and enhances buffering against shocks at multiple scales. System-wide resilience can be increased with innovations in technology (e.g., smart systems and energy storage) and institutions (e.g., economic systems and water law). Using the Columbia River Basin as our geographical study region, we use an integrated approach that includes a continuum of science disciplines, moving from theory to practice. In order to understand FEW linkages, we started with detailed, connected conceptual models of the food, energy, water, and social systems to identify where key interdependencies (i.e., overlaps, stocks, and flows) exist within and between systems. These are used to identify stress and opportunity points, develop innovation solutions across FEW sectors, remove barriers to the adoption of solutions, and quantify increases in system-wide resilience to regional and global change. The conceptual models act as a foundation from which we can identify key drivers, parameters, time steps, and variables of importance to build and improve existing systems dynamic and biophysical models. Our process of developing conceptual models and moving to integrated modeling is critical and serves as a foundation for coupling quantitative components with economic and social domain components and analyses of how these interact through time and space. This poster provides a description of this process that pulls together conceptual maps and integrated modeling output to quantify resilience across all three of the FEW sectors (a.k.a. "The Resilience Calculator"). Companion posters

  16. Significance of geochemical characterization to performance at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.

    1993-01-01

    The U.S. concept for permanent disposal of high-level radioactive waste resembles those of other countries in that it relies upon burial in a deep geologic medium. This concept relies upon multiple barriers to retard transport of radionuclides to the accessible environment; those barriers consist of the waste form, waste container, engineered barrier system (including possible backfill) and retardant properties of the host rock. Because mobilization of radionuclides is fundamentally a geochemical problem, an understanding of past, present, and future geochemical processes is a requisite part of site characterization studies conducted by the U.S. Department of Energy at Yucca Mountain, Nevada. Geochemical information is needed for evaluating three favorable conditions (the rates of geochemical processes, conditions that promote precipitation or sorption of radionuclides or prohibit formation of colloids, and stable mineral assemblages) and four potentially adverse conditions of the site (groundwater conditions that could increase the chemical reactivity of the engineered barried system or reduce sorption, potential for gaseous radionuclide movement, and oxidizing groundwaters) for key issues of radionuclide release, groundwater quality, and stability of the geochemical environment. Preliminary results of long-term heating experiments indicate that although zeolites can be modified by long-term, low temperature reactions, their beneficial sorptive properties will not be adversely affected. Mineral reactions will be controlled by the aqueous activity of silica in groundwater with which the minerals are in contact. Geochemical barriers alone may satisfy release requirements to the accessible environment for many radionuclides; however, additional site specific geochemical and mineralogical data are needed to test existing and future radionuclide transport models

  17. Comparison of two conceptual models of flow using the TSA

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1992-01-01

    Several new capabilities have been added to the Total-System Analyzer (TSA), including a new model of unsaturated flow and transport, two new models of source releases, a different computational method for saturated transport, and gas-release capability. In this paper these new capabilities are described, and a comparison is made of results from the two different conceptual models of unsaturated flow that are now part of the TSA, a composite-porosity model and a simple fracture-flow model

  18. Conceptual model for quality of life among adults with congenital or early deafness.

    Science.gov (United States)

    Kushalnagar, Poorna; McKee, Michael; Smith, Scott R; Hopper, Melinda; Kavin, Denise; Atcherson, Samuel R

    2014-07-01

    A conceptual model of health-related quality of life (QoL) is needed to describe key themes that impact perceived QoL in adults with congenital or early deafness. To revise University of Washington Center for Disability Policy and Research's conceptual model of health promotion and QoL, with suggestions for applying the model to improving programs or services that target deaf adults with early deafness. Purposive and theoretical sampling of 35 adults who were born or became deaf early was planned in a 1-year study. In-depth semi-structured interviews probed deaf adult participants' perceptions about quality of life as a deaf individual. Data saturation was reached at the 17th interview with 2 additional interviews for validation, resulting in a total sample of 19 deaf adults. Coding and thematic analysis were conducted to develop the conceptual model. Our conceptual model delineates the relationships between health status (self-acceptance, coping with limitations), intrinsic (functional communication skills, navigating barriers/self-advocacy, resilience) and extrinsic (acceptance by others, access to information, educating others) factors in their influence on deaf adult quality of life outcomes at home, college, work, and in the community. Findings demonstrate the need for the programs and services to consider not only factors intrinsic to the deaf individual but also extrinsic factors in enhancing perceived quality of life outcomes among people with a range of functional hearing and language preferences, including American Sign Language. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Large regional groundwater modeling - a sensitivity study of some selected conceptual descriptions and simplifications

    International Nuclear Information System (INIS)

    Ericsson, Lars O.; Holmen, Johan

    2010-12-01

    The primary aim of this report is: - To present a supplementary, in-depth evaluation of certain conceptual simplifications, descriptions and model uncertainties in conjunction with regional groundwater simulation, which in the first instance refer to model depth, topography, groundwater table level and boundary conditions. Implementation was based on geo-scientifically available data compilations from the Smaaland region but different conceptual assumptions have been analysed

  20. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  1. Operations and support cost modeling of conceptual space vehicles

    Science.gov (United States)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  2. Geochemical evolution of the near field of a KBS-3 repository

    International Nuclear Information System (INIS)

    Arcos, David; Grandia, Fidel; Domenech, Cristina

    2006-09-01

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier

  3. Geochemical evolution of the near field of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, David; Grandia, Fidel; Domenech, Cristina [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier.

  4. A Conceptual Model for Multidimensional Analysis of Documents

    Science.gov (United States)

    Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles

    Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.

  5. A note on the translation of conceptual data models into description logics: disjointness and covering assumptions

    CSIR Research Space (South Africa)

    Casini, G

    2012-10-01

    Full Text Available possibilities for conceptual data modeling. It also raises the question of how existing conceptual models using ER, UML or ORM could be translated into Description Logics (DLs), a family of logics that have proved to be particularly appropriate for formalizing...

  6. Modeling flow and transport pathways to the potential repository horizon at Yucca Mountain

    International Nuclear Information System (INIS)

    Wolfsberg, A.V.; Roemer, G.J.C.; Fabryka-Martin, J.T.; Robinson, B.A.

    1998-01-01

    The isotopic ratios of 36 Cl/Cl are used in conjunction with geologic interpretation and numerical modeling to evaluate flow and transport pathways, processes, and model parameters in the unsaturated zone at Yucca Mountain. By synthesizing geochemical and geologic data, the numerical model results provide insight into the validity of alternative hydrologic parameter sets, flow and transport processes in and away from fault zones, and the applicability of 36 Cl/Cl ratios for evaluating alternative conceptual models

  7. Identifying students’ mental models of sound propagation: The role of conceptual blending in understanding conceptual change

    Directory of Open Access Journals (Sweden)

    Zdeslav Hrepic

    2010-09-01

    Full Text Available We investigated introductory physics students’ mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the “Entity” model to describe the propagation of sound. In this latter model sound is a self-standing entity, different from the medium through which it propagates. All other observed alternative models contain elements of both Entity and Wave models, but at the same time are distinct from each of the constituent models. We called these models “hybrid” or “blend” models. We discuss how students use these models in various contexts before and after instruction and how our findings contribute to the understanding of conceptual change. Implications of our findings for teaching are summarized.

  8. Literature Review of Enterprise Systems Research Using Institutional Theory: Towards a Conceptual Model

    DEFF Research Database (Denmark)

    Svejvig, Per

    This paper sets out to examine the use of institutional theory as a conceptually rich lens to study social issues of enterprise systems (ES) research. More precisely, the purpose is to categorize current ES research using institutional theory to develop a conceptual model that advances ES research...... model which advocates for multi-level and multi-theory approaches, and applies newer institutional aspects such as institutional logics. The findings show that institutional theory in ES research is in its infancy and adopts mainly traditional institutional aspects like isomorphism....... Key institutional features are presented such as isomorphism, rationalized myths, bridging macro and micro structures, and institutional logics and their implications for ES research are discussed. Through a literature review of 180 articles, of which 18 papers are selected, we build a conceptual...

  9. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  10. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    Science.gov (United States)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  11. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  12. Conceptual model of management steadfast economic development production-economic systems

    OpenAIRE

    Prokhorova, V.

    2010-01-01

    The article is devoted developments of conceptual model of management proof economic development of the industrialeconomy systems. Features are certain, the algorithm of impulse is offered and intercommunication of contours of management proof economic development of the industrialeconomy systems is investigational

  13. The applicability and limitations of the geochemical models and tools used in simulating radionuclide behaviour in natural waters. Lessons learned from the Blind Predictive Modelling exercises performed in conjunction with Natural Analogue studies

    International Nuclear Information System (INIS)

    Bruno, J.; Duro, L.; Grive, M.

    2001-07-01

    One of the key applications of Natural Analogue studies to the Performance Assessment (PA) of nuclear waste disposal has been the possibility to test the geochemical models and tools to be used in describing the migration of radionuclides in a future radioactive waste repository system. To this end, several geochemical modelling testing exercises (commonly denoted as Blind Predictive Modelling), have formed an integral part of Natural Analogue Studies over the last decade. Consequently, we thought that this is a timely occasion to make an evaluation of the experience gained and lessons learnt. We have reviewed, discussed and compared the results obtained from the Blind Prediction Modelling (BPM) exercises carried out within 7 Natural Analogue Studies: Oman, Pocos de Caldas, Cigar Lake, Maqarin, El Berrocal, Oklo and Palmottu. To make this comparison meaningful, we present the main geochemical characteristics of each site in order to highlight the most relevant mineralogical and hydrochemical differences. From the complete list of elements studied at all the investigated sites we have made a selection based on the relevance of a given element from a PA viewpoint and on the frequency this element has been included in the BPM exercises. The elements selected for discussion are: Sr, Ba, Sn, Pb, Se, Ni, Zn, REEs, Th and U. We have based our discussion on the results obtained from the speciation as well as solubility calculations. From the comparison of the results it is concluded that we can differentiate between three element categories: 1. Elements whose geochemical behaviour can be fairly well described by assuming solubility control exerted by pure solid phases of the given element (i.e. Th, U under reducing conditions and U in some sites under oxidising conditions); 2. Elements for which the association to major geochemical components of the system must be considered in order to explain their concentrations in groundwaters (i.e. Sr, Ba, Zn, Se, REEs and U under

  14. Lead transport in intra-oceanic subduction zones: 2D geochemical-thermo-mechanical modeling of isotopic signatures

    NARCIS (Netherlands)

    Baitsch-Ghirardello, B.; Stracke, A.; Connolly, J.A.D.; Nikolaeva, K.M.; Gerya, T.V.

    2014-01-01

    Understanding the physical-chemical mechanisms and pathways of geochemical transport in subduction zones remains a long-standing goal of subduction-related research. In this study, we perform fully coupled geochemical-thermo-mechanical (GcTM) numerical simulations to investigate Pb isotopic

  15. Development and validation of a mass casualty conceptual model.

    Science.gov (United States)

    Culley, Joan M; Effken, Judith A

    2010-03-01

    To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.

  16. CAPTURING UNCERTAINTY IN UNSATURATED-ZONE FLOW USING DIFFERENT CONCEPTUAL MODELS OF FRACTURE-MATRIX INTERACTION

    International Nuclear Information System (INIS)

    SUSAN J. ALTMAN, MICHAEL L. WILSON, GUMUNDUR S. BODVARSSON

    1998-01-01

    Preliminary calculations show that the two different conceptual models of fracture-matrix interaction presented here yield different results pertinent to the performance of the potential repository at Yucca Mountain. Namely, each model produces different ranges of flow in the fractures, where radionuclide transport is thought to be most important. This method of using different flow models to capture both conceptual model and parameter uncertainty ensures that flow fields used in TSPA calculations will be reasonably calibrated to the available data while still capturing this uncertainty. This method also allows for the use of three-dimensional flow fields for the TSPA-VA calculations

  17. Conceptual design of an integrated technology model for carbon policy assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

    2011-01-01

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  18. Conceptual model for reinforced grass on inner dike slopes

    NARCIS (Netherlands)

    Verhagen, H.J.; ComCoast

    2005-01-01

    A desk study has been carried out in order to develop a conceptual model for the erosion of inner dike slopes with reinforced grass cover. Based on the results the following can be concluded: The presence of a geosynthetic in a grass slope can be taken into account in the EPM method by increasing

  19. Integration of the metal ion charge neutralization model for humic acid complexation into the geochemical speciation code EQ3/6

    International Nuclear Information System (INIS)

    Brendler, V.

    2002-01-01

    Geochemical modeling often requires the consideration of humics as major complexing agent and colloid. The metal ion charge neutralization model can handle respective interactions and has therefore been integrated into the speciation software EQ3/6. An application showing the influence of the pH-dependence of the loading capacity on actinide speciation is given. (orig.)

  20. A conceptual precipitation-runoff modeling suite: Model selection, calibration and predictive uncertainty assessment

    Science.gov (United States)

    Tyler Jon Smith

    2008-01-01

    In Montana and much of the Rocky Mountain West, the single most important parameter in forecasting the controls on regional water resources is snowpack. Despite the heightened importance of snowpack, few studies have considered the representation of uncertainty in coupled snowmelt/hydrologic conceptual models. Uncertainty estimation provides a direct interpretation of...

  1. Overview of the geochemical code MINTEQ: applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Graham, M.J.; Peterson, S.R.

    1985-09-01

    The MINTEQ geochemical computer code, developed at Pacific Northwest Laboratory, integrates many of the capabilities of its two immediate predecessors, WATEQ3 and MINEQL. MINTEQ can be used to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments or the interaction of ground water with solidified low-level wastes. The code is capable of performing calculations of ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial solidified low-level wastes. The wastes being evaluated include power reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code is being upgraded before the geochemical modeling is performed. Thermodynamic data for cobalt, antimony, cerium, and cesium solid phases and aqueous species are being added to the database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the wastes predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partical field validation of the geochemical model. 28 refs

  2. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    Science.gov (United States)

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  3. A Conceptual Model for Analysing Management Development in the UK Hospitality Industry

    Science.gov (United States)

    Watson, Sandra

    2007-01-01

    This paper presents a conceptual, contingent model of management development. It explains the nature of the UK hospitality industry and its potential influence on MD practices, prior to exploring dimensions and relationships in the model. The embryonic model is presented as a model that can enhance our understanding of the complexities of the…

  4. A Conceptual Model for Increasing Use of Electronic Medical Records by Primary Care Physicians Through End-User Support.

    Science.gov (United States)

    Randhawa, Gurprit K

    2017-01-01

    A conceptual model for exploring the relationship between end-user support (EUS) and electronic medical record (EMR) use by primary care physicians is presented. The model was developed following a review of conceptual and theoretical frameworks related to technology adoption/use and EUS. The model includes (a) one core construct (facilitating conditions), (b) four antecedents and one postcedent of facilitating conditions, and (c) four moderators. EMR use behaviour is the key outcome of the model. The proposed conceptual model should be tested. The model may be used to inform planning and decision-making for EMR implementations to increase EMR use for benefits realization.

  5. A Conceptual Model of the Pasadena Housing System

    Science.gov (United States)

    Hirshberg, Alan S.; Barber, Thomas A.

    1971-01-01

    During the last 5 years, there have been several attempts at applying systems analysis to complex urban problems. This paper describes one such attempt by a multidisciplinary team of students, engineers, professors, and community representatives. The Project organization is discussed and the interaction of the different disciplines (the process) described. The two fundamental analysis questions posed by the Project were: "Why do houses deteriorate?" and "Why do people move?" The analysis of these questions led to the development of a conceptual system model of housing in Pasadena. The major elements of this model are described, and several conclusions drawn from it are presented.

  6. Designing Public Library Websites for Teens: A Conceptual Model

    Science.gov (United States)

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…

  7. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  8. Modelling of leaching and geochemical processes in an aged MSWIBA subbase layer

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, David; Suer, Pascal; Sloot, Hans van der; Kosson, David; Flyhammar, Peter

    2009-07-15

    In a previous project, the accumulated effects of leaching and aging in a subbase layer of bottom ash in a test road were investigated. The test road were constructed in 1987 in Linkoeping, Sweden, and was in use until the start of the Vaendoera Q4-241 study in September 2003. The overall objective of the present study is to bring the evaluation of the previous project (Q4-241) further by taking advantage of the existing data, perform complementary laboratory experiments on four composite samples reflecting different degree of exposure to atmosphere and leaching. The specific objectives were to investigate: (i) what processes and mineral phases that govern leaching of macro- and trace elements and DOC in the bottom ash after 16 years (1987- 2003) of aging under field conditions. (ii) how the hydrologic conditions, infiltration of water and leachate production has evolved with time. The following tests were performed on the composite samples: pH-stat test, column test, Fe/Al oxide extraction and TOC fractioning. Geochemical and hydrological modelling where performed with LeachXS/Orchestra and Hydrus 2-D. Daily precipitation data from the Swedish Meteorological and Hydrological Institute (SMHI) from the Malmslaett (Linkoeping) measurement station was used in the hydrological modelling of January 1988 to the 1st of september 2003. The hydraulic modeling results show that the bottom ash subbase layer endure seasonal wet and dry cycles. The results confirm that, depending on the boundary conditions along the shoulders the capillary potential may drive moisture either in or out of the road body. The water retention parameters for bottom ash were crucial in the hydraulic modeling and the capillary forces in bottom ash were found to be significant with a water retention curve close to silt. This explains the observed depletion of easily soluble salts in the test road. The results showed that the accumulated LS ratio for the bottom ash subbase layer reached about LS:10 in

  9. Geochemical modelling of groundwater evolution and residence time at the Haestholmen site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy, Helsinki (Finland); Leino- Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    2001-01-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the geological final disposal of radioactive waste. The performance of technical barriers and migration of possibly released radionuclides depend on the geochemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions that control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors that control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the crystalline bedrock at Haestholmen has been created and the significance of geochemical reactions and groundwater mixing along different flow paths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on water samples (64 altogether) obtained from precipitation, the Baltic Sea, the soil layer, shallow wells in the bedrock, and 14 deep boreholes in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Haestholmen to a depth of 1000 m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used to evaluate evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution ({delta}{sup 13}C and {delta}{sup 34}S) and mixing of palaeo-water types were approached by mass-balance calculations (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The interpretation and calculation of hydrochemical data from Haestholmen suggest that changes in external conditions, such as glaciation

  10. The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Güzel, Esra Bukova

    2017-01-01

    The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…

  11. Conceptual Model for Mitigating Human - Wildlife Conflict based on System Thinking

    Science.gov (United States)

    Patana, Pindi; Mawengkang, Herman; Silvi Lydia, Maya

    2018-01-01

    In conservation process it is unavoidably that conflict incidents may occur among the people and wild-life in the surrounding of the conservation area. Mitigating conflict between wildlife and people is considered a top conservation priority, particularly in landscapes where high densities of people and wildlife co-occur. This conflict is also happened in Leuser conservation area located in the border of North Sumatra and Aceh province, Indonesia. Easing the conflict problem is very difficult. This paper proposes a conceptual model based on system thinking to explore factors that may have great influence on the conflict and to figure out mitigating the conflict. We show how this conceptual framework can be utilized to analyze the conflict occur and further how it could used to develop a multi- criteria decision model.

  12. Conceptual model elaboration for the safety assessment of phosphogypsum use in sanitary landfills

    International Nuclear Information System (INIS)

    Cota, Stela D.; Braga, Leticia T.P.; Jacomino, Vanusa F.

    2009-01-01

    Phosphogypsum is a by-product of the phosphatic fertilizer production from the beneficiation of phosphate minerals (apatites). Produced in large quantities throughout the world and stored temporally in stacks, the final destination of this product is nowadays a subject of investigation. Due to the presence of radionuclides ( 226 Ra, 232 Th and 40 K, mainly), possible applications for the phosphogypsum must be verified for radiological safety. The goal of this paper was to elaborate a representative water flow conceptual model of a sanitary landfill for the safety assessment of the impact of using phosphogypsum as a cover material. For this, the ground water flow in variably saturated conditions and solute transport model HYDRUS-2D has been used for simulating the impact in the saturated zone of potential radionuclides leaching. The conceptual model was developed by collecting and analyzing the data from environmental license documentation of municipal sanitary landfills located on the State of Minas Gerais, Brazil. In order to fulfill the requirements of HDRUS-2D model in terms of the necessary parameters, the physical characteristics and typical configuration of the landfills, as well as the hydrogeological parameters of soils and aquifers related to the local of placement of the landfills, were taken in account for the formulation of the conceptual model. (author)

  13. Detecting and Quantifying Paleoseasonality in Stalagmites using Geochemical and Modelling Approaches

    Science.gov (United States)

    Baldini, J. U. L.

