WorldWideScience

Sample records for geobacter sulfurreducens fuel

  1. Anaerobes unleashed: Aerobic fuel cells of Geobacter sulfurreducens

    Science.gov (United States)

    Nevin, Kelly P.; Zhang, Pei; Franks, Ashley E.; Woodard, Trevor L.; Lovley, Derek R.

    One of the limitations of power generation with microbial fuel cells is that the anode must typically be maintained under anaerobic conditions. When oxygen is present in the anode chamber microorganisms oxidize the fuel with the reduction of oxygen rather than electron transfer to the anode. A system in which fuel is provided from within a graphite anode and diffuses out to the outer surface of the anode was designed to overcome these limitations. A biofilm of Geobacter sulfurreducens strain KN400, pregrown on the surface of a graphite electrode in a traditional two-chambered system with an anaerobic anode chamber and acetate as an external fuel source, produced current just as well under aerobic conditions when acetate was provided via diffusion from an internal concentrated acetate solution. No acetate was detectable in the external medium. In contrast, aerobic systems in which acetate was provided in the external medium completely failed within 48 h. Internally fed anodes colonized by a strain of KN400 adapted to grow at marine salinities produced current in aerobic seawater as well as an anaerobic anode system. The ability to generate current with an anode under aerobic conditions increases the potential applications and design options for microbial fuel cells.

  2. Carboxydotrophic growth of Geobacter sulfurreducens

    NARCIS (Netherlands)

    Geelhoed, J.S.; Henstra, A.M.; Stams, A.J.M.

    2016-01-01

    This study shows that Geobacter sulfurreducens grows on carbon monoxide (CO) as electron donor with fumarate as electron acceptor. Geobacter sulfurreducens was tolerant to high CO levels, with up to 150 kPa in the headspace tested. During growth, hydrogen was detected in very slight amounts (∼5 P

  3. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    Institute of Scientific and Technical Information of China (English)

    Guotao Sun; Diogo de Sacadura Rodrigues; Anders Thygesen; Geoffrey Daniel; Dinesh Fernando; Anne S Meyer

    2016-01-01

    Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal perfor-mance depends on the establishment of a microbial community rich in electrogenic bacteria. Usual y this micro-bial community is established from inoculation of the MFC anode chamber with naturally occurring mixed inocula. In this study, the electrochemical performance of MFCs and microbial community evolution were eval-uated for three inocula including domestic wastewater (DW), lake sediment (LS) and biogas sludge (BS) with varying substrate loading (Lsub) and external resistance (Rext) on the MFC. The electrogenic bacterium Geobacter sulfurreducens was identified in al inocula and its abundance during MFC operation was positively linked to the MFC performance. The LS inoculated MFCs showed highest abundance (18%± 1%) of G. sulfurreducens, maximum current density [Imax=(690 ± 30) mA·m−2] and coulombic efficiency (CE=29%± 1%) with acetate as the substrate. Imax and CE increased to (1780 ± 30) mA·m−2 and 58%± 1%, respectively, after decreasing the Rext from 1000Ωto 200Ω, which also correlated to a higher abundance of G. sulfurreducens (21%± 0.7%) on the MFC anodic biofilm. The data obtained contribute to understanding the microbial community response to Lsub and Rext for optimizing electricity generation in MFCs.

  4. Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens.

    Science.gov (United States)

    Kim, Mi-Sun; Cha, Jaehwan; Kim, Dong-Hoon

    2012-10-01

    In this study, we investigated various cultural and operational factors to enhance electricity generation in a microbial fuel cell (MFC) using Geobacter sulfurreducens. The pure culture of G. sulfurreducens was cultivated using various substrates including acetate, malate, succinate, and butyrate, with fumarate as an electron acceptor. Cell growth was observed only in acetate-fed medium, when the cell concentrations increased 4-fold for 3 days. A high acetate concentration suppressed electricity generation. As the acetate concentration was increased from 5 to 20 mM, the power density dropped from 16 to 13 mW/m2, whereas the coulombic efficiency (CE) declined by about half. The immobilization of G. sulfurreducens on the anode considerably reduced the enrichment period from 15 to 7 days. Using argon gas to create an anaerobic condition in the anode chamber led to increased pH, and electricity generation subsequently dropped. When the plain carbon paper cathode was replaced by Pt-coated carbon paper (0.5 mg Pt/cm2), the CE increased greatly from 39% to 83%.

  5. Carboxydotrophic growth of Geobacter sulfurreducens.

    Science.gov (United States)

    Geelhoed, Jeanine S; Henstra, Anne M; Stams, Alfons J M

    2016-01-01

    This study shows that Geobacter sulfurreducens grows on carbon monoxide (CO) as electron donor with fumarate as electron acceptor. Geobacter sulfurreducens was tolerant to high CO levels, with up to 150 kPa in the headspace tested. During growth, hydrogen was detected in very slight amounts (∼5 Pa). In assays with cell-free extract of cells grown with CO and fumarate, production of hydrogen from CO was not observed, and hydrogenase activity with benzyl viologen as electron acceptor was very low. Taken together, this suggested that CO is not utilized via hydrogen as intermediate. In the presence of CO, reduction of NADP(+) was observed at a rate comparable to CO oxidation coupled to fumarate reduction in vivo. The G. sulfurreducens genome contains a single putative carbon monoxide dehydrogenase-encoding gene. The gene is part of a predicted operon also comprising a putative Fe-S cluster-binding subunit (CooF) and a FAD-NAD(P) oxidoreductase and is preceded by a putative CO-sensing transcription factor. This cluster may be involved in a novel pathway for CO oxidation, but further studies are necessary to ascertain this. Similar gene clusters are present in several other species belonging to the Deltaproteobacteria and Firmicutes, for which CO utilization is currently not known.

  6. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell.

    Science.gov (United States)

    Bourdakos, Nicholas; Marsili, Enrico; Mahadevan, Radhakrishnan

    2014-04-01

    Wastewater-fed microbial fuel cells (MFCs) are a promising technology to treat low-organic carbon wastewater and recover part of the chemical energy in wastewater as electrical power. However, the interactions between electrochemically active and fermentative microorganisms cannot be easily studied in wastewater-fed MFCs because of their complex microbial communities. Defined co-culture MFCs provide a detailed understanding of such interactions. In this study, we characterize the extracellular metabolites in laboratory-scale membrane-less MFCs inoculated with Geobacter sulfurreducens and Escherichia coli co-culture and compare them with pure culture MFCs. G. sulfurreducens MFCs are sparged to maintain anaerobic conditions, while co-culture MFCs rely on E. coli for oxygen removal. G. sulfurreducens MFCs have a power output of 128 mW m(-2) , compared to 63 mW m(-2) from the co-culture MFCs. Analysis of metabolites shows that succinate production in co-culture MFCs decreases current production by G. sulfurreducens and that the removal of succinate is responsible for the increased current density in the late co-culture MFCs. Interestingly, pH adjustment is not required for co-culture MFCs but a base addition is necessary for E. coli MFCs and cultures in vials. Our results show that defined co-culture MFCs provide clear insights into metabolic interactions among bacteria while maintaining a low operational complexity.

  7. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.

    Science.gov (United States)

    Nevin, K P; Richter, H; Covalla, S F; Johnson, J P; Woodard, T L; Orloff, A L; Jia, H; Zhang, M; Lovley, D R

    2008-10-01

    It has been previously noted that mixed communities typically produce more power in microbial fuel cells than pure cultures. If true, this has important implications for the design of microbial fuel cells and for studying the process of electron transfer on anode biofilms. To further evaluate this, Geobacter sulfurreducens was grown with acetate as fuel in a continuous flow 'ministack' system in which the carbon cloth anode and cathode were positioned in close proximity, and the cation-selective membrane surface area was maximized in order to overcome some of the electrochemical limitations that were inherent in fuel cells previously employed for the study of pure cultures. Reducing the size of the anode in order to eliminate cathode limitation resulted in maximum current and power densities per m(2) of anode surface of 4.56 A m(-2) and 1.88 W m(-2) respectively. Electron recovery as current from acetate oxidation was c. 100% when oxygen diffusion into the system was minimized. This performance is comparable to the highest levels previously reported for mixed communities in similar microbial fuel cells and slightly higher than the power output of an anaerobic sludge inoculum in the same ministack system. Minimizing the volume of the anode chamber yielded a volumetric power density of 2.15 kW m(-3), which is the highest power density per volume yet reported for a microbial fuel cell. Geobacter sulfurreducens formed relatively uniform biofilms 3-18 mum thick on the carbon cloth anodes. When graphite sticks served as the anode, the current density (3.10 A m(-2)) was somewhat less than with the carbon cloth anodes, but the biofilms were thicker (c. 50 mum) with a more complex pillar and channel structure. These results suggest that the previously observed disparity in power production in pure and mixed culture microbial fuel cell systems can be attributed more to differences in the fuel cell designs than to any inherent superior capability of mixed cultures to produce

  8. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells.

    Science.gov (United States)

    Yi, Hana; Nevin, Kelly P; Kim, Byoung-Chan; Franks, Ashely E; Klimes, Anna; Tender, Leonard M; Lovley, Derek R

    2009-08-15

    Geobacter sulfurreducens produces current densities in microbial fuel cells that are among the highest known for pure cultures. The possibility of adapting this organism to produce even higher current densities was evaluated. A system in which a graphite anode was poised at -400 mV (versus Ag/AgCl) was inoculated with the wild-type strain of G. sulfurreducens, strain DL-1. An isolate, designated strain KN400, was recovered from the biofilm after 5 months of growth on the electrode. KN400 was much more effective in current production than strain DL-1. This was apparent with anodes poised at -400 mV, as well as in systems run in true fuel cell mode. KN400 had current (7.6A/m(2)) and power (3.9 W/m(2)) densities that respectively were substantially higher than those of DL1 (1.4A/m(2) and 0.5 W/m(2)). On a per cell basis KN400 was more effective in current production than DL1, requiring thinner biofilms to make equivalent current. The enhanced capacity for current production in KN400 was associated with a greater abundance of electrically conductive microbial nanowires than DL1 and lower internal resistance (0.015 versus 0.130 Omega/m(2)) and mass transfer limitation in KN400 fuel cells. KN400 produced flagella, whereas DL1 does not. Surprisingly, KN400 had much less outer-surface c-type cytochromes than DL1. KN400 also had a greater propensity to form biofilms on glass or graphite than DL1, even when growing with the soluble electron acceptor, fumarate. These results demonstrate that it is possible to enhance the ability of microorganisms to electrochemically interact with electrodes with the appropriate selective pressure and that improved current production is associated with clear differences in the properties of the outer surface of the cell that may provide insights into the mechanisms for microbe-electrode interactions.

  9. Electricity-Assisted Biological Hydrogen Production from Acetate by Geobacter sulfurreducens

    NARCIS (Netherlands)

    Geelhoed, J.S.; Stams, A.J.M.

    2011-01-01

    Geobacter sulfurreducens is a well-known current-producing microorganism in microbial fuel cells, and is able to use acetate and hydrogen as electron donor. We studied the functionality of G. sulfurreducens as biocatalyst for hydrogen formation at the cathode of a microbial electrolysis cell (MEC).

  10. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.

    Directory of Open Access Journals (Sweden)

    Kelly P Nevin

    Full Text Available The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.

  11. Extracellular Palladium Nanoparticle Production using Geobacter sulfurreducens

    KAUST Repository

    Yates, Matthew D.

    2013-09-03

    Sustainable methods are needed to recycle precious metals and synthesize catalytic nanoparticles. Palladium nanoparticles can be produced via microbial reduction of soluble Pd(II) to Pd(0), but in previous tests using dissimilatory metal reducing bacteria (DMRB), the nanoparticles were closely associated with the cells, occupying potential reductive sites and eliminating the potential for cell reuse. The DMRB Geobacter sulfurreducens was shown here to reduce soluble Pd(II) to Pd(0) nanoparticles primarily outside the cell, reducing the toxicity of metal ions, and allowing nanoparticle recovery without cell destruction that has previously been observed using other microorganisms. Cultures reduced 50 ± 3 mg/L Pd(II) with 1% hydrogen gas (v/v headspace) in 6 h incubation tests [100 mg/L Pd(II) initially], compared to 8 ± 3 mg/L (10 mM acetate) without H2. Acetate was ineffective as an electron donor for palladium removal in the presence or absence of fumarate as an electron acceptor. TEM imaging verified that Pd(0) nanoparticles were predominantly in the EPS surrounding cells in H2-fed cultures, with only a small number of particles visible inside the cell. Separation of the cells and EPS by centrifugation allowed reuse of the cell suspensions and effective nanoparticle recovery. These results demonstrate effective palladium recovery and nanoparticle production using G. sulfurreducens cell suspensions and renewable substrates such as H2 gas. © 2013 American Chemical Society.

  12. A Whole Genome Pairwise Comparative and Functional Analysis of Geobacter sulfurreducens PCA

    OpenAIRE

    2013-01-01

    Geobacter species are involved in electricity production, bioremediations, and various environmental friendly activities. Whole genome comparative analyses of Geobacter sulfurreducens PCA, Geobacter bemidjiensis Bem, Geobacter sp. FRC-32, Geobacter lovleyi SZ, Geobacter sp. M21, Geobacter metallireducens GS-15, Geobacter uraniireducens Rf4 have been made to find out similarities and dissimilarities among them. For whole genome comparison of Geobacter species, an in-house tool, Geobacter Compa...

  13. Use of a Coculture To Enable Current Production by Geobacter sulfurreducens

    KAUST Repository

    Qu, Y.

    2012-02-17

    Microbial fuel cells often produce more electrical power with mixed cultures than with pure cultures. Here, we show that a coculture of a nonexoelectrogen (Escherichia coli) and Geobacter sulfurreducens improved system performance relative to that of a pure culture of the exoelectrogen due to the consumption of oxygen leaking into the reactor.

  14. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen.

    Science.gov (United States)

    Kimura, Zen-ichiro; Okabe, Satoshi

    2013-08-01

    Anodic microbial communities in acetate-fed microbial fuel cells (MFCs) were analyzed using stable-isotope probing of 16S rRNA genes followed by denaturing gradient gel electrophoresis. The results revealed that Geobacter sulfurreducens and Hydrogenophaga sp. predominated in the anodic biofilm. Although the predominance of Geobacter sp. as acetoclastic exoelectrogens in acetate-fed MFC systems has been often reported, the ecophysiological role of Hydrogenophaga sp. is unknown. Therefore, we isolated and characterized a bacterium closely related to Hydrogenophaga sp. (designated strain AR20). The newly isolated strain AR20 could use molecular hydrogen (H2), but not acetate, with carbon electrode as the electron acceptor, indicating that the strain AR20 was a hydrogenotrophic exoelectrogen. This evidence raises a hypothesis that acetate was oxidized by G. sulfurreducens in syntrophic cooperation with the strain AR20 as a hydrogen-consuming partner in the acetate-fed MFC. To prove this hypothesis, G. sulfurreducens strain PCA was cocultivated with the strain AR20 in the acetate-fed MFC without any dissolved electron acceptors. In the coculture MFC of G. sulfurreducens and strain AR20, current generation and acetate degradation were the highest, and the growth of strain AR20 was observed. No current generation, acetate degradation and cell growth occurred in the strain AR20 pure culture MFC. These results show for the first time that G. sulfurreducens can oxidize acetate in syntrophic cooperation with the isolated Hydrogenophaga sp. strain AR20, with electrode as the electron acceptor.

  15. Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1

    Science.gov (United States)

    Jiang, Xiaocheng; Hu, Jinsong; Petersen, Emily R.; Fitzgerald, Lisa A.; Jackan, Charles S.; Lieber, Alexander M.; Ringeisen, Bradley R.; Lieber, Charles M.; Biffinger, Justin C.

    2013-11-01

    Microbial fuel cells, in which living microorganisms convert chemical energy into electricity, represent a potentially sustainable energy technology for the future. Here we report the single-bacterium level current measurements of Geobacter sulfurreducens DL-1 to elucidate the fundamental limits and factors determining maximum power output from a microbial fuel cell. Quantized stepwise current outputs of 92(±33) and 196(±20) fA are generated from microelectrode arrays confined in isolated wells. Simultaneous cell imaging/tracking and current recording reveals that the current steps are directly correlated with the contact of one or two cells with the electrodes. This work establishes the amount of current generated by an individual Geobacter cell in the absence of a biofilm and highlights the potential upper limit of microbial fuel cell performance for Geobacter in thin biofilms.

  16. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.

    Science.gov (United States)

    Geelhoed, Jeanine S; Stams, Alfons J M

    2011-01-15

    Geobacter sulfurreducens is a well-known current-producing microorganism in microbial fuel cells, and is able to use acetate and hydrogen as electron donor. We studied the functionality of G. sulfurreducens as biocatalyst for hydrogen formation at the cathode of a microbial electrolysis cell (MEC). Geobacter sulfurreducens was grown in the bioelectrode compartment of a MFC with acetate as the substrate and reduction of complexed Fe(III) at the counter electrode. After depletion of the acetate the electrode potential of the bioelectrode was decreased stepwise to -1.0 V vs Ag/AgCl reference. Production of negative current was observed, which increased in time, indicating that the bioelectrode was now acting as biocathode. Headspace analyses carried out at electrode potentials ranging from -0.8 to -1.0 V showed that hydrogen was produced, with higher rates at more negative cathode potentials. Subsequently, the metabolic properties of G. sulfurreducens for acetate oxidation at the anode and hydrogen production at the cathode were combined in one-compartment membraneless MECs operated at applied voltages of 0.8 and 0.65 V. After two days, current densities were 0.44 A m(-2) at 0.8 V applied voltage and 0.22 A m(-2) at 0.65 V, using flat-surface carbon electrodes for both anode and cathode. The cathodic hydrogen recovery ranged from 23% at 0.5 V applied voltage to 43% at 0.9 V.

  17. Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Núñez Cinthia

    2009-07-01

    Full Text Available Abstract Background The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production. Results An rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III, which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT. Conclusion The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of

  18. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    DEFF Research Database (Denmark)

    Sun, Guotao; Rodrigues, Diogo De Sacadura; Thygesen, Anders

    2016-01-01

    Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal performance depends on the establishment of a microbial community rich in electrogenic bacteria. Usually this microbial community is established from inoculation of the MFC anode chamber....... The data obtained contribute to understanding the microbial community response to Lsub and Rext for optimizing electricity generation in MFCs....

  19. Metabolic efficiency of Geobacter sulfurreducens growing on anodes with different redox potentials.

    Science.gov (United States)

    Bosch, Julian; Lee, Keun-Young; Hong, Siang-Fu; Harnisch, Falk; Schröder, Uwe; Meckenstock, Rainer U

    2014-06-01

    Microorganisms respiring Fe(III) in the environment face a range of redox potentials of the prospective terminal ferric electron acceptors, because Fe(III) can be present in different minerals or organic complexes. We investigated the adaptation of Geobacter sulfurreducens to this range by exposing the bacteria to different redox potentials between the electron donor acetate and solid, extracellular anodes in a microbial fuel-cell set-up. Over a range of anode potentials from -0.105 to +0.645 V versus standard hydrogen electrode, G. sulfurreducens produced identical amounts of biomass per electron respired. This indicated that the organism cannot utilize higher available energies for energy conservation to ATP, and confirmed recent studies. Either the high potentials cannot be used due to physiological limitations, or G. sulfurreducens decreased its metabolic efficiency, and less biomass per unit of energy was produced. In this case, G. sulfurreducens "wasted" energy at high-potential differences, most likely as heat to fuel growth kinetics.

  20. Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms

    KAUST Repository

    Zhu, Xiuping

    2012-08-01

    Higher current densities produced in microbial fuel cells and other bioelectrochemical systems are associated with the presence of various Geobacter species. A number of electron transfer components are involved in extracellular electron transfer by the model exoelectrogen, Geobacter sulfurreducens. It has previously been shown that 5 main oxidation peaks can be identified in cyclic voltammetry scans. It is shown here that 7 separate oxidation peaks emerged over relatively long periods of time when a larger range of set potentials was used to acclimate electroactive biofilms. The potentials of oxidation peaks obtained with G. sulfurreducens biofilms acclimated at 0.60 V (vs. Ag/AgCl) were different from those that developed at - 0.46 V, and both of their peaks were different from those obtained for biofilms incubated at - 0.30 V, 0 V, and 0.30 V. These results expand the known range of potentials for which G. sulfurreducens produces identifiable oxidation peaks that could be important for extracellular electron transfer. © 2012 Elsevier B.V.

  1. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity

    Science.gov (United States)

    Tan, Yang; Adhikari, Ramesh Y.; Malvankar, Nikhil S.; Ward, Joy E.; Woodard, Trevor L.; Nevin, Kelly P.

    2017-01-01

    ABSTRACT The electrically conductive pili (e-pili) of Geobacter sulfurreducens serve as a model for a novel strategy for long-range extracellular electron transfer. e-pili are also a new class of bioelectronic materials. However, the only other Geobacter pili previously studied, which were from G. uraniireducens, were poorly conductive. In order to obtain more information on the range of pili conductivities in Geobacter species, the pili of G. metallireducens were investigated. Heterologously expressing the PilA gene of G. metallireducens in G. sulfurreducens yielded a G. sulfurreducens strain, designated strain MP, that produced abundant pili. Strain MP exhibited phenotypes consistent with the presence of e-pili, such as high rates of Fe(III) oxide reduction and high current densities on graphite anodes. Individual pili prepared at physiologically relevant pH 7 had conductivities of 277 ± 18.9 S/cm (mean ± standard deviation), which is 5,000-fold higher than the conductivity of G. sulfurreducens pili at pH 7 and nearly 1 million-fold higher than the conductivity of G. uraniireducens pili at the same pH. A potential explanation for the higher conductivity of the G. metallireducens pili is their greater density of aromatic amino acids, which are known to be important components in electron transport along the length of the pilus. The G. metallireducens pili represent the most highly conductive pili found to date and suggest strategies for designing synthetic pili with even higher conductivities. PMID:28096491

  2. Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens.

    Science.gov (United States)

    Ueki, Toshiyuki; Lovley, Derek R

    2010-11-01

    Geobacter species often play an important role in bioremediation of environments contaminated with metals or organics and show promise for harvesting electricity from waste organic matter in microbial fuel cells. The ability of Geobacter species to fix atmospheric nitrogen is an important metabolic feature for these applications. We identified novel regulatory cascades controlling nitrogen-fixation gene expression in Geobacter sulfurreducens. Unlike the regulatory mechanisms known in other nitrogen-fixing microorganisms, nitrogen-fixation gene regulation in G. sulfurreducens is controlled by two two-component His-Asp phosphorelay systems. One of these systems appears to be the master regulatory system that activates transcription of the majority of nitrogen-fixation genes and represses a gene encoding glutamate dehydrogenase during nitrogen fixation. The other system whose expression is directly activated by the master regulatory system appears to control by antitermination the expression of a subset of the nitrogen-fixation genes whose transcription is activated by the master regulatory system and whose promoter contains transcription termination signals. This study provides a new paradigm for nitrogen-fixation gene regulation.

  3. Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms.

    Science.gov (United States)

    Cologgi, Dena L; Speers, Allison M; Bullard, Blair A; Kelly, Shelly D; Reguera, Gemma

    2014-11-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination.

  4. Lactate Oxidation Coupled to Iron or Electrode Reduction by Geobacter sulfurreducens PCA

    KAUST Repository

    Call, D. F.

    2011-10-14

    Geobacter sulfurreducens PCA completely oxidized lactate and reduced iron or an electrode, producing pyruvate and acetate intermediates. Compared to the current produced by Shewanella oneidensis MR-1, G. sulfurreducens PCA produced 10-times-higher current levels in lactate-fed microbial electrolysis cells. The kinetic and comparative analyses reported here suggest a prominent role of G. sulfurreducens strains in metaland electrode-reducing communities supplied with lactate. © 2011, American Society for Microbiology.

  5. Biochemical Mechanisms and Energy Strategies of Geobacter Sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Ming; Brantley, Susan L.

    2013-10-28

    To provide the scientific understanding required to allow DOE sites to incorporate relevant biological, chemical, and physical processes into decisions concerning environmental remediation, a fundamental understanding of the controls on micro-organism growth in the subsurface is necessary. Specifically, mobility of metals in the environment, including chromium, technetium and uranium, is greatly affected by the process of dissimilatory metal reduction (DMR), which has been shown to be an important biological activity controlling contaminant mobility in the subsurface at many DOE sites. Long-term maintenance of DMR at constant rates must rely upon steady fluxes of electron donors to provide the maintenance energy needed by organisms such as Geobacter sulfurreducens to maintain steady state populations in the subsurface.

  6. Physiological stratification in electricity-producing biofilms of Geobacter sulfurreducens.

    Science.gov (United States)

    Schrott, Germán David; Ordoñez, María Victoria; Robuschi, Luciana; Busalmen, Juan Pablo

    2014-02-01

    The elucidation of mechanisms and limitations in electrode respiration by electroactive biofilms is significant for the development of rapidly emerging clean energy production and wastewater treatment technologies. In Geobacter sulfurreducens biofilms, the controlling steps in current production are thought to be the metabolic activity of cells, but still remain to be determined. By quantifying the DNA, RNA, and protein content during the long-term growth of biofilms on polarized graphite electrodes, we show in this work that current production becomes independent of DNA accumulation immediately after a maximal current is achieved. Indeed, the mean respiratory rate of biofilms rapidly decreases after this point, which indicates the progressive accumulation of cells that do not contribute to current production or contribute to a negligible extent. These results support the occurrence of physiological stratification within biofilms as a consequence of respiratory limitations imposed by limited biofilm conductivity.

  7. Studies of multi-heme cytochromes from Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Pokkuluri, P. Raj; Londer, Yuri, Y.; Orshonsky, Valerie; Orshonsky, Lisa; Duke, Norma; Schiffer, Marianne

    2006-04-05

    The Geobacteraceae family predominates in the reduction of uranium in subsurface environments. We are focusing on the model organism, Geobacter sulfurreducens; its genome contains a large number (>100) of cytochromes c that function in metal reduction pathways. Intensive functional genomics and physiological studies are in progress in Prof. Derek Lovley's laboratory, and the complete genome sequence of this organism has been determined by Methe et al. 2003. We are studying cytochromes from the c{sub 7} family that are required for the reduction of Fe(III). Previously, we expressed in E. coli (Londer et al., 2002) and determined the three-dimensional structure at 1.45 {angstrom} resolution (Pokkuluri et al., 2004a) of the three-heme cytochrome c{sub 7} (PpcA, coded by ORF01023) characterized by Lloyd et al., 2003. Further we identified in the G. sulfurreducens genome ORFs for several of its homologs (Pokkuluri et al., 2004a). Four of the ORFs are the same size as PpcA; three other ORFs are polymers of c7-type domains, two of which consist of four domains and one of nine domains, that contain 12 and 27 hemes respectively.

  8. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  9. Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms.

    Science.gov (United States)

    Speers, Allison M; Reguera, Gemma

    2012-01-01

    Geobacter bacteria efficiently oxidize acetate into electricity in bioelectrochemical systems, yet the range of fermentation products that support the growth of anode biofilms and electricity production has not been thoroughly investigated. Here, we show that Geobacter sulfurreducens oxidized formate and lactate with electrodes and Fe(III) as terminal electron acceptors, though with reduced efficiency compared to acetate. The structure of the formate and lactate biofilms increased in roughness, and the substratum coverage decreased, to alleviate the metabolic constraints derived from the assimilation of carbon from the substrates. Low levels of acetate promoted formate carbon assimilation and biofilm growth and increased the system's performance to levels comparable to those with acetate only. Lactate carbon assimilation also limited biofilm growth and led to the partial oxidization of lactate to acetate. However, lactate was fully oxidized in the presence of fumarate, which redirected carbon fluxes into the tricarboxylic acid (TCA) cycle, and by acetate-grown biofilms. These results expand the known ranges of electron donors for Geobacter-driven fuel cells and identify microbial constraints that can be targeted to develop better-performing strains and increase the performance of bioelectrochemical systems.

  10. Structural and Operational Complexity of the Geobacter Sulfurreducens Genome

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yu; Cho, Byung-Kwan; Park, Young S.; Lovley, Derek R.; Palsson, Bernhard O.; Zengler, Karsten

    2010-06-30

    Prokaryotic genomes can be annotated based on their structural, operational, and functional properties. These annotations provide the pivotal scaffold for understanding cellular functions on a genome-scale, such as metabolism and transcriptional regulation. Here, we describe a systems approach to simultaneously determine the structural and operational annotation of the Geobacter sulfurreducens genome. Integration of proteomics, transcriptomics, RNA polymerase, and sigma factor-binding information with deep-sequencing-based analysis of primary 59-end transcripts allowed for a most precise annotation. The structural annotation is comprised of numerous previously undetected genes, noncoding RNAs, prevalent leaderless mRNA transcripts, and antisense transcripts. When compared with other prokaryotes, we found that the number of antisense transcripts reversely correlated with genome size. The operational annotation consists of 1453 operons, 22% of which have multiple transcription start sites that use different RNA polymerase holoenzymes. Several operons with multiple transcription start sites encoded genes with essential functions, giving insight into the regulatory complexity of the genome. The experimentally determined structural and operational annotations can be combined with functional annotation, yielding a new three-level annotation that greatly expands our understanding of prokaryotic genomes.

  11. Scanning probe studies of the pilus nanowires in Geobacter sulfurreducens

    Science.gov (United States)

    Veazey, Joshua P.

    In microbial organisms like bacteria, pili (singular: pilus) are filament-like appendages that are nanometers in diameter and microns long. The sizes and structures of the different types of pili found in nature are adapted to serve one of many distinct functions for the organism from which they come. The pili expressed by the bacterium Geobacter sulfurreducens act as electrically conductive nanowires that provide conduits for electrons to leave the cell during its respiratory cycle. Biological experiments have suggested that long range electron transfer across micron distances may proceed along the protein matrix, rather than by metal cofactors (metal atoms bound to the protein). Protein conductivity across such distances would require a novel transport mechanism. In an effort to elucidate this mechanism, our lab has used two electronically sensitive scanning probe techniques: Scanning Tunneling Microscopy (STM) and Conductive Probe Atomic Force Microscopy (CP-AFM). I employed the high resolution imaging and electronic sensitivity of STM to resolve the molecular sub-structure and local electronic density of states (LDOS) at different points above pili from purified preparations, deposited onto a conducting substrate. The significant and stable tunneling currents achieved for biologically relevant voltages, in the absence of metal cofactors, demonstrated conduction between tip and substrate via the protein matrix. We observed periodicity of roughly 10 nm and 2.5 nm in topographs of the pili. In our acquisition of LDOS, we observed gap-like asymmetric energy spectra that were dependent upon the location of the tip above the pilus, suggestive of easier current flow out of one side of the cylindrical pilus and into the opposite side. Voltage-dependent STM imaging, which also contains information about the LDOS at each pixel, was consistent with this interpretation. The asymmetry in spectra observed on one pilus edge had a slightly larger magnitude than the other edge

  12. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    Science.gov (United States)

    Arkhipova, Oksana V; Meer, Margarita V; Mikoulinskaia, Galina V; Zakharova, Marina V; Galushko, Alexander S; Akimenko, Vasilii K; Kondrashov, Fyodor A

    2015-01-01

    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  13. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    Directory of Open Access Journals (Sweden)

    Oksana V Arkhipova

    Full Text Available The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd and tetraheme cytochrome с (Mcc in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  14. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.

    Science.gov (United States)

    Esteve-Núñez, Abraham; Rothermich, Mary; Sharma, Manju; Lovley, Derek

    2005-05-01

    A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.

  15. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies.

    Science.gov (United States)

    Dantas, Joana M; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y; Schiffer, Marianne; Pokkuluri, P Raj; Salgueiro, Carlos A

    2015-01-01

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e(-)/H(+) transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e(-)/H(+) transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential

  16. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies

    Science.gov (United States)

    Dantas, Joana M.; Morgado, Leonor; Aklujkar, Muktak; Bruix, Marta; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2015-01-01

    Multiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of G. sulfurreducens multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of G. sulfurreducens by characterizing a family of five triheme cytochromes (PpcA-E). These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell's outer surface. The results obtained suggested that PpcA can couple e−/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e−/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of G. sulfurreducens. For the first time G. sulfurreducens strains have been manipulated by the introduction of mutant forms of essential

  17. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Aklujkar, Muktak [University of Massachusetts, Amherst; Krushkal, Julia [University of Texas, Austin; DiBartolo, Genevieve [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Lovley, Derek [University of Massachusetts, Amherst

    2009-01-01

    Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and

  18. Scarless Genome Editing and Stable Inducible Expression Vectors for Geobacter sulfurreducens.

    Science.gov (United States)

    Chan, Chi Ho; Levar, Caleb E; Zacharoff, Lori; Badalamenti, Jonathan P; Bond, Daniel R

    2015-10-01

    Metal reduction by members of the Geobacteraceae is encoded by multiple gene clusters, and the study of extracellular electron transfer often requires biofilm development on surfaces. Genetic tools that utilize polar antibiotic cassette insertions limit mutant construction and complementation. In addition, unstable plasmids create metabolic burdens that slow growth, and the presence of antibiotics such as kanamycin can interfere with the rate and extent of Geobacter biofilm growth. We report here genetic system improvements for the model anaerobic metal-reducing bacterium Geobacter sulfurreducens. A motile strain of G. sulfurreducens was constructed by precise removal of a transposon interrupting the fgrM flagellar regulator gene using SacB/sucrose counterselection, and Fe(III) citrate reduction was eliminated by deletion of the gene encoding the inner membrane cytochrome imcH. We also show that RK2-based plasmids were maintained in G. sulfurreducens for over 15 generations in the absence of antibiotic selection in contrast to unstable pBBR1 plasmids. Therefore, we engineered a series of new RK2 vectors containing native constitutive Geobacter promoters, and modified one of these promoters for VanR-dependent induction by the small aromatic carboxylic acid vanillate. Inducible plasmids fully complemented ΔimcH mutants for Fe(III) reduction, Mn(IV) oxide reduction, and growth on poised electrodes. A real-time, high-throughput Fe(III) citrate reduction assay is described that can screen numerous G. sulfurreducens strain constructs simultaneously and shows the sensitivity of imcH expression by the vanillate system. These tools will enable more sophisticated genetic studies in G. sulfurreducens without polar insertion effects or need for multiple antibiotics.

  19. Localization and Solubilization of the Iron(III) Reductase of Geobacter sulfurreducens

    OpenAIRE

    1998-01-01

    The iron(III) reductase activity of Geobacter sulfurreducens was determined with the electron donor NADH and the artificial electron donor horse heart cytochrome c. The highest reduction rates were obtained with Fe(III) complexed by nitrilotriacetic acid as an electron acceptor. Fractionation experiments indicated that no iron(III) reductase activity was present in the cytoplasm, that approximately one-third was found in the periplasmic fraction, and that two-thirds were associated with the m...

  20. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Aklujkar Muktak

    2009-05-01

    Full Text Available Abstract Background The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.

  1. The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Aklujkar, Muktak; Krushkal, Julia; DiBartolo, Genevieve; Lapidus, Alla; Land, Miriam L.; Lovley, Derek R.

    2008-12-01

    Background: The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results: The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion: The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.

  2. Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation

    Science.gov (United States)

    Moscoviz, Roman; de Fouchécour, Florence; Santa-Catalina, Gaëlle; Bernet, Nicolas; Trably, Eric

    2017-01-01

    Interspecies electron transfer is a common way to couple metabolic energy balances between different species in mixed culture consortia. Direct interspecies electron transfer (DIET) mechanism has been recently characterised with Geobacter species which couple the electron balance with other species through physical contacts. Using this mechanism could be an efficient and cost-effective way to directly control redox balances in co-culture fermentation. The present study deals with a co-culture of Geobacter sulfurreducens and Clostridium pasteurianum during glycerol fermentation. As a result, it was shown that Geobacter sulfurreducens was able to grow using Clostridium pasteurianum as sole electron acceptor. C. pasteurianum metabolic pattern was significantly altered towards improved 1,3-propanediol and butyrate production (+37% and +38% resp.) at the expense of butanol and ethanol production (−16% and −20% resp.). This metabolic shift was clearly induced by a small electron uptake that represented less than 0.6% of the electrons consumed by C. pasteurianum. A non-linear relationship was found between G. sulfurreducens growth (i.e the electrons transferred between the two species) and the changes in C. pasteurianum metabolite distribution. This study opens up new possibilities for controlling and increasing specificity in mixed culture fermentation. PMID:28287150

  3. Backbone, side chain and heme resonance assignments of cytochrome OmcF from Geobacter sulfurreducens.

    Science.gov (United States)

    Dantas, Joana M; Silva E Sousa, Marta; Salgueiro, Carlos A; Bruix, Marta

    2015-10-01

    Gene knockout studies on Geobacter sulfurreducens (Gs) cells showed that the outer membrane cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) citrate and U(VI) oxide. In addition, microarray analysis of OmcF-deficient mutant versus the wild-type strain revealed that many of the genes with decreased transcript level were those whose expression is upregulated in cells grown with a graphite electrode as electron acceptor. This suggests that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electrical current production by Gs in microbial fuel cells. Extracellular electron transfer processes (EET) constitute nowadays the foundations to develop biotechnological applications in biofuel production, bioremediation and bioenergy. Therefore, the structural characterization of OmcF is a fundamental step to understand the mechanisms underlying EET. Here, we report the complete assignment of the heme proton signals together with (1)H, (13)C and (15)N backbone and side chain assignments of the OmcF, excluding the hydrophobic residues of the N-terminal predicted lipid anchor.

  4. Interaction studies between periplasmic cytochromes provide insights into extracellular electron transfer pathways of Geobacter sulfurreducens.

    Science.gov (United States)

    Fernandes, Ana P; Nunes, Tiago C; Paquete, Catarina M; Salgueiro, Carlos A

    2017-02-20

    Geobacter bacteria usually prevail among other microorganisms in soils and sediments where Fe(III) reduction has a central role. This reduction is achieved by extracellular electron transfer (EET), where the electrons are exported from the interior of the cell to the surrounding environment. Periplasmic cytochromes play an important role in establishing an interface between inner and outer membrane electron transfer components. In addition, periplasmic cytochromes, in particular nanowire cytochromes that contain at least 12 haem groups, have been proposed to play a role in electron storage in conditions of an environmental lack of electron acceptors. Up to date, no redox partners have been identified in Geobacter sulfurreducens, and concomitantly, the EET and electron storage mechanisms remain unclear. In this work, NMR chemical shift perturbation measurements were used to probe for an interaction between the most abundant periplasmic cytochrome PpcA and the dodecahaem cytochrome GSU1996, one of the proposed nanowire cytochromes in G. sulfurreducens The perturbations on the haem methyl signals of GSU1996 and PpcA showed that the proteins form a transient redox complex in an interface that involves haem groups from two different domains located at the C-terminal of GSU1996. Overall, the present study provides for the first time a clear evidence for an interaction between periplasmic cytochromes that might be relevant for the EET and electron storage pathways in G. sulfurreducens. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism.

    Science.gov (United States)

    Embree, Mallory; Qiu, Yu; Shieu, Wendy; Nagarajan, Harish; O'Neil, Regina; Lovley, Derek; Zengler, Karsten

    2014-05-01

    Iron plays a critical role in the physiology of Geobacter species. It serves as both an essential component for proteins and cofactors and an electron acceptor during anaerobic respiration. Here, we investigated the iron stimulon and ferric uptake regulator (Fur) regulon of Geobacter sulfurreducens to examine the coordination between uptake of Fe(II) and the reduction of Fe(III) at the transcriptional level. Gene expression studies across a variety of different iron concentrations in both the wild type and a Δfur mutant strain were used to determine the iron stimulon. The stimulon consists of a broad range of gene products, ranging from iron-utilizing to central metabolism and iron reduction proteins. Integration of gene expression and chromatin immunoprecipitation (ChIP) data sets assisted in the identification of the Fur transcriptional regulatory network and Fur's role as a regulator of the iron stimulon. Additional physiological and transcriptional analyses of G. sulfurreducens grown with various Fe(II) concentrations revealed the depth of Fur's involvement in energy metabolism and the existence of redundancy within the iron-regulatory network represented by IdeR, an alternative iron transcriptional regulator. These characteristics enable G. sulfurreducens to thrive in environments with fluctuating iron concentrations by providing it with a robust mechanism to maintain tight and deliberate control over intracellular iron homeostasis.

  6. The Proteome of Dissimilatory Metal-reducing Microorganism Geobacter Sulfurreducens under Various Growth Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y-H R.; Hixson, Kim K.; Giometti, Carol S.; Stanley, A; Esteve-Nunez, A; Khare, Tripti; Tollaksen, Sandra L.; Zhu, Wenhong; Adkins, Joshua N.; Lipton, Mary S.; Smith, Richard D.; Mester, Tunde; Lovley, Derek R.

    2006-05-16

    The global protein analysis of Geobacter sulfurreducens, a model for the Geobacter species that predominate in many Fe(III)-reducing subsurface environments, was characterized with ultra high pressure liquid chromatography and mass spectrometry using accurate mass and time (AMT) tags as well as with more traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Cells were grown under eight different growth conditions in order to enhance the potential that genes would be expressed. Over 3,187 gene products, representing about 92% of the total predicted gene products in the genome, were detected. The AMT approach was able to identify a much higher number of proteins than could be detected with the 2-D PAGE approach. A high proportion of predicted proteins in most protein role categories were detected with the highest number of proteins identified in the hypothetical protein role category. Furthermore, 91 c-type cytochromes of 111 predicted genes in the G. sulfurreducens genome were identified. Localization studies indicated that computational predictions of cytochrome location were limited. Differences in the abundance of cytochromes and other proteins under different growth conditions provided information for future functional analysis of these proteins. These results demonstrate that a high percentage of the predicted proteins in the G. sulfurreducens genome are produced and that the AMT approach provides a rapid method for comparing differential expression of proteins under different growth conditions in this organism.