    2017-12-01

    Stalagmites are now well established sources of terrestrial paleoclimate information, providing insights into climate change on a variety of timescales. One of the most exciting aspects of stalagmites as climate archives is their ability to provide information regarding seasonality, a notoriously difficult component of climate change to characterise. However, stalagmite geochemistry may reflect not only the most apparent seasonal signal in external climate parameters, but also cave-specific signals such as seasonal changes in cave air carbon dioxide concentrations, sudden shifts in ventilation, and stochastic hydrological processes. Additionally, analytical bias may dampen or completely obfuscate any paleoseasonality, highlighting the need for appropriate quantification of this issue using simple models. Evidence from stalagmites now suggests that a seasonal signal is extractable from many samples, and that this signal can provide an important extra dimension to paleoclimate interpretations. Additionally, lower resolution annual- to decadal-scale isotope ratio records may also reflect shifts in seasonality, but identifying these is often challenging. Integrating geochemical datasets with models and cave monitoring data can greatly increase the accuracy of climate reconstructions, and yield the most robust records.

  14. A Geochemical Model of Fluids and Mineral Interactions for Deep Hydrocarbon Reservoirs

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-01-01

    Full Text Available A mutual solubility model for CO2-CH4-brine systems is constructed in this work as a fundamental research for applications of deep hydrocarbon exploration and production. The model is validated to be accurate for wide ranges of temperature (0–250°C, pressure (1–1500 bar, and salinity (NaCl molality from 0 to more than 6 mole/KgW. Combining this model with PHREEQC functionalities, CO2-CH4-brine-carbonate-sulfate equilibrium is calculated. From the calculations, we conclude that, for CO2-CH4-brine-carbonate systems, at deeper positions, magnesium is more likely to be dissolved in aqueous phase and calcite can be more stable than dolomite and, for CO2-CH4-brine-sulfate systems, with a presence of CH4, sulfate ions are likely to be reduced to S2− and H2S in gas phase could be released after S2− saturated in the solution. The hydrocarbon “souring” process could be reproduced from geochemical calculations in this work.

  15. Creating a Universe, a Conceptual Model

    Directory of Open Access Journals (Sweden)

    James R. Johnson

    2016-10-01

    Full Text Available Space is something. Space inherently contains laws of nature: universal rules (mathematics, space dimensions, types of forces, types of fields, and particle species, laws (relativity, quantum mechanics, thermodynamics, and electromagnetism and symmetries (Lorentz, Gauge, and symmetry breaking. We have significant knowledge about these laws of nature because all our scientific theories assume their presence. Their existence is critical for developing either a unique theory of our universe or more speculative multiverse theories. Scientists generally ignore the laws of nature because they “are what they are” and because visualizing different laws of nature challenges the imagination. This article defines a conceptual model separating space (laws of nature from the universe’s energy source (initial conditions and expansion (big bang. By considering the ramifications of changing the laws of nature, initial condition parameters, and two variables in the big bang theory, the model demonstrates that traditional fine tuning is not the whole story when creating a universe. Supporting the model, space and “nothing” are related to the laws of nature, mathematics and multiverse possibilities. Speculation on the beginning of time completes the model.

  16. Purpose and Pedagogy: A Conceptual Model for an ePortfolio

    Science.gov (United States)

    Buyarski, Catherine A.; Aaron, Robert W.; Hansen, Michele J.; Hollingsworth, Cynthia D.; Johnson, Charles A.; Kahn, Susan; Landis, Cynthia M.; Pedersen, Joan S.; Powell, Amy A.

    2015-01-01

    This conceptual model emerged from the need to balance multiple purposes and perspectives associated with developing an ePortfolio designed to promote student development and success. A comprehensive review of literature from various disciplines, theoretical frameworks, and scholarship, including self-authorship, reflection, ePortfolio pedagogy,…

  17. Predictive geochemical modeling of contaminant concentrations in laboratory columns and in plumes migrating from uranium mill tailings waste impoundments

    International Nuclear Information System (INIS)

    Peterson, S.R.; Martin, W.J.; Serne, R.J.

    1986-04-01

    A computer-based conceptual chemical model was applied to predict contaminant concentrations in plumes migrating from a uranium mill tailings waste impoundment. The solids chosen for inclusion in the conceptual model were selected based on reviews of the literature, on ion speciation/solubility calculations performed on the column effluent solutions and on mineralogical characterization of the contacted and uncontacted sediments. The mechanism of adsorption included in the conceptual chemical model was chosen based on results from semiselective extraction experiments and from mineralogical characterization procedures performed on the sediments. This conceptual chemical model was further developed and partially validated in laboratory experiments where assorted acidic uranium mill tailings solutions percolated through various sediments. This document contains the results of a partial field and laboratory validation (i.e., test of coherence) of this chemical model. Macro constituents (e.g., Ca, SO 4 , Al, Fe, and Mn) of the tailings solution were predicted closely by considering their concentrations to be controlled by the precipitation/dissolution of solid phases. Trace elements, however, were generally predicted to be undersaturated with respect to plausible solid phase controls. The concentration of several of the trace elements were closely predicted by considering their concentrations to be controlled by adsorption onto the amorphous iron oxyhydroxides that precipitated

  18. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling

    Science.gov (United States)

    Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.

    2010-09-01

    Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is

  19. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    Science.gov (United States)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  20. Comparison of two conceptual models of flow using the TSA

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1992-01-01

    As part of the performance-assessment task for the potential repository site at Yucca Mountain, Nevada, Sandia National Laboratories is developing a set of programs called the Total-System Analyzer (TSA). The TSA is one of the tools being used in the current effort to provide a systematic preliminary estimate the total-system performance of the Yucca Mountain site. The purposes of this paper are twofold: (1) to describe capabilities that have been added to the TSA in the last year; and (2) to present a comparison of two conceptual models of unsaturated-zone flow and transport, in terms of the performance measure specified by the Environmental Protection Agency (EPA) in 40 CFR Part 191. The conceptual-model comparison is intended to demonstrate the new TSA capabilities and at the same time shed some light on the performance implications of fracture flow at Yucca Mountain. Unsaturated fracture flow is not yet well understood, and it is of great importance in determining the performance of Yucca Mountain

  1. Experimental study and numerical modelling of geochemical reactions occurring during uranium in situ recovery (ISR) mining

    International Nuclear Information System (INIS)

    Ben Simon, R.

    2011-09-01

    The in situ Recovery (ISR) method consists of ore mining by in situ chemical leaching with acid or alkaline solutions. ISR takes place underground and is therefore limited to the analysis of the pumped solutions, hence ISR mine management is still empirical. Numerical modelling has been considered to achieve more efficient management of this process. Three different phenomena have to be taken into account for numerical simulations of uranium ISR mining: (1) geochemical reactions; (2) the kinetics of these reactions, and (3) hydrodynamic transport with respect to the reaction kinetics. Leaching tests have been conducted on ore samples from an uranium mine in Tortkuduk (Kazakhstan) where ISR is conducted by acid leaching. Two types of leaching experiments were performed: (1) tests in batch reactors; and (2) extraction in flow through columns. The assumptions deduced from the leaching tests were tested and validated by modelling the laboratory experiments with the numerical codes CHESS and HYTEC, both developed at the Geosciences research center of Mines ParisTech. A well-constrained 1D hydrogeochemical transport model of the ISR process at laboratory-scale was proposed. It enables to translate the chemical release sequence that is observed during experiments into a geochemical reaction sequence. It was possible to highlight the controlling factors of uranium dissolution, and the precipitation of secondary mineral phase in the deposit, as well as the determination of the relative importance of these factors. (author)

  2. TOWARDS A CONCEPTUAL FRAMEWORK OF ISLAMIC LEADERSHIP SUCCESSOR'S ATTRIBUTES MODEL AND GOOD GOVERNANCE

    Directory of Open Access Journals (Sweden)

    Naji Zuhair Alsarhi

    2015-12-01

    Full Text Available The purpose of this paper is to propose a conceptual model that explains the relationship between Islamic leadership successionpersonalityattributes and good governance. The paper sources information from an extensive search of literature to design a conceptual model of Islamic leadership succession (personal attributes & governmental characteristics of Succession and good governance. The model will provide an integration of relationships that will add valuable insights into improved leadership succession theory in the related literature. The paper may assist particularly policy makers and strategists to focus on new possibilities of leadership successors attributes that will lead to improved governance as well as government performance in the world in general, and the Palestine community, in particular.

  3. Description and evaluation of a mechanistically based conceptual model for spall

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, F.D.; Knowles, M.K.; Thompson, T.W. [and others

    1997-08-01

    A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m{sup 3} is calculated.

  4. Description and evaluation of a mechanistically based conceptual model for spall

    International Nuclear Information System (INIS)

    Hansen, F.D.; Knowles, M.K.; Thompson, T.W.

    1997-08-01

    A mechanistically based model for a possible spall event at the WIPP site is developed and evaluated in this report. Release of waste material to the surface during an inadvertent borehole intrusion is possible if future states of the repository include high gas pressure and waste material consisting of fine particulates having low mechanical strength. The conceptual model incorporates the physics of wellbore hydraulics coupled to transient gas flow to the intrusion borehole, and mechanical response of the waste. Degraded waste properties using of the model. The evaluations include both numerical and analytical implementations of the conceptual model. A tensile failure criterion is assumed appropriate for calculation of volumes of waste experiencing fragmentation. Calculations show that for repository gas pressures less than 12 MPa, no tensile failure occurs. Minimal volumes of material experience failure below gas pressure of 14 MPa. Repository conditions dictate that the probability of gas pressures exceeding 14 MPa is approximately 1%. For these conditions, a maximum failed volume of 0.25 m 3 is calculated

  5. SEEPAGE/INVERT INTERACTIONS

    International Nuclear Information System (INIS)

    P.S. Domski

    2000-01-01

    As directed by a written development plan (CRWMS M andO 1999a), a conceptual model for water entering the drift and reacting with the invert materials is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction, and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE), Revision 2 (NRC 1999). This AMR also seeks to: (1) Develop a logical conceptual model for physical/chemical interactions between seepage and the invert materials; (2) screen potential processes and reactions that may occur between seepage and invert to evaluate the potential consequences of the interactions; and (3) outline how seepage/invert processes may be quantified. This document provides the conceptual framework for screening out insignificant processes and for identifying and evaluating those seepage/invert interactions that have the potential to be important to subsequent PAO analyses including the Engineered Barrier System (EBS) physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. Additionally, the concepts discussed within this report may also apply to certain near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts. The seepage/invert interactions will not directly affect any principal factors

  6. Testing a Conceptual Model of Working through Self-Defeating Patterns

    Science.gov (United States)

    Wei, Meifen; Ku, Tsun-Yao

    2007-01-01

    The present study developed and examined a conceptual model of working through self-defeating patterns. Participants were 390 college students at a large midwestern university. Results indicated that self-defeating patterns mediated the relations between attachment and distress. Also, self-esteem mediated the link between self-defeating patterns…

  7. Modeling geochemical stability of cement formulations for use as shaft liner and sealing components at Yucca Mountain

    International Nuclear Information System (INIS)

    Gardiner, M.A.; Myers, J.; Hinkebein, T.E.

    1990-01-01

    The geochemical modeling codes EQ3NR/EQ6 were used to model the interaction of cementitious materials with ground water from the Yucca Mountain proposed nuclear waste repository site in Nevada. This paper presents a preliminary estimate of the compositional changes caused by these interactions in the ground water and in the cement-based compounds proposed for use as sealing and shaft liner materials at the Yucca Mountain site. The geochemical speciation/solubility/reaction path codes EQ3NR/EQ6 were used to model the interaction of cementitious materials and water. Interaction of water with a cementitious material will result in dissolution of certain cement phases and changes in the water chemistry. These changes in the water chemistry may further lead to the precipitation of minerals either in the concrete or in the surrounding tuff at the Yucca Mountain Site (YMS). As part of a larger scoping study, a range of water, cement, and tuff compositions, temperatures, and reaction path modes were used. This paper presents a subset of that study by considering the interaction of three different cement formulations at 25 degree C with J-13 water using the ''closed'' reaction path mode. This subset was chosen as a base case to answer important questions in selecting the compositions of cementitious materials for use in the proposed repository. 8 refs., 1 fig., 3 tabs

  8. Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model

    Science.gov (United States)

    This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).

  9. Revising a conceptual model of partnership and sustainability in global health.

    Science.gov (United States)

    Upvall, Michele J; Leffers, Jeanne M

    2018-05-01

    Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.

  10. A conceptual holding model for veterinary applications

    Directory of Open Access Journals (Sweden)

    Nicola Ferrè

    2014-05-01

    Full Text Available Spatial references are required when geographical information systems (GIS are used for the collection, storage and management of data. In the veterinary domain, the spatial component of a holding (of animals is usually defined by coordinates, and no other relevant information needs to be interpreted or used for manipulation of the data in the GIS environment provided. Users trying to integrate or reuse spatial data organised in such a way, frequently face the problem of data incompatibility and inconsistency. The root of the problem lies in differences with respect to syntax as well as variations in the semantic, spatial and temporal representations of the geographic features. To overcome these problems and to facilitate the inter-operability of different GIS, spatial data must be defined according to a “schema” that includes the definition, acquisition, analysis, access, presentation and transfer of such data between different users and systems. We propose an application “schema” of holdings for GIS applications in the veterinary domain according to the European directive framework (directive 2007/2/EC - INSPIRE. The conceptual model put forward has been developed at two specific levels to produce the essential and the abstract model, respectively. The former establishes the conceptual linkage of the system design to the real world, while the latter describes how the system or software works. The result is an application “schema” that formalises and unifies the information-theoretic foundations of how to spatially represent a holding in order to ensure straightforward information-sharing within the veterinary community.

  11. Uncertainty in reactive transport geochemical modelling

    International Nuclear Information System (INIS)

    Oedegaard-Jensen, A.; Ekberg, C.

    2005-01-01

    Full text of publication follows: Geochemical modelling is one way of predicting the transport of i.e. radionuclides in a rock formation. In a rock formation there will be fractures in which water and dissolved species can be transported. The composition of the water and the rock can either increase or decrease the mobility of the transported entities. When doing simulations on the mobility or transport of different species one has to know the exact water composition, the exact flow rates in the fracture and in the surrounding rock, the porosity and which minerals the rock is composed of. The problem with simulations on rocks is that the rock itself it not uniform i.e. larger fractures in some areas and smaller in other areas which can give different water flows. The rock composition can be different in different areas. In additions to this variance in the rock there are also problems with measuring the physical parameters used in a simulation. All measurements will perturb the rock and this perturbation will results in more or less correct values of the interesting parameters. The analytical methods used are also encumbered with uncertainties which in this case are added to the uncertainty from the perturbation of the analysed parameters. When doing simulation the effect of the uncertainties must be taken into account. As the computers are getting faster and faster the complexity of simulated systems are increased which also increase the uncertainty in the results from the simulations. In this paper we will show how the uncertainty in the different parameters will effect the solubility and mobility of different species. Small uncertainties in the input parameters can result in large uncertainties in the end. (authors)

  12. A conceptual model of psychological contracts in construction projects

    Directory of Open Access Journals (Sweden)

    Yongjian Ke

    2016-09-01

    Full Text Available The strategic importance of relationship style contracting is recognised in the construction industry. Both public and private sector clients are stipulating more integrated and collaborative forms of procurement. Despite relationship and integrated contractual arrangement being available for some time, it is clear that construction firms have been slow to adopt them. Hence it is timely to examine how social exchanges, via unwritten agreement and behaviours, are being nurtured in construction projects. This paper adopted the concept of Psychological Contracts (PC to describe unwritten agreement and behaviours. A conceptual model of the PC is developed and validated using the results from a questionnaire survey administered to construction professionals in Australia. The results uncovered the relationships that existed amongst relational conditions and relational benefits, the PC and the partners’ satisfaction. The results show that all the hypotheses in the conceptual model of the PC are supported, suggesting the PC model is important and may have an effect on project performance and relationship quality among contracting parties. A validated model of the PC in construction was then developed based on the correlations among each component. The managerial implications are that past relationships and relationship characteristics should be taken into account in the selection of procurement partners and the promise of future resources, support and tangible relational outcomes are also vital. It is important for contracting parties to pay attention to unwritten agreements (the PC and behaviours when managing construction projects.

  13. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Peterson, S.R.; Opitz, B.E.; Graham, M.J.; Eary, L.E.

    1987-03-01

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model

  14. Geochemical prospecting for uranium and thorium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1980-01-01

    A brief review of analytical geochemical prospecting methods for uranium and thorium is given excluding radiometric techniques, except those utilized in the determination of radon. The indicator (pathfinder) elements useful in geochemical surveys are listed for each of the types of known uranium and thorium deposits; this is followed by sections on analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys) and gases (atmochemical surveys). All of the analytical geochemical methods are applicable in prospecting for thorium and uranium, particularly where radiometric methods fail due to attenuation by overburden, water, deep leaching and so on. Efficiency in the discovery of uranium and/or thorium orebodies is promoted by an integrated methods approach employing geological pattern recognition in the localization of deposits, analytical geochemical surveys, and radiometric surveys. (author)

  15. A New Conceptual Model for Understanding International Students' College Needs

    Science.gov (United States)

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  16. Exploiting virtual sediment deposits to explore conceptual foundations

    Science.gov (United States)

    Dietze, Michael; Fuchs, Margret; Kreutzer, Sebastian

    2017-04-01

    Geomorphic concepts and hypotheses are usually formulated based on empiric data from the field or the laboratory (deduction). After translation into models they can be applied to case study scenarios (induction). However, the other way around - expressing hypotheses explicitly by models and test these by empiric data - is a rarely touched trail. There are several models tailored to investigate the boundary conditions and processes that generate, mobilise, route and eventually deposit sediment in a landscape. Thereby, the last part, sediment deposition, is usually omitted. Essentially, there is no model that explicitly focuses on mapping out the characteristics of sedimentary deposits - the material that is used by many disciplines to reconstruct landscape evolution. This contribution introduces the R-package sandbox, a model framework that allows creating and analysing virtual sediment sections for exploratory, explanatory, forecasting and inverse research questions. The R-package sandbox is a probabilistic and rule-based model framework for a wide range of possible applications. The model framework is used here to discuss a set of conceptual questions revolving around geochemical and geochronological methods, such as: How does sample size and sample volume affect age uncertainty? What determines the robustness of sediment fingerprinting results? How does the prepared grain size of the material of interest affect the analysis outcomes? Most of the concepts used in geosciences are underpinned by a set of assumptions, whose robustness and boundary conditions need to be assessed quantitatively. The R-package sandbox is a universal and flexible tool to engage with this challenge.

  17. Geochemical modelling of Na-SO4 type groundwater at Palmottu using a mass balance approach

    International Nuclear Information System (INIS)

    Pitkaenen, P.

    1993-01-01

    The mass balance chemical modelling technique has been applied to the groundwaters at the Palmottu analogue study site (in southwestern Finland) for radioactive waste disposal. The geochemical modelling concentrates on the evolution of Na-SO 4 type groundwater, which is spatially connected to the uranium mineralization. The results calculated along an assumed flow path are consistent with available field data and thermodynamic constraints. The results show that essential production of sulphides is unrealistic in the prevailing conditions. The increasing concentrations of Na, SO 4 and Cl along the evolution trend seem to have the same source and they could originate mainly from the leakage of fluid inclusions. Some mixing of relict sea water is also possible

  18. Evaluation and prediction of oil biodegradation: a novel approach integrating geochemical and basin modeling techniques in offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Baudino, Roger [YPF S.A. (Argentina); Santos, Glauce Figueiredo dos; Losilla, Carlos; Cabrera, Ricardo; Loncarich, Ariel; Gavarrino, Alejandro [RepsolYPF do Brasil, Sao Paulo, SP (Brazil)

    2008-07-01

    Oil fields accounting for a large portion of the world reserves are severely affected by biological degradation. In Brazil, giant fields of the Campos Basin are producing biodegraded oils with widely variable fluid characteristics (10 to 40 deg API) and no apparent logical distribution nor predictability. Modern geochemical techniques allow defining the level of biodegradation. When original (non-degraded) oil samples and other with varying degradation level are available it might be possible to define a distribution trend and to relate it to present day geological factors such as temperature and reservoir geometry. However, other critical factors must be taken into account. But most of all, it is fundamental to have a vision in time of their evolution. This can only be achieved through 3D Basin Models coupled with modern visualization tools. The multi-disciplinary work-flow described here integrates three-dimensional numerical simulations with modern geochemical analyses. (author)

  19. Patient-reported outcomes in insomnia: development of a conceptual framework and endpoint model.

    Science.gov (United States)

    Kleinman, Leah; Buysse, Daniel J; Harding, Gale; Lichstein, Kenneth; Kalsekar, Anupama; Roth, Thomas

    2013-01-01

    This article describes qualitative research conducted with patients with clinical diagnoses of insomnia and focuses on the development of a conceptual framework and endpoint model that identifies a hierarchy and interrelationships of potential outcomes in insomnia research. Focus groups were convened to discuss how patients experience insomnia and to generate items for patient-reported questionnaires on insomnia and associated daytime consequences. Results for the focus group produced two conceptual frameworks: one for sleep and one for daytime impairment. Each conceptual framework consists of hypothesized domains and items in each domain based on patient language taken from the focus group. These item pools may ultimately serve as a basis to develop new questionnaires to assess insomnia.

  20. Tools and data for the geochemical modeling. Thermodynamic data for sulfur species and background salts and tools for the uncertainty analysis; WEDA. Werkzeuge und Daten fuer die Geochemische Modellierung. Thermodynamische Daten fuer Schwefelspezies und Hintergrundsalze sowie Tools zur Unsicherheitsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven; Schoenwiese, Dagmar; Scharge, Tina

    2015-07-15

    The report on tools and data for the geochemical modeling covers the following issues: experimental methods and theoretical models, design of a thermodynamic model for reduced sulfur species, thermodynamic models for background salts, tools for the uncertainty and sensitivity analyses of geochemical equilibrium modeling.

  1. Using a lumped conceptual hydrological model for five different catchments in Sweden

    OpenAIRE

    Ekenberg, Madeleine

    2016-01-01

    Hydrological models offer powerful tools for understanding and predicting. In this thesis we havereviewed the advantages and disadvantages of physically based distributed hydrological models andconceptually lumped hydrological models. Based on that review, we went into depth and developed aMATLAB code to test if a simple conceptual lumped hydrological model, namely GR2M, wouldperform satisfactory for five different catchments in different parts of Sweden. The model had ratherunsatisfactory re...

  2. Multi-Decadal Coastal Behavioural States From A Fusion Of Geohistorical Conceptual Modelling With 2-D Morphodynamic Modelling

    Science.gov (United States)

    Goodwin, I. D.; Mortlock, T.

    2016-02-01

    Geohistorical archives of shoreline and foredune planform geometry provides a unique evidence-based record of the time integral response to coupled directional wave climate and sediment supply variability on annual to multi-decadal time scales. We develop conceptual shoreline modelling from the geohistorical shoreline archive using a novel combination of methods, including: LIDAR DEM and field mapping of coastal geology; a decadal-scale climate reconstruction of sea-level pressure, marine windfields, and paleo-storm synoptic type and frequency, and historical bathymetry. The conceptual modelling allows for the discrimination of directional wave climate shifts and the relative contributions of cross-shore and along-shore sand supply rates at multi-decadal resolution. We present regional examples from south-eastern Australia over a large latitudinal gradient from subtropical Queensland (S 25°) to mid-latitude Bass Strait (S 40°) that illustrate the morphodynamic evolution and reorganization to wave climate change. We then use the conceptual modeling to inform a two-dimensional coupled spectral wave-hydrodynamic-morphodynamic model to investigate the shoreface response to paleo-directional wind and wave climates. Unlike one-line shoreline modelling, this fully dynamical approach allows for the investigation of cumulative and spatial bathymetric change due to wave-induced currents, as well as proxy-shoreline change. The fusion of the two modeling approaches allows for: (i) the identification of the natural range of coastal planform geometries in response to wave climate shifts; and, (ii) the decomposition of the multidecadal coastal change into the cross-shore and along-shore sand supply drivers, according to the best-matching planforms.

  3. A Conceptual Model for Analysing Collaborative Work and Products in Groupware Systems

    Science.gov (United States)

    Duque, Rafael; Bravo, Crescencio; Ortega, Manuel

    Collaborative work using groupware systems is a dynamic process in which many tasks, in different application domains, are carried out. Currently, one of the biggest challenges in the field of CSCW (Computer-Supported Cooperative Work) research is to establish conceptual models which allow for the analysis of collaborative activities and their resulting products. In this article, we propose an ontology that conceptualizes the required elements which enable an analysis to infer a set of analysis indicators, thus evaluating both the individual and group work and the artefacts which are produced.

  4. Development of thermodynamically-based models for simulation of hydrogeochemical processes coupled to channel flow processes in abandoned underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, N.A., E-mail: natalie.kruse@ncl.ac.uk [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Younger, P.L. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2009-07-15

    Accurate modeling of changing geochemistry in mine water can be an important tool in post-mining site management. The Pollutant Sources and Sinks in Underground Mines (POSSUM) model and Pollutant Loadings Above Average Pyrite Influenced Geochemistry POSSUM (PLAYING POSSUM) model were developed using object-oriented programming techniques to simulate changing geochemistry in abandoned underground mines over time. The conceptual model was created to avoid significant simplifying assumptions that decrease the accuracy and defensibility of model solutions. POSSUM and PLAYING POSSUM solve for changes in flow rate and depth of flow using a finite difference hydrodynamics model then, subsequently, solve for geochemical changes at distinct points along the flow path. Geochemical changes are modeled based on a suite of 28 kinetically controlled mineral weathering reactions. Additional geochemical transformations due to reversible sorption, dissolution and precipitation of acid generating salts and mineral precipitation are also simulated using simplified expressions. Contaminant transport is simulated using a novel application of the Random-Walk method. By simulating hydrogeochemical changes with a physically and thermodynamically controlled model, the 'state of the art' in post-mining management can be advanced.

  5. Geochemical modelling of groundwater evolution and residence time at the Kivetty site

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, P.; Luukkonen, A. [VTT Communities and Infrastructure, Espoo (Finland); Ruotsalainen, P. [Fintact Oy, Helsinki (Finland); Leino-Forsman, H.; Vuorinen, U. [VTT Chemical Technology, Espoo (Finland)

    1998-12-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the bedrock at Kivetty has been created and the significance of chemical reactions along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on groundwater samples (38 altogether) obtained from the soil layer, shallow wells in the bedrock, and five deep multi-packered boreholes (KRI-KR5) in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Kivetty to a depth of 850m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and C-14 age calculations of groundwater was given a mass-balance approach (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The hydrogeochemistry of Kivetty is characterised by evolution from low-saline-carbonate-rich recharge water towards Na-Ca-Cl-type water. The salinity remains low. The most important changes in the chemistry of the

  6. Geochemical modelling of groundwater evolution and residence time at the Kivetty site

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Luukkonen, A.; Ruotsalainen, P.; Leino-Forsman, H.; Vuorinen, U.

    1998-12-01

    An understanding of the geochemical evolution of groundwater is an essential part of the performance assessment and safety analysis of the final disposal of radioactive waste into the bedrock. The performance of technical barriers and migration of possibly released radionuclides depend on chemical conditions. A prerequisite for understanding these factors is the ability to specify the water-rock interactions which control chemical conditions in groundwater. The objective of this study is to interpret the processes and factors which control the hydrogeochemistry, such as pH and redox conditions. A model of the hydrogeochemical progress in different parts of the bedrock at Kivetty has been created and the significance of chemical reactions along different flowpaths calculated. Long term hydrodynamics have also been evaluated. The interpretation and modelling are based on groundwater samples (38 altogether) obtained from the soil layer, shallow wells in the bedrock, and five deep multi-packered boreholes (KRI-KR5) in the bedrock for which a comprehensive data set on dissolved chemical species and isotopes was available. Some analyses of dissolved gases and their isotopic measurements were also utilised. The data covers the bedrock at Kivetty to a depth of 850m. The results from groundwater chemistry, isotopes, petrography, hydrogeology of the site, geomicrobial studies, and PCA and speciation calculations were used in the evaluation of evolutionary processes at the site. The geochemical interpretation of water-rock interaction, isotope-chemical evolution and C-14 age calculations of groundwater was given a mass-balance approach (NETPATH). Reaction-path calculations (EQ3/6) were used to verify the thermodynamic feasibility of the reaction models obtained. The hydrogeochemistry of Kivetty is characterised by evolution from low-saline-carbonate-rich recharge water towards Na-Ca-Cl-type water. The salinity remains low. The most important changes in the chemistry of the

  7. Analysis of Economic Burden of Seasonal Influenza: An Actuarial Based Conceptual Model

    Directory of Open Access Journals (Sweden)

    S. S. N. Perera

    2017-01-01

    Full Text Available Analysing the economic burden of the seasonal influenza is highly essential due to the large number of outbreaks in recent years. Mathematical and actuarial models can be considered as management tools to understand the dynamical behavior, predict the risk, and compute it. This study is an attempt to develop conceptual model to investigate the economic burden due to seasonal influenza. The compartment SIS (susceptible-infected-susceptible model is used to capture the dynamical behavior of influenza. Considering the current investment and future medical care expenditure as premium payment and benefit (claim, respectively, the insurance and actuarial based conceptual model is proposed to model the present economic burden due to the spread of influenza. Simulation is carried out to demonstrate the variation of the present economic burden with respect to model parameters. The sensitivity of the present economic burden is studied with respect to the risk of disease spread. The basic reproduction is used to identify the risk of disease spread. Impact of the seasonality is studied by introducing the seasonally varying infection rate. The proposed model provides theoretical background to investigate the economic burden of seasonal influenza.

  8. The Prince Edward Island Conceptual Model for Nursing: a nursing perspective of primary health care.

    Science.gov (United States)

    Munro, M; Gallant, M; MacKinnon, M; Dell, G; Herbert, R; MacNutt, G; McCarthy, M J; Murnaghan, D; Robertson, K

    2000-06-01

    The philosophy of primary health care (PHC) recognizes that health is a product of individual, social, economic, and political factors and that people have a right and a duty, individually and collectively, to participate in the course of their own health. The majority of nursing models cast the client in a dependent role and do not conceptualize health in a social, economic, and political context. The Prince Edward Island Conceptual Model for Nursing is congruent with the international move towards PHC. It guides the nurse in practising in the social and political environment in which nursing and health care take place. This model features a nurse/client partnership, the goal being to encourage clients to act on their own behalf. The conceptualization of the environment as the collective influence of the determinants of health gives both nurse and client a prominent position in the sociopolitical arena of health and health care.

  9. Development of the Conceptual Models for Chemical Conditions and Hydrology Used in the 1996 Performance Assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    LARSON, KURT W.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the ''40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant'' (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on March 28, 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evacuating the potential for groundwater to dissolve the Salado Formation (the repository host formation), development of a regional model for

  10. Development of the conceptual models for chemical conditions and hydrology used in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Larson, K.W.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on 28 March 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and, determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evaluating the potential for groundwater to dissolve the Salado Formation (the repository host formation); development of a regional model for

  11. Version 4. 00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  12. Version 4.00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  13. Geochemical controls on groundwater chemistry in shales

    International Nuclear Information System (INIS)

    Von Damm, K.L.

    1989-01-01

    The chemistry of groundwaters is one of the most important parameters in determining the mobility of species within a rock formation. A three pronged approach was used to determine the composition of, and geochemical controls, on groundwaters specifically within shale formations: (1) available data were collected from the literature, the US Geological Survey WATSTORE data base, and field sampling, (2) the geochemical modeling code EQ3/6 was used to simulate interaction of various shales and groundwaters, and (3) several types of shale were reacted with synthetic groundwaters in the laboratory. The comparison of model results to field and laboratory data provide a means of validating the models, as well as a means of deconvoluting complex field interactions. Results suggest that groundwaters in shales have a wide range in composition and are primarily of the Na-Cl-HCO 3 - type. The constancy of the Na:Cl (molar) ratio at 1:1 and the Ca:Mg ratio from 3:1 to 1:1 suggests the importance of halite and carbonates in controlling groundwater compositions. In agreement with the reaction path modeling, most of the groundwaters are neutral to slightly alkaline at low temperatures. Model and experimental results suggest that reaction (1) at elevated temperatures, or (2) in the presence of oxygen will lead to more acidic conditions. Some acetate was found to be produced in the experiments; depending on the constraints applied, large amounts of acetate were produced in the model results. 13 refs., 1 tab

  14. Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model.

    Science.gov (United States)

    Morgan, R M

    2017-11-01

    There has been a call for forensic science to actively return to the approach of scientific endeavour. The importance of incorporating an awareness of the requirements of the law in its broadest sense, and embedding research into both practice and policy within forensic science, is arguably critical to achieving such an endeavour. This paper presents a conceptual model (FoRTE) that outlines the holistic nature of trace evidence in the 'endeavour' of forensic reconstruction. This model offers insights into the different components intrinsic to transparent, reproducible and robust reconstructions in forensic science. The importance of situating evidence within the whole forensic science process (from crime scene to court), of developing evidence bases to underpin each stage, of frameworks that offer insights to the interaction of different lines of evidence, and the role of expertise in decision making are presented and their interactions identified. It is argued that such a conceptual model has value in identifying the future steps for harnessing the value of trace evidence in forensic reconstruction. It also highlights that there is a need to develop a nuanced approach to reconstructions that incorporates both empirical evidence bases and expertise. A conceptual understanding has the potential to ensure that the endeavour of forensic reconstruction has its roots in 'problem-solving' science, and can offer transparency and clarity in the conclusions and inferences drawn from trace evidence, thereby enabling the value of trace evidence to be realised in investigations and the courts. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  15. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    International Nuclear Information System (INIS)

    Thomas, J.M.; Benedict, F.C. Jr.; Rose, T.P.; Hershey, R.L.; Paces, J.B.; Peterman, Z.E.; Farnham, I.M.; Johannesson, K.H.; Singh, A.K.; Stetzenbach, K.J.; Hudson, G.B.; Kenneally, J.M.; Eaton, G.F.; Smith, D.K.

    2003-01-01

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units

  16. State of chemical modeling modules for the degradation of concrete and cements

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A.

    1997-04-15

    This report describes the conceptual framework upon which modeling activities will be needed to predict the chemistry of water in contact with concrete and its degradation products cover a broad area, from developing databases for existing abiotic codes, to developing codes that can simulate the chemical impact of microbial activities at a level of sophistication equivalent to that of the abiotic modeling codes, and ultimately, to simulating drift-scale chemical systems in support of hydrological, geochemical,a nd engineering efforts.

  17. Search for a New Conceptual Bookkeeping Model : Different Levels of Abstraction

    NARCIS (Netherlands)

    Sweere, A.M.J.; van Groenendaal, W.J.H.

    1999-01-01

    Nowadays, every bookkeeping system used in practice is automated. Most bookkeeping software and integrated information systems are based on databases. In this paper, we develop a new conceptual bookkeeping model which is not based on manual techniques, but which is applicable in a database

  18. From Conceptual Frameworks to Mental Models for Astronomy: Students' Perceptions

    Science.gov (United States)

    Pundak, David; Liberman, Ido; Shacham, Miri

    2017-01-01

    Considerable debate exists among discipline-based astronomy education researchers about how students change their perceptions in science and astronomy. The study questioned the development of astronomical models among students in institutions of higher education by examining how college students change their initial conceptual frameworks and…

  19. Performance of a Zerovalent Iron Reactive Barrier for the Treatment of Arsenic in Groundwater: Part 2. Geochemical Modeling and Solid Phase Studies

    Science.gov (United States)

    Arsenic uptake processes were evaluated in a zerovalent iron reactive barrier installed at a lead smelting facility using geochemical modeling, solid-phase analysis, and X-ray absorption spectroscopy techniques. Aqueous speciation of arsenic plays a key role in directing arsenic...

  20. 300 kWt core conceptual model thermal/hydraulic characteristics

    International Nuclear Information System (INIS)

    Moody, E.

    1971-01-01

    The 300 kW(t), 199 element NASA-Lewis/AEC core conceptual model, has been analyzed to determine it's thermal-hydraulic characteristics using the GEOM-3 code. Stack-ups of tolerances and fuel rod asymmetry patterns were used to ascertain cross element Δ T's. Both zoned and uniform spacing were analyzed with a somewhat lower fuel temperature and cross element ΔT found for zoned spacing. With the models considered, the core design appears adequate to limit thermal gradients to approximately 32 0 F. Bypass flow should be controlled to prevent excessive edge element ΔT's. 11 references. (U.S.)

  1. A Conceptual Modeling for a GoldSim Program for Safety Assessment of an LILW Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Lee, Sung Ho

    2009-12-01

    Modeling study and development of a total system performance assessment (TSPA) program, by which an assessment of safety and performance for a low- and intermediate-level radioactive waste disposal repository with normal or abnormal nuclide release cases associated with the various FEPs involved in the performance of the proposed repository could be made has been carrying out by utilizing GoldSim under contract with KRMC. The report deals with a detailed conceptual modeling scheme by which a GoldSim program modules, all of which are integrated into a TSPA program as well as the input data set currently available. In-depth system models that are conceptually and rather practically described and then ready for implementing into a GoldSim program are introduced with plenty of illustrative conceptual models and sketches. The GoldSim program that will be finally developed through this project is expected to be successfully applied to the post closure safety assessment required both for the LILW repository and pyro processed repository by the regulatory body with both increased practicality and much reduced uncertainty

  2. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  3. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  4. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  5. Examining the Etiology of Reading Disability as Conceptualized by the Hybrid Model

    Science.gov (United States)

    Erbeli, Florina; Hart, Sara A.; Wagner, Richard K.; Taylor, Jeanette

    2018-01-01

    A fairly recent definition of reading disability (RD) is that in the form of a hybrid model. The model views RD as a latent construct that is manifested through various observable unexpected impairments in reading-related skills and through inadequate response to intervention. The current report evaluated this new conceptualization of RD from an…

  6. Geochemical of clay formations : study of Spanish clay REFERENCE

    International Nuclear Information System (INIS)

    Turrero, M. J.; Pena, J.

    2003-01-01

    Clay rocks are investigated in different international research programs in order to assess its feasibility for the disposal of high level radioactive wastes. This is because different sepcific aspects: they have low hydraulic conductivity (10''-11-10''-15 m/s), a high sorption capacity, self-sealing capacity of facults and discontinuities and mechanical resistance. Several research programs on clay formations are aimed to study the chemistry of the groundwater and the water-rock reactions that control it: e. g. Boom Clay (Mol, Belgium), Oxford Clay /Harwell, United Kingdom), Toarcian Clay (Tournemire, France), Palfris formation (Wellenberg, Switzerland), Opalinus Clay (Bure, France). Based on these studies, considerable progress in the development of techniques for hydrologic, geochemical and hydrogeochemical characterization of mudstones has been accomplished (e. g. Beaufais et al. 1994, De Windt el al. 1998. Thury and Bossart 1999, Sacchi and Michelot 2000) with important advances in the knowledge of geochemical process in these materials (e. g. Reeder et al. 1993, Baeyens and Brandbury 1994, Beaucaire et al. 2000, Pearson et al., 2003).Furtermore, geochemical modeling is commonly used to simulate the evolution of water chemistry and to understand quantitatively the processes controlling the groundwater chemistry (e. g. Pearson et al. 1998, Tempel and Harrison 2000, Arcos et al., 2001). The work presented here is part of a research program funded by Enresa in the context of its R and D program. It is focused on the characterization of a clay formation (reference Argillaceous Formation, RAF) located within the Duero Basin (north-centralSpain). The characterisation of th ephysical properties,, fluid composition, mineralogy, water-rock reaction processes, geochemical modelling and sorption properties of the clays from the mentioned wells is the main purpose of this work. (Author)

  7. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    International Nuclear Information System (INIS)

    Marques, L.S.