  7. The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions.

    Science.gov (United States)

    Ding, Yan-Huai R; Hixson, Kim K; Giometti, Carol S; Stanley, Ann; Esteve-Núñez, Abraham; Khare, Tripti; Tollaksen, Sandra L; Zhu, Wenhong; Adkins, Joshua N; Lipton, Mary S; Smith, Richard D; Mester, Tünde; Lovley, Derek R

    2006-07-01

    The proteome of Geobacter sulfurreducens, a model for the Geobacter species that predominate in many Fe(III)-reducing subsurface environments, was characterized with ultra high-pressure liquid chromatography and mass spectrometry using accurate mass and time (AMT) tags as well as with more traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Cells were grown under six different growth conditions in order to enhance the potential that a wide range of genes would be expressed. The AMT tag approach was able to identify a much greater number of proteins than could be detected with the 2-D PAGE approach. With the AMT approach over 3,000 gene products were identified, representing about 90% of the total predicted gene products in the genome. A high proportion of predicted proteins in most protein role categories were detected; the highest number of proteins was identified in the hypothetical protein role category. Furthermore, 91 c-type cytochromes of 111 predicted genes in the G. sulfurreducens genome were identified. Differences in the abundance of cytochromes and other proteins under different growth conditions provided information for future functional analysis of these proteins. These results demonstrate that a high percentage of the predicted proteins in the G. sulfurreducens genome are produced and that the AMT tag approach provides a rapid method for comparing differential expression of proteins under different growth conditions in this organism.

  8. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  9. Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes.

    Science.gov (United States)

    Babauta, Jerome T; Beyenal, Haluk

    2014-02-01

    Electrochemical impedance spectroscopy has received significant attention recently as a method to measure electrochemical parameters of Geobacter sulfurreducens biofilms. Here, we use electrochemical impedance spectroscopy to demonstrate the effect of mass transfer processes on electron transfer by G. sulfurreducens biofilms grown in situ on an electrode that was subsequently rotated. By rotating the biofilms up to 530 rpm, we could control the microscale gradients formed inside G. sulfurreducens biofilms. A 24% increase above a baseline of 82 µA could be achieved with a rotation rate of 530 rpm. By comparison, we observed a 340% increase using a soluble redox mediator (ferrocyanide) limited by mass transfer. Control of mass transfer processes was also used to quantify the change in biofilm impedance during the transition from turnover to non-turnover. We found that only one element of the biofilm impedance, the interfacial resistance, changed significantly from 900 to 4,200 Ω under turnover and non-turnover conditions, respectively. We ascribed this change to the electron transfer resistance overcome by the biofilm metabolism and estimate this value as 3,300 Ω. Additionally, under non-turnover, the biofilm impedance developed pseudocapacitive behavior indicative of bound redox mediators. Pseudocapacitance of the biofilm was estimated at 740 µF and was unresponsive to rotation of the electrode. The increase in electron transfer resistance and pseudocapacitive behavior under non-turnover could be used as indicators of acetate limitations inside G. sulfurreducens biofilms.

  10. NMR studies of the interaction between inner membrane-associated and periplasmic cytochromes from Geobacter sulfurreducens.

    Science.gov (United States)

    Dantas, Joana M; Brausemann, Anton; Einsle, Oliver; Salgueiro, Carlos A

    2017-06-01

    Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium with notable properties and significance in biotechnological applications. Biochemical studies suggest that the inner membrane-associated diheme cytochrome MacA and the periplasmic triheme cytochrome PpcA from G. sulfurreducens can exchange electrons. In this work, NMR chemical shift perturbation measurements were used to map the interface region and to measure the binding affinity between PpcA and MacA. The results show that MacA binds to PpcA in a cleft defined by hemes I and IV, favoring the contact between PpcA heme IV and the MacA high-potential heme. The dissociation constant values indicate the formation of a low-affinity complex between the proteins, which is consistent with the transient interaction observed in electron transfer complexes. © 2017 Federation of European Biochemical Societies.

  11. Proteome of Geobacter sulfurreducens in the presence of U(VI).

    Science.gov (United States)

    Orellana, Roberto; Hixson, Kim K; Murphy, Sean; Mester, Tünde; Sharma, Manju L; Lipton, Mary S; Lovley, Derek R

    2014-12-01

    Geobacter species often play an important role in the in situ bioremediation of uranium-contaminated groundwater, but little is known about how these microbes avoid uranium toxicity. To evaluate this further, the proteome of Geobacter sulfurreducens exposed to 100 µM U(VI) acetate was compared to control cells not exposed to U(VI). Of the 1363 proteins detected from these cultures, 203 proteins had higher abundance during exposure to U(VI) compared with the control cells and 148 proteins had lower abundance. U(VI)-exposed cultures expressed lower levels of proteins involved in growth, protein and amino acid biosynthesis, as well as key central metabolism enzymes as a result of the deleterious effect of U(VI) on the growth of G. sulfurreducens. In contrast, proteins involved in detoxification, such as several efflux pumps belonging to the RND (resistance-nodulation-cell division) family, and membrane protection, and other proteins, such as chaperones and proteins involved in secretion systems, were found in higher abundance in cells exposed to U(VI). Exposing G. sulfurreducens to U(VI) resulted in a higher abundance of many proteins associated with the oxidative stress response, such as superoxide dismutase and superoxide reductase. A strain in which the gene for superoxide dismutase was deleted grew more slowly than the WT strain in the presence of U(VI), but not in its absence. The results suggested that there is no specific mechanism for uranium detoxification. Rather, multiple general stress responses are induced, which presumably enable Geobacter species to tolerate high uranium concentrations.

  12. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells

    KAUST Repository

    Liu, Jia

    2015-12-01

    © 2015 Elsevier B.V. A conjugated oligoelectrolyte (COE), which spontaneously aligns within cell membranes, was shown to completely inhibit H2 uptake by Geobacter sulfurreducens in microbial electrolysis cells. Coulombic efficiencies that were 490±95%, due to H2 recycling between the cathode and microorganisms on the anode, were reduced to 86±2% with COE addition. The use of the COE resulted in a 67-fold increase in H2 gas recovery, and a 4.4-fold increase in acetate removal. Current generation, H2 recovery and COD removals by Geobacter metallireducens, which cannot use H2, were unaffected by COE addition. These results show that this COE is an effective H2 uptake inhibitor, and that it can enable improved and sustained H2 gas recovery in this bioelectrochemical system.

  13. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells.

    Science.gov (United States)

    Liu, Jia; Hou, Huijie; Chen, Xiaofen; Bazan, Guillermo C; Kashima, Hiroyuki; Logan, Bruce E

    2015-12-01

    A conjugated oligoelectrolyte (COE), which spontaneously aligns within cell membranes, was shown to completely inhibit H2 uptake by Geobacter sulfurreducens in microbial electrolysis cells. Coulombic efficiencies that were 490±95%, due to H2 recycling between the cathode and microorganisms on the anode, were reduced to 86±2% with COE addition. The use of the COE resulted in a 67-fold increase in H2 gas recovery, and a 4.4-fold increase in acetate removal. Current generation, H2 recovery and COD removals by Geobacter metallireducens, which cannot use H2, were unaffected by COE addition. These results show that this COE is an effective H2 uptake inhibitor, and that it can enable improved and sustained H2 gas recovery in this bioelectrochemical system.

  14. Importance of c-Type cytochromes for U(VI reduction by Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Leang Ching

    2007-03-01

    Full Text Available Abstract Background In order to study the mechanism of U(VI reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI with acetate serving as the electron donor was investigated. Results The ability of several c-type cytochrome deficient mutants to reduce U(VI was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50–60% the ability of G. sulfurreducens to reduce U(VI. Involvement in U(VI reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI reduction. A subpopulation of both wild type and U(VI reduction-impaired cells, 24–30%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III revealed no correlation between the impact of cytochrome deletion on U(VI reduction and reduction of Fe(III hydroxide and chelated Fe(III. Conclusion This study indicates that c-type cytochromes are involved in U(VI reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium

  15. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Dohnalkova, Alice C.; Shi, Liang; Davenport, Emily; Ha, Phuc; Beyenal, Haluk

    2016-12-01

    Current chemical syntheses of nanoparticles (NP) has had limited success due to the relatively high environmental cost caused by the use of harsh chemicals requiring necessary purification and size-selective fractionation. Therefore, biological approaches have received recent attention for their potential to overcome these obstacles as a benign synthetic approach. The intrinsic nature of biomolecules present in microorganisms has intrigued researchers to design bottom-up approaches to biosynthesize metal nanoparticles using microorganisms. Most of the literature work has focused on NP synthesis using planktonic cells while the use of biofilms are limited. The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode respiring Geobacter sulfurreducens biofilms. We found that most of the AuNPs are generated in the extracellular matrix of Geobacter biofilms with an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode respiring G. sulfurreducens biofilms can reduce Au3+ to AuNPs. It appears that reducing sugars were involved in bioreduction and synthesis of AuNPs and amine groups acted as the major biomolecules involved in binding. This is first demonstration of AuNPs formation from the extracellular matrix of electrode respiring biofilms.

  16. Unraveling the electron transfer processes of a nanowire protein from Geobacter sulfurreducens.

    Science.gov (United States)

    Alves, Mónica N; Fernandes, Ana P; Salgueiro, Carlos A; Paquete, Catarina M

    2016-01-01

    The extracellular electron transfer metabolism of Geobacter sulfurreducens is sustained by several multiheme c-type cytochromes. One of these is the dodecaheme cytochrome GSU1996 that belongs to a new sub-class of c-type cytochromes. GSU1996 is composed by four similar triheme domains (A–D). The C-terminal half of the molecule encompasses the domains C and D, which are connected by a small linker and the N-terminal half of the protein contains two domains (A and B) that form one structural unit. It was proposed that this protein works as an electrically conductive device in G. sulfurreducens, transferring electrons within the periplasm or to outer-membrane cytochromes. In this work, a novel strategy was applied to characterize in detail the thermodynamic and kinetic properties of the hexaheme fragment CD of GSU1996. This characterization revealed the electron transfer process of GSU1996 for the first time, showing that a heme at the edge of the C-terminal of the protein is thermodynamic and kinetically competent to receive electrons from physiological redox partners. This information contributes towards understanding how this new sub-class of cytochromes functions as nanowires, and also increases the current knowledge of the extracellular electron transfer mechanisms in G. sulfurreducens.

  17. Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens.

    Science.gov (United States)

    Reardon, Patrick N; Mueller, Karl T

    2013-10-11

    Several species of δ proteobacteria are capable of reducing insoluble metal oxides as well as other extracellular electron acceptors. These bacteria play a critical role in the cycling of minerals in subsurface environments, sediments, and groundwater. In some species of bacteria such as Geobacter sulfurreducens, the transport of electrons is proposed to be facilitated by filamentous fibers that are referred to as bacterial nanowires. These nanowires are polymeric assemblies of proteins belonging to the type IVa family of pilin proteins and are mainly comprised of one subunit protein, PilA. Here, we report the high resolution solution NMR structure of the PilA protein from G. sulfurreducens determined in detergent micelles. The protein is >85% α-helical and exhibits similar architecture to the N-terminal regions of other non-conductive type IVa pilins. The detergent micelle interacts with the first 21 amino acids of the protein, indicating that this region likely associates with the bacterial inner membrane prior to fiber formation. A model of the G. sulfurreducens pilus fiber is proposed based on docking of this structure into the fiber model of the type IVa pilin from Neisseria gonorrhoeae. This model provides insight into the organization of aromatic amino acids that are important for electrical conduction.

  18. Structure of the Type IVa Major Pilin from the Electrically Conductive Bacterial Nanowires of Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Patrick N.; Mueller, Karl T.

    2013-10-11

    Several species of bacteria are capable of reducing insoluble metal oxides as well as other extracellular electron acceptors. These bacteria play a critical role in the cycling of minerals in subsurface environments, sediments, and groundwater. In some species of bacteria, such as Geobacter sulfurreducens, the transport of electrons is facilitated by filamentous fibers that are referred to as bacterial nanowires. These nanowires belong to the type IVa family of pilin proteins and are mainly comprised of one subunit protein, PilA. Here, we report the high resolution solution nuclear magnetic resonance (NMR) structure of the PilA protein from G. sulfurreducens determined in detergent micelles. The protein is over 85% α-helical and exhibits similar architecture to the N-terminal regions of other non-conductive type IVa pilins. The detergent micelle interacts with the first 21 amino acids of the protein, indicating that this region likely associates with the bacterial inner membrane prior to fiber formation. A model of the G. sulfurreducens pilus fiber is proposed based on docking of this structure into the fiber model of the type IVa pilin from Neisseria gonorrhoeae. This model provides insight into the organization of aromatic amino acids that are important for electrical conduction.

  19. Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance

    Science.gov (United States)

    Babauta, Jerome T.; Beyenal, Haluk

    2017-07-01

    The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.

  20. Geobacter

    DEFF Research Database (Denmark)

    Lovley, Derek R; Ueki, Toshiyuki; Zhang, Tian

    2011-01-01

    Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation...... aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells...... and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have...

  1. U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens.

    Science.gov (United States)

    Orellana, Roberto; Leavitt, Janet J; Comolli, Luis R; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A; Gray, Arianna S; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R

    2013-10-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.

  2. Analysis of enhanced current-generating mechanism of Geobacter sulfurreducens strain via model-driven metabolism simulation.

    Science.gov (United States)

    Meng, Jing; Xu, Zixiang; Guo, Jing; Yue, Yunxia; Sun, Xiao

    2013-01-01

    Microbial fuel cells (MFCs) are a class of ideal technologies that function via anaerobic respiration of electricigens, which bring current generation and environmental restoration together. An in-depth understanding of microbial metabolism is of great importance in engineering microbes to further improve their respiration. We employed flux balance analysis and selected Fe(iii) as a substitute for the electrode to simulate current-generating metabolism of Geobacter sulfurreducens PCA with a fixed acetate uptake rate. Simulation results indicated the fluxes of reactions directing acetate towards dissimilation to generate electrons increased under the suboptimal growth condition, resulting in an increase in the respiration rate and a decrease in the growth rate. The results revealed the competitive relationship between oxidative respiration and cell growth during the metabolism of microbe current generation. The results helped us quantitatively understand why microbes growing slowly have the potential to make good use of fuel in MFCs. At the same time, slow growth does not necessarily result in speedy respiration. Alternative respirations may exist under the same growth state due to redundant pathways in the metabolic network. The big difference between the maximum and minimum respiration mainly results from the total formate secretion. With iterative flux variability analysis, a relatively ideal model of variant of G. sulfurreducens PCA was reconstructed by deleting several enzymes in the wild model, which could reach simultaneous suboptimal growth and maximum respiration. Under this ideal condition, flux towards extracellular electron transfer rather than for biosynthesis is beneficial for the conversion of organic matter to electricity without large accumulations of biomass and electricigens may maximize utilization of limited fuel. Our simulations will provide an insight into the enhanced current-generating mechanism and identify theoretical range of respiration

  3. Analysis of enhanced current-generating mechanism of Geobacter sulfurreducens strain via model-driven metabolism simulation.

    Directory of Open Access Journals (Sweden)

    Jing Meng

    Full Text Available Microbial fuel cells (MFCs are a class of ideal technologies that function via anaerobic respiration of electricigens, which bring current generation and environmental restoration together. An in-depth understanding of microbial metabolism is of great importance in engineering microbes to further improve their respiration. We employed flux balance analysis and selected Fe(iii as a substitute for the electrode to simulate current-generating metabolism of Geobacter sulfurreducens PCA with a fixed acetate uptake rate. Simulation results indicated the fluxes of reactions directing acetate towards dissimilation to generate electrons increased under the suboptimal growth condition, resulting in an increase in the respiration rate and a decrease in the growth rate. The results revealed the competitive relationship between oxidative respiration and cell growth during the metabolism of microbe current generation. The results helped us quantitatively understand why microbes growing slowly have the potential to make good use of fuel in MFCs. At the same time, slow growth does not necessarily result in speedy respiration. Alternative respirations may exist under the same growth state due to redundant pathways in the metabolic network. The big difference between the maximum and minimum respiration mainly results from the total formate secretion. With iterative flux variability analysis, a relatively ideal model of variant of G. sulfurreducens PCA was reconstructed by deleting several enzymes in the wild model, which could reach simultaneous suboptimal growth and maximum respiration. Under this ideal condition, flux towards extracellular electron transfer rather than for biosynthesis is beneficial for the conversion of organic matter to electricity without large accumulations of biomass and electricigens may maximize utilization of limited fuel. Our simulations will provide an insight into the enhanced current-generating mechanism and identify theoretical

  4. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.

    Science.gov (United States)

    Rotaru, Amelia-Elena; Shrestha, Pravin M; Liu, Fanghua; Ueki, Toshiyuki; Nevin, Kelly; Summers, Zarath M; Lovley, Derek R

    2012-11-01

    Direct interspecies electron transfer (DIET) is an alternative to interspecies H(2)/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted with Pelobacter carbinolicus, a close relative of Geobacter metallireducens, which is capable of DIET. P. carbinolicus grew in coculture with Geobacter sulfurreducens with ethanol as the electron donor and fumarate as the electron acceptor, conditions under which G. sulfurreducens formed direct electrical connections with G. metallireducens. In contrast to the cell aggregation associated with DIET, P. carbinolicus and G. sulfurreducens did not aggregate. Attempts to initiate cocultures with a genetically modified strain of G. sulfurreducens incapable of both H(2) and formate utilization were unsuccessful, whereas cocultures readily grew with mutant strains capable of formate but not H(2) uptake or vice versa. The hydrogenase mutant of G. sulfurreducens compensated, in cocultures, with significantly increased formate dehydrogenase gene expression. In contrast, the transcript abundance of a hydrogenase gene was comparable in cocultures with that for the formate dehydrogenase mutant of G. sulfurreducens or the wild type, suggesting that H(2) was the primary electron carrier in the wild-type cocultures. Cocultures were also initiated with strains of G. sulfurreducens that could not produce pili or OmcS, two essential components for DIET. The finding that P. carbinolicus exchanged electrons with G. sulfurreducens via interspecies transfer of H(2)/formate rather than DIET demonstrates that not all microorganisms that can grow syntrophically are capable of DIET and that closely related microorganisms may use significantly different strategies for interspecies electron exchange.

  5. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens.

    Science.gov (United States)

    Aklujkar, M; Coppi, M V; Leang, C; Kim, B C; Chavan, M A; Perpetua, L A; Giloteaux, L; Liu, A; Holmes, D E

    2013-03-01

    Whole-genome microarray analysis of Geobacter sulfurreducens grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, omcS and omcT, encode cell-surface c-type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc4 and Cbc5, periplasmic c-type cytochromes Dhc2 and PccF, outer membrane c-type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc3 and Cbc6, periplasmic c-type cytochromes, including PccG and PccJ, and outer membrane c-type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic c-type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane c-type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for Geobacter uraniireducens were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of c-type cytochromes for extracellular electron transfer in G. sulfurreducens.

  6. Growth advantage in stationary-phase (GASP) phenotype in long-term survival strains of Geobacter sulfurreducens.

    Science.gov (United States)

    Helmus, Ruth A; Liermann, Laura J; Brantley, Susan L; Tien, Ming

    2012-01-01

    Geobacter sulfurreducens exists in the subsurface and has been identified in sites contaminated with radioactive metals, consistent with its ability to reduce metals under anaerobic conditions. The natural state of organisms in the environment is one that lacks access to high concentrations of nutrients, namely electron donors and terminal electron acceptors (TEAs). Most studies have investigated G. sulfurreducens under high-nutrient conditions or have enriched for it in environmental systems via acetate amendments. We replicated the starvation state through long-term batch culture of G. sulfurreducens, where both electron donor and TEA were scarce. The growth curve revealed lag, log, stationary, death, and survival phases using acetate as electron donor and either fumarate or iron(III) citrate as TEA. In survival phase, G. sulfurreducens persisted at a constant cell count for as long as 23 months without replenishment of growth medium. Geobacter sulfurreducens demonstrated an ability to acquire a growth advantage in stationary-phase phenotype (GASP), with strains derived from subpopulations from death- or survival phase being able to out-compete mid-log-phase populations when co-cultured. The molecular basis for GASP was not because of any detectable mutation in the rpoS gene (GSU1525) nor because of a mutation in a putative homolog to Escherichia coli lrp, GSU3370.

  7. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens

    Science.gov (United States)

    Yu, Linpeng; Yuan, Yong; Tang, Jia; Wang, Yueqiang; Zhou, Shungui

    2015-11-01

    The reductive dechlorination of pentachlorophenol (PCP) by Geobacter sulfurreducens in the presence of different biochars was investigated to understand how biochars affect the bioreduction of environmental contaminants. The results indicated that biochars significantly accelerate electron transfer from cells to PCP, thus enhancing reductive dechlorination. The promotion effects of biochar (as high as 24-fold) in this process depend on its electron exchange capacity (EEC) and electrical conductivity (EC). A kinetic model revealed that the surface redox-active moieties (RAMs) and EC of biochar (900 °C) contributed to 56% and 41% of the biodegradation rate, respectively. This work demonstrates that biochars are efficient electron mediators for the dechlorination of PCP and that both the EC and RAMs of biochars play important roles in the electron transfer process.

  8. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens

    Science.gov (United States)

    Yu, Linpeng; Yuan, Yong; Tang, Jia; Wang, Yueqiang; Zhou, Shungui

    2015-01-01

    The reductive dechlorination of pentachlorophenol (PCP) by Geobacter sulfurreducens in the presence of different biochars was investigated to understand how biochars affect the bioreduction of environmental contaminants. The results indicated that biochars significantly accelerate electron transfer from cells to PCP, thus enhancing reductive dechlorination. The promotion effects of biochar (as high as 24-fold) in this process depend on its electron exchange capacity (EEC) and electrical conductivity (EC). A kinetic model revealed that the surface redox-active moieties (RAMs) and EC of biochar (900 °C) contributed to 56% and 41% of the biodegradation rate, respectively. This work demonstrates that biochars are efficient electron mediators for the dechlorination of PCP and that both the EC and RAMs of biochars play important roles in the electron transfer process. PMID:26592958

  9. Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires

    Science.gov (United States)

    Steidl, Rebecca J.; Lampa-Pastirk, Sanela; Reguera, Gemma

    2016-08-01

    Electricity generation by Geobacter sulfurreducens biofilms grown on electrodes involves matrix-associated electron carriers, such as c-type cytochromes. Yet, the contribution of the biofilm's conductive pili remains uncertain, largely because pili-defective mutants also have cytochrome defects. Here we report that a pili-deficient mutant carrying an inactivating mutation in the pilus assembly motor PilB has no measurable defects in cytochrome expression, yet forms anode biofilms with reduced electroactivity and is unable to grow beyond a threshold distance (~10 μm) from the underlying electrode. The defects are similar to those of a Tyr3 mutant, which produces poorly conductive pili. The results support a model in which the conductive pili permeate the biofilms to wire the cells to the conductive biofilm matrix and the underlying electrode, operating coordinately with cytochromes until the biofilm reaches a threshold thickness that limits the efficiency of the cytochrome pathway but not the functioning of the conductive pili network.

  10. Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity.

    Science.gov (United States)

    Zhang, Yanfeng; Zheng, Yi; Qin, Ling; Wang, Shihua; Buchko, Garry W; Garavito, R Michael

    2014-09-01

    Beta-hydroxyacid dehydrogenase (β-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD(+)- or NADP(+)-dependent oxidation of various β-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple β-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential β-HAD genes. The protein sequences of one pair of these genes, Gs-βHAD (Q74DE4) and Gm-βHAD (Q39R98), have 65% sequence identity and 77% sequence similarity with each other. Both proteins are observed to reduce succinic semialdehyde, a 4-carbon substrate instead of the typical β-HAD 3-carbon substrate, to γ-hydroxybutyric acid. To further explore the structural and functional characteristics of these two β-HADs with a less frequently observed substrate specificity, crystal structures for Gs-βHAD and Gm-βHAD in complex with NADP(+) were determined to a resolution of 1.89 Å and 2.07 Å, respectively. The structures of both proteins are similar, composed of 14 α-helices and nine β-strands organized into two domains. Domain 1 (1-165) adopts a typical Rossmann fold composed of two α/β units: a six-strand parallel β-sheet surrounded by six α-helices (α1-α6) followed by a mixed three-strand β-sheet surrounded by two α-helices (α7 and α8). Domain 2 (166-287) is composed of a bundle of seven α-helices (α9-α14). Four functional regions conserved in all β-HADs are spatially located near each other, with a buried molecule of NADP(+), at the interdomain cleft. Comparison of these Geobacter structures to a closely related β-HAD from Arabidopsis thaliana in the apo-NADP(+) and apo-substrate bound state suggests that NADP(+) binding effects a rigid body rotation between Domains 1 and 2. Bound

  11. Crystallographic orientation and electrode nature are key factors for electric current generation by Geobacter sulfurreducens.

    Science.gov (United States)

    Maestro, Beatriz; Ortiz, Juan M; Schrott, Germán; Busalmen, Juan P; Climent, Víctor; Feliu, Juan M

    2014-08-01

    We have investigated the influence of electrode material and crystallographic structure on electron transfer and biofilm formation of Geobacter sulfurreducens. Single-crystal gold-Au(110), Au(111), Au(210)-and platinum-Pt(100), Pt(110), Pt(111), Pt(210)-electrodes were tested and compared to graphite rods. G. sulfurreducens electrochemically interacts with all these materials with different attachment kinetics and final current production, although redox species involved in the electron transfer to the anode are virtually the same in all cases. Initial bacterial colonization was fastest on graphite up to the monolayer level, whereas gold electrodes led to higher final current densities. Crystal geometry was shown to have an important influence, with Au(210) sustaining a current density of up to 1442±101μAcm(-2) at the steady state, over Au(111) with 961±94μAcm(-2) and Au(110) with 944±89μAcm(-2). On the other hand, the platinum electrodes displayed the lowest performances, including Pt(210). Our results indicate that both crystal geometry and electrode material are key parameters for the efficient interaction of bacteria with the substrate and should be considered for the design of novel materials and microbial devices to optimize energy production.

  12. Direct and quinone-mediated palladium reduction by Geobacter sulfurreducens: mechanisms and modeling.

    Science.gov (United States)

    Pat-Espadas, Aurora M; Razo-Flores, Elías; Rangel-Mendez, J Rene; Cervantes, Francisco J

    2014-01-01

    Palladium(II) reduction to Pd(0) nanoparticles by Geobacter sulfurreducens was explored under conditions of neutral pH, 30 °C and concentrations of 25, 50, and 100 mg of Pd(II)/L aiming to investigate the effect of solid species of palladium on their microbial reduction. The influence of anthraquinone-2,6-disulfonate was reported to enhance the palladium reaction rate in an average of 1.7-fold and its addition is determining to achieve the reduction of solid species of palladium. Based on the obtained results two mechanisms are proposed: (1) direct, which is fully described considering interactions of amide, sulfur, and phosphoryl groups associated to proteins from bacteria on palladium reduction reaction, and (2) quinone-mediated, which implies multiheme c-type cytochromes participation. Speciation analysis and kinetic results were considered and integrated into a model to fit the experimental data that explain both mechanisms. This work provides elements for a better understanding of direct and quinone-mediated palladium reduction by G. sulfurreducens, which could facilitate metal recovery with concomitant formation of valuable palladium nanoparticles in industrial processes.

  13. Going wireless: Fe(III) oxide reduction without pili by Geobacter sulfurreducens strain JS-1.

    Science.gov (United States)

    Smith, Jessica A; Tremblay, Pier-Luc; Shrestha, Pravin Malla; Snoeyenbos-West, Oona L; Franks, Ashley E; Nevin, Kelly P; Lovley, Derek R

    2014-07-01

    Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili.

  14. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up.

    Science.gov (United States)

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I; Allwood, J William; Rattray, Nicholas J W; Correa, Elon; Alrabiah, Haitham; Lloyd, Jonathan R; Goodacre, Royston

    2015-05-15

    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However

  15. Structural insights into the modulation of the redox properties of two Geobacter sulfurreducens homologous triheme cytochromes.

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, L.; Bruix, M.; Orshonsky, V.; Londer, Y. Y.; Duke, N. E. C.; Yang, X.; Pokkuluri, P. R.; Schiffer, M.; Salgueiro, C. A.; Biosciences Division; Univ. Nova de Lisboa; Insti. de Quimica-Fisica

    2008-09-01

    The redox properties of a periplasmic triheme cytochrome, PpcB from Geobacter sulfurreducens, were studied by NMR and visible spectroscopy. The structure of PpcB was determined by X-ray diffraction. PpcB is homologous to PpcA (77% sequence identity), which mediates cytoplasmic electron transfer to extracellular acceptors and is crucial in the bioenergetic metabolism of Geobacter spp. The heme core structure of PpcB in solution, probed by 2D-NMR, was compared to that of PpcA. The results showed that the heme core structures of PpcB and PpcA in solution are similar, in contrast to their crystal structures where the heme cores of the two proteins differ from each other. NMR redox titrations were carried out for both proteins and the order of oxidation of the heme groups was determined. The microscopic properties of PpcB and PpcA redox centers showed important differences: (1) the order in which hemes become oxidized is III-I-IV for PpcB, as opposed to I-IV-III for PpcA; (2) the redox-Bohr effect is also different in the two proteins. The different redox features observed between PpcB and PpcA suggest that each protein uniquely modulates the properties of their co-factors to assure effectiveness in their respective metabolic pathways. The origins of the observed differences are discussed.

  16. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven.

    Science.gov (United States)

    Snider, Rachel M; Strycharz-Glaven, Sarah M; Tsoi, Stanislav D; Erickson, Jeffrey S; Tender, Leonard M

    2012-09-18

    Geobacter spp. can acquire energy by coupling intracellular oxidation of organic matter with extracellular electron transfer to an anode (an electrode poised at a metabolically oxidizing potential), forming a biofilm extending many cell lengths away from the anode surface. It has been proposed that long-range electron transport in such biofilms occurs through a network of bound redox cofactors, thought to involve extracellular matrix c-type cytochromes, as occurs for polymers containing discrete redox moieties. Here, we report measurements of electron transport in actively respiring Geobacter sulfurreducens wild type biofilms using interdigitated microelectrode arrays. Measurements when one electrode is used as an anode and the other electrode is used to monitor redox status of the biofilm 15 μm away indicate the presence of an intrabiofilm redox gradient, in which the concentration of electrons residing within the proposed redox cofactor network is higher farther from the anode surface. The magnitude of the redox gradient seems to correlate with current, which is consistent with electron transport from cells in the biofilm to the anode, where electrons effectively diffuse from areas of high to low concentration, hopping between redox cofactors. Comparison with gate measurements, when one electrode is used as an electron source and the other electrode is used as an electron drain, suggests that there are multiple types of redox cofactors in Geobacter biofilms spanning a range in oxidation potential that can engage in electron transport. The majority of these redox cofactors, however, seem to have oxidation potentials too negative to be involved in electron transport when acetate is the electron source.

  17. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture

    OpenAIRE

    2000-01-01

    Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases reduced NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was me...

  18. A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer.

    Science.gov (United States)

    Estevez-Canales, Marta; Kuzume, Akiyoshi; Borjas, Zulema; Füeg, Michael; Lovley, Derek; Wandlowski, Thomas; Esteve-Núñez, Abraham

    2015-04-01

    The ability of Geobacter species to transfer electrons outside the cell enables them to play an important role in a number of biogeochemical and bioenergy processes. Gene deletion studies have implicated periplasmic and outer-surface c-type cytochromes in this extracellular electron transfer. However, even when as many as five c-type cytochrome genes have been deleted, some capacity for extracellular electron transfer remains. In order to evaluate the role of c-type cytochromes in extracellular electron transfer, Geobacter sulfurreducens was grown in a low-iron medium that included the iron chelator (2,2'-bipyridine) to further sequester iron. Haem-staining revealed that the cytochrome content of cells grown in this manner was 15-fold lower than in cells exposed to a standard iron-containing medium. The low cytochrome abundance was confirmed by in situ nanoparticle-enhanced Raman spectroscopy (NERS). The cytochrome-depleted cells reduced fumarate to succinate as well as the cytochrome-replete cells do, but were unable to reduce Fe(III) citrate or to exchange electrons with a graphite electrode. These results demonstrate that c-type cytochromes are essential for extracellular electron transfer by G. sulfurreducens. The strategy for growing cytochrome-depleted G. sulfurreducens will also greatly aid future physiological studies of Geobacter species and other microorganisms capable of extracellular electron transfer.

  19. Structural characterization of a β-hydroxyacid dehydrogenase from Geobacter sulfurreducens and Geobacter metallireducens with succinic semialdehyde reductase activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Zheng, Yi; Qin, Ling; Wang, Shihua; Buchko, Garry W.; Garavito, Michael R.

    2014-07-30

    Beta-hydroxyacid dehydrogenase (β-HAD) genes have been identified in all sequenced genomes of eukaryotes and prokaryotes. Their gene products catalyze the NAD+- or NADP+-dependent oxidation of various β-hydroxy acid substrates into their corresponding semialdehyde. In many fungal and bacterial genomes, multiple β-HAD genes are observed leading to the hypothesis that these gene products may have unique, uncharacterized metabolic roles specific to their species. The genomes of Geobacter sulfurreducens and Geobacter metallireducens each contain two potential β-HAD genes. The protein sequences of one pair of these genes, Gs-βHAD (Q74DE4) and Gm-βHAD (Q39R98), have 65% sequence identity and 77% sequence similarity with each other. Both proteins reduce succinic semialdehyde, a metabolite of the GABA shunt. To further explore the structural and functional characteristics of these two β-HADs with a potentially unique substrate specificity, crystal structures for Gs-βHAD and Gm-βHAD in complex with NADP+ were determined to a resolution of 1.89 Å and 2.07 Å, respectively. The structure of both proteins are similar, composed of 14 α-helices and nine β-strands organized into two domains. Domain One (1-165) adopts a typical Rossmann fold composed of two α/β units: a six-strand parallel β-sheet surrounded by six α-helices (α1 – α6) followed by a mixed three-strand β-sheet surrounded by two α-helices (α7 and α8). Domain Two (166-287) is composed of a bundle of seven α-helices (α9 – α14). Four functional regions conserved in all β-HADs are spatially located near each other at the interdomain cleft in both Gs-βHAD and Gm-βHAD with a buried molecule of NADP+. The structural features of Gs-βHAD and Gm-βHAD are described in relation to the four conserved consensus sequences characteristic of β-HADs and the potential biochemical importance of these enzymes as an alternative pathway for the degradation of succinic semialdehyde.

  20. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies

    Directory of Open Access Journals (Sweden)

    Joana M Dantas

    2015-07-01

    Full Text Available Multiheme cytochromes have been implicated in Geobacter sulfurreducens (Gs extracellular electron transfer (EET. These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by Gs. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of Gs multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of Gs by characterizing a family of five triheme cytochromes (PpcA-E. These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell’s outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of Gs. For the first time Gs strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve

  1. Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity

    Science.gov (United States)

    Morgado, Leonor; Bruix, Marta; Pessanha, Miguel; Londer, Yuri Y.; Salgueiro, Carlos A.

    2010-01-01

    Abstract A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c7 from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e−/H+ transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e−/H+ coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G

  2. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens

    Science.gov (United States)

    Levar, Caleb E; Hoffman, Colleen L; Dunshee, Aubrey J; Toner, Brandy M; Bond, Daniel R

    2017-01-01

    Geobacter sulfurreducens uses at least two different pathways to transport electrons out of the inner membrane quinone pool before reducing acceptors beyond the outer membrane. When growing on electrodes poised at oxidizing potentials, the CbcL-dependent pathway operates at or below redox potentials of –0.10 V vs the standard hydrogen electrode, whereas the ImcH-dependent pathway operates only above this value. Here, we provide evidence that G. sulfurreducens also requires different electron transfer proteins for reduction of a wide range of Fe(III)- and Mn(IV)-(oxyhydr)oxides, and must transition from a high- to low-potential pathway during reduction of commonly studied soluble and insoluble metal electron acceptors. Freshly precipitated Fe(III)-(oxyhydr)oxides could not be reduced by mutants lacking the high-potential pathway. Aging these minerals by autoclaving did not change their powder X-ray diffraction pattern, but restored reduction by mutants lacking the high-potential pathway. Mutants lacking the low-potential, CbcL-dependent pathway had higher growth yields with both soluble and insoluble Fe(III). Together, these data suggest that the ImcH-dependent pathway exists to harvest additional energy when conditions permit, and CbcL switches on to allow respiration closer to thermodynamic equilibrium conditions. With evidence of multiple pathways within a single organism, the study of extracellular respiration should consider not only the crystal structure or solubility of a mineral electron acceptor, but rather the redox potential, as this variable determines the energetic reward affecting reduction rates, extents, and final microbial growth yields in the environment. PMID:28045456

  3. Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms.

    Science.gov (United States)

    Lebedev, Nikolai; Strycharz-Glaven, Sarah M; Tender, Leonard M

    2014-02-03

    When grown on the surface of an anode electrode, Geobacter sulfurreducens forms a multi-cell thick biofilm in which all cells appear to couple the oxidation of acetate with electron transport to the anode, which serves as the terminal metabolic electron acceptor. Just how electrons are transported through such a biofilm from cells to the underlying anode surface over distances that can exceed 20 microns remains unresolved. Current evidence suggests it may occur by electron hopping through a proposed network of redox cofactors composed of immobile outer membrane and/or extracellular multi-heme c-type cytochromes. In the present work, we perform a spatially resolved confocal resonant Raman (CRR) microscopic analysis to investigate anode-grown Geobacter biofilms. The results confirm the presence of an intra-biofilm redox gradient whereby the probability that a heme is in the reduced state increases with increasing distance from the anode surface. Such a gradient is required to drive electron transport toward the anode surface by electron hopping via cytochromes. The results also indicate that at open circuit, when electrons are expected to accumulate in redox cofactors involved in electron transport due to the inability of the anode to accept electrons, nearly all c-type cytochrome hemes detected in the biofilm are oxidized. The same outcome occurs when a comparable potential to that measured at open circuit (-0.30 V vs. SHE) is applied to the anode, whereas nearly all hemes are reduced when an exceedingly negative potential (-0.50 V vs. SHE) is applied to the anode. These results suggest that nearly all c-type cytochrome hemes detected in the biofilm can be electrochemically accessed by the electrode, but most have oxidation potentials too negative to transport electrons originating from acetate metabolism. The results also reveal a lateral heterogeneity (x-y dimensions) in the type of c-type cytochromes within the biofilm that may affect electron transport to the

  4. Diving into the redox properties of Geobacter sulfurreducens cytochromes: a model for extracellular electron transfer.

    Science.gov (United States)

    Santos, Telma C; Silva, Marta A; Morgado, Leonor; Dantas, Joana M; Salgueiro, Carlos A

    2015-05-28

    Geobacter bacteria have a remarkable respiratory versatility that includes the dissimilatory reduction of insoluble metal oxides in natural habitats and electron transfer to electrode surfaces from which electricity can be harvested. In both cases, electrons need to be exported from the cell interior to the exterior via a mechanism designated as extracellular electron transfer (EET). Several c-type cytochromes from G. sulfurreducens (Gs) were identified as key players in this process. Biochemical and biophysical data have been obtained for ten Gs cytochromes, including inner-membrane associated (MacA), periplasmic (PpcA, PpcB, PpcC, PpcD, PpcE and GSU1996) and outer membrane-associated (OmcF, OmcS and OmcZ). The redox properties of these cytochromes have been determined, except for PpcC and GSU1996. In this perspective, the reduction potentials of these two cytochromes were determined by potentiometric redox titrations followed by visible spectroscopy. The data obtained are taken together with those available for other key cytochromes to present a thorough overview of the current knowledge of Gs EET mechanisms and provide a possible rationalization for the existence of several multiheme cytochromes involved in the same respiratory pathways.

  5. High resolution AFM and single cell resonance Raman spectroscopy of Geobacter sulfurreducens biofilms early in growth.

    Directory of Open Access Journals (Sweden)

    Nikolai eLebedev

    2014-08-01

    Full Text Available AFM and confocal resonance Raman microscopy (CRRM of single-cells were used to study the transition of anode-grown Geobacter sulfurreducens biofilms from lag phase (initial period of low current to exponential phase (subsequent period of rapidly increasing current. Results reveal that lag phase biofilms consist of lone cells and tightly packed single-cell thick clusters crisscrossed with extracellular linear structures that appear to be comprised of nodules approximately 20 nm in diameter aligned end to end. By early exponential phase cell clusters expand laterally and a second layer of closely packed cells begins to form on top of the first. Abundance of c-type cytochromes (c-Cyt is > 3-fold greater in 2-cell thick regions than in 1-cell thick regions. The results indicate that early biofilm growth involves two transformations. The first is from lone cells to 2-dimensionally associated cells during lag phase when current remains low. This is accompanied by formation of extracellular linear structures. The second is from 2- to 3-dimensionally associated cells during early exponential phase when current begins to increases rapidly. This is accompanied by a dramatic increase in c-Cyt abundance.

  6. Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens.

    Science.gov (United States)

    Yan, Beizhan; Wrenn, Brian A; Basak, Soubir; Biswas, Pratim; Giammar, Daniel E

    2008-09-01

    The rates of microbial Fe(III) reduction of three sizes of hematite nanoparticles by Geobacter sulfurreducens were measured under two H2 partial pressures (0.01 and 1 atm) and three pH (7.0, 7.5, and 8.0) conditions. Hematite particles with mean primary particle sizes of 10, 30, and 50 nm were synthesized by a novel aerosol method that allows tight control of the particle size distribution. The mass-normalized reduction rates of the 10 and 30 nm particles were comparable to each other and higher than the rate for the 50 nm particles. However, the surface area-normalized rate was highest for the 30 nm particles. Consistent with a previously published model, the reduction rates are likely to be proportional to the bacteria-hematite contact area and not to the total hematite surface area. Surface area-normalized iron reduction rates were higher than those reported in previous studies, which may be due to the sequestration of Fe(II) through formation of vivianite. Similar initial reduction rates were observed under all pH and H2 conditions studied.