    1988-01-01

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO 2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO 2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO 2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO 2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author) [pt

  8. Conceptual data modeling on the KRR-1 and 2 decommissioning database

    International Nuclear Information System (INIS)

    Park, Hee Seoung; Park, Seung Kook; Lee, Kune Woo; Park, Jin Ho

    2002-01-01

    A study of the conceptual data modeling to realize the decommissioning database on the KRR-1 and 2 was carried out. In this study, the current state of the abroad decommissioning databased was investigated to make a reference of the database. A scope of the construction of decommissioning database has been set up based on user requirements. Then, a theory of the database construction was established and a scheme on the decommissioning information was classified. The facility information, work information, radioactive waste information, and radiological information dealing with the decommissioning database were extracted through interviews with an expert group and also decided upon the system configuration of the decommissioning database. A code which is composed of 17 bit was produced considering the construction, scheme and information. The results of the conceptual data modeling and the classification scheme will be used as basic data to create a prototype design of the decommissioning database

  9. A proposal of conceptual model for Pertuso Spring discharge evaluation in the Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2016-10-01

    Full Text Available The Upper Aniene River basin is part of a large karst aquifer, which interacts with the river, and represents the most important water resource in the southeast part of Latium Region, Central Italy, used for drinking, agriculture and hydroelectric supplies. This work provides hydrogeochemical data and their interpretations for 1 spring and 2 cross section of Aniene River, monitored from July 2014 to December 2015, in the Upper Valley of Aniene River, to identify flow paths and hydrogeochemical processes governing groundwater-surface water interactions in this region. These activities deal with the Environmental Monitoring Plan made for the catchment work project of the Pertuso Spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important drinking water network in the South part of Rome district. Discharge measurements and hydrogeochemical data were analyzed to develop a conceptual model of aquifer-river interaction, with the aim of achieving proper management and protection of this important hydrogeological system. All groundwater samples are characterized as Ca-HCO3 type. Geochemical modeling and saturation index computation of the water samples show that groundwater and surface water chemistry in the study area was evolved through the interaction with carbonate minerals. All groundwater samples were undersaturated with respect to calcite and dolomite, however some of the Aniene River samples were saturated with respect to dolomite. The analysis of Mg2+/Ca2+ ratios indicates that the dissolution of carbonate minerals is important for groundwater and surface water chemistry, depending on the hydrological processes, which control the groundwater residence time and chemical equilibria in the aquifer.

  10. Methodological approaches in estimating anomalous geochemical field structure

    International Nuclear Information System (INIS)

    Gavrilov, R; Rudmin, M

    2015-01-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas

  11. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    Science.gov (United States)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  12. Conceptual model to determine maximum activity of radioactive waste in near-surface disposal facilities

    International Nuclear Information System (INIS)

    Iarmosh, I.; Olkhovyk, Yu.

    2016-01-01

    For development of the management strategy for radioactive waste to be placed in near - surface disposal facilities (NSDF), it is necessary to justify long - term safety of such facilities. Use of mathematical modelling methods for long - term forecasts of radwaste radiation impact and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of radwaste to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chornobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of "9"0 Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed

  13. A conceptual framework for a long-term economic model for the treatment of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Nagy, Balázs; Setyawan, Juliana; Coghill, David; Soroncz-Szabó, Tamás; Kaló, Zoltán; Doshi, Jalpa A

    2017-06-01

    Models incorporating long-term outcomes (LTOs) are not available to assess the health economic impact of attention-deficit/hyperactivity disorder (ADHD). Develop a conceptual modelling framework capable of assessing long-term economic impact of ADHD therapies. Literature was reviewed; a conceptual structure for the long-term model was outlined with attention to disease characteristics and potential impact of treatment strategies. The proposed model has four layers: i) multi-state short-term framework to differentiate between ADHD treatments; ii) multiple states being merged into three core health states associated with LTOs; iii) series of sub-models in which particular LTOs are depicted; iv) outcomes collected to be either used directly for economic analyses or translated into other relevant measures. This conceptual model provides a framework to assess relationships between short- and long-term outcomes of the disease and its treatment, and to estimate the economic impact of ADHD treatments throughout the course of the disease.

  14. MAPIT: A new software tool to assist in the transition from conceptual model to numerical simulation models

    International Nuclear Information System (INIS)

    Canales, T.W.; Grant, C.W.

    1996-01-01

    MapIt is a new software tool developed at Lawrence Livermore National Laboratory to assist ground water remediation professionals in generating numerical simulation models from a variety of physical and chemical data sources and the corresponding 1, 2, and 3 dimensional conceptual models that emerge from analysis of such data

  15. The treatment of conceptual model uncertainty for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Boak, J.M.; Flint, A.; Dockery, H.A.

    1995-01-01

    A reasonable risk assessment of radioactive waste disposals faces three main problems : 1) the ability of the conceptual model to account for the effective repository process ; 2) the boundary conditions ; 3) the parameters values that model the particular site. Yucca mountain Site Characterization Project deals with these problems through two major approaches that are described here : 1) the evolution of models for the recurrence rate of volcanism ; 2) the nominal hydrologic performance for the site. These two approaches are expected to lead to a reasonable demonstration of the suitability of the site. (D.L.). 13 refs., 2 figs

  16. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system, FY 1993 status report

    International Nuclear Information System (INIS)

    Thorne, P.D.; Chamness, M.A.; Spane, F.A. Jr.; Vermeul, V.R.; Webber, W.D.

    1993-12-01

    The ground water underlying parts of the Hanford Site (Figure 1.1) contains radioactive and chemical contaminants at concentrations exceeding regulatory standards (Dresel et al. 1993). The Hanford Site Ground-Water Surveillance Project, operated by Pacific Northwest Laboratory (PNL), is responsible for monitoring the movement of these contaminants to ensure that public health and the environment are protected. To support the monitoring effort, a sitewide three-dimensional ground-water flow model is being developed. This report provides an update on the status of the conceptual model that will form the basis for constructing a numerical three-dimensional flow model for, the site. Thorne and Chamness (1992) provide additional information on the initial development of the three-dimensional conceptual model

  17. Towards an Integrated Conceptual Model of International Student Adjustment and Adaptation

    Science.gov (United States)

    Schartner, Alina; Young, Tony Johnstone

    2016-01-01

    Despite a burgeoning body of empirical research on "the international student experience", the area remains under-theorized. The literature to date lacks a guiding conceptual model that captures the adjustment and adaptation trajectories of this unique, growing, and important sojourner group. In this paper, we therefore put forward a…

  18. Conceptualizing Pharmaceutical Plants

    DEFF Research Database (Denmark)

    Larsen, Bent Dalgaard; Jensen, Klaes Ladeby; Gjøl, Mikkel

    2006-01-01

    In the conceptual design phase of pharmaceutical plants as much as 80%-90% of the total cost of a project is committed. It is therefore essential that the chosen concept is viable. In this design process configuration and 3D models can help validate the decisions made. Designing 3D models...... is a complex task and requires skilled users. We demonstrate that a simple 2D/3D configuration tool can support conceptualizing of pharmaceutical plants. Present paper reports on preliminary results from a full scale implementation project at a Danish engineering company....

  19. NOAA and MMS Marine Minerals Geochemical Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Minerals Geochemical Database was created by NGDC as a part of a project to construct a comprehensive computerized bibliography and geochemical database...

  20. Use of partial dissolution techniques in geochemical exploration

    Science.gov (United States)

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  1. Geochemical mass balance for sulfur- and nitrogen-bearing acid components: Eastern United States

    International Nuclear Information System (INIS)

    Bischoff, W.D.; Mackenzie, F.T.; Paterson, V.L.

    1984-01-01

    The impact on a geographical region of SO 2 and nitrogen oxides (NO /SUB x/ ) emissions to the atmosphere because of man's activities (e.g., burning of fossil fuels and smelting of sulfide ores) usually has not been considered in terms of a regional geochemical mass balance model. Mass balance models, however, have been employed extensively on a global scale. The models evaluate reservoir sizes, processes and fluxes associated with the transfer of a substance within a system of interest. The models may be steady- or transient-state, and include assessment of historical (geologic), present and future data and processes. In this chapter a geochemical mass balance model is applied to constituents of acid precipitation (H + , NO - 3 and SO 2- ) to evaluate the impact of acid precipitation on the eastern United States

  2. GEOBASI: The geochemical Database of Tuscany Region (Italy

    Directory of Open Access Journals (Sweden)

    Brunella Raco

    2015-03-01

    Full Text Available In this study the new Regional Geochemical Database (RGDB, called GEOBASI, is presented and illustrated in the framework of a joint collaboration among the three Tuscan universities (Florence, Pisa and Siena, CNR-IGG (Institute of Geosciences and Earth Resources of Pisa, ARPAT (Regional Agency for the Environmental Protection, LAMMA (Environmental Modelling and Monitoring Laboratory for Sustainable Development Consortium and S.I.R.A. (Territorial and Environmental Informative System of Tuscany. The database has permitted the construction of a repository where the geochemical information (compositional and isotopic has been stored in a structured way so that it can be available for different groups of users (e.g. institutional, public and private companies. The information contained in the database can in fact be downloaded freely and queried to correlate geochemistry to other non compositional variables. The first phase of the project was aimed at promoting the use of the geochemical data already available from previous investigations through a powerful Web-GIS interface to implement the exploratory statistics graphical-numerical tools used to: 1 analyse the spatial variability of the investigated context, 2 highlight the geographic location of data pertaining to classes of values or single cases, 3 compare the results of different analytical methodologies applied to the determination of the same element and/or chemical species, 4 extract the geochemical data related to specific monitoring plans and/or geographical areas, and finally 5 recover information about data below the detection limit to understand their impact on the behaviour of the investigated variable. Developments of this project will be focused on the definition of rules and standardized methods in a way that external users could also interactively pursue the RGDB. Furthermore, a detailed investigation of the Scarlino-Follonica plain will permit the improvement and test of

  3. Geochemical Anomalies in the Sediments of Lake Druksiai

    International Nuclear Information System (INIS)

    Kleinas, A.

    1999-01-01

    In order to evaluate the impact of Ignalina Nuclear Power Plant (NPP) on natural processes in Lake Druksiai and accumulation of pollutants, in 19931997, carrying on the state scientific program, the Marine Geochemistry Division of the Institute of Geography performed lithological geochemical mapping of lake bottom sediments on a scale of 1 .50 000. The results obtained enabled to distinguish zones of higher anthropogenous geochemical load, where geochemical anomalies of pollutants, including oil hydrocarbons and heavy metals, had been taken into account. Applying concentration coefficients for oil hydrocarbons and heavy metals (Cr, Cu, Ni, Pb, and Zn) and their natural background, the attempt was made to differentiate natural and technogenous components in the geochemical anomalies As expected, the finer sediments -aleurite-pelite mud - showed amounts of oil hydrocarbons and heavy metals being 12.1 times higher than in fine sand - the most coarse of the sediments studied Sediments with organic mater exceeding 20% contained 11.7 times more pollutants than those with organic matter below 1 .5%. Calculations of concentration coefficients (CC) showed no elements in no stations exceeded 10 - the sediments did not reach the category of high pollution However, in many sites, the coefficients exceeded values of 1-2, thus, showing sediments attributable to the categories of weakly polluted or just polluted. Mapping model done by GIS methods (by superimposing schemes of pollutant CCs distribution in the lake and summing them) for geochemical anomalies two derivative map-schemes were obtained for oil hydrocarbons and heavy metals. They showed that clean sediments cover just 24.75% (according to the pollutant background for soil types) and 12.35% (according to the organic matter background for its amount intervals) lake bottom area. Zones slightly polluted by an element at least cover 69.7 and 80.29% of lake area, correspondingly; whereas zones slightly polluted by all

  4. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  5. Conceptual model for collision detection and avoidance for runway incursion prevention

    Science.gov (United States)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  6. A Conceptual Model for Teaching Critical Thinking in a Knowledge Economy

    Science.gov (United States)

    Chadwick, Clifton

    2011-01-01

    Critical thinking, viewed as rational and analytic thinking, is crucial for participation in a knowledge economy and society. This article provides a brief presentation of the importance of teaching critical thinking in a knowledge economy; suggests a conceptual model for teaching thinking; examines research on the historical role of teachers in…

  7. The ISO Edi Conceptual Model Activity and Its Relationship to OSI.

    Science.gov (United States)

    Fincher, Judith A.

    1990-01-01

    The edi conceptual model is being developed to define common structures, services, and processes that syntax-specific standards like X12 and EDIFACT could adopt. Open Systems Interconnection (OSI) is of interest to edi because of its potential to help enable global interoperability across Electronic Data Interchange (EDI) functional groups. A…

  8. A conceptual competitive intelligence quality assurance model

    Directory of Open Access Journals (Sweden)

    Tshilidzi Eric Nenzhelele

    2015-12-01

    Full Text Available Competitive Intelligence (CI improves the quality of product and service, decision-making and it improves quality of life. However, it has been established that decision makers are not happy about the quality of CI. This is because enterprises fail in quality assurance of CI. It has been concluded that most enterprises are clueless concerning CI quality assurance. Studies that previously attempted to resolve CI quality problem were limited in scope and focused too much on the quality of information than the overall CI quality. The purpose of this study is to propose a conceptual CI quality assurance model which will help in quality assurance of CI. The research was qualitative in nature and used content analysis.

  9. Assessment of private hospital portals: A conceptual model

    Directory of Open Access Journals (Sweden)

    Mehdi Alipour-Hafezi

    2016-01-01

    Full Text Available Introduction: Hospital portals, as the first virtual entry, play an important role in connecting people with hospital and also presenting hospital virtual services. The main purpose of this article was to suggest a conceptual model to improve Tehran private hospital portals. The suggested model can be used by all the health portals that are in the same circumstances and all the health portals which are in progress. Method: This is a practical research, using evaluative survey research method. Research population includes all the private hospital portals in Tehran, 34 portals, and ten top international hospital portals. Data gathering tool used in this research was a researcher-made checklist including 14 criteria and 77 sub-criteria with their weight score. In fact, objective observation with the mentioned checklist was used to gather information. Descriptive statistics were used to analyze the data and tables and graphs were used to present the organized data. Also, data were analyzed using independent t-test. Conceptual modeling technique was used to design the model and demonstration method was used to evaluate the proposed model. In this regard, SPSS statistical software was used to perform the tests. Results:The comparative study between the two groups of portals, TPH and WTH, in the 14 main criteria showed that the value of t-test in contact information criteria was 0.862, portal page specification was -1.378, page design criteria -1.527, updating pages -0.322, general information and access roads -3.161, public services -7.302, patient services -4.154, patient data -8.703, research and education -9.155, public relationship -3.009, page technical specifications -4.726, telemedicine -7.488, pharmaceutical services -6.183, and financial services -2.782. Finally, the findings demonstrated that Tehran private hospital portals in criterion of contact information were favorable; page design criteria were relatively favorable; page technical

  10. Application of the human needs conceptual model of dental hygiene to the role of the clinician : part II.

    Science.gov (United States)

    Walsh, M M; Darby, M

    1993-01-01

    In summary, the theories of Maslow and of Yura and Walsh have been highlighted as background for understanding the human needs conceptual model of dental hygiene. In addition, 11 human needs have been identified and defined as being especially related to dental hygiene care, and a sample evaluation tool for their clinical assessment and a dental hygiene care plan have been presented. The four concepts of client, environment, health/oral health, and dental hygiene actions explained in terms of human need theory, and the 11 human needs related to dental hygiene care constitute the human needs conceptual model of dental hygiene. Within the framework of the human needs conceptual model of dental hygiene, the dental hygiene process is a systematic approach to dental hygiene care that involves assessment of the 11 human needs related to dental hygiene care; analysis of deficits in these needs; determination of the dental hygiene care plan based on identified deficits; implementation of dental hygiene interventions stated in the care plan; and evaluation of the effectiveness of dental hygiene interventions in achieving specific goals, including subsequent reassessment and revision of the dental hygiene care plan. This human needs conceptual model for dental hygiene provides a guide for comprehensive and humanistic client care. This model allows the dental hygienist to view each client (whether an individual or a group) holistically to prevent oral disease and to promote health and wellness. Dental hygiene theorists are encouraged to expand this model or to develop additional conceptual models based on dental hygiene's paradigm.

  11. Career and Technical Education (CTE) Student Success in Community Colleges: A Conceptual Model

    Science.gov (United States)

    Hirschy, Amy S.; Bremer, Christine D.; Castellano, Marisa

    2011-01-01

    Career and technical education (CTE) students pursuing occupational associate's degrees or certificates differ from students seeking academic majors at 2-year institutions in several ways. This article examines several theoretical models of student persistence and offers a conceptual model of student success focused on CTE students in community…

  12. Geochemical and mineralogical characteristics of Lithomargic clay

    African Journals Online (AJOL)

    Administrator

    Geochemical and mineralogical characteristics of Lithomargic clay. GEOCHEMICAL AND .... tries, as filling material in the pulp and paper, toothpaste and paint industries as well ..... tions very vital to human health and other ac- tivities of man.

  13. Quantification of anthropogenic impact on groundwater-dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modelling

    Science.gov (United States)

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2015-02-01

    Groundwater-dependent ecosystems (GDEs) have important functions in all climatic zones as they contribute to biological and landscape diversity and provide important economic and social services. Steadily growing anthropogenic pressure on groundwater resources creates a conflict situation between nature and man which are competing for clean and safe sources of water. Such conflicts are particularly noticeable in GDEs located in densely populated regions. A dedicated study was launched in 2010 with the main aim to better understand the functioning of a groundwater-dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Błoto fen). It relies mostly on groundwater from the shallow Quaternary aquifer and possibly from the deeper Neogene (Bogucice Sands) aquifer. In July 2009 a cluster of new pumping wells abstracting water from the Neogene aquifer was set up 1 km to the northern border of the fen. A conceptual model of the Wielkie Błoto fen area for the natural, pre-exploitation state and for the envisaged future status resulting from intense abstraction of groundwater through the new well field was developed. The main aim of the reported study was to probe the validity of the conceptual model and to quantify the expected anthropogenic impact on the studied GDTE. A wide range of research tools was used. The results obtained through combined geologic, geophysical, geochemical, hydrometric and isotope investigations provide strong evidence for the existence of upward seepage of groundwater from the deeper Neogene aquifer to the shallow Quaternary aquifer supporting the studied GDTE. Simulations of the groundwater flow field in the study area with the aid of a 3-D flow and transport model developed for Bogucice Sands (Neogene) aquifer and calibrated using environmental tracer data and observations of hydraulic head in three different locations on the study area

  14. The Role of Computer Modeling in Enhancing Students' Conceptual Understanding of Physics

    Directory of Open Access Journals (Sweden)

    F. Ornek

    2012-04-01

    Full Text Available The purpose of this study was to investigate how the use of the computer simulations program VPython facilitated students’ conceptual understanding of fundamental physical principles and in constructing new knowledge of physics. We focused on students in a calculus-based introductory physics course, based on the Matter and Interactions curriculum of Chabay & Sherwood (2002 at a large state engineering and science university in the USA. A major emphasis of this course was on computer modeling by using VPython to write pro¬grams simulating physical systems. We conducted multiple student interviews, as well as an open-ended exit survey, to find out student views on how creating their own simulations to enhanced-conceptual understanding of physics and in constructing new knowledge of phys¬ics. The results varied in relation to the phases when the interviews were conducted. At the beginning of the course, students viewed the simulation program as a burden. However, dur¬ing the course, students stated that it promoted their knowledge and better conceptual understanding of physical phenomena. We deduce that VPython computer simulations can improve students’ conceptual understanding of fundamental physical concepts and promote construction of new knowledge in physics, once they overcome the initial learning curve associated with the VPython software package.

  15. A conceptual magnetic fabric development model for the Paks loess in Hungary

    DEFF Research Database (Denmark)

    Bradák, B.; Ujvari, Gabor; Seto, Y.

    2018-01-01

    We describe magnetic fabric and depositional environments of aeolian (loess) deposits from Paks, Hungary, and develop a novel, complex conceptual sedimentation model based on grain size and low-field magnetic susceptibility anisotropy data. A plot of shape factor (magnetic fabric parameter) and d...

  16. Conceptual Model of IT Infrastructure Capability and Its Empirical Justification

    Institute of Scientific and Technical Information of China (English)

    QI Xianfeng; LAN Boxiong; GUO Zhenwei

    2008-01-01

    Increasing importance has been attached to the value of information technology (IT) infrastructure in today's organizations. The development of efficacious IT infrastructure capability enhances business performance and brings sustainable competitive advantage. This study analyzed the IT infrastructure capability in a holistic way and then presented a concept model of IT capability. IT infrastructure capability was categorized into sharing capability, service capability, and flexibility. This study then empirically tested the model using a set of survey data collected from 145 firms. Three factors emerge from the factor analysis as IT flexibility, IT service capability, and IT sharing capability, which agree with those in the conceptual model built in this study.

  17. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    Science.gov (United States)

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  18. Conceptual Model of Weight Management in Overweight and Obese African-American Females.

    Science.gov (United States)

    Sutton, Suzanne M; Magwood, Gayenell S; Nemeth, Lynne S; Jenkins, Carolyn M

    2017-04-01

    Weight management of overweight and obese (OWO) African-American females (AAFs) is a poorly defined concept, leading to ineffective treatment of overweight and obesity, prevention of health sequelae, and risk reduction. A conceptual model of the phenomenon of weight management in OWO AAFs was developed through dimensional analysis of the literature. Constructs were identified and sorted into the dimensions of perspective, context, conditions, process, and consequences and integrated into an explanatory matrix. Through dimensional analysis, weight management in OWO AAFs was characterized as a multidimensional concept, defined from the perspective of weight loss in community-dwelling AAFs. Behaviors associated with weight management are strongly influenced by intrinsic factors and extrinsic conditions, which influence engagement in the processes and consequences of weight management. The resulting conceptual model of weight management in OWO AAFs provides a framework for research interventions applicable in a variety of settings. © 2016 Wiley Periodicals, Inc.

  19. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  20. Proceedings of 13. International Geochemical Exploration Symposium. 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analyical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  1. Conceptual Development af a 3D Product Configuration Model

    DEFF Research Database (Denmark)

    Skauge, Jørn

    2006-01-01

    in the development of IT-systems that support the procedures in companies and in the building industry. In other words, it is a knowledge-based system that helps companies in their daily work. The aim of the project has been to develop and examine conceptual ideas about 3D modelling configurator used in the company......’s production of steel fire sliding doors. The development of the 3D digital model is based on practical rather than theoretical research. The result of the research is a prototype digital 3D model to be presented live.......Paper. This project deals with 3D product configuration of a digital building element which has been developed as a prototype in cooperation between a product manufacturer and a research institution in Denmark. The project falls within the concept of product modelling which is more and more used...

  2. The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

    2011-01-01

    abstractions and pollution threatens the fresh water resource, and consequently the ecosystem integrity of both Sian Ka’an and the adjacent coastal environment. Seven different catchment-scale conceptual models were implemented in a distributed hydrological modelling approach. Equivalent porous medium...... to preserve water resources and maintain ecosystem services. Multiple Model Simulation highlights the impact of model structure uncertainty on management decisions using several plausible conceptual models. Multiple Model Simulation was used for this purpose on the Yucatan Peninsula, which is one of the world......Groundwater management in karst is often based on limited hydrologic understanding of the aquifer. The geologic heterogeneities controlling the water flow are often insufficiently mapped. As karst aquifers are very vulnerable to pollution, groundwater protection and land use management are crucial...

  3. Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation

    DEFF Research Database (Denmark)

    Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valerie

    2015-01-01

    Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution...... within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate...... the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate...

  4. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    Science.gov (United States)

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  5. Precipitation-centered Conceptual Model for Sub-humid Uplands in Lampasas Cut Plains, TX

    Science.gov (United States)

    Potter, S. R.; Tu, M.; Wilcox, B. P.

    2011-12-01

    Conceptual understandings of dominant hydrological processes, system interactions and feedbacks, and external forcings operating within catchments often defy simple definition and explanation, especially catchments encompassing transition zones, degraded landscapes, rapid development, and where climate forcings exhibit large variations across time and space. However, it is precisely those areas for which understanding and knowledge are most needed to innovate sustainable management strategies and counter past management blunders and failed restoration efforts. The cut plain of central Texas is one such area. Complex geographic and climatic factors lead to spatially and temporally variable precipitation having frequent dry periods interrupted by intense high-volume precipitation. Fort Hood, an army post located in the southeast cut plain contains landscapes ranging from highly degraded to nearly pristine with a topography mainly comprised of flat-topped mesas separated by broad u-shaped valleys. To understand the hydrology of the area and responses to wet-dry cycles we analyzed 4-years of streamflow and rainfall from 8 catchments, sized between 1819 and 16,000 ha. Since aquifer recharge/discharge and surface stream-groundwater interactions are unimportant, we hypothesized a simple conceptual model driven by precipitation and radiative forcings and having stormflow, baseflow, ET, and two hypothetical storage components. The key storage component was conceptualized as a buffer that was highly integrated with the ET component and exerted controls on baseflow. Radiative energy controlled flux from the buffer to ET. We used the conceptual model in making a bimonthly hydrologic budget, which included buffer volumes and a deficit-surplus indicator. Through the analysis, we were led to speculate that buffer capacity plays key roles in these landscapes and even relatively minor changes in capacity, due to soil compaction for example, might lead to ecological shifts. The

  6. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    Science.gov (United States)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  7. Laboratory investigations into the reactive transport module of carbon dioxide sequestration and geochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch; Enayati, M.; Mokhtari, B. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of)

    2008-07-01

    Over long time periods, geological sequestration in some systems shows mineralization effects or mineral sequestration of carbon dioxide, converting the carbon dioxide to a less mobile form. However, a detailed investigation of these geological systems is needed before disposing of carbon dioxide into these formations. Depleted oil and gas reservoirs and underground aquifers are proposed candidates for carbon dioxide injection. This paper presented an experimental investigation into the reactive transport module for handling aquifer sequestration of carbon dioxide and modeling of simultaneous geochemical reactions. Two cases of laboratory carbon dioxide sequestration experiments, conducted for different rock systems were modeled using the fully coupled geochemical compositional simulator. The relevant permeability relationships were compared to determine the best fit with the experimental results. The paper discussed the theory of modeling; geochemical reactions and mineral trapping of carbon dioxide; and application simulator for modeling including the remodeling of flow experiments. It was concluded that simulated changes in porosity and permeability could mimic experimental results to some extent. The study satisfactorily simulated the results of experimental observations and permeability results could be improved if the Kozeny-Carman equation was replaced by the Civan power law. 6 refs., 2 tabs., 21 figs.

  8. Simulation of shallow groundwater levels: Comparison of a data-driven and a conceptual model

    Science.gov (United States)

    Fahle, Marcus; Dietrich, Ottfried; Lischeid, Gunnar

    2015-04-01

    Despite an abundance of models aimed at simulating shallow groundwater levels, application of such models is often hampered by a lack of appropriate input data. Difficulties especially arise with regard to soil data, which are typically hard to obtain and prone to spatial variability, eventually leading to uncertainties in the model results. Modelling approaches relying entirely on easily measured quantities are therefore an alternative to encourage the applicability of models. We present and compare two models for calculating 1-day-ahead predictions of the groundwater level that are only based on measurements of potential evapotranspiration, precipitation and groundwater levels. The first model is a newly developed conceptual model that is parametrized using the White method (which estimates the actual evapotranspiration on basis of diurnal groundwater fluctuations) and a rainfall-response ratio. Inverted versions of the two latter approaches are then used to calculate the predictions of the groundwater level. Furthermore, as a completely data-driven alternative, a simple feed-forward multilayer perceptron neural network was trained based on the same inputs and outputs. Data of 4 growing periods (April to October) from a study site situated in the Spreewald wetland in North-east Germany were taken to set-up the models and compare their performance. In addition, response surfaces that relate model outputs to combinations of different input variables are used to reveal those aspects in which the two approaches coincide and those in which they differ. Finally, it will be evaluated whether the conceptual approach can be enhanced by extracting knowledge of the neural network. This is done by replacing in the conceptual model the default function that relates groundwater recharge and groundwater level, which is assumed to be linear, by the non-linear function extracted from the neural network.

  9. Depositional models of the shallow marine carbonates in the geochemical cycle. Busshitsu junkan ni okeru asaumi tansan'engan no taiseki model

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, T [Tohoku University, Sendai (Japan). Institute of Geology and Paleontology

    1993-06-15

    This paper summarizes depositional models of carbonates related to carbon circulation on the earth surface. The paper lists the following examples of modelling the Recent coral reefs: A model that divides coral reefs into several boxes corresponding to geographies, and estimates organic and inorganic carbon production in each box; and a model that discusses seawater flows to estimate fluxes of organic and inorganic carbons between the boxes and between the reefs and open seas. Carbon circulation in a time scale of the Quaternary may be described appropriately by the box model corresponding to the condition of deposition and dissolution of the carbonate rocks. Several examples of modelling oceans and coral reefs are described briefly. The paper lists a model by Berner et al. that notes migration of carbon, Ca, and Mg among five boxes of Ca-Mg silicate, ocean, atmosphere, calcite, and dolomite regarding the geochemical cycle during about 600 million years in the Phanerozoic era. It also explains a model developed from the former model. 39 refs., 1 fig.

  10. What Can Be Learned From a Laboratory Model of Conceptual Change? Descriptive Findings and Methodological Issues

    Science.gov (United States)

    Ohlsson, Stellan; Cosejo, David G.

    2014-07-01

    The problem of how people process novel and unexpected information— deep learning (Ohlsson in Deep learning: how the mind overrides experience. Cambridge University Press, New York, 2011)—is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged on a single theory for conceptual change, nor has any one theory been decisively falsified. One contributing reason is the difficulty of collecting informative data in this field. We propose that the commonly used methodologies of historical analysis, classroom interventions, and developmental studies, although indispensible, can be supplemented with studies of laboratory models of conceptual change. We introduce re- categorization, an experimental paradigm in which learners transition from one definition of a categorical concept to another, incompatible definition of the same concept, a simple form of conceptual change. We describe a re-categorization experiment, report some descriptive findings pertaining to the effects of category complexity, the temporal unfolding of learning, and the nature of the learner's final knowledge state. We end with a brief discussion of ways in which the re-categorization model can be improved.

  11. Combining Different Conceptual Change Methods within 5E Model: A Sample Teaching Design of "Cell" Concept and its Organelles

    Science.gov (United States)

    Urey, Mustafa; Calik, Muammer

    2008-01-01

    Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…

  12. The evolution of the magmatic arc of Southern Peru (200-60 Ma), Arequipa area: insight from geochemical modeling

    Science.gov (United States)

    Demouy, S.; Benoit, M.; De Saint Blanquat, M.; Brunet, P.

    2012-12-01

    Cordilleran-type batholiths are built by prolonged arc activity along continental margins and may provide detailed magmatic records of the subduction system evolution. The magmas produced in subduction context involve both mantellic and crustal end members and are subject to various petrological processes. The MASH zones (Hildreth and Moorbath, 1988), at the basis of the continental crust, are the best places for the genesis of such hybrid magmas. The various geochemical signatures observed in the plutonic rocks, may also be attributed to source heterogeneities or generated by subsequent petrological processes. This study has focused in the Arequipa section of the Coastal Batholith of Southern Peru (200-60 Ma), in an area extending over 80x40 km. Major and trace elements as well as Sr and Nd isotopic analyses were performed in a set of 100 samples ranging from gabbro to granite. The obtained data highlight the wide heterogeneity of the geochemical signatures that is not related to the classification of the rocks. In first step, Rb/Sr systematic was used to isolate a set of samples plotting along a Paleocene isochron and defining a cogenetic suite. This suite appears to have evolved by simple fractional crystallization. By using reverse modeling, the parameters controlling the fractional crystallization process were defined, as partition coefficients, initial concentrations and amount of fractional crystallization. The other magmatic suites display a wide range of isotopic and geochemical signatures. To explain this heterogeneity, a model involving competition between fractional crystallization and magma mixing into MASH zones was proposed. A large range of hybrid magma types is potentially generated during the maturation of the system, but this range tends to disappear as fractionation and mixing occurs. Finally the model predicts the genesis of a homogeneous reservoir created at depth, from which magmas may evolve only by fractional crystallization. Therefore

  13. Investigation On Ethics In Public Sector Necessity Or Obligation Planning A Conceptual Model

    Directory of Open Access Journals (Sweden)

    N. Ghozat

    2015-06-01

    Full Text Available Abstract These All the objectives are attainable in line with ethics and if a system is not ethical in spite of scientific and modern facilities it cannot achieve its goals so the main duty of managers is to provide ground for morality since trustworthy morality are the fundamental axes in any system this article has tried to consider ethical issues according Islamic and Iranian values how should be the view point toward ethics in any system is it a necessity or obligation In this article we are to provide a conceptual model base on Iranian situation so our article which is a descriptive one uses multi sources of gathering data questionnaire interview to criticize the theoretical views based on western values and to offer a conceptual model.

  14. Facilitating Corporate Entrepreneurship in Public Sector Higher Education Institutions: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Javed Nayyar Malik

    2012-06-01

    Full Text Available This paper develops a conceptual model of public sector corporate entrepreneurship for the state government higher education institutions. The proposed model is intended to depict the main antecedents that relate to corporate entrepreneurship within the public sector higher education institution  and the impact of corporate entrepreneurship on public sector HEI’s performance, as well as factors influencing its continuous performance.

  15. Defining pharmacy and its practice: a conceptual model for an international audience

    Directory of Open Access Journals (Sweden)

    Scahill SL

    2017-05-01

    Full Text Available SL Scahill,1 M Atif,2 ZU Babar3,4 1School of Management, Massey Business School, Massey University, Albany, Auckland, New Zealand; 2Pharmacy School, The Islamia University of Bahawalpur, Bahawalpur, Pakistan; 3School of Pharmacy, University of Huddersfield, Huddersfield, England, UK; 4School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand Background: There is much fragmentation and little consensus in the use of descriptors for the different disciplines that make up the pharmacy sector. Globalization, reprofessionalization and the influx of other disciplines means there is a requirement for a greater degree of standardization. This has not been well addressed in the pharmacy practice research and education literature. Objectives: To identify and define the various subdisciplines of the pharmacy sector and integrate them into an internationally relevant conceptual model based on narrative synthesis of the literature. Methods: A literature review was undertaken to understand the fragmentation in dialogue surrounding definitions relating to concepts and practices in the context of the pharmacy sector. From a synthesis of this literature, the need for this model was justified. Key assumptions of the model were identified, and an organic process of development took place with the three authors engaging in a process of sense-making to theorize the model. Results: The model is “fit for purpose” across multiple countries and includes two components making up the umbrella term “pharmaceutical practice”. The first component is the four conceptual dimensions, which outline the disciplines including social and administrative sciences, community pharmacy, clinical pharmacy and pharmaceutical sciences. The second component of the model describes the “acts of practice”: teaching, research and professional advocacy; service and academic enterprise. Conclusions: This model aims to expose issues

  16. Geochemical surveys in the United States in relation to health

    Energy Technology Data Exchange (ETDEWEB)

    Tourtelot, H A

    1979-12-11

    Geochemical surveys in relation to health may be classified as having one, two or three dimensions. One-dimensional surveys examine relations between concentrations of elements such as Pb in soils and other media and burdens of the same elements in humans, at a given time. The spatial distributions of element concentrations are not investigated. The primary objective of two-dimensional surveys is to map the distributions of element concentrations, commonly according to stratified random sampling designs based on either conceptual landscape units or artificial sampling strata, but systematic sampling intervals have also been used. Political units have defined sample areas that coincide with the units used to accumulate epidemiological data. Element concentrations affected by point sources have also been mapped. Background values, location of natural or technological anomalies and the geographic scale of variation for several elements often are determined. Three-dimensional surveys result when two-dimensional surveys are repeated to detect environmental changes.

  17. Geochemical controls on shale groundwaters: Results of reaction path modeling

    International Nuclear Information System (INIS)

    Von Damm, K.L.; VandenBrook, A.J.

    1989-03-01

    The EQ3NR/EQ6 geochemical modeling code was used to simulate the reaction of several shale mineralogies with different groundwater compositions in order to elucidate changes that may occur in both the groundwater compositions, and rock mineralogies and compositions under conditions which may be encountered in a high-level radioactive waste repository. Shales with primarily illitic or smectitic compositions were the focus of this study. The reactions were run at the ambient temperatures of the groundwaters and to temperatures as high as 250/degree/C, the approximate temperature maximum expected in a repository. All modeling assumed that equilibrium was achieved and treated the rock and water assemblage as a closed system. Graphite was used as a proxy mineral for organic matter in the shales. The results show that the presence of even a very small amount of reducing mineral has a large influence on the redox state of the groundwaters, and that either pyrite or graphite provides essentially the same results, with slight differences in dissolved C, Fe and S concentrations. The thermodynamic data base is inadequate at the present time to fully evaluate the speciation of dissolved carbon, due to the paucity of thermodynamic data for organic compounds. In the illitic cases the groundwaters resulting from interaction at elevated temperatures are acid, while the smectitic cases remain alkaline, although the final equilibrium mineral assemblages are quite similar. 10 refs., 8 figs., 15 tabs

  18. Adequate Security Protocols Adopt in a Conceptual Model in Identity Management for the Civil Registry of Ecuador

    Science.gov (United States)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2017-08-01

    We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).

  19. Identification of Chemistry Learning Problems Viewed From Conceptual Change Model

    OpenAIRE

    Redhana, I. W; Sudria, I. B. N; Hidayat, I; Merta, L. M

    2017-01-01

    This study aimed at describing and explaining chemistry learning problems viewed from conceptual change model and misconceptions of students. The study was qualitative research of case study type conducted in one class of SMAN 1 Singaraja. Subjects of the study were a chemistry teacher and students. Data were obtained through classroom observation, interviews, and conception tests. The chemistry learning problems were grouped based on aspects of necessity, intelligibility, plausibility, and f...

  20. The IUGS/IAGC Task Group on Global Geochemical Baselines

    Science.gov (United States)

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  1. A conceptual framework to model long-run qualitative change in the energy system

    OpenAIRE

    Ebersberger, Bernd

    2004-01-01

    A conceptual framework to model long-run qualitative change in the energy system / A. Pyka, B. Ebersberger, H. Hanusch. - In: Evolution and economic complexity / ed. J. Stanley Metcalfe ... - Cheltenham [u.a.] : Elgar, 2004. - S. 191-213

  2. Mixing of groundwaters with uncertain end-members: Case study in the Tepalcingo-Axochiapan aquifer, Mexico

    NARCIS (Netherlands)

    Morales-Casique, E.

    2012-01-01

    Groundwater geochemical data from the northern portion of the Tepalcingo-Axochiapan Valley, in the state of Morelos, Mexico, are analyzed to improve the conceptual hydrogeologic model of the region. The geochemical data suggest that the chemical composition of groundwater is the result of a mixing

  3. A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Mehran FARAJOLLAHI

    2010-07-01

    Full Text Available The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is an efficient factor in the planning of effective Distance learning in higher education. Considering the theoretical foundations of the present research, in the effective distance learning model, the learner is situated at the center of learning environment. For this purpose, the learner needs to be ready for successful learning and the teacher has to be ready to design the teaching- learning activities when they initially enter the environment. In the present model, group and individual active teaching-learning approach, timely feedback, using IT and eight types of interactions have been designed with respect to theoretical foundations and current university missions. From among the issues emphasized in this model, one can refer to the Initial, Formative and Summative evaluations. In an effective distance learning environment, evaluation should be part of the learning process and the feedback resulting from it should be used to improve learning. For validating the specified features, the opinions of Distance learning experts in Payame Noor, Shiraz, Science and Technology and Amirkabir Universities have been used which verified a high percentage of the statistical sample of the above mentioned features.

  4. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    Science.gov (United States)

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  5. Managing postgraduate research service quality: Developing and assessing a conceptual model

    Directory of Open Access Journals (Sweden)

    Shawn Ramroop

    2013-05-01

    Full Text Available This paper reports on the conceptual development and empirical evaluation of a postgraduate (PG research service quality management model, through conducting an electronic survey among a cohort of master’s and doctorate graduates at one of the top three research universities in South Africa, using specifically developed and validated research instruments.By fitting the data from a sample of 117 graduates to a conceptual model using structural equation modelling, it became evident that the PG research students’ perception of the Organisational Climate for Research (OCR is associated with their perception of the PG Research Service Quality (PGSQUAL, the PG Service Experience (SERVEXP and their perception of their Role (RC. However, no association was found between the students’ perception of the research climate (OCR and their satisfaction (SERVSAT with the research service; the service experience (SERVEXP and postgraduate research service quality (PGSQUAL; service satisfaction (SERVSAT and postgraduate service quality (PGSQUAL.  The aforementioned findings imply that higher education institutions need to create a research climate which is supportive of service quality, and better manage the research climate, so that the PG students are clear about their role, which will eventually translate to a better PG service experience and improved perception of PG service quality.

  6. Drowning in Geochemical Data: The Good, the bad, and the Ugly

    Science.gov (United States)

    Hofmann, A. W.; Goldstein, S. L.