  7. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; Laan, G. van der; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-08-02

    The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form.

  8. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens.

    Science.gov (United States)

    Byrne, J M; Telling, N D; Coker, V S; Pattrick, R A D; van der Laan, G; Arenholz, E; Tuna, F; Lloyd, J R

    2011-11-11

    The bioproduction of nanoscale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles have been investigated by x-ray magnetic circular dichroism and indicate the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimized biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently to the less harmful trivalent form.

  9. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    Science.gov (United States)

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; van der Laan, G.; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-11-01

    The bioproduction of nanoscale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles have been investigated by x-ray magnetic circular dichroism and indicate the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimized biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently to the less harmful trivalent form.

  10. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens.

    Science.gov (United States)

    Byrne, J M; Muhamadali, H; Coker, V S; Cooper, J; Lloyd, J R

    2015-06-06

    Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 l bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 h. This procedure was capable of producing up to 120 g of biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 l, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kilogram to tonne quantities.

  11. High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens

    Science.gov (United States)

    Schaefer, Jeffra K.; Morel, François M. M.

    2009-02-01

    Methylmercury bioaccumulates in aquatic food chains and is able to cross the blood-brain barrier, making this organometallic compound a much more worrisome pollutant than inorganic mercury. We know that methylation of inorganic mercury is carried out by microbes in the anoxic layers of sediments and water columns, but the factors that control the extent of this methylation are poorly known. Mercury methylation is generally thought to be catalysed accidentally by some methylating enzyme, and it has been suggested that cellular mercury uptake results from passive diffusion of neutral mercury complexes. Here, we show that mercury methylation by the bacterium Geobacter sulfurreducens is greatly enhanced in the presence of low concentrations of the amino acid cysteine. The formation of a mercury-cysteine complex promotes both the uptake of inorganic mercury by the bacteria and the enzymatic formation of methylmercury, which is subsequently released to the external medium. Our results suggest that mercury uptake and methylation by microbes are controlled more tightly by biological mechanisms than previously thought, and that the formation of specific mercury complexes in anoxic waters modulates the efficiency of the microbial methylation of mercury.

  12. Reduction of palladium and production of nano-catalyst by Geobacter sulfurreducens.

    Science.gov (United States)

    Pat-Espadas, Aurora M; Razo-Flores, Elías; Rangel-Mendez, J Rene; Cervantes, Francisco J

    2013-11-01

    The present study is the first report on the ability of Geobacter sulfurreducens PCA to reduce Pd(II) and produce Pd(0) nano-catalyst, using acetate as electron donor at neutral pH (7.0 ± 0.1) and 30 °C. The microbial production of Pd(0) nanoparticles (NPs) was greatly enhanced by the presence of the redox mediator, anthraquinone-2,6-disulfonate (AQDS) when compared with controls lacking AQDS and cell-free controls. A cell dry weight (CDW) concentration of 800 mg/L provided a larger surface area for Pd(0) NPs deposition than a CDW concentration of 400 mg/L. Sample analysis by transmission electron microscopy revealed the formation of extracellular Pd(0) NPs ranging from 5 to 15 nm and X-ray diffraction confirmed the Pd(0) nature of the nano-catalyst produced. The present findings open the possibility for a new alternative to synthesize Pd(0) nano-catalyst and the potential application for microbial metal recovery from metal-containing waste streams.

  13. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    Science.gov (United States)

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  14. Structural and biochemical characterization of DHC2, a novel diheme cytochrome c from Geobacter sulfurreducens.

    Science.gov (United States)

    Heitmann, Daniel; Einsle, Oliver

    2005-09-20

    Multiheme cytochromes c constitute a widespread class of proteins with essential functions in electron transfer and enzymatic catalysis. Their functional properties are in part determined by the relative arrangement of multiple heme cofactors, which in many cases have been found to pack in conserved interaction motifs. Understanding the significance of these motifs is crucial for the elucidation of the highly optimized properties of multiheme cytochromes c, but their spectroscopic investigation is often hindered by the large number and efficient coupling of the individual centers and the limited availability of recombinant protein material. We have identified a diheme cytochrome c, DHC2, from the metal-reducing soil bacterium Geobacter sulfurreducens and determined its crystal structure by the method of multiple-wavelength anomalous dispersion (MAD). The two heme groups of DHC2 pack into one of the typical heme interaction motifs observed in larger multiheme cytochromes, but because of the absence of further, interfering cofactors, the properties of this heme packing motif can be conveniently studied in detail. Spectroscopic properties (UV-vis and EPR) of the protein are typical for cytochromes containing low-spin Fe(III) centers with bis-histidinyl coordination. Midpoint potentials for the two heme groups have been determined to be -135 and -289 mV by potentiometric redox titrations. DHC2 has been produced by recombinant expression in Escherichia coli using the accessory plasmid pEC86 and is therefore accessible for systematic mutational studies in further investigating the properties of heme packing interactions in cytochromes c.

  15. Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens.

    Directory of Open Access Journals (Sweden)

    Daniel Segura

    2008-02-01

    Full Text Available Previous model-based analysis of the metabolic network of Geobacter sulfurreducens suggested the existence of several redundant pathways. Here, we identified eight sets of redundant pathways that included redundancy for the assimilation of acetate, and for the conversion of pyruvate into acetyl-CoA. These equivalent pathways and two other sub-optimal pathways were studied using 5 single-gene deletion mutants in those pathways for the evaluation of the predictive capacity of the model. The growth phenotypes of these mutants were studied under 12 different conditions of electron donor and acceptor availability. The comparison of the model predictions with the resulting experimental phenotypes indicated that pyruvate ferredoxin oxidoreductase is the only activity able to convert pyruvate into acetyl-CoA. However, the results and the modeling showed that the two acetate activation pathways present are not only active, but needed due to the additional role of the acetyl-CoA transferase in the TCA cycle, probably reflecting the adaptation of these bacteria to acetate utilization. In other cases, the data reconciliation suggested additional capacity constraints that were confirmed with biochemical assays. The results demonstrate the need to experimentally verify the activity of key enzymes when developing in silico models of microbial physiology based on sequence-based reconstruction of metabolic networks.

  16. Low Energy Atomic Models Suggesting a Pilus Structure that could Account for Electrical Conductivity of Geobacter sulfurreducens Pili.

    Science.gov (United States)

    Xiao, Ke; Malvankar, Nikhil S; Shu, Chuanjun; Martz, Eric; Lovley, Derek R; Sun, Xiao

    2016-03-22

    The metallic-like electrical conductivity of Geobacter sulfurreducens pili has been documented with multiple lines of experimental evidence, but there is only a rudimentary understanding of the structural features which contribute to this novel mode of biological electron transport. In order to determine if it was feasible for the pilin monomers of G. sulfurreducens to assemble into a conductive filament, theoretical energy-minimized models of Geobacter pili were constructed with a previously described approach, in which pilin monomers are assembled using randomized structural parameters and distance constraints. The lowest energy models from a specific group of predicted structures lacked a central channel, in contrast to previously existing pili models. In half of the no-channel models the three N-terminal aromatic residues of the pilin monomer are arranged in a potentially electrically conductive geometry, sufficiently close to account for the experimentally observed metallic like conductivity of the pili that has been attributed to overlapping pi-pi orbitals of aromatic amino acids. These atomic resolution models capable of explaining the observed conductive properties of Geobacter pili are a valuable tool to guide further investigation of the metallic-like conductivity of the pili, their role in biogeochemical cycling, and applications in bioenergy and bioelectronics.

  17. Geobacter sulfurreducens subsp. ethanolicus, subsp. nov., an ethanol-utilizing dissimilatory Fe(III)-reducing bacterium from a lotus field.

    Science.gov (United States)

    Viulu, Samson; Nakamura, Kohei; Kojima, Akihiro; Yoshiyasu, Yuki; Saitou, Sakiko; Takamizawa, Kazuhiro

    2013-01-01

    An ethanol-utilizing Fe(III)-reducing bacterial strain, OSK2A(T), was isolated from a lotus field in Aichi, Japan. Phylogenetic analysis of the 16S rRNA gene sequences of OSK2A(T) and related strains placed it within Geobacter sulfurreducens PCA(T). Strain OSK2A(T) was shown to be a Gram-negative, motile, rod-shaped bacterium, strictly anaerobic, 0.76-1.65 µm long and 0.28-0.45 μm wide. Its growth occurred at 20-40℃, pH 6.0-8.1, and it tolerated up to 1% NaCl. The G+C content of the genomic DNA was 61.2 mol% and DNA-DNA hybridization value with Geobacter sulfurreducens PCA(T) was 60.7%. The major respiratory quinone was MK-8. The major fatty acids were 16:1 ω7c, 16:0, 14:0, 15:0 iso, 16:1 ω5c, and 18:1 ω7c. Strain OSK2A(T) could utilize H2, ethanol, acetate, lactate, pyruvate, and formate as substrates with Fe(III)-citrate as electron acceptor. Amorphous Fe(III) hydroxide, Fe(III)-NTA, fumarate, malate, and elemental sulfur were utilized as electron acceptors with either acetate or ethanol as substrates. Results obtained from physiological, DNA-DNA hybridization, and chemotaxonomic tests support genotypic and phenotypic differentiation of strain OSK2A(T) from its closest relative. The isolate is assigned as a novel subspecies with the name Geobacter sulfurreducens subsp. ethanolicus, subsp. nov. (type strain OSK2A(T)=DSMZ 26126(T)=JCM 18752(T)).

  18. OmcB, a c-Type Polyheme Cytochrome, Involved in Fe(III) Reduction in Geobacter sulfurreducens

    OpenAIRE

    2003-01-01

    Microorganisms in the family Geobacteraceae are the predominant Fe(III)-reducing microorganisms in a variety of subsurface environments in which Fe(III) reduction is an important process, but little is known about the mechanisms for electron transport to Fe(III) in these organisms. The Geobacter sulfurreducens genome was found to contain a 10-kb chromosomal duplication consisting of two tandem three-gene clusters. The last genes of the two clusters, designated omcB and omcC, encode putative o...

  19. Role of Geobacter sulfurreducens Outer Surface c-Type Cytochromes in Reduction of Soil Humic Acid and Anthraquinone-2,6-Disulfonate▿

    Science.gov (United States)

    Voordeckers, James W.; Kim, Byoung-Chan; Izallalen, Mounir; Lovley, Derek R.

    2010-01-01

    Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones. PMID:20154112

  20. Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate.

    Science.gov (United States)

    Voordeckers, James W; Kim, Byoung-Chan; Izallalen, Mounir; Lovley, Derek R

    2010-04-01

    Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.

  1. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.

    Science.gov (United States)

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R

    2016-02-01

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than -0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at -0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below -0.1 V vs. SHE.

  2. Redox- and pH-linked conformational changes in triheme cytochrome PpcA from Geobacter sulfurreducens.

    Science.gov (United States)

    Morgado, Leonor; Bruix, Marta; Pokkuluri, P Raj; Salgueiro, Carlos A; Turner, David L

    2017-01-15

    The periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e(-)/H(+) coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state. In the present study, isotope-labeled PpcA was produced and the three-dimensional structure of PpcA in the oxidized form was determined by NMR. This is the first solution structure of a G. sulfurreducens cytochrome in the oxidized state. The comparison of oxidized and reduced structures revealed that the heme I axial ligand geometry changed and there were other significant changes in the segments near heme I. The pH-linked conformational rearrangements observed in the vicinity of the redox-Bohr center, both in the oxidized and reduced structures, constitute the structural basis for the differences observed in the pKa values of the redox-Bohr center, providing insights into the e(-)/H(+) coupling molecular mechanisms driven by PpcA in G. sulfurreducens. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  3. Structural characterization of a family of cytochromes c(7) involved in Fe(III) respiration by Geobacter sulfurreducens.

    Science.gov (United States)

    Pokkuluri, P R; Londer, Y Y; Yang, X; Duke, N E C; Erickson, J; Orshonsky, V; Johnson, G; Schiffer, M

    2010-02-01

    Periplasmic cytochromes c(7) are important in electron transfer pathway(s) in Fe(III) respiration by Geobacter sulfurreducens. The genome of G. sulfurreducens encodes a family of five 10-kDa, three-heme cytochromes c(7). The sequence identity between the five proteins (designated PpcA, PpcB, PpcC, PpcD, and PpcE) varies between 45% and 77%. Here, we report the high-resolution structures of PpcC, PpcD, and PpcE determined by X-ray diffraction. This new information made it possible to compare the sequences and structures of the entire family. The triheme cores are largely conserved but are not identical. We observed changes, due to different crystal packing, in the relative positions of the hemes between two molecules in the crystal. The overall protein fold of the cytochromes is similar. The structure of PpcD differs most from that of the other homologs, which is not obvious from the sequence comparisons of the family. Interestingly, PpcD is the only cytochrome c(7) within the family that has higher abundance when G. sulfurreducens is grown on insoluble Fe(III) oxide compared to ferric citrate. The structures have the highest degree of conservation around "heme IV"; the protein surface around this heme is positively charged in all of the proteins, and therefore all cytochromes c(7) could interact with similar molecules involving this region. The structures and surface characteristics of the proteins near the other two hemes, "heme I" and "heme III", differ within the family. The above observations suggest that each of the five cytochromes c(7) could interact with its own redox partner via an interface involving the regions of heme I and/or heme III; this provides a possible rationalization for the existence of five similar proteins in G. sulfurreducens. 2009 Elsevier B.V. All rights reserved.

  4. Comparative genomic analysis of Geobacter sulfurreducens KN400, a strain with enhanced capacity for extracellular electron transfer and electricity production

    Directory of Open Access Journals (Sweden)

    Butler Jessica E

    2012-09-01

    Full Text Available Abstract Background A new strain of Geobacter sulfurreducens, strain KN400, produces more electrical current in microbial fuel cells and reduces insoluble Fe(III oxides much faster than the wildtype strain, PCA. The genome of KN400 was compared to wildtype with the goal of discovering how the network for extracellular electron transfer has changed and how these two strains evolved. Results Both genomes were re-annotated, resulting in 14 fewer genes (net in the PCA genome; 28 fewer (net in the KN400 genome; and ca. 400 gene start and stop sites moved. 96% of genes in KN400 had clear orthologs with conserved synteny in PCA. Most of the remaining genes were in regions of genomic mobility and were strain-specific or conserved in other Geobacteraceae, indicating that the changes occurred post-divergence. There were 27,270 single nucleotide polymorphisms (SNP between the genomes. There was significant enrichment for SNP locations in non-coding or synonymous amino acid sites, indicating significant selective pressure since the divergence. 25% of orthologs had sequence differences, and this set was enriched in phosphorylation and ATP-dependent enzymes. Substantial sequence differences (at least 12 non-synonymous SNP/kb were found in 3.6% of the orthologs, and this set was enriched in cytochromes and integral membrane proteins. Genes known to be involved in electron transport, those used in the metabolic cell model, and those that exhibit changes in expression during growth in microbial fuel cells were examined in detail. Conclusions The improvement in external electron transfer in the KN400 strain does not appear to be due to novel gene acquisition, but rather to changes in the common metabolic network. The increase in electron transfer rate and yield in KN400 may be due to changes in carbon flux towards oxidation pathways and to changes in ATP metabolism, both of which indicate that the overall energy state of the cell may be different. The

  5. Functional characterization of PccH, a key cytochrome for electron transfer from electrodes to the bacterium Geobacter sulfurreducens.

    Science.gov (United States)

    Dantas, Joana M; Tomaz, Diogo M; Morgado, Leonor; Salgueiro, Carlos A

    2013-08-19

    The cytochrome PccH from Geobacter sulfurreducens (Gs) plays a crucial role in current-consuming fumarate-reducing biofilms. Deletion of pccH gene inhibited completely electron transfer from electrodes toward Gs cells. The pccH gene was cloned and the protein heterologously expressed in Escherichia coli. Complementary biophysical techniques including CD, UV-visible and NMR spectroscopy were used to characterize PccH. This cytochrome contains one low-spin c-type heme with His-Met axial coordination and unusual low-reduction potential. This reduction potential is pH-dependent, within the Gs physiological pH range, and is discussed within the context of the electron transfer mechanisms from electrodes to Gs cells.

  6. Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite.

    Science.gov (United States)

    Doong, Ruey-an; Lee, Chun-chi; Lien, Chia-min

    2014-02-01

    The effect of naturally occurring quinones including lawsone (LQ), ubiquinone (UQ), juglone (JQ), and 1,4-naphthoquinone (NQ) on the biotransformation of carbon tetrachloride (CT) in the presence of Geobacter sulfurreducens and ferrihydrite was investigated. AQDS was used as the model compound for comparison. The reductive dissolution of ferrihydrite by G. sulfurreducens was enhanced by AQDS, NQ, and LQ. However, addition of UQ and JQ had little enhancement effect on Fe(II) production. The bioreduction efficiency and rate of ferrihydrite was highly dependent on the natural property and concentration of quinone compounds and the addition of low concentrations of LQ and NQ significantly accelerated the biotransformation rate of CT. The pseudo-first-order rate constants for CT dechlorination (kobsCT) in AQDS-, LQ- and NQ-amended batches were 5.4-5.8, 4.6-7.4 and 2.4-5.8 times, respectively, higher than those in the absence of quinone. A good relationship between kobsCT for CT dechlorination and bioreduction ratio of ferrihydrite was observed, indicating the important role of biogenic Fe(II) in dechlorination of CT under iron-reducing conditions. Spectroscopic analysis showed that AQDS and NQ could be reduced to semiquinones and hydroquinones, while only hydroquinones were generated in LQ-amended batches.

  7. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer.

    Science.gov (United States)

    Babauta, Jerome T; Nguyen, Hung Duc; Harrington, Timothy D; Renslow, Ryan; Beyenal, Haluk

    2012-10-01

    The limitation of pH inside electrode-respiring biofilms is a well-known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode-respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Copyright © 2012 Wiley Periodicals, Inc.

  8. Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy

    Science.gov (United States)

    Veazey, Joshua P.; Reguera, Gemma; Tessmer, Stuart H.

    2011-12-01

    The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as “pilus nanowires” to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.

  9. A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production.

    Science.gov (United States)

    Liu, Xing; Tremblay, Pier-Luc; Malvankar, Nikhil S; Nevin, Kelly P; Lovley, Derek R; Vargas, Madeline

    2014-02-01

    The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity.

  10. Genetic Identification of a PilT Motor in Geobacter sulfurreducens Reveals a Role for Pilus Retraction in Extracellular Electron Transfer

    Science.gov (United States)

    Speers, Allison M.; Schindler, Bryan D.; Hwang, Jihwan; Genc, Aycin; Reguera, Gemma

    2016-01-01

    The metal-reducing bacterium Geobacter sulfurreducens requires the expression of conductive pili to reduce iron oxides and to wire electroactive biofilms, but the role of pilus retraction in these functions has remained elusive. Here we show that of the four PilT proteins encoded in the genome of G. sulfurreducens, PilT3 powered pilus retraction in planktonic cells of a PilT-deficient strain of P. aeruginosa and restored the dense mutant biofilms to wild-type levels. Furthermore, PilT3 and PilT4 rescued the twitching motility defect of the PilT-deficient mutant. However, PilT4 was the only paralog whose inactivation in G. sulfurreducens lead to phenotypes associated with the hyperpiliation of non-retractile mutants such as enhanced adhesion and biofilm-forming abilities. In addition, PilT4 was required to reduce iron oxides. Taken together, the results indicate that PilT4 is the motor ATPase of G. sulfurreducens pili and reveal a previously unrecognized role for pilus retraction in extracellular electron transfer, a strategy that confers on Geobacter spp. an adaptive advantage for metal reduction in the natural environment. PMID:27799920

  11. Genetic identification of a PilT motor in Geobacter sulfurreducens reveals a role for pilus retraction in extracellular electron transfer

    Directory of Open Access Journals (Sweden)

    Allison Speers

    2016-10-01

    Full Text Available The metal-reducing bacterium Geobacter sulfurreducens requires the expression of conductive pili to reduce iron oxides and to wire electroactive biofilms, but the role of pilus retraction in these functions has remained elusive. Here we show that of the four PilT proteins encoded in the genome of G. sulfurreducens, PilT3 powered pilus retraction in planktonic cells of a PilT-deficient strain of P. aeruginosa and restored the dense mutant biofilms to wild-type levels. Furthermore, PilT3 and PilT4 rescued the twitching motility defect of the PilT-deficient mutant. However, PilT4 was the only paralogue whose inactivation in G. sulfurreducens lead to phenotypes associated with the hyperpiliation of non-retractile mutants such as enhanced adhesion and biofilm-forming abilities. In addition, PilT4 was required to reduce iron oxides. Taken together, the results indicate that PilT4 is the motor ATPase of G. sulfurreducens pili and reveal a previously unrecognized role for pilus retraction in extracellular electron transfer, a strategy that confers on Geobacter spp. an adaptive advantage for metal reduction in the natural environment.

  12. Geobacter sulfurreducens对汞的甲基化及其影响因素研究%Research on Mercury Methylation by Geobacter sulfurreducens and Its Influencing Factors

    Institute of Scientific and Technical Information of China (English)

    邹嫣; 司友斌; 颜雪; 陈艳

    2012-01-01

    在实验室模拟条件下,研究了铁还原菌Geobacter sulfurreducens对汞的甲基化作用及其影响因素.结果表明,G.sulfurreducens在低浓度汞溶液中能够生长,但生长受到一定程度的抑制,主要表现在菌株生长曲线迟缓期的延长.G.sulfurreducens在生长过程中能同时将溶液中无机汞转化为甲基汞,甲基化过程受多种环境因素的制约.在初始HgCl2浓度为1 mg.L^-1、温度35℃、pH 6.0、0.9%盐度的厌氧环境条件下,G.sulfurreducens对汞的甲基化率可达38%.适当增加HgCl2初始浓度与盐度能提高甲基汞的转化率,但过高汞浓度和盐度会造成微生物的死亡;温度在4~35℃范围内,温度越高甲基汞转化率越高;弱酸性环境比酸性或中碱性环境更利于汞的甲基化.此外,腐殖酸和半胱氨酸等均影响甲基汞的转化效率,其中腐殖酸对汞甲基化有一定的抑制作用,而半胱氨酸有较强的促进作用.该研究为自然水体生态系统中铁还原菌参与汞甲基化的过程提供了直接证据.%Mercury methylation by Geobacter sulfurreducens and the effects of environmental factors were studied under laboratory conditions.The results showed that G.sulfurreducens could grow well in the presence of low concentrations of mercuric chloride,but its growth was inhibited to a certain extent,mainly expressed in the prolonged lag phase.G.sulfurreducens could transform inorganic mercury into methylmercury,and this process was affected by many environmental factors.The efficiency of mercury methylation reached 38% under anaerobic conditions with 1 mg·L^-1 HgCl2 and 0.9% salinity at 35℃,pH 6.0.Increasing the initial HgCl2 concentration or salinity in an appropriate manner improved mercury methylation,but the concentration of methylmercury reduced when the concentrations of HgCl2 and salinity were too high.The efficiency of mercury methylation increased with the increasing temperature in range of 4-35℃.Weakly acidic

  13. Unveiling the Structural Basis That Regulates the Energy Transduction Properties within a Family of Triheme Cytochromes from Geobacter sulfurreducens.

    Science.gov (United States)

    Dantas, Joana M; Simões, Telma; Morgado, Leonor; Caciones, Clara; Fernandes, Ana P; Silva, Marta A; Bruix, Marta; Pokkuluri, P Raj; Salgueiro, Carlos A

    2016-10-06

    A family of triheme cytochromes from Geobacter sulfurreducens plays an important role in extracellular electron transfer. In addition to their role in electron transfer pathways, two members of this family (PpcA and PpcD) were also found to be able to couple e(-)/H(+) transfer through the redox Bohr effect observed in the physiological pH range, a feature not observed for cytochromes PpcB and PpcE. In attempting to understand the molecular control of the redox Bohr effect in this family of cytochromes, which is highly homologous both in amino acid sequence and structures, it was observed that residue 6 is a conserved leucine in PpcA and PpcD, whereas in the other two characterized members (PpcB and PpcE) the equivalent residue is a phenylalanine. To determine the role of this residue located close to the redox Bohr center, we replaced Leu(6) in PpcA with Phe and determined the redox properties of the mutant, as well as its solution structure in the fully reduced state. In contrast with the native form, the mutant PpcAL6F is not able to couple the e(-)/H(+) pathway. We carried out the reverse mutation in PpcB and PpcE (i.e., replacing Phe(6) in these two proteins by leucine) and the mutated proteins showed an increased redox Bohr effect. The results clearly establish the role of residue 6 in the control of the redox Bohr effect in this family of cytochromes, a feature that could enable the rational design of G. sulfurreducens strains that carry mutant cytochromes with an optimal redox Bohr effect that would be suitable for various biotechnological applications.

  14. The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu.

    Science.gov (United States)

    Shanmugam, Raghuvaran; Aklujkar, Muktak; Schäfer, Matthias; Reinhardt, Richard; Nickel, Olaf; Reuter, Gunter; Lovley, Derek R; Ehrenhofer-Murray, Ann; Nellen, Wolfgang; Ankri, Serge; Helm, Mark; Jurkowski, Tomasz P; Jeltsch, Albert

    2014-06-01

    Dnmt2 enzymes are conserved in eukaryotes, where they methylate C38 of tRNA-Asp with high activity. Here, the activity of one of the very few prokaryotic Dnmt2 homologs from Geobacter species (GsDnmt2) was investigated. GsDnmt2 was observed to methylate tRNA-Asp from flies and mice. Unexpectedly, it had only a weak activity toward its matching Geobacter tRNA-Asp, but methylated Geobacter tRNA-Glu with good activity. In agreement with this result, we show that tRNA-Glu is methylated in Geobacter while the methylation is absent in tRNA-Asp. The activities of Dnmt2 enzymes from Homo sapiens, Drosophila melanogaster, Schizosaccharomyces pombe and Dictyostelium discoideum for methylation of the Geobacter tRNA-Asp and tRNA-Glu were determined showing that all these Dnmt2s preferentially methylate tRNA-Asp. Hence, the GsDnmt2 enzyme has a swapped transfer ribonucleic acid (tRNA) specificity. By comparing the different tRNAs, a characteristic sequence pattern was identified in the variable loop of all preferred tRNA substrates. An exchange of two nucleotides in the variable loop of murine tRNA-Asp converted it to the corresponding variable loop of tRNA-Glu and led to a strong reduction of GsDnmt2 activity. Interestingly, the same loss of activity was observed with human DNMT2, indicating that the variable loop functions as a specificity determinant in tRNA recognition of Dnmt2 enzymes.

  15. Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides.

    Science.gov (United States)

    Chan, Chi Ho; Levar, Caleb E; Jiménez-Otero, Fernanda; Bond, Daniel R

    2017-10-01

    Geobacter sulfurreducens generates electrical current by coupling intracellular oxidation of organic acids to the reduction of proteins on the cell surface that are able to interface with electrodes. This ability is attributed to the bacterium's capacity to respire other extracellular electron acceptors that require contact, such as insoluble metal oxides. To directly investigate the genetic basis of electrode-based respiration, we constructed Geobacter sulfurreducens transposon-insertion sequencing (Tn-Seq) libraries for growth, with soluble fumarate or an electrode as the electron acceptor. Libraries with >33,000 unique insertions and an average of 9 insertions/kb allowed an assessment of each gene's fitness in a single experiment. Mutations in 1,214 different genomic features impaired growth with fumarate, and the significance of 270 genes unresolved by annotation due to the presence of one or more functional homologs was determined. Tn-Seq analysis of -0.1 V versus standard hydrogen electrode (SHE) electrode-grown cells identified mutations in a subset of genes encoding cytochromes, processing systems for proline-rich proteins, sensory networks, extracellular structures, polysaccharides, and metabolic enzymes that caused at least a 50% reduction in apparent growth rate. Scarless deletion mutants of select genes identified via Tn-Seq revealed a new putative porin-cytochrome conduit complex (extABCD) crucial for growth with electrodes, which was not required for Fe(III) oxide reduction. In addition, four mutants lacking components of a putative methyl-accepting chemotaxis-cyclic dinucleotide sensing network (esnABCD) were defective in electrode colonization but grew normally with Fe(III) oxides. These results suggest that G. sulfurreducens possesses distinct mechanisms for recognition, colonization, and reduction of electrodes compared to Fe(III) oxides.IMPORTANCE Since metal oxide electron acceptors are insoluble, one hypothesis is that cells sense and reduce

  16. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture.

    Science.gov (United States)

    Galushko, A S; Schink, B

    2000-11-01

    Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was measured as benzyl viologen reduction and strictly CoA-dependent; a low activity was also observed with NADP+. Succinate dehydrogenase and fumarate ductase both were membrane-bound. Succinate oxidation was coupled to NADP+ reduction whereas fumarate reduction was coupled to NADPH and NADH Coupling of succinate oxidation to NADP+ or cytochrome(s) reduction required an ATP-dependent reversed electron transport. Net ATP synthesis proceeded exclusively through electron transport phosphorylation. During fumarate reduction, both NADPH and NADH delivered reducing equivalents into the electron transport chain, which contained a menaquinone. Overall, acetate oxidation with fumarate proceeded through an open loop of citric acid cycle reactions, excluding succinate dehydrogenase, with fumarate reductase as the key reaction for electron delivery, whereas acetate oxidation in the syntrophic coculture required the complete citric acid cycle.

  17. On the road to improve the bioremediation and electricity-harvesting skills of Geobacter sulfurreducens: functional and structural characterization of multihaem cytochromes.

    Science.gov (United States)

    Morgado, Leonor; Fernandes, Ana P; Dantas, Joana M; Silva, Marta A; Salgueiro, Carlos A

    2012-12-01

    Extracellular electron transfer is one of the physiological hallmarks of Geobacter sulfurreducens, allowing these bacteria to reduce toxic and/or radioactive metals and grow on electrode surfaces. Aiming to functionally optimize the respiratory electron-transfer chains, such properties can be explored through genetically engineered strains. Geobacter species comprise a large number of different multihaem c-type cytochromes involved in the extracellular electron-transfer pathways. The functional characterization of multihaem proteins is particularly complex because of the coexistence of several microstates in solution, connecting the fully reduced and oxidized states. NMR spectroscopy has been used to monitor the stepwise oxidation of each individual haem and thus to obtain information on each microstate. For the structural study of these proteins, a cost-effective isotopic labelling of the protein polypeptide chains was combined with the comparative analysis of 1H-13C HSQC (heteronuclear single-quantum correlation) NMR spectra obtained for labelled and unlabelled samples. These new methodological approaches allowed us to study G. sulfurreducens haem proteins functionally and structurally, revealing functional mechanisms and key residues involved in their electron-transfer capabilities. Such advances can now be applied to the design of engineered haem proteins to improve the bioremediation and electricity-harvesting skills of G. sulfurreducens.

  18. Probing Single- to Multi-Cell Level Charge Transport in Geobacter sulfurreducens DL-1

    Science.gov (United States)

    2013-11-08

    experiment for analysis by HPLC (Varian, Inc.) with a refractive index detector. The mobile phase was a 5-mM sulphuric acid solution and the column was PL...thick; VWR) were cleaned in Piranha solution (3:1 concentrated sulphuric acid to 30% hydrogen peroxide) for 30min, rinsed with deionized water (15 s...due to secondary p-stacking of amino acids comprising the pilin itself25. Most conductivity and gene expression experiments with Geobacter sp. are

  19. Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant.

    Science.gov (United States)

    Kim, Byoung-Chan; Postier, Bradley L; Didonato, Raymond J; Chaudhuri, Swades K; Nevin, Kelly P; Lovley, Derek R

    2008-06-01

    Geobacter sulfurreducens effectively produces electricity in microbial fuel cells by oxidizing acetate with an electrode serving as the sole electron acceptor. Deletion of the gene encoding OmcF, a monoheme outer membrane c-type cytochrome, substantially decreased current production. Previous studies demonstrated that inhibition of Fe(III) reduction in the OmcF-deficient mutant could be attributed to poor transcription of the gene for OmcB, an outer membrane c-type cytochrome that is required for Fe(III) reduction. However, a mutant in which omcB was deleted produced electricity as well as wild type. Microarray analysis of the OmcF-deficient mutant versus the wild type revealed that many of the genes with the greatest decreases in transcript levels were genes whose expression was previously reported to be upregulated in cells grown with an electrode as the sole electron acceptor. These included genes with putative functions related to metal efflux and/or type I secretion and two hypothetical proteins. The outer membrane cytochromes, OmcS and OmcE, which previous studies have demonstrated are required for optimal current generation, were not detected on the outer surface of the OmcF-deficient mutant even though the omcS and omcE genes were still transcribed, suggesting that the putative secretion system could be involved in the export of outer membrane proteins necessary for electron transfer to the fuel cell anode. These results suggest that the requirement for OmcF for optimal current production is not because OmcF is directly involved in extracellular electron transfer but because OmcF is required for the appropriate transcription of other genes either directly or indirectly involved in electricity production.

  20. Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA.

    Science.gov (United States)

    Lin, Hui; Morrell-Falvey, Jennifer L; Rao, Balaji; Liang, Liyuan; Gu, Baohua

    2014-10-21

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell-SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10(-19) to 25 × 10(-19) moles-Hg/cell (equivalent to Hg/cell-SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn(2+) leads to increased Hg reduction and decreased methylation. These results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.

  1. OmcF, a Putative c-Type Monoheme Outer Membrane Cytochrome Required for the Expression of Other Outer Membrane Cytochromes in Geobacter sulfurreducens

    OpenAIRE

    2005-01-01

    Outer membrane cytochromes are often proposed as likely agents for electron transfer to extracellular electron acceptors, such as Fe(III). The omcF gene in the dissimilatory Fe(III)-reducing microorganism Geobacter sulfurreducens is predicted to code for a small outer membrane monoheme c-type cytochrome. An OmcF-deficient strain was constructed, and its ability to reduce and grow on Fe(III) citrate was found to be impaired. Following a prolonged lag phase (150 h), the OmcF-deficient strain de...

  2. Reduction Kinetics of Manganese Dioxide by Geobacter Sulfurreducens and Associated Biofilm Morphology in a Flow-Through Reactor

    Science.gov (United States)

    Berns, E.; Werth, C. J.; Valocchi, A. J.; Sanford, R. A.

    2015-12-01

    Biogeochemical interactions have been investigated extensively to characterize natural nutrient cycling and predict contaminant transport in surface and groundwater. Dissimilatory metal reducing bacteria, many of which form biofilms, play an important role in reducing a variety of metals in these systems. It has been shown that biofilm morphology is impacted by flow conditions, but there has been little work that explores how reduction kinetics change as a result of these different morphologies. Different flow rates may affect physical properties of the biofilm that influence the rate of substrate reduction. We introduce an approach to calculate changes in Monod kinetic parameters while simultaneously evaluating biofilm morphologies under different flow rates. A vertical, cylindrical flow cell with removable glass slide sections coated in manganese dioxide (electron acceptor) was used to grow a biofilm of Geobacter sulfurreducens with acetate as the electron donor under both high (50 mL/hr) and low (5 mL/h) flow rates. The removable sections allowed for visualization of the biofilm at different time points with a confocal microscope, and quantification of the biomass on the surface using a combination of a protein assay and image analysis. Data collected from the experiments was used to determine yield and specific growth rate at the different flow rates, and a simple numerical model was used to estimate the half saturation constant of manganese dioxide at both flow rates. A smaller half saturation constant was estimated at the higher flow rate, indicating that the biofilm was more efficient in the high flow system, but a strong correlation between morphology and the faster reduction rate was not observed. Monod kinetic parameters are important for the development of accurate nutrient cycling and contaminant transport models in natural environments, and understanding how they are impacted by flow will be important for the development of new, improved models.

  3. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haiyan [ORNL; Lin, Hui [ORNL; Zheng, Wang [ORNL; Feng, Xinbin [ORNL; Liang, Liyuan [ORNL; Elias, Dwayne A [ORNL; Gu, Baohua [ORNL

    2013-01-01

    Both reduction and surface adsorption of mercuric mercury [Hg(II)] are found to occur simultaneously on G. sulfurreducens PCA cells under dark, anaerobic conditions. Reduction of Hg(II) to elemental Hg(0) initially follows a pseudo-first order kinetics with a half-life of < 2 h in the presence of 50 nM Hg(II) and 1011 cells L-1 in a phosphate buffer (pH 7.4). Multiple gene deletions of the outer membrane cytochromes in this organism resulted in decrease in reduction rate from ~ 0.3 to 0.05 h-1, and reduction was nearly absent with heat-killed cells or in the cell filtrate. Adsorption of Hg(II) by cells is found to compete with, and thus inhibit, Hg(II) reduction. Depending on the Hg to cell ratio, maximum Hg(II) reduction was observed at about 5 10-19 mol Hg cell-1, but reduction terminated at a low Hg to cell ratio (< 10-20 mol Hg cell-1). This inhibitory effect is attributed to strong binding between Hg(II) and the thiol ( SH) functional groups on cells and validated by experiments in which the sorbed Hg(II) was readily exchanged by thiols (e.g., glutathione) but not by carboxylic ligands such as ethylenediaminetetraacetate (EDTA). We suggest that coupled Hg(II)-cell interactions, i.e., reduction and surface binding, could be important in controlling Hg species transformation and bioavailability and should therefore be considered in microbial Hg(II) uptake and methylation studies.

  4. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA.

    Science.gov (United States)

    Hu, Haiyan; Lin, Hui; Zheng, Wang; Rao, Balaji; Feng, Xinbin; Liang, Liyuan; Elias, Dwayne A; Gu, Baohua

    2013-10-01

    Both reduction and surface adsorption of mercuric mercury [Hg(II)] are found to occur simultaneously on G. sulfurreducens PCA cells under dark, anaerobic conditions. Reduction of Hg(II) to elemental Hg(0) initially follows a pseudo-first order kinetics with a half-life of Hg(II) and 10(11) cells L(-1) in a phosphate buffer (pH 7.4). Multiple gene deletions of the outer membrane cytochromes in this organism resulted in a decrease in reduction rate from ∼0.3 to 0.05 h(-1), and reduction was nearly absent with heat-killed cells or in the cell filtrate. Adsorption of Hg(II) by cells is found to compete with, and thus inhibit, Hg(II) reduction. Depending on the Hg to cell ratio, maximum Hg(II) reduction was observed at about 5 × 10(-19) mol Hg cell(-1), but reduction terminated at a low Hg to cell ratio (Hg cell(-1)). This inhibitory effect is attributed to bonding between Hg(II) and the thiol (-SH) functional groups on cells and validated by experiments in which the sorbed Hg(II) was readily exchanged by thiols (e.g., glutathione) but not by carboxylate compounds such as ethylenediamine-tetraacetate (EDTA). We suggest that coupled Hg(II)-cell interactions, i.e., reduction and surface binding, could be important in controlling Hg species transformation and bioavailability and should therefore be considered in microbial Hg(II) uptake and methylation studies.

  5. Two ATP phosphoribosyltransferase isozymes of Geobacter sulfurreducens contribute to growth in the presence or absence of histidine and under nitrogen fixation conditions.

    Science.gov (United States)

    Aklujkar, Muktak

    2011-07-01

    Bacteria of the Geobacter clade possess two distinct ATP phosphoribosyltransferases encoded by hisG(L) and hisG(S)+hisZ to catalyze the first reaction of histidine biosynthesis. This very unusual redundancy was investigated by mutational analysis. The hisG(L), hisG(S), and hisZ genes of Geobacter sulfurreducens were deleted, effects on growth and histidine biosynthesis gene expression were evaluated, and deficiencies were complemented with plasmid-borne genes. Both hisG(L) and hisG(S)+hisZ encode functional ATP phosphoribosyltransferases. However, deletion of hisG(L) resulted in no growth defect, whereas deletion of hisG(S) delayed growth when histidine was not provided. Both deletions increased hisZ transcript abundance, and both ΔhisG(S) and ΔhisZ mutations increased hisG(L) transcript abundance. Growth with HisG(L) alone (due to deletion of either hisG(S) or hisZ) was better under nitrogen fixation conditions than when ammonium was provided. Deletion of hisZ caused growth defects under all conditions tested, with or without exogenous sources of histidine, with different patterns of histidine biosynthesis gene expression under each condition. Taken together, the data indicate that G. sulfurreducens depends primarily on the HisG(S)Z isozyme as an ATP phosphoribosyltransferase in histidine biosynthesis, and for other functions when histidine is available; however, HisG(L) also functions as ATP phosphoribosyltransferase, particularly during nitrogen fixation.

  6. The structure of PccH from Geobacter sulfurreducens: A novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Joana M; Campelo, Luisa; Duke, Norma E. C.; Salgueiro, Carlos A; Pokkuluri, P. Raj

    2015-06-01

    The structure of cytochrome-c (GSU3274) designated as PccH from Geobacter sulfurreducens was determined at 2.0 Å resolution. PccH is a small (15 kDa) cytochrome containing one c-type heme, found to be essential for growth of G. sulfurreducens accepting electrons from graphite electrodes poised at -300 mV versus SHE with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH has a low reduction potential of -24 mV at pH 7, which is unusual for monoheme cytochromes. Based on difference in structure together with sequence phylogenetic analysis we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by this bacterium. Because PccH is predicted to be located in the periplasm of G. sulfurreducens, it could not be involved in the first step of accepting electrons from the electrode but very likely involved in the downstream electron transport events in the periplasm.

  7. Abundance of the multiheme c-type cytochrome OmcB increases in outer biofilm layers of electrode-grown Geobacter sulfurreducens.