    2008-12-01

    Geochemical databases are placing unprecedented amounts of geochemical data at the fingertips of professionals and students. How these data are being used is taking an increasingly important role in shaping our thinking about the Earth. Databases have helped to expose (and eventually kill?) some long- cherished myths, such as the idea of the well-homogenized upper-mantle reservoir, and and they have made geochemical data accessible to geophysicists and enabled them to look at geochemistry with fresh eyes, leading to genuinely new insights. Yet, their very accessibility also makes them "dangerous tools" in the hands of the inexperienced. Statistical treatment of masses of geochemical data without, or with excessive, filtering can yield all sorts of "answers" we would probably be better off without. Data that are severely flawed (due to alteration or poor analytical quality, errors in published data, or errors during data entry) might not be easily identified by, say, a geodynamicist. Other dangers stem from overrepresentation of over-sampled locations and the general, but faulty, assumption of random sampling of the Earth. We will show examples where raw downloads of data from databases without extensive screening can yield data collections where the garbage swamps the useful information. We will also show impressive but meaningless correlations, e.g. upper-mantle temperature versus atmospheric temperature. The lesson is that screening is necessary. On the other hand, sound database compilations now demonstrate that average incompatible-element concentrations in global MORB are two to five times higher than published estimates. This fundamentally changes 30-year-old geochemical mass balance estimates of the mantle. OIBs are fundamentally similar to MORBs but are isotopically shifted, on average, to more "enriched" values. Mantle geochemistry is now fully consistent with dynamic models of "whole-mantle" circulation, with the likely exception of a relatively small

  7. Reconnaissance Geochemical Study

    African Journals Online (AJOL)

    distribution patterns. The geochemical distribution maps of the elements reveal that Cu, Pb, Zn, Co, Sc, Ni, Cr, .... After filtration, the leached solutions were diluted with ultra ...... some other rare earth elements in the study area. The occurrence ...

  8. Modeled near-field environment porosity modifications due to coupled thermohydrologic and geochemical processes

    International Nuclear Information System (INIS)

    Glassley, W. E.; Nitao, J. J.

    1998-01-01

    Heat deposited by waste packages in nuclear waste repositories can modify rock properties by instigating mineral dissolution and precipitation along hydrothermal flow pathways. Modeling this reactive transport requires coupling fluid flow to permeability changes resulting from dissolution and precipitation. Modification of the NUFT thermohydrologic (TH) code package to account for this coupling in a simplified geochemical system has been used to model the time- dependent change in porosity, permeability, matrix and fracture saturation, and temperature in the vicinity of waste-emplacement drifts, using conditions anticipated for the potential Yucca Mountain repository. The results show, within a few hundred years, dramatic porosity reduction approximately 10 m above emplacement drifts. Most of this reduction is attributed to deposition of solute load at the boiling front, although some of it also results from decreasing temperature along the flow path. The actual distribution of the nearly sealed region is sensitive to the time- dependent characteristics of the thermal load imposed on the environment and suggests that the geometry of the sealed region can be engineered by managing the waste-emplacement strategy

  9. Supporting conceptual modelling of dynamic systems: A knowledge engineering perspective on qualitative reasoning

    NARCIS (Netherlands)

    Liem, J.

    2013-01-01

    Research has shown that even students educated in science at prestigious universities have misconceptions about the systems underlying climate change, sustainability and government spending. Interactive conceptual modelling and simulation tools, which are based on Artificial Intelligence techniques,

  10. A conceptual model to improve performance in virtual teams

    Directory of Open Access Journals (Sweden)

    Shopee Dube

    2016-09-01

    Full Text Available Background: The vast improvement in communication technologies and sophisticated project management tools, methods and techniques has allowed geographically and culturally diverse groups to operate and function in a virtual environment. To succeed in this virtual environment where time and space are becoming increasingly irrelevant, organisations must define new ways of implementing initiatives. This virtual environment phenomenon has brought about the formation of virtual project teams that allow organisations to harness the skills and knowhow of the best resources, irrespective of their location. Objectives: The aim of this article was to investigate performance criteria and develop a conceptual model which can be applied to enhance the success of virtual project teams. There are no clear guidelines of the performance criteria in managing virtual project teams. Method: A qualitative research methodology was used in this article. The purpose of content analysis was to explore the literature to understand the concept of performance in virtual project teams and to summarise the findings of the literature reviewed. Results: The research identified a set of performance criteria for the virtual project teams as follows: leadership, trust, communication, team cooperation, reliability, motivation, comfort and social interaction. These were used to conceptualise the model. Conclusion: The conceptual model can be used in a holistic way to determine the overall performance of the virtual project team, but each factor can be analysed individually to determine the impact on the overall performance. The knowledge of performance criteria for virtual project teams could aid project managers in enhancing the success of these teams and taking a different approach to better manage and coordinate them.

  11. Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education

    Science.gov (United States)

    Lai, Oiki Sylvia

    2013-01-01

    The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via…

  12. Impact of Participatory Health Research: A Test of the Community-Based Participatory Research Conceptual Model

    Directory of Open Access Journals (Sweden)

    John G. Oetzel

    2018-01-01

    Full Text Available Objectives. A key challenge in evaluating the impact of community-based participatory research (CBPR is identifying what mechanisms and pathways are critical for health equity outcomes. Our purpose is to provide an empirical test of the CBPR conceptual model to address this challenge. Methods. A three-stage quantitative survey was completed: (1 294 US CBPR projects with US federal funding were identified; (2 200 principal investigators completed a questionnaire about project-level details; and (3 450 community or academic partners and principal investigators completed a questionnaire about perceived contextual, process, and outcome variables. Seven in-depth qualitative case studies were conducted to explore elements of the model not captured in the survey; one is presented due to space limitations. Results. We demonstrated support for multiple mechanisms illustrated by the conceptual model using a latent structural equation model. Significant pathways were identified, showing the positive association of context with partnership structures and dynamics. Partnership structures and dynamics showed similar associations with partnership synergy and community involvement in research; both of these had positive associations with intermediate community changes and distal health outcomes. The case study complemented and extended understandings of the mechanisms of how partnerships can improve community conditions. Conclusions. The CBPR conceptual model is well suited to explain key relational and structural pathways for impact on health equity outcomes.

  13. University Library Strategy Development: A Conceptual Model of Researcher Performance to Inform Service Delivery

    Science.gov (United States)

    Maddox, Alexia; Zhao, Linlin

    2017-01-01

    This case study presents a conceptual model of researcher performance developed by Deakin University Library, Australia. The model aims to organize research performance data into meaningful researcher profiles, referred to as researcher typologies, which support the demonstration of research impact and value. Three dimensions shaping researcher…

  14. Qualification of Thermodynamic Data for Geochemical Modeling of Mineral-Water Interactions in Dilute Systems

    International Nuclear Information System (INIS)

    T. J. Wolery; C.F. Jove-Colon

    2004-01-01

    The purpose of this analysis report is to qualify the thermochemical database data0.ymp.R2 (DTN: MO0302SPATHDYN.000 [DIRS 161756], qualified by this report) and supporting calculations (DTNs: MO0302SPATHDYN.001 [DIRS 161886], and MO0303SPASPEQ2.000 [DIRS 162278]), which were originally documented in ''Data Qualification: Update and Revision of the Geochemical Thermodynamic Database, Data0.ymp'' (Steinborn et al. 2003 [DIRS 161956]). This original document still serves as the record of development of the data0.ymp.R2 database (DTN: MO0302SPATHDYN.000 [DIRS 161756]). The data0.ymp.R2 thermodynamic database (DTN: MO0302SPATHDYN.000 [DIRS 161756]) was developed for use with software code EQ3/6 (EQ3/6 V8.0, STN: 10813-8.0-00) (BSC 2003 [DIRS 162228]) and software code EQ6 (EQ6 V7.2bLV, STN: 10075-7.2bLV-02) (BSC 2002 [DIRS 159731]) to conduct geochemical modeling of mineral-fluid interactions involving aqueous solutions (ionic strengths of up to one molal; see Section 6.5) and temperatures of up to 300 C along the liquid-vapor saturation curve of pure water. The data0.ymp.R2 database (DTN: MO0302SPATHDYN.000 [DIRS 161756]) is an update of the previously qualified predecessor database data0.ymp.R0 (DTN: MO0009THRMODYN.001 [DIRS 152576]). The scope of this report is limited to qualification of the updates, as well as identification and evaluation of certain errors and discrepancies as discussed

  15. Synthesizing Earth's geochemical data for hydrogeochemical analysis

    Science.gov (United States)

    Brantley, S. L.; Kubicki, J.; Miller, D.; Richter, D.; Giles, L.; Mitra, P.

    2007-12-01

    For over 200 years, geochemical, microbiological, and chemical data have been collected to describe the evolution of the surface earth. Many of these measurements are data showing variations in time or in space. To forward predict hydrologic response to changing tectonic, climatic, or anthropogenic forcings requires synthesis of these data and utilization in hydrogeochemical models. Increasingly, scientists are attempting to synthesize such data in order to make predictions for new regions or for future time periods. However, to make such complex geochemical data accessible requires development of sophisticated cyberinfrastructures that both invite uploading as well as usage of data. Two such cyberinfrastructure (CI) initiatives are currently developing, one to invite and promote the use of environmental kinetics data (laboratory time course data) through ChemxSeer, and the other to invite and promote the use of spatially indexed geochemical data for the Earth's Critical Zone through CZEN.org. The vision of these CI initiatives is to provide cyber-enhanced portals that encourage domain scientists to upload their data before publication (in private cyberspace), and to make these data eventually publicly accessible (after an embargo period). If the CI can be made to provide services to the domain specialist - e.g. to provide data analysis services or data comparison services - we envision that scientists will upload data. In addition, the CI can promote the use and comparison of datasets across disciplines. For example, the CI can facilitate the use of spatially indexed geochemical data by scientists more accustomed to dealing with time-course data for hydrologic flow, and can provide user-friendly interfaces with CI established to facilitate the use of hydrologic data. Examples of the usage of synthesized data to predict soil development over the last 13ky and its effects on active hydrological flow boundaries in surficial systems will be discussed for i) a N

  16. Apparel shopping behaviour – Part 2: Conceptual theoretical model, market segments, profiles and implications

    Directory of Open Access Journals (Sweden)

    R. Du Preez

    2003-10-01

    Full Text Available This article is based on the conceptual theoretical model developed in Part 1 of this series of articles. The objective of this research is to identify female apparel consumer market segments on the basis of differentiating lifestyles, shopping orientation, cultural consciousness, store patronage and demographics. These profiles are discussed in full and the implications thereof for retailers, marketers and researchers are highlighted. A new conceptual model is proposed and recommendations are made for further research. Opsomming Hierdie artikel word gebaseer op die konseptuele teoretiese model wat reeds in Deel 1 van hierdie artikelreeks ontwikkel is. Die doel van hierdie navorsing is om marksegmente van vroue klere-kopers te identifiseer na aanleiding van hulle lewenstyle, kooporiëntasie, kulturele bewustheid, winkelvoorkeurgedrag en demografie. Hierdie profiele word volledig beskryf en die implikasies van die verskillende profiele vir kleinhandelaars, bemarkers en navorsers word uitgelig. ’n Nuwe konseptuele model word voorgestel en aanbevelings vir verdere navorsing word gemaak.

  17. An updated conceptual model of Delta Smelt biology: Our evolving understanding of an estuarine fish

    Science.gov (United States)

    Baxter, Randy; Brown, Larry R.; Castillo, Gonzalo; Conrad, Louise; Culberson, Steven D.; Dekar, Matthew P.; Dekar, Melissa; Feyrer, Frederick; Hunt, Thaddeus; Jones, Kristopher; Kirsch, Joseph; Mueller-Solger, Anke; Nobriga, Matthew; Slater, Steven B.; Sommer, Ted; Souza, Kelly; Erickson, Gregg; Fong, Stephanie; Gehrts, Karen; Grimaldo, Lenny; Herbold, Bruce

    2015-01-01

    The main purpose of this report is to provide an up-to-date assessment and conceptual model of factors affecting Delta Smelt (Hypomesus transpacificus) throughout its primarily annual life cycle and to demonstrate how this conceptual model can be used for scientific and management purposes. The Delta Smelt is a small estuarine fish that only occurs in the San Francisco Estuary. Once abundant, it is now rare and has been protected under the federal and California Endangered Species Acts since 1993. The Delta Smelt listing was related to a step decline in the early 1980s; however, population abundance decreased even further with the onset of the “pelagic organism decline” (POD) around 2002. A substantial, albeit short-lived, increase in abundance of all life stages in 2011 showed that the Delta Smelt population can still rebound when conditions are favorable for spawning, growth, and survival. In this report, we update previous conceptual models for Delta Smelt to reflect new data and information since the release of the last synthesis report about the POD by the Interagency Ecological Program for the San Francisco Estuary (IEP) in 2010. Specific objectives include:

  18. A New Model to Facilitate Individualized Case Conceptualization and Treatment of Social Phobia: An Examination and Reaction to Moscovitch's Model

    Science.gov (United States)

    Heimberg, Richard G.

    2009-01-01

    Moscovitch's (2009) model of social phobia is put forth as an integration and extension of previous cognitive-behavioral models. The author asserts that his approach overcomes a number of shortcomings of previous models and will serve to better guide case conceptualization, treatment planning, and intervention implementation for clients with…

  19. Multiphasic fluid models and multicomponents reactive transport in porous media

    International Nuclear Information System (INIS)

    Juncosa, R.

    2001-01-01

    The design and construction of repositories for toxic waste, such as radioactive waste of medium and high activity, require tools, that will enable us to predict how the system will behave. The rational behind this Dissertation is based precisely on developing numerical models to study and predict coupled thermal, mechanical, hydrodynamic and geochemical behavior of clays intended to be used as engineered barriers in radioactive waste repository. In order to meet the requirements of the FEBEX Project (Full Scale Engineered Barriers Experiment) it was necessary to develop thermo-hydro-geochemical conceptual and numerical models (THG). For this purpose a THG code was developed to simulate and predict the THG behavior of the clay barrier. The code was created after considering two options. a) The development of a completely new code, or b) the coupling of existing codes. In this Dissertation we chose the second option, and developed a new program (FADES-CORE), which was obtained by using the FADES thermo-hydro-mechanical code (Navarro, 1997) and the CORE-LE code (Samper et al., 1998). This process entailed the modification of FADES, the addition of new subroutines for the calculation of solute transport, the modification of CORE-LE and the introduction of additional geochemical and transport processes. (Author)

  20. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    International Nuclear Information System (INIS)

    Holt, R.M.

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, because the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model

  1. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  2. A conceptual model for determining career choice of CHROME alumna based on farmer's conceptual models

    Science.gov (United States)

    Moore, Lisa Simmons

    This qualitative program evaluation examines the career decision-making processes and career choices of nine, African American women who participated in the Cooperating Hampton Roads Organization for Minorities in Engineering (CHROME) and who graduated from urban, rural or suburban high schools in the year 2000. The CHROME program is a nonprofit, pre-college intervention program that encourages underrepresented minority and female students to enter science, technically related, engineering, and math (STEM) career fields. The study describes career choices and decisions made by each participant over a five-year period since high school graduation. Data was collected through an Annual Report, Post High School Questionnaires, Environmental Support Questionnaires, Career Choice Questionnaires, Senior Reports, and standardized open-ended interviews. Data was analyzed using a model based on Helen C. Farmer's Conceptual Models, John Ogbu's Caste Theory and Feminist Theory. The CHROME program, based on its stated goals and tenets, was also analyzed against study findings. Findings indicated that participants received very low levels of support from counselors and teachers to pursue STEM careers and high levels of support from parents and family, the CHROME program and financial backing. Findings of this study also indicated that the majority of CHROME alumna persisted in STEM careers. The most successful participants, in terms of undergraduate degree completion and occupational prestige, were the African American women who remained single, experienced no critical incidents, came from a middle class to upper middle class socioeconomic background, and did not have children.

  3. Reaction of Topopah Spring tuff with J-13 water: a geochemical modeling approach using the EQ3/6 reaction path code

    International Nuclear Information System (INIS)

    Delany, J.M.

    1985-01-01

    EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250 0 C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150 0 C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250 0 C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250 0 C. The ability to reproduce the majority of the experimental rock/water interactions at 150 0 C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI

  4. Concerning evaluation of eco-geochemical background in remediation strategy

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for

  5. A conceptual model of channel choice : measuring online and offline shopping value perceptions

    NARCIS (Netherlands)

    Broekhuizen, Thijs L.J.; Jager, Wander

    2004-01-01

    This study tries to understand how consumers evaluate channels for their purchasing. Specifically, it develops a conceptual model that addresses consumer value perceptions of using the Internet versus the traditional (physical) channel. Previous research showed that perceptions of price, product

  6. On the foundation for roles in RM-ODP: contributions from conceptual modelling

    NARCIS (Netherlands)

    Guizzardi, G.; Andrade Almeida, João; Linington, P.F.; Vallecillo, A.; Wood, B.

    2007-01-01

    In this paper, we attempt to provide a semantic foundation for the role-related concepts in the RM-ODP. We believe that some theories of conceptual modelling may help us to provide a well-founded underpinning for these concepts, and to harmonize competing proposals for them. As a starting point of

  7. Release of major elements from recycled concrete aggregates and geochemical modelling

    International Nuclear Information System (INIS)

    Engelsen, Christian J.; Sloot, Hans A. van der; Wibetoe, Grethe; Petkovic, Gordana; Stoltenberg-Hansson, Erik; Lund, Walter

    2009-01-01

    The pH dependent leaching characteristics were assessed for different types of recycled concrete aggregates, including real construction debris and crushed fresh concrete samples prepared in laboratory. Carbonation effects were identified from the characteristic pH dependent leaching patterns for the major constituents Al, Ca, Fe, Mg, Si and SO 4 2- . The original particle size ranges were different for the samples investigated and this factor influenced the cement paste content in the samples which in turn controlled the leachable contents. Cement paste contents for concrete samples with fine particle size fractions (0-4 mm) were found to be higher than the originally present amount in the hardened concrete. Geochemical speciation modelling was applied over the entire pH range using the speciation and transport modelling framework ORCHESTRA, for which mineral saturation, solution speciation and sorption processes can be calculated based on equilibrium models and thermodynamic data. The simulated equilibrium concentrations by this model agreed well with the respective measured concentrations. The main differences between the fresh and aged materials were quantified, described and predicted by the ORCHESTRA. Solubility controlling mineral phase assemblages were calculated by the model as function of pH. Cement hydrate phases such as calcium silicate hydrate, calcium aluminate hydrate (AFm and AFt) and hydrogarnet were predominating at the material pH. The concentration of carboaluminates was found to be strongly dependent on the available carbonates in the samples. As the pH was decreased these phases decomposed to more soluble species or precipitates were formed including iron- and aluminium hydroxides, wairakite and amorphous silica. In the most acid region most phases dissolved, and the major elements were approaching maximum leachability, which was determined by the amount of cement paste.

  8. Status report on geochemical field results from Atlantic study sites

    International Nuclear Information System (INIS)

    Wilson, T.R.S.; Thomson, J.; Hydes, D.J.; Colley, S.

    1983-01-01

    This report summarises the results of preliminary geochemical investigations at three North Atlantic study areas. The two eastern sites, on the Cape Verde abyssal plain (CV2) and east of Great Meteor Seamount (GME) were visited during 1982. The results presented are preliminary. Studies in the western Atlantic, close to the Nares Abyssal Plain study site are more detailed and are presented in a separate paper. The report shows for the first time the relative redox status of the three sites. The differences are unexpectedly large, the most reduced cores being recovered at GME and the most oxidised at CV2. The sporadic nature of Recent sediment accumulation at these sites is also emphasised. In order to place these preliminary results in context their relevance to the production of mathematical system models is discussed in a closing section. The necessity for such models to rest on sound foundations of geochemical understanding is noted. Suggestions on future research priorities are offered for discussion. (author)

  9. Conceptualizing operations strategy processes

    DEFF Research Database (Denmark)

    Rytter, Niels Gorm; Boer, Harry; Koch, Christian

    2007-01-01

    Purpose - The purpose of this paper is to present insights into operations strategy (OS) in practice. It outlines a conceptualization and model of OS processes and, based on findings from an in-depth and longitudinal case study, contributes to further development of extant OS models and methods......; taking place in five dimensions of change - technical-rational, cultural, political, project management, and facilitation; and typically unfolding as a sequential and parallel, ordered and disordered, planned and emergent as well as top-down and bottom-up process. The proposed OS conceptualization...

  10. Statistical and Conceptual Model Testing Geomorphic Principles through Quantification in the Middle Rio Grande River, NM.

    Science.gov (United States)

    Posner, A. J.

    2017-12-01

    The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.

  11. Geochemical mapping study of Panjang island

    International Nuclear Information System (INIS)

    Sutisna; Sumardjo

    2010-01-01

    Impact of industrial and regional development are not only related to an improvement of socio-economic, but also to an environmental conservation and sustainable. This impact could be observed on a change of geochemical mapping before and after an operational of the industry. In the relation with a regional development and resources utilization, the geochemical mapping have been done in the aim to know a resources and an elemental distribution at Panjang island. In this research, ko-Instrumental Neutron Activation Analysis (k_0-INAA) have been applied in an elemental quantification on the geochemical mapping. Pencuplikan of geochemical sample have been carried out by using a grid systematic method with a sample density of about 10 sample per square kilometre involved 85 pencuplikan point. The geochemical sample of sediment and soil have been provided as a dry weight of 100 mesh. Internal quality control have done by using a number of Standard Reference Materials obtained from US. Geological Survey. Fifteen elements of Sc, Co, In, Rb, Mo, Ba, Ce, Nd, Eu, La, Yb, Th, U, lr and Hf contained in standard materials have been evaluated. The analysis result show that a relative standard deviation less than 11 %, except for Mo (13 %) and lr (26 %). Fourteen elements of Al, Br, Ca, Co, Eu, Fe, La, U, Na, Ce, Mn, As, Sc and Th have been mapped and presented in this paper. The major elements of Ca, Al and Fe, and minor elements of Mn, U and Sc are distributed at all region. The lanthanide elements of La, Ce and Eu have vary concentration and could be found at the middle to the north of the island. (author)

  12. Conceptual Diagnosis Model Based on Distinct Knowledge Dyads for Interdisciplinary Environments

    Directory of Open Access Journals (Sweden)

    Cristian VIZITIU

    2014-06-01

    Full Text Available The present paper has a synergic dual purpose of bringing a psychological and neuroscience related perspective oriented towards decision making and knowledge creation diagnosis in the frame of Knowledge Management. !e conceptual model is built by means ofCognitive-Emotional and Explicit-Tacit knowledge dyads and structured on Analytic Hierarchy Process (AHP according to the hypothesis which designates the first dyad as an accessing mechanism of knowledge stored in the second dyad. Due to the well acknowledged needsconcerning new advanced decision making instruments and enhanced knowledge creation processes in the field of technical space projects emphasized by a high level of complexity, the herein study tries also to prove the relevance of the proposed conceptual diagnosis modelin Systems Engineering (SE methodology which foresees at its turn concurrent engineering within interdisciplinary working environments. !e theoretical model, entitled DiagnoSE, has the potential to provide practical implications to space/space related business sector butnot merely, and on the other hand, to trigger and inspire other knowledge management related researches for refining and testing the proposed instrument in SE or other similar decision making based working environment.

  13. Geochemical modeling of leaching from MSVI air-pollution-control residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Dijkstra, J.J.; Comans, R.N.J.

    2006-01-01

    This paper provides an improved understanding of the leaching behavior of waste incineration air-pollution-control (APC) residues in a long-term perspective. Leaching was investigated by a series of batch experiments reflecting leaching conditions after initial washout of highly soluble salts from...... residues. Leaching experiments were performed at a range of pH-values using carbonated and noncarbonated versions of two APC residues. The leaching data were evaluated by geochemical speciation modeling and discussed with respect to possible solubility control. The leaching of major elements as well...... of Al, Ba, Ca, Cr, Pb, S, Si, V, and Zn was found influenced by solubility control from Al2O3, Al(OH)3, Ba(S,Cr)O4 solid solutions, BaSO4, Ca6Al2(SO4)3(OH)12â26H2O, CaAl2Si4O12â2H2O, Ca-(OH)2, CaSiO3, CaSO4â2H2O, CaZn2(OH)6â2H2O, KAlSi2O6, PbCO3, PbCrO4, Pb2O3, Pb2V2O7, Pb3(VO4)2, ZnO, Zn2SiO4, and Zn...

  14. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    Science.gov (United States)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model

  15. Geochemical and geo-electrical study of mud pools at the Mutnovsky volcano (South Kamchatka, Russia): Behavior of elements, structures of feeding channels and a model of origin

    International Nuclear Information System (INIS)

    Bessonova, E.P.; Bortnikova, S.B.; Gora, M.P.; Manstein, Yu.A.; Shevko, A.Ya.; Panin, G.L.; Manstein, A.K.

    2012-01-01

    This study presents data on the geochemical composition of boiling mud pools at the Mutnovsky volcano. The physicochemical characteristics of the pools and the concentrations of major, minor and trace elements in pool solutions vary widely. A comparison of the geochemical compositions of host rocks and solutions indicates that leaching from rocks is not the only source of chemicals in thermal solutions. Geophysical studies reveal the inner structure of thermal fields, which reflect the shapes of the underground reservoirs and feed channels. Using geophysical methods (electrical resistivity tomography and frequency domain investigations), it was shown that the vertical structure and complex geochemical zonation of the feed channels leads to a high contrast in the compositions of the mud solutions. These findings answer questions about the origin and composition of surface manifestations. To elucidate the mechanisms of solution formation, an attempt was made to describe the magmatic fluid evolution and the resulting mixing of waters by physical and mathematical models. The model illustrates fluid migration from a magma chamber to the surface. It is shown that the formation of brines corresponding to the mud pool composition is possible during secondary boiling.

  16. Hydro-geochemical modeling of subalpine urbanized area: geochemical characterization of the shallow and deep aquifers of the urban district of Como (first results).

    Science.gov (United States)

    Terrana, Silvia; Brunamonte, Fabio; Frascoli, Francesca; Ferrario, Maria Francesca; Michetti, Alessandro Maria; Pozzi, Andrea; Gambillara, Roberto; Binda, Gilberto

    2016-04-01

    One of the greatest environmental and social-economics threats is climate change. This topic, in the next few years, will have a significant impact on the availability of water resources of many regions. This is compounded by the strong anthropization of water systems that shows an intensification of conflicts for water resource exploitation. Therefore, it is necessary a sustainable manage of natural resources thorough knowledge of the hosting territories. The development of investigation and data processing methods are essential to reduce costs for the suitable use and protection of resources. Identify a sample area for testing the best approach is crucial. This research aims to find a valid methodology for the characterization, modeling and management of subalpine urban aquifers, and the urban district of Como appears perfect. The city of Como is located at the southern end of the western sector of Lake Como (N Italy). It is a coastal town, placed on a small alluvial plain, therefore in close communication with the lake. The plain is drained by two streams, which are presently artificially buried, and have an underground flow path in the urban section till the mouth. This city area, so, is suitable for this project as it is intensely urbanized, its dimensions is not too extensive and it is characterized by two aquifers very important and little known. These are a shallow aquifer and a deep aquifer, which are important not only for any water supply, but also for the stability of the ground subsidence in the city. This research is also the opportunity to work in a particular well-known area with high scientific significance; however, there is complete absence of information regarding the deep aquifer. Great importance has also the chosen and used of the more powerful open source software for this type of area, such as PHREEQC, EnvironInsite, PHREEQE etc., used for geological and geochemical data processing. The main goal of this preliminary work is the

  17. Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes

    Science.gov (United States)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2014-10-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modeling of a meso-scale Andean catchment (1515 km2) over a 30 year period (1982-2011). The modeling process was decomposed into six model-building decisions related to the following aspects of the system behavior: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modeling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain 8 model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modeling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  18. Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes

    Science.gov (United States)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2015-05-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modelling of a mesoscale Andean catchment (1515 km2) over a 30-year period (1982-2011). The modelling process was decomposed into six model-building decisions related to the following aspects of the system behaviour: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modelling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional (4-D) space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain eight model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modelling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  19. A Conceptual Modeling Approach for OLAP Personalization

    Science.gov (United States)

    Garrigós, Irene; Pardillo, Jesús; Mazón, Jose-Norberto; Trujillo, Juan

    Data warehouses rely on multidimensional models in order to provide decision makers with appropriate structures to intuitively analyze data with OLAP technologies. However, data warehouses may be potentially large and multidimensional structures become increasingly complex to be understood at a glance. Even if a departmental data warehouse (also known as data mart) is used, these structures would be also too complex. As a consequence, acquiring the required information is more costly than expected and decision makers using OLAP tools may get frustrated. In this context, current approaches for data warehouse design are focused on deriving a unique OLAP schema for all analysts from their previously stated information requirements, which is not enough to lighten the complexity of the decision making process. To overcome this drawback, we argue for personalizing multidimensional models for OLAP technologies according to the continuously changing user characteristics, context, requirements and behaviour. In this paper, we present a novel approach to personalizing OLAP systems at the conceptual level based on the underlying multidimensional model of the data warehouse, a user model and a set of personalization rules. The great advantage of our approach is that a personalized OLAP schema is provided for each decision maker contributing to better satisfy their specific analysis needs. Finally, we show the applicability of our approach through a sample scenario based on our CASE tool for data warehouse development.

  20. Dialectic Antidotes to Critics of the Technology Acceptance Model: Conceptual, Methodological, and Replication Treatments for Behavioural Modelling in Technology-Mediated Environments

    Directory of Open Access Journals (Sweden)

    Weng Marc Lim

    2018-01-01

    Full Text Available The technology acceptance model (TAM is a prominent and parsimonious conceptual lens that is often applied for behavioural modelling in technology-mediated environments. However, TAM has received a great deal of criticism in recent years. This article aims to address some of the most pertinent issues confronting TAM through a rejoinder that offers dialectic antidotes—in the form of conceptual, methodological, and replication treatments—to support the continued use of TAM to understand the peculiarities of user interactions with technology in technology-mediated environments. In doing so, this article offers a useful response to a common but often inadequately answered question about how TAM can continue to be relevant for behavioural modelling in contemporary technology-mediated environments.

  1. Conceptual framework of Tenaga Nasional Berhad (TNB) cost of service (COS) model

    Science.gov (United States)

    Zainudin, WNRA; Ishak, WWM; Sulaiman, NA

    2017-09-01

    One of Malaysia Electricity Supply Industry (MESI) objectives is to ensure Tenaga Nasional Berhad (TNB) economic viability based on a fair economic electricity pricing. In meeting such objective, a framework that investigates the effect of cost of service (COS) on revenue is in great need. This paper attempts to present a conceptual framework that illustrate the distribution of the COS among TNB’s various cost centres which are subsequently redistributed in varying quantities among all of its customer categories. A deep understanding on the concepts will ensure optimal allocation of COS elements between different sub activities of energy production processes can be achieved. However, this optimal allocation needs to be achieved with respect to the imposed TNB revenue constraint. Therefore, the methodology used for this conceptual approach is being modelled into four steps. Firstly, TNB revenue requirement is being examined to ensure the conceptual framework addressed the requirement properly. Secondly, the revenue requirement is unbundled between three major cost centres or business units consist of generation, transmission and distribution and the cost is classified based on demand, energy and customers related charges. Finally, the classified costs are being allocated to different customer categories i.e. Household, Commercial, and Industrial. In summary, this paper proposed a conceptual framework on the cost of specific services that TNB currently charging its customers and served as potential input into the process of developing revised electricity tariff rates. On that purpose, the finding of this COS study finds cost to serve customer varies with the voltage level that customer connected to, the timing and the magnitude of customer demand on the system. This COS conceptual framework could potentially be integrated into a particular tariff structure and serve as a useful tool for TNB.

  2. Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report - December 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    This Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report (CCM/CME Report) has been prepared by the U.S. Department of Energy (DOE) and Sandia Corporation (Sandia) to meet requirements under the Sandia National Laboratories-New Mexico (SNL/NM) Compliance Order on Consent (the Consent Order). The Consent Order, entered into by the New Mexico Environment Department (NMED), DOE, and Sandia, became effective on April 29, 2004. The Consent Order identified the Tijeras Arroyo Groundwater (TAG) Area of Concern (AOC) as an area of groundwater contamination requiring further characterization and corrective action. This report presents an updated Conceptual Site Model (CSM) of the TAG AOC that describes the contaminant release sites, the geological and hydrogeological setting, and the distribution and migration of contaminants in the subsurface. The dataset used for this report includes the analytical results from groundwater samples collected through December 2015.

  3. Structure and use of conceptual models in the Aespoe site investigations

    International Nuclear Information System (INIS)

    Gustafsson, Gunnar

    1998-01-01

    Early in the Aespoe project a need for structuring and clarification of the models used for different purposes was identified. The problem lied not in the numerical codes or the data base used for the modelling but rather in the process of how the real world was conceptualized into descriptive and predictive models. A proposal on how to structure these conceptual assumptions was made on which a standardised representation of used models was worked out. An essential objective has been to condensate the model descriptions to one page and still present the essential aspects of each model. It is hoped that in this way it is easier to obtain an overview of the assumptions underlying each model and facilitate comparison between different models. The base for the description is the 'intended use of the model'. Based on the intended use the next step is to identify what 'physical' processes should be included in the model. In some cases these processes can be represented by constitutive equations. The next step is to define the 'concepts' needed to solve the problem. The concepts may be separated into four groups. Firstly, the type of 'geometrical framework' and the framework-related parameters have to be defined. Secondly, the type of 'material properties' to be assigned to the domains defined by the geometrical framework must be decided. Thirdly, the 'spatial assignment method' of the material properties within a domain has to be described. Finally, the model normally has a limited extent and the 'boundary conditions' have to be defined to compute or judge the effects within the model. For a real case the data can now be defined for the four groups of concepts by analysing measurements representing the actual case. If needed a 'numerical or mathematical tool' that handles the processes and concepts should the be chosen. 'Output parameters' of interest for model purposes must then be defined

  4. Adoption of the Hash algorithm in a conceptual model for the civil registry of Ecuador

    Science.gov (United States)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2018-04-01

    The Hash security algorithm was analyzed in order to mitigate information security in a distributed architecture. The objective of this research is to develop a prototype for the Adoption of the algorithm Hash in a conceptual model for the Civil Registry of Ecuador. The deductive method was used in order to analyze the published articles that have a direct relation with the research project "Algorithms and Security Protocols for the Civil Registry of Ecuador" and articles related to the Hash security algorithm. It resulted from this research: That the SHA-1 security algorithm is appropriate for use in Ecuador's civil registry; we adopted the SHA-1 algorithm used in the flowchart technique and finally we obtained the adoption of the hash algorithm in a conceptual model. It is concluded that from the comparison of the DM5 and SHA-1 algorithm, it is suggested that in the case of an implementation, the SHA-1 algorithm is taken due to the amount of information and data available from the Civil Registry of Ecuador; It is determined that the SHA-1 algorithm that was defined using the flowchart technique can be modified according to the requirements of each institution; the model for adopting the hash algorithm in a conceptual model is a prototype that can be modified according to all the actors that make up each organization.

  5. The Relationships among Leadership, Entrepreneurial Mindset, Innovation and Competitive Advantage (A Conceptual Model of Logistics Service Industry

    Directory of Open Access Journals (Sweden)

    Darjat Sudrajat

    2015-11-01

    Full Text Available Nowadays, improvement of competitive advantage is an important and urgent issue facing logistics service companies in Indonesia. Some previous researches showed that to improve the competitive advantage could be conducted through improvement of leadership, entrepreneurial mindset and innovation variables. This research intended to recognize relationships among the variables. The research used causal-explanatory method. The results of research encompass a conceptual model, status of each variable and hypotheses. The conceptual model could be further verified through verification research. 

  6. A conceptual definition of vocational rehabilitation based on the ICF: building a shared global model.

    Science.gov (United States)

    Escorpizo, Reuben; Reneman, Michiel F; Ekholm, Jan; Fritz, Julie; Krupa, Terry; Marnetoft, Sven-Uno; Maroun, Claude E; Guzman, Julietta Rodriguez; Suzuki, Yoshiko; Stucki, Gerold; Chan, Chetwyn C H

    2011-06-01

    The International Classification of Functioning, Disability and Health (ICF) is a conceptual framework and classification system by the World Health Organization (WHO) to understand functioning. The objective of this discussion paper is to offer a conceptual definition for vocational rehabilitation (VR) based on the ICF. We presented the ICF as a model for application in VR and the rationale for the integration of the ICF. We also briefly reviewed other work disability models. Five essential elements of foci were found towards a conceptual definition of VR: an engagement or re-engagement to work, along a work continuum, involved health conditions or events leading to work disability, patient-centered and evidence-based, and is multi-professional or multidisciplinary. VR refers to a multi-professional approach that is provided to individuals of working age with health-related impairments, limitations, or restrictions with work functioning and whose primary aim is to optimize work participation. We propose that the ICF and VR interface be explored further using empirical and qualitative works and encouraging stakeholders' participation.

  7. Testing a Conceptual Change Model Framework for Visual Data

    Science.gov (United States)

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  8. A conceptual model for the growth, persistence, and blooming behavior of the benthic mat-forming diatom Didymosphenia geminata (Invited)

    Science.gov (United States)

    Cullis, J. D.; Gillis, C.; Bothwell, M.; Kilroy, C.; Packman, A. I.; Hassan, M. A.

    2010-12-01

    The nuisance diatom Didymosphenia geminata (didymo) presents an ecological paradox. How can this benthic algae produce such large amounts of biomass in cold, fast flowing, low nutrient streams? The aim of this paper is to present a conceptual model for the growth, persistence, and blooming behavior of this benthic mat-forming diatom that may help to explain this paradox. The conceptual model highlights the importance of distinguishing between mat thickness and cell growth. It presents evidence gathered from a range of existing studies around the world to support the proposed relationship between growth and light, nutrients and temperature as well as the importance of flood events and bed disturbance in mat removal. It is anticipated that this conceptual model will not only help in identifying the key controlling variables and set a framework for future studies but also support the future management of this nuisance algae. Summary of the conceptual model for didymo growth showing the proposed relationships for the growth of cells and mats with nutrients, radiation and water temperature and the dependence of removal on bed shear stress and the potential for physical bed disturbance.

  9. CONCEPTUAL MODEL OF CONSUMERS TRUST TO ONLINE SHOPS

    Directory of Open Access Journals (Sweden)

    T. Dubovyk

    2014-06-01

    Full Text Available In the article the conceptual model of the major factors that influence consumers trust in online shop: reliability of online store, reliable information system for making purchases online, factors of ethic interactiveness (security, third-party certification, internet-marketing communications of online-shop and other factors – that is divided enterprises of trade and consumers (demographic variables, psychological perception of internet-marketing communications, experience of purchase of commodities are in the Internet. The degree of individual customer trust propensity which reflects the personality traits, culture and previous experience. An implement signs of consumer confidence due to site elements online shop – graphic design, structured design, design of content, design harmonized with perception of target audience.

  10. Conceptual Models of the Individual Public Service Provider

    DEFF Research Database (Denmark)

    Andersen, Lotte Bøgh; Pedersen, Lene Holm; Bhatti, Yosef

    are used to gain insight on the motivation of public service providers; namely principal-agent theory, self-determination theory and public service motivation theory. We situate the theoretical discussions in the context of public service providers being transferred to private organizations......Individual public service providers’ motivation can be conceptualized as either extrinsic, autonomous or prosocial, and the question is how we can best theoretically understand this complexity without losing too much coherence and parsimony. Drawing on Allison’s approach (1969), three perspectives...... theoretical – to develop a coherent model of individual public service providers – but the empirical illustration also contributes to our understanding of motivation in the context of public sector outsourcing....

  11. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    Science.gov (United States)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a

  12. Study on Applicability of Conceptual Hydrological Models for Flood Forecasting in Humid, Semi-Humid Semi-Arid and Arid Basins in China

    Directory of Open Access Journals (Sweden)

    Guangyuan Kan

    2017-09-01

    Full Text Available Flood simulation and forecasting in various types of watersheds is a hot issue in hydrology. Conceptual hydrological models have been widely applied to flood forecasting for decades. With the development of economy, modern China faces with severe flood disasters in all types of watersheds include humid, semi-humid semi-arid and arid watersheds. However, conceptual model-based flood forecasting in semi-humid semi-arid and arid regions is still challenging. To investigate the applicability of conceptual hydrological models for flood forecasting in the above mentioned regions, three typical conceptual models, include Xinanjiang (XAJ, mix runoff generation (MIX and northern Shannxi (NS, are applied to 3 humid, 3 semi-humid semi-arid, and 3 arid watersheds. The rainfall-runoff data of the 9 watersheds are analyzed based on statistical analysis and information theory, and the model performances are compared and analyzed based on boxplots and scatter plots. It is observed the complexity of drier watershed data is higher than that of the wetter watersheds. This indicates the flood forecasting is harder in drier watersheds. Simulation results indicate all models perform satisfactorily in humid watersheds and only NS model is applicable in arid watersheds. Model with consideration of saturation excess runoff generation (XAJ and MIX perform better than the infiltration excess-based NS model in semi-humid semi-arid watersheds. It is concluded more accurate mix runoff generation theory, more stable and efficient numerical solution of infiltration equation and rainfall data with higher spatial-temporal resolution are main obstacles for conceptual model-based flood simulation and forecasting.