    Directory of Open Access Journals (Sweden)

    Camille S Stephen

    Full Text Available When Geobacter sulfurreducens utilizes an electrode as its electron acceptor, cells embed themselves in a conductive biofilm tens of microns thick. While environmental conditions such as pH or redox potential have been shown to change close to the electrode, less is known about the response of G. sulfurreducens to growth in this biofilm environment. To investigate whether respiratory protein abundance varies with distance from the electrode, antibodies against an outer membrane multiheme cytochrome (OmcB and cytoplasmic acetate kinase (AckA were used to determine protein localization in slices spanning ∼25 µm-thick G. sulfurreducens biofilms growing on polished electrodes poised at +0.24 V (vs. Standard Hydrogen Electrode. Slices were immunogold labeled post-fixing, imaged via transmission electron microscopy, and digitally reassembled to create continuous images allowing subcellular location and abundance per cell to be quantified across an entire biofilm. OmcB was predominantly localized on cell membranes, and 3.6-fold more OmcB was detected on cells 10-20 µm distant from the electrode surface compared to inner layers (0-10 µm. In contrast, acetate kinase remained constant throughout the biofilm, and was always associated with the cell interior. This method for detecting proteins in intact conductive biofilms supports a model where the utilization of redox proteins changes with depth.

  8. The structure of PccH from Geobacter sulfurreducens - a novel low reduction potential monoheme cytochrome essential for accepting electrons from an electrode.

    Science.gov (United States)

    Dantas, Joana M; Campelo, Luísa M; Duke, Norma E C; Salgueiro, Carlos A; Pokkuluri, P Raj

    2015-06-01

    The structure of cytochrome c (GSU3274) designated as PccH from Geobacter sulfurreducens was determined at a resolution of 2.0 Å. PccH is a small (15 kDa) cytochrome containing one c-type heme, found to be essential for the growth of G. sulfurreducens with respect to accepting electrons from graphite electrodes poised at -300 mV versus standard hydrogen electrode. with fumarate as the terminal electron acceptor. The structure of PccH is unique among the monoheme cytochromes described to date. The structural fold of PccH can be described as forming two lobes with the heme sandwiched in a cleft between the two lobes. In addition, PccH has a low reduction potential of -24 mV at pH 7, which is unusual for monoheme cytochromes. Based on difference in structure, together with sequence phylogenetic analysis, we propose that PccH can be regarded as a first characterized example of a new subclass of class I monoheme cytochromes. The low reduction potential of PccH may enable the protein to be redox active at the typically negative potential ranges encountered by G. sulfurreducens. Because PccH is predicted to be located in the periplasm of this bacterium, it could not be involved in the first step of accepting electrons from the electrode but is very likely involved in the downstream electron transport events in the periplasm.

  9. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    Science.gov (United States)

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  10. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  11. A novel Geobacteraceae-specific outer membrane protein J (OmpJ is essential for electron transport to Fe (III and Mn (IV oxides in Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Schiffer Marianne

    2005-07-01

    Full Text Available Abstract Background Metal reduction is thought to take place at or near the bacterial outer membrane and, thus, outer membrane proteins in the model dissimilatory metal-reducing organism Geobacter sulfurreducens are of interest to understand the mechanisms of Fe(III reduction in the Geobacter species that are the predominant Fe(III reducers in many environments. Previous studies have implicated periplasmic and outer membrane cytochromes in electron transfer to metals. Here we show that the most abundant outer membrane protein of G. sulfurreducens, OmpJ, is not a cytochrome yet it is required for metal respiration. Results When outer membrane proteins of G. sulfurreducens were separated via SDS-PAGE, one protein, designated OmpJ (outer membrane protein J, was particularly abundant. The encoding gene, which was identified from mass spectrometry analysis of peptide fragments, is present in other Geobacteraceae, but not in organisms outside this family. The predicted localization and structure of the OmpJ protein suggested that it was a porin. Deletion of the ompJ gene in G. sulfurreducens produced a strain that grew as well as the wild-type strain with fumarate as the electron acceptor but could not grow with metals, such as soluble or insoluble Fe (III and insoluble Mn (IV oxide, as the electron acceptor. The heme c content in the mutant strain was ca. 50% of the wild-type and there was a widespread loss of multiple cytochromes from soluble and membrane fractions. Transmission electron microscopy analyses of mutant cells revealed an unusually enlarged periplasm, which is likely to trigger extracytoplasmic stress response mechanisms leading to the degradation of periplasmic and/or outer membrane proteins, such as cytochromes, required for metal reduction. Thus, the loss of the capacity for extracellular electron transport in the mutant could be due to the missing c-type cytochromes, or some more direct, but as yet unknown, role of OmpJ in metal

  12. A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe (III) and Mn (IV) oxides in Geobacter sulfurreducens

    Science.gov (United States)

    Afkar, Eman; Reguera, Gemma; Schiffer, Marianne; Lovley, Derek R

    2005-01-01

    Background Metal reduction is thought to take place at or near the bacterial outer membrane and, thus, outer membrane proteins in the model dissimilatory metal-reducing organism Geobacter sulfurreducens are of interest to understand the mechanisms of Fe(III) reduction in the Geobacter species that are the predominant Fe(III) reducers in many environments. Previous studies have implicated periplasmic and outer membrane cytochromes in electron transfer to metals. Here we show that the most abundant outer membrane protein of G. sulfurreducens, OmpJ, is not a cytochrome yet it is required for metal respiration. Results When outer membrane proteins of G. sulfurreducens were separated via SDS-PAGE, one protein, designated OmpJ (outer membrane protein J), was particularly abundant. The encoding gene, which was identified from mass spectrometry analysis of peptide fragments, is present in other Geobacteraceae, but not in organisms outside this family. The predicted localization and structure of the OmpJ protein suggested that it was a porin. Deletion of the ompJ gene in G. sulfurreducens produced a strain that grew as well as the wild-type strain with fumarate as the electron acceptor but could not grow with metals, such as soluble or insoluble Fe (III) and insoluble Mn (IV) oxide, as the electron acceptor. The heme c content in the mutant strain was ca. 50% of the wild-type and there was a widespread loss of multiple cytochromes from soluble and membrane fractions. Transmission electron microscopy analyses of mutant cells revealed an unusually enlarged periplasm, which is likely to trigger extracytoplasmic stress response mechanisms leading to the degradation of periplasmic and/or outer membrane proteins, such as cytochromes, required for metal reduction. Thus, the loss of the capacity for extracellular electron transport in the mutant could be due to the missing c-type cytochromes, or some more direct, but as yet unknown, role of OmpJ in metal reduction. Conclusion Omp

  13. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Shrestha, Pravin M; Liu, Fanghua

    2012-01-01

    was comparable in cocultures with that for the formate dehydrogenase mutant of G. sulfurreducens or the wild type, suggesting that H(2) was the primary electron carrier in the wild-type cocultures. Cocultures were also initiated with strains of G. sulfurreducens that could not produce pili or OmcS, two essential...

  14. Thermodynamic and kinetic characterization of two methyl-accepting chemotaxis heme sensors from Geobacter sulfurreducens reveals the structural origin of their functional difference.

    Science.gov (United States)

    Silva, Marta A; Valente, Raquel C; Pokkuluri, P Raj; Turner, David L; Salgueiro, Carlos A; Catarino, Teresa

    2014-06-01

    The periplasmic sensor domains GSU582 and GSU935 are part of methyl-accepting chemotaxis proteins of the bacterium Geobacter sulfurreducens containing one c-type heme and a PAS-like fold. Their spectroscopic properties were shown previously to share similar spectral features. In both sensors, the heme group is in the high-spin form in the oxidized state and low-spin after reduction and binding of a methionine residue. Therefore, it was proposed that this redox-linked ligand switch might be related to the signal transduction mechanism. We now report the thermodynamic and kinetic characterization of the sensors GSU582 and GSU935 by visible spectroscopy and stopped-flow techniques, at several pH and ionic strength values. Despite their similar spectroscopic features, the midpoint reduction potentials and the rate constants for reduction by dithionite are considerably different in the two sensors. The reduction potentials of both sensors are negative and well framed within the typical anoxic subsurface environments in which Geobacter species predominate. The midpoint reduction potentials of sensor GSU935 are lower than those of GSU582 at all pH and ionic strength values and the same was observed for the reduction rate constants. The origin of the different functional properties of these closely related sensors is rationalized in the terms of the structures. The results suggest that the sensors are designed to function in different working potential ranges, allowing the bacteria to trigger an adequate cellular response in different anoxic subsurface environments. These findings provide an explanation for the co-existence of two similar methyl-accepting chemotaxis proteins in G. sulfurreducens.

  15. Outer-membrane cytochrome-c, OmcF, from Geobacter sulfurreducens : high structural similarity to an algal cytochrone c{sub 6}.

    Energy Technology Data Exchange (ETDEWEB)

    Pokkuluri, P. R.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Morgado, L.; Salgueiro, C. A.; Schiffer, M.; Biosciences Division; Univ. Nova de Lisboa, Campus Caparica

    2009-01-01

    Putative outer membrane c-type cytochromes have been implicated in metal ion reducing properties of Geobacter sulfurreducens. OmcF (GSU2432), OmcB (GSU2731), and OmcC are three such proteins that have predicted lipid anchors. MmcF is a monoheme cytochrome, whereas OmcB and OmcC are multiheme cytochromes. Deletion of OmcF was reported to affect the expression of OmcB and OmcC in G. sulfurreducens. The OmcF deficient strain was impaired in its ability to both reduce and grow on Fe(III) citrate probably because the expression fo OmcB, which is crucial for iron reduction, is low in this strain. U(VI) reduction activity of this bacterium is also lower on deletion of OmcB or OmcF. The U(VI) reduction activity is affected more by the deletion of OmcF than by the deletion of OmcB.

  16. Spectroscopic Studies of Abiotic and Biological Nanomaterials: Silver Nanoparticles, Rhodamine 6G Adsorbed on Graphene, and c-Type Cytochromes and Type IV Pili in Geobacter sulfurreducens

    Science.gov (United States)

    Thrall, Elizabeth S.

    This thesis describes spectroscopic studies of three different systems: silver nanoparticles, the dye molecule rhodamine 6G adsorbed on graphene, and the type IV pili and c-type cytochromes produced by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens. Although these systems are quite different in some ways, they can all be considered examples of nanomaterials. A nanomaterial is generally defined as having at least one dimension below 100 nm in size. Silver nanoparticles, with sub-100 nm size in all dimensions, are examples of zero-dimensional nanomaterials. Graphene, a single atomic layer of carbon atoms, is the paradigmatic two-dimensional nanomaterial. And although bacterial cells are on the order of 1 μm in size, the type IV pili and multiheme c-type cytochromes produced by G. sulfurreducens can be considered to be one- and zero-dimensional nanomaterials respectively. A further connection between these systems is their strong interaction with visible light, allowing us to study them using similar spectroscopic tools. The first chapter of this thesis describes research on the plasmon-mediated photochemistry of silver nanoparticles. Silver nanoparticles support coherent electron oscillations, known as localized surface plasmons, at resonance frequencies that depend on the particle size and shape and the local dielectric environment. Nanoparticle absorption and scattering cross-sections are maximized at surface plasmon resonance frequencies, and the electromagnetic field is amplified near the particle surface. Plasmonic effects can enhance the photochemistry of silver particles alone or in conjunction with semiconductors according to several mechanisms. We study the photooxidation of citrate by silver nanoparticles in a photoelectrochemical cell, focusing on the wavelength-dependence of the reaction rate and the role of the semiconductor substrate. We find that the citrate photooxidation rate does not track the plasmon resonance of the silver

  17. Direct Involvement of ombB, omaB and omcB Genes in Extracellular Reduction of Fe(III by Geobacter sulfurreducens PCA

    Directory of Open Access Journals (Sweden)

    Yimo eLiu

    2015-10-01

    Full Text Available The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III-citrate and ferrihydrite [a poorly crystalline Fe(III oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS, a porin-like outer-membrane protein (OmbB/OmbC, a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC and an outer-membrane c-Cyt (OmcB/OmcC. The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III, however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which suggests that absence of any protein subunit eliminates function of OmaB/OmbB/OmcB protein complex. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

  18. Unveiling the Structural Basis That Regulates the Energy Transduction Properties within a Family of Triheme Cytochromes from Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Joana M.; Simões, Telma; Morgado, Leonor; Caciones, Clara; Fernandes, Ana P.; Silva, Marta A.; Bruix, Marta; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2016-10-06

    A family of triheme cytochromes from Geobacter sulfurreducens plays an important role in extracellular electron transfer. In addition to their role in electron transfer pathways, two members of this family (PpcA and PpcD) were also found to be able to couple e(-)/H+ transfer through the redox Bohr effect observed in the physiological pH range, a feature not observed for cytochromes PpcB and PpcE. In attempting to understand the molecular control of the redox Bohr effect in this family of cytochromes, which is highly homologous both in amino acid sequence and structures, it was observed that residue 6 is a conserved leucine in PpcA and PpcD, whereas in the other two characterized members (PpcB and PpcE) the equivalent residue is a phenylalanine. To determine the role of this residue located close to the redox Bohr center, we replaced Leu(6) in PpcA with Phe and determined the redox properties of the mutant, as well as its solution structure in the fully reduced state. In contrast with the native form, the mutant PpcAL6F is not able to couple the e(-)/H+ pathway. We carried out the reverse mutation in PpcB and PpcE (i.e., replacing Phe(6) in these two proteins by leucine) and the mutated proteins showed an increased redox Bohr effect. The results clearly establish the role of residue 6 in the control of the redox Bohr effect in this family of cytochromes, a feature that could enable the rational design of G. sulfurreducens strains that carry mutant cytochromes with an optimal redox Bohr effect that would be suitable for various biotechnological applications.

  19. Laboratory evolution of Geobacter sulfurreducens for enhanced growth on lactate via a single-base-pair substitution in a transcriptional regulator.

    Science.gov (United States)

    Summers, Zarath M; Ueki, Toshiyuki; Ismail, Wael; Haveman, Shelley A; Lovley, Derek R

    2012-05-01

    The addition of organic compounds to groundwater in order to promote bioremediation may represent a new selective pressure on subsurface microorganisms. The ability of Geobacter sulfurreducens, which serves as a model for the Geobacter species that are important in various types of anaerobic groundwater bioremediation, to adapt for rapid metabolism of lactate, a common bioremediation amendment, was evaluated. Serial transfer of five parallel cultures in a medium with lactate as the sole electron donor yielded five strains that could metabolize lactate faster than the wild-type strain. Genome sequencing revealed that all five strains had non-synonymous single-nucleotide polymorphisms in the same gene, GSU0514, a putative transcriptional regulator. Introducing the single-base-pair mutation from one of the five strains into the wild-type strain conferred rapid growth on lactate. This strain and the five adaptively evolved strains had four to eight-fold higher transcript abundance than wild-type cells for genes for the two subunits of succinyl-CoA synthase, an enzyme required for growth on lactate. DNA-binding assays demonstrated that the protein encoded by GSU0514 bound to the putative promoter of the succinyl-CoA synthase operon. The binding sequence was not apparent elsewhere in the genome. These results demonstrate that a single-base-pair mutation in a transcriptional regulator can have a significant impact on the capacity for substrate utilization and suggest that adaptive evolution should be considered as a potential response of microorganisms to environmental change(s) imposed during bioremediation.

  20. HisE11 and HisF8 provide bis-histidyl heme hexa-coordination in the globin domain of Geobacter sulfurreducens globin-coupled sensor.

    Science.gov (United States)

    Pesce, Alessandra; Thijs, Liesbet; Nardini, Marco; Desmet, Filip; Sisinni, Lorenza; Gourlay, Louise; Bolli, Alessandro; Coletta, Massimiliano; Van Doorslaer, Sabine; Wan, Xuehua; Alam, Maqsudul; Ascenzi, Paolo; Moens, Luc; Bolognesi, Martino; Dewilde, Sylvia

    2009-02-13

    Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS(162)) is reported. A combination of X-ray crystallography (crystal structure at 1.5 A resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS(162) as an example of bis-histidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS(162) is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS(162) is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS(162) is a penta-coordinated species, where the proximal HisF8-Fe bond is severed.

  1. Role of Met58 in the regulation of electron/proton transfer in trihaem cytochrome PpcA from Geobacter sulfurreducens

    Science.gov (United States)

    Morgado, Leonor; Dantas, Joana M.; Simões, Telma; Londer, Yuri Y.; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2012-01-01

    The bacterium Gs (Geobacter sulfurreducens) is capable of oxidizing a large variety of compounds relaying electrons out of the cytoplasm and across the membranes in a process designated as extracellular electron transfer. The trihaem cytochrome PpcA is highly abundant in Gs and is most probably the reservoir of electrons destined for the outer surface. In addition to its role in electron transfer pathways, we have previously shown that this protein could perform e−/H+ energy transduction. This mechanism is achieved by selecting the specific redox states that the protein can access during the redox cycle and might be related to the formation of proton electrochemical potential gradient across the periplasmic membrane. The regulatory role of haem III in the functional mechanism of PpcA was probed by replacing Met58, a residue that controls the solvent accessibility of haem III, with serine, aspartic acid, asparagine or lysine. The data obtained from the mutants showed that the preferred e−/H+ transfer pathway observed for PpcA is strongly dependent on the reduction potential of haem III. It is striking to note that one residue can fine tune the redox states that can be accessed by the trihaem cytochrome enough to alter the functional pathways. PMID:23030844

  2. Effect of Dynamic Magnetic Field on Electricity Production of Geobacter sulfurreducens%动态磁场对Geobacter sulfurreducens产电特性的影响

    Institute of Scientific and Technical Information of China (English)

    狄梦洁; 李伟新; 薛诚; 殷瑶; 黄光团

    2015-01-01

    Geobacter sulfurreducens为产电菌构建双室微生物燃料电池(MFC).产电茵液分别在0、100、200mT的垂直磁场下动态处理lh,然后接种到MFC1、MFC2和MFC3中,研究动态磁场处理对MFC产电性能的影响.实验结果表明:动态磁场处理使产电茵反应器的启动时间延长、稳定电压降低、表观内阻增大,MFC1、MFC2和MFC3的表观内阻依次为329、507、353 Ω;通过电化学阻抗谱测试可知,相比对照组MFC活化内阻,经磁场处理的产电菌MFC全电池的活化内阻变大,其中MFC1、MFC2和MFC3的活化内阻依次为12.34、28.29、16.87 Ω;循环伏安测试发现经过动态磁场处理的产电菌其电化学活性降低.

  3. Effects of Anode Potential on the Electricity Generation Performance of Geobacter Sulfurreducens%阳极电势对Geobacter sulfurreducens产电性能的影响

    Institute of Scientific and Technical Information of China (English)

    曹效鑫; 范明志; 梁鹏; 黄霞

    2009-01-01

    以产电模式菌Geobacter sulfurreducens为研究对象接种两瓶型微生物燃料电池(MFC)阳极室,利用恒电位仪控制阳极电势,考察了7种电势条件下MFC的启动期、最大功率密度和阳极生物量的变化情况.研究结果表明,当阳极电势为-250,-100和50 mV(vs.SCE)时,MFC启动较快, CV曲线和极化曲线表明,在这3种电势条件下,MFC产电性能增强,其中阳极电势为-100 mV时,MFC最大功率密度为1.67 W/m3,比固定外阻条件下启动的MFC最大功率密度提高了5倍.控制合适的阳极电势可以使阳极生物量提高 2.5~3倍.

  4. Outer-membrane cytochrome-c, OmcF from Geobacter sulfurreducens: high structural similarity to an algal cytochrome c6.

    Energy Technology Data Exchange (ETDEWEB)

    Pokkuluri, P. R.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Morgado, L.; Salgueiro, C. A.; Schiffer, M.; Biosciences Division; Univ. Nova de Lisboa

    2009-01-01

    Putative outer membrane c-type cytochromes have been implicated in metal ion reducing properties of Geobacter sulfurreducens. OmcF (GSU2432), OmcB (GSU2731), and OmcC (GSU2737) are three such proteins that have predicted lipid anchors. OmcF is a monoheme cytochrome, whereas OmcB and OmcC are multiheme cytochromes. Deletion of OmcF was reported to affect the expression of OmcB and OmcC in G. sulfurreducens. The OmcF deficient strain was impaired in its ability to both reduce and grow on Fe(III) citrate probably because the expression of OmcB, which is crucial for iron reduction, is low in this strain. U(VI) reduction activity of this bacterium is also lower on deletion of OmcB or OmcF. The U(VI) reduction activity is affected more by the deletion of OmcF than by the deletion of OmcB. The soluble part of OmcF (residues 20-104, referred to as OmcF{sub S} hereafter) has sequence similarity to soluble cytochromes c{sub 6} of photosynthetic algae and cyanobacteria. The cytochrome c{sub 6} proteins in algae and cyanobacteria are electron transport proteins that mediate the transfer of electrons from cytochrome b{sub 6}f to photosystem I and have high reduction potentials of about +350 mV and low pI. The structures of seven cytochromes c{sub 6} have been previously determined. Further, a c{sub 6}-like cytochrome (PetJ2) of unknown function was recently identified in Synechoccus sp. PCC 7002 with a reduction potential of +148 mV and high pI. Here, we report the structure of OmcF{sub S} and its remarkable structural similarity to that of cytochrome c{sub 6} from the green alga, Monoraphidium braunii. To our knowledge, OmcF{sub S} is the first example of a cytochrome c{sub 6}-like structure from a nonphotosynthetic organism.

  5. Survival during long-term starvation: global proteomics analysis of Geobacter sulfurreducens under prolonged electron-acceptor limitation.

    Science.gov (United States)

    Bansal, Reema; Helmus, Ruth A; Stanley, Bruce A; Zhu, Junjia; Liermann, Laura J; Brantley, Susan L; Tien, Ming

    2013-10-04

    The bioavailability of terminal electron acceptors (TEAs) and other substrates affects the efficiency of subsurface bioremediation. While it is often argued that microorganisms exist under "feast or famine", in the laboratory most organisms are studied under "feast" conditions, whereas they typically encounter "famine" in nature. The work described here aims to understand the survival strategies of the anaerobe Geobacter sulfurreduces under TEA-starvation conditions. Cultures were starved for TEA and at various times sampled to perform global comparative proteomic analysis using iTRAQ to obtain insight into the dynamics of change in proteins/enzymes expression associated with change in nutrient availability/environmental stress. Proteins varying in abundance with a high level of statistical significance (p Geobacter under starvation conditions. The cell shuts down anabolic processes and becomes poised, through changes in its membrane proteins, to sense nutrients in the environment, to transport nutrients into the cell, and to detect or utilize TEAs that are encountered. Under TEA-limiting conditions, the cells turned from translucent white to red in color, indicating higher heme content. The increase in heme content supported proteomics results showing an increase in the number of cytochromes involved in membrane electron transport during the survival phase. The cell is also highly reduced with minimal change in energy charge (ATP to total adenine nucleotide ratio). Nonetheless, these proteomic and biochemical results indicate that even under TEA starvation cells remain poised for bioremediation.

  6. Structures and solution properties of two novel periplasmic sensor domains with c-type heme from chemotaxis proteins of Geobacter sulfurreducens : implications for signal transduction.

    Energy Technology Data Exchange (ETDEWEB)

    Pokkuluri, P. R.; Pessanha, M.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Wilton, R.; Catarino, T.; Salgueiro, C. A.; Schiffer, M.; Biosciences Division; Univ.Nova de Lisboa; Insti. de Tecnologia Quimica e Biologica

    2008-04-11

    Periplasmic sensor domains from two methyl-accepting chemotaxis proteins from Geobacter sulfurreducens (encoded by genes GSU0935 and GSU0582) were expressed in Escherichia coli. The sensor domains were isolated, purified, characterized in solution, and their crystal structures were determined. In the crystal, both sensor domains form swapped dimers and show a PAS-type fold. The swapped segment consists of two helices of about 45 residues at the N terminus with the hemes located between the two monomers. In the case of the GSU0582 sensor, the dimer contains a crystallographic 2-fold symmetry and the heme is coordinated by an axial His and a water molecule. In the case of the GSU0935 sensor, the crystals contain a non-crystallographic dimer, and surprisingly, the coordination of the heme in each monomer is different; monomer A heme has His-Met ligation and monomer B heme has His-water ligation as found in the GSU0582 sensor. The structures of these sensor domains are the first structures of PAS domains containing covalently bound heme. Optical absorption, electron paramagnetic resonance and NMR spectroscopy have revealed that the heme groups of both sensor domains are high-spin and low-spin in the oxidized and reduced forms, respectively, and that the spin-state interconversion involves a heme axial ligand replacement. Both sensor domains bind NO in their ferric and ferrous forms but bind CO only in the reduced form. The binding of both NO and CO occurs via an axial ligand exchange process, and is fully reversible. The reduction potentials of the sensor domains differ by 95 mV (-156 mV and -251 mV for sensors GSU0582 and GSU0935, respectively). The swapped dimerization of these sensor domains and redox-linked ligand switch might be related to the mechanism of signal transduction by these chemotaxis proteins.

  7. Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances.

    Science.gov (United States)

    Dantas, Joana M; Morgado, Leonor; Catarino, Teresa; Kokhan, Oleksandr; Pokkuluri, P Raj; Salgueiro, Carlos A

    2014-06-01

    The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.

  8. Bidirectional Photoinduced Electron Transfer in Ruthenium(II)-tris-Bipyridyl Modified PpcA, a Multi-Heme c-type Cytochrome from Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Kokhan, Oleksandr; Ponomarenko, Nina S.; Pokkuluri, Phani R.; Schiffer, Marianne; Mulfort, Karen L.; Tiede, David M.

    2015-06-18

    PpcA, a tri-heme cytochrome c7 from Geobacter sulfurreducens was investigated as a model for photosensitizer-initiated electron transfer within a multi-heme "molecular wire" protein architecture. E. coli expression of PpcA was found to be tolerant of cysteine site-directed mutagenesis, demonstrated by the successful expression of natively folded proteins bearing cysteine mutations at a series of sites selected to vary characteristically with respect to the three -CXXCH- heme binding domains. A preliminary survey of 5 selected mutants found that the introduced cysteines can be readily covalently linked to a Ru(II)-(2,2'-bpy)2(4-bromomethyl-4’-methyl-2,2'-bpy) photosensitizer (where bpy = bipyridine), and that the linked constructs support both photo-oxidative and photo-reductive quenching of the photosensitizer excited-state, depending upon the initial heme redox state. For photo-oxidative electron transfer, apparent heme reduction risetimes were found to vary from 7 x 10-12 s to 5 x 10-8 s, depending upon the site of photosensitizer linking. The excited-state electron transfers are about 103-fold faster than any previously reported photosensitizer-redox protein covalently linked construct. Preliminary conformational analysis using molecular dynamics simulations shows that rates for electron transfer track both the distance and pathways for electron transfer. Two mutants with the fastest charge transfer rates, A23C and K29C, showed a significant role of specific paths for electron transfer. While K29C labeled mutant was expected to have approximately 0.8Å greater donor-acceptor distance, it showed 20-fold faster charge separation rate. Clear evidence for inter-heme electron transfer within the multi-heme protein is not detected within the lifetimes of the charge separated states. These results demonstrate an opportunity to develop multi-heme c-cytochromes for investigation of electron transfer in protein "molecular wires" and to serve as frameworks for

  9. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.

    Science.gov (United States)

    Commault, Audrey S; Lear, Gavin; Weld, Richard J

    2015-12-01

    Geobacter-dominated biofilms can be selected under stringent conditions that limit the growth of competing bacteria. However, in many practical applications, such stringent conditions cannot be maintained and the efficacy and stability of these artificial biofilms may be challenged. In this work, biofilms were selected on low-potential anodes (-0.36 V vs Ag/AgCl, i.e. -0.08 V vs SHE) in minimal acetate or ethanol media. Selection conditions were then relaxed by transferring the biofilms to synthetic wastewater supplemented with soil as a source of competing bacteria. We tracked community succession and functional changes in these biofilms. The Geobacter-dominated biofilms showed stability in their community composition and electrochemical properties, with Geobacter sp. being still electrically active after six weeks in synthetic wastewater with power densities of 100±19 mW·m(-2) (against 74±14 mW·m(-2) at week 0) for all treatments. After six weeks, the ethanol-selected biofilms, despite their high taxon richness and their efficiency at removing the chemical oxygen demand (0.8 g·L(-1) removed against the initial 1.3 g·L(-1) injected), were the least stable in terms of community structure. These findings have important implications for environmental microbial fuel cells based on Geobacter-dominated biofilms and suggest that they could be stable in challenging environments.

  10. Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell.

    Science.gov (United States)

    Call, Douglas F; Wagner, Rachel C; Logan, Bruce E

    2009-12-01

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m(3) H2/m3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 +/- 7 A/m3 and 1.3 +/- 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% +/- 8% compared to G. sulfurreducens (77% +/- 2%) and G. metallireducens (78% +/- 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% +/- 16% compared to 80% +/- 5% for G. sulfurreducens and 76% +/- 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 +/- 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current.

  11. Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions.

    Science.gov (United States)

    Sun, Dan; Call, Douglas; Wang, Aijie; Cheng, Shaoan; Logan, Bruce E

    2014-12-01

    An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G. sulfurreducens PCA and Geobacter metallireducens GS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290 ± 29 A m−3 in a high-concentration phosphate buffer solution (PBS-H, 200 mM). This current density was significantly higher than that produced by the mixed culture (189 ± 44 A m−3) or the type strains (Geobacter strains and mixed cultures in terms of its salt tolerance.

  12. Protozoan grazing reduces the current output of microbial fuel cells.

    Science.gov (United States)

    Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R

    2015-10-01

    Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells.

  13. De Novo assembly of the complete genome of an enhanced electricity-producing variant of Geobacter sulfurreducens using only short reads.

    Directory of Open Access Journals (Sweden)

    Harish Nagarajan

    Full Text Available State-of-the-art DNA sequencing technologies are transforming the life sciences due to their ability to generate nucleotide sequence information with a speed and quantity that is unapproachable with traditional Sanger sequencing. Genome sequencing is a principal application of this technology, where the ultimate goal is the full and complete sequence of the organism of interest. Due to the nature of the raw data produced by these technologies, a full genomic sequence attained without the aid of Sanger sequencing has yet to be demonstrated.We have successfully developed a four-phase strategy for using only next-generation sequencing technologies (Illumina and 454 to assemble a complete microbial genome de novo. We applied this approach to completely assemble the 3.7 Mb genome of a rare Geobacter variant (KN400 that is capable of unprecedented current production at an electrode. Two key components of our strategy enabled us to achieve this result. First, we integrated the two data types early in the process to maximally leverage their complementary characteristics. And second, we used the output of different short read assembly programs in such a way so as to leverage the complementary nature of their different underlying algorithms or of their different implementations of the same underlying algorithm.The significance of our result is that it demonstrates a general approach for maximizing the efficiency and success of genome assembly projects as new sequencing technologies and new assembly algorithms are introduced. The general approach is a meta strategy, wherein sequencing data are integrated as early as possible and in particular ways and wherein multiple assembly algorithms are judiciously applied such that the deficiencies in one are complemented by another.

  14. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  15. Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species.

    Science.gov (United States)

    Ueki, Toshiyuki; Lovley, Derek R

    2010-01-01

    Geobacter species play important roles in bioremediation of contaminated environments and in electricity production from waste organic matter in microbial fuel cells. To better understand physiology of Geobacter species, expression and function of citrate synthase, a key enzyme in the TCA cycle that is important for organic acid oxidation in Geobacter species, was investigated. Geobacter sulfurreducens did not require citrate synthase for growth with hydrogen as the electron donor and fumarate as the electron acceptor. Expression of the citrate synthase gene, gltA, was repressed by a transcription factor under this growth condition. Functional and comparative genomics approaches, coupled with genetic and biochemical assays, identified a novel transcription factor termed HgtR that acts as a repressor for gltA. Further analysis revealed that HgtR is a global regulator for genes involved in biosynthesis and energy generation in Geobacter species. The hgtR gene was essential for growth with hydrogen, during which hgtR expression was induced. These findings provide important new insights into the mechanisms by which Geobacter species regulate their central metabolism under different environmental conditions.

  16. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell▿

    Science.gov (United States)

    Call, Douglas F.; Wagner, Rachel C.; Logan, Bruce E.

    2009-01-01

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m3 H2/m3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 ± 7 A/m3 and 1.3 ± 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% ± 8% compared to G. sulfurreducens (77% ± 2%) and G. metallireducens (78% ± 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% ± 16% compared to 80% ± 5% for G. sulfurreducens and 76% ± 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 ± 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current. PMID:19820150

  17. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell

    KAUST Repository

    Call, D. F.

    2009-10-09

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m3 H2/m 3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 ± 7 A/m3 and 1.3 ± 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% ± 8% compared to G. sulfurreducens (77% ± 2%) and G. metallireducens (78% ± 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% ± 16% compared to 80% ± 5% for G. sulfurreducens and 76% ± 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 ± 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current. Copyright

  18. A C-Type Cytochrome and a Transcriptional Regulator Responsible for Enhanced Extracellular Electron Transfer in Geobacter Sulfurreducens Revealed by Adaptive Evolution

    Science.gov (United States)

    2010-01-01

    ducens fuel cells. Appl Environ Microbiol 72: 7345–7348. Sambrook, J., Fritsch, E.F., and Maniatis , T. (1989) Molecular Cloning : A Laboratory Manual... Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA. 3Department of Bioengineering, University of California, San Diego, La...ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,Center for Bio/ Molecular Science and Engineering,Washington,DC,20375 8. PERFORMING

  19. Changes in protein expression across laboratory and field experiments in Geobacter bemidjiensis

    Energy Technology Data Exchange (ETDEWEB)

    Merkley, Eric D.; Wrighton, Kelly C.; Castelle, Cindy; Anderson, Brian J.; Wilkins, Michael J.; Shah, Vega; Arbour, Tyler; Brown, Joseph N.; Singer, Steven W.; Smith, Richard D.; Lipton, Mary S.

    2015-03-06

    Bacterial extracellular metal respiration, as carried out by members of the genus Geobacter, is of interest for applications including microbial fuel cells and bioremediation. Geobacter bemidjiensis is the major species whose growth is stimulated during groundwater amendment with acetate. We have carried out label-free proteomics studies of Geobacter bemidjiensis grown with acetate as the electron donor and either fumarate, ferric citrate, or one of two hydrous ferric oxide mineral types as electron acceptor. The major class of proteins whose expression changes across these conditions is c-type cytochromes, many of which are known to be involved in extracellular metal reduction in other, better-characterized Geobacter species. Some proteins with multiple homologues in G. bemidjiensis (OmcS, OmcB) had different expression patterns than observed for their G. sulfurreducens homologues under similar growth conditions. We also compared the proteome from our study to a prior proteomics study of biomass recovered from an aquifer in Colorado, where the microbial community was dominated by strains closely-related to G. bemidjiensis. We detected an increased number of proteins with functions related to motility and chemotaxis in the Colorado field samples compared to the laboratory samples, suggesting the importance of motility for in situ extracellular metal respiration.

  20. Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems.

    Science.gov (United States)

    Sun, Dan; Wang, Aijie; Cheng, Shaoan; Yates, Matthew; Logan, Bruce E

    2014-10-01

    A previously isolated exoelectrogenic bacterium, strain SD-1(T), was further characterized and identified as a representative of a novel species of the genus Geobacter. Strain SD-1(T) was Gram-negative, aerotolerant, anaerobic, non-spore-forming, non-fermentative and non-motile. Cells were short, curved rods (0.8-1.3 µm long and 0.3 µm in diameter). Growth of strain SD-1(T) was observed at 15-42 °C and pH 6.0-8.5, with optimal growth at 30-35 °C and pH 7. Analysis of 16S rRNA gene sequences indicated that the isolate was a member of the genus Geobacter, with the closest known relative being Geobacter sulfurreducens PCA(T) (98% similarity). Similar to other members of the genus Geobacter, strain SD-1(T) used soluble or insoluble Fe(III) as the sole electron acceptor coupled with the oxidation of acetate. However, SD-1(T) could not reduce fumarate as an electron acceptor with acetate oxidization, which is an important physiological trait for G. sulfurreducens. Moreover, SD-1(T) could grow in media containing as much as 3% NaCl, while G. sulfurreducens PCA(T) can tolerate just half this concentration, and this difference in salt tolerance was even more obvious when cultivated in bioelectrochemical systems. DNA-DNA hybridization analysis of strain SD-1(T) and its closest relative, G. sulfurreducens ATCC 51573(T), showed a relatedness of 61.6%. The DNA G+C content of strain SD-1(T) was 58.9 mol%. Thus, on the basis of these characteristics, strain SD-1(T) was not assigned to G. sulfurreducens, and was instead classified in the genus Geobacter as a representative of a novel species. The name Geobacter anodireducens sp. nov. is proposed, with the type strain SD-1(T) ( = CGMCC 1.12536(T) = KCTC 4672(T)).

  1. Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical systems

    KAUST Repository

    Sun, D.

    2014-07-22

    © 2014 IUMS. A previously isolated exoelectrogenic bacterium, strain SD-1(T), was further characterized and identified as a representative of a novel species of the genus Geobacter. Strain SD-1(T) was Gram-negative, aerotolerant, anaerobic, non-spore-forming, non-fermentative and non-motile. Cells were short, curved rods (0.8-1.3 µm long and 0.3 µm in diameter). Growth of strain SD-1(T) was observed at 15-42 °C and pH 6.0-8.5, with optimal growth at 30-35 °C and pH 7. Analysis of 16S rRNA gene sequences indicated that the isolate was a member of the genus Geobacter, with the closest known relative being Geobacter sulfurreducens PCA(T) (98% similarity). Similar to other members of the genus Geobacter, strain SD-1(T) used soluble or insoluble Fe(III) as the sole electron acceptor coupled with the oxidation of acetate. However, SD-1(T) could not reduce fumarate as an electron acceptor with acetate oxidization, which is an important physiological trait for G. sulfurreducens. Moreover, SD-1(T) could grow in media containing as much as 3% NaCl, while G. sulfurreducens PCA(T) can tolerate just half this concentration, and this difference in salt tolerance was even more obvious when cultivated in bioelectrochemical systems. DNA-DNA hybridization analysis of strain SD-1(T) and its closest relative, G. sulfurreducens ATCC 51573(T), showed a relatedness of 61.6%. The DNA G+C content of strain SD-1(T) was 58.9 mol%. Thus, on the basis of these characteristics, strain SD-1(T) was not assigned to G. sulfurreducens, and was instead classified in the genus Geobacter as a representative of a novel species. The name Geobacter anodireducens sp. nov. is proposed, with the type strain SD-1(T) ( = CGMCC 1.12536(T) = KCTC 4672(T)).

  2. Changes in protein expression across laboratory and field experiments in Geobacter bemidjiensis.

    Science.gov (United States)

    Merkley, Eric D; Wrighton, Kelly C; Castelle, Cindy J; Anderson, Brian J; Wilkins, Michael J; Shah, Vega; Arbour, Tyler; Brown, Joseph N; Singer, Steven W; Smith, Richard D; Lipton, Mary S

    2015-03-06

    Bacterial extracellular metal respiration, as carried out by members of the genus Geobacter, is of interest for applications including microbial fuel cells and bioremediation. Geobacter bemidjiensis is the major species whose growth is stimulated during groundwater amendment with acetate. We have carried out label-free proteomics studies of G. bemidjiensis grown with acetate as the electron donor and either fumarate, ferric citrate, or one of two hydrous ferric oxide mineral types as electron acceptor. The major class of proteins whose expression changes across these conditions is c-type cytochromes, many of which are known to be involved in extracellular metal reduction in other, better-characterized Geobacter species. Some proteins with multiple homologues in G. bemidjiensis (OmcS, OmcB) had different expression patterns than observed for their G. sulfurreducens homologues under similar growth conditions. We also compared the proteome from our study to a prior proteomics study of biomass recovered from an aquifer in Colorado, where the microbial community was dominated by strains closely related to G. bemidjiensis. We detected an increased number of proteins with functions related to motility and chemotaxis in the Colorado field samples compared to the laboratory samples, suggesting the importance of motility for in situ extracellular metal respiration.

  3. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  4. A long way to the electrode: how do Geobacter cells transport their electrons?

    Science.gov (United States)

    Bonanni, Pablo Sebastián; Schrott, Germán David; Busalmen, Juan Pablo

    2012-12-01

    The mechanism of electron transport in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in electron transport to the electrode remains to be elucidated and a consensus on the mechanism of electron transport has not been reached. In the present paper, to understand the state of the art in the topic, electron transport from inside of the cell to the electrode in Geobacter sulfurreducens biofilms is analysed, reviewing genetic studies, biofilm conductivity assays and electrochemical and spectro-electrochemical experiments. Furthermore, crucial data still required to achieve a deeper understanding are highlighted.

  5. Identification of multicomponent histidine-aspartate phosphorelay system controlling flagellar and motility gene expression in Geobacter species.

    Science.gov (United States)

    Ueki, Toshiyuki; Leang, Ching; Inoue, Kengo; Lovley, Derek R

    2012-03-30

    Geobacter species play an important role in the natural biogeochemical cycles of aquatic sediments and subsurface environments as well as in subsurface bioremediation by oxidizing organic compounds with the reduction of insoluble Fe(III) oxides. Flagellum-based motility is considered to be critical for Geobacter species to locate fresh sources of Fe(III) oxides. Functional and comparative genomic approaches, coupled with genetic and biochemical methods, identified key regulators for flagellar gene expression in Geobacter species. A master transcriptional regulator, designated FgrM, is a member of the enhancer-binding protein family. The fgrM gene in the most studied strain of Geobacter species, Geobacter sulfurreducens strain DL-1, is truncated by a transposase gene, preventing flagellar biosynthesis. Integrating a functional FgrM homolog restored flagellar biosynthesis and motility in G. sulfurreducens DL-1 and enhanced the ability to reduce insoluble Fe(III) oxide. Interrupting the fgrM gene in G. sulfurreducens strain KN400, which is motile, removed the capacity for flagellar production and inhibited Fe(III) oxide reduction. FgrM, which is also a response regulator of the two-component His-Asp phosphorelay system, was phosphorylated by histidine kinase GHK4, which was essential for flagellar production and motility. GHK4, which is a hybrid kinase with a receiver domain at the N terminus, was phosphorylated by another histidine kinase, GHK3. Therefore, the multicomponent His-Asp phosphorelay system appears to control flagellar gene expression in Geobacter species.

  6. Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp.

    Science.gov (United States)

    Kato, Souichiro; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-01-01

    Some bacteria utilize (semi)conductive iron-oxide minerals as conduits for extracellular electron transfer (EET) to distant, insoluble electron acceptors. A previous study demonstrated that microbe/mineral conductive networks are constructed in soil ecosystems, in which Geobacter spp. share dominant populations. In order to examine how (semi)conductive iron-oxide minerals affect EET paths of Geobacter spp., the present study grew five representative Geobacter strains on electrodes as the sole electron acceptors in the absence or presence of (semi)conductive iron oxides. It was found that iron-oxide minerals enhanced current generation by three Geobacter strains, while no effect was observed in another strain. Geobacter sulfurreducens was the only strain that generated substantial amounts of currents both in the presence and absence of the iron oxides. Microscopic, electrochemical and transcriptomic analyses of G. sulfurreducens disclosed that this strain constructed two distinct types of EET path; in the absence of iron-oxide minerals, bacterial biofilms rich in extracellular polymeric substances were constructed, while composite networks made of mineral particles and microbial cells (without polymeric substances) were developed in the presence of iron oxides. It was also found that uncharacterized c-type cytochromes were up-regulated in the presence of iron oxides that were different from those found in conductive biofilms. These results suggest the possibility that natural (semi)conductive minerals confer energetic and ecological advantages on Geobacter, facilitating their growth and survival in the natural environment.

  7. Anaerobic benzene oxidation via phenol in Geobacter metallireducens.

    Science.gov (United States)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A; Bain, Timothy S; Lovley, Derek R

    2013-12-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with (18)O during growth in H2(18)O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.

  8. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil.

    Science.gov (United States)

    Cabezas, Angela; Pommerenke, Bianca; Boon, Nico; Friedrich, Michael W

    2015-06-01

    Plant-based sediment microbial fuel cells (PMFCs) couple the oxidation of root exudates in living rice plants to current production. We analysed the composition of the microbial community on anodes from PMFC with natural rice field soil as substratum for rice by analysing 16S rRNA as an indicator of microbial activity and diversity. Terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the active bacterial community on anodes from PMFCs differed strongly compared with controls. Moreover, clones related to Deltaproteobacteria and Chloroflexi were highly abundant (49% and 21%, respectively) on PMFCs anodes. Geobacter (19%), Anaeromyxobacter (15%) and Anaerolineae (17%) populations were predominant on anodes with natural rice field soil and differed strongly from those previously detected with potting soil. In open circuit (OC) control PMFCs, not allowing electron transfer, Deltaproteobacteria (33%), Betaproteobacteria (20%), Chloroflexi (12%), Alphaproteobacteria (10%) and Firmicutes (10%) were detected. The presence of an electron accepting anode also had a strong influence on methanogenic archaea. Hydrogenotrophic methanogens were more active on PMFC (21%) than on OC controls (10%), whereas acetoclastic Methanosaetaceae were more active on OC controls (31%) compared with PMFCs (9%). In conclusion, electron accepting anodes and rice root exudates selected for distinct potential anode-reducing microbial populations in rice soil inoculated PMFC.

  9. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens.

    Science.gov (United States)

    Smith, Jessica A; Lovley, Derek R; Tremblay, Pier-Luc

    2013-02-01

    Geobacter species are important Fe(III) reducers in a diversity of soils and sediments. Mechanisms for Fe(III) oxide reduction have been studied in detail in Geobacter sulfurreducens, but a number of the most thoroughly studied outer surface components of G. sulfurreducens, particularly c-type cytochromes, are not well conserved among Geobacter species. In order to identify cellular components potentially important for Fe(III) oxide reduction in Geobacter metallireducens, gene transcript abundance was compared in cells grown on Fe(III) oxide or soluble Fe(III) citrate with whole-genome microarrays. Outer-surface cytochromes were also identified. Deletion of genes for c-type cytochromes that had higher transcript abundance during growth on Fe(III) oxides and/or were detected in the outer-surface protein fraction identified six c-type cytochrome genes, that when deleted removed the capacity for Fe(III) oxide reduction. Several of the c-type cytochromes which were essential for Fe(III) oxide reduction in G. metallireducens have homologs in G. sulfurreducens that are not important for Fe(III) oxide reduction. Other genes essential for Fe(III) oxide reduction included a gene predicted to encode an NHL (Ncl-1-HT2A-Lin-41) repeat-containing protein and a gene potentially involved in pili glycosylation. Genes associated with flagellum-based motility, chemotaxis, and pili had higher transcript abundance during growth on Fe(III) oxide, consistent with the previously proposed importance of these components in Fe(III) oxide reduction. These results demonstrate that there are similarities in extracellular electron transfer between G. metallireducens and G. sulfurreducens but the outer-surface c-type cytochromes involved in Fe(III) oxide reduction are different.

  10. Geobacter: the microbe electric's physiology, ecology, and practical applications.

    Science.gov (United States)

    Lovley, Derek R; Ueki, Toshiyuki; Zhang, Tian; Malvankar, Nikhil S; Shrestha, Pravin M; Flanagan, Kelly A; Aklujkar, Muktak; Butler, Jessica E; Giloteaux, Ludovic; Rotaru, Amelia-Elena; Holmes, Dawn E; Franks, Ashley E; Orellana, Roberto; Risso, Carla; Nevin, Kelly P

    2011-01-01

    Geobacter species specialize in making electrical contacts with extracellular electron acceptors and other organisms. This permits Geobacter species to fill important niches in a diversity of anaerobic environments. Geobacter species appear to be the primary agents for coupling the oxidation of organic compounds to the reduction of insoluble Fe(III) and Mn(IV) oxides in many soils and sediments, a process of global biogeochemical significance. Some Geobacter species can anaerobically oxidize aromatic hydrocarbons and play an important role in aromatic hydrocarbon removal from contaminated aquifers. The ability of Geobacter species to reductively precipitate uranium and related contaminants has led to the development of bioremediation strategies for contaminated environments. Geobacter species produce higher current densities than any other known organism in microbial fuel cells and are common colonizers of electrodes harvesting electricity from organic wastes and aquatic sediments. Direct interspecies electron exchange between Geobacter species and syntrophic partners appears to be an important process in anaerobic wastewater digesters. Functional and comparative genomic studies have begun to reveal important aspects of Geobacter physiology and regulation, but much remains unexplored. Quantifying key gene transcripts and proteins of subsurface Geobacter communities has proven to be a powerful approach to diagnose the in situ physiological status of Geobacter species during groundwater bioremediation. The growth and activity of Geobacter species in the subsurface and their biogeochemical impact under different environmental conditions can be predicted with a systems biology approach in which genome-scale metabolic models are coupled with appropriate physical/chemical models. The proficiency of Geobacter species in transferring electrons to insoluble minerals, electrodes, and possibly other microorganisms can be attributed to their unique "microbial nanowires," pili

  11. GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP.

    Science.gov (United States)

    Kellenberger, Colleen A; Wilson, Stephen C; Hickey, Scott F; Gonzalez, Tania L; Su, Yichi; Hallberg, Zachary F; Brewer, Thomas F; Iavarone, Anthony T; Carlson, Hans K; Hsieh, Yu-Fang; Hammond, Ming C

    2015-04-28

    Cyclic dinucleotides are an expanding class of signaling molecules that control many aspects of bacterial physiology. A synthase for cyclic AMP-GMP (cAG, also referenced as 3'-5', 3'-5' cGAMP) called DncV is associated with hyperinfectivity of Vibrio cholerae but has not been found in many bacteria, raising questions about the prevalence and function of cAG signaling. We have discovered that the environmental bacterium Geobacter sulfurreducens produces cAG and uses a subset of GEMM-I class riboswitches (GEMM-Ib, Genes for the Environment, Membranes, and Motility) as specific receptors for cAG. GEMM-Ib riboswitches regulate genes associated with extracellular electron transfer; thus cAG signaling may control aspects of bacterial electrophysiology. These findings expand the role of cAG beyond organisms that harbor DncV and beyond pathogenesis to microbial geochemistry, which is important to environmental remediation and microbial fuel cell development. Finally, we have developed an RNA-based fluorescent biosensor for live-cell imaging of cAG. This selective, genetically encodable biosensor will be useful to probe the biochemistry and cell biology of cAG signaling in diverse bacteria.

  12. Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains.

    Science.gov (United States)

    Yan, Jun; Ritalahti, Kirsti M; Wagner, Darlene D; Löffler, Frank E

    2012-09-01

    Dehalococcoides mccartyi strains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems. Dehalococcoides lacks the ability for de novo corrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B(12)) for growth. In contrast, Geobacter lovleyi, which dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE), and the nondechlorinating species Geobacter sulfurreducens have complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium. G. lovleyi-D. mccartyi strain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, and cis-DCE was dechlorinated to vinyl chloride and ethene concomitant with Dehalococcoides growth. In contrast, negligible increase in Dehalococcoides 16S rRNA gene copies and insignificant dechlorination occurred in G. sulfurreducens-D. mccartyi strain BAV1 or strain FL2 cocultures. Apparently, G. lovleyi produces a cobamide that complements Dehalococcoides' nutritional requirements, whereas G. sulfurreducens does not. Interestingly, Dehalococcoides dechlorination activity and growth could be restored in G. sulfurreducens-Dehalococcoides cocultures by adding 10 μM 5',6'-dimethylbenzimidazole. Observations made with the G. sulfurreducens-Dehalococcoides cocultures suggest that the exchange of the lower ligand generated a cobalamin, which supported Dehalococcoides activity. These findings have implications for in situ bioremediation and suggest that the corrinoid metabolism of Dehalococcoides must be understood to faithfully predict, and possibly enhance, reductive dechlorination activities.

  13. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments.

    Science.gov (United States)

    Zhuang, Kai; Izallalen, Mounir; Mouser, Paula; Richter, Hanno; Risso, Carla; Mahadevan, Radhakrishnan; Lovley, Derek R

    2011-02-01

    The advent of rapid complete genome sequencing, and the potential to capture this information in genome-scale metabolic models, provide the possibility of comprehensively modeling microbial community interactions. For example, Rhodoferax and Geobacter species are acetate-oxidizing Fe(III)-reducers that compete in anoxic subsurface environments and this competition may have an influence on the in situ bioremediation of uranium-contaminated groundwater. Therefore, genome-scale models of Geobacter sulfurreducens and Rhodoferax ferrireducens were used to evaluate how Geobacter and Rhodoferax species might compete under diverse conditions found in a uranium-contaminated aquifer in Rifle, CO. The model predicted that at the low rates of acetate flux expected under natural conditions at the site, Rhodoferax will outcompete Geobacter as long as sufficient ammonium is available. The model also predicted that when high concentrations of acetate are added during in situ bioremediation, Geobacter species would predominate, consistent with field-scale observations. This can be attributed to the higher expected growth yields of Rhodoferax and the ability of Geobacter to fix nitrogen. The modeling predicted relative proportions of Geobacter and Rhodoferax in geochemically distinct zones of the Rifle site that were comparable to those that were previously documented with molecular techniques. The model also predicted that under nitrogen fixation, higher carbon and electron fluxes would be diverted toward respiration rather than biomass formation in Geobacter, providing a potential explanation for enhanced in situ U(VI) reduction in low-ammonium zones. These results show that genome-scale modeling can be a useful tool for predicting microbial interactions in subsurface environments and shows promise for designing bioremediation strategies.

  14. Genome-scale constraint-based modeling of Geobacter metallireducens

    Directory of Open Access Journals (Sweden)

    Famili Iman

    2009-01-01

    Full Text Available Abstract Background Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. Results The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome

  15. Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species

    Directory of Open Access Journals (Sweden)

    Souichiro Kato

    2017-01-01

    Full Text Available Geobacter species are capable of utilizing solid-state compounds, including anodic electrodes, as electron acceptors of respiration via extracellular electron transfer (EET and have attracted considerable attention for their crucial role as biocatalysts of bioelectrochemical systems (BES’s. Recent studies disclosed that anode potentials affect power output and anodic microbial communities, including selection of dominant Geobacter species, in various BES’s. However, the details in current-generating properties and responses to anode potentials have been investigated only for a model species, namely Geobacter sulfurreducens. In this study, the effects of anode potentials on the current generation and the EET paths were investigated by cultivating six Geobacter species with different anode potentials, followed by electrochemical analyses. The electrochemical cultivation demonstrated that the G. metallireducens clade species (G. sulfurreducens and G. metallireducens constantly generate high current densities at a wide range of anode potentials (≥−0.3 or −0.2 V vs. Ag/AgCl, while the subsurface clades species (G. daltonii, G. bemidjensis, G. chapellei, and G. pelophilus generate a relatively large current only at limited potential regions (−0.1 to −0.3 V vs. Ag/AgCl. The linear sweep voltammetry analyses indicated that the G. metallireducens clade species utilize only one EET path irrespective of the anode potentials, while the subsurface clades species utilize multiple EET paths, which can be optimized depending on the anode potentials. These results clearly demonstrate that the response features to anode potentials are divergent among species (or clades of Geobacter.

  16. Link Between Capacity for Current Production and Syntrophic Growth in Geobacter species

    Directory of Open Access Journals (Sweden)

    Amelia-Elena eRotaru

    2015-07-01

    Full Text Available Electrodes are unnatural electron acceptors, and it is yet unknown how some Geobacter species evolved to use electrodes as terminal electron acceptors. Analysis of different Geobacter species revealed that they varied in their capacity for current production. G. metallireducens and G. hydrogenophilus generated high current densities (ca. 0.05 mA/cm2, comparable to G. sulfurreducens. G. bremensis, G. chapellei, G. humireducens, and G. uranireducens, produced much lower currents (ca. 0.05 mA/cm2 and G. bemidjiensis was previously found to not produce current. There was no correspondence between the effectiveness of current generation and Fe(III oxide reduction rates. Some high-current-density strains (G. metallireducens and G. hydrogenophilus reduced Fe(III-oxides as fast as some low-current-density strains (G. bremensis, G. humireducens, and G. uranireducens whereas other low-current-density strains (G. bemidjiensis and G. chapellei reduced Fe(III oxide as slowly as G. sulfurreducens, a high-current-density strain. However, there was a correspondence between the ability to produce higher currents and the ability to grow syntrophically. G. hydrogenophilius was found to grow in co-culture with Methanosarcina barkeri, which is capable of direct interspecies electron transfer (DIET, but not with Methanospirillium hungatei capable only of H2 or formate transfer. Conductive granular activated carbon (GAC stimulated metabolism of the G. hydrogenophilus - M. barkeri co-culture, consistent with electron exchange via DIET. These findings, coupled with the previous finding that G. metallireducens and G. sulfurreducens are also capable of DIET, suggest that evolution to optimize DIET has fortuitiously conferred the capability for high-density current production to some Geobacter species.

  17. Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type Cytochrome Essential for Optimal Current Production by Geobacter sulfurreducens▿ †

    Science.gov (United States)

    Inoue, Kengo; Qian, Xinlei; Morgado, Leonor; Kim, Byoung-Chan; Mester, Tünde; Izallalen, Mounir; Salgueiro, Carlos A.; Lovley, Derek R.

    2010-01-01

    Previous studies have demonstrated that Geobacter sulfurreducens requires the c-type cytochrome OmcZ, which is present in large (OmcZL; 50-kDa) and small (OmcZS; 30-kDa) forms, for optimal current production in microbial fuel cells. This protein was further characterized to aid in understanding its role in current production. Subcellular-localization studies suggested that OmcZS was the predominant extracellular form of OmcZ. N- and C-terminal amino acid sequence analysis of purified OmcZS and molecular weight measurements indicated that OmcZS is a cleaved product of OmcZL retaining all 8 hemes, including 1 heme with the unusual c-type heme-binding motif CX14CH. The purified OmcZS was remarkably thermally stable (thermal-denaturing temperature, 94.2°C). Redox titration analysis revealed that the midpoint reduction potential of OmcZS is approximately −220 mV (versus the standard hydrogen electrode [SHE]) with nonequivalent heme groups that cover a large reduction potential range (−420 to −60 mV). OmcZS transferred electrons in vitro to a diversity of potential extracellular electron acceptors, such as Fe(III) citrate, U(VI), Cr(VI), Au(III), Mn(IV) oxide, and the humic substance analogue anthraquinone-2,6-disulfonate, but not Fe(III) oxide. The biochemical properties and extracellular localization of OmcZ suggest that it is well suited for promoting electron transfer in current-producing biofilms of G. sulfurreducens. PMID:20400562

  18. Electrochemical evaluation of Ti/TiO{sub 2}-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for synthetic-wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Benetton, X.D.; Navarro-Avila, S.G. [Univ. Autonoma de Yucatan, Yucatan (Mexico). Biotecnologia y Bioingenieria; Carrera-Figueiras, C. [Univ. Autonoma de Yucatan, Yucatan (Mexico). Quimica Fundamental y Aplicada

    2010-07-01

    This paper described the development of a titanium (Ti/TiO{sub 2}) polyaniline composite electrode. The electrode was designed for use with a microbial fuel cell (MFC) that generated electricity through the microbial biodegradation of organic compounds. A modified NBAF medium was used with a 20 mM acetate as an electron donor and 53 mM fumarate as an electron acceptor for a period of 96 hours at 37 degrees C. Strains were cultured under strict anaerobic conditions. Two microbial cultures were used: (1) pure cultures of Geobacter sulfur-reducens; and (2) an uncharacterized stable microbial consortia isolated from hypersaline swamp sediments. The anodes were made with an emeraldine form of PANI deposited over Ti/TiO{sub 2} electrodes. Electrochemical impedance spectroscopy (EIS) monitoring was used to determine the open circuit potential of the MFC. Negative real impedances were obtained and reproduced in all systems studied with the Ti/TiO{sub 2}-PANI anodes. The highest power density was obtained using the Geobacter sulfur-reducens culture. Further research is needed to study the mechanisms that contribute to the occurrence of negative real impedances. 23 refs., 1 tab., 5 figs.

  19. Link between capacity for current production and syntrophic growth in Geobacter species

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Woodard, Trevor; Nevin, Kelly;

    2015-01-01

    -culture with Methanosarcina barkeri, which is capable of direct interspecies electron transfer (DIET), but not with Methanospirillium hungatei capable only of H2 or formate transfer. Conductive granular activated carbon (GAC) stimulated metabolism of the G. hydrogenophilus - M. barkeri co-culture, consistent with electron......Electrodes are unnatural electron acceptors, and it is yet unknown how some Geobacter species evolved to use electrodes as terminal electron acceptors. Analysis of different Geobacter species revealed that they varied in their capacity for current production. G. metallireducens and G....... hydrogenophilus generated high current densities (ca. 0.05 mA/cm2), comparable to G. sulfurreducens. G. bremensis, G. chapellei, G. humireducens, and G. uranireducens, produced much lower currents (ca. 0.05 mA/cm2) and G. bemidjiensis was previously found to not produce current. There was no correspondence...

  20. Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil.

    Science.gov (United States)

    Zhou, Shungui; Yang, Guiqin; Lu, Qin; Wu, Min

    2014-11-01

    A novel Fe(III)-reducing bacterium, designated GSS01(T), was isolated from a forest soil sample using a liquid medium containing acetate and ferrihydrite as electron donor and electron acceptor, respectively. Cells of strain GSS01(T) were strictly anaerobic, Gram-stain-negative, motile, non-spore-forming and slightly curved rod-shaped. Growth occurred at 16-40 °C and optimally at 30 °C. The DNA G+C content was 60.9 mol%. The major respiratory quinone was MK-8. The major fatty acids were C(16:0), C(18:0) and C(16:1)ω7c/C(16:1)ω6c. Strain GSS01(T) was able to grow with ferrihydrite, Fe(III) citrate, Mn(IV), sulfur, nitrate or anthraquinone-2,6-disulfonate, but not with fumarate, as sole electron acceptor when acetate was the sole electron donor. The isolate was able to utilize acetate, ethanol, glucose, lactate, butyrate, pyruvate, benzoate, benzaldehyde, m-cresol and phenol but not toluene, p-cresol, propionate, malate or succinate as sole electron donor when ferrihydrite was the sole electron acceptor. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain GSS01(T) was most closely related to Geobacter sulfurreducens PCA(T) (98.3% sequence similarity) and exhibited low similarities (94.9-91.8%) to the type strains of other species of the genus Geobacter. The DNA-DNA relatedness between strain GSS01(T) and G. sulfurreducens PCA(T) was 41.4 ± 1.1%. On the basis of phylogenetic analysis, phenotypic characterization and physiological tests, strain GSS01(T) is believed to represent a novel species of the genus Geobacter, and the name Geobacter soli sp. nov. is proposed. The type strain is GSS01(T) ( =KCTC 4545(T) =MCCC 1K00269(T)).

  1. Electricity and H2 generation from hemicellulose by sequential fermentation and microbial fuel/electrolysis cell

    Science.gov (United States)

    Yan, Di; Yang, Xuewei; Yuan, Wenqiao

    2015-09-01

    Electricity and hydrogen generation by bacteria Geobacter sulfurreducens in a dual-chamber microbial fuel/electrolysis cell following the fermentation of hemicellulose by bacteria Moorella thermoacetica was investigated. Experimental results showed that 10 g l-1 xylose under 60 °C was appropriate for the fermentation of xylose by M. thermoacetica, yielding 0.87 g-acetic acid per gram of xylose consumed. Corncob hydrolysate could also be fermented to produce acetic acid, but with lower yield (0.74 g-acid per g-xylose). The broths of xylose and corncob hydrolysate fermented by M. thermoacetica containing acetic acid were fed to G. sulfurreducens in a dual-chamber microbial fuel/electrolysis cell for electricity and hydrogen generation. The highest open-circuit cell voltages generated were 802 and 745 mV, and hydrogen yields were 41.7 and 23.3 mmol per mol-acetate, in xylose and corncob hydrolysate fermentation broth media, respectively. The internal resistance of the microbial fuel/electrolysis cell fed with corncob hydrolysate fermentation broth (3472 Ω) was much higher than that with xylose fermentation broth (1993 Ω) or sodium acetate medium (467 Ω), which was believed to be the main cause of the variation in hydrogen yield of the three feeding media.

  2. Relevance of Aromatic Amino Acids for Electron Conduction along Geobacter Pili Protein

    Science.gov (United States)

    Adhikari, Ramesh; Malvankar, Nikhil; Tuominen, Mark; Lovley, Derek

    It has been proposed that the charge transport though Geobacter sulfurreducens pili protein occurs through the aromatic amino acids forming helical conducting chain within pili. X-ray studies of pili show that the aromatic amino acids are packed close enough (3-4 Å) for pi-stacking to occur. Conductivity of the pili network increases with lowering temperature indicating metallic-like transport mechanism. However due to the complexity of charge percolation path in 3D network, the intrinsic conductivity of an individual pili was not known. Here, we report transport measurements of individual pili of G. sulfurreducens. The conductivity, similar to that of organic polymers, shows that the pili may have implications in materials research. In addition, the conductivity value is sufficient to explain the respiration rate of the G. sulfurreducens. Further studies of pili from different natural and genetically modified species with varying amount of aromatic amino acid density demonstrate that it can play a decisive role on the magnitude of the conductivity. This research was supported by the Office of Naval Research (ONR) and National Science Foundation (NSF) Center for Hierarchical Manufacturing (CHM). Nikhil S. Malvankar holds a Career Award from the Burroughs Wellcome Fund.

  3. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

    OpenAIRE

    Shi, Liang; Squier, Thomas C.; Zachara, John M.; Fredrickson, James K.

    2007-01-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer ...

  4. Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment

    Science.gov (United States)

    Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel

    2017-07-01

    Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: treatment method combined with other well established desalination technologies such as reverse osmosis (RO) or reverse electrodialysis.

  5. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes

    Directory of Open Access Journals (Sweden)

    Young Nelson D

    2010-01-01

    Full Text Available Abstract Background Geobacter species grow by transferring electrons out of the cell - either to Fe(III-oxides or to man-made substances like energy-harvesting electrodes. Study of Geobacter sulfurreducens has shown that TCA cycle enzymes, inner-membrane respiratory enzymes, and periplasmic and outer-membrane cytochromes are required. Here we present comparative analysis of six Geobacter genomes, including species from the clade that predominates in the subsurface. Conservation of proteins across the genomes was determined to better understand the evolution of Geobacter species and to create a metabolic model applicable to subsurface environments. Results The results showed that enzymes for acetate transport and oxidation, and for proton transport across the inner membrane were well conserved. An NADH dehydrogenase, the ATP synthase, and several TCA cycle enzymes were among the best conserved in the genomes. However, most of the cytochromes required for Fe(III-reduction were not, including many of the outer-membrane cytochromes. While conservation of cytochromes was poor, an abundance and diversity of cytochromes were found in every genome, with duplications apparent in several species. Conclusions These results indicate there is a common pathway for acetate oxidation and energy generation across the family and in the last common ancestor. They also suggest that while cytochromes are important for extracellular electron transport, the path of electrons across the periplasm and outer membrane is variable. This combination of abundant cytochromes with weak sequence conservation suggests they may not be specific terminal reductases, but rather may be important in their heme-bearing capacity, as sinks for electrons between the inner-membrane electron transport chain and the extracellular acceptor.

  6. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.

    Science.gov (United States)

    Cologgi, Dena L; Lampa-Pastirk, Sanela; Speers, Allison M; Kelly, Shelly D; Reguera, Gemma

    2011-09-13

    The in situ stimulation of Fe(III) oxide reduction by Geobacter bacteria leads to the concomitant precipitation of hexavalent uranium [U(VI)] from groundwater. Despite its promise for the bioremediation of uranium contaminants, the biological mechanism behind this reaction remains elusive. Because Fe(III) oxide reduction requires the expression of Geobacter's conductive pili, we evaluated their contribution to uranium reduction in Geobacter sulfurreducens grown under pili-inducing or noninducing conditions. A pilin-deficient mutant and a genetically complemented strain with reduced outer membrane c-cytochrome content were used as controls. Pili expression significantly enhanced the rate and extent of uranium immobilization per cell and prevented periplasmic mineralization. As a result, pili expression also preserved the vital respiratory activities of the cell envelope and the cell's viability. Uranium preferentially precipitated along the pili and, to a lesser extent, on outer membrane redox-active foci. In contrast, the pilus-defective strains had different degrees of periplasmic mineralization matching well with their outer membrane c-cytochrome content. X-ray absorption spectroscopy analyses demonstrated the extracellular reduction of U(VI) by the pili to mononuclear tetravalent uranium U(IV) complexed by carbon-containing ligands, consistent with a biological reduction. In contrast, the U(IV) in the pilin-deficient mutant cells also required an additional phosphorous ligand, in agreement with the predominantly periplasmic mineralization of uranium observed in this strain. These findings demonstrate a previously unrecognized role for Geobacter conductive pili in the extracellular reduction of uranium, and highlight its essential function as a catalytic and protective cellular mechanism that is of interest for the bioremediation of uranium-contaminated groundwater.

  7. The Complex Conductivity Signature of Geobacter Species in Geological Media

    Science.gov (United States)

    Brown, I.; Atekwana, E. A.; Sarkisova, S.; Achang, M.

    2013-12-01

    The Complex Conductivity (CC) technique is a promising biogeophysical approach for sensing microbially-induced changes in geological media because of its low-invasive character and sufficient sensitivity to enhanced microbial activity in the near subsurface. Geobacter species have been shown to play important roles in the bioremediation of groundwater contaminated with petroleum and landfill leachate. This capability is based on the ability of Geobacter species to reduce Fe(III) by transferring of electrons from the reduced equivalents to Fe(III) rich minerals through respiration chain and special metallic-like conductors - pili. Only the cultivation of Geobacter species on Fe(III) oxides specifically express pili biosynthesis. Moreover, mutants that cannot produce pili are unable to reduce Fe(III) oxides. However, little is known about the contribution of these molecular conductors (nanowires) to the generation of complex conductivity signatures in geological media. Here, we present the results about the modulation of CC signatures in geological media by Geobacter sulfurreducens (G.s.). Cultures of wild strain G.s. and its pilA(-) mutant were anaerobically cultivated in the presence of the pair of such donors and acceptors of electrons: acetate - fumarate, and acetate - magnetite under anaerobic conditions. Each culture was injected in CC sample holders filled either with N2-CO2 mix (planktonic variant) or with this gases mix and glass beads, d=1 mm, (porous medium variant). Both strains of G.s. proliferated well in a medium supplemented with acetate-fumarate. However, pilA(-) mutant did not multiply in a medium supplemented with ox-red pair yeast extract - magnetite. This observation confirmed that only wild pilA(+) strain is capable of the dissimilatory reduction of Fe(III) within magnetite molecule. The measurement of CC responses from planktonic culture of G.s. wild strain grown with acetate-fumarate did not show linear correlation with their magnitudes but

  8. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes.

    Science.gov (United States)

    Shi, Liang; Squier, Thomas C; Zachara, John M; Fredrickson, James K

    2007-07-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.

  9. Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors

    NARCIS (Netherlands)

    Cervantes-Carillo, F.J.; Duong Dac, T.; Ivanova, A.E.; Roest, de K.; Akkermans, A.D.L.; Lettinga, G.; Field, J.A.

    2003-01-01

    A quinone-respiring, enrichment culture derived from methanogenic granular sludge was phylogenetically characterized by using a combined cloning-denaturing gradient gel electrophoresis (DGGE) method, which revealed that the consortium developed was dominated by a single microorganism: 97% related, i

  10. Long-range Electron Transport in Geobacter sulfurreducens Biofilms is Redox Gradient-Driven

    Science.gov (United States)

    2012-01-01

    anodes of electrochemical reactors , result- ing in electrical current coupled to metabolic organic matter oxidation (18). When grown using an anode as...cells and microbial electrolysis cells. It may also provide valuable insights into the mechanism of long-range biological electron transport in...from industrial and agricultural waste- water . Trends Biotechnol 22:477–485. 55. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008

  11. Light/electricity conversion by defined cocultures of Chlamydomonas and Geobacter.

    Science.gov (United States)

    Nishio, Koichi; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-04-01

    Biological energy-conversion systems are attractive in terms of their self-organizing and self-sustaining properties and are expected to be applied towards environmentally friendly bioenergy processes. Recent studies have demonstrated that sustainable light/electricity-conversion systems, termed microbial solar cells (MSCs), can be constructed using naturally occurring microbial communities. To better understand the energy-conversion mechanisms in microbial communities, the present study attempted to construct model MSCs comprised of defined cocultures of a green alga, Chlamydomonas reinhardtii, and an iron-reducing bacterium, Geobacter sulfurreducens, and examined their metabolism and interactions in MSCs. When MSC bioreactors were inoculated with these microbes and irradiated on a 12-h light/dark cycle, periodic current was generated in the dark with energy-conversion efficiencies of 0.1%. Metabolite analyses revealed that G. sulfurreducens generated current by oxidizing formate that was produced by C. reinhardtii in the dark. These results demonstrate that the light/electricity conversion occurs via syntrophic interactions between phototrophs and electricity-generating bacteria. Based on the results and data in literatures, it is estimated that the excretion of organics by the phototroph was the bottleneck step in the syntrophic light/electricity conversion. We also discuss differences between natural-community and defined-coculture MSCs.

  12. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  13. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA.

    Science.gov (United States)

    Liu, Yimo; Wang, Zheming; Liu, Juan; Levar, Caleb; Edwards, Marcus J; Babauta, Jerome T; Kennedy, David W; Shi, Zhi; Beyenal, Haluk; Bond, Daniel R; Clarke, Thomas A; Butt, Julea N; Richardson, David J; Rosso, Kevin M; Zachara, John M; Fredrickson, James K; Shi, Liang

    2014-12-01

    The multi-heme, outer membrane c-type cytochrome (c-Cyt) OmcB of Geobacter sulfurreducens was previously proposed to mediate electron transfer across the outer membrane. However, the underlying mechanism has remained uncharacterized. In G. sulfurreducens, the omcB gene is part of two tandem four-gene clusters, each is predicted to encode a transcriptional factor (OrfR/OrfS), a porin-like outer membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (OmaB/OmaC) and an outer membrane c-Cyt (OmcB/OmcC) respectively. Here, we showed that OmbB/OmbC, OmaB/OmaC and OmcB/OmcC of G. sulfurreducens PCA formed the porin-cytochrome (Pcc) protein complexes, which were involved in transferring electrons across the outer membrane. The isolated Pcc protein complexes reconstituted in proteoliposomes transferred electrons from reduced methyl viologen across the lipid bilayer of liposomes to Fe(III)-citrate and ferrihydrite. The pcc clusters were found in all eight sequenced Geobacter and 11 other bacterial genomes from six different phyla, demonstrating a widespread distribution of Pcc protein complexes in phylogenetically diverse bacteria. Deletion of ombB-omaB-omcB-orfS-ombC-omaC-omcC gene clusters had no impact on the growth of G. sulfurreducens PCA with fumarate but diminished the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite. Complementation with the ombB-omaB-omcB gene cluster restored the ability of G. sulfurreducens PCA to reduce Fe(III)-citrate and ferrihydrite.

  14. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.

    Science.gov (United States)

    Commault, Audrey S; Lear, Gavin; Packer, Michael A; Weld, Richard J

    2013-07-01

    Through their ability to directly transfer electrons to electrodes, Geobacter sp. are key organisms for microbial fuel cell technology. This study presents a simple method to reproducibly select Geobacter-dominated anode biofilms from a mixed inoculum of bacteria using graphite electrodes initially poised at -0.25, -0.36 and -0.42 V vs. Ag/AgCl. The biofilms all produced maximum power density of approximately 270 m Wm(-2) (projected anode surface area). Analysis of 16S rRNA genes and intergenic spacer (ITS) sequences found that the biofilm communities were all dominated by bacteria closely related to Geobacter psychrophilus. Anodes initially poised at -0.25 V reproducibly selected biofilms that were dominated by a strain of G. psychrophilus that was genetically distinct from the strain that dominated the -0.36 and -0.42 V biofilms. This work demonstrates for the first time that closely related strains of Geobacter can have very different competitive advantages at different anode potentials.

  15. Identification of succinic semialdehyde reductases from Geobacter: expression,purification, crystallization, preliminary functional, and crystallographic analysis

    Institute of Scientific and Technical Information of China (English)

    Yanfeng Zhang; Xiaoli Gao; Yi Zheng; R. Michae; Garavito

    2011-01-01

    Succinic semialdehyde reductase (SSAR) is an important enzyme involved in γ-aminobutyrate (GABA) metabolism.By converting succinic semialdehyde (SSA) to γ-hydroxybutyrate (GHB),the SSAR facilitates an alternative pathway for GABA degradation.In this study,we identified SSARs from Geobacter sulfurreducens and Geobacter metallireducens (GsSSAR and GmSSAR,respectively).The enzymes were over-expressed in Escherichia coil and purified to near homogeneity.Both GsSSAR and GmSSAR showed the activity of reducing SSA using nicotinamide adenine dinucleotide phosphate as a co-factor.The oligomeric sizes of GsSSAR and GmSSAR,as determined by analytical size exclusion chromatography,suggest that the enzymes presumably exist as tetramers in solution.The recombinant GsSSAR and GmSSAR crystallized in the presence of NADP+,and the resulting crystals diffracted to 1.89 (A) (GsSSAR) and 2.25 (A)(GmSSAR) resolution.The GsSSAR and GmSSAR crystals belong to the space groups P21221 (a =99.61 (A),b =147.49 (A),c =182.47 A) and P1 (a =75.97 (A) b =79.14 (A) c =95.47 (A),α =82.15°,β =88.80°,γ=87.66°),respectively.Preliminary crystallographic data analysis suggests the presence of eight protein monomers in the asymmetric units for both GsSSAR and GmSSAR.

  16. Identification of succinic semialdehyde reductases from Geobacter: expression, purification, crystallization, preliminary functional, and crystallographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Gao, Xiaoli; Zheng, Yi; Garavito, R. Michael (MSU)

    2012-04-30

    Succinic semialdehyde reductase (SSAR) is an important enzyme involved in {gamma}-aminobutyrate (GABA) metabolism. By converting succinic semialdehyde (SSA) to {gamma}-hydroxybutyrate (GHB), the SSAR facilitates an alternative pathway for GABA degradation. In this study, we identified SSARs from Geobacter sulfurreducens and Geobacter metallireducens (GsSSAR and GmSSAR, respectively). The enzymes were over-expressed in Escherichia coli and purified to near homogeneity. Both GsSSAR and GmSSAR showed the activity of reducing SSA using nicotinamide adenine dinucleotide phosphate as a co-factor. The oligomeric sizes of GsSSAR and GmSSAR, as determined by analytical size exclusion chromatography, suggest that the enzymes presumably exist as tetramers in solution. The recombinant GsSSAR and GmSSAR crystallized in the presence of NADP{sup +}, and the resulting crystals diffracted to 1.89 {angstrom} (GsSSAR) and 2.25 {angstrom} (GmSSAR) resolution. The GsSSAR and GmSSAR crystals belong to the space groups P2{sub 1}22{sub 1} (a = 99.61 {angstrom}, b = 147.49 {angstrom}, c = 182.47 {angstrom}) and P1 (a = 75.97 {angstrom}, b = 79.14 {angstrom}, c = 95.47 {angstrom}, {alpha} = 82.15{sup o}, {beta} = 88.80{sup o}, {gamma} = 87.66{sup o}), respectively. Preliminary crystallographic data analysis suggests the presence of eight protein monomers in the asymmetric units for both GsSSAR and GmSSAR.

  17. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms.

    Science.gov (United States)

    Commault, Audrey S; Barrière, Frédéric; Lapinsonnière, Laure; Lear, Gavin; Bouvier, Solène; Weld, Richard J

    2015-11-01

    This study evaluated the impact of inoculum source and anode surface modification (carboxylate -COO(-) and sulfonamide -SO2NH2 groups) on the microbial composition of anode-respiring biofilms. These two factors have not previously been considered in detail. Three different inoculum sources were investigated, a dry aerobic soil, brackish estuarine mud and freshwater sediment. The biofilms were selected using a poised anode (-0.36 V vs Ag/AgCl) and acetate as the electron donor in a three-electrode configuration microbial fuel cell (MFC). Population profiling and cloning showed that all biofilms selected were dominated by Geobacter sp., although their electrochemical properties varied depending on the source inoculum and electrode surface modification. These findings suggest that Geobacter sp. are widespread in soils, even those that do not provide a continuously anaerobic environment, and are better at growing in the MFC conditions than other bacteria.

  18. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  19. A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria

    Institute of Scientific and Technical Information of China (English)

    Xiaoxin CAO; Xia HUANG; Xiaoyuan ZHANG; Peng LIANG; Mingzbi FAN

    2009-01-01

    Current methods for testing the electricity generation capacity of isolates are time- and labor-consuming. This paper presents a rapid voltage testing system of exoelectrogenic bacteria called Quickscreen,which is based on a microliter microbial fuel cell(MFC).Geobacter sulfurreducens and Shewanella baltica were used as the model exoelectrogenic bacteria; Escherichia coli that cannot generate electricity was used as a negative control. It was found that the electricity generation capacity of the isolates could be determined within about five hours by using Quickscreen, and that its time was relatively rapid compared with the time needed by using larger MFCs. A parallel, stable, and low background voltage was achieved using titanium as a current collector in the blank run. The external resistance had little impact on the blank run during the initial period. The cathode with a five-hole configuration, used to hydrate the carbon cathode, gave higher cathode potential than that with a one-hole configuration. Steady discharge and current interrupt methods showed that the anode mostly con-tributed to the large internal resistance of the Quickscreen system. However, the addition of graphite felt decreased the resistance from 18 to 5 kΩ. This device was proved to be useful to rapidly evaluate the electricity generation capacity of different bacteria.

  20. Anaerobic benzene oxidation by Geobacter species.

    Science.gov (United States)

    Zhang, Tian; Bain, Timothy S; Nevin, Kelly P; Barlett, Melissa A; Lovley, Derek R

    2012-12-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 10(9) and 8.4 × 10(9) cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 10(9) cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated.

  1. Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens

    Energy Technology Data Exchange (ETDEWEB)

    Feist, AM; Nagarajan, H; Rotaru, AE; Tremblay, PL; Zhang, T; Nevin, KP; Lovley, DR; Zengler, K

    2014-04-24

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. Author Summary The ability of microorganisms to exchange electrons directly with their environment has large implications for our knowledge of industrial and environmental processes. For decades, it has been known that microbes can use electrodes as electron acceptors in microbial fuel cell settings. Geobacter metallireducens has been one of the model organisms for characterizing microbe-electrode interactions as well as environmental processes such as bioremediation. Here, we significantly expand the knowledge of metabolism and energetics of this model organism by employing constraint-based metabolic modeling. Through this analysis, we build the metabolic pathways necessary for carbon fixation, a desirable property for industrial chemical production. We

  2. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells

    KAUST Repository

    Ren, Zhiyong

    2011-01-01

    The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4. days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6. weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance. © 2010 Elsevier Ltd.