  13. A conceptual model of psychosocial risk and protective factors for excessive gestational weight gain.

    Science.gov (United States)

    Hill, Briony; Skouteris, Helen; McCabe, Marita; Milgrom, Jeannette; Kent, Bridie; Herring, Sharon J; Hartley-Clark, Linda; Gale, Janette

    2013-02-01

    nearly half of all women exceed the guideline recommended pregnancy weight gain for their Body Mass Index (BMI) category. Excessive gestational weight gain (GWG) is correlated positively with postpartum weight retention and is a predictor of long-term, higher BMI in mothers and their children. Psychosocial factors are generally not targeted in GWG behaviour change interventions, however, multifactorial, conceptual models that include these factors, may be useful in determining the pathways that contribute to excessive GWG. We propose a conceptual model, underpinned by health behaviour change theory, which outlines the psychosocial determinants of GWG, including the role of motivation and self-efficacy towards healthy behaviours. This model is based on a review of the existing literature in this area. there is increasing evidence to show that psychosocial factors, such as increased depressive symptoms, anxiety, lower self-esteem and body image dissatisfaction, are associated with excessive GWG. What is less known is how these factors might lead to excessive GWG. Our conceptual model proposes a pathway of factors that affect GWG, and may be useful for understanding the mechanisms by which interventions impact on weight management during pregnancy. This involves tracking the relationships among maternal psychosocial factors, including body image concerns, motivation to adopt healthy lifestyle behaviours, confidence in adopting healthy lifestyle behaviours for the purposes of weight management, and actual behaviour changes. health-care providers may improve weight gain outcomes in pregnancy if they assess and address psychosocial factors in pregnancy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  15. Parenting around child snacking: development of a theoretically-guided, empirically informed conceptual model.

    Science.gov (United States)

    Davison, Kirsten K; Blake, Christine E; Blaine, Rachel E; Younginer, Nicholas A; Orloski, Alexandria; Hamtil, Heather A; Ganter, Claudia; Bruton, Yasmeen P; Vaughn, Amber E; Fisher, Jennifer O

    2015-09-17

    Snacking contributes to excessive energy intakes in children. Yet factors shaping child snacking are virtually unstudied. This study examines food parenting practices specific to child snacking among low-income caregivers. Semi-structured interviews were conducted in English or Spanish with 60 low-income caregivers of preschool-aged children (18 non-Hispanic white, 22 African American/Black, 20 Hispanic; 92% mothers). A structured interview guide was used to solicit caregivers' definitions of snacking and strategies they use to decide what, when and how much snack their child eats. Interviews were audio-recorded, transcribed verbatim and analyzed using an iterative theory-based and grounded approach. A conceptual model of food parenting specific to child snacking was developed to summarize the findings and inform future research. Caregivers' descriptions of food parenting practices specific to child snacking were consistent with previous models of food parenting developed based on expert opinion [1, 2]. A few noteworthy differences however emerged. More than half of participants mentioned permissive feeding approaches (e.g., my child is the boss when it comes to snacks). As a result, permissive feeding was included as a higher order feeding dimension in the resulting model. In addition, a number of novel feeding approaches specific to child snacking emerged including child-centered provision of snacks (i.e., responding to a child's hunger cues when making decisions about snacks), parent unilateral decision making (i.e., making decisions about a child's snacks without any input from the child), and excessive monitoring of snacks (i.e., monitoring all snacks provided to and consumed by the child). The resulting conceptual model includes four higher order feeding dimensions including autonomy support, coercive control, structure and permissiveness and 20 sub-dimensions. This study formulates a language around food parenting practices specific to child snacking

  16. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Larsen, Flemming; Hue, N.T.M.

    2007-01-01

    The mobilization of arsenic (As) to the groundwater was studied in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The groundwater chemistry was investigated in a transect of 100 piezometers. Results show an anoxic aquifer featuring organic carbon decomposition......(III) but some As(V) is always found. Arsenic correlates well with NH4, relating its release to organic matter decomposition and the source of As appears to be the Fe-oxides being reduced. Part of the produced Fe(II) is apparently reprecipitated as siderite containing less As. Results from sediment extraction...... chemistry over depth is homogeneous and a reactive transport model was constructed to quantify the geochemical processes along the vertical groundwater flow component. A redox zonation model was constructed using the partial equilibrium approach with organic carbon degradation in the sediment as the only...

  17. Establishing nursery estuary otolith geochemical tags for Sea Bass (Dicentrarchus labrax): Is temporal stability estuary dependent?

    Science.gov (United States)

    Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William

    2016-12-01

    The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.

  18. The Effect of Conceptual Change Model in the Senior High School Students’ Understanding and Character in Learning Physics

    Directory of Open Access Journals (Sweden)

    Santyasa I Wayan

    2018-01-01

    Full Text Available Learning physics for senior high school (SMA students is often coloured by misconceptions that hinder students in achieving deep understanding. So a relevant learning model is needed. This study aims to examine the effect of conceptual change model (CCM compared with direct instruction model (DIM on the students’ conceptual understanding and character in the subject area of motion and force. This quasi-experimental research using a non-equivalence pre-test post-test control groups design. The population is 20 classes (738 students of grade X consisted of 8 classes (272 students of SMA 1 Amlapura, 8 classes (256 students of SMA 2 Amlapura, and 6 classes (210 students of SMA 1 Manggis in Karangasem regency in Bali. The random assignment technique is used to assign 6 classes (202 students, or 26.5% of the population. In each school there are set 2 classes each as a CCM group and DIM groups. The data of students’ conceptual understanding is collected by tests, while the characters by questionnaires. To analyse the data a one way MANCOVA statistics was used. The result of the analysis showed that there was a significant difference of effect between CCM group and DIM group on the students’ conceptual understanding and character. The effect of the CCM group is higher than the DIM group on the students’ conceptual understanding and character in learning subject area of motion and force.

  19. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    International Nuclear Information System (INIS)

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; Hedges, Sheila W.; Lopano, Christina L.; Guthrie, George D.; Hakala, J. Alexandra

    2017-01-01

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24–48 h) fluid enrichment of certain elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales. - Highlights: • Metal concentrations could be at their peak in produced waters recovered 24–48 after fracturing. • Carbonate

  20. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    Science.gov (United States)

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  1. Benefits of using a Social-Ecological Systems Approach to Conceptualize and Model Wetlands Restoration

    Science.gov (United States)

    Using a social-ecological systems (SES) perspective to examine wetland restoration helps decision-makers recognize interdependencies and relations between ecological and social components of coupled systems. Conceptual models are an invaluable tool to capture, visualize, and orga...

  2. A conceptual model of physician work intensity: guidance for evaluating policies and practices to improve health care delivery.

    Science.gov (United States)

    Horner, Ronnie D; Matthews, Gerald; Yi, Michael S

    2012-08-01

    Physician work intensity, although a major factor in determining the payment for medical services, may potentially affect patient health outcomes including quality of care and patient safety, and has implications for the redesign of medical practice to improve health care delivery. However, to date, there has been minimal research regarding the relationship between physician work intensity and either patient outcomes or the organization and management of medical practices. A theoretical model on physician work intensity will provide useful guidance to such inquiries. To describe an initial conceptual model to facilitate further investigations of physician work intensity. A conceptual model of physician work intensity is described using as its theoretical base human performance science relating to work intensity. For each of the theoretical components, we present relevant empirical evidence derived from a review of the current literature. The proposed model specifies that the level of work intensity experienced by a physician is a consequence of the physician performing the set of tasks (ie, demands) relating to a medical service. It is conceptualized that each medical service has an inherent level of intensity that is experienced by a physician as a function of factors relating to the physician, patient, and medical practice environment. The proposed conceptual model provides guidance to researchers as to the factors to consider in studies of how physician work intensity impacts patient health outcomes and how work intensity may be affected by proposed policies and approaches to health care delivery.

  3. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Further Conceptualizing Ethnic and Racial Identity Research: The Social Identity Approach and Its Dynamic Model.

    Science.gov (United States)

    Verkuyten, Maykel

    2016-11-01

    This article proposes a further conceptualization of ethnic and racial identity (ERI) as a fundamental topic in developmental research. Adding to important recent efforts to conceptually integrate and synthesize this field, it is argued that ERI research will be enhanced by more fully considering the implications of the social identity approach. These implications include (a) the conceptualization of social identity, (b) the importance of identity motives, (c) systematic ways for theorizing and examining the critical role of situational and societal contexts, and (d) a dynamic model of the relation between ERI and context. These implications have not been fully considered in the developmental literature but offer important possibilities for moving the field forward in new directions. © 2016 The Author. Child Development © 2016 Society for Research in Child Development, Inc.

  5. A revised conceptual hydrogeologic model of a crystalline rock environment, Whiteshell research area, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Brown, A.; Davison, C.C.; Gascoyne, M.; McGregor, R.G.; Ophori, D.U.; Scheier, N.W.; Stanchell, F.; Thorne, G.A.; Tomsons, D.K.

    1996-04-01

    A revised conceptual hydrogeologic model of regional groundwater flow in the crystalline rocks of the Whiteshell Research Area (WRA) has been developed by a team of AECL geoscientists. The revised model updates an earlier model developed in 1985, and has a much broader database. This database was compiled from Landsat and airborne radar images, geophysical surveys and surface mapping, and from analyses of fracture logs, hydraulic tests and water samples collected from a network of deep boreholes drilled across the WRA. The boundaries of the revised conceptual model were selected to coincide with the natural hydraulic boundaries assumed for the regional groundwater flow systems in the WRA. The upper and lower boundaries are the water table and a horizontal plane 4 km below ground surface. For modelling purposes the rocks below 4 km are considered to be impermeable. The rocks of the modelled region were divided on the basis of fracture characteristics into three categories: fractured zones (FZs); moderately fractured rock (MFR); and sparsely fractured rock (SFR). The FZs are regions of intensely fractured rock. Seventy-six FZs were selected to form the fault framework within the revised conceptual model. The physical rock/water properties of the FZs, MFR and SFR were selected by analysis of field data from hydraulic and tracer tests, laboratory test data and water quality data. These properties were used to define a mathematical groundwater flow model of the WRA using AECL's MOTIF finite element code (Ophori et al. 1995, 1996). (author). 29 refs., 4 tabs., 12 figs

  6. A conceptual gamma shield design using the DRP model computation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, E E [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Rahman, F A [National Center of Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The purpose of this investigation is to assess basic areas of concern in the development of reactor shielding conceptual design calculations. A spherical shield model composed of low carbon steel and lead have been constructed to surround a Co-60 gamma point source. two alternative configurations have been considered in the model computation. The numerical calculations have been performed using both the ANISN code and DRP model computation together with the DLC 75-Bugle 80 data library. A resume of results for deep penetration in different shield materials with different packing densities is presented and analysed. The results showed that the gamma fluxes attenuation is increased with increasing distribution the packing density of the shield material which reflects its importance of considering it as a safety parameter in shielding design. 3 figs.

  7. Adjustment of geochemical background by robust multivariate statistics

    Science.gov (United States)

    Zhou, D.

    1985-01-01

    Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.

  8. Reaction of Topopah Spring tuff with J-13 water: a geochemical modeling approach using the EQ3/6 reaction path code

    Energy Technology Data Exchange (ETDEWEB)

    Delany, J.M.

    1985-11-25

    EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250{sup 0}C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150{sup 0}C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250{sup 0}C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250{sup 0}C. The ability to reproduce the majority of the experimental rock/water interactions at 150{sup 0}C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI.

  9. A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

    Science.gov (United States)

    Saroli, Michele; Lancia, Michele; Albano, Matteo; Casale, Anna; Giovinco, Gaspare; Petitta, Marco; Zarlenga, Francesco; dell'Isola, Marco

    2017-09-01

    A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to -1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

  10. Genesis and evolution of the fumaroles of vulcano (Aeolian Islands, Italy): a geochemical model

    Science.gov (United States)

    Carapezza, M.; Nuccio, P. M.; Valenza, M.

    1981-09-01

    A geochemical model explaining the presence of fumaroles having different gas composition and temperature at the top of the crater and along the northeastern coast of Vulcano island is proposed. A pressurized biphase (liquid-vapor) reservoir at the depth of about 2 km is hypothesized. Energy and mass balance sheets control P-T conditions in the system. P-T must vary along a boiling curve of brine as liquid is present. The CO2 content in the steam is governed by the thermodynamic properties of the fluids in the H2-NaCl-CO2 system. On the assumption that oxygen fugacity in the system is between the HM-FMQ oxygen buffers, observed SO2/H2S, CO2/CO, CO/CH4 ratios in the fumarolic gases at the Fossa crater appear in equilibrium with a temperature higher than that observed, such as may exist at depth. The more reduced gas phases present on the sea-side may result from re-equilibrium processes in shallower aquifers. The suggested model would help in monitoring changes in volcanic activity by analyzing fumarolic gases.

  11. Flow and geochemical modeling of drainage from Tomitaka mine, Miyazaki, Japan.

    Science.gov (United States)

    Yamaguchi, Kohei; Tomiyama, Shingo; Metugi, Hideya; Ii, Hiroyuki; Ueda, Akira

    2015-10-01

    The chemistry and flow of water in the abandoned Tomitaka mine of Miyazaki, western Japan were investigated. This mine is located in a non-ferrous metal deposit and acid mine drainage issues from it. The study was undertaken to estimate the quantities of mine drainage that needs to be treated in order to avoid acidification of local rivers, taking into account seasonal variations in rainfall. Numerical models aimed to reproduce observed water levels and fluxes and chemical variations of groundwater and mine drainage. Rock-water interactions that may explain the observed variations in water chemistry are proposed. The results show that: (1) rain water infiltrates into the deeper bedrock through a highly permeable zone formed largely by stopes that are partially filled with spoil from excavations (ore minerals and host rocks); (2) the water becomes acidic (pH from 3 to 4) as dissolved oxygen oxidizes pyrite; (3) along the flow path through the rocks, the redox potential of the water becomes reducing, such that pyrite becomes stable and pH of the mine drainage becomes neutral; and (4) upon leaving the mine, the drainage becomes acidic again due to oxidation of pyrite in the rocks. The present numerical model with considering of the geochemical characteristics can simulate the main variations in groundwater flow and water levels in and around the Tomitaka mine, and apply to the future treatment of the mine drainage. Copyright © 2015. Published by Elsevier B.V.

  12. Refining and validating a conceptual model of Clinical Nurse Leader integrated care delivery.

    Science.gov (United States)

    Bender, Miriam; Williams, Marjory; Su, Wei; Hites, Lisle

    2017-02-01

    To empirically validate a conceptual model of Clinical Nurse Leader integrated care delivery. There is limited evidence of frontline care delivery models that consistently achieve quality patient outcomes. Clinical Nurse Leader integrated care delivery is a promising nursing model with a growing record of success. However, theoretical clarity is necessary to generate causal evidence of effectiveness. Sequential mixed methods. A preliminary Clinical Nurse Leader practice model was refined and survey items developed to correspond with model domains, using focus groups and a Delphi process with a multi-professional expert panel. The survey was administered in 2015 to clinicians and administrators involved in Clinical Nurse Leader initiatives. Confirmatory factor analysis and structural equation modelling were used to validate the measurement and model structure. Final sample n = 518. The model incorporates 13 components organized into five conceptual domains: 'Readiness for Clinical Nurse Leader integrated care delivery'; 'Structuring Clinical Nurse Leader integrated care delivery'; 'Clinical Nurse Leader Practice: Continuous Clinical Leadership'; 'Outcomes of Clinical Nurse Leader integrated care delivery'; and 'Value'. Sample data had good fit with specified model and two-level measurement structure. All hypothesized pathways were significant, with strong coefficients suggesting good fit between theorized and observed path relationships. The validated model articulates an explanatory pathway of Clinical Nurse Leader integrated care delivery, including Clinical Nurse Leader practices that result in improved care dynamics and patient outcomes. The validated model provides a basis for testing in practice to generate evidence that can be deployed across the healthcare spectrum. © 2016 John Wiley & Sons Ltd.

  13. BUILDING CONCEPTUAL AND MATHEMATICAL MODEL FOR WATER FLOW AND SOLUTE TRANSPORT IN THE UNSATURATED ZONE AT KOSNICA SITE

    Directory of Open Access Journals (Sweden)

    Stanko Ružičić

    2012-12-01

    Full Text Available Conceptual model of flow and solute transport in unsaturated zone at Kosnica site, which is the basis for modeling pollution migration through the unsaturated zone to groundwater, is set up. The main characteristics of the unsaturated zone of the Kosnica site are described. Detailed description of investigated profile of unsaturated zone, with all necessary analytical results performed and used in building of conceptual models, is presented. Experiments that are in progress and processes which are modeled are stated. Monitoring of parameters necessary for calibration of models is presented. The ultimate goal of research is risk assessment of groundwater contamination at Kosnica site that has its source in or on unsaturated zone.

  14. The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods

    NARCIS (Netherlands)

    Verpoorten, Dominique; Poumay, M; Leclercq, D

    2006-01-01

    Please, cite this publication as: Verpoorten, D., Poumay, M., & Leclercq, D. (2006). The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence

  15. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  16. A picture is worth a thousand words: helping students visualize a conceptual model.

    Science.gov (United States)

    Johnson, S E

    1989-01-01

    Communicating the functional applicability of a conceptual framework to nursing students can be a challenge of considerable magnitude. Nurse educators are convinced that nursing practice and process should stem from theory. However, when attempting to teach this, many educators have struggled with the expressions of confused, skeptical students. To provide a better understanding of a nursing model, the author uses a visual representation of the Neuman Systems Model variables. The student can then visualize application of the Model to nursing practice.

  17. A geostatistical method applied to the geochemical study of the Chichinautzin Volcanic Field in Mexico

    Science.gov (United States)

    Robidoux, P.; Roberge, J.; Urbina Oviedo, C. A.

    2011-12-01

    The origin of magmatism and the role of the subducted Coco's Plate in the Chichinautzin volcanic field (CVF), Mexico is still a subject of debate. It has been established that mafic magmas of alkali type (subduction) and calc-alkali type (OIB) are produced in the CVF and both groups cannot be related by simple fractional crystallization. Therefore, many geochemical studies have been done, and many models have been proposed. The main goal of the work present here is to provide a new tool for the visualization and interpretation of geochemical data using geostatistics and geospatial analysis techniques. It contains a complete geodatabase built from referred samples over the 2500 km2 area of CVF and its neighbour stratovolcanoes (Popocatepetl, Iztaccihuatl and Nevado de Toluca). From this database, map of different geochemical markers were done to visualise geochemical signature in a geographical manner, to test the statistic distribution with a cartographic technique and highlight any spatial correlations. The distribution and regionalization of the geochemical signatures can be viewed in a two-dimensional space using a specific spatial analysis tools from a Geographic Information System (GIS). The model of spatial distribution is tested with Linear Decrease (LD) and Inverse Distance Weight (IDW) interpolation technique because they best represent the geostatistical characteristics of the geodatabase. We found that ratio of Ba/Nb, Nb/Ta, Th/Nb show first order tendency, which means visible spatial variation over a large scale area. Monogenetic volcanoes in the center of the CVF have distinct values compare to those of the Popocatepetl-Iztaccihuatl polygenetic complex which are spatially well defined. Inside the Valley of Mexico, a large quantity of monogenetic cone in the eastern portion of CVF has ratios similar to the Iztaccihuatl and Popocatepetl complex. Other ratios like alkalis vs SiO2, V/Ti, La/Yb, Zr/Y show different spatial tendencies. In that case, second

  18. CONCEPTUAL PRODUCT DESIGN IN VIRTUAL PROTOTYPING

    Directory of Open Access Journals (Sweden)

    Debeleac Carmen

    2009-07-01

    Full Text Available A conceptual model of the industrial design process for isolation against vibrations is proposed and described. This model can be used to design products subject to functional, manufacturing, ergonomic, aesthetic constraints. In this paper, the main stages of the model, such as component organization, conception shape, product detailing and graphical design are discussed. The work has confirmed the validity of proposed model for rapid generation of aesthetic preliminary product designs using the virtual prototyping technique, by one of its main component that is conceptual product design.

  19. A conceptual model for ethical business decision-making under the influence of personal relationships

    OpenAIRE

    Davidrajuh, Reggie

    2008-01-01

    This paper proposes a conceptual model for ethical business decision-making. The purpose of this model is to explore the ethical implications of personal relationship in business exchanges. Firstly, this paper introduces personal relationship in business exchanges. Secondly, three normative theories of ethics that are relevant to the business environment are presented. Thirdly, a literature study on the existing models and frameworks for ethical business decision-making is pres...

  20. Geochemical baseline studies of soil in Finland

    Science.gov (United States)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).