  3. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light

    KAUST Repository

    Xing, Defeng

    2009-09-01

    Power densities produced by microbial fuel cells (MFCs) in natural systems are changed by exposure to light through the enrichment of photosynthetic microorganisms. When MFCs with brush anodes were exposed to light (4000 lx), power densities increased by 8-10% for glucose-fed reactors, and 34% for acetate-fed reactors. Denaturing gradient gel electrophoresis (DGGE) profiles based on the 16S rRNA gene showed that exposure to high light levels changed the microbial communities on the anodes. Based on 16S rRNA gene clone libraries of light-exposed systems the anode communities using glucose were also significantly different than those fed acetate. Dominant bacteria that are known exoelectrogens were identified in the anode biofilm, including a purple nonsulfur (PNS) photosynthetic bacterium, Rhodopseudomonas palustris, and a dissimilatory iron-reducing bacterium, Geobacter sulfurreducens. Pure culture tests confirmed that PNS photosynthetic bacteria increased power production when exposed to high light intensities (4000 lx). These results demonstrate that power production and community composition are affected by light conditions as well as electron donors in single-chamber air-cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  4. Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells

    Science.gov (United States)

    Rozenfeld, Shmuel; Schechter, Michal; Teller, Hanan; Cahan, Rivka; Schechter, Alex

    2017-09-01

    Microbial electrochemical cells (MECs) are explored for the conversion of acetate directly to electrical energy. This device utilizes a Geobacter sulfurreducens anode and a novel RuCoSe air cathode. RuCoSe synthesized in selected compositions by a borohydride reduction method produces amorphous structures of powdered agglomerates. Oxygen reduction reaction (ORR) was measured in a phosphate buffer solution pH 7 using a rotating disc electrode (RDE), from which the kinetic current (ik) was measured as a function of potential and composition. The results show that ik of RuxCoySe catalysts increases in the range of XRu = 0.25 > x > 0.7 and y < 0.15 for all tested potentials. A poisoning study of RuCoSe and Pt catalysts in a high concentration acetate solution shows improved tolerance of RuCoSe to this fuel at acetate concentration ≥500 mM. MEC discharge plots under physiological conditions show that ∼ RuCo2Se (sample S3) has a peak power density of 750 mW cm-2 which is comparable with Pt 900 mW cm-2.

  5. Decolorization of azo dyes by Geobacter metallireducens.

    Science.gov (United States)

    Liu, Guangfei; Zhou, Jiti; Chen, Congcong; Wang, Jing; Jin, Ruofei; Lv, Hong

    2013-09-01

    Geobacter metallireducens was found to be capable of decolorizing several azo dyes with different structures to various extents. Pyruvate, ethanol, acetate, propionate, and benzoate could support 66.3 ± 2.6-93.7 ± 2.1 % decolorization of 0.1 mM acid red 27 (AR27) in 40 h. The dependence of the specific decolorization rate on AR27 concentration (25 to 800 μM) followed Michaelis-Menten kinetics (K m = 186.9 ± 1.4 μΜ, V max = 0.65 ± 0.02 μmol mg protein(-1) h(-1)). Enhanced AR27 decolorization was observed with the increase of cell concentrations ranging from 7.5 to 45 mgL(-1). AR27 decolorization by G. metallireducens was retarded by the presence of goethite, which competed electrons with AR27 and was reduced to Fe(II). The addition of low concentrations of humic acid (1-100 mgL(-1)) or 2-hydroxy-1,4-naphthoquinone (0.5-50 μM) could improve the decolorization performance of G. metallireducens. High-performance liquid chromatography analysis suggested reductive pathway to be responsible for decolorization. This was the first study on azo dye decolorization by Geobacter strain and might improve our understanding of natural attenuation and bioremediation of environments polluted by azo dyes.

  6. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation.

    Science.gov (United States)

    Wilkins, Michael J; Verberkmoes, Nathan C; Williams, Kenneth H; Callister, Stephen J; Mouser, Paula J; Elifantz, Hila; N'guessan, A Lucie; Thomas, Brian C; Nicora, Carrie D; Shah, Manesh B; Abraham, Paul; Lipton, Mary S; Lovley, Derek R; Hettich, Robert L; Long, Philip E; Banfield, Jillian F

    2009-10-01

    Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  7. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; VerBerkmoes, N.C.; Williams, K.H.; Callister, S.J.; Mouser, P.J.; Elifantz, H.; N' Guessan, A.L.; Thomas, B.C.; Nicora, C.D.; Shah, M.B.; Lipton, M.S.; Lovley, D.R.; Hettich, R.L.; Long, P.E.; Banfield, J.F.; Abraham, P.

    2009-08-01

    Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  8. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer

    OpenAIRE

    2014-01-01

    Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were ...

  9. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer.

    Science.gov (United States)

    Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K; Williams, Kenneth H; Luef, Birgit; Wilkins, Michael J; Wrighton, Kelly C; Thompson, Courtney A; Comolli, Luis R; Lovley, Derek R

    2015-02-01

    Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site.

  10. A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing.

    Science.gov (United States)

    Song, Yang; Xiao, Li; Jayamani, Indumathy; He, Zhen; Cupples, Alison M

    2015-01-01

    Stable isotope probing and high throughput sequencing were used to characterize the microbial communities involved in carbon uptake in microbial fuel cells at two levels of electricity generation. With acetate, the dominant phylotypes involved in carbon uptake included Geobacter and Rhodocyclaceae. With glucose, both Enterobacteriaceae and Geobacter were dominant.

  11. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Mike [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Williams, Ken [Lawrence Berkeley National Laboratory (LBNL); Callister, Stephen J [Pacific Northwest National Laboratory (PNNL); Mouser, Paula J [University of Massachusetts, Amherst; Elifantz, Hila [University of Massachusetts, Amherst; N' Guessan, A. Lucie [University of Massachusetts, Amherst; Thomas, Brian [University of California, Berkeley; Nicora, Carrie D. [Pacific Northwest National Laboratory (PNNL); Shah, Manesh B [ORNL; Abraham, Paul E [ORNL; Lipton, Mary S [Pacific Northwest National Laboratory (PNNL); Lovley, Derek [University of Massachusetts, Amherst; Hettich, Robert {Bob} L [ORNL; Long, Phil [Pacific Northwest National Laboratory (PNNL); Banfield, Jillian F. [University of California, Berkeley

    2009-01-01

    Implementation of uranium bioremediation requires methods to monitor the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here we report a proteomics-based approach to simultaneously document strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching LC MS/MS spectra to peptides predicted from 7 isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and G. bemidjiensis like strains and later possible emergence of M21 and G. bemidjiensis like strains more closely related to G. lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-CoA and pyruvate for central metabolism while abundant peptides matching TCA cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  12. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; VerBerkmoes, Nathan C.; Williams, Kenneth H.; Callister, Stephen J.; Mouser, Paula; Elifantz, H.; N' Guessan, A. Lucie; Thomas, Brian C.; Nicora, Carrie D.; Shah, Manesh B.; Abraham, Paul; Lipton, Mary S.; Lovely, Derek R.; Hettich, Robert L.; Long, Philip E.; Banfield, Jillian F.

    2009-10-01

    Implementation of uranium bioremediation requires methods to monitor the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here we report a proteomics-based approach to simultaneously document strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching LC MS/MS spectra to peptides predicted from 7 isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and G. bemidjiensis–like strains and later possible emergence of M21 and G. bemidjiensis–like strains more closely related to G. lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-CoA and pyruvate for central metabolism while abundant peptides matching TCA cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  13. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Liu, Fanghua;

    2014-01-01

    Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri, to participate in DIET was evaluated in co-culture with Geobacter...

  14. Monitoring the metabolic status of geobacter species in contaminated groundwater by quantifying key metabolic proteins with Geobacter-specific antibodies.

    Science.gov (United States)

    Yun, Jiae; Ueki, Toshiyuki; Miletto, Marzia; Lovley, Derek R

    2011-07-01

    Simple and inexpensive methods for assessing the metabolic status and bioremediation activities of subsurface microorganisms are required before bioremediation practitioners will adopt molecular diagnosis of the bioremediation community as a routine practice for guiding the development of bioremediation strategies. Quantifying gene transcripts can diagnose important aspects of microbial physiology during bioremediation but is technically challenging and does not account for the impact of translational modifications on protein abundance. An alternative strategy is to directly quantify the abundance of key proteins that might be diagnostic of physiological state. To evaluate this strategy, an antibody-based quantification approach was developed to investigate subsurface Geobacter communities. The abundance of citrate synthase corresponded with rates of metabolism of Geobacter bemidjiensis in chemostat cultures. During in situ bioremediation of uranium-contaminated groundwater the quantity of Geobacter citrate synthase increased with the addition of acetate to the groundwater and decreased when acetate amendments stopped. The abundance of the nitrogen-fixation protein, NifD, increased as ammonium became less available in the groundwater and then declined when ammonium concentrations increased. In a petroleum-contaminated aquifer, the abundance of BamB, an enzyme subunit involved in the anaerobic degradation of mono-aromatic compounds by Geobacter species, increased in zones in which Geobacter were expected to play an important role in aromatic hydrocarbon degradation. These results suggest that antibody-based detection of key metabolic proteins, which should be readily adaptable to standardized kits, may be a feasible method for diagnosing the metabolic state of microbial communities responsible for bioremediation, aiding in the rational design of bioremediation strategies.

  15. Generation of Renewable Power from Biodegradation of Anthracene in a Microbial Fuel Cell Reactor Using Different Bacterial Inocula

    Directory of Open Access Journals (Sweden)

    A.N.Z. Alshehri

    2015-06-01

    Full Text Available Microbial fuel cells (MFCs are increasingly attracting attention as a sustainable technology as they convert chemical energy in organic pollutants to renewable electricity. Anthracene is a polycyclic aromatic hydrocarbon (PAH that presents a high pollution and health risk. In this study, anthracene degradation with electricity production in Single – chamber air cathode MFC was investigated with respect to values of its biodegradation and MFC performance using different inocula combinations (Anaerobic sludge (AS, Pseudomonas putida (PP, Geobacter sulfurreducens (GS, Shewanella putrefaciens(SP, mixed cultures, and combinations thereof. All the inocula showed high potentials for anthracene degradation efficiency and power density, ranged 41 – 98 % within 120 – 216h and 110.08 – 156.06 mW/m2, respectively. The best overall performing inoculum was anaerobic sludge supplemented with P. putida (AS+PP, having a degradation rate, degradation efficiency, COD removal, maximum power density and coulombic efficiency of 38 μM/d, 98 %, 83 %, 156.06 mW/m2 and 21, respectively. Effect of initial anthracene concentration was also investigated. Results indicated that increasing of initial anthracene concentration to 40 mg/L has a positive effect on both the anthracene degradation rate and the power density by 79 and 83.93 %, respectively, which attained by the best inoculum AS+PP (degradation rate of 41 μM/d and a maximum power density of 287.04 mW/m2.This study highlights the possibility of using MFCs technology to generate renewable electricity and achieve high degradation rates of anthracene simultaneously, through co-metabolism.

  16. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2016-03-01

    In preferred embodiments, the present invention provides new isolated strains of a Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. The wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors. The inventive strains of microorganisms are useful for improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic devices, and electric vehicles.

  17. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    Science.gov (United States)

    Lovley, Derek R; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2013-12-03

    In preferred embodiments, the present invention provides new isolated strains of Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. In other aspects, other preferred embodiments of the present invention include methods of making such strains and methods of using such strains. In general, the wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors in metabolic steps such as the reduction of metallic ions. The inventive strains of microorganisms are useful improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic sensors, and electric vehicles.

  18. Isolation of Geobacter species from diverse sedimentary environments

    Science.gov (United States)

    Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.

    1996-01-01

    In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.

  19. Dissecting the functional role of key residues in triheme cytochrome PpcA: a path to rational design of G. sulfurreducens strains with enhanced electron transfer capabilities.

    Science.gov (United States)

    Morgado, Leonor; Lourenço, Sílvia; Londer, Yuri Y; Schiffer, Marianne; Pokkuluri, P Raj; Salgueiro, Carlos A

    2014-01-01

    PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e-/H(+) energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e-/H(+) transfer pathways. The results showed that the preferred e-/H(+) transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e-/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.

  20. Dissecting the Functional Role of Key Residues in Triheme Cytochrome PpcA: A Path to Rational Design of G. sulfurreducens Strains with Enhanced Electron Transfer Capabilities

    Science.gov (United States)

    Morgado, Leonor; Lourenço, Sílvia; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.

    2014-01-01

    PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e−/H+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e−/H+ transfer pathways. The results showed that the preferred e−/H+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e−/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities. PMID:25153891

  1. Dissecting the functional role of key residues in triheme cytochrome PpcA: a path to rational design of G. sulfurreducens strains with enhanced electron transfer capabilities.

    Directory of Open Access Journals (Sweden)

    Leonor Morgado

    Full Text Available PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24% among the family, and it was suggested to be involved in e-/H(+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV, Lys18 (near heme I or Lys22 (between hemes I and III has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV, Lys52 (between hemes III and IV and Lys60 (near heme III are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e-/H(+ transfer pathways. The results showed that the preferred e-/H(+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e-/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.

  2. 用于产电纯菌研究的MFC反应器的开发%Development of Microbial Fuel Cell Reactor for Pure Electricigen Research

    Institute of Scientific and Technical Information of China (English)

    曹效鑫; 梁鹏; 范明志; 黄霞

    2012-01-01

    Further improvement of the microbial fuel cell (MFC) power output urges to better understand the interaction mechanism between the electricigen and the electrode. In order to accomplish this goal, pure culture study is a better approach. However, strict sterile and anaerobic requirements make such experiments difficult to carry out. Therefore, a sterile two bottle MFC was developed. The modules were compared, and the electricity generation performance of MFC inoculated with Geobacter sul-furreducens was investigated. It was shown that sterilized condition could be achieved in the two bottle MFC during operation. Using potassium ferricyanide could effectively reduce cathode polarization and maintain anaerobic condition in the anode chamber. Further applications of this MFC system should provide a fundament for pure electricigen research.%以纯菌为对象进行产电机理研究是微生物燃料电池( MFC)技术进一步提高输出功率、走向实用的重要基础之一,然而由于产电纯菌研究要求的无菌性、厌氧性较为苛刻,给此类反应器的搭建、运行造成诸多困难.基于此,设计搭建了一种可灭菌的组件式两瓶型MFC,对其各组件进行了比较研究,并考察了接种Geobacter sulfurreducens后MFC的运行情况.研究结果表明,该反应器在运行周期内可保持良好的灭菌状态;使用铁氰化钾可有效地降低阴极极化,并保持阳极室的厌氧状态;该反应器可以较好地满足MFC对纯菌研究的要求.

  3. Geobacteraceae strains and methods

    Science.gov (United States)

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  4. Identification of a Transcriptional Repressor Involved in Benzoate Metabolism in Geobacter bemidjiensis ▿

    OpenAIRE

    2011-01-01

    Subsurface environments contaminated with aromatic compounds can be remediated in situ by Geobacter species. A transcription factor that represses expression of bamA, a benzoate-inducible gene, in Geobacter bemidjiensis during growth with acetate was identified. It is likely that this repressor also regulates other genes involved in aromatic compound metabolism.

  5. Harvesting electricity with Geobacter bremensis isolated from compost.

    Directory of Open Access Journals (Sweden)

    Olivier Nercessian

    Full Text Available Electrochemically active (EA biofilms were formed on metallic dimensionally stable anode-type electrode (DSA, embedded in garden compost and polarized at +0.50 V/SCE. Analysis of 16S rRNA gene libraries revealed that biofilms were heavily enriched in Deltaproteobacteria in comparison to control biofilms formed on non-polarized electrodes, which were preferentially composed of Gammaproteobacteria and Firmicutes. Among Deltaproteobacteria, sequences affiliated with Pelobacter and Geobacter genera were identified. A bacterial consortium was cultivated, in which 25 isolates were identified as Geobacter bremensis. Pure cultures of 4 different G. bremensis isolates gave higher current densities (1400 mA/m(2 on DSA, 2490 mA/m(2 on graphite than the original multi-species biofilms (in average 300 mA/m(2 on DSA and the G. bremensis DSM type strain (100-300 A/m(2 on DSA; 2485 mA/m(2 on graphite. FISH analysis confirmed that G. bremensis represented a minor fraction in the original EA biofilm, in which species related to Pelobacter genus were predominant. The Pelobacter type strain did not show EA capacity, which can explain the lower performance of the multi-species biofilms. These results stressed the great interest of extracting and culturing pure EA strains from wild EA biofilms to improve the current density provided by microbial anodes.

  6. Harvesting electricity with Geobacter bremensis isolated from compost.

    Science.gov (United States)

    Nercessian, Olivier; Parot, Sandrine; Délia, Marie-Line; Bergel, Alain; Achouak, Wafa

    2012-01-01

    Electrochemically active (EA) biofilms were formed on metallic dimensionally stable anode-type electrode (DSA), embedded in garden compost and polarized at +0.50 V/SCE. Analysis of 16S rRNA gene libraries revealed that biofilms were heavily enriched in Deltaproteobacteria in comparison to control biofilms formed on non-polarized electrodes, which were preferentially composed of Gammaproteobacteria and Firmicutes. Among Deltaproteobacteria, sequences affiliated with Pelobacter and Geobacter genera were identified. A bacterial consortium was cultivated, in which 25 isolates were identified as Geobacter bremensis. Pure cultures of 4 different G. bremensis isolates gave higher current densities (1400 mA/m(2) on DSA, 2490 mA/m(2) on graphite) than the original multi-species biofilms (in average 300 mA/m(2) on DSA) and the G. bremensis DSM type strain (100-300 A/m(2) on DSA; 2485 mA/m(2) on graphite). FISH analysis confirmed that G. bremensis represented a minor fraction in the original EA biofilm, in which species related to Pelobacter genus were predominant. The Pelobacter type strain did not show EA capacity, which can explain the lower performance of the multi-species biofilms. These results stressed the great interest of extracting and culturing pure EA strains from wild EA biofilms to improve the current density provided by microbial anodes.

  7. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar;

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter...

  8. Digestion of algal biomass for electricity generation in microbial fuel cells.

    Science.gov (United States)

    Nishio, Koichi; Hashimoto, Kazuhito; Watanabe, Kazuya

    2013-01-01

    Algal biomass serves as a fuel for electricity generation in microbial fuel cells. This study constructed a model consortium comprised of an alga-digesting Lactobacillus and an iron-reducing Geobacter for electricity generation from photo-grown Clamydomonas cells. Total power-conversion efficiency (from Light to electricity) was estimated to be 0.47%.

  9. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Liu, Fanghua

    2014-01-01

    Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri, to participate in DIET was evaluated in co-culture with Geobacter...... metallireducens. Co-cultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Co-cultures could not be initiated with a pilin-deficient G. metallireducens, suggesting that long-range electron transfer along pili was important for DIET. Amendments...... physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable, making...

  10. The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III-reducing subsurface environments.

    Directory of Open Access Journals (Sweden)

    Aklujkar Muktak

    2010-09-01

    Full Text Available Abstract Background Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurface Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of

  11. Understanding the influence of the electrode material on microbial fuel cell performance

    Science.gov (United States)

    Sanchez, David V. P.

    In this thesis, I deploy sets of electrodes into microbial fuel cells (MFC), characterize their performance, and evaluate the influence of both platinum catalysts and carbon-based electrodes on current production. The platinum work centers on improving current production by optimizing the use of the catalyst using nano-fabrication techniques. The carbon-electrode work seeks to determine the influence of the bare electrode on biofilm-anode current production. The development of electrodes for MFCs has boomed over the past decade, however, experiments aimed at identifying how catalyst deposition methods and electrode properties influence current production have been limited. The research conducted here is an attempt to expand this knowledge base for platinum catalysts and carbon electrodes. In the initial chapters (4 and 5), I discuss our attempt to decrease catalyst loadings while increasing current production through the use of platinum nanoparticles. The results demonstrate that incorporating platinum nanoparticles throughout the anode and cathode is an efficient means of increasing MFC current production relative to surface deposition because it increases catalyst surface area. The later chapters (chapters 6 and 7) develop an understanding of the importance of electrode properties (i.e. surface area, activation resistance, conductivity, surface morphology) by electrochemically evaluating well-studied anode-respiring pure cultures on different carbon electrode architectures. Two different architectures are produced by using tubular and platelet shaped constituent materials (i.e. carbon fibers and graphene nanoplatelets) and the morphologies of the electrodes are varied by altering the size of the constituent material. The electrodes are characterized and evaluated in MFCs using either Shewanella oneidensis MR-1 or Geobacter sulfurreducens as the innoculant because their bioelectrochemical physiologies are the most documented in the literature. Using the

  12. Integrative analysis of the interactions between Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    Directory of Open Access Journals (Sweden)

    D. R. Lovley

    2011-11-01

    Full Text Available Enhancing microbial U(VI reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI-reducing Geobacter predominated and U(VI was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB predominated and U(VI reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  13. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    Science.gov (United States)

    Barlett, M.; Zhuang, K.; Mahadevan, R.; Lovley, D.

    2012-03-01

    Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30-40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  14. Integrative analysis of the interactions between Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    Science.gov (United States)

    Barlett, M.; Zhuang, K.; Mahadevan, R.; Lovley, D. R.

    2011-11-01

    Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30-40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  15. Molecular analysis of the in situ growth rates of subsurface Geobacter species.

    Science.gov (United States)

    Holmes, Dawn E; Giloteaux, Ludovic; Barlett, Melissa; Chavan, Milind A; Smith, Jessica A; Williams, Kenneth H; Wilkins, Michael; Long, Philip; Lovley, Derek R

    2013-03-01

    Molecular tools that can provide an estimate of the in situ growth rate of Geobacter species could improve understanding of dissimilatory metal reduction in a diversity of environments. Whole-genome microarray analyses of a subsurface isolate of Geobacter uraniireducens, grown under a variety of conditions, identified a number of genes that are differentially expressed at different specific growth rates. Expression of two genes encoding ribosomal proteins, rpsC and rplL, was further evaluated with quantitative reverse transcription-PCR (qRT-PCR) in cells with doubling times ranging from 6.56 h to 89.28 h. Transcript abundance of rpsC correlated best (r(2) = 0.90) with specific growth rates. Therefore, expression patterns of rpsC were used to estimate specific growth rates of Geobacter species during an in situ uranium bioremediation field experiment in which acetate was added to the groundwater to promote dissimilatory metal reduction. Initially, increased availability of acetate in the groundwater resulted in higher expression of Geobacter rpsC, and the increase in the number of Geobacter cells estimated with fluorescent in situ hybridization compared well with specific growth rates estimated from levels of in situ rpsC expression. However, in later phases, cell number increases were substantially lower than predicted from rpsC transcript abundance. This change coincided with a bloom of protozoa and increased attachment of Geobacter species to solid phases. These results suggest that monitoring rpsC expression may better reflect the actual rate that Geobacter species are metabolizing and growing during in situ uranium bioremediation than changes in cell abundance.

  16. Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation

    Directory of Open Access Journals (Sweden)

    D. Lovley

    2012-03-01

    Full Text Available Enhancing microbial U(VI reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI-reducing Geobacter predominated and U(VI was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB predominated and U(VI reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.

  17. Anaerobic Mercury Methylation and Demethylation by Geobacter bemidjiensis Bem.

    Science.gov (United States)

    Lu, Xia; Liu, Yurong; Johs, Alexander; Zhao, Linduo; Wang, Tieshan; Yang, Ziming; Lin, Hui; Elias, Dwayne A; Pierce, Eric M; Liang, Liyuan; Barkay, Tamar; Gu, Baohua

    2016-04-19

    Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 μM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.

  18. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.

    Science.gov (United States)

    Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Liu, Fanghua; Markovaite, Beatrice; Chen, Shanshan; Nevin, Kelly P; Lovley, Derek R

    2014-08-01

    Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.

  19. Proteogenomic Analysis of Geobacter Populations in a low Nutrient Contaminated Aquifer Under Stimulated Conditions.

    Science.gov (United States)

    Wilkins, M. J.; Williams, K. H.; Verberkmoes, N. C.; Hettich, R. L.; Lipton, M. S.; Callister, S. J.; Long, P. E.; Banfield, J. F.

    2008-12-01

    Proteogenomic samples were obtained from a U(VI)-contaminated aquifer undergoing acetate-stimulated bioreduction at the U.S. Department of Energy Integrated Field Challenge (IFC) site in Western Colorado. Analysis of these samples using ICP-MS/MS indicated that they were dominated by Geobacter species, with over 2,500 proteins identified per sample. The detected proteins revealed a wealth of information about how Geobacter species are able to dominate subsurface environments under nutrient-poor conditions such as those at Rifle. The presence of nitrogenase proteins indicates that the Geobacter populations are fixing nitrogen, although the absence of other proteins indicative of nitrogen stress, such as the uridylylated version of the P-II regulatory protein and NtrB, suggests that low-level N2 fixation occurs without the community undergoing extreme nitrogen stress. The detection of a large number of proteins involved in two- component sensor and chemotaxis systems, along with flagella subunits, indicates that Geobacter species are able to rapidly detect and respond to chemical gradients in the environment. Pathways for the efficient utilization of the elevated acetate concentrations in the subsurface have also been elucidated, with an important role suggested for acetyl-CoA transferase in controlling flux between succinyl-CoA and succinate. Other proteins detected that are clearly important for growth in the subsurface include those involved in phosphate acquisition and heavy-metal efflux.

  20. Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments.

    Science.gov (United States)

    Zhao, Jiao; Fang, Yilin; Scheibe, Timothy D; Lovley, Derek R; Mahadevan, R

    2010-03-01

    In situ stimulation of the metabolic activity of Geobacter species through acetate amendment has been shown to be a promising bioremediation strategy to reduce and immobilize hexavalent uranium [U(VI)] as insoluble U(IV). Although Geobacter species are reducing U(VI), they primarily grow via Fe(III) reduction. Unfortunately, the biogeochemistry and the physiology of simultaneous reduction of multiple metals are still poorly understood. A detailed model is therefore required to better understand the pathways leading to U(VI) and Fe(III) reduction by Geobacter species. Based on recent experimental evidence of temporary electron capacitors in Geobacter we propose a novel kinetic model that physically distinguishes planktonic cells into electron-loaded and -unloaded states. Incorporation of an electron load-unload cycle into the model provides insight into U(VI) reduction efficiency, and elucidates the relationship between U(VI)- and Fe(III)-reducing activity and further explains the correlation of high U(VI) removal with high fractions of planktonic cells in subsurface environments. Global sensitivity analysis was used to determine the level of importance of geochemical and microbial processes controlling Geobacter growth and U(VI) reduction, suggesting that the electron load-unload cycle and the resulting repartition of the microbes between aqueous and attached phases are critical for U(VI) reduction. As compared with conventional Monod modeling approaches without inclusion of the electron capacitance, the new model attempts to incorporate a novel cellular mechanism that has a significant impact on the outcome of in situ bioremediation.

  1. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.

    Science.gov (United States)

    Ohtsuka, Toshihiko; Yamaguchi, Noriko; Makino, Tomoyuki; Sakurai, Kazuhiro; Kimura, Kenta; Kudo, Keitaro; Homma, Eri; Dong, Dian Tao; Amachi, Seigo

    2013-06-18

    Dissimilatory As(V) (arsenate)-reducing bacteria may play an important role in arsenic release from anoxic sediments in the form of As(III) (arsenite). Although respiratory arsenate reductase genes (arrA) closely related to Geobacter species have been frequently detected in arsenic-rich sediments, it is still unclear whether they directly participate in arsenic release, mainly due to lack of pure cultures capable of arsenate reduction. In this study, we isolated a novel dissimilatory arsenate-reducing bacterium, strain OR-1, from Japanese paddy soil, and found that it was phylogenetically closely related to Geobacter pelophilus. OR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, and fumarate as electron acceptors. OR-1 catalyzed dissolution of arsenic from arsenate-adsorbed ferrihydrite, while Geobacter metallireducens GS-15 did not. Furthermore, inoculation of washed cells of OR-1 into sterilized paddy soil successfully restored arsenic release. Arsenic K-edge X-ray absorption near-edge structure analysis revealed that strain OR-1 reduced arsenate directly on the soil solid phase. Analysis of putative ArrA sequences from paddy soils suggested that Geobacter-related bacteria, including those closely related to OR-1, play an important role in arsenic release from paddy soils. Our results provide direct evidence for arsenic dissolution by Geobacter species and support the hypothesis that Geobacter species play a significant role in reduction and mobilization of arsenic in flooded soils and anoxic sediments.

  2. Geobacter luticola sp. nov., an Fe(III)-reducing bacterium isolated from lotus field mud.

    Science.gov (United States)

    Viulu, Samson; Nakamura, Kohei; Okada, Yurina; Saitou, Sakiko; Takamizawa, Kazuhiro

    2013-02-01

    A novel species of Fe(III)-reducing bacterium, designated strain OSK6(T), belonging to the genus Geobacter, was isolated from lotus field mud in Japan. Strain OSK6(T) was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, gram-negative, motile, straight rod-shaped bacterium, 0.6-1.9 µm long and 0.2-0.4 µm wide. The growth of the isolate occurred at 20-40 °C with optima of 30-37 °C and pH 6.5-7.5 in the presence of up to 0.5 g NaCl l(-1). The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6(T) was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6(T) is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6(T) is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6(T) ( = DSM 24905(T) = JCM 17780(T)).

  3. Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens.

    Science.gov (United States)

    Feist, Adam M; Nagarajan, Harish; Rotaru, Amelia-Elena; Tremblay, Pier-Luc; Zhang, Tian; Nevin, Kelly P; Lovley, Derek R; Zengler, Karsten

    2014-04-01

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.

  4. Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens.

    Directory of Open Access Journals (Sweden)

    Adam M Feist

    2014-04-01

    Full Text Available Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III, nitrate, and fumarate by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.

  5. Electron transfer at the cell-uranium interface in Geobacter spp.

    Science.gov (United States)

    Reguera, Gemma

    2012-12-01

    The in situ stimulation of Fe(III) oxide reduction in the subsurface stimulates the growth of Geobacter spp. and the precipitation of U(VI) from groundwater. As with Fe(III) oxide reduction, the reduction of uranium by Geobacter spp. requires the expression of their conductive pili. The pili bind the soluble uranium and catalyse its extracellular reductive precipitation along the pili filaments as a mononuclear U(IV) complexed by carbon-containing ligands. Although most of the uranium is immobilized by the pili, some uranium deposits are also observed in discreet regions of the outer membrane, consistent with the participation of redox-active foci, presumably c-type cytochromes, in the extracellular reduction of uranium. It is unlikely that cytochromes released from the outer membrane could associate with the pili and contribute to the catalysis, because scanning tunnelling microscopy spectroscopy did not reveal any haem-specific electronic features in the pili, but, rather, showed topographic and electronic features intrinsic to the pilus shaft. Pili not only enhance the rate and extent of uranium reduction per cell, but also prevent the uranium from traversing the outer membrane and mineralizing the cell envelope. As a result, pili expression preserves the essential respiratory activities of the cell envelope and the cell's viability. Hence the results support a model in which the conductive pili function as the primary mechanism for the reduction of uranium and cellular protection in Geobacter spp.

  6. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    Science.gov (United States)

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production.

  7. The Role of Shewanella oneidensis MR-1 Outer Surface Structures in Extracellular Electron Transfer

    Science.gov (United States)

    2010-01-01

    bacteria such as Shewanella putrefaciens sp200, Geobacter metallireducens, and G. sulfurreducens [14 – 17]. In several of these bacteria, target- ing of c...Full Paper The Role of Shewanella oneidensis MR-1 Outer Surface Structures in Extracellular Electron Transfer Rachida A. Bouhenni,a, f Gary J. Vora,b...metal reducer Shewanella oneidensis MR-1 to generate electricity in microbial fuel cells (MFCs) depends on the activity of a predicted type IV prepilin

  8. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  9. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    REGUERA, GEMMA [Michigan State University

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  10. Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae

    Directory of Open Access Journals (Sweden)

    Wagner Darlene D

    2012-05-01

    Full Text Available Abstract Background Geobacter lovleyi is a unique member of the Geobacteraceae because strains of this species share the ability to couple tetrachloroethene (PCE reductive dechlorination to cis-1,2-dichloroethene (cis-DCE with energy conservation and growth (i.e., organohalide respiration. Strain SZ also reduces U(VI to U(IV and contributes to uranium immobilization, making G. lovleyi relevant for bioremediation at sites impacted with chlorinated ethenes and radionuclides. G. lovleyi is the only fully sequenced representative of this distinct Geobacter clade, and comparative genome analyses identified genetic elements associated with organohalide respiration and elucidated genome features that distinguish strain SZ from other members of the Geobacteraceae. Results Sequencing the G. lovleyi strain SZ genome revealed a 3.9 Mbp chromosome with 54.7% GC content (i.e., the percent of the total guanines (Gs and cytosines (Cs among the four bases within the genome, and average amino acid identities of 53–56% compared to other sequenced Geobacter spp. Sequencing also revealed the presence of a 77 kbp plasmid, pSZ77 (53.0% GC, with nearly half of its encoded genes corresponding to chromosomal homologs in other Geobacteraceae genomes. Among these chromosome-derived features, pSZ77 encodes 15 out of the 24 genes required for de novo cobalamin biosynthesis, a required cofactor for organohalide respiration. A plasmid with 99% sequence identity to pSZ77 was subsequently detected in the PCE-dechlorinating G. lovleyi strain KB-1 present in the PCE-to-ethene-dechlorinating consortium KB-1. Additional PCE-to-cis-DCE-dechlorinating G. lovleyi strains obtained from the PCE-contaminated Fort Lewis, WA, site did not carry a plasmid indicating that pSZ77 is not a requirement (marker for PCE respiration within this species. Chromosomal genomic islands found within the G. lovleyi strain SZ genome encode two reductive dehalogenase (RDase homologs and a putative

  11. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species

    Science.gov (United States)

    Bazylinski, D.A.; Dean, A.J.; Schuler, D.; Phillips, E.J.P.; Lovley, D.R.

    2000-01-01

    Cells of Geobacter metallireducens, Magnetospirillum strain AMB-1, Magnetospirillum magnetotacticum and Magnetospirillum gryphiswaldense showed N2-dependent growth, the first anaerobically with Fe(lll) as the electron acceptor, and the latter three species micro-aerobically in semi-solid oxygen gradient cultures. Cells of the Magnetospirillum species grown with N2 under microaerobic conditions were magnetotactic and therefore produced magnetosomes. Cells of Geobacter metallireducens reduced acetylene to ethylene (11.5 ?? 5.9nmol C2H4 produced min-1 mg-1 cell protein) while growing with Fe(lll) as the electron acceptor in anaerobic growth medium lacking a fixed nitrogen source. Cells of the Magnetospirillum species, grown in a semi-solid oxygen gradient medium, also reduced acetylene at comparable rates. Uncut chromosomal and fragments from endonuclease-digested chromosomal DNA from these species, as well as Geobacter sulphurreducens organisms, hybridized with a nifHDK probe from Rhodospirillum rubrum, indicating the presence of these nitrogenase structural genes in these organisms. The evidence presented here shows that members of the metal-metabolizing genera, Geobacter and Magnetospirillum, fix atmospheric dinitrogen.

  12. Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site

    Directory of Open Access Journals (Sweden)

    Zhou Jizhong

    2007-06-01

    Full Text Available Abstract Background Groundwater and subsurface environments contaminated with aromatic compounds can be remediated in situ by Geobacter species that couple oxidation of these compounds to reduction of Fe(III-oxides. Geobacter metallireducens metabolizes many aromatic compounds, but the enzymes involved are not well known. Results The complete G. metallireducens genome contained a 300 kb island predicted to encode enzymes for the degradation of phenol, p-cresol, 4-hydroxybenzaldehyde, 4-hydroxybenzoate, benzyl alcohol, benzaldehyde, and benzoate. Toluene degradation genes were encoded in a separate region. None of these genes was found in closely related species that cannot degrade aromatic compounds. Abundant transposons and phage-like genes in the island suggest mobility, but nucleotide composition and lack of synteny with other species do not suggest a recent transfer. The inferred degradation pathways are similar to those in species that anaerobically oxidize aromatic compounds with nitrate as an electron acceptor. In these pathways the aromatic compounds are converted to benzoyl-CoA and then to 3-hydroxypimelyl-CoA. However, in G. metallireducens there were no genes for the energetically-expensive dearomatizing enzyme. Whole-genome changes in transcript levels were identified in cells oxidizing benzoate. These supported the predicted pathway, identified induced fatty-acid oxidation genes, and identified an apparent shift in the TCA cycle to a putative ATP-yielding succinyl-CoA synthase. Paralogs to several genes in the pathway were also induced, as were several putative molybdo-proteins. Comparison of the aromatics degradation pathway genes to the genome of an isolate from a contaminated field site showed very similar content, and suggested this strain degrades many of the same compounds. This strain also lacked a classical dearomatizing enzyme, but contained two copies of an eight-gene cluster encoding redox proteins that was 30-fold

  13. Three paths to reduce ferric oxides taken by Geobacter metallireducens%Geobacter metallireducens异化还原铁氧化物三种方式

    Institute of Scientific and Technical Information of China (English)

    冯雅丽; 周良; 祝学远; 连静; 李少华

    2006-01-01

    异化金属还原菌通过络和剂、电子传递中间体、直接接触三种方式异化还原金属氧化矿.以Geobacter metallireducens还原铁氧化物为实验体系,利用微生物燃料电池考察了以上三种方式对异化还原铁氧化物的影响.结果表明,微生物异化还原铁氧化矿时,NTA,AQDS在初始阶段显著加速铁氧化物的还原,但也加速磁铁矿的生成,阻碍反应继续进行;直接接触方式起着重要作用,吸附形成的生物膜是一个关键因素,其形成是一个相对较长的过程.生物膜的形成阻碍电子传递中间体发挥作用.

  14. Geobacter Project

    Energy Technology Data Exchange (ETDEWEB)

    Derek Lovley; Maddalena Coppi; Stacy Ciufo; Barbara Methe; Pablo, Pomposiello; Steve Sandler; Cinthia Nunez; Daniel Bond; Susan Childers; Carol Giometti; Julia Krushkal; Christophe Shilling; Bernard Palsson

    2004-03-17

    Analysis of the Genetic Potential and Gene Expression of Microbial Communities Involved in the In Situ Bioremediation of Uranium and Harvesting Electrical Energy from Organic Matter The primary goal of this research is to develop conceptual and computational models that can describe the functioning of complex microbial communities involved in microbial processes of interest to the Department of Energy. Microbial Communities to be Investigated: (1) Microbial community associated with the in situ bioremediation of uranium-contaminated groundwater; and (2) Microbial community that is capable of harvesting energy from waste organic matter in the form of electricity.

  15. Expression of acetate permease-like (apl) genes in subsurface communities of Geobacter species under fluctuating acetate concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Elifantz, H.; N' Guessan, L.A.; Mouser, P.J.; Williams, K H.; Wilkins, M J.; Risso, C.; Holmes, D.E.; Long, P.E.; Lovley, D.R.

    2010-03-01

    The addition of acetate to uranium-contaminated aquifers in order to stimulate the growth and activity of Geobacter species that reduce uranium is a promising in situ bioremediation option. Optimizing this bioremediation strategy requires that sufficient acetate be added to promote Geobacter species growth. We hypothesized that under acetate-limiting conditions, subsurface Geobacter species would increase the expression of either putative acetate symporters genes (aplI and aplII). Acetate was added to a uranium-contaminated aquifer (Rifle, CO) in two continuous amendments separated by 5 days of groundwater flush to create changing acetate concentrations. While the expression of aplI in monitoring well D04 (high acetate) weakly correlated with the acetate concentration over time, the transcript levels for this gene were relatively constant in well D08 (low acetate). At the lowest acetate concentrations during the groundwater flush, the transcript levels of aplII were the highest. The expression of aplII decreased 2-10-fold upon acetate reintroduction. However, the overall instability of acetate concentrations throughout the experiment could not support a robust conclusion regarding the role of apl genes in response to acetate limitation under field conditions, in contrast to previous chemostat studies, suggesting that the function of a microbial community cannot be inferred based on lab experiments alone.

  16. Development of a biomarker for Geobacter activity and strain composition; Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Callister, Stephen J.; Miletto, Marzia; Williams, Kenneth H.; Nicora, Carrie D.; Lovely, Derek R.; Long, Philip E.; Lipton, Mary S.

    2011-01-01

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the U.S. Department of Energy’s Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  17. Motile Geobacter dechlorinators migrate into a model source zone of trichloroethene dense non-aqueous phase liquid: Experimental evaluation and modeling

    Science.gov (United States)

    Philips, Jo; Miroshnikov, Alexey; Haest, Pieter Jan; Springael, Dirk; Smolders, Erik

    2014-12-01

    Microbial migration towards a trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) could facilitate the bioaugmentation of TCE DNAPL source zones. This study characterized the motility of the Geobacter dechlorinators in a TCE to cis-dichloroethene dechlorinating KB-1™ subculture. No chemotaxis towards or away from TCE was found using an agarose in-plug bridge method. A second experiment placed an inoculated aqueous layer on top of a sterile sand layer and showed that Geobacter migrated several centimeters in the sand layer in just 7 days. A random motility coefficient for Geobacter in water of 0.24 ± 0.02 cm2·day- 1 was fitted. A third experiment used a diffusion-cell setup with a 5.5 cm central sand layer separating a DNAPL from an aqueous top layer as a model source zone to examine the effect of random motility on TCE DNAPL dissolution. With top layer inoculation, Geobacter quickly colonized the sand layer, thereby enhancing the initial TCE DNAPL dissolution flux. After 19 days, the DNAPL dissolution enhancement was only 24% lower than with an homogenous inoculation of the sand layer. A diffusion-motility model was developed to describe dechlorination and migration in the diffusion-cells. This model suggested that the fast colonization of the sand layer by Geobacter was due to the combination of random motility and growth on TCE.

  18. Development of a biomarker for Geobacter activity and strain composition; proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).

    Science.gov (United States)

    Wilkins, Michael J; Callister, Stephen J; Miletto, Marzia; Williams, Kenneth H; Nicora, Carrie D; Lovley, Derek R; Long, Philip E; Lipton, Mary S

    2011-01-01

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  19. Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

    2010-02-15

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  20. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek, R.

    2008-12-22

    The overall goal of this project was to better understand the mechanisms by which Geobacter species transfer electrons outside the cell onto Fe(III) oxides. The rationale for this study was that Geobacter species are often the predominant microorganisms involved in in situ uranium bioremediation and the growth and activity of the Geobacter species during bioremediation is primarily supported by electron transfer to Fe(III) oxides. These studies greatly expanded the understanding of electron transfer to Fe(III). Novel concepts developed included the potential role of microbial nanowires for long range electron transfer in Geobacter species and the importance of extracytoplasmic cytochromes functioning as capacitors to permit continued electron transfer during the hunt for Fe(III) oxide. Furthermore, these studies provided target sequences that were then used in other studies to tract the activity of Geobacter species in the subsurface through monitoring the abundance of gene transcripts of the target genes. A brief summary of the major accomplishments of the project is provided.

  1. Stimulating the In Situ Activity of Geobacter Species to Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. T.; Vrionis, Helen A.; Ortiz-Bernad, Irene; Resch, Charles T.; Long, Philip E.; Dayvault, R. D.; Karp, Ken; Marutzky, Sammy J.; Metzler, Donald R.; Peacock, Aaron D.; White, David C.; Lowe, Mary; Lovley, Derek R.

    2003-10-01

    The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 _M in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.

  2. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    Science.gov (United States)

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  3. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    OpenAIRE

    Joyner, Dominique

    2010-01-01

    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organis...

  4. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    Directory of Open Access Journals (Sweden)

    Tian eZhang

    2014-05-01

    Full Text Available Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further studied. Strains were constructed in which one of the remaining six genes was deleted. The strain in which the monocistronic gene Gmet 0232 was deleted metabolized phenol, but not benzene. Transcript abundance of the adjacent monocistronic gene, Gmet 0231, predicted to encode a zinc-containing oxidoreductase, was elevated in cells metabolizing benzene, although not at a statistically significant level. However, deleting Gmet 0231 also yielded a strain that could metabolize phenol, but not benzene. Although homologs of Gmet 0231 and Gmet 0232 are found in microorganisms not known to anaerobically metabolize benzene, the adjacent localization of these genes is unique to G. metallireducens. The discovery of genes that are specifically required for the metabolism of benzene, but not phenol in G. metallireducens is an important step in potentially identifying the mechanisms for anaerobic benzene activation.

  5. Structure determination and biochemical characterization of a putative HNH endonuclease from Geobacter metallireducens GS-15.

    Directory of Open Access Journals (Sweden)

    Shuang-yong Xu

    Full Text Available The crystal structure of a putative HNH endonuclease, Gmet_0936 protein from Geobacter metallireducens GS-15, has been determined at 2.6 Å resolution using single-wavelength anomalous dispersion method. The structure contains a two-stranded anti-parallel β-sheet that are surrounded by two helices on each face, and reveals a Zn ion bound in each monomer, coordinated by residues Cys38, Cys41, Cys73, and Cys76, which likely plays an important structural role in stabilizing the overall conformation. Structural homologs of Gmet_0936 include Hpy99I endonuclease, phage T4 endonuclease VII, and other HNH endonucleases, with these enzymes sharing 15-20% amino acid sequence identity. An overlay of Gmet_0936 and Hpy99I structures shows that most of the secondary structure elements, catalytic residues as well as the zinc binding site (zinc ribbon are conserved. However, Gmet_0936 lacks the N-terminal domain of Hpy99I, which mediates DNA binding as well as dimerization. Purified Gmet_0936 forms dimers in solution and a dimer of the protein is observed in the crystal, but with a different mode of dimerization as compared to Hpy99I. Gmet_0936 and its N77H variant show a weak DNA binding activity in a DNA mobility shift assay and a weak Mn²⁺-dependent nicking activity on supercoiled plasmids in low pH buffers. The preferred substrate appears to be acid and heat-treated DNA with AP sites, suggesting Gmet_0936 may be a DNA repair enzyme.

  6. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell.

    Science.gov (United States)

    Ding, Jing; Lu, Yong-Ze; Fu, Liang; Ding, Zhao-Wei; Mu, Yang; Cheng, Shuk H; Zeng, Raymond J

    2017-03-01

    Anaerobic oxidation of methane (AOM) contributes significantly to the global methane sink. Previously, studies of anaerobic methanotrophic (ANME) archaea have been limited as they have not been separable from their bacterial partners during the AOM process because of their dependence on the bacteria. A microbial fuel cell (MFC) is a device capable of directly transforming chemical energy to electrical energy via electrochemical reactions involving biochemical pathways. In this study, decoupling of denitrifying anaerobic methane oxidation (DAMO) archaea and DAMO bacteria was investigated in an microbial fuel cell (MFC) using methane as the fuel. The DAMO fuel cell worked successfully but demonstrated weak electrogenic capability with around 25 mV production. After 45 days' enrichment, the sequencing and fluorescence in situ hybridization results showed the DAMO archaea percentage had increased from 26.96% (inoculum) to 65.77% (electrode biofilm), while the DAMO bacteria percentage decreased from 24.39% to 2.07%. Moreover, the amount of ANME-2d had doubled in the electrode biofilm compared with the inoculum. The sequencing results also showed substantial enrichment of the Ignavibacterium and Geobacter genera. The roles of Ignavibacterium and Geobacter in the MFC system need to be further investigated. Nevertheless, these results illustrate that an MFC device may provide a possible approach to separate DAMO archaea from DAMO bacteria.

  7. Convergent development of anodic bacterial communities in microbial fuel cells.

    KAUST Repository

    Yates, Matthew D

    2012-05-10

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.

  8. G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions

    KAUST Repository

    Sun, Dan

    2014-07-16

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  9. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination.

    Science.gov (United States)

    Prakash, Om; Gihring, Thomas M; Dalton, Dava D; Chin, Kuk-Jeong; Green, Stefan J; Akob, Denise M; Wanger, Greg; Kostka, Joel E

    2010-03-01

    An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with

  10. Membrane-electrode-assembly based proton exchange membrane microbial fuel cells%基于膜电极的质子交换膜微生物燃料电池

    Institute of Scientific and Technical Information of China (English)

    张波; 陈君; 卢启威; 杨晖

    2008-01-01

    通过采用传统电化学燃料电池的技术和材料,以寻求提高微生物燃料电池的电流密度,制作基于膜电极的微生物燃料电池.通过构建温控压力机,制作了一系列膜电极(MEA),并对作为正极的多种碳材料进行了筛选.使用定制的玻璃微生物燃料电池来放置膜电极和培养Geobacter sulfurreducens,对产生的电流进行评价.细胞的生长以乙醇为唯一碳源,因而代表了一种新型的乙醇/氧气燃料电池.相比以前的设计,基于膜电极的微生物燃料电池的电极表面每个单位会多产生出100倍的电流,并且可以被长久使用.

  11. Inhibition of Geobacter dechlorinators at elevated trichloroethene concentrations is explained by a reduced activity rather than by an enhanced cell decay.

    Science.gov (United States)

    Philips, Jo; Haest, Pieter Jan; Springael, Dirk; Smolders, Erik

    2013-02-05

    Microbial dechlorination of trichloroethene (TCE) is inhibited at elevated TCE concentrations. A batch experiment and modeling analysis were performed to examine whether this self-inhibition is related to an enhanced cell decay or a reduced dechlorination activity at increasing TCE concentrations. The batch experiment combined four different initial TCE concentrations (1.4-3.0 mM) and three different inoculation densities (4.0 × 10(5) to 4.0 × 10(7)Geobacter cells·mL(-1)). Chlorinated ethene concentrations and Geobacter 16S rRNA gene copy numbers were measured. The time required for complete conversion of TCE to cis-DCE increased with increasing initial TCE concentration and decreasing inoculation density. Both an enhanced decay and a reduced activity model fitted the experimental results well, although the reduced activity model better described the lag phase and microbial decay in some treatments. In addition, the reduced activity model succeeded in predicting the reactivation of the dechlorination reaction in treatments in which the inhibiting TCE concentration was lowered after 80 days. In contrast, the enhanced decay model predicted a Geobacter cell density that was too low to allow recovery for these treatments. Conclusively, our results suggest that TCE self-inhibition is related to a reduced dechlorination activity rather than to an enhanced cell decay at elevated TCE concentrations.

  12. Microbial fuel cell used in study on dissimilatory ferric oxides reduction by Geobacter metallireducens%利用微生物燃料电池研究Geobacter metallireducens异化还原铁氧化物

    Institute of Scientific and Technical Information of China (English)

    周良; 刘志丹; 连静; 李福生; 杜竹玮; 李浩然

    2005-01-01

    微生物异化还原金属氧化物的过程中,关键问题是微生物如何把电子传递给最终的固态电子受体.利用新颖的微生物燃料电池体系,可以更细致、准确地研究这一胞外电子传递过程.实验结果表明在Geobacter metallireducens还原铁氧化物过程中, 直接接触是一种重要的电子传递方式; 而电子传递中间体,在金属氧化物表面完全被微生物细胞覆盖后, 也即在金属氧化物表面形成成熟的生物膜后, 其加速电子传递速率的作用减弱.

  13. Microbial fuel cell coupled to biohydrogen reactor: a feasible technology to increase energy yield from cheese whey.

    Science.gov (United States)

    Wenzel, J; Fuentes, L; Cabezas, A; Etchebehere, C

    2017-02-20

    An important pollutant produced during the cheese making process is cheese whey which is a liquid by-product with high content of organic matter, composed mainly by lactose and proteins. Hydrogen can be produced from cheese whey by dark fermentation but, organic matter is not completely removed producing an effluent rich in volatile fatty acids. Here we demonstrate that this effluent can be further used to produce energy in microbial fuel cells. Moreover, current production was not feasible when using raw cheese whey directly to feed the microbial fuel cell. A maximal power density of 439 mW/m(2) was obtained from the reactor effluent which was 1000 times more than when using raw cheese whey as substrate. 16S rRNA gene amplicon sequencing showed that potential electroactive populations (Geobacter, Pseudomonas and Thauera) were enriched on anodes of MFCs fed with reactor effluent while fermentative populations (Clostridium and Lactobacillus) were predominant on the MFC anode fed directly with raw cheese whey. This result was further demonstrated using culture techniques. A total of 45 strains were isolated belonging to 10 different genera including known electrogenic populations like Geobacter (in MFC with reactor effluent) and known fermentative populations like Lactobacillus (in MFC with cheese whey). Our results show that microbial fuel cells are an attractive technology to gain extra energy from cheese whey as a second stage process during raw cheese whey treatment by dark fermentation process.

  14. Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    Energy Technology Data Exchange (ETDEWEB)

    Joyner, Dominique; Fortney, Julian; Chakraborty, Romy; Hazen, Terry

    2010-05-17

    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organism represents metabolic activity on the array which is detected and measured by the OmniLog(R) system. We have previously adapted the technology for the anaerobic sulfate reducing bacterium Desulfovibrio vulgaris. In this work, we have taken the technology a step further by adapting it for the iron reducing obligate anaerobe Geobacter metallireducens. In an osmotic stress microarray it was determined that the organism has higher sensitivity to impermeable solutes 3-6percent KCl and 2-5percent NaNO3 that result in osmotic stress by osmosis to the cell than to permeable non-ionic solutes represented by 5-20percent ethylene glycol and 2-3percent urea. The osmotic stress microarray also includes an array of osmoprotectants and precursor molecules that were screened to identify substrates that would provide osmotic protection to NaCl stress. None of the substrates tested conferred resistance to elevated concentrations of salt. Verification studies in which G.m. was grown in defined medium amended with 100mM NaCl (MIC) and the common osmoprotectants betaine, glycine and proline supported the PM findings. Further verification was done by analysis of transcriptomic profiles of G.m. grown under 100mM NaCl stress that revealed up-regulation of genes related to degradation rather than accumulation of the above-mentioned osmoprotectants. The phenotypic profile, supported by additional analysis indicates that the accumulation of these osmoprotectants as a response to salt stress does not

  15. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  16. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  17. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  18. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part II. Mimicking environmental conditions during cultivation in retentostats.

    Science.gov (United States)

    Marozava, Sviatlana; Röling, Wilfred F M; Seifert, Jana; Küffner, Robert; von Bergen, Martin; Meckenstock, Rainer U

    2014-06-01

    The strict anaerobe Geobacter metallireducens was cultivated in retentostats under acetate and acetate plus benzoate limitation in the presence of Fe(III) citrate in order to investigate its physiology under close to natural conditions. Growth rates below 0.003h(-1) were achieved in the course of cultivation. A nano-liquid chromatography-tandem mass spectrometry-based proteomic approach (nano-LC-MS/MS) with subsequent label-free quantification was performed on proteins extracted from cells sampled at different time points during retentostat cultivation. Proteins detected at low (0.002h(-1)) and high (0.06h(-1)) growth rates were compared between corresponding growth conditions (acetate or acetate plus benzoate). Carbon limitation significantly increased the abundances of several catabolic proteins involved in the degradation of substrates not present in the medium (ethanol, butyrate, fatty acids, and aromatic compounds). Growth rate-specific physiology was reflected in the changed abundances of energy-, chemotaxis-, oxidative stress-, and transport-related proteins. Mimicking natural conditions by extremely slow bacterial growth allowed to show how G. metallireducens optimized its physiology in order to survive in its natural habitats, since it was prepared to consume several carbon sources simultaneously and to withstand various environmental stresses.

  19. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.

    Science.gov (United States)

    Muehe, E Marie; Obst, Martin; Hitchcock, Adam; Tyliszczak, Tolek; Behrens, Sebastian; Schröder, Christian; Byrne, James M; Michel, F Marc; Krämer, Ute; Kappler, Andreas

    2013-12-17

    Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe minerals. To date, not much is known about the fate of Fe(III) mineral-associated Cd during microbial Fe(III) reduction. Here, we describe the isolation of a new Geobacter sp. strain Cd1 from a Cd-contaminated field site, where the strain accounts for 10(4) cells g(-1) dry soil. Strain Cd1 reduces the poorly crystalline Fe(III) oxyhydroxide ferrihydrite in the presence of at least up to 112 mg Cd L(-1). During initial microbial reduction of Cd-loaded ferrihydrite, sorbed Cd was mobilized. However, during continuous microbial Fe(III) reduction, Cd was immobilized by sorption to and/or coprecipitation within newly formed secondary minerals that contained Ca, Fe, and carbonate, implying the formation of an otavite-siderite-calcite (CdCO3-FeCO3-CaCO3) mixed mineral phase. Our data shows that microbially mediated turnover of Fe minerals affects the mobility of Cd in soils, potentially altering the dynamics of Cd uptake into food or phyto-remediating plants.

  20. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources.

    Science.gov (United States)

    Marozava, Sviatlana; Röling, Wilfred F M; Seifert, Jana; Küffner, Robert; von Bergen, Martin; Meckenstock, Rainer U

    2014-06-01

    For microorganisms that play an important role in bioremediation, the adaptation to swift changes in the availability of various substrates is a key for survival. The iron-reducing bacterium Geobacter metallireducens was hypothesized to repress utilization of less preferred substrates in the presence of high concentrations of easily degradable compounds. In our experiments, acetate and ethanol were preferred over benzoate, but benzoate was co-consumed with toluene and butyrate. To reveal overall physiological changes caused by different single substrates and a mixture of acetate plus benzoate, a nano-liquid chromatography-tandem mass spectrometry-based proteomic approach (nano-LC-MS/MS) was performed using label-free quantification. Significant differential expression during growth on different substrates was observed for 155 out of 1477 proteins. The benzoyl-CoA pathway was found to be subjected to incomplete repression during exponential growth on acetate in the presence of benzoate and on butyrate as a single substrate. Peripheral pathways of toluene, ethanol, and butyrate degradation were highly expressed only during growth on the corresponding substrates. However, low expression of these pathways was detected in all other tested conditions. Therefore, G. metallireducens seems to lack strong carbon catabolite repression under high substrate concentrations, which might be advantageous for survival in habitats rich in fatty acids and aromatic hydrocarbons.

  1. Flux analysis of central metabolic pathways in the Fe(III)-reducing organism Geobacter metallireducens via 13C isotopiclabeling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Chakraborty, Romy; Martin, Hector Garcia; Chu,Jeannie; Hazen, Terry C.; Keasling, Jay D.

    2007-08-13

    We analyzed the carbon fluxes in the central metabolism ofGeobacter metallireducens strain GS-15 using 13C isotopomer modeling.Acetate labeled in the 1st or 2nd position was the sole carbon source,and Fe-NTA was the sole terminal electron acceptor. The measured labeledacetate uptake rate was 21 mmol/gdw/h in the exponential growth phase.The resulting isotope labeling pattern of amino acids allowed an accuratedetermination of the in vivo global metabolic reaction rates (fluxes)through the central metabolic pathways using a computational isotopomermodel. The model indicated that over 90 percent of the acetate wascompletely oxidized to CO2 via a complete tricarboxylic acid (TCA) cyclewhile reducing iron. Pyruvate carboxylase and phosphoenolpyruvatecarboxykinase were present under these conditions, but enzymes in theglyoxylate shunt and malic enzyme were absent. Gluconeogenesis and thepentose phosphate pathway were mainly employed for biosynthesis andaccounted for less than 3 percent of total carbon consumption. The modelalso indicated surprisingly high reversibility in the reaction betweenoxoglutarate and succinate. This step operates close to the thermodynamicequilibrium possibly because succinate is synthesized via a transferasereaction, and its product, acetyl-CoA, inhibits the conversion ofoxoglutarate to succinate. These findings enable a better understandingof the relationship between genome annotation and extant metabolicpathways in G. metallireducens.

  2. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  3. Carboxydotrophic growth of

    NARCIS (Netherlands)

    Geelhoed, J.; Henstra, A.M.; Stams, A.J.M.

    2016-01-01

    This study shows that Geobacter sulfurreducensgrows on carbon monoxide (CO) as electron donor with fumarateas electron acceptor. Geobacter sulfurreducens wastolerant to high CO levels, with up to 150 kPa in the headspacetested. During growth, hydrogen was detected in very slightamounts (~5 Pa). In a

  4. Promoting interspecies electron transfer with biochar

    DEFF Research Database (Denmark)

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla;

    2014-01-01

    to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were...

  5. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    Science.gov (United States)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  6. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  7. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  8. Future Fuels

    Science.gov (United States)

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...prices ever higher, and perhaps lead to intermittent fuel shortages as production fluctuates. Clearly, this competition for resources also provides oil...producers multiple options for selling their products, and raises the possibility that the US could face shortages resulting from shifts in

  9. Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater

    Directory of Open Access Journals (Sweden)

    Zulema Borjas

    2015-12-01

    Full Text Available Microbial electrochemical technologies (METs constitute the core of a number of emerging technologies with a high potential for treating urban wastewater due to a fascinating reaction mechanism—the electron transfer between bacteria and electrodes to transform metabolism into electrical current. In the current work, we focus on the model electroactive microorganism Geobacter sulfurreducens to explore both the design of new start-up procedures and electrochemical operations. Our chemostat-grown plug and play cells, were able to reduce the start-up period by 20-fold while enhancing chemical oxygen demand (COD removal by more than 6-fold during this period. Moreover, a filter-press based bioreactor was successfully tested for both acetate-supplemented synthetic wastewater and real urban wastewater. This proof-of-concept pre-pilot treatment included a microbial electrolysis cell (MEC followed in time by a microbial fuel cell (MFC to finally generate electrical current of ca. 20 A·m−2 with a power of 10 W·m−2 while removing 42 g COD day−1·m−2. The effective removal of acetate suggests a potential use of this modular technology for treating acetogenic wastewater where Geobacter sulfurreducens outcompetes other organisms.

  10. Long-term effects of the transient COD concentration on the performance of microbial fuel cells.

    Science.gov (United States)

    Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J

    2016-07-08

    In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016.

  11. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    Science.gov (United States)

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m(2) and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation.

  12. Electricity generation from food wastes and microbial community structure in microbial fuel cells.

    Science.gov (United States)

    Jia, Jianna; Tang, Yu; Liu, Bingfeng; Wu, Di; Ren, Nanqi; Xing, Defeng

    2013-09-01

    Microbial fuel cell (MFC) was studied as an alternate and a novel way to dispose food wastes (FWs) in a waste-to-energy form. Different organic loading rate obviously affected the performance of MFCs fed with FWs. The maximum power density of ~18 W/m(3) (~556 mW/m(2)) was obtained at COD of 3200±400 mg/L and the maximum coulombic efficiency (CE) was ~27.0% at COD of 4900±350 mg/L. The maximum removals of COD, total carbohydrate (TC) and total nitrogen (TN) were ~86.4%, ~95.9% and ~16.1%, respectively. Microbial community analysis using 454 pyrosequencing of 16S rRNA gene demonstrated the combination of the dominant genera of the exoelectrogenic Geobacter and fermentative Bacteroides effectively drove highly efficient and reliable MFC systems with functions of organic matters degradation and electricity generation.

  13. Solar fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J.R.

    1978-11-17

    The paper is concerned with (1) the thermodynamic and kinetic limits for the photochemical conversion and storage of solar energy as it is received on the earth's surface, and (2) the evaluation of a number of possible photochemical reactions with particular emphasis on the production of solar hydrogen from water. Procedures for generating hydrogen fuel are considered. Topics examined include the general requirements for a fuel-generation reaction, the photochemical reaction, limits on the conversion of light energy to chemical energy, an estimate of chemical storage efficiency, and the water decomposition reaction.

  14. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Ayaka Yamamuro

    Full Text Available Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2 (based on the projected area of the anode. In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  15. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    Science.gov (United States)

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2) (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  16. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  17. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.

    Science.gov (United States)

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2015-10-10

    This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p0.9 and p<0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth.

  18. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  19. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  20. Isolation and screening of an electrochemically active strain Bacillus cereus sp.WL027 using phenol as fuel and preliminary study on its mechanism of electricity production%可降解苯酚的产电芽孢杆菌WL027的分离筛选及其产电机制初探

    Institute of Scientific and Technical Information of China (English)

    王丽丽; 国巍; 付春娜; 燕红

    2016-01-01

    Summary Microbial fuel cell(MFC)is an economic and effective way for wastewater treatment,which enables not only degradation of phenol but also conversion of biomass energy into electricity.Selection and breeding of electricigens from anode of a microbial fuel cell is the premise and foundation of MFC research;meanwhile,the problem of low energy efficiency can also be solved.Electronic delivery mechanisms of electricigens included biofilm mechanism and electron shuttle mechanism.Biofilm mechanism refers to the electricigens being attached to the electrode surface and then use cytochrome C or“nanowires"to transfer intracellular electrons to the electrode through the biofilm.Electronic shuttle mechanism concerns the use of a redox mediator to transfer electrons between the cell and the electrode.Currently,most Gram-negative bacteria with cell walls rich in cytochrome C, have been found to use cytochrome C to transfer electrons, such as Geobacter sulfurreducens,Aeromonas hydrophila and Rhodoferaxferrireducens,etc.In the process of electron transfer,the use of redox mediator for the electron transfer between the cell and the electrode is called electron shuttle mechanism.According to the source of redox mediator,it can be divided into exogenous redox mediator and endogenous redox mediator (cell autocrine).So far,little was known about the potential of Bacillus cereus to produce electricity. In this work,an efficient phenol-degrading electricigenic bacterium was separated and screened,and its MFC was built using the obtained strain,and the efficiencies of phenol degradation and electricity production were further investigated.Meanwhile,the anode carbon felt was analyzed by scanning electron microscopy,and the cyclic voltammetry curve of the obtained strain was measured during the four growth stages(7,18,31 and 52 h), to explore the potential related mechanism of electricity production. Twenty-one pure strains with potential ability of electricity production were

  1. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  2. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  3. Aviation fuels outlook

    Science.gov (United States)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  4. Electricity production by a microbial fuel cell fueled by brewery wastewater and the factors in its membrane deterioration

    Institute of Scientific and Technical Information of China (English)

    Afşin Y. Çetinkaya; Emre Oğuz Köroğlu; Neslihan Manav Demir; Derya Yılmaz Baysoy; Bestamin Özkaya; Mehmet Çakmakçı

    2015-01-01

    Electricity production from brewery wastewater using dual-chamber microbial fuel cells (MFCs) with a tin-coated copper mesh in the anode was investigated by changing the hydraulic retention time (HRT). The MFCs were fed with wastewater samples from the inlet (inflow, MFC-1) and outlet (outflow, MFC-2) of an anaerobic digester of a brewery wastewater treatment plant. Both chemical oxygen demand removal and current density were improved by decreasing HRT. The best MFC performance was with an HRT of 0.5 d. The maximum power densities of 8.001 and 1.843 µW/cm2 were obtained from reactors MFC-1 and MFC-2, respectively. Microbial diversity at different condi-tions was studied using PCR-DGGE profiling of 16S rRNA fragments of the microorganisms from the biofilm on the anode electrode. The MFC reactor had mainlyGeobacter,Shewanella, andClostridium species, and some bacteria were easily washed out at lower HRTs. The fouling characteristics of the MFC Nafion membrane and the resulting degradation of MFC performance were examined. The ion exchange capacity, conductivity, and diffusivity of the membrane decreased significantly after foul-ing. The morphology of the Nafion membrane and MFC degradation were studied using scanning electron microscopy and attenuated total reflection-Fourier transform infrared spectroscopy.

  5. Diversity and function of the microbial community on anodes of sediment microbial fuel cells fueled by root exudates

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas da Rosa, Angela

    2010-11-26

    Anode microbial communities are essential for current production in microbial fuel cells. Anode reducing bacteria are capable of using the anode as final electron acceptor in their respiratory chain. The electrons delivered to the anode travel through a circuit to the cathode where they reduce oxygen to water generating an electric current. A novel type of sediment microbial fuel cell (SMFC) harvest energy from photosynthetically derived compounds released through the roots. Nothing is known about anode microbial communities of this type of microbial fuel cell. This work consists of three parts. The first part focuses on the study of bacterial and archaeal community compositions on anodes of SMFCs fueled by rice root exudates. By using terminal restriction fragment length polymorphism (T-RFLP), a profiling technique, and cloning / sequencing of 16S rRNA, we determined that the support type used for the plant (vermiculite, potting soil or rice field soil) is an important factor determining the composition of the microbial community. Finally, by comparing microbial communities of current producing anodes and non-current producing controls we determined that Desulfobulbus- and Geobacter-related populations were probably most important for current production in potting soil and rice field soil SMFCs, respectively. However, {delta}-proteobacterial Anaeromyxobacter spp., unclassified {delta}-proteobacteria and Anaerolineae were also part of the anode biofilm in rice field soil SMFCs and these populations might also play a role in current production. Moreover, distinct clusters of Geobacter and Anaeromyxobacter populations were stimulated by rice root exudates. Regarding Archaea, uncultured Euryarchaea were abundant on anodes of potting soil SMFCs indicating a potential role in current production. In both, rice field soil and potting soil SMFCs, a decrease of Methanosaeta, an acetotrophic methanogen, was detected on current producing anodes. In the second part we focused

  6. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  7. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  8. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  9. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  10. Future aviation fuels overview

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  11. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  12. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  13. Genetic evidence that the degradation of para-cresol by Geobacter metallireducens is catalyzed by the periplasmic para-cresol methylhydroxylase.

    Science.gov (United States)

    Chaurasia, Akhilesh Kumar; Tremblay, Pier-Luc; Holmes, Dawn E; Zhang, Tian

    2015-10-01

    Two pathways for para-cresol (p-cresol) degradation by anaerobic bacteria have been elucidated; one involves fumarate addition at the methyl group of p-cresol by a hydroxylbenzylsuccinate synthase protein while the other utilizes a methylhydroxylase protein (PCMH) to catalyze hydroxylation of the methyl group of p-cresol. In Geobacter metallireducens, in vitro enzymatic assays showed that p-cresol is degraded via the methylhydroxylation pathway. However, prior to this study these results had not been confirmed by genetic analyses. In this work, the gene coding for benzylsuccinate-CoA dehydrogenase (bbsG), an enzyme required for toluene degradation by G. metallireducens that is homologous to the p-hydroxybenzylsuccinyl-CoA dehydrogenase involved in p-cresol degradation by Desulfobacula toluolica Tol2 via fumarate addition, and the gene encoding the alpha prime subunit of PCMH (pcmI), were deleted to investigate the possibility of co-existing p-cresol degradation pathways in G. metallireducens. The absence of a functional PcmI protein completely inhibited p-cresol degradation, while deletion of the bbsG gene had little impact. These results further support the observation that G. metallireducens utilizes a PCMH-initiated pathway for p-cresol degradation.

  14. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals

    Science.gov (United States)

    Lovley, D.R.; Giovannoni, S.J.; White, D.C.; Champine, J.E.; Phillips, E.J.P.; Gorby, Y.A.; Goodwin, S.

    1993-01-01

    The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn(IV), U(VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.

  15. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    Science.gov (United States)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  16. Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association

    DEFF Research Database (Denmark)

    Nagarajan, Harish; Embree, Mallory; Rotaru, Amelia-Elena

    2013-01-01

    Syntrophic associations are central to microbial communities and thus have a fundamental role in the global carbon cycle. Despite biochemical approaches describing the physiological activity of these communities, there has been a lack of a mechanistic understanding of the relationship between...... metallireducens and Geobacter sulfurreducens. Genome-scale modelling of direct interspecies electron transfer reveals insights into the energetics of electron transfer mechanisms. While G. sulfurreducens adapts to rapid syntrophic growth by changes at the genomic and transcriptomic level, G. metallireducens...

  17. HTGR fuel and fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740/sup 0/C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000/sup 0/C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th-/sup 233/U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized.

  18. Characterization of microbial current production as a function of microbe-electrode-interaction.

    Science.gov (United States)

    Dolch, Kerstin; Danzer, Joana; Kabbeck, Tobias; Bierer, Benedikt; Erben, Johannes; Förster, Andreas H; Maisch, Jan; Nick, Peter; Kerzenmacher, Sven; Gescher, Johannes

    2014-04-01

    Microbe-electrode-interactions are keys for microbial fuel cell technology. Nevertheless, standard measurement routines to analyze the interplay of microbial physiology and material characteristics have not been introduced yet. In this study, graphite anodes with varying surface properties were evaluated using pure cultures of Shewanella oneidensis and Geobacter sulfurreducens, as well as defined and undefined mixed cultures. The evaluation routine consisted of a galvanostatic period, a current sweep and an evaluation of population density. The results show that surface area correlates only to a certain extent with population density and anode performance. Furthermore, the study highlights a strain-specific microbe-electrode-interaction, which is affected by the introduction of another microorganism. Moreover, evidence is provided for the possibility of translating results from pure culture to undefined mixed species experiments. This is the first study on microbe-electrode-interaction that systematically integrates and compares electrochemical and biological data.

  19. Transcriptomic and genetic analysis of direct interspecies electron transfer

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Summers, Zarath M

    2013-01-01

    The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the elect......The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens....... These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments....

  20. Constraint-based modeling analysis of the metabolism of two Pelobacter species

    Directory of Open Access Journals (Sweden)

    Bui Olivia

    2010-12-01

    Full Text Available Abstract Background Pelobacter species are commonly found in a number of subsurface environments, and are unique members of the Geobacteraceae family. They are phylogenetically intertwined with both Geobacter and Desulfuromonas species. Pelobacter species likely play important roles in the fermentative degradation of unusual organic matters and syntrophic metabolism in the natural environments, and are of interest for applications in bioremediation and microbial fuel cells. Results In order to better understand the physiology of Pelobacter species, genome-scale metabolic models for Pelobacter carbinolicus and Pelobacter propionicus were developed. Model development was greatly aided by the availability of models of the closely related Geobacter sulfurreducens and G. metallireducens. The reconstructed P. carbinolicus model contains 741 genes and 708 reactions, whereas the reconstructed P. propionicus model contains 661 genes and 650 reactions. A total of 470 reactions are shared among the two Pelobacter models and the two Geobacter models. The different reactions between the Pelobacter and Geobacter models reflect some unique metabolic capabilities such as fermentative growth for both Pelobacter species. The reconstructed Pelobacter models were validated by simulating published growth conditions including fermentations, hydrogen production in syntrophic co-culture conditions, hydrogen utilization, and Fe(III reduction. Simulation results matched well with experimental data and indicated the accuracy of the models. Conclusions We have developed genome-scale metabolic models of P. carbinolicus and P. propionicus. These models of Pelobacter metabolism can now be incorporated into the growing repertoire of genome scale models of the Geobacteraceae family to aid in describing the growth and activity of these organisms in anoxic environments and in the study of their roles and interactions in the subsurface microbial community.

  1. HTGR Fuel performance basis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  2. Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment.

    Science.gov (United States)

    Fang, Yilin; Wilkins, Michael J; Yabusaki, Steven B; Lipton, Mary S; Long, Philip E

    2012-12-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens-specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  3. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    Directory of Open Access Journals (Sweden)

    K. Eusterhues

    2014-04-01

    Full Text Available Ferrihydrite (Fh is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III. As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II accumulation as a further widespread mechanism to slow down reductive dissolution.

  4. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  5. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  6. 77 FR 699 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-01-05

    ... January 5, 2012 Part V Environmental Protection Agency 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard... Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under...

  7. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  8. Composite nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dollard, W.J.; Ferrari, H.M.

    1982-04-27

    An open lattice elongated nuclear fuel assembly including small diameter fuel rods disposed in an array spaced a selected distance above an array of larger diameter fuel rods for use in a nuclear reactor having liquid coolant flowing in an upward direction. Plenums are preferably provided in the upper portion of the upper smaller diameter fuel rods and in the lower portion of the lower larger diameter fuel rods. Lattice grid structures provide lateral support for the fuel rods and preferably the lowest grid about the upper rods is directly and rigidly affixed to the highest grid about the lower rods.

  9. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  10. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  11. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  12. Navy Fuel Specification Standardization

    Science.gov (United States)

    1992-04-01

    surfaced periodically to convert further to a single-fuel operation, i.e., one fuel for both aircraft and ship propulsion /power systems. This study...lead to the development of a single distillate fuel for ship propulsion , resulting eventually in the MIL-F-16884 Naval Distillate Fuel (NDF) used today...for both aircraft and ship propulsion /power systems. This report summarizes a study to consider this problem in light of current systems and

  13. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  14. Alternate Fuels Combustion Research

    Science.gov (United States)

    1983-10-01

    properties of the other fuels are varied systematically beyond the specification limits imposed on the reference fuels, principally in the direction of...lower hydrogen content- Comparison of fuel nozzles, Figurae ,6.32. shows stronger dependence bet- ween oeiseslona and hydrogen content for airblast and

  15. Vented nuclear fuel element

    Science.gov (United States)

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  16. Alternative Fuels Data Center

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  17. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...

  18. Alternative aviation turbine fuels

    Science.gov (United States)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  19. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  20. Glutaryl-coenzyme A dehydrogenase from Geobacter metallireducens - interaction with electron transferring flavoprotein and kinetic basis of unidirectional catalysis.

    Science.gov (United States)

    Estelmann, Sebastian; Boll, Matthias

    2014-11-01

    Glutaryl-CoA dehydrogenases (GDHs) are FAD containing acyl-CoA dehydrogenases that usually catalyze the dehydrogenation and decarboxylation of glutaryl-CoA to crotonyl-CoA with an electron transferring flavoprotein (ETF) acting as natural electron acceptor. In anaerobic bacteria, GDHs play an important role in the benzoyl-CoA degradation pathway of monocyclic aromatic compounds. In the present study, we identified, purified and characterized the benzoate-induced BamOP as the electron accepting ETF of GDH (BamM) from the Fe(III)-respiring Geobacter metallireducens. The BamOP heterodimer contained FAD and AMP as cofactors. In the absence of an artificial electron acceptor, at pH values above 8, the BamMOP-components catalyzed the expected glutaryl-CoA oxidation to crotonyl-CoA and CO2 ; however, at pH values below 7, the redox-neutral glutaryl-CoA conversion to butyryl-CoA and CO2 became the dominant reaction. This previously unknown, strictly ETF-dependent coupled glutaryl-CoA oxidation/crotonyl-CoA reduction activity was facilitated by an unexpected two-electron transfer between FAD(BamM) and FAD(BamOP) , as well as by the similar redox potentials of the two FAD cofactors in the substrate-bound state. The strict order of electron/proton transfer and C-C-cleavage events including transient charge-transfer complexes did not allow an energetic coupling of electron transfer and decarboxylation. This explains why it was difficult to release the glutaconyl-CoA intermediate from reduced GDH. Moreover, it provides a kinetic rational for the apparent inability of BamM to catalyze the reverse reductive crotonyl-CoA carboxylation, even under thermodynamically favourable conditions. For this reason reductive crotonyl-CoA carboxylation, a key reaction in C2-assimilation via the ethylmalonyl-CoA pathway, is accomplished by a different crotonyl-CoA carboxylase/reductase via a covalent NADPH/ene-adduct.

  1. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy-fuel...

  2. Fuel safety research 1999

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-07-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a result of reorganization of the Nuclear Safety Research Center, JAERI. The laboratory was organized by combining three laboratories, the Reactivity Accident Laboratory, the Fuel Reliability Laboratory, and a part of the Sever Accident Research Laboratory. Consequently, the Fuel Safety Research Laboratory is now in charge of all the fuel safety research in JAERI. Various types of experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of five research groups corresponding to each research fields. They are; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). This report summarizes the outline of research activities and major outcomes of the research executed in 1999 in the Fuel Safety Research Laboratory. (author)

  3. Fuel related risks; Braenslerisker

    Energy Technology Data Exchange (ETDEWEB)

    Englund, Jessica; Sernhed, Kerstin; Nystroem, Olle; Graveus, Frank (Grontmij AB, (Sweden))

    2012-02-15

    The project, within which this work report was prepared, aimed to complement the Vaermeforsk publication 'Handbook of fuels' on fuel related risks and measures to reduce the risks. The fuels examined in this project where the fuels included in the first version of the handbook from 2005 plus four additional fuels that will be included in the second and next edition of the handbook. Following fuels were included: woodfuels (sawdust, wood chips, powder, briquettes), slash, recycled wood, salix, bark, hardwood, stumps, straw, reed canary grass, hemp, cereal, cereal waste, olive waste, cocoa beans, citrus waste, shea, sludge, forest industrial sludge, manure, Paper Wood Plastic, tyre, leather waste, cardboard rejects, meat and bone meal, liquid animal and vegetable wastes, tall oil pitch, peat, residues from food industry, biomal (including slaughterhouse waste) and lignin. The report includes two main chapters; a general risk chapter and a chapter of fuel specific risks. The first one deals with the general concept of risk, it highlights laws and rules relevant for risk management and it discuss general risks that are related to the different steps of fuel handling, i.e. unloading, storing, processing the fuel, transportation within the facility, combustion and handling of ashes. The information that was used to produce this chapter was gathered through a literature review, site visits, and the project group's experience from risk management. The other main chapter deals with fuel-specific risks and the measures to reduce the risks for the steps of unloading, storing, processing the fuel, internal transportation, combustion and handling of the ashes. Risks and measures were considered for all the biofuels included in the second version in the handbook of fuels. Information about the risks and risk management was gathered through interviews with people working with different kinds of fuels in electricity and heat plants in Sweden. The information from

  4. Direct Fuel Injector Temporal Measurements

    Science.gov (United States)

    2014-10-01

    optimize engine performance and emissions. Fuel injectors contain an actuator, pintle (or needle), and nozzle. The most common actuator is a solenoid ...Introduction Fuel injectors have a long history in metering fuel in modern engines by either port fuel injection (PFI) or direct fuel injection (DFI...Compared with a carburetor, fuel injectors have more accurate fuel delivering capability, thus giving engineers and technicians more flexibility to

  5. Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances

    KAUST Repository

    Sun, Dan

    2011-10-24

    Formic acid is a highly energetic electron donor but it has previously resulted in low power densities in microbial fuel cells (MFCs). Three different set anode potentials (-0.30, -0.15, and +0.15V; vs. a standard hydrogen electrode, SHE) were used to evaluate syntrophic interactions in bacterial communities for formic acid degradation relative to a non-controlled, high resistance system (1,000Ω external resistance). No current was generated at -0.30V, suggesting a lack of direct formic acid oxidation (standard reduction potential: -0.40V). More positive potentials that allowed for acetic acid utilization all produced current, with the best performance at -0.15V. The anode community in the -0.15V reactor, based on 16S rDNA clone libraries, was 58% Geobacter sulfurreducens and 17% Acetobacterium, with lower proportions of these genera found in the other two MFCs. Acetic acid was detected in all MFCs suggesting that current generation by G. sulfurreducens was dependent on acetic acid production by Acetobacterium. When all MFCs were subsequently operated at an external resistance for maximum power production (100Ω for MFCs originally set at -0.15 and +0.15V; 150Ω for the control), they produced similar power densities and exhibited the same midpoint potential of -0.15V in first derivative cyclic voltammetry scans. All of the mixed communities converged to similar proportions of the two predominant genera (ca. 52% G. sulfurreducens and 22% Acetobacterium). These results show that syntrophic interactions can be enhanced through setting certain anode potentials, and that long-term performance produces stable and convergent communities. © 2011 Wiley Periodicals, Inc.

  6. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  7. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  8. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  9. Spiral cooled fuel nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Timothy; Schilp, Reinhard

    2012-09-25

    A fuel nozzle for delivery of fuel to a gas turbine engine. The fuel nozzle includes an outer nozzle wall and a center body located centrally within the nozzle wall. A gap is defined between an inner wall surface of the nozzle wall and an outer body surface of the center body for providing fuel flow in a longitudinal direction from an inlet end to an outlet end of the fuel nozzle. A turbulating feature is defined on at least one of the central body and the inner wall for causing at least a portion of the fuel flow in the gap to flow transverse to the longitudinal direction. The gap is effective to provide a substantially uniform temperature distribution along the nozzle wall in the circumferential direction.

  10. Simultaneous bioelectricity generation and decolorization of methyl orange in a two-chambered microbial fuel cell and bacterial diversity.

    Science.gov (United States)

    Guo, Wei; Feng, Jinglan; Song, Hong; Sun, Jianhui

    2014-10-01

    The objectives of this study were to investigate the simultaneous bioelectricity generation and decolorization of methyl orange (MO) in the anode chamber of microbial fuel cells (MFCs) in a wide concentration range (from 50 to 800 mg L(-1)) and to reveal the microbial communities on the anode after the MFC was operated continuously for more than 6 months using MO-glucose mixtures as fuel. Interestingly, the added MO played an active role in the production of electricity. The maximum voltage outputs were 565, 658, 640, 629, 617, and 605 mV for the 1 g L(-1) glucose with 0, 50, 100, 200, 300, and 500 mg L(-1) of MO, respectively. The results of three groups of comparison experiments showed that accelerated decolorization of methyl orange (MO) was achieved in the MFC as compared to MFC in open circuit mode and MFC without extra carbon sources. The decolorization efficiency decreased with an increase of MO concentration in the studied concentration range for the dye load increased. A 454 high-throughput pyrosequencing revealed the microbial communities. Geobacter genus known to generate electricity was detected. Bacteroidia class, Desulfovibrio, and Trichococcus genus, which were most likely responsible for degrading methyl orange, were also detected.

  11. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  12. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  13. Portable Fuel Quality Analyzer

    Science.gov (United States)

    2014-01-27

    other transportation industries, such as trucking. The PFQA could also be used in fuel blending operations performed at petroleum, ethanol and biodiesel plants. ...used to identify fuel type and determine performance properties. The Phase I measurements identified the best spectral resolution, spectral region and...identified the best spectral resolution, spectral region and sample path length to differentiate between diesel and jet fuels, as well as to determine

  14. Alternative Fuels (Briefing Charts)

    Science.gov (United States)

    2009-06-19

    feedstock for HRJ, plant cost for F-T) Courtesy AFRL, Dr. Tim Edwards Unclassified • Agricultural crop oils (canola, jatropha, soy, palm , etc...Fuels Focus  Various conversion processes  Upgraded to meet fuel specs Diverse energy sources Petroleum Crude Oil Petroleum based Single Fuel in the...University of North Dakota EERC – UOP – General Electric (GE) – Swedish Biofuels AB • Cellulosic and algal feedstocks that are non- competitive with

  15. Fuel Tank Technology

    Science.gov (United States)

    1989-11-01

    structures b) - Equal thermic inertia c) - Equal fluid volume d) - Equal pressure variation on both wings at the change of the room temperature - This...individual fuel sections. Each fuel section is further ccmpartmentated by metall tank shear walls and tank floors into three individual fuel cells to...plate Dy a stretch forming process, and the metallic tank floors . The air intake segments extend from one bulkhead to the other, thus reducing assembly

  16. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  17. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  18. Fuel assembly reconstitution

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos, E-mail: mongeor@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Angra dos Reis, RJ (Brazil)

    2009-07-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  19. Rethinking nuclear fuel recycling.

    Science.gov (United States)

    von Hippel, Frank N

    2008-05-01

    Spent nuclear fuel contains plutonium which can be extracted and used in new fuel. To reduce the amount of long-lived radioactive waste, the U.S. Department of Energy has proposed reprocessing spent fuel in this way and then "burning" the plutonium in special reactors. But reprocesssing is very expensive. Also, spent fuel emits lethal radiation, whereas separated plutonium can be handled easily. So reprocessing invites the possibility that terrorists might steal plutonium and construct an atom bormb. The authors argue against reprocessing and for storing the waste in casks until an underground repository is ready.

  20. Fuel Cells: Reshaping the Future

    Science.gov (United States)

    Toay, Leo

    2004-01-01

    In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…

  1. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    Science.gov (United States)

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria.

  2. A high power density miniaturized microbial fuel cell having carbon nanotube anodes

    Science.gov (United States)

    Ren, Hao; Pyo, Soonjae; Lee, Jae-Ik; Park, Tae-Jin; Gittleson, Forrest S.; Leung, Frederick C. C.; Kim, Jongbaeg; Taylor, André D.; Lee, Hyung-Sool; Chae, Junseok

    2015-01-01

    Microbial fuel cells (MFCs) are a promising technology capable of directly converting the abundant biomass on the planet into electricity. Prior studies have adopted a variety of nanostructured materials with high surface area to volume ratio (SAV), yet the current and power density of these nanostructured materials do not deliver a significant leap over conventional MFCs. This study presents a novel approach to implement a miniaturized MFC with a high SAV of 4000 m-1 using three different CNT-based electrode materials: Vertically Aligned CNT (VACNT), Randomly Aligned CNT (RACNT), and Spin-Spray Layer-by-Layer (SSLbL) CNT. These CNT-based electrodes show unique biofilm morphology and thickness. The study of performance parameters of miniaturized MFCs with these CNT-electrodes are conducted with respect to a control bare gold electrode. The results show that CNT-based materials attract more exoelectrogens, Geobacter sp., than bare gold, yielding thicker biofilm formation. Among CNT-based electrodes, low sheet resistance electrodes result in thick biofilm generation and high current/power density. The miniaturized MFC having an SSLbL CNT anode exhibits a high volumetric power density of 3320 W m-3. This research may help lay the foundation for future research involving the optimization of MFCS with 2D and 3D nanostructured electrodes.

  3. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    Science.gov (United States)

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  4. Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells.

    Science.gov (United States)

    Liu, Qian; Liu, Bingfeng; Li, Wei; Zhao, Xin; Zuo, Wenjing; Xing, Defeng

    2017-01-01

    The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 μM facilitated MFC start-up compared to 150 μM, 200 μM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter, which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.

  5. Framing car fuel efficiency : linearity heuristic for fuel consumption and fuel-efficiency ratings

    NARCIS (Netherlands)

    Schouten, T.M.; Bolderdijk, J.W.; Steg, L.

    2014-01-01

    People are sensitive to the way information on fuel efficiency is conveyed. When the fuel efficiency of cars is framed in terms of fuel per distance (FPD; e.g. l/100 km), instead of distance per units of fuel (DPF; e.g. km/l), people have a more accurate perception of potential fuel savings. People

  6. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... AGENCY 40 CFR Part 80 RIN 2060-AR07 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection... January 5, 2012 to amend the Renewable Fuel Standard program regulations. Because EPA received...

  7. www.FuelEconomy.gov

    Data.gov (United States)

    U.S. Environmental Protection Agency — FuelEconomy.gov provides comprehensive information about vehicles' fuel economy. The official U.S. government site for fuel economy information, it is operated by...

  8. Improved hybrid rocket fuel

    Science.gov (United States)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  9. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  10. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  11. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  12. Solar Fuel Generator

    Science.gov (United States)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  13. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...

  14. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  15. Are Solar Fuels Sustainable?

    NARCIS (Netherlands)

    Meuwese, Anne

    2012-01-01

    Summary The combined problems of too little fossil fuels to supply the world’s future energy needs and the possible negative environmental effects of carbon dioxide emissions which are coupled to their usage has led to the development of fuels based on s

  16. Fuel cells: Operating flexibly

    Science.gov (United States)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  17. Are Solar Fuels Sustainable?

    NARCIS (Netherlands)

    Meuwese, Anne

    2012-01-01

    Summary The combined problems of too little fossil fuels to supply the world’s future energy needs and the possible negative environmental effects of carbon dioxide emissions which are coupled to their usage has led to the development of fuels based on s

  18. Solar fuel generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan S.; West, William C.

    2017-01-17

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  19. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  20. CO2-Neutral Fuels

    Science.gov (United States)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  1. CO2-Neutral Fuels

    NARCIS (Netherlands)

    Goede, A.; van de Sanden, M. C. M.

    2016-01-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy

  2. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  3. Hydrogen Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  4. Assessment of automotive fuels

    Science.gov (United States)

    Isenberg, G.

    Energy demand all over the world increases steadily and, within the next decades, is almost completely met by fossil fuels. This poses increasing pressure on oil supply and reserves. Concomitant is the concern about environmental pollution, especially by carbon dioxide from fossil fuel combustion, with the risk of global warming. Environmental well-being requires a modified mix of energy sources to emit less carbon dioxide, starting with a move to natural gas and ending with the market penetration of renewable energies. Efforts should focus on advanced oil and gas production and processing technologies and on regeneratively produced fuels like hydrogen or bio-fuels as well. Within the framework of an industrial initiative in Germany, a process of defining one or two alternative fuels was started, to bring them into the market within the next years.

  5. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  6. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  7. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  8. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  9. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  10. Metallic fuels for advanced reactors

    Science.gov (United States)

    Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs.

  11. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  12. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  13. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  14. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1999-03-17

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  15. Design package for fuel retrieval system fuel handling tool modification

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, D.J.

    1998-11-09

    This is a design package that contains the details for a modification to a tool used for moving fuel elements during loading of MCO Fuel Baskets for the Fuel Retrieval System. The tool is called the fuel handling tool (or stinger). This document contains requirements, development design information, tests, and test reports.

  16. FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model

    Science.gov (United States)

    Russell A. Parsons

    2006-01-01

    Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...

  17. Heating subsurface formations by oxidizing fuel on a fuel carrier

    Energy Technology Data Exchange (ETDEWEB)

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  18. Fuel nozzle tube retention

    Energy Technology Data Exchange (ETDEWEB)

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  19. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  20. Ammonia as a Suitable Fuel for Fuel Cells

    OpenAIRE

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel ...

  1. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  2. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Husen Zhang

    Full Text Available Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  3. Characterization of proton production and consumption associated with microbial metabolism

    Directory of Open Access Journals (Sweden)

    Mahadevan Radhakrishnan

    2010-01-01

    Full Text Available Abstract Background Production or consumption of protons in growth medium during microbial metabolism plays an important role in determining the pH of the environment. Such pH changes resulting from microbial metabolism may influence the geochemical speciation of many elements in subsurface environments. Protons produced or consumed during microbial growth were measured by determining the amount of acid or base added in a 5 L batch bioreactor equipped with pH control for different species including Escherichia coli, Geobacter sulfurreducens, and Geobacter metallireducens. Results An in silico model was used to predict the proton secretion or consumption rates and the results were compared with the data. The data was found to confirm predictions of proton consumption during aerobic growth of E. coli with acetate as the carbon source. However, in contrast to proton consumption observed during aerobic growth of E. coli with acetate, proton secretion was observed during growth of Geobacter species with acetate as the donor and Fe(III as the extracellular electron acceptor. Conclusions In this study, we have also shown that the final pH of the medium can be either acidic or basic depending on the choice of the electron acceptor for the same electron donor. In all cases, the in silico model could predict qualitatively the proton production/consumption rates obtained from the experimental data. Therefore, measurements of pH equivalents generated or consumed during growth can help characterize the microbial physiology further and can be valuable for optimizing practical applications such as microbial fuel cells, where growth associated pH changes can limit current generation rates.

  4. Organic fuel cells and fuel cell conducting sheets

    Science.gov (United States)

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  5. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean Report...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Fuel Cell Power Plants Renewable and Waste Fuels 5a. CONTRACT...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES presented at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held

  6. Advanced Fuels Campaign 2012 Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  7. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  8. BIOCHEMICAL FUEL CELLS.

    Science.gov (United States)

    used to evaluate kinetics of alcoholic fermentation . Evaluation of results indicated that 1% ethanol can be generated in 1 hour. One per cent ethanol is the minimum fuel concentration required for this system. (Author)

  9. Fuels and Lubricants Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Modern naval aircraft and turbine-powered craft require reliable and high-quality fuels and lubricants to satisfy the demands imposed upon them for top performance...

  10. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  11. Renewable jet fuel.

    Science.gov (United States)

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Alternative fuel information sources

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  13. Hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

  14. Fuel nitrogen conversion in solid fuel fired systems

    Energy Technology Data Exchange (ETDEWEB)

    P. Glarborg; A.D. Jensen; J.E. Johnsson [Technical University of Denmark, Lyngby (Denmark). Department of Chemical Engineering

    2003-07-01

    Understanding of the chemical and physical processes that govern formation and destruction of nitrogen oxides (NOx) in combustion of solid fuels continues to be a challenge. There are still unresolved issues that may limit the potential of primary measures for NOx control. In most solid fuel fired systems oxidation of fuel-bound nitrogen constitutes the dominating source of nitrogen oxides. The paper reviews some fundamental aspects of fuel nitrogen conversion in these systems, emphasizing combustion of coal since most previous work deal with this fuel. Results on biomass combustion are also discussed. Homogeneous and heterogeneous pathways in fuel NO formation and destruction are discussed and the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N{sub 2} is evaluated. Results indicate that even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood. Light gases, tar, char and soot may all be important vehicles for fuel-N conversion, with their relative importance depending on fuel rank and reaction conditions. Oxygen availability and fuel-nitrogen level are major parameters determining the oxidation selectivity of fuel-N towards NO and N{sub 2}, but also the ability of char and soot to reduce NO is potentially important. The impact of fuel/oxidizer mixing pattern on NO formation appears to be less important in solid-fuel flames than in homogeneous flames. 247 refs., 14 figs., 2 tabs.

  15. Vibrating fuel grapple. [LMFBR

    Science.gov (United States)

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  16. Solar fuels generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  17. Environmentally safe aviation fuels

    Science.gov (United States)

    Liberio, Patricia D.

    1995-01-01

    In response to the Air Force directive to remove Ozone Depleting Chemicals (ODC's) from military specifications and Defense Logistics Agency's Hazardous Waste Minimization Program, we are faced with how to ensure a quality aviation fuel without using such chemicals. Many of these chemicals are found throughout the fuel and fuel related military specifications and are part of test methods that help qualify the properties and quality of the fuels before they are procured. Many years ago there was a directive for military specifications to use commercially standard test methods in order to provide standard testing in private industry and government. As a result the test methods used in military specifications are governed by the American Society of Testing and Materials (ASTM). The Air Force has been very proactive in the removal or replacement of the ODC's and hazardous materials in these test methods. For example, ASTM D3703 (Standard Test Method for Peroxide Number of Aviation Turbine Fuels), requires the use of Freon 113, a known ODC. A new rapid, portable hydroperoxide test for jet fuels similar to ASTM D3703 that does not require the use of ODC's has been developed. This test has proved, in limited testing, to be a viable substitute method for ASTM D3703. The Air Force is currently conducting a round robin to allow the method to be accepted by ASTM and therefore replace the current method. This paper will describe the Air Force's initiatives to remove ODC's and hazardous materials from the fuel and fuel related military specifications that the Air Force Wright Laboratory.

  18. TARDEC Assured Fuels Initiative

    Science.gov (United States)

    2008-05-07

    Objectives • Develop and build two microchannel reactors − FT reactor : convert CO + H2 to long-chain hydrocarbons − Hydrocracker: upgrade FT wax to...present depending on the FT reactor conditions and catalyst used and subsequent upgrade-to-finished fuel processing • Lack of aromatics impacts fuel... Microchannel Processing Technology (MPT) The Technology • Stacks of closely spaced thin plates form microchannels • Process fluids pass through

  19. Nuclear fuel element

    Science.gov (United States)

    Meadowcroft, Ronald Ross; Bain, Alastair Stewart

    1977-01-01

    A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

  20. Thermal breeder fuel enrichment zoning

    Science.gov (United States)

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  1. EPRI fuel cladding integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-01-01

    The objectives of the EPRI fuel program is to supplement the fuel vendor research to assure that utility economic and operational interests are met. To accomplish such objectives, EPRI has conducted research and development efforts to (1) reduce fuel failure rates and mitigate the impact of fuel failures on plant operation, (2) provide technology to extend burnup and reduce fuel cycle cost. The scope of R&D includes fuel and cladding. In this paper, only R&D related to cladding integrity will be covered. Specific areas aimed at improving fuel cladding integrity include: (1) Fuel Reliability Data Base; (2) Operational Guidance for Defective Fuel; (3) Impact of Water Chemistry on Cladding Integrity; (4) Cladding Corrosion Data and Model; (5) Cladding Mechanical Properties; and (6) Transient Fuel Cladding Response.

  2. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  3. Alternative Fuels: Research Progress

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Chapter 1: Pollutant Emissions and Combustion Characteristics of Biofuels and Biofuel/Diesel Blends in Laminar and Turbulent Gas Jet Flames. R. N. Parthasarathy, S. R. Gollahalli Chapter 2: Sustainable Routes for The Production of Oxygenated High-Energy Density Biofuels from Lignocellulosic Biomass. Juan A. Melero, Jose Iglesias, Gabriel Morales, Marta Paniagua Chapter 3: Optical Investigations of Alternative-Fuel Combustion in an HSDI Diesel Engine. T. Huelser, M. Jakob, G. Gruenefeld, P. Adomeit, S. Pischinger Chapter 4: An Insight into Biodiesel Physico-Chemical Properties and Exhaust Emissions Based on Statistical Elaboration of Experimental Data. Evangelos G. Giakoumis Chapter 5: Biodiesel: A Promising Alternative Energy Resource. A.E. Atabani Chapter 6: Alternative Fuels for Internal Combustion Engines: An Overview of the Current Research. Ahmed A. Taha, Tarek M. Abdel-Salam, Madhu Vellakal Chapter 7: Investigating the Hydrogen-Natural Gas Blends as a Fuel in Internal Combustion Engine. ?lker YILMAZ Chapter 8: Conversion of Bus Diesel Engine into LPG Gaseous Engine; Method and Experiments Validation. M. A. Jemni , G. Kantchev , Z. Driss , R. Saaidia , M. S. Abid Chapter 9: Predicting the Combustion Performance of Different Vegetable Oils-Derived Biodiesel Fuels. Qing Shu, ChangLin Yu Chapter 10: Production of Gasoline, Naphtha, Kerosene, Diesel, and Fuel Oil Range Fuels from Polypropylene and Polystyrene Waste Plastics Mixture by Two-Stage Catalytic Degradation using ZnO. Moinuddin Sarker, Mohammad Mamunor Rashid

  4. Nalco Fuel Tech

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, S.

    1995-12-31

    The Nalco Fuel Tech with its seat at Naperville (near Chicago), Illinois, is an engineering company working in the field of technology and equipment for environmental protection. A major portion of NALCO products constitute chemical materials and additives used in environmental protection technologies (waste-water treatment plants, water treatment, fuel modifiers, etc.). Basing in part on the experience, laboratories and RD potential of the mother company, the Nalco Fuel Tech Company developed and implemented in the power industry a series of technologies aimed at the reduction of environment-polluting products of fuel combustion. The engineering solution of Nalco Fuel Tech belong to a new generation of environmental protection techniques developed in the USA. They consist in actions focused on the sources of pollutants, i.e., in upgrading the combustion chambers of power engineering plants, e.g., boilers or communal and/or industrial waste combustion units. The Nalco Fuel Tech development and research group cooperates with leading US investigation and research institutes.

  5. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  6. Motor Fuel Excise Taxes

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  7. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  8. Outlook for alternative transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gushee, D.E. [Univ. of Illinois, Chicago, IL (United States)

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  9. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  10. 78 FR 14190 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2013-03-05

    ... AGENCY 40 CFR Part 80 RIN 2060-AR07 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is issuing a final rule identifying additional...

  11. Apparatus and method for grounding compressed fuel fueling operator

    Science.gov (United States)

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  12. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  13. NASA Alternative Aviation Fuel Research

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  14. Hydrogen-enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Roser, R. [NRG Technologies, Inc., Reno, NV (United States)

    1998-08-01

    NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventional fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.

  15. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  16. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  17. Pulverized fuel-oxygen burner

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    2017-09-05

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.

  18. Reformer Fuel Injector

    Science.gov (United States)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  19. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Cusick, Roland D.; Kiely, Patrick D.; Logan, Bruce E. [Department of Civil and Environmental Engineering, H2E Center, Penn State University, University Park, PA 16802 (United States)

    2010-09-15

    Microbial fuel (MFCs) and electrolysis cells (MECs) can be used to recover energy directly as electricity or hydrogen from organic matter. Organic removal efficiencies and values of the different energy products were compared for MFCs and MECs fed winery or domestic wastewater. TCOD removal (%) and energy recoveries (kWh/kg-COD) were higher for MFCs than MECs with both wastewaters. At a cost of 4.51/kg-H{sub 2} for winery wastewater and 3.01/kg-H{sub 2} for domestic wastewater, the hydrogen produced using MECs cost less than the estimated merchant value of hydrogen (6/kg-H{sub 2}). 16S rRNA clone libraries indicated the predominance of Geobacter species in anodic microbial communities in MECs for both wastewaters, suggesting low current densities were the result of substrate limitations. The results of this study show that energy recovery and organic removal from wastewater are more effective with MFCs than MECs, but that hydrogen production from wastewater fed MECs can be cost effective. (author)

  20. Operational, design and microbial aspects related to power production with microbial fuel cells implemented in constructed wetlands.

    Science.gov (United States)

    Corbella, Clara; Guivernau, Miriam; Viñas, Marc; Puigagut, Jaume

    2015-11-01

    This work aimed at determining the amount of energy that can be harvested by implementing microbial fuel cells (MFC) in horizontal subsurface constructed wetlands (HSSF CWs) during the treatment of real domestic wastewater. To this aim, MFC were implemented in a pilot plant based on two HSSF CW, one fed with primary settled wastewater (Settler line) and the other fed with the effluent of a hydrolytic up-flow sludge blanket reactor (HUSB line). The eubacterial and archaeal community was profiled on wetland gravel, MFC electrodes and primary treated wastewater by means of 16S rRNA gene-based 454-pyrosequencing and qPCR of 16S rRNA and mcrA genes. Maximum current (219 mA/m(2)) and power (36 mW/m(2)) densities were obtained for the HUSB line. Power production pattern correlated well with water level fluctuations within the wetlands, whereas the type of primary treatment implemented had a significant impact on the diversity and relative abundance of eubacteria communities colonizing MFC. It is worth noticing the high predominance (13-16% of relative abundance) of one OTU belonging to Geobacter on active MFC of the HUSB line that was absent for the settler line MFC. Hence, MFC show promise for power production in constructed wetlands receiving the effluent of a HUSB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. HTGR spent fuel composition and fuel element block flow

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.J.; Holder, N.D.; Pierce, V.H.; Robertson, M.W.

    1976-07-01

    The High-Temperature Gas-Cooled Reactor (HTGR) utilizes the thorium-uranium fuel cycle. Fully enriched uranium fissile material and thorium fertile material are used in the initial reactor core and for makeup fuel in the recycle core loadings. Bred /sup 233/U and unburned /sup 235/U fissile materials are recovered from spent fuel elements, refabricated into recycle fuel elements, and used as part of the recycle core loading along with the makeup fuel elements. A typical HTGR employs a 4-yr fuel cycle with approximately one-fourth of the core discharged and reloaded annually. The fuel element composition, including heavy metals, impurity nuclides, fission products, and activation products, has been calculated for discharged spent fuel elements and for reload fresh fuel and recycle fuel elements for each cycle over the life of a typical HTGR. Fuel element compositions are presented for the conditions of equilibrium recycle. Data describing compositions for individual reloads throughout the reactor life are available in a detailed volume upon request. Fuel element block flow data have been compiled based on a forecast HTGR market. Annual block flows are presented for each type of fuel element discharged from the reactors for reprocessing and for refabrication.

  2. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  3. Fuel Element Technical Manual

    Energy Technology Data Exchange (ETDEWEB)

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  4. Household fuel demand analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.; Hirst, E.; Jackson, J.

    1976-01-01

    This study develops econometric models of residential demands for electricity, natural gas, and petroleum products. Fuel demands per household are estimated as functions of fuel prices, per capita income, heating degree days, and mean July temperature. Cross-sectional models are developed using a large data base containing observations for each state and year from 1951 through 1974. Long-run own-price elasticities for all three fuels are greater than unity with natural gas showing the greatest sensitivity to own-price changes. Cross-price elasticities are all less than unity except for the elasticity of demand for oil with respect to the price of gas (which is even larger than the own-price elasticity of demand for oil). The models show considerable stabiity with respect to own-price elasticities but much instability with respect to the cross-price and income elasticities.

  5. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G. [Technische Univ., Berlin (Germany); Hoehlein, B. [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  6. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  7. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  8. FUELS IN TOBACCO PRODUCTION

    Directory of Open Access Journals (Sweden)

    M. Čavlek

    2008-09-01

    Full Text Available Energy production from biomass can reduce „greenhouse effect” and contribute to solving energy security especially in the agricultural households which rely on energy from fossil fuels. In Croatia fuel-cured tobacco is produced on about 5000 ha. Gross income for the whole production is about 180 000 000 kn/year. Flue-cured tobacco is a high energy consuming crop. There are two parts of energy consumption, for mechanization used for the field production (11% and, energy for bulk-curing (89%. In each case, presently used fuels of fossil origin need to be substituted by an alternative energy source of organic origin. Hereafter attention is paid to finding a more economic and ecologically acceptable fuel for curing tobacco. Curing flue-cured tobacco is done by heated air in curing burns. Various sources of heat have been used; wood, coal, oil and gas. In each case different burning facilities of different efficiency have been used. This has had an impact on curing costs and ecology. Recently, mostly used fuel has been natural gas. However, gas is getting expensive. Consequently, an alternative fuel for curing tobacco is sought for. According to literature, agricultural crops suitable for the latter purpose could be wheat, barley, maize, sorghum, sugar beet and some other annual and perennial plant species. Wooden pellets (by-products are suitable for combustion too. Ligno-cellulose fuels have been used for heating since long time. However, not sufficient research has been done from an applied point of view (Venturi and Venturi, 2003. Fuel combustion is getting more efficient with developing technological innovations. The curing barn manufacturers are offering technology for combusting wooden pellets (by-products for curing tobacco. The pellets are available on domestic market. The same technology can be used for combustion of maize grain. Within “Hrvatski duhani” research on suitability of using wooden pellets and maize grain and whole

  9. FUELS IN TOBACCO PRODUCTION

    OpenAIRE

    Čavlek, M.; Boić, M.; Kristina Gršić; V. Kozumplik

    2008-01-01

    Energy production from biomass can reduce „greenhouse effect” and contribute to solving energy security especially in the agricultural households which rely on energy from fossil fuels. In Croatia fuel-cured tobacco is produced on about 5000 ha. Gross income for the whole production is about 180 000 000 kn/year. Flue-cured tobacco is a high energy consuming crop. There are two parts of energy consumption, for mechanization used for the field production (11%) and, energy for bulk-curing (89%)....

  10. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  11. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  12. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    Science.gov (United States)

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment

  13. Mass transfer in fuel cells

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Developments in the following areas are reported: surface area and pore size distribution in electrolyte matrices, electron microscopy of electrolyte matrices, surface tension of KOH solutions, water transport in fuel cells, and effectiveness factors for fuel cell components.

  14. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  15. Fuel Cell Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  16. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  17. Residential fuel quality

    Energy Technology Data Exchange (ETDEWEB)

    Santa, T. [Santa Fuel, Inc., Bridgeport, CT (United States)

    1997-09-01

    This report details progress made in improving the performance of No. 2 heating oil in residential applications. Previous research in this area is documented in papers published in the Brookhaven Oil Heat Technology Conference Proceedings in 1993, 1994 and 1996. By way of review we have investigated a number of variables in the search for improved fuel system performance. These include the effect of various additives designed to address stability, dispersion, biotics, corrosion and reaction with metals. We have also investigated delivery methods, filtration, piping arrangements and the influence of storage tank size and location. As a result of this work Santa Fuel Inc. in conjunction with Mobile Oil Corporation have identified an additive package which shows strong evidence of dramatically reducing the occurrence of fuel system failures in residential oil burners. In a broad market roll-out of the additized product we have experienced a 29% reduction in fuel related service calls when comparing the 5 months ending January 1997 to the same period ending January 1996.

  18. Minimum fuel mode evaluation

    Science.gov (United States)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    The minimum fuel mode of the NASA F-15 research aircraft is designed to minimize fuel flow while maintaining constant net propulsive force (FNP), effectively reducing thrust specific fuel consumption (TSFC), during cruise flight conditions. The test maneuvers were at stabilized flight conditions. The aircraft test engine was allowed to stabilize at the cruise conditions before data collection initiated; data were then recorded with performance seeking control (PSC) not-engaged, then data were recorded with the PSC system engaged. The maneuvers were flown back-to-back to allow for direct comparisons by minimizing the effects of variations in the test day conditions. The minimum fuel mode was evaluated at subsonic and supersonic Mach numbers and focused on three altitudes: 15,000; 30,000; and 45,000 feet. Flight data were collected for part, military, partial, and maximum afterburning power conditions. The TSFC savings at supersonic Mach numbers, ranging from approximately 4% to nearly 10%, are in general much larger than at subsonic Mach numbers because of PSC trims to the afterburner.

  19. Fields of Fuel

    Science.gov (United States)

    Russ, Rosemary S.; Wangen, Steve; Nye, D. Leith; Shapiro, R. Benjamin; Strinz, Will; Ferris, Michael

    2015-01-01

    To help teachers engage students in discussions about sustainability, the authors designed Fields of Fuel, a multiplayer, web-based simulation game that allows players to explore the environmental and economic trade-offs of a realistic sustainable system. Computer-based simulations of real-world phenomena engage students and have been shown to…

  20. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  1. Fire and fuels

    Science.gov (United States)

    Brandon Collins; Carl Skinner

    2014-01-01

    Recent studies of historical fire regimes indicate that fires occurring prior to Euro-American settlement were characterized by a high degree of spatial complexity that was driven by heterogeneity in vegetation/fuels and topography and influenced by variability in climate, which mediated the timing, effects, and extents of fires over time. Although there are many...

  2. Future fuel production

    NARCIS (Netherlands)

    Jacobs, E.

    2011-01-01

    This paper is written for the TIDO-course AR0532 Smart & Bioclimatic Design Theory. The objective of this paper is to see where the possibilities are in future fuel production in a sustainable way, and the integration of it in the built environment. Technologies are compared and evaluated, and the

  3. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  4. Fuel nitrogen conversion in solid fuel fired systems

    Energy Technology Data Exchange (ETDEWEB)

    Glarborg, P.; Jensen, A.D.; Johnsson, J.E. [Technical University of Denmark, Lyngby (Denmark). Department of Chemical Engineering

    2003-07-01

    Understanding of the chemical and physical processes that govern formation and destruction of nitrogen oxides (NO{sub x}) in combustion of solid fuels continues to be a challenge. Even though this area has been the subject of extensive research over the last three decades, there are still unresolved issues that may limit the potential of primary measures for NO{sub x} control. In most solid fuel fired systems oxidation of fuel-bound nitrogen constitutes the dominating source of nitrogen oxides. The present paper reviews some fundamental aspects of fuel nitrogen conversion in these systems, emphasizing mostly combustion of coal since most previous work deal with this fuel. However, also results on biomass combustion is discussed. Homogeneous and heterogeneous pathways in fuel NO formation and destruction are discussed and the effect of fuel characteristics, devolatilization conditions and combustion mode on the oxidation selectivity towards NO and N{sub 2} is evaluated. Results indicate that even under idealized conditions, such as a laminar pulverized-fuel flame, the governing mechanisms for fuel nitrogen conversion are not completely understood. Light gases, tar, char and soot may all be important vehicles for fuel-N conversion, with their relative importance depending on fuel rank and reaction conditions. Oxygen availability and fuel-nitrogen level are major parameters determining the oxidation selectivity of fuel-N towards NO and N{sub 2}, but also the ability of char and soot to reduce NO is potentially important. The impact of fuel/oxidizer mixing pattern on NO formation appears to be less important in solid-fuel flames than in homogeneous flames. (author)

  5. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  6. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  7. Fuel cell report to congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  8. Commercialization of fuel-cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O' Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  9. Fuel cell sub-assembly

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  10. Foaming-electrolyte fuel cell

    Science.gov (United States)

    Nanis, L.; Saunders, A. P.

    1970-01-01

    Foam structure feeds fuel gas solution into electrolyte. Fuel gas reacts at static, three-phase interface between fuel gas, electrolyte, and electrode material. The foam forms an electrical contact between main body of electrolyte and the electrode, and aids in removal of by-products of the chemical reaction.

  11. VIRTUAL FUEL-PUMP DESIGN

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some concepts of virtual product are discussed. The key technologies of virtual fuel-pump development are in detail analysed, which include virtual fuel-pump product modeling, intelligent simulation, distributed design environment, and virtual assembly. The virtual fuel-pump development prototype system considers requirement analysis, concept design, injection preferment analysis, detailed design, and assembly analysis.

  12. Boiler design for fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, M.P.; Sastry, C.V.R.L.; Tharakraj, M.

    1980-03-01

    In view of the limited fuel resources and ever increasing demand, Bharat Heavy Electricals, Ltd. (BHEL), as the leading boiler manufacturer, always endeavours to effect fuel economy in all possible avenues, leaving no stone unturned in this effort. This paper outlines some of the major efforts of BHEL in the area of boiler design to effect fuel economy.

  13. FUEL CELL MANPACK POWER SOURCE.

    Science.gov (United States)

    battery provides required power density and instantly available power while the fuel cell efficiently converts a primary fuel to electrical power at a...field supply, afford an extremely high energy density making the hybrid fuel cell system competitive on cost per kilowatt hour with standard military zinc-carbon primary batteries. (Author)

  14. Fire-safe hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, G.E.; Weatherford, W.D. Jr.; Wright, B.R.

    1979-11-06

    A stabilized, fire-safe, aqueous hydrocarbon fuel emulsion prepared by mixing: a diesel fuel; an emulsifier (consisting of oleyl diethanolamide, diethanolamine, and diethanolamine soap of oleic acid) which has been treated with about 0 to 7 1/2 of oleic acid. A modified version of this fuel also contains 0 to 0.5% of an antimisting agent, and water.

  15. Carbon fuel particles used in direct carbon conversion fuel cells

    Science.gov (United States)

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  16. Microbial fuel cell treatment of fuel process wastewater

    Science.gov (United States)

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  17. LMFBR fuel assembly design for HCDA fuel dispersal

    Science.gov (United States)

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  18. Winters fuels report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  19. A solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonetaka, K.; Iketani, Y.; Nisino, A.; Takeuti, Y.

    1983-04-15

    A solid fuel is proposed which consists of cylindrical or prismatic pieces, whose surfaces (Pv) are equipped with greater than or equal to one channel, while the pieces themselves have greater than or equal to 1 through opening; the ratio of the total surface to the surface of the channels is within 95 to 5 to 60 to 40. The presence of the channels and the through openings facilitates the feeding of air to the surface of the fuel, providing in such a way, better ignition, the propagation of the flames and the completeness of combustion of the solid fuels based on carbonaceous materials. The optimal composition of the proposed fuel is: 70 to 95 percent carbonaceous base (coal, coke, charcoal, graphite, petroleum coke and so on), 1 to 25 percent desulfurizing additive (carbonate, hydroxide or nitrate of sodium, potassium, calcium or magnesium, 0 to 15 percent combustion accelerator (oxidizers: nitrates of potassium and barium, potassium perchlorate, oxides of magnesium, iron or manganese, aluminum powder and so on), 0 to 10 percent forming additive (bentonite, talc, kaolin and so on) and 0.5 to 5 percent binder (pitch, resin, pulp, cement and so on). The optimal characteristics of the combustion process are reached at a weight of a single piece of fuel of approximately 20 grams, a seeming density of less than or equal to 1.3 grams per cubic centimeter, a cross section surface area of 25 to 1,600 square millimeters and a filling density with combustion of less than or equal to 0.8 grams per cubic centimeter.

  20. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  1. Development of DUPIC fuel cycle technology - Assessment of Wolsong NPP fuel handling system for DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Na, Bok Gyun; Nam, Gung Ihn [Korea Power Engineering Company, Taejon (Korea)

    2000-04-01

    The DUPIC fuel loading and discharge path of Wolsong NPP is studied assuming that DUPIC fuel is used at Wolsong NPP. Spent DUPIC fuel discharge path is irrelevant, since it uses the same spent fuel discharge path. Number of factors such as safety, economics of design change, radiation exposure to operators, easy of operation and maintenance, etc, are considered in the evaluation of path. A more detailed analysis of cost estimation of the selected path is also carried out. The study shows that DUPIC fuel loading path following through Spent Fuel Storage Bay and Spent Fuel Discharge Port in reverse direction will minimize the design change and additional equipment and radiation exposure to operators. The estimated total cost of using DUPIC fuel in Wolsong NPP based on price index of year 2000 is around 4.5 billion won. 4 refs., 30 figs., 13 tabs. (Author)

  2. Solid fuels as engine fuels. Kiinteiden polttoaineiden kaeyttoemahdollisuudet moottoripolttoaineena

    Energy Technology Data Exchange (ETDEWEB)

    Vakkilainen, A.; Nylund, N.-O.

    1986-07-01

    The use of solid fuels as engine fuels is discussed in this literature study. The present liquid fuel engines require extensive and expensive changes to overcome difficulties due to solid fuels. The solid particles result in increasing wear in the engine, in the fuel feed system and everywhere, where the particles come into touch with moving surfaces. The rate of wear has been as high as 100-fold compared to that caused by liquid fuels. Large medium-fast or slow diesel engines seem to meet best the requirements set by solid fuels. The experiment carried out by the Swiss Sulzer Engine Works are the most promising engine experiments carried out so far. In Sulzer's experiments, coal-water slurries containing 50-70 wt-% coal have been used as the fuel. Burning has been rather complete, but wear and the high price of the coal-water slurry seem to be unsolvable problems. The development work on enines is still at an early stage and a solid fuel engine will not be manufactured in series in the near future. The pulverous fuel of the future will be a mixture of some liquid and of some solid fuel powder, and hence the handling-technical problems will be considerably smaller than using powder only. Powder manufacture with the present techniques is energy-wasting. Most engine experiments have been carried out on on coal slurries with < 30 ..mu..m particle size. It is not economic to produce such powders at present.

  3. Fuel Cell Handbook, Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  4. The impact of shearing flows on electroactive biofilm formation, structure, and current generation

    Science.gov (United States)

    Jones, A.-Andrew; Buie, Cullen

    2016-11-01

    A special class of bacteria exist that directly produce electricity. First explored in 1911, these electroactive bacteria catalyze hydrocarbons and transport electrons directly to a metallic electron acceptor forming thicker biofilms than other species. Electroactive bacteria biofilms are thicker because they are not limited by transport of oxygen or other terminal electron acceptors. Electroactive bacteria can produce power in fuel cells. Power production is limited in fuel cells by the bacteria's inability to eliminate protons near the insoluble electron acceptor not utilized in the wild. To date, they have not been successfully evolved or engineered to overcome this limit. This limitation may be overcome by enhancing convective mass transport while maintaining substantial biomass within the biofilm. Increasing convective mass transport increases shear stress. A biofilm may respond to increased shear by changing biomass, matrix, or current production. In this study, a rotating disk electrode is used to separate nutrient from physical stress. This phenomenon is investigated using the model electroactive bacterium Geobacter sulfurreducens at nutrient loads comparable to flow-through microbial fuel cells. We determine biofilm structure experimentally by measuring the porosity and calculating the tortuosity from confocal microscope images. Biofilm adaptation for electron transport is quantified using electrical impedance spectroscopy. Our ultimate objective is a framework relating biofilm thickness, porosity, shear stress and current generation for the optimization of bioelectrochemical systems The Alfred P Sloan Foundation MPHD Program.

  5. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities

  6. Checklist for transition to new highway fuel(s).

    Energy Technology Data Exchange (ETDEWEB)

    Risch, C.; Santini, D.J. (Energy Systems)

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  7. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  8. Research on aviation fuel instability

    Science.gov (United States)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1984-01-01

    The problems associated with aircraft fuel instability are discussed. What is currently known about the problem is reviewed and a research program to identify those areas where more research is needed is discussed. The term fuel instability generally refers to the gums, sediments, or deposits which can form as a result of a set of complex chemical reactions when a fuel is stored for a long period at ambient conditions or when the fuel is thermally stressed inside the fuel system of an aircraft.

  9. Solar Fuels: Vision and Concepts

    OpenAIRE

    Styring, Stenbjörn

    2012-01-01

    The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and ‘endless’ resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involv...

  10. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  11. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  12. Comparative Metagenomics of Anode-Associated Microbiomes Developed in Rice Paddy-Field Microbial Fuel Cells

    Science.gov (United States)

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors. PMID:24223712

  13. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.

    Science.gov (United States)

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.

  14. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Kouzuma

    Full Text Available In sediment-type microbial fuel cells (sMFCs operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.

  15. Metallic fuel design development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, H. Y.; Lee, B. O. and others

    1999-04-01

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual

  16. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

    KAUST Repository

    Chehab, Noura A.

    2013-06-18

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.

  17. Nuclear fuels - Present and future

    Science.gov (United States)

    Olander, D.

    2009-06-01

    The important developments in nuclear fuels and their problems are reviewed and compared with the status of present light-water reactor fuels. The limitations of LWR fuels are reviewed with respect to important recent concerns, namely provision of outlet coolant temperatures high enough for use in H 2 production, destruction of plutonium to eliminate proliferation concerns, and burning of the minor actinides to reduce the waste repository heat load and long-term radiation hazard. In addition to current oxide-based fuel rod designs, the hydride fuel with liquid-metal thermal bonding of the fuel-cladding gap is covered. Finally, two of the most promising Generation IV reactor concepts, the very high temperature reactor and the sodium fast reactor, and the accompanying reprocessing technologies, aqueous-based UREX+1a and pyrometallurgical, are summarized. In all of the topics covered, the thermodynamics involved in the fuel's behavior under irradiation and in the reprocessing schemes are emphasized.

  18. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... of the fuel heating value. In addition, the devolatilization time of alternative fuels cannot be neglected in kiln system process analyses, as these fuels are typically in the cm-size with devolatilization times in the order of minutes. The devolatilization characteristics of large particles of tyre rubber...... time, where increased particle size increased the devolatilization time. Model analyses demonstrated that the overall devolatilization kinetics of large particles of tyre rubber is mainly controlled by heat transfer and intrinsic pyrolysis kinetics, whereas mass transfer has negligible influence...

  19. Fuel services; Servicios de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-07-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning,fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  20. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